US2140551A - Chlorination of acetylene - Google Patents

Chlorination of acetylene Download PDF

Info

Publication number
US2140551A
US2140551A US190133A US19013338A US2140551A US 2140551 A US2140551 A US 2140551A US 190133 A US190133 A US 190133A US 19013338 A US19013338 A US 19013338A US 2140551 A US2140551 A US 2140551A
Authority
US
United States
Prior art keywords
acetylene
carbon tetrachloride
per cent
reaction
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US190133A
Inventor
John H Reilly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US190133A priority Critical patent/US2140551A/en
Application granted granted Critical
Publication of US2140551A publication Critical patent/US2140551A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/02Preparation of halogenated hydrocarbons by addition of halogens to unsaturated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

- l acetylene.
Patented Dec. 20, 1938 UNITED. STATES auolssi nLomNa'noN on. ACETYLENE John 1!. Reilly, Midland, Mich., assignor to The Dow Chemical Company, Midland, Mich., a corporation of Michigan No Drawing.
4 Claim.
This invention relates to a method for the chlorination of'acetylene and particularly to such a process wherein the danger of combustion and explosion incident to most such processes may be 8 avoided, and from which tetrachloroethylene may be obtained as the principal product.
It is well known that the monochloro-acetylene which may be produced constitutes a definite explosion hazard in the direct chlorination of Other of the possible acetylene chlorination products, however, are desirable articles of commerce. Among the products which may be produced by the direct chlorination of acetylene are dichloro-acetylene, acetylene dichloride (symll metrical dichloroethylene), acetylene tetrachloride, trichloroethylene, and tetrachloroethylene.
It is possible under some conditions to produce hexachloroethane, and if the acetylene molecule is disrupted during the chlorination process, carbon tetrachloride may be produced. Among the most valuable of these products is tetrachloroethylene. It is, therefore, much to bedesired that a process be provided whereby acetylene may be chlorinated directly under conditions which will produce tetrachloroethylene or other valuable products without encountering the explosion hazard previously mentioned. Such is the object of the present invention.
I have now found that acetylene may be chlo- 80 rinated principally to tetrachloroethylene without danger of combustion or explosion by passing a stream of acetylene into contact with gaseous chlorine, in the presence of the vapors of a chlorinated aliphatic hydrocarbon, under the surface 85 of and in contact with a bath of molten metal chlorides maintained at a temperature from about 175 to 250 C. and preferably between about 190 and 210 C. The weight ratio of chlorine to acetylene is preferably between 4:1 and 6:1
40 although other proportions may be employed without materially aflecting the nature of the chlorinated products obtained.
The chlorinated aliphatic hydrocarbons used as diluents to suppress combustion and prevent explosions in the chlorination of acetylene may be selected from a rather large group, suitable examples of which are chloroform, carbon tetrachloride, trichloroethylene, tetrachloroethylene, and similar readily volatile, substantially nonflammable, chlorinated lower aliphatic hydrocarbons.
The molten metal chloride bath in which the reaction is carried out may consist of one or more of the chlorides of aluminum, potassium, sodium,
iron, bismuth, zinc, or other metals, provided that entering into the reactionis converted into tetra- Application February 11, 193:, Serial No. 190.1:3
such chloride or mixture of ii-ides are properly 1 sum etthe'reactiontem f t The eutectic mixture of; arts of aluminum chloride; 30 parts of sodium chloride, and 10 parts of ierrie chloride by weightis especially suitable l since it has a melting point of about 150 C. and a boiling point above 1000' Cl" Another satisfactory salt bath comprises 30 parts of sodium chloride, and parts of aluminum chloride by weight.
Owing to the heat generated in the chlorination 10 of acetylene it is seldom necessary to employ an external source of heat after the reaction has started. It may become n essary to cool the reaction vessel when high ates of flow of the reactants are employed.
The following examples illustrate the practice of my invention:
Example 1 chloride, sodium chloride and ferric chloride at a temperature between 220 and 250 C. Chlorine in the amount of 0.07 pound per minute was led through a separate tube to an equal depth in the same bath where it was released so as to contact and mix with the aforesaid mixture of acetylene and carbon tetrachloride vapor. The reaction products flashed from the bath, were collected, condensed, washed to remove hydrogen chloride. dried, and fractionally distilled. Analysis, based on boiling point and specific gravity of the fractions of the distillate, showed the product of reaction to contain 23.2 per cent carbon tetrachloride, 2.8 per cent ethylene chloride, 54 per cent tetrachloroethylene, and a small amount of a high boiling residue which was not analyzed. About 10 per cent of the gaseous reactants were unaccounted for in this particular'run- The amount of carbon tetrachloride recovered was almost identical with that originally employed as a diluent of the acetylene. It appears, therefore, that by far the largest proportion of the acetylene chloroethylene. Example 2 A mixture of 0.05 pound per minute of acetylene, and 0.056 pound per minute of carbon tetrachloride vapor was reacted in a manner analogous to that described above with 0.07 pound per minute of chlorine under the surface of a molten metal chloride bath at a temperature in the range from to 210 C. Chlorine constituted 53.6 55
' per cent.
lene 11.5 per cent, and carbon tetrachloride 42.9 An analysis of the collected condensate from the reaction mixture showed it to consist of carbon tetrachloride, tetrachloroethylene, and a small amount of a high boiling residue. The weight of carbon tetrachloride recoveredl was vper cent of the original weight of reactants, and
tetrachloroethylene accounted for 25 per cent of the weight of reactants. It is seen that 17 per cent more carbon tetrachloride was recovered from the reaction than was employed as the diluent. The conditions employed appearv to favor the formation of tetrachloroethylene and carbon tetrachloride from acetylene.
Example 3 In a manner similar to that described in the preceding examples, acetylene tetrachloride was employed as the chlorinated aliphatic hydrocarbon diluent in place of the carbon tetrachloride previously employed. 66 per cent by weight of the reaction mixture consisted of chlorine supplied at a rate of 0.07 pound per minute 14 per cent of the reactants was acetylene supplied at the rate of 0.015 pound per minute and diluted with 0.021 pound per minute of acetlyene tetrachloride, which represented 20 per cent-of the weight of the ternary reaction mixture. The temperature of the molten metal chloride bath was held at or near 210 C. Analysis oi the condensed reaction products showed them to contain carbon tetrachloride 8 per cent, trichloroethylene 21.6 per cent, tetrachloroethylene 34 per cent, and acetylene tetrachloride 115.4 per cent. About of the acetylene tetrachloride employed as a diluent in the reaction was converted to other chlorination products. The largest proportion of the acetylene employed was converted to tetrachloroethylcne while smaller amounts were converted to trichloroethylene and of the chlorinated aliphatic hydrocarbon empioyed as the diluent in the reaction, some carbon tetrachloride appears to be formed in every instance. Carbon tetrachloride is the preferred diluent during the reaction because, next to the more expensive chloroform, it is the lowest boiling of the completely nonfiammable chlorinated aliphatic hydrocarbons and may be most readily separated by distillation from other volatile products of the reaction.
Other modes of applying the principle of my invention may be employed instead of the one explained, change being made as regards the process herein disclosed, provided the step or reagents stated by any of the following claims or the equivalent of such stated step or reagents be employed. 7
I therefore particularly point out and distinctly claim as my invention:--
1. The process which comprises reacting chlorine with acetylene in the presence of the vapors of a nonflammable chlorinated lower aliphatic hydrocarbon, and in contact with molten metal chlorides at a temperature between about and 250 C.
2. The process which comprises diluting acetylene with the vapors of a nonfiammable chlorinatcd lower aliphatic hydrocarbon, and passing the mixture in contact with gaseous chlorine under the surface of a molten metal chloride bath at a temperature between 1'75 and 250 C.
3. The process which comprises diluting acetylene with the vapors of carbon tetrachloride, and passing the mixture in contact with gaseous chlorine under the surface of a molten metal chloride bath at a temperature between 175 and 250 C.
4. The process which comprises diluting acetylene with the vapors of a nonfiammable chlorinated lower aliphatic hydrocarbon, passing the mixture under the surface of a molten metal chloride bath at a temperature between 175 and 250 (2., there chlorinating the mixture with gaseous chlorine, and separating tetrachloroethylene from the reaction product.
JOHN H. REILLY.
US190133A 1938-02-11 1938-02-11 Chlorination of acetylene Expired - Lifetime US2140551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US190133A US2140551A (en) 1938-02-11 1938-02-11 Chlorination of acetylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US190133A US2140551A (en) 1938-02-11 1938-02-11 Chlorination of acetylene

Publications (1)

Publication Number Publication Date
US2140551A true US2140551A (en) 1938-12-20

Family

ID=22700137

Family Applications (1)

Application Number Title Priority Date Filing Date
US190133A Expired - Lifetime US2140551A (en) 1938-02-11 1938-02-11 Chlorination of acetylene

Country Status (1)

Country Link
US (1) US2140551A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2461142A (en) * 1944-08-26 1949-02-08 Du Pont Production of beta-trichlorethane
US2520712A (en) * 1948-08-10 1950-08-29 Shell Dev Catalytic purification of unsaturated hydrocarbons
US2538723A (en) * 1940-08-07 1951-01-16 Donau Chemie Ag Process for producing perchlorethylene
US2549565A (en) * 1946-02-11 1951-04-17 Roland G Benner Method of fluorinating organic compounds with molten silver fluorides
US2952713A (en) * 1958-11-10 1960-09-13 Detrex Chem Ind Process for the separation of chlorinated hydrocarbon components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538723A (en) * 1940-08-07 1951-01-16 Donau Chemie Ag Process for producing perchlorethylene
US2461142A (en) * 1944-08-26 1949-02-08 Du Pont Production of beta-trichlorethane
US2549565A (en) * 1946-02-11 1951-04-17 Roland G Benner Method of fluorinating organic compounds with molten silver fluorides
US2520712A (en) * 1948-08-10 1950-08-29 Shell Dev Catalytic purification of unsaturated hydrocarbons
US2952713A (en) * 1958-11-10 1960-09-13 Detrex Chem Ind Process for the separation of chlorinated hydrocarbon components

Similar Documents

Publication Publication Date Title
US2013030A (en) Production of organic fluorine compounds
US2456027A (en) Method of making fluorocarbons
MXPA03002713A (en) Process for the manufacture of 1,1,1,3,3-pentachloropropane.
US1963761A (en) Process of making chlorobenzene
US1946040A (en) Catalyst for the nuclear chlorination of benzene compounds and method of using same
US2140551A (en) Chlorination of acetylene
US2065323A (en) Method of producing unsaturated hydrocarbons
US2593451A (en) Dehydrochlorination of polychloroethanes
US2446475A (en) Rearrangement process
US2192143A (en) Fluorination process
GB391168A (en) Improvements in or relating to the manufacture of fluorine derivatives of hydrocarbons
US3024290A (en) Process for replacing vinylic halogens with fluorine
US2916527A (en) Monohalogenation of hydrocarbons
US2140547A (en) Chlorination of ethane
US2062344A (en) Process for the preparation of aliphatic acid halides
US2654789A (en) New chlorofluoro derivatives of cyclohexane and method of making same
US1939005A (en) Production of aldehydes
US2185405A (en) Conversion of olefins into valuable higher molecular products
US3197941A (en) Chemical process for the recovery of dichloroethane
US2034292A (en) Production of carbon chlorides
US3344197A (en) Production of 1, 1, 2-trichloroethane from 1, 2-dichloroethane and chlorine
US2140548A (en) Chlorination of ethylene chloride
US3760059A (en) Process for the recovery of antimony pentachloride from catalyst solutions
US2748176A (en) Purification of dichloroethane
US2675413A (en) Production of unsaturated halides by exchange of halogen atoms