US2145657A - Process for the hydrogenation of hydrocarbon oils - Google Patents
Process for the hydrogenation of hydrocarbon oils Download PDFInfo
- Publication number
- US2145657A US2145657A US118271A US11827136A US2145657A US 2145657 A US2145657 A US 2145657A US 118271 A US118271 A US 118271A US 11827136 A US11827136 A US 11827136A US 2145657 A US2145657 A US 2145657A
- Authority
- US
- United States
- Prior art keywords
- sulfur
- hydrogenation
- hydrogen
- sulfide
- catalysts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 20
- 239000003921 oil Substances 0.000 title description 20
- 238000005984 hydrogenation reaction Methods 0.000 title description 12
- 229930195733 hydrocarbon Natural products 0.000 title description 9
- 150000002430 hydrocarbons Chemical class 0.000 title description 9
- 239000004215 Carbon black (E152) Substances 0.000 title description 8
- 239000003054 catalyst Substances 0.000 description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 18
- 239000011593 sulfur Substances 0.000 description 18
- 229910052717 sulfur Inorganic materials 0.000 description 18
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 9
- -1 cyclic sulfur compounds Chemical class 0.000 description 9
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 9
- 150000004763 sulfides Chemical class 0.000 description 9
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 150000003464 sulfur compounds Chemical class 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000003009 desulfurizing effect Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 150000004645 aluminates Chemical class 0.000 description 4
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052976 metal sulfide Inorganic materials 0.000 description 4
- 229910001388 sodium aluminate Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- COOGPNLGKIHLSK-UHFFFAOYSA-N aluminium sulfide Chemical compound [Al+3].[Al+3].[S-2].[S-2].[S-2] COOGPNLGKIHLSK-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910001610 cryolite Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- KVOIJEARBNBHHP-UHFFFAOYSA-N potassium;oxido(oxo)alumane Chemical compound [K+].[O-][Al]=O KVOIJEARBNBHHP-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000577218 Phenes Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZQRGREQWCRSUCI-UHFFFAOYSA-N [S].C=1C=CSC=1 Chemical compound [S].C=1C=CSC=1 ZQRGREQWCRSUCI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
Definitions
- This invention relates particularly to the treatment of mixtures of hydrocarbons representing fractions produced in the refining of petroleum oils.
- the hydrogenation processes generally endeavor to employ catalysts to reduce the temperature, pressure, and excess of hydrogen necessary for accomplishing sulfur reduction but experience has shown that almost invariably the most active hydrogenating and desulfurizing catalysts are quickly rendered inactive by the formation of sulfides and the deposition of carbonaceous mate so rials to mask catalyst surfaces.
- the present process is an improvement in the art of desulfurizing by hydrogenating in the presence of catalysts.
- the invention com- 55 prises the hydrogenation of petroleum oils and particularly those of gasoline boiling range for the desulfurization thereof using catalysts comprising metal sulfides mixed with alkali metal aluminates.
- a number of metal sulfides may be utilized as compounds of the preferred composite catalysts such as the sulfides of aluminum, iron, copper, nickel, cobalt, molybdenum, tungsten, antimony. 35 It will be observed that the above group of sulfides comprises those of the metals of the iron group, the elements in the lefthand column of group 6 of the periodic table and also sulfides of copper, aluminum, and antimony. These 40 have all been tried and found to be effective in varying degrees depending upon the type of sulfur compounds involved in different desulfurizing reactions. However, it will be seen that apart from the elements in the 6th and 8th groups men- 45 -tioned, the others represent no natural groups but are rather the result of experience.
- sulfides represent substances which will be used alternatively with varying degrees of effectiveness but it is readily understandable that they are not exact equivalents. They may be made by any convenient method such as precipitation from solution by hydrogen sulfide under acid or alkallne conditions as the case may require or by the use of sodium sulfide. or polysulfide as a precipitant. As will be later described, the best method of manufacture of the preferred composite materials consists in incorporating the precipitated and dried sulfides with varying quantities of alkali metal aluminates and then forming by pelleting or extrusion methods. 1
- Aluminates may be generally considered to be salts of metaluminic acid (HAlOa), salts of this acid with the following bases having been identified as distinct compounds: Sodium, potassium, lithium, ammonium, barium, calcium, strontium, beryllium, magnesium, zinc, thallium, manganese, iron, cobalt.
- HEOa metaluminic acid
- the aluminates of the alkali metals are water soluble and the catalytic contact masses characteristic of the invention may be produced by adding single oxides or mixtures of oxides to such solutions as will be described in succeeding paragraphs.
- the aluminates of the other bases named are generally relatively infusible solids and made by dry methods consisting generally in heating the proper oxides with aluminum oxide in suitable proportions.
- alkali metal .aluminates which group includes those of sodium and potassium and the other elements of this group: lithium, rubidium, and caesium. Obviously for practical reasons the use of sodium aluminate is preferred since this material is readily obtainable at a moderate price.
- Sodium aluminate has been given various formulas such as, for example, AlNazOz and NaAlOz. Its formation depends upon the properties-possessed by alumina of acting as an acid in the presence of a powerful base. It may be prepared from bauxite and common salt by passing a current of steam through a mixture of these substances, by heating a mixture of bauxite,
- the compound itself is a white difiicultly fusible amorphous solid which is readily soluble in water and in the present instance its usefulness depends primarily upon its action as a binder in holding the finely divided particles of sulfides together in forms of a given size and shape. Other possible actions have already been suggested.
- the technique of conducting hydrogenation for desulfurization by using the present types of catalysts is in general the same as that commonly employed in the industry utilizing other types of catalysts.
- Catalyst may be employed as filler in tubes through which the vapors of oils to be dehydrogenated mixed with the requisite amount of hydrogen are passed or they may be employed in larger chambers through which oils are passed in liquid phase in continuous operation.
- An obvious method of procedure in batch operations is to 7 suspend the catalyst particles in liquid to be hydrogenated and introduce hydrogen above the The catalyst was prepared by mechanically incorporating equal parts by weight of antimony sulfide and potassium aluminate followed by compressing into small pellets of uniform size.
- Example II In this case the catalyst consisted of approximately equal parts by weight of precipitated iron sulfide and potassium aluminate and using the same thiophene-containing mixture as in Example I and the same method of operation, an 89% sulfur reduction was effected at a single pass.
- Example III The catalyst used in this case consisted of equal parts of aluminum sulfide and sodium aluminate and gave a 97% sulfur reduction in a single bomb treatment following approximately the same procedure as in Example I.
- a process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of composite catalysts comprising an alkali metal aluminate and a metal sulfide corresponding to hydrogen sulfide whose hydrogen atoms have been replaced by a metal.
- a process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen at elevated temperatures of the order of 150-400 C., and superatmospheric pressures of the order of approximately 10-100 atmospheres in the presence of composite catalysts comprising an alkali metal aluminate and a metal sulfide corresponding to hydrogen sulfide whose hydrogen atoms have been replaced by a metal.
- a process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of com- Mamet 5ft posite catalysts comprising essentially aluminum sulfide and sodium aluminate.
- a process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of composite catalysts comprising essentially iron sulfide and alkali metal aluminate.
- a process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of composite catalysts comprising essentially antimony sulfide and alkali metal aluminate.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Patented Jan. 31, 1939 PATENT OFFiCE rnocnss FOR. THE HYDROGENATION or HYDROCARBON OILS Vladimir llpatieff and Vasili Komarewslry, Chicago, lllL, assignors to Universal Oil Products iUompany, Chicago, lllL, a corporation of Delaware No Drawing. Application December 30, 1936, Serial No. 118,271
Ciai.
This invention relates particularly to the treatment of mixtures of hydrocarbons representing fractions produced in the refining of petroleum oils.
5 More specifically it is directed to a special process for efiiciently desulfurizing distillates of approximate gasoline boiling range which are too high in sulfur to permit their marketing in view of the present rigid specifications in regard to the sulfur content in motor fuels, which is seldom allowed to run over 0.10%.
The sulfur problem in petroleum refining attained major importancewith the extension of the producing fields from Appalachian to the Mid-Continent and Coastal regions, and an enormous amount of experimental work has been conducted to determine the types of sulfur compounds present in straight-run and cracked fractions from sulfur bearing petroleums and to develop practical methods for the elimination of the combined sulfur. It has been shown that sulfur occurs in practically every possible form of combination in varying proportions since free sulfur, hydrogen sulfide, mercaptans, thioethers, mm-
phenes, and thiophanes have all been identified. A limited success has attended the removal of these compounds or their combined sulfur, processes having been developed to substantially remove free sulfur and hydrogen sulfide and to to convert mercaptans to dialkyl disulfides having an inoffensive odor. The removal of the sulfur of thioethers or of the cyclic sulfur compounds has been the principal stumbling block and thus far, apart from the use of unusually vigorous and destructive chemical reagents which generally consume more hydrocarbon material than the removed sulfur, the only feasible methods for removing sulfur compounds have been the use of sulfuric acid of graded strengths and hydrogenation which produces hydrogen sulfide from the sulfur in the various types of sulfur compounds. The hydrogenation processes generally endeavor to employ catalysts to reduce the temperature, pressure, and excess of hydrogen necessary for accomplishing sulfur reduction but experience has shown that almost invariably the most active hydrogenating and desulfurizing catalysts are quickly rendered inactive by the formation of sulfides and the deposition of carbonaceous mate so rials to mask catalyst surfaces. The present process is an improvement in the art of desulfurizing by hydrogenating in the presence of catalysts.
In one specific embodiment the invention com- 55 prises the hydrogenation of petroleum oils and particularly those of gasoline boiling range for the desulfurization thereof using catalysts comprising metal sulfides mixed with alkali metal aluminates.
The effectiveness of the present type of mixed 5 catalysts in regard to both activity and life in desulfurization reactions. is due to the fact that their chief component is a sulfide itself incapable of being extensively altered by the products of sulfur compound decomposition under elevated 10 temperatures and pressures-of hydrogen and the fact that the sulfides are further improved by the incorporation therewith of alkali metal aluminates which serve as binders to increase the structural strength of the sulfides, as independent ill catalytic promoters and to some extent as chemical reactants for the removal of hydrogen sulfide from the sphere of the reaction as it is produced.
It is commonly recognized that the whole catalytic art is on a definitely empirical basis since 20 few rules have been evolved which will enable the accurate prediction of what particular materials may be effective in catalyzing a given reaction or combination of reactions. The foregoing statements, therefore, are not given with 25 the idea. of completely explaining the improved results obtained when utilizing catalysts of the present character and reliance is placed rather upon the fact that such improved results have.
been regularly observed when the mixtures were so employed.
A number of metal sulfides may be utilized as compounds of the preferred composite catalysts such as the sulfides of aluminum, iron, copper, nickel, cobalt, molybdenum, tungsten, antimony. 35 It will be observed that the above group of sulfides comprises those of the metals of the iron group, the elements in the lefthand column of group 6 of the periodic table and also sulfides of copper, aluminum, and antimony. These 40 have all been tried and found to be effective in varying degrees depending upon the type of sulfur compounds involved in different desulfurizing reactions. However, it will be seen that apart from the elements in the 6th and 8th groups men- 45 -tioned, the others represent no natural groups but are rather the result of experience. These sulfides represent substances which will be used alternatively with varying degrees of effectiveness but it is readily understandable that they are not exact equivalents. They may be made by any convenient method such as precipitation from solution by hydrogen sulfide under acid or alkallne conditions as the case may require or by the use of sodium sulfide. or polysulfide as a precipitant. As will be later described, the best method of manufacture of the preferred composite materials consists in incorporating the precipitated and dried sulfides with varying quantities of alkali metal aluminates and then forming by pelleting or extrusion methods. 1
Aluminates may be generally considered to be salts of metaluminic acid (HAlOa), salts of this acid with the following bases having been identified as distinct compounds: Sodium, potassium, lithium, ammonium, barium, calcium, strontium, beryllium, magnesium, zinc, thallium, manganese, iron, cobalt. Asa general rule the aluminates of the alkali metals are water soluble and the catalytic contact masses characteristic of the invention may be produced by adding single oxides or mixtures of oxides to such solutions as will be described in succeeding paragraphs. The aluminates of the other bases named are generally relatively infusible solids and made by dry methods consisting generally in heating the proper oxides with aluminum oxide in suitable proportions.
In the present invention the use of alkali metal .aluminates is preferred which group includes those of sodium and potassium and the other elements of this group: lithium, rubidium, and caesium. Obviously for practical reasons the use of sodium aluminate is preferred since this material is readily obtainable at a moderate price.
Sodium aluminate has been given various formulas such as, for example, AlNazOz and NaAlOz. Its formation depends upon the properties-possessed by alumina of acting as an acid in the presence of a powerful base. It may be prepared from bauxite and common salt by passing a current of steam through a mixture of these substances, by heating a mixture of bauxite,
sodium sulfate and carbon with later purification and by either heating cryolite with limestone or treating a suspensionof cryolite with milk of lime. The compound itself is a white difiicultly fusible amorphous solid which is readily soluble in water and in the present instance its usefulness depends primarily upon its action as a binder in holding the finely divided particles of sulfides together in forms of a given size and shape. Other possible actions have already been suggested. The technique of conducting hydrogenation for desulfurization by using the present types of catalysts is in general the same as that commonly employed in the industry utilizing other types of catalysts. Such conditions as temperature, pressure, and excess of hydrogen over that necessary for the formationof hydrogen sulfide will be determined by the percentage and refractoriness of the sulfur compounds which may be present. Thus when treating heterocyclic sulfur compounds of the nature of thiophene higher temperatures, pressures and excess of hydrogen will be employed than when desulfurizing fractions of petroleum which contain rather mercaptans and thioethers. Owing to the fact that the process is specially effective in removing thiophene sulfur, its greatest applicability lies in this field and later examples will show the types of results to be expected.
Catalyst may be employed as filler in tubes through which the vapors of oils to be dehydrogenated mixed with the requisite amount of hydrogen are passed or they may be employed in larger chambers through which oils are passed in liquid phase in continuous operation. An obvious method of procedure in batch operations is to 7 suspend the catalyst particles in liquid to be hydrogenated and introduce hydrogen above the The catalyst was prepared by mechanically incorporating equal parts by weight of antimony sulfide and potassium aluminate followed by compressing into small pellets of uniform size.
These were added to a mixture of xylene and' thiophene showing a total sulfur content of 4% by .Weight. 80 atmospheres of hydrogen was added to the pressure vessel containing the oil mixture and catalyst and the vessel was then heated gradually to a maximum temperature of 400 C. and held at this temperature until the pressure dropped and remained constant at a given point. Analyses of the oil mixture after washing with caustic soda to remove dissolved hydrogen sulfide indicated that approximately 80% of the sulfur originally present had been removed. A further recycling of this oil mixture effected a further 80% reduction so that the total sulfur content was then approximately 0.25%.
Example II In this case the catalyst consisted of approximately equal parts by weight of precipitated iron sulfide and potassium aluminate and using the same thiophene-containing mixture as in Example I and the same method of operation, an 89% sulfur reduction was effected at a single pass.
Example III The catalyst used in this case consisted of equal parts of aluminum sulfide and sodium aluminate and gave a 97% sulfur reduction in a single bomb treatment following approximately the same procedure as in Example I.
The character of the present invention is an improvement in the hydrogenation art and the unusually good results obtainable in its application will be seen from the foregoing specification and limited examples although neither section is intended to be unduly limiting upon its generally broad scope.
We claim as our invention:
1. A process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of composite catalysts comprising an alkali metal aluminate and a metal sulfide corresponding to hydrogen sulfide whose hydrogen atoms have been replaced by a metal.
2. A process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen at elevated temperatures of the order of 150-400 C., and superatmospheric pressures of the order of approximately 10-100 atmospheres in the presence of composite catalysts comprising an alkali metal aluminate and a metal sulfide corresponding to hydrogen sulfide whose hydrogen atoms have been replaced by a metal.
3. A process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of com- Mamet 5ft posite catalysts comprising essentially aluminum sulfide and sodium aluminate.
4. A process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of composite catalysts comprising essentially iron sulfide and alkali metal aluminate.
5. A process for the hydrogenation of hydrocarbon oils which comprises subjecting said oils to contact with hydrogen in the presence of composite catalysts comprising essentially antimony sulfide and alkali metal aluminate.
VLADIMIR IPATIEFF. VASILI KOMAREWSKY.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US118271A US2145657A (en) | 1936-12-30 | 1936-12-30 | Process for the hydrogenation of hydrocarbon oils |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US118271A US2145657A (en) | 1936-12-30 | 1936-12-30 | Process for the hydrogenation of hydrocarbon oils |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2145657A true US2145657A (en) | 1939-01-31 |
Family
ID=22377556
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US118271A Expired - Lifetime US2145657A (en) | 1936-12-30 | 1936-12-30 | Process for the hydrogenation of hydrocarbon oils |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2145657A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2671119A (en) * | 1949-04-01 | 1954-03-02 | Standard Oil Dev Co | Hydrogenation of oxo alcohol bottoms |
| US2970102A (en) * | 1958-07-03 | 1961-01-31 | Phillips Petroleum Co | Hydrocracking catalyst and process for hydrocarcking of hydrocarbons with said catalyst composite |
| US2992191A (en) * | 1956-05-24 | 1961-07-11 | Sinclair Refining Co | Catalyst composition and preparation |
| DE1161373B (en) * | 1958-10-16 | 1964-01-16 | Inst Francais Du Petrol | Process for the continuous selective hydrorefining of crude petroleum |
| US4279737A (en) * | 1978-02-23 | 1981-07-21 | Exxon Research & Engineering Co. | Hydrodesulfurization over catalysts comprising chalcogenides of group VIII prepared by low temperature precipitation from nonaqueous solution |
| US4288422A (en) * | 1979-02-23 | 1981-09-08 | Exxon Research & Engineering Co. | Method of preparing chalcogenides of group VIII by low temperature precipitation from monaqueous solution, the products produced by said method and their use as catalysts |
| US4299892A (en) * | 1975-12-17 | 1981-11-10 | Exxon Research & Engineering Co. | Amorphous and sheet dichalcogenides of Group IVb, Vb, molybdenum and tungsten |
| US4308171A (en) * | 1977-05-16 | 1981-12-29 | Exxon Research & Engineering Co. | Method of preparing di and poly chalcogenides of group VIIb by low temperature precipitation from nonaqueous solution and small crystallite size stoichiometric layered dichalcogenides of rhenium and technetium |
| US4323480A (en) * | 1975-12-17 | 1982-04-06 | Exxon Research & Engineering Co. | Method of preparing di and poly chalcogenides of group IVb, Vb, molybdenum and tungsten transition metals by low temperature precipitation from non-aqueous solution and the product obtained by said method |
| DE3114766A1 (en) * | 1980-04-15 | 1982-06-16 | Rollan Dr. 89316 Eureka Nev. Swanson | METHOD FOR CONVERTING COAL OR Peat TO GASEOUS HYDROCARBONS OR VOLATILE DISTILLATES OR MIXTURES THEREOF |
| US4366045A (en) * | 1980-01-22 | 1982-12-28 | Rollan Swanson | Process for conversion of coal to gaseous hydrocarbons |
| US4368115A (en) * | 1977-05-16 | 1983-01-11 | Exxon Research And Engineering Co. | Catalysts comprising layered chalcogenides of group IVb-group VIIb prepared by a low temperature nonaqueous precipitate technique |
| US4390514A (en) * | 1977-05-16 | 1983-06-28 | Exxon Research And Engineering Co. | Method of preparing chalocogenides of group VIII by low temperature precipitation from nonaqueous solution, the products produced by said method and their use as catalysts |
| US4468316A (en) * | 1983-03-03 | 1984-08-28 | Chemroll Enterprises, Inc. | Hydrogenation of asphaltenes and the like |
-
1936
- 1936-12-30 US US118271A patent/US2145657A/en not_active Expired - Lifetime
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2671119A (en) * | 1949-04-01 | 1954-03-02 | Standard Oil Dev Co | Hydrogenation of oxo alcohol bottoms |
| US2992191A (en) * | 1956-05-24 | 1961-07-11 | Sinclair Refining Co | Catalyst composition and preparation |
| US2970102A (en) * | 1958-07-03 | 1961-01-31 | Phillips Petroleum Co | Hydrocracking catalyst and process for hydrocarcking of hydrocarbons with said catalyst composite |
| DE1161373B (en) * | 1958-10-16 | 1964-01-16 | Inst Francais Du Petrol | Process for the continuous selective hydrorefining of crude petroleum |
| US4299892A (en) * | 1975-12-17 | 1981-11-10 | Exxon Research & Engineering Co. | Amorphous and sheet dichalcogenides of Group IVb, Vb, molybdenum and tungsten |
| US4323480A (en) * | 1975-12-17 | 1982-04-06 | Exxon Research & Engineering Co. | Method of preparing di and poly chalcogenides of group IVb, Vb, molybdenum and tungsten transition metals by low temperature precipitation from non-aqueous solution and the product obtained by said method |
| US4308171A (en) * | 1977-05-16 | 1981-12-29 | Exxon Research & Engineering Co. | Method of preparing di and poly chalcogenides of group VIIb by low temperature precipitation from nonaqueous solution and small crystallite size stoichiometric layered dichalcogenides of rhenium and technetium |
| US4368115A (en) * | 1977-05-16 | 1983-01-11 | Exxon Research And Engineering Co. | Catalysts comprising layered chalcogenides of group IVb-group VIIb prepared by a low temperature nonaqueous precipitate technique |
| US4390514A (en) * | 1977-05-16 | 1983-06-28 | Exxon Research And Engineering Co. | Method of preparing chalocogenides of group VIII by low temperature precipitation from nonaqueous solution, the products produced by said method and their use as catalysts |
| US4279737A (en) * | 1978-02-23 | 1981-07-21 | Exxon Research & Engineering Co. | Hydrodesulfurization over catalysts comprising chalcogenides of group VIII prepared by low temperature precipitation from nonaqueous solution |
| US4288422A (en) * | 1979-02-23 | 1981-09-08 | Exxon Research & Engineering Co. | Method of preparing chalcogenides of group VIII by low temperature precipitation from monaqueous solution, the products produced by said method and their use as catalysts |
| US4366045A (en) * | 1980-01-22 | 1982-12-28 | Rollan Swanson | Process for conversion of coal to gaseous hydrocarbons |
| DE3114766A1 (en) * | 1980-04-15 | 1982-06-16 | Rollan Dr. 89316 Eureka Nev. Swanson | METHOD FOR CONVERTING COAL OR Peat TO GASEOUS HYDROCARBONS OR VOLATILE DISTILLATES OR MIXTURES THEREOF |
| US4468316A (en) * | 1983-03-03 | 1984-08-28 | Chemroll Enterprises, Inc. | Hydrogenation of asphaltenes and the like |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2145657A (en) | Process for the hydrogenation of hydrocarbon oils | |
| US2253308A (en) | Desulphurization of hydrocarbons | |
| US2325034A (en) | Method of desulphurizing petroleum fractions | |
| US2029100A (en) | Treatment of hydrocarbon oils | |
| US2037790A (en) | Treatment of hydrocarbon oils | |
| US4087348A (en) | Desulfurization and hydroconversion of residua with alkaline earth metal compounds and hydrogen | |
| US3063936A (en) | Desulfurization of hydrocarbon oils | |
| US2068979A (en) | Method of preventing corrosion in oil stills | |
| US2037792A (en) | Treatment of hydrocarbon oils | |
| US3320157A (en) | Desulfurization of residual crudes | |
| US2575989A (en) | Treatment of petroleum distillates | |
| US2398919A (en) | Process for catalytic desulphurization | |
| US2560374A (en) | Treatment of sour petroleum distillates | |
| US2543953A (en) | Sweetening hydrocarbon mixtures | |
| US2471108A (en) | Treatment of sulfur containing hydrocarbons | |
| US2035121A (en) | Process for mercaptan conversion | |
| US2096769A (en) | Treatment of hydrocarbon oil | |
| US2336736A (en) | Conversion of hydrocarbons | |
| US2037791A (en) | Treatment of hydrocarbon oils | |
| US2640011A (en) | Desulfurization of heavy petroleum oils | |
| US2031972A (en) | Sweetening process | |
| US2763593A (en) | Sweetening of hydrocarbons by reacting olefins with mercaptans in the presence of actinic light and then treating with a hypochlorite | |
| US3972853A (en) | Process for stabilizing lubricating oil with elemental sulfur | |
| US3475328A (en) | Treatment of hydrocarbons and catalysts therefor | |
| US1950739A (en) | Refining treatment of hydrocarbon oils |