US2165570A - Liquid dispenser - Google Patents

Liquid dispenser Download PDF

Info

Publication number
US2165570A
US2165570A US199677A US19967738A US2165570A US 2165570 A US2165570 A US 2165570A US 199677 A US199677 A US 199677A US 19967738 A US19967738 A US 19967738A US 2165570 A US2165570 A US 2165570A
Authority
US
United States
Prior art keywords
piston
piston rod
liquid
rod
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US199677A
Inventor
Olson John
Harry E Dahlstrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US199677A priority Critical patent/US2165570A/en
Application granted granted Critical
Publication of US2165570A publication Critical patent/US2165570A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/10Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
    • G01F11/26Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus
    • G01F11/262Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus for liquid or semi-liquid
    • G01F11/263Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus for liquid or semi-liquid with valves

Definitions

  • This invention relates to liquid dispensers and more particularly to that type of .dispenser which is adapted to be mounted in the mouth of a bottle to permit the pouring oi measured quantities of liquid from the bottle'.
  • One of the objects of our invention is the provision of a liquid dispenser which quickly and accurately dispenses measured quantities of liquids from a container in a smooth flowing stream which will run freely without inuence from differences between atmospheric pressure and the pressure in the container.
  • Another object of the invention is a provision of a dispenser which can be used a number of times in quick succession without awaiting any appreciable period of time between each use thereof.
  • Another object of the invention is the provision of an improved valve means for aiiecting such dispensing, this valve means being fool proof in operation and subject to no appreciable wear.
  • Still a further object of the invention is the provision of a. sturdily constructed and compactly arranged device which will agreeably blend in with the shape of a bottle neck.
  • Fig. 1 is a vertical section through our dispenser and the upper portion of a bottle
  • Fig. 2 is a sectional view similar to Fig. l With the device and bottleneck in pouring position;
  • Fig. 3 is a section on the line 3 3 of Fig. 1;
  • Fig. 4 is a section on the line 4--4 of Fig. 1.
  • the piston iits within the cylinder for free sliding movement, but the space between the piston and the cylinder wall is so small that ordinary liquids will not pass Ibetween the two elements to any appreciable extent.
  • the inner or lower end of the cylinder is provided with a irusto-conical iiange 'l which has integrally formed therewith a cylindrical sleeve 8.
  • the upper portion of said sleeve is provided with a shoulder 9 against which is seated a washer element Il, and a rubber or other suitable stopper or sealing element II is iitted on the sleeve 8 with its upper or outer portion seating against the washer I.
  • a ringshaped member I2 is secured as by a pressed t and said ring-shaped element carries concentrically therewith a circular open guide I3, said guide being supported by the ring by a pair of webs I4.
  • the guide I3 is adapted to slidably carry a hollow piston rod I5.
  • the piston rod is secured at its upper or outer end to the piston 6, the latter being open in its central portion where said piston rod is secured thereto.
  • the inner or lower end of the hollow piston rod assembly I5 is provided with one or more small apertures I6 and one or more substantially larger rectangular apertures Il, the rectangular apertures being spaced inwardly from the end of the piston rod relative to the smaller apertures I5.
  • the inner or lower end of the hollow piston rod assembly I5 is provided with a small hollow bolt 22 which is screwed into the end of the rod, said bolt being adapted to slidably support a tapered valve I8 which has an outer radial flange I9 and an inner radial iiange 2
  • a bulb-like element 23 which forms a chamber for receiving liquid from the cylinder 5.
  • the inner diameter of the bulb 23 is greater than that of said cylinder.
  • the bulb is provided with a central opening 24, and, if desired, a pouring spout 25. Extending inwardly from a point adjacent the dispensing opening is a sleeve-like air inlet 26 which terminates appro-ximately in the center of said bulb and adjacent the outer end of the cylinder 5.
  • the piston rod is inserted in a neck of a bottle or other container and the device is firmly secured in the mouth of the bottle by seating the rubber stopper element within said mouth.
  • the device is then in a position shown in Fig. l, and is ready for use.
  • the bottle is then inverted to the position shown in Fig. 2, and the pistonrod and piston will slide downwardly from the standpoint of the inverted position until the valve comprising the elements I8 and I9 seats against the inner end of the sleeve 8.
  • said valve will drop to the position shown in dotted lines in Fig. 2 thereby covering the openings H and exposing the smaller openings I6 in the end of the piston rod.
  • a chamber adapted to be supported in communication with the dispensing opening of a container, a piston movable in said chamber, a slidable hollow piston rod secured at its outer end to one side of said piston and communicating with the other side oi said piston, said rod having a restricted opening and an enlarged opening in an end thereof, and valve means associated with said rod for closing one or the other of said openings,
  • a chamber adapted to be supported in communication with the dispensing opening of a container, a piston movable in said chamber, a piston rod secured to said piston and adapted to slide axially of said chamber, said piston rod including means for admitting relatively small quantities of air to said container during movement of the piston and rod in one direction in said chamber, and said rod also including means for quickly eX- hausting at least a portion of the air in said container during movement of the piston and rod in the opposite direction.
  • a chamber adapted to be supported in communication with the dispensing opening of a container, a piston slidably mounted within said chamber, means for admitting relatively small quantities of air to said container during movement of said piston in one direction in said chamber, and means for quickly exhausting at least a portion of the air in said container during movement of the piston in the opposite direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Closures For Containers (AREA)

Description

July 1l,` 1939..
J. OLSON El'- AL LIQUID DISPENSER Filed April 2, 1958 Patented July 11, 1939 PATENT OFFICE LIQUID DISPENSER.
John Olson and Harry E. Dahlstrom,
Minneapolis, Minn.
Application April 2, 193s, Serial No. 199,677
4 Claims.
This invention relates to liquid dispensers and more particularly to that type of .dispenser which is adapted to be mounted in the mouth of a bottle to permit the pouring oi measured quantities of liquid from the bottle'.
One of the objects of our invention is the provision of a liquid dispenser which quickly and accurately dispenses measured quantities of liquids from a container in a smooth flowing stream which will run freely without inuence from differences between atmospheric pressure and the pressure in the container.
Another object of the invention is a provision of a dispenser which can be used a number of times in quick succession without awaiting any appreciable period of time between each use thereof.
Another object of the invention is the provision of an improved valve means for aiiecting such dispensing, this valve means being fool proof in operation and subject to no appreciable wear.
Still a further object of the invention is the provision of a. sturdily constructed and compactly arranged device which will agreeably blend in with the shape of a bottle neck.
These and other objects of the invention will more fully appear from the following description made in connection with the accompanying drawing, wherein like reference characters refer to the same or similar parts throughout the views, and,
in which- Fig. 1 is a vertical section through our dispenser and the upper portion of a bottle;
Fig. 2 is a sectional view similar to Fig. l With the device and bottleneck in pouring position;
Fig. 3 is a section on the line 3 3 of Fig. 1; and
Fig. 4 is a section on the line 4--4 of Fig. 1.
In the drawing there is shown a substantially uniform cylinder 5 within which is slidably mounted a piston 5. The piston iits within the cylinder for free sliding movement, but the space between the piston and the cylinder wall is so small that ordinary liquids will not pass Ibetween the two elements to any appreciable extent. The inner or lower end of the cylinder is provided with a irusto-conical iiange 'l which has integrally formed therewith a cylindrical sleeve 8. The upper portion of said sleeve is provided with a shoulder 9 against which is seated a washer element Il, and a rubber or other suitable stopper or sealing element II is iitted on the sleeve 8 with its upper or outer portion seating against the washer I. Within the sleeve 8 a ringshaped member I2 is secured as by a pressed t and said ring-shaped element carries concentrically therewith a circular open guide I3, said guide being supported by the ring by a pair of webs I4. The guide I3 is adapted to slidably carry a hollow piston rod I5. The piston rod is secured at its upper or outer end to the piston 6, the latter being open in its central portion where said piston rod is secured thereto.
The inner or lower end of the hollow piston rod assembly I5 is provided with one or more small apertures I6 and one or more substantially larger rectangular apertures Il, the rectangular apertures being spaced inwardly from the end of the piston rod relative to the smaller apertures I5.
The inner or lower end of the hollow piston rod assembly I5 is provided with a small hollow bolt 22 which is screwed into the end of the rod, said bolt being adapted to slidably support a tapered valve I8 which has an outer radial flange I9 and an inner radial iiange 2|. Since the bolt 22 is of less diameter than the piston rod I5, the valve will slide upon said bolt between the head of the bolt and the shoulder 20 formed by the end of the piston rod. It will be noted that the small opening I6 is actually in the hollow bolt 22 which is a part of the piston rod assembly. With the valve in the position shown in Fig. 1 and in full lines in Fig. 2, the larger rectangular air openings II are uncovered and the smalleropenings I6 are closed by said valve. With the piston rod in the position shown in dotted lines in Fig. 2 the valve comprising the elements I8 and IS has dropped inwardly against the end of the piston rod closing the larger openings I'I and exposing the smaller openings I6.
On the upper and outer end of the main cylinder 5 is threaded a bulb-like element 23 which forms a chamber for receiving liquid from the cylinder 5. As shown, the inner diameter of the bulb 23 is greater than that of said cylinder. The bulb is provided with a central opening 24, and, if desired, a pouring spout 25. Extending inwardly from a point adjacent the dispensing opening is a sleeve-like air inlet 26 which terminates appro-ximately in the center of said bulb and adjacent the outer end of the cylinder 5.
In operation the piston rod is inserted in a neck of a bottle or other container and the device is firmly secured in the mouth of the bottle by seating the rubber stopper element within said mouth. The device is then in a position shown in Fig. l, and is ready for use. The bottle is then inverted to the position shown in Fig. 2, and the pistonrod and piston will slide downwardly from the standpoint of the inverted position until the valve comprising the elements I8 and I9 seats against the inner end of the sleeve 8. Before the piston rod begins its downward travel, however, said valve will drop to the position shown in dotted lines in Fig. 2 thereby covering the openings H and exposing the smaller openings I6 in the end of the piston rod. Liquid will now from the bottle through the sleeve 8 and around the piston rod l5 to the upper side of the piston 6. As liquid flows in against the upper side of the piston, said piston and rod Will move downwardly through the cylinder 5 and finally the piston will move out of the end of the cylinder and into the bulb 23. When the piston and rod have reached the full line position shown in Fig. 2, the valve at the upper end of the piston rod will have seated against the sleeve 8, as above described, thus preventing any further flow of liquid into the main cylinder 5. Since the bulb 23 is of greater inner diameter than the main cylinder, liquid will ow around the piston and out of the dispensing opening 24. During this dispensing operation, pressure is equalized within the bottle since air Will flow through the air inlet 2Q in the bulb, up through the hollow piston rod I5, and out of the smaller apertures i6 at the inner end of said piston rod. This provi-des a smooth steady ow of liquid during the dispensing operation. When one measured quantity of liquid has been dispensed, the bottle is returned to its normal upright position, and the piston and rod will return to the position shown in Fig. l, the valve elements I8 and I9 also returning to the position shown in Fig. l, thereby exposing the larger piston rod openings H to permit a larger quantity of air to flow out of the bottle through the piston rod and permit rapid return of said piston.
Not only does the small air opening I6 provide for a smooth outflow` of liquid, but the speed of such flow can be controlled. If the liquid flows into the cylinder with too great rapidity, it has been found that the quantity Will vary in successive dispensings. It is therefore pointed out that the opening or openings I6 must be large enough to permit relatively rapid and smooth dispensing, but small enough to prevent too sudden a rush of liquid from the container.
We wish to stress the rectangular shape of the -enlarged air openings H in the piston rod I5.
Naturally such openings are limited in size due to the restricted diameter of the bottle mouth and the consequent restricted diameter of the piston rod. With a rounded air opening it has been found that frequently drops of liquid will cover the enlarged openings and retard the passage of air or stop it completely due to the fact that the piston and piston rod are naturally made of very light material and do not exert any great pressure. With the rectangular openings, however, as shown it has been found that drops of liquid would not form in said openings.
It will, of course, be understood that various changes may be made in the form, details, arrangement and proportions of the various parts without departing from the scope of my invention.
What is claimed is:
l. In a liquid dispenser for containers, a chamber adapted to be supported in communication with the dispensing opening of a container, a piston movable in said chamber, a slidable hollow piston rod secured at its outer end to one side of said piston and communicating with the other side oi said piston, said rod having a restricted opening and an enlarged opening in an end thereof, and valve means associated with said rod for closing one or the other of said openings,
2. In a liquid dispenser for containers, a chamber adapted to be supported in communication with the dispensing opening of a container, a piston movable in said chamber, a piston rod secured to said piston and adapted to slide axially of said chamber, said piston rod including means for admitting relatively small quantities of air to said container during movement of the piston and rod in one direction in said chamber, and said rod also including means for quickly eX- hausting at least a portion of the air in said container during movement of the piston and rod in the opposite direction.
3. The structure in claim 2 and means on said rod for cutting off communication from the interior of said container to the atmosphere when the piston and rod are in one of their extreme positions.
4. In a liquid dispenser for containers, a chamber adapted to be supported in communication with the dispensing opening of a container, a piston slidably mounted within said chamber, means for admitting relatively small quantities of air to said container during movement of said piston in one direction in said chamber, and means for quickly exhausting at least a portion of the air in said container during movement of the piston in the opposite direction.
JOHN OLSON. HARRY E. DAHLSTROM.
US199677A 1938-04-02 1938-04-02 Liquid dispenser Expired - Lifetime US2165570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US199677A US2165570A (en) 1938-04-02 1938-04-02 Liquid dispenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US199677A US2165570A (en) 1938-04-02 1938-04-02 Liquid dispenser

Publications (1)

Publication Number Publication Date
US2165570A true US2165570A (en) 1939-07-11

Family

ID=22738548

Family Applications (1)

Application Number Title Priority Date Filing Date
US199677A Expired - Lifetime US2165570A (en) 1938-04-02 1938-04-02 Liquid dispenser

Country Status (1)

Country Link
US (1) US2165570A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2506125A (en) * 1946-03-09 1950-05-02 Lawrence M White Measuring valve
US2507362A (en) * 1945-08-13 1950-05-09 Wilhelm Bernhard Vent controlled liquid measuring means
US2810499A (en) * 1955-06-07 1957-10-22 Forman Benjamin Dispensing closures for bottles and other liquid containers
US6223791B1 (en) 1999-10-21 2001-05-01 3M Innovative Properties Company Gravity feed fluid dispensing valve
WO2001079791A1 (en) * 2000-04-07 2001-10-25 Sussex Technology, Inc. Measuring device for dispensing predetermined liquid quantities
US6367521B2 (en) 1997-10-08 2002-04-09 3M Innovative Properties Company Gravity feed fluid dispensing valve
US6450214B1 (en) 2001-08-31 2002-09-17 3M Innovative Properties Company Gravity feed fluid dispensing valve
EP3023752A1 (en) * 2014-11-18 2016-05-25 Aptar Radolfzell GmbH Liquid dispenser and applicator head for the same
US20180188091A1 (en) * 2015-06-29 2018-07-05 Silgan Dispensing Systems Netherlands B.V. Measured dose dispensers and methods of using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2507362A (en) * 1945-08-13 1950-05-09 Wilhelm Bernhard Vent controlled liquid measuring means
US2506125A (en) * 1946-03-09 1950-05-02 Lawrence M White Measuring valve
US2810499A (en) * 1955-06-07 1957-10-22 Forman Benjamin Dispensing closures for bottles and other liquid containers
US6367521B2 (en) 1997-10-08 2002-04-09 3M Innovative Properties Company Gravity feed fluid dispensing valve
US6488058B1 (en) 1997-10-08 2002-12-03 3M Innovative Properties Company Gravity feed fluid dispensing valve
US6223791B1 (en) 1999-10-21 2001-05-01 3M Innovative Properties Company Gravity feed fluid dispensing valve
US6354346B2 (en) 1999-10-21 2002-03-12 3M Innovative Properties Company Gravity feed fluid dispensing valve
US6343723B1 (en) * 2000-04-07 2002-02-05 Frederick R. Hickerson Measuring device for dispensing a predetermined quantity of liquid
WO2001079791A1 (en) * 2000-04-07 2001-10-25 Sussex Technology, Inc. Measuring device for dispensing predetermined liquid quantities
US6450214B1 (en) 2001-08-31 2002-09-17 3M Innovative Properties Company Gravity feed fluid dispensing valve
EP3023752A1 (en) * 2014-11-18 2016-05-25 Aptar Radolfzell GmbH Liquid dispenser and applicator head for the same
US20180188091A1 (en) * 2015-06-29 2018-07-05 Silgan Dispensing Systems Netherlands B.V. Measured dose dispensers and methods of using same
US10365140B2 (en) * 2015-06-29 2019-07-30 Silgan Dispensing Systems Netherlands B.V. Measured dose dispensers and methods of using same

Similar Documents

Publication Publication Date Title
US2994461A (en) Dispensing apparatus
US2165570A (en) Liquid dispenser
US2337276A (en) Liquid dispensing device
US999602A (en) Liquid-dispensing apparatus.
US2167123A (en) Filler valve
US3015420A (en) Double stroke variable control fluid dispensing valve
US2368540A (en) Pouring dispenser
US604151A (en) Spraying device
US4662544A (en) Apparatus for dispensing fluid
US4336896A (en) Electrically controlled in-line dispensing faucet
US2717112A (en) Fluid flow precise shut-off valve
US2283652A (en) Liquid dispensing apparatus
US2327285A (en) Liquid dispensing device
US2620947A (en) Liquid measuring device
US2158318A (en) Sprayer
US4005807A (en) Metering-distributor of thick liquids, in particular, syrups
US3478934A (en) Metering apparatus
USRE22837E (en) Filling device with receptacle
US741981A (en) Receptacle for feeding liquid soap.
US3685554A (en) Metering device
US2984391A (en) Dispenser for semi-paste materials
US2317068A (en) Liquid measuring device
US2150485A (en) Dispenser
US2234772A (en) Dispensing container
US981296A (en) Dispensing apparatus.