US2159529A - Electron multiplier - Google Patents
Electron multiplier Download PDFInfo
- Publication number
- US2159529A US2159529A US159992A US15999237A US2159529A US 2159529 A US2159529 A US 2159529A US 159992 A US159992 A US 159992A US 15999237 A US15999237 A US 15999237A US 2159529 A US2159529 A US 2159529A
- Authority
- US
- United States
- Prior art keywords
- electrode
- electrodes
- electron
- aperture
- electrons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007787 solid Substances 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 3
- 230000003116 impacting effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/08—Cathode arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/023—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof secondary-electron emitting electrode arrangements
Definitions
- This invention relates to electron tubes in which use is made of secondary electrons for amplification.
- Such tubes are for instance used in television to amplify the emission obtained from photocathodes. They are of especial importance forpicture-analyzing tubes in which a part of an electron image is permitted to pass through a stationary scanning aperture.
- the electrons liberated from the first surface canbe guided to the side so that the arrangement of electrodes must not lie in the direction of the arriving ray but may be arranged oblique or transverse to the analyzer tube.
- the solid surfaces first impacted by the arriving electrons are given such dimensions that by suitable choice of their potentials the most favorable form and path of the electron ray impacting the first permeable electrode is obtained.
- This arrangement is also preferable in an amplifier connected with a cathode ray tube in which a highly concentrated beam is deflected over an edge, whereby a part of the beam in the amplifier is used to produce secondary electrons.
- Fig. 1 shows a cross section through the target end of an analyzer tube with a. built-in amplifier
- Figs. 2 and 3 diagrammatically illustrate other arrangements of emitting electrodes.
- the analyzing tube I contains an anode 2 in the form of a wall-coating and a cylindrical electrode 3 which carries an opening I8 on the side facing the cathode. In back of this opening lies an electrode 4', which also has the shape of a cylinder.
- the electrode 4 carries an aperture l9, which may for instance be of square shape, immediately in back of the aperture I8, which permits an elementary area of the electron image to enter.
- the electron image is oscillated across the scanning aperture in the known manner.
- the aperture I9 has the dimensions and shape required by the definition and is thus smaller than the aperture l8. It may, however, be pre-- ferred to use the opening l8 as the scanning aperture and to make the opening l9 correspondingly larger.
- an oblique plate 5 which faces the gridshaped electrodes 9 to l4 of the amplifier.
- an end plate 15 The leads to the electrodes are brought out through the projections 6 and l.
- the lead 8 to the signal electrode, i. e., to the anode of the amplifier as well as the lead to the cylindrical electrode 3 are brought out through the projection 6, and all other leads are brought out through the projection I.
- the voltages for the individual electrodes are taken from a voltage divider l6 (diagrammatically shown). The voltages are chosen in such a manner that the electrons are highly accelerated by the high potential, for instance 2,000 volts, at which the cylindrical electrode 3 is held in respect to the cathode.
- the electrons After passing the opening l8 the electrons are decelerated, because the electrode 4 is held at a considerably lower potential, for instance 1200 volts.
- the electrode 5 is positive in respect to the cathode by an amount which conveys to the electrode a velocity favorable for liberation of secondary electrons.
- the electrodes 9 to l2 are held at increasing positive potentials.
- the electrodes l4 and I5 act as decelerating electrodes. Some of the secondary electrons from the electrode 5 impact the inner wall of the cylinder 4 and liberate further electrons, whereas others fly directly to the grid 9.
- the distance between the electrode 5 and the first grid is made larger than the distance between the individual grids.
- the signal electrode I3 is either directly connected to the grid of the first amplifier tube 20, as shown in Fig. l, or may also be connected capacitively by means of a condenser.
- the cylindrical electrode 3 preferably carries the highest positive potential, whereas in the second case 3 is preferably connected with the anode 2 of the tube and carries the same potential as 2.
- Fig. 2 shows an arrangement in which the electrons passing through the opening IS in the electrode 4 impact a small plate H where they liberate secondaries. These impact the inside of the electrode 4 and the electrons emitted from 4 are guided towards the grid 2
- the inside and outside of the electrode 4 may be also insulated from each other and carry difierent potentials whereby it is preferable to hold the inside at a higher potential than the outside.
- the other electrodes correspond to the electrodes III to Hi.
- Fig. 3 shows an arrangement in which a series of liberations of secondaries takes place from the solid surfaces 22, 23, 24, 25.
- the electrodes 23, 24- and 25 have the shape of hollow truncated cones. All emitting electrodes, solid as well as electron permeable, are coated with a secondary emitting layer in the known manner.
- An electron multiplier comprising an evacuated envelope having therein an accelerating electrode having an aperture therein, a decelerating cylinder disposed withinrsaid accelerating electrode opposite said aperture and having a smaller aperture in alinement with said accelerating electrode aperture, a secondarily emissive plate positioned in alinement with said apertures and obliquely thereto, a plurality of accelerating electron-permeable grids in alignment with said secondarily emissive plate, an electron-permeable signal grid, a decelerating grid, and a collecting plate disposed sequentially beyond said accelerating grids, said signal grid, declerating grid, a collecting plate disposed within said first mentioned accelerating electrode, and individual leads from'said electrodes sealed through said envelope.
- an electron multiplier device comprising an accelerating anode formed on the wall of said tube, a second accelerating electrode disposed transversely to the longitudinal axis of said tube, an aperture formed in said second accelerating electrode and facing in a direction parallel to said longitudinal axis, a cylindrical electrode disposed within said second accelerating electrode and having a smaller aperture formed therein in alinement with said accelerating electrode aperture, a secondarily emissive electrode disposed within said cylinder in alinement with said apertures but obliquely thereto, a plurality of accelerating grids disposed in axial alinement with said decelerating cylinder, said grids being electron permeable and adapted to be held at successively higher potentials, a signal collecting grid, a decelerating grid, and a collecting plate disposed sequentially beyond said accelerating grids, separate leads sealed through said tube from each of said electrodes, leads from said second accelerating electrode and said signal collecting grid being sealed through said tube on theside thereof opposite to that through which the remaining leads are
Landscapes
- Cold Cathode And The Manufacture (AREA)
- Electron Tubes For Measurement (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEF81681D DE682157C (de) | 1936-09-02 | 1936-09-02 | Sekundaerelektronenverstaerker |
Publications (1)
Publication Number | Publication Date |
---|---|
US2159529A true US2159529A (en) | 1939-05-23 |
Family
ID=7987841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US159992A Expired - Lifetime US2159529A (en) | 1936-09-02 | 1937-08-19 | Electron multiplier |
Country Status (5)
Country | Link |
---|---|
US (1) | US2159529A (en:Method) |
BE (1) | BE423363A (en:Method) |
DE (1) | DE682157C (en:Method) |
FR (1) | FR48753E (en:Method) |
NL (1) | NL55278C (en:Method) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2585044A (en) * | 1945-02-05 | 1952-02-12 | Farnsworth Res Corp | Gain control apparatus |
US2744954A (en) * | 1948-01-03 | 1956-05-08 | American Optical Corp | Television receiver having a sound-signal detector electrode in its picture tube |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR933551A (fr) * | 1946-09-10 | 1948-04-26 | Cfcmug | Perfectionnements aux analyseurs de télévision |
-
0
- BE BE423363D patent/BE423363A/xx unknown
-
1936
- 1936-09-02 DE DEF81681D patent/DE682157C/de not_active Expired
-
1937
- 1937-08-19 US US159992A patent/US2159529A/en not_active Expired - Lifetime
- 1937-08-25 NL NL83888A patent/NL55278C/xx active
- 1937-09-01 FR FR48753D patent/FR48753E/fr not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2585044A (en) * | 1945-02-05 | 1952-02-12 | Farnsworth Res Corp | Gain control apparatus |
US2744954A (en) * | 1948-01-03 | 1956-05-08 | American Optical Corp | Television receiver having a sound-signal detector electrode in its picture tube |
Also Published As
Publication number | Publication date |
---|---|
FR48753E (fr) | 1938-06-23 |
DE682157C (de) | 1939-10-18 |
NL55278C (en:Method) | 1943-10-15 |
BE423363A (en:Method) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zworykin et al. | The secondary emission multiplier-a new electronic device | |
US3660655A (en) | Ion probe with means for mass analyzing neutral particles sputtered from a specimen | |
US5616987A (en) | Electron multiplier | |
US2484721A (en) | Electrode gun such as is used in cathode-ray tubes | |
US2185239A (en) | Cathode ray tube | |
US2210034A (en) | Electron multipler | |
US2163966A (en) | Box element multiplier | |
US2407906A (en) | Low velocity television transmitting apparatus | |
US2230134A (en) | Image analyzing tube | |
US2159529A (en) | Electron multiplier | |
US4511822A (en) | Image display tube having a channel plate electron multiplier | |
US2080449A (en) | Cathode ray tube | |
US2203048A (en) | Shielded anode electron multiplier | |
US2230124A (en) | Multistage amplifier for utilizing secondary emission | |
US5043628A (en) | Fast photomultiplier tube having a high collection homogeneity | |
US2868994A (en) | Electron multiplier | |
US2176221A (en) | Electron discharge apparatus | |
US2172738A (en) | Cathode ray tube | |
US2796547A (en) | Sensitive electron discharge tube | |
US1659636A (en) | Device fob amplifying voltage and cubeent | |
US2607903A (en) | Distributor tube construction | |
US3772551A (en) | Cathode ray tube system | |
US2225786A (en) | Secondary emitting tube | |
US2498082A (en) | Gun structure for cathode-ray tubes | |
US2900559A (en) | Double stream growing-wave amplifier |