US2149460A - Carbureting in internal combustion engines - Google Patents

Carbureting in internal combustion engines Download PDF

Info

Publication number
US2149460A
US2149460A US6958236A US2149460A US 2149460 A US2149460 A US 2149460A US 6958236 A US6958236 A US 6958236A US 2149460 A US2149460 A US 2149460A
Authority
US
United States
Prior art keywords
fuel
internal combustion
carbureting
pump
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Muller Eugen Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2149460A publication Critical patent/US2149460A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/43Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel
    • F02M2700/4397Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel whereby air or fuel are admitted in the mixture conduit by means other than vacuum or an acceleration pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/05Diffusion membrane for gas reaction or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7835Valve seating in direction of flow

Definitions

  • such nozzles or valves are replaced by porous bodies located in the air supply pipe, and the fuel is'forced through these in a very finely divided condition, and is exposed to the passing air over 'a large surface.
  • Figures 2, 3 and 4 show in full lines the air demand of an engine plotted against its crank angle, and by broken dotted lines the fuel delivery;
  • Figure 2 refers to a four-stroke single cylinder engine with a single cylinder fuel pump driven by the cam shaft. If the pump piston is actuated by a cam -of suitable form the fuel delivery can be adapted to the' air demand of the engine in such fashion that the mixture 'ratio of air to fuel is approximately'constant throughout the suction stroke. The broken line shows this condition.
  • a pump with swash-plate drive is employed for the sake of conveniently regulating the fuel delivery by varying the stroke of the pump, the delivery of the pump extends over 180 of the pump or cam shaft revolution as shown by the dotted line of Figure 2, i. e., over acomplete revolution of the engine shaft.
  • the period of injection is about twice as long as the suction stroke of the engine.
  • a filter element With the usual nozzles this wouldlead to impossible conditions; but if a filter element is used it assumes an average condition of saturation, retains fuel when the air column is at rest, and delivers it only 5 to air which istraveling past it. Formation of drops is-avoided; the fuel is admixed' with the air in the form of a fine cool cloud.
  • ⁇ Figura 3 shows the conditions for a four cylinder four-stroke engine, with a swash-plate 10 driven two-cylinder pump driven from the crank shaft.
  • Figure 4 shows the diagrams for a four-cylinder i four-stroke engine with a four-cylinder swash-plate fuel pump driven from the cam 15 shaft
  • the 'broken lines show the delivery by the several cylinders of the fuel pump, the dotted line the total delivery of the fuel pump.
  • the fuel pump and its actuating mechanism should be such that the fuel delivery is in phase with the air suction.
  • Figure 1 shows in section an example of construction of the invention.
  • the housing'of the apparatus is built of two 30 parts I and 2.
  • the air supply pipe 3 may either draw from the atmosphere or be fed by a supercharger. Between the upper and lower parts I,
  • a stream-lined throttle cone o is arranged' for vertical movement, guided by webs ll in the lower part of the casing and a. stern I 2 in the upper part.
  • Downward movement of the cone is limited by nuts I3,
  • the filter element itself 55 'the drawing.
  • 2 is a pivot pin IE with which engages a throttle regulating rod not shown in the drawing.
  • a part of the air suction and drag exerted on the throttle may be balanced by compensating springs suitably arranged upon the Operating rod, or by a pneumati'c balancer.
  • the difi'erence of pressure on the two sides of the throttle may act upon a diaphragm or, as shown in the example illustrated, through a tube IT upon a piston IB, which is connected with the pin !6 through llnkwork s, 20, 2I, 22, and so opposes to the downward force exerted on the 'con o (which is also exerted on the piston 18) an upward force on the pin IS.
  • the cylinder 23 is shown open to the atmosphere above the piston" I& through the orifice 24. If supercharging is employed it may be desi'able to connect the upper end of the cylinder 23 with the upper part I of the housing of the apparatus.
  • the linkwork s, 20, 2l and the pin' IS take the position shown in broken lines and the piston I8 is at the bottom of the cylinder 23.
  • a block filter element, or the iframe of a fabrio filter may be cemented or soldered into the carburetor housing.
  • Fuel pumps of moderate output pressure (say about 10 atmospheres) may be employed.
  • the output pressure may in course of time fall off greatly through wear without causing failure since a pressure of about two atmospheres is ample for the operation of the device.
  • a method of forming a combustible mixture for internal combustion engines which comprises the steps of forcing the fuel under pressure through a porous body to reduce the fuel into finely divided particles in its forced passage through the porous body, and passing air past the porous body to take up and mix with the fuel and form the combustible mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

. March7, 1939. E. L. MULLER H CARBURETING IN INTERNAL COMBUSTION ENGNBS Filed March 18, 1936 A v l 7 VEQ?" y' M Patented Mar. 7, 1939 UNITED' STATES CARBURETING IN INTERNAL COMBUSTION ENGINES Eugen Ludwig Mlleg Berlin, Germany Application March 18, 1936, Serial No. 69,582
' In Germany March 30, 1935 g 1 Claim.
There is a type of internal combustion engine working with compression of the mixture and with electric ignition in. which the proportion of fuel sdetermined by a pump driven by the engine. The fuel may be introduced into the induction pipe or into the cylinders through nozzles or fuel valves, which atomize the fuel very finely, when a very high pumping pressure is used. 4
According to the invention such nozzles or valves are replaced by porous bodies located in the air supply pipe, and the fuel is'forced through these in a very finely divided condition, and is exposed to the passing air over 'a large surface.
By this means extremely fine subdivision of the fuel is obtained with quite small pumping pressures, and formation of large drops is prevented. As is well known the rate of delivery of fuel during a stroke of the pump cannot be exactly adapted to the conditions of suction of the engine at different speeds and loads; so that when nozzles` are used it is impossible in some conditions of working to avoid drip of fuel after injection, or formation of drops prior to the suction stroke. The porous bodies which the invention substitutes for nozzles' exert a strong braking action on the very fine particles of fuel forced through them, *so that dripping of the fuel is prevented; and because of its bibulous properties the bodies serve as an equalising reservoir between successive suction strokes of the engine.
This equalising action also makes it possible to use a single injecto'r for several cylinders instead of one foreach cylinder. To make this clear Figures 2, 3 and 4 show in full lines the air demand of an engine plotted against its crank angle, and by broken dotted lines the fuel delivery; Figure 2 refers to a four-stroke single cylinder engine with a single cylinder fuel pump driven by the cam shaft. If the pump piston is actuated by a cam -of suitable form the fuel delivery can be adapted to the' air demand of the engine in such fashion that the mixture 'ratio of air to fuel is approximately'constant throughout the suction stroke. The broken line shows this condition. If a pump with swash-plate drive is employed for the sake of conveniently regulating the fuel delivery by varying the stroke of the pump, the delivery of the pump extends over 180 of the pump or cam shaft revolution as shown by the dotted line of Figure 2, i. e., over acomplete revolution of the engine shaft. Thus the period of injection is about twice as long as the suction stroke of the engine. With the usual nozzles this wouldlead to impossible conditions; but if a filter element is used it assumes an average condition of saturation, retains fuel when the air column is at rest, and delivers it only 5 to air which istraveling past it. Formation of drops is-avoided; the fuel is admixed' with the air in the form of a fine cool cloud.
` Figura 3 shows the conditions for a four cylinder four-stroke engine, with a swash-plate 10 driven two-cylinder pump driven from the crank shaft.
Figure 4 shows the diagrams for a four-cylinder i four-stroke engine with a four-cylinder swash-plate fuel pump driven from the cam 15 shaft The 'broken lines show the delivery by the several cylinders of the fuel pump, the dotted line the total delivery of the fuel pump.
In four-stroke engines 'with more than four cylinders and two-stroke engines with more than two cylinders the suction strokes of the several pistons will overlap, so that there is a continuous demand for fuel. i
To obtain even delivery to the several cylinders the fuel pump and its actuating mechanism should be such that the fuel delivery is in phase with the air suction.
Figure 1 shows in section an example of construction of the invention.
The housing'of the apparatus is built of two 30 parts I and 2. The air supply pipe 3 may either draw from the atmosphere or be fed by a supercharger. Between the upper and lower parts I,
2 of th'e housing is an annular filter element 4. .The fuel delivered by the controlled fuel pump is led through a tube 5 to the narrow annular space 6 between the filter element and the housing. Packng 'l and 8 prevents leakage of fuel directly into the interior of the housing. screws 9 fasten the parts l, 2 'and the filter element between them to form a rigid block.
Within the casing a stream-lined throttle cone o is arranged' for vertical movement, guided by webs ll in the lower part of the casing and a. stern I 2 in the upper part. Downward movement of the cone is limited by nuts I3, |4 by the aid of which the width of the conical annular space between the throttle cone Io and the filter element 4 canvbe exactly set, and so the proper throttle opening for satisfactory idling determined. It is of great importance' for satisfactory idling that the air required shall flow at high speed over the filter element and contact with the whole surface of the element. It is a feature of the invention that the filter element itself 55 'the drawing. At the upper end of the stem |2 is a pivot pin IE with which engages a throttle regulating rod not shown in the drawing.
In order that the force requisite to move the throttle cone maynot be too great, particularly in passing from ldling to load position, a part of the air suction and drag exerted on the throttle may be balanced by compensating springs suitably arranged upon the Operating rod, or by a pneumati'c balancer. In such a balancer the difi'erence of pressure on the two sides of the throttle may act upon a diaphragm or, as shown in the example illustrated, through a tube IT upon a piston IB, which is connected with the pin !6 through llnkwork s, 20, 2I, 22, and so opposes to the downward force exerted on the 'con o (which is also exerted on the piston 18) an upward force on the pin IS. In the drawing the cylinder 23 is shown open to the atmosphere above the piston" I& through the orifice 24. If supercharging is employed it may be desi'able to connect the upper end of the cylinder 23 with the upper part I of the housing of the apparatus. When the throttle is fully open the linkwork s, 20, 2l and the pin' IS take the position shown in broken lines and the piston I8 is at the bottom of the cylinder 23.
forms part of the throttle, for that not only Any form of filterelement, whether a porous block or a woven fabric, may be employed, sub- Ject, in the latter case, to the material being stretched upon a hollow vessel or on a suitable skeleton.
A block filter element, or the iframe of a fabrio filter may be cemented or soldered into the carburetor housing. v
The porosity and the flneness of the pores of the filter are not of great importance, since the proper proportion of fuel in relation to the air is determined by the fuel pump; for the same reason the device will continue to work even though the filter element be largely blocked up, and renewal of the element will be necessary only at long intervals. I
` Fuel pumps of moderate output pressure (say about 10 atmospheres) may be employed; and
the output pressure may in course of time fall off greatly through wear without causing failure since a pressure of about two atmospheres is ample for the operation of the device.
It is to be expected that the fine subdivision of the fuel without heating will enable engines fitted with the invention to employ considerably heavier fuels than would otherwise be possible.
I claim:
A method of forming a combustible mixture for internal combustion engines which comprises the steps of forcing the fuel under pressure through a porous body to reduce the fuel into finely divided particles in its forced passage through the porous body, and passing air past the porous body to take up and mix with the fuel and form the combustible mixture.
' v EUGEN LUDWIG
US6958236 1935-03-30 1936-03-18 Carbureting in internal combustion engines Expired - Lifetime US2149460A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2149460X 1935-03-30

Publications (1)

Publication Number Publication Date
US2149460A true US2149460A (en) 1939-03-07

Family

ID=7987339

Family Applications (1)

Application Number Title Priority Date Filing Date
US6958236 Expired - Lifetime US2149460A (en) 1935-03-30 1936-03-18 Carbureting in internal combustion engines

Country Status (1)

Country Link
US (1) US2149460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269793A (en) * 1975-07-25 1981-05-26 Ibbott Jack Kenneth Carburettor for internal engine
US4997598A (en) * 1987-04-03 1991-03-05 Aleem Uddin Mustafa Vaporizing device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269793A (en) * 1975-07-25 1981-05-26 Ibbott Jack Kenneth Carburettor for internal engine
US4997598A (en) * 1987-04-03 1991-03-05 Aleem Uddin Mustafa Vaporizing device and method

Similar Documents

Publication Publication Date Title
CA1225887A (en) Pressure-controlled stroke limiter
US1629327A (en) Internal-combustion engine
US2091411A (en) Internal combustion engine
US1894510A (en) Fuel injection system
US2149460A (en) Carbureting in internal combustion engines
US2065419A (en) Internal combustion engine fed with heavy fuels
US2525131A (en) Diesel engine
US4181101A (en) Two-cycle internal combustion engines with scavenger means
US2277130A (en) Differential convertible gasolinediesel engine
US2369134A (en) Fuel injector system
US2082078A (en) Internal combustion engine
US1668919A (en) Fuel-oil pump
US3698367A (en) Gas carburetor valve
US2117380A (en) Fuel injection system
US2447041A (en) Two-cycle engine, combined pump and motor cylinder
US1901847A (en) Supplying and mixing charges for internal combustion engines
US1736647A (en) Injection of liquid fuel in internal-combustion engines
US1698468A (en) Internal-combustion engine
US1105298A (en) Engine.
US2025836A (en) Internal combustion engine and valve apparatus therefor
US2387277A (en) Regulation of the combustible mixture for internal-combustion engines
US2874640A (en) Pump
US2692586A (en) Fuel injector
US1623501A (en) Internal-combustion engine
US2064217A (en) Carburetor for internal combustion engines