US2159258A - Method and apparatus for digesting fibrous or cellular material - Google Patents

Method and apparatus for digesting fibrous or cellular material Download PDF

Info

Publication number
US2159258A
US2159258A US727878A US72787834A US2159258A US 2159258 A US2159258 A US 2159258A US 727878 A US727878 A US 727878A US 72787834 A US72787834 A US 72787834A US 2159258 A US2159258 A US 2159258A
Authority
US
United States
Prior art keywords
digesting
liquor
zone
fibrous
digested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US727878A
Inventor
Joaquin Julio De La Roza Sr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US727878A priority Critical patent/US2159258A/en
Priority to GB15425/35A priority patent/GB457524A/en
Application granted granted Critical
Publication of US2159258A publication Critical patent/US2159258A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S162/00Paper making and fiber liberation
    • Y10S162/02Chip soaking

Definitions

  • My invention relates to a method and apparatus for digesting fibrous or cellular material, and more particularly, to'a methodand apparatus for continuously digesting fibrous or cellular material by which occluded oxygen or air carried by the material being fed to the digester is removed before the digesting process proper takes place.
  • an object of my invention to provide a process and apparatus for removing oxygen or air from within fibrous or cellular ma- 35 terlal before it is subjected to a digesting operation.
  • Figure 1 is a view in elevation of a digester embodying one mode of carrying out my invention.
  • Figure 2 isa sectional view of the inlet end of my digester.
  • Figure 3 is a view partly in section of the discharge mechanism and recovery system of my invention.
  • Figure 4 is a view partly in section of a modification of the inlet end of my digester.
  • Figure 5 is a view partly in section of a modification of the discharge mechanism and recovery system of my invention.
  • fibrous or cellular material such as, for example, bagasse, corn stalks, cotton linters, cotton stocks, flax stocks or waste, grasses, canes; or any of the suitable undergrowth woods; or bamboo, straw, jute, hemp, sisal, manila, and the like; or cellulose bearing woods such as, for example, spruce, pine, chestnut, hemlock, fir, oak or poplar are comminuted and fed to a compacting and impregnating zone.
  • a liquid may be utilized for wetting the comminuted or chip-like material and this may be water or water containing a wetting compound such as Turkey red oil for breaking down thesurface tension of the liquid to enable it to more readily penetrate the cells of the material to be digested.
  • a wetting compound such as Turkey red oil
  • the wetted material is compacted and impregnated by means of a reciprocating piston, provided with sealing rings, which forces the wetted material within a restricted inlet which is tapered and in part first converges and then diverges in the direction of the material feed, or the inlet may be a plain tubular inlet offering sufiicient resistance due to friction to form a cork or plug.
  • the walls of the converging portion of this inlet are perforated throughout their length, the number of perforations increasing in the direction of the material feed.
  • the occluded air or oxygen which is within the cellular structure of the chips or fibres is displaced by the incompressible impregnating liquid such as the lime water previously referred to which is forced into the 'cellular material.
  • the substantially air-free material will be advanced into the diverging portion of the inlet as a compressed cork or plug adapted of itself to withstand the pressure existing within the digesting zone proper.
  • the density of the material in this portion oi the inlet will be at least 20 pounds of fibrous material 'per cubic foot dry basis, although I prefer to have it in the neighborhood of 30 or more pounds of fibrous material per cubic foot dry basis to prevent blowbacks.
  • the compressed column emerges from the diverging portion into the conical portion of a cylinder rotatably supported within and by a stationary vessel.
  • the material on entering will expand to an average density of 20 to 18 pounds or less per cubic foot of dry fibrous material. I prefer, however, that the digestion of the material in the container be carried out at an average density which is in excess of 12 pounds per cubic foot of dry fibrous material.
  • the fibrous or cellular'material to be digested is fed to hopper I. It is to be understood that the fibrous material may be dehydratedif desired, in order to removethe excess of water. This may be done when the chips have a high moisture content in order that the proper liquor ratio may be secured in the digester.
  • a wetting liquid such as a base solution of calcium oxide and water referred to is pumped into manifold 2, through line 3, which is connected to a suitable pump and reservoir (not shown).
  • the wetted material is compacted and impregnated with the liquid by reciprocating piston 4 which is driven by any suitable means actuated by motor 5.
  • the piston is provided with piston rings 6 and is adapted to compress-the material to be digested into a converging passageway i having perforations 8 which can readily be seen by reference to Figure 2.
  • a feed line Ii communicates with a source of gas such asammonia or nitrogen, or a chemical in a powder form, as for example calcium oxide or a solution of calcium oxide in water or the like or, if desired, hot water.
  • Pump I2 is interposed in line H and is adapted to pump the gas, powder, or liquid through heat exchanger M in which the fluid being pumped is adapted to be heated by heating medium entering through line l5 and. passing out through line H6.
  • the fluid passes from heat exchanger 14 through line I! and enters the jacket space H) and passes through the perforations 8 to the material being compacted.
  • the material to be digested which may be dry or preferably initially wetted by means of the wetting fluid being pumped through line 3 as described above, will have itself collected air containing oxygen which is displaced by the fluid being pumped into the jacket space ID.
  • a predetermined back pressure is kept upon jacket space I II by means of pressure control valve it, the displaced gas passing through valve l8 and out through line l9.
  • the liquor to be used in the digesting operation is supplied to line which leads to heat exchanger 2
  • Hot, spent liquor recovered from the digester pulp, or any other suitable heating medium is passed to line 22, through the heat exchanger in heat exchange relation with the incoming digesting liquor and is withdrawn through line 23.
  • the preheated fresh liquor is withdrawn from the heat exchanger through line 24 and is pumped by pump 25 through a second heat exchanger 26 (to which a heating medium is supplied through line 21 and passes out through line 28), through check valve 29, through valve 30, to the digesting vessel 3
  • houses a rotatably mounted container 32 which is driven in any suitable manner, as for example by motor 33 through suitable mechanical connections.
  • the material to be digested is discharged into the rotating container as can readily be seen by reference to the drawings.
  • the inlet end of the rotating container is provided with perforations 34 to permit the digesting liquor being fed to the vessel 3
  • the liquor ratio can readily be controlled by means of valve and should not be much in excess of five parts of liquor to one part of bone dry material. I prefer, however, that the liquor ratio be approximately two and one half parts of liquor to one part of bone dry material.
  • the ratio will vary depending upon the material to be digested, the temperatures employed, and the concentration and type of the digesting liquor.
  • I provide a number of heating coils 35 which extend throughout the length of the digester in the space formed by rotating container 32 and the digesting vessel shell 3
  • the coils may be arranged in parallel or in series.
  • a suitable medium is steam which is supplied-through pipes 36.
  • the heating coils are provided with discharge lines 31 havingsuitable steam traps 38.
  • a vapor dome 39 Adjacent the inlet portion of the vessel I provide a vapor dome 39 similar to that shown and described in my co-pending application, Serial No. 690,406, filed September 21, 1933 now Patent No. 1,991,244 issued February 12, 1935.
  • My digesting vessel is fitted with the control shown in the above entitled application by means of which a single float 40 within the dome 39, through suitable control means, coordinates the rate of operation of the feeding mechanism, the rotation of the container, the rotation of the unloader valve and the speed of the feed.
  • the dome 39 is provided with a vapor draw ofi line 4
  • leads to a recovery plant (not-shown).
  • the rate of evolution of gases and vapors in my process therefore, is relatively slow and I have found it feasible and economical to collect these gases and deliver them to a recovery plant.
  • the recovery plant forms no part of my invention, except in so far as it is in combination with a digesting process. It may be any well known system of rectification or fractionation of gases or vapors such as by means of fractional condensation or the like, as used in the petroleum industry, Blau gas industry, fatty acid industry, alcohol industry, and associated arts.
  • the digesting cylinder 32 be rotated at a speed which is a function of the rate of input of material to be digested and/or the rate of output of digested material. If the speed of rotation is not properly governed, a secondary plug of material of high density will be formed within the container. This will tend to hinder and impede the travel and movement of the material along the digesting vessel and accordingly, proper digestion will not take place.
  • the rotation not only admixes the digesting liquor and the material to be digested thoroughly but also carries the digesting material away from the inlet end of the digester as rapidly as it is fed thereinto.
  • may be readily removed for cleaning, inspection, and repair.
  • the volumetric discharge valve 45 discharges into discharge conduit 46, which extends at substantially right angles to pipe 43, through which digested material from the digester passes to the volumetric valve 45.
  • the valve 45 may be of any suitable design, as for example a cylinder provided with buckets or recesses 41.
  • a diaphragm 50 Supported between flanges 48 and 43 is a diaphragm 50 of great strength and flexibility. This diaphragm may be made of chrome nickel steel or the like. Attached to the diaphragm in any suitable manner are saddle members 5
  • the saddle is held loosely in place by the diaphragm and guide members so that it is free to move in the direction of flexing of the diaphragm but not endwise or sidewise.
  • may, for the alkaline process of digestion, be made of either nickel or cast iron, which materials are not too hard and are,
  • the pulp is forced from the digester through pipe 43 until the buckets, in retating, shear off a portion of the mass and discharge the same after rotation of 90 degrees into discharge conduit 46.
  • the valve shown in Figure 3 will rotate in a counterclockwise direction.
  • the material in each of the buckets 41 contains entrapped steam. Further steam is formed when the bucket approaches the alignment with the discharge conduit 46.
  • the steam in each bucket tends to exert pressure, forcing the mass of pulp from the bucket at the outlet side. It will be observed, by reference to Figure 3, that there is a considerable increase in volumetric capacity from a bucket placed in the discharge conduit 46.
  • the liquor contained in the pulp discharged by valve 45 will be in the neighborhood of 170 C.
  • an appendix 52 is provided.
  • the appendix is closed by means of a flap valve closure 53.
  • Supported for reciprocating movement within the space 54 of the appendix 52 is a loosely fitting piston 55 which is reciprocated by any suitable means (not shown) through connecting rod 56, which works through stufling box 51.
  • the pulp containing liquor which is not vaporized in the flash chamber is delivered to chamber 54 and forced by the piston 55 through the tapered end 58 of the appendix 52.
  • a substantial amount of the liquor will be pressed from the pulp by virtue of the compacting of the pulp through the convergingpassageway 58.
  • the expressed liquor will flow into surge tank 59.
  • This hot liquor is withdrawn from tank 59 through line 60 by means of pump 6
  • the valve 62 being closed and valve 63 being opened, the hot liquor will be pumped through filter 64 from which it may be passed through line 65,
  • valve 61 may be closed and valve 6'6 may be opened and the hot spent liquor passthrough heat exchanger 69 in which it is cooled by cooling medium entering through line 10 and passing out through line H. The cool, spentliquor then passes to the recovery plant 68 through line 12.
  • Filter 64 serves to remove minor amounts of pulp which may have been entrained in the liquor from the pressing operation.
  • valve 83 is closed, valve 62 is opened, and filter 13 then filters the spent hot liquor.
  • the flap valve 3 at the outlet of the converging portion of the appendix 52 will be closed at the commencement of operations to .permit the formation of the plug or cork.
  • the flap valve is opened and the pulp. substantially free of digesting liquor, is permitted to discharge to the repulper (not shown).
  • the converging portion of the appendix 58 is provided with perforations l4 and a jacket 16.
  • a centrifugal pump 11, driven by a motor 18 is adapted to pump the hot liquor expressed during the pressing operation by piston 55.
  • Vapors from jacket 16 pass out through flanged port 11 through a suitable conduit (not shown) to a condenser or recovery system.
  • Pipe 65 goes to heat exchanger 26 as before and heat exchanger 69 is similar to that shown in the arrangement in Figure 3.
  • the perforations 15 may be more closely spaced at the narrow end of the converging passageway, inasmuch as the maximum expressing of liquor will occur at this point, since it is the point of greatest'pressure.
  • the piston 55 in the modification shown in Figure 5, may be fitted with piston rings 18 to prevent the escape of liquor into the cylinder housing the piston 55 at the beginning of its stroke.
  • a process for continuously digesting fibrous or cellular material in 'a digestion zone comprising wetting the material with an alkaline liquid, compacting the wetted material in a compression zone so as to displace occluded air and substantially impregnate the material with an alkaline liquid, removing the air from the compression zone, passing the material from the compression zone to a digestion zone and there digesting the material with an acidic cooking liquid.
  • the improvement comprising the steps of discharging the digested material into a zone of reduced pressure, separating the pulp from the heated liquor, removing the pulp from the system and passing the heated liquor in heat exchange relationship with cooler liquor being delivered to the digestion process.
  • a process for continuously digesting fibrous or cellular material comprising wetting the material with a wetting iiuid, subjecting the wetted material to pressure in a compacting zone to form a compacted body 0! material, express occluded air from and impregnate the material with wetting fluid, removing the expressed air from the compacting zone, intermittently advancing the impregnated material into a digesting zone, subjecting the material in the digesting zone to heat under pressure and to the action of digesting liquor being injected into the digesting zone, removing the hot digested material from the digesting zone into a zone 0! reduced pressure, compressing the hot digested material to a density suflicient 'to express the greater portion of the digesting liquor from the material and removing the compressed material from the system.
  • a process for continuously digesting fibrous or cellular material comprising wetting the material, subjecting the wetted material in a compacting zone to a sufilcient pressure to form a compacted body of the material, express occluded air from and impregnate the material with the wetting liquid, removing the expressed air from pressed.
  • a process for continuously digesting fibrous or cellular material comprising wetting the material, subjecting the wetted material in a compacting zone to a sufficient pressure to form a compacted body of the material, express occluded air from and impregnate the material with the wetting liquid, removing expressed air from the compacting zone, advancing the body of impregnated material into a digesting zone, subjecting impregnatedmaterial in the digesting zone to the action of a digesting liquor being injected into said zone, discharging digested material from the digesting zone into a compressing zone, compressing the material in said compressing zone to a density sumcient to express the greater portion of the digesting liquor from the material, passing the expressed liquor in heat exchange relationship with the liquor being injected into the digestion zone and discharging from the compressing zone material from which liquor has been expressed.
  • a continuous digester comprising a pressure digesting chamber, means forming a tubular inlet to said digesting chamber, a piston adapted to cooperate with said inlet means to compact in said inlet material to be digested into a digesting pressure retaining plug supported only by said inlet means, said inlet means being provided with a plurality of gas escape orifices.
  • a continuous digester comprising a pressure digesting chamber, means forming a tubular inlet to said digesting chamber, a piston adapted to cooperate with said inlet means to compact in said inlet material to be digested into a digesting pressure retaining plug supported only by said inlet means, said inlet means being provided with orifices, and external means associated with said inlet means for passing a fluid through said orifices and said plug.
  • a continuous digester or the rotary type means forming an inlet to said digester, the walls of said inlet first converging and then diverging to the digester, a plurality of openings formed in said converging walls and a jacket surrounding said inlet means.
  • a continuous digester comprising a rotary digesting vessel, means forming a tubular perforated inlet to said digester, means adapted to cooperate with said inlet means to compact in said inlet material to be digested into a digester pressure retaining plug supported only by said inlet means, and external means associated with said inlet means for passing fluid through said inlet means and the material compacted therein effecting the removal of occluded oxygen or air from material being compacted in said inlet means.
  • Apparatus for digesting fibrous or cellular material comprising in combination a stationary vessel, a rotatable digesting chamber in said vessel, means forming an inlet to said digesting chamber, means associated with said inlet means for effecting the removal of occluded air from material passing through said inlet means, means for removing digested material from said chamher and separating mechanism associated with said last named means for extracting liquid from said digested material.
  • Apparatus for continuously digesting fibrous or cellular material including a discharge member, an unloader valve in said member, a liquor expressing device for receiving digested material discharged through said member, and material transferring means connecting said expressing device and said discharge member.
  • Apparatus for continuously digesting fibrous or cellular material including in combination means forming a discharge member from said digesting apparatus, an unloader valve in said discharge member, means forming an outlet adapted to compact the digested material and express the liquid contained therein connected to said discharge member, means for removing expressed liquid from said outlet forming means, means for delivering the removed liquid to a recovery plant and a bypass line connected to said delivery means for returning a portion of said liquid to a desired point in the digester.
  • Apparatus for continuously digesting fibrous or cellular material including in combination means for introducing material to be digested to said digester in the form of a compressed plug or cork, means associated with said introducing means for removing occluded air from said ma,- terial in said introducing means, a liquor input line connected to said digester, heat exchange means associated with said input line, a discharge member connected to said digester, an unloader valve in said discharge member, mechanism associated with said discharge member for expressing liquid from the unloaded material,
  • brous or cellular material comprising wetting the material with a wetting fluid, subjecting the wetted material to pressure in a compacting zone to form a compacted .body of material, express occluded air from and impregnate the material with wetting fluid, removing the expressed air from the compacting zone, advancing the body of material from the compacting zone into a digesting zone, introducing into the digesting zone a digesting fluid different than the wetting I fluid, heating the material in the digesting zone and subjecting it under pressure to the digesting action of the digesting fluid, discharging the not digested material from the 'digesting zone into a compressing zone, compressing the hot digested material in said zone to a density suf- 17.
  • a process for the manufacture of pulp from fibrous or cellulose bearing material comprising, wetting the material with a solution containing a base, applying a compressing force to the wetted material while confining the body of material to a. uni-directional restricted movement into a digesting chamber, said force having an applied intensity suflicient in conjunction with the restrictive force to uniformly impregnate the material with the solution containing a base and form a material body of high density, and digesting the impregnated material under pressure-in the digesting chamber with an acid cooking liquor to produce pulp.
  • a process for the manufacture of pulp from fibrous or cellulose bearing material comprising, adding a solution of lime and water to the material, applying a compressing force to the wetted material while confining the body of material to a uni-directional restricted movement into a digesting chamber, said force having an applied intensity suflicient in connection with the restrictive force to uniformly impregnate the material with the milk of lime solution and digesting the impregnated material under pressure in the digestion chamber with sulphurous acid.
  • JOAQUIN JULIO or: LA ROZA, SR.

Landscapes

  • Paper (AREA)

Description

J, J. DE LA ROZA. SR 2,159,258
Filed May 28, 1934 2 Sheets-Sheet l M Z M m m m 1 A 1% w n IHHHHIHIIIIIILHHH 1 M. I .0 A MWWWMWMW w M u ummmmmmmmmfl n Y rwm mmmmmnnmmma w B Lwk :Illl 4 m m J \1\\ E [I Q m m. v \m NM N $0 a. N
xm. m mwmm May 23, 1939.
METHOD AND APPARATUS FOR DIGESTING FIBROUS OR CELLULAR MATERIAL May 23, 1939. J. J. DE LA ROZA. SR
METHOD AND APPARATUS FOR DIGESTING FIBROUS OR CELLULAR MATERIAL 2 Sheets-Sheet 2 Filed May 28, 1934 ATTORNEY Patented May 23, 1939 PATENT OFFICE METHOD AND APPARATUS FOR DIGESTING FIBROUS OR. CELLULAR MATERIAL Joaquin Julio de la Ron, Sn, Piandome, N. Y.
Application May 28, 1934, Serial No. 727,878
20 Claims.
My invention relates to a method and apparatus for digesting fibrous or cellular material, and more particularly, to'a methodand apparatus for continuously digesting fibrous or cellular material by which occluded oxygen or air carried by the material being fed to the digester is removed before the digesting process proper takes place.
In my co-pending applications, Serial No. 581,636 filed December 17, 1931 now Patent No.
1,991,243 issued February 12, 1935 and its divisional application Serial No. 705,210 filed January 4, 1934 now Patent No. 1,991,245 issued February 12, 1935, I disclose a process and apparatus for continuously digesting fibrous or cellular material at high density in which the material is fed to the digester in the form of a compressed cork or plug adapted of itself to withstand the pressure existing in the digester. In my co-pending application Serial No. 690,406
filed September 21, 1933 now Patent No. 1,991,244
issued February 12, 1935 which forms a continuation-in-part of application Serial No. 581,636 now Patent No. 1,991,243 issued February 12, 1935 I disclose a process and apparatus for continuously digesting fibrous or cellular material at high density in which the digestion is similarly carried on within a perforated container rotatably supported in a stationary vessel. This vessel is provided with devices for controlling the rate of input and output of the digesting material as well as with suitably arranged heat exchange means for maintaining the desired temperature gradient of the liquor within and around the perforated container.
I have found that substantially completely removal of oxygen or air from the material to be digested before its introduction to the digesting chamber is of material advantage in the operation of my process.
In the pulp industry it has been the general practice in the operation of the sulphite process to add to the sulphite liquor a base or a compound containing a base which will serve to neutralize sulphuric and other acids formed during the process of digestion. Failure to provide for I composed incrusting matter=lignosulfonic acids+ 55 'HzSOi.
I have found from a careful investigation of this subject that contrary to all of the above, the sulphuric acid is formed simply from the combination of sulphurous acid and oxygen obtained from the air contained within the wood chips. From this determination the chemical reaction would then be as follows:
Ca (HSOa 2+H2S0s+2O2+incrusting matter: Ca(HSO4)z+2HaSO4+hydro1yzed incrusting mat- 10 ter.
This explains why wet chips give higher yields of better pulp than dry chips and why very slow cooking or preimpregnating of the chips increases the yield and quality of the pulp. It is all due to the elimination of the oxygen contained in the 15 air within the chips.
As it is now, commercially, a digester is filled with chips and liquor which traps much oxygen within the chips. A calcium bisulphite liquor is then run in. The sulphurous acid displaces the 20 air about the chips. This air is released and the acid then penetrates the interior of the chips more rapidly than the calcium base and forms sulphuric acid with the occluded oxygen. Shortly thereafter the calcium base also penetrates the 25 chips and neutralizes the sulphuric acid. Obviously then, if no free oxygen existed in the interior of the chips, no sulphuric acid would be formed and no base would be required to neutralize acid not found. Thus, the yield, quality and 30 economy of the entire process would be considerably improved.
It is, therefore, an object of my invention to provide a process and apparatus for removing oxygen or air from within fibrous or cellular ma- 35 terlal before it is subjected to a digesting operation.
It is a further object of my invention to provide a process and apparatus for removing occluded oxygen or air from fibrous or cellular material be- 40 ing fed to a continuous digester in the form of a compressed cork or plug by impregnating the material before digestion with a neutralizing base under a pressure suflicient to cause penetration of the interstices of the material forming the plug 45 or cork and displacement of the occluded oxygen or air.
It is another object of my invention to provide a process and apparatus for recovering in an economic and commercially practical manner volatiles such as sulphur dioxide, turpentine, furfurol and/or other vapors or gases continuously evolved during the digesting operation.
It is a further object of my invention to provide a. process and apparatus for handling the digested pulp which will permit extraction from the pulp of the digesting liquor with its potentially useful high heat content and also avoid the usual dilution of the pulp for pumping and handling.
It is a still further object of my invention to provide a process and apparatus for recovering chemicals from the digesting liquor separated from the pulp to thereby provide a substantial saving in the cost of operation of the digesting process.
It is a further object of my invention to provide a novel and efflcient arrangement of heat exchange means in my, digester for maintaining a desired temperature gradient within the digesting apparatus during the process.
In the accompanying drawings which form part of the instant specification and which are to be read in conjunction therewith, and in which like reference numerals are used to indicate like parts in the various views;
Figure 1 is a view in elevation of a digester embodying one mode of carrying out my invention.
Figure 2 isa sectional view of the inlet end of my digester. I
Figure 3 is a view partly in section of the discharge mechanism and recovery system of my invention.
Figure 4 is a view partly in section of a modification of the inlet end of my digester.
Figure 5 is a view partly in section of a modification of the discharge mechanism and recovery system of my invention.
In general, fibrous or cellular material such as, for example, bagasse, corn stalks, cotton linters, cotton stocks, flax stocks or waste, grasses, canes; or any of the suitable undergrowth woods; or bamboo, straw, jute, hemp, sisal, manila, and the like; or cellulose bearing woods such as, for example, spruce, pine, chestnut, hemlock, fir, oak or poplar are comminuted and fed to a compacting and impregnating zone. A liquid may be utilized for wetting the comminuted or chip-like material and this may be water or water containing a wetting compound such as Turkey red oil for breaking down thesurface tension of the liquid to enable it to more readily penetrate the cells of the material to be digested. Preferably, however, I find it desirable to utilize a solution of calcium oxide in water, or other suitable base, as the wetting and impregnating substance in order to neutralize sulphuric and other acids which may be formed unavoidably by the sulphite liquor during the digestion proper.
The wetted material is compacted and impregnated by means of a reciprocating piston, provided with sealing rings, which forces the wetted material within a restricted inlet which is tapered and in part first converges and then diverges in the direction of the material feed, or the inlet may be a plain tubular inlet offering sufiicient resistance due to friction to form a cork or plug. The walls of the converging portion of this inlet are perforated throughout their length, the number of perforations increasing in the direction of the material feed. As a result of the compacting and impregnating of the material the occluded air or oxygen which is within the cellular structure of the chips or fibres is displaced by the incompressible impregnating liquid such as the lime water previously referred to which is forced into the 'cellular material. The maximum amount of air or oxygen'will be displaced at the throat of the inlet Where the pressure is greatest and will es- 35 or more pounds of fibrous material per cubic.-
foot dry basis.
As a result of the intermittent action of the reciprocating piston the substantially air-free material will be advanced into the diverging portion of the inlet as a compressed cork or plug adapted of itself to withstand the pressure existing within the digesting zone proper. The density of the material in this portion oi the inlet will be at least 20 pounds of fibrous material 'per cubic foot dry basis, although I prefer to have it in the neighborhood of 30 or more pounds of fibrous material per cubic foot dry basis to prevent blowbacks. The compressed column emerges from the diverging portion into the conical portion of a cylinder rotatably supported within and by a stationary vessel. The material on entering will expand to an average density of 20 to 18 pounds or less per cubic foot of dry fibrous material. I prefer, however, that the digestion of the material in the container be carried out at an average density which is in excess of 12 pounds per cubic foot of dry fibrous material.
More particularly referring now to the drawings, the fibrous or cellular'material to be digested is fed to hopper I. It is to be understood that the fibrous material may be dehydratedif desired, in order to removethe excess of water. This may be done when the chips have a high moisture content in order that the proper liquor ratio may be secured in the digester. A wetting liquid such as a base solution of calcium oxide and water referred to is pumped into manifold 2, through line 3, which is connected to a suitable pump and reservoir (not shown). The wetted material is compacted and impregnated with the liquid by reciprocating piston 4 which is driven by any suitable means actuated by motor 5. The piston is provided with piston rings 6 and is adapted to compress-the material to be digested into a converging passageway i having perforations 8 which can readily be seen by reference to Figure 2. A jacket 9, having a jacket space I0, surrounds the converging passageway 1. The jacket space is adapted to receive the air and excess liquid forced from the material which is being compressed.
In the modification shown in Figure 4, a feed line Ii communicates with a source of gas such asammonia or nitrogen, or a chemical in a powder form, as for example calcium oxide or a solution of calcium oxide in water or the like or, if desired, hot water. Pump I2 is interposed in line H and is adapted to pump the gas, powder, or liquid through heat exchanger M in which the fluid being pumped is adapted to be heated by heating medium entering through line l5 and. passing out through line H6. The fluid passes from heat exchanger 14 through line I! and enters the jacket space H) and passes through the perforations 8 to the material being compacted. The material to be digested, which may be dry or preferably initially wetted by means of the wetting fluid being pumped through line 3 as described above, will have itself collected air containing oxygen which is displaced by the fluid being pumped into the jacket space ID. A predetermined back pressure is kept upon jacket space I II by means of pressure control valve it, the displaced gas passing through valve l8 and out through line l9.
The liquor to be used in the digesting operation, as for example sulphite liquor or the like, is supplied to line which leads to heat exchanger 2|. Hot, spent liquor recovered from the digester pulp, or any other suitable heating medium, is passed to line 22, through the heat exchanger in heat exchange relation with the incoming digesting liquor and is withdrawn through line 23. The preheated fresh liquor is withdrawn from the heat exchanger through line 24 and is pumped by pump 25 through a second heat exchanger 26 (to which a heating medium is supplied through line 21 and passes out through line 28), through check valve 29, through valve 30, to the digesting vessel 3| at the desired digesting temperature. By my process, little or no sulphuric acid is formed by the union of hot sulphurous acid liquor and such oxygen as may remain occluded in the chips afterthe impregnation of the fibrous or cellular material being fed to the digester as has been pointed out hereinabove.
The digesting vessel 3| houses a rotatably mounted container 32 which is driven in any suitable manner, as for example by motor 33 through suitable mechanical connections. The material to be digested is discharged into the rotating container as can readily be seen by reference to the drawings. The inlet end of the rotating container is provided with perforations 34 to permit the digesting liquor being fed to the vessel 3| to thoroughly admix with the material to be digested. The liquor ratio can readily be controlled by means of valve and should not be much in excess of five parts of liquor to one part of bone dry material. I prefer, however, that the liquor ratio be approximately two and one half parts of liquor to one part of bone dry material. It will be understood, of course, that the ratio will vary depending upon the material to be digested, the temperatures employed, and the concentration and type of the digesting liquor. Within the vessel 3| I provide a number of heating coils 35 which extend throughout the length of the digester in the space formed by rotating container 32 and the digesting vessel shell 3|. Any suitable heating medium may be passed through the coils. The coils may be arranged in parallel or in series. A suitable medium is steam which is supplied-through pipes 36. The heating coils are provided with discharge lines 31 havingsuitable steam traps 38. By means of my heating arrangement I am enabled to control the temperature existing within any portion of my digesting vessel.
Adjacent the inlet portion of the vessel I provide a vapor dome 39 similar to that shown and described in my co-pending application, Serial No. 690,406, filed September 21, 1933 now Patent No. 1,991,244 issued February 12, 1935. My digesting vessel is fitted with the control shown in the above entitled application by means of which a single float 40 within the dome 39, through suitable control means, coordinates the rate of operation of the feeding mechanism, the rotation of the container, the rotation of the unloader valve and the speed of the feed. The dome 39 is provided with a vapor draw ofi line 4| having a shut off valve 40' and a pressure control valve 42. The withdrawal line 4| leads to a recovery plant (not-shown). Attempts have been made to recover the volatile materials evolved during digestion from a batch process. These attempts have uniformly met with failure. The rate of evolution of gas and vapors in a batch process is so rapid that it is commercially impossible and impractical to collect these gases and permit economical recovery of the constituents to be made. In a continuous process of digestion, such as I have disclosed, the greatest portion of gaseous materials such as for example sulphur dioxide,
turpentine, furfurol, and the like, are released during the first third of the travel of the digesting materials through the digester. The rate of evolution of gases and vapors in my process, therefore, is relatively slow and I have found it feasible and economical to collect these gases and deliver them to a recovery plant. The recovery plant forms no part of my invention, except in so far as it is in combination with a digesting process. It may be any well known system of rectification or fractionation of gases or vapors such as by means of fractional condensation or the like, as used in the petroleum industry, Blau gas industry, fatty acid industry, alcohol industry, and associated arts.
It is of importance in my invention that the digesting cylinder 32 be rotated at a speed which is a function of the rate of input of material to be digested and/or the rate of output of digested material. If the speed of rotation is not properly governed, a secondary plug of material of high density will be formed within the container. This will tend to hinder and impede the travel and movement of the material along the digesting vessel and accordingly, proper digestion will not take place. The rotation not only admixes the digesting liquor and the material to be digested thoroughly but also carries the digesting material away from the inlet end of the digester as rapidly as it is fed thereinto.
On the other hand, if the rate of rotation be too high, a rapid movement of the digesting material through the digesting vessel will take place. This will result in unsatisfactory cooking and a piling up of the digested material at the outlet end of the digester. The speed of rotation, as can be readily understood, will vary with the material being treated, the temperatures employed, the particular digesting liquor and the concentration thereof. The operator can adjust the speed of rotation by observation. It is an advantage of my process and its associated control mechanism that, once the operation has been adjusted to give proper digestion that remarkably uniform and constant results take place. The digested material is withdrawn through pipe 43, which leads to unloader valve casing 44. Within the unloader valve casing 44 is mounted a rotating volumetric unloader valve 45 or any other suitable design of discharge valve.
The discharge end of vessel 3| may be readily removed for cleaning, inspection, and repair. The volumetric discharge valve 45 discharges into discharge conduit 46, which extends at substantially right angles to pipe 43, through which digested material from the digester passes to the volumetric valve 45. The valve 45 may be of any suitable design, as for example a cylinder provided with buckets or recesses 41. Supported between flanges 48 and 43 is a diaphragm 50 of great strength and flexibility. This diaphragm may be made of chrome nickel steel or the like. Attached to the diaphragm in any suitable manner are saddle members 5| which ride the rotary valve 45 to efiectively seal the valve at the input side. The saddle is held loosely in place by the diaphragm and guide members so that it is free to move in the direction of flexing of the diaphragm but not endwise or sidewise. The saddle members 5| may, for the alkaline process of digestion, be made of either nickel or cast iron, which materials are not too hard and are,
at the same time, resistant to the action of the chemicals used. The pulp is forced from the digester through pipe 43 until the buckets, in retating, shear off a portion of the mass and discharge the same after rotation of 90 degrees into discharge conduit 46. The valve shown in Figure 3 will rotate in a counterclockwise direction. The material in each of the buckets 41 contains entrapped steam. Further steam is formed when the bucket approaches the alignment with the discharge conduit 46. The steam in each bucket tends to exert pressure, forcing the mass of pulp from the bucket at the outlet side. It will be observed, by reference to Figure 3, that there is a considerable increase in volumetric capacity from a bucket placed in the discharge conduit 46. The liquor contained in the pulp discharged by valve 45 will be in the neighborhood of 170 C. in the alkaline process and in the neighborhood of 150 C. in the acid process. This liquor is under a pressure of from 25 to 125 pounds per square inch or greater. It will be readily understood that, in passing from the small bucket space to the large space in the discharge conduit, that the liquor will undergo hash vaporization with the evolution of considerable quantities of steam. An enlarged space, therefore, in the form. of an appendix 52 is provided. The appendix is closed by means of a flap valve closure 53. Supported for reciprocating movement within the space 54 of the appendix 52 is a loosely fitting piston 55 which is reciprocated by any suitable means (not shown) through connecting rod 56, which works through stufling box 51. The pulp containing liquor which is not vaporized in the flash chamber is delivered to chamber 54 and forced by the piston 55 through the tapered end 58 of the appendix 52.
A substantial amount of the liquor will be pressed from the pulp by virtue of the compacting of the pulp through the convergingpassageway 58. The expressed liquor will flow into surge tank 59. This hot liquor is withdrawn from tank 59 through line 60 by means of pump 6|. The valve 62 being closed and valve 63 being opened, the hot liquor will be pumped through filter 64 from which it may be passed through line 65,
if valve 6'6 is closed and valve 61 is opened. Line 65 leads to line 21. It will be observed that the hot liquor will then be passed through heat exchanger 26 in heat exchange relation with the incoming'fresh liquor. Line 28, leading from heat exchanger 26, passes to a recovery plant, indicated as 63, in which certain constituents of the spent liquor such as carbohydrate materials,
.alkaline bases, tannins, waxes, and the like,
which. may have been extracted by the liquor from the material being digested, may be recovered by any of the well known processes for the recovery of these materials from digested liquors. If desired, valve 61 may be closed and valve 6'6 may be opened and the hot spent liquor passthrough heat exchanger 69 in which it is cooled by cooling medium entering through line 10 and passing out through line H. The cool, spentliquor then passes to the recovery plant 68 through line 12. Filter 64 serves to remove minor amounts of pulp which may have been entrained in the liquor from the pressing operation. When it is necessary to clean filter 84, valve 83 is closed, valve 62 is opened, and filter 13 then filters the spent hot liquor. The flap valve 3 at the outlet of the converging portion of the appendix 52 will be closed at the commencement of operations to .permit the formation of the plug or cork. As
soon as the plug has been formed. the flap valve is opened and the pulp. substantially free of digesting liquor, is permitted to discharge to the repulper (not shown).
In the modification shown in Figure 5, the converging portion of the appendix 58 is provided with perforations l4 and a jacket 16. A centrifugal pump 11, driven by a motor 18 is adapted to pump the hot liquor expressed during the pressing operation by piston 55. Vapors from jacket 16 pass out through flanged port 11 through a suitable conduit (not shown) to a condenser or recovery system. Pipe 65 goes to heat exchanger 26 as before and heat exchanger 69 is similar to that shown in the arrangement in Figure 3. If desired, the perforations 15 may be more closely spaced at the narrow end of the converging passageway, inasmuch as the maximum expressing of liquor will occur at this point, since it is the point of greatest'pressure. The piston 55 in the modification shown in Figure 5, may be fitted with piston rings 18 to prevent the escape of liquor into the cylinder housing the piston 55 at the beginning of its stroke.
It will be observed that I have accomplished the objects of my invention. I have provided a process for the digesting of fibrous or cellular material in which the formation of corrosive sulphuric and other acids is obviated. A novel and efficient continuous digesting process is disclosed permitting theeconomical recovery of volatiles such as sulphur dioxide, turpentine, furfurol, and the like. A system which is thermally efficlent has been devised. A uniform product of surprising quality is produced.
It will be understood that certain features and sub-combinations are of utility and may be employed without reference to other features and sub-combinations. This is contemplated by and is within the scope of my claims. It is further obvious that various changes may be made in details within the scope of my claims without departing from the spirit of my invention. It is, therefore, to be understood that my invention is not to be limited to the specific details shown and described. 1
Having thus described my invention, what I claim is:
1. A process for continuously digesting fibrous or cellular material in 'a digestion zone comprising wetting the material with an alkaline liquid, compacting the wetted material in a compression zone so as to displace occluded air and substantially impregnate the material with an alkaline liquid, removing the air from the compression zone, passing the material from the compression zone to a digestion zone and there digesting the material with an acidic cooking liquid.
2. In a process for continuously digesting,
fibrous or cellular material in a digestion zone at an elevated temperature and pressure, the improvement comprising the steps of discharging the digested material into a zone of reduced pressure, separating the pulp from the heated liquor, removing the pulp from the system and passing the heated liquor in heat exchange relationship with cooler liquor being delivered to the digestion process.
3; In the art of making pulp from fibrous or cellular materialby a continuous digestion process, the improvement comprising the steps or removing the pulp from a digestion zone, introducing the pulp to a separat n one and t e e extracting substantially all of the liquor, passing the extracted liquor in heat exchange relationship with incoming cool liquor and subjecting the extracted liquid to a chemical recovery operat on.
4. A process for continuously digesting fibrous or cellular material comprising wetting the material with a wetting iiuid, subjecting the wetted material to pressure in a compacting zone to form a compacted body 0! material, express occluded air from and impregnate the material with wetting fluid, removing the expressed air from the compacting zone, intermittently advancing the impregnated material into a digesting zone, subjecting the material in the digesting zone to heat under pressure and to the action of digesting liquor being injected into the digesting zone, removing the hot digested material from the digesting zone into a zone 0! reduced pressure, compressing the hot digested material to a density suflicient 'to express the greater portion of the digesting liquor from the material and removing the compressed material from the system.
5. A process for continuously digesting fibrous or cellular material comprising wetting the material, subjecting the wetted material in a compacting zone to a sufilcient pressure to form a compacted body of the material, express occluded air from and impregnate the material with the wetting liquid, removing the expressed air from pressed.
6. A process for continuously digesting fibrous or cellular material comprising wetting the material, subjecting the wetted material in a compacting zone to a sufficient pressure to form a compacted body of the material, express occluded air from and impregnate the material with the wetting liquid, removing expressed air from the compacting zone, advancing the body of impregnated material into a digesting zone, subjecting impregnatedmaterial in the digesting zone to the action of a digesting liquor being injected into said zone, discharging digested material from the digesting zone into a compressing zone, compressing the material in said compressing zone to a density sumcient to express the greater portion of the digesting liquor from the material, passing the expressed liquor in heat exchange relationship with the liquor being injected into the digestion zone and discharging from the compressing zone material from which liquor has been expressed.
'7. A continuous digester comprising a pressure digesting chamber, means forming a tubular inlet to said digesting chamber, a piston adapted to cooperate with said inlet means to compact in said inlet material to be digested into a digesting pressure retaining plug supported only by said inlet means, said inlet means being provided with a plurality of gas escape orifices.
8. A continuous digester comprising a pressure digesting chamber, means forming a tubular inlet to said digesting chamber, a piston adapted to cooperate with said inlet means to compact in said inlet material to be digested into a digesting pressure retaining plug supported only by said inlet means, said inlet means being provided with orifices, and external means associated with said inlet means for passing a fluid through said orifices and said plug.
9. In a continuous digester or the rotary type, means forming an inlet to said digester, the walls of said inlet first converging and then diverging to the digester, a plurality of openings formed in said converging walls and a jacket surrounding said inlet means.
10. A continuous digester comprising a rotary digesting vessel, means forming a tubular perforated inlet to said digester, means adapted to cooperate with said inlet means to compact in said inlet material to be digested into a digester pressure retaining plug supported only by said inlet means, and external means associated with said inlet means for passing fluid through said inlet means and the material compacted therein effecting the removal of occluded oxygen or air from material being compacted in said inlet means.
11. Apparatus for digesting fibrous or cellular material comprising in combination a stationary vessel, a rotatable digesting chamber in said vessel, means forming an inlet to said digesting chamber, means associated with said inlet means for effecting the removal of occluded air from material passing through said inlet means, means for removing digested material from said chamher and separating mechanism associated with said last named means for extracting liquid from said digested material.
12. Apparatus for continuously digesting fibrous or cellular material including a discharge member, an unloader valve in said member, a liquor expressing device for receiving digested material discharged through said member, and material transferring means connecting said expressing device and said discharge member.
13. Apparatus for continuously digesting fibrous or cellular material including in combination means forming a discharge member from said digesting apparatus, an unloader valve in said discharge member, means forming an outlet adapted to compact the digested material and express the liquid contained therein connected to said discharge member, means for removing expressed liquid from said outlet forming means, means for delivering the removed liquid to a recovery plant and a bypass line connected to said delivery means for returning a portion of said liquid to a desired point in the digester.
14. Apparatus for continuously digesting fibrous or cellular material including in combination means for introducing material to be digested to said digester in the form of a compressed plug or cork, means associated with said introducing means for removing occluded air from said ma,- terial in said introducing means, a liquor input line connected to said digester, heat exchange means associated with said input line, a discharge member connected to said digester, an unloader valve in said discharge member, mechanism associated with said discharge member for expressing liquid from the unloaded material,
means for removing the expressed liquid connected to said mechanism, a line connecting said removal means with a recovery plant, and means connected to said line for bypassing a portion of said liquid to said liquid input heat exchange means.
15. A process for continuously digesting fl-.
brous or cellular material comprising wetting the material with a wetting fluid, subjecting the wetted material to pressure in a compacting zone to form a compacted .body of material, express occluded air from and impregnate the material with wetting fluid, removing the expressed air from the compacting zone, advancing the body of material from the compacting zone into a digesting zone, introducing into the digesting zone a digesting fluid different than the wetting I fluid, heating the material in the digesting zone and subjecting it under pressure to the digesting action of the digesting fluid, discharging the not digested material from the 'digesting zone into a compressing zone, compressing the hot digested material in said zone to a density suf- 17. A process for the manufacture of pulp from fibrous or cellulose bearing material comprising, wetting the material with a solution containing a base, applying a compressing force to the wetted material while confining the body of material to a. uni-directional restricted movement into a digesting chamber, said force having an applied intensity suflicient in conjunction with the restrictive force to uniformly impregnate the material with the solution containing a base and form a material body of high density, and digesting the impregnated material under pressure-in the digesting chamber with an acid cooking liquor to produce pulp.
18. The process of claim 1'7 including the step of withdrawing from the zone of impregnation the liquid in excess of that required to uniformly impregnate the material.
19. The process of claim 17, said confined body of base impregnated material forming an internally unreinforced plug of a density sufliciently high to withstand the pressure existing within the digesting chamber.
20. A process for the manufacture of pulp from fibrous or cellulose bearing material comprising, adding a solution of lime and water to the material, applying a compressing force to the wetted material while confining the body of material to a uni-directional restricted movement into a digesting chamber, said force having an applied intensity suflicient in connection with the restrictive force to uniformly impregnate the material with the milk of lime solution and digesting the impregnated material under pressure in the digestion chamber with sulphurous acid.
JOAQUIN JULIO or: LA ROZA, SR.
US727878A 1934-05-28 1934-05-28 Method and apparatus for digesting fibrous or cellular material Expired - Lifetime US2159258A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US727878A US2159258A (en) 1934-05-28 1934-05-28 Method and apparatus for digesting fibrous or cellular material
GB15425/35A GB457524A (en) 1934-05-28 1935-05-27 Improvements in and relating to the digesting of fibrous or cellular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US727878A US2159258A (en) 1934-05-28 1934-05-28 Method and apparatus for digesting fibrous or cellular material

Publications (1)

Publication Number Publication Date
US2159258A true US2159258A (en) 1939-05-23

Family

ID=24924454

Family Applications (1)

Application Number Title Priority Date Filing Date
US727878A Expired - Lifetime US2159258A (en) 1934-05-28 1934-05-28 Method and apparatus for digesting fibrous or cellular material

Country Status (2)

Country Link
US (1) US2159258A (en)
GB (1) GB457524A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542801A (en) * 1945-04-12 1951-02-20 Joaquin J De La Roza Sr Continuous digestion apparatus for the production of highly purified cellulose
US2582054A (en) * 1945-09-15 1952-01-08 Du Pin Cellulose Pulping process
US2607679A (en) * 1947-02-17 1952-08-19 Buckeye Cotton Oil Company Apparatus for removing liquid from cotton linters
US2610119A (en) * 1946-09-14 1952-09-09 Defibrator Ab Defibering presoaked ligno-cellulose
US2668110A (en) * 1948-06-18 1954-02-02 Spencer Method for fiber liberation in cotton stalks and the pulp
US2713540A (en) * 1950-01-05 1955-07-19 New York State College Of Fore Production of groundwood pulp from hardwood
US2771361A (en) * 1951-12-07 1956-11-20 Process Evaluation Devel Defibration processes
US2809111A (en) * 1956-02-13 1957-10-08 Condi Engineering Corp Apparatus for wood chip digestion
US2829049A (en) * 1954-02-08 1958-04-01 Hercules Powder Co Ltd Method for the disintegration of cellulose-bearing material
US2882967A (en) * 1954-10-06 1959-04-21 Pandia Inc Digesting apparatus discharge valve assembly
DE1079442B (en) * 1951-03-22 1960-04-07 Asplund Arne J A Process and device for the continuous production of semi-cellulose from raw materials containing lignocellulose
DE1098806B (en) * 1951-03-22 1961-02-02 Asplund Arne J A Process for the impregnation of lignocellulose-containing raw materials for the purpose of obtaining semi-cellulose
US2977275A (en) * 1955-09-09 1961-03-28 Texaco Development Corp Continuous digestion process and apparatus
US4451331A (en) * 1980-11-20 1984-05-29 Simmering-Graz-Pauker Aktiengesellschaft Process and apparatus for producing pulp
EP1170357A1 (en) * 2000-07-06 2002-01-09 U.T.S. Umwelt-Technik-Süd GmbH Apparatus for supplying solid material to a biogas producing plant
DE102005040014A1 (en) * 2005-08-23 2007-03-01 Putzmeister Ag Device for conveying thick material
US11162218B1 (en) 2020-09-30 2021-11-02 Robert Clayton Biomass pulp digester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066359A (en) * 1957-11-05 1962-12-04 Chicopee Mfg Corp Methods and apparatus for producing fibrous webs

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542801A (en) * 1945-04-12 1951-02-20 Joaquin J De La Roza Sr Continuous digestion apparatus for the production of highly purified cellulose
US2582054A (en) * 1945-09-15 1952-01-08 Du Pin Cellulose Pulping process
US2610119A (en) * 1946-09-14 1952-09-09 Defibrator Ab Defibering presoaked ligno-cellulose
US2607679A (en) * 1947-02-17 1952-08-19 Buckeye Cotton Oil Company Apparatus for removing liquid from cotton linters
US2668110A (en) * 1948-06-18 1954-02-02 Spencer Method for fiber liberation in cotton stalks and the pulp
US2713540A (en) * 1950-01-05 1955-07-19 New York State College Of Fore Production of groundwood pulp from hardwood
DE1079442B (en) * 1951-03-22 1960-04-07 Asplund Arne J A Process and device for the continuous production of semi-cellulose from raw materials containing lignocellulose
DE1098806B (en) * 1951-03-22 1961-02-02 Asplund Arne J A Process for the impregnation of lignocellulose-containing raw materials for the purpose of obtaining semi-cellulose
US2771361A (en) * 1951-12-07 1956-11-20 Process Evaluation Devel Defibration processes
US2829049A (en) * 1954-02-08 1958-04-01 Hercules Powder Co Ltd Method for the disintegration of cellulose-bearing material
US2882967A (en) * 1954-10-06 1959-04-21 Pandia Inc Digesting apparatus discharge valve assembly
US2977275A (en) * 1955-09-09 1961-03-28 Texaco Development Corp Continuous digestion process and apparatus
US2809111A (en) * 1956-02-13 1957-10-08 Condi Engineering Corp Apparatus for wood chip digestion
US4451331A (en) * 1980-11-20 1984-05-29 Simmering-Graz-Pauker Aktiengesellschaft Process and apparatus for producing pulp
US4556452A (en) * 1980-11-20 1985-12-03 Simmering-Graz-Pauker Aktiengesellschaft Process and apparatus for producing pulp
EP1170357A1 (en) * 2000-07-06 2002-01-09 U.T.S. Umwelt-Technik-Süd GmbH Apparatus for supplying solid material to a biogas producing plant
DE102005040014A1 (en) * 2005-08-23 2007-03-01 Putzmeister Ag Device for conveying thick material
US8033214B2 (en) 2005-08-23 2011-10-11 Putzmeister Solid Pumps Gmbh Device for delivering thick matter
US8393265B2 (en) 2005-08-23 2013-03-12 Putzmeister Solid Pumps Gmbh Device for delivering thick matter
US11162218B1 (en) 2020-09-30 2021-11-02 Robert Clayton Biomass pulp digester

Also Published As

Publication number Publication date
GB457524A (en) 1936-11-27

Similar Documents

Publication Publication Date Title
US2159258A (en) Method and apparatus for digesting fibrous or cellular material
JP2793331B2 (en) High sulfide chemical pulp production method and apparatus using continuous digester
US3585104A (en) Organosolv pulping and recovery process
US4451331A (en) Process and apparatus for producing pulp
US4259147A (en) Pulping process
US20130129573A1 (en) System and apparatus to extract and reduce dissolved hemi-cellulosic solids in biomass following pre-hydrolysis
NO115644B (en)
JP6796148B2 (en) Method and system for producing high molecular weight lignin
CN109996921B (en) Method for impregnating biomass and device for impregnating biomass
US1527369A (en) Process for scouring of fibrous material
US1818913A (en) Method and apparatus for the chemical treatment of pulp
US1679336A (en) Method and apparatus for continuous cooking of fibrous material
US2200034A (en) Method and apparatus for digesting cellulosic materials
US3362868A (en) Method and apparatus for oxidizing spent digestion liquors
US1991244A (en) Method and apparatus for digesting cellulose bearing material
CN107109788B (en) Continuously cooking and feed system
US2675311A (en) Paper pulp process and apparatus
US2542801A (en) Continuous digestion apparatus for the production of highly purified cellulose
FI92721C (en) Ways to make pulp
US2999784A (en) Process and apparatus for the treatment of fibrous materials in the production of cellulose or semi-cellulose
CA1074606A (en) Method and apparatus for thermo-mechanical pulping
GB473708A (en) Method and apparatus for obtaining cellulose from cellulosecontaining materials
US3004876A (en) Method for washing fibrous material
US1991245A (en) Process for producing cellulose
US2878116A (en) Particle advancing apparatus