US2139431A - Method for applying metallic coatings to ceramic bodies - Google Patents

Method for applying metallic coatings to ceramic bodies Download PDF

Info

Publication number
US2139431A
US2139431A US84669A US8466936A US2139431A US 2139431 A US2139431 A US 2139431A US 84669 A US84669 A US 84669A US 8466936 A US8466936 A US 8466936A US 2139431 A US2139431 A US 2139431A
Authority
US
United States
Prior art keywords
metallic
ceramic
bodies
vacuum
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US84669A
Inventor
Vatter Hans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens and Halske AG
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US2139431A publication Critical patent/US2139431A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other

Definitions

  • My invention relates to a method for applying metallic coatings to ceramic bodies or for soldering such bodies to one another or to metals so as to obtain a gas-tight bond between the two bodies 5 to be soldered.
  • Another well-known method of applying conductive layers to ceramic bodies consists in applying the metallic coating by volatillzation of the cathode or in producing with the aid of shellac a slightly conducting graphite layer which may then be electrolytically strengthened.
  • a highly refractory base metal such as, for instance, iron, chromium, tungsten or nickel or an alloy of such a metal is applied to the'ceramic body in the form of finely divided powder and then the whole is heated in 20 an atmosphere free of oxygen until the metal sinters.
  • a highly refractory base metal such as, for instance, iron, chromium, tungsten or nickel or an alloy of such a metal is applied to the'ceramic body in the form of finely divided powder and then the whole is heated in 20 an atmosphere free of oxygen until the metal sinters.
  • organic bind- 25 ing agents well known in the art may be employed.
  • any base metal capable of being sintered may be employed, especially highly refractory metals 30 such as, for instance, iron, chromium, nickel, tungsten or the like. They may be singly employed or alloyed with one another or with other metals.
  • the essential point is that the melting point of the metallic coating is higher than the 35 melting point of the solder to be employed.
  • the metallic coatings made according to the invention may be used for various purposes.
  • electrodes such as anodes
  • coatings are highly heat-conductive. It is also possible according to the same method to provide the surfaces of the ceramic discharge vessels with coatings which prevent the formation of charges along the walls.
  • resistances may be manufactured, if the coating to be applied is sumciently thick.
  • This may be accomplished by molding the metallic powder paste-app1ied to the inner or outer surfaces of a ceramic body having, for instance, a cylindrical shape-directly into a spiral or thread by means of a molding device and then heating the coating thus molded to the sintering temperature according to the method of the invention.
  • the entire ceramic body forming part of the resistance may be provided with a coating by immersing it in the paste, heating it to the sintering temperature and then forming the coating thus obtained, for instance, into a spiral by a grinding operation.
  • the method according to the invention may also be used for the manufacture of resistances having the characteristic of the so-called hydrogen-iron resistances.
  • novel method according to the invention may be also used to a great extent in connection with insulators.
  • a highly refractory base metal has further the advantage that a hard solder may be employed for joining such metallized bodies with one another or with other bodies.
  • a hard solder may be employed for joining such metallized bodies with one another or with other bodies.
  • solder As ductile as possible which forms an intimate joint with the metallic coatings even if the coemcients of expansion of the solder and of the ceramic body differ from each other. If, however, materials are employed for the bonds, the coefficients of expansion of which have the same or nearly the same value, the particular ductility of the solder may, of course, be dispensed with.
  • the metallic solder to the joint in a solid form; for instance, in the form of a ribbon, rod or ring, in order that the solder when heated may spread over all surfaces of the metallic coating, thus forming the desired vacuum-tight bond.
  • Both the sintering and the soldering process may be effected in the open air if materials are employed for the metallic layer which neither oxidize her experience any detrimental changes when exposed to the open air. Otherwise the heattreatment is effected under vacuum or also in a nonoxidizing or reducing atmosphere.
  • the hard solder is applied to the joint in the form of a ribbon, rod or ring the sintering and soldering process may be combined in a single operation.
  • I and 2 denote ceramic cylinders to be joined at the points as indicated at 3.
  • I are the layers consisting of iron which are sintcred at the points to be soldered, for instance, at a temperature of 1200 C.
  • 5 is a ring of hard solder which during the heating process spreads over the entire surface of the metallic layer 4, thus forming a vacuum-tight bond between the parts I and 2.
  • Fig. 2 a fuse for lightning arresters frequently employed in telegraphy and telephony.
  • the body I consists of ceramic material.
  • 6 and l are metallic caps which are to be joined with the central portion so as to form a vacuum-tight bond.
  • 4 denotes the metallic layer and I the ring of hard solder. Also in this case a coherent and vacuum-tight bond is produced by causing the hard solder during the heating process to flow along the entire surfaces to be united and t0 penetrate the joint so as to form a vacuum-tight bond therebetween.
  • Fig. 3 illustrates a spark plug, the part 8 of which, consisting of sintered aluminium oxide, is to be soldered at the joint as indicated at 3 with the metallic part 9. Also in this case 4 denotes the metallic layer sintered on the part 8, whereas 5 denotes the circular metallic solder. The soldering process is effected in the above-described manner.
  • l0 denotes a portion of an electric discharge vessel made of ceramic material on which a vacuum-tight metallic cap H is to be placed.
  • the metallic layer and the ring of metallic solder are denoted by I and 5 respectively.
  • the method according to the invention for metallizing or soldering ceramic bodies may be employed for various other purposes than those shown in the drawing. It is particularly suitable in all cases in which a durable and vacuumtight bond is required.
  • a reliable joint between the individual parts of vacuum discharge devices may be obtained which are mounted either on vehicles or are subjected when in operation to great mechanical stresses.
  • the method of producing a gas-tight joint between a ceramic body and another body having a metallic surface comprising the steps of apply ing a metallic coating consisting of a finely divided powder of a metal having a melting point above 1000 C, and being selected from the group consisting of refractory base metals and their alloys and of a liquid organic binding agent directly to said ceramic body, heating said ceramic body in an atmosphere inert with respect to said metal until saidcoating sinters, joining said ceramic body and said other body together at said sintered coating, applying a hard solder to the joint and heating both bodies in an atmosphere inert with respect to said sintered metal and said hard solder until said hard solder melts.
  • the method of joining a body having a me-' tallic surface with a ceramic body having an unglazed surface comprising the steps of applying to said surface of said ceramic body a finely divided mass consisting of a metal selected from the group consisting of refractory base metals and their alloys and having a melting point above 1000" C., heating said ceramic body in an atmosphere inert with respect to said metal until said metal sinters, joining said two bodies, interposing hard solder in the joint so as to 1111 only part of the interstice between said two bodies, and
  • the method of soldering a body having a metallic surface to a ceramic body having an unglazed surface comprising the steps of applying to said surface of said ceramic body a coatin consisting of a finely divided metal having a melting point above 1000 C. and selected from the group consisting of refractory base metals and their alloys, heating said ceramic body in an atmosphere inert with respect to said metal at a temperature causing said metal to sinter and to form a gas-tight layer, and soldering said layer to said first body by means of hard solder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

H. VATTER Dec. 6, 193 8.
METHOD FOR APPLYING METALLIC COATINGS TO CERAMIC BODIES Filed June 11, 19.36
Myza
Patented Dec. 6, 1938 UNITED STATES PATENT OFFICE METHOD FOR APPLYING METALLIC COAT- INGS TO CERAMIC BODIES Hans Vatter, Berlin-Charlottenburg,
Germany,
Application June 11, 1936, Serial No. 84,669 In Germany June 19, 1935 4 Claims.
My invention relates to a method for applying metallic coatings to ceramic bodies or for soldering such bodies to one another or to metals so as to obtain a gas-tight bond between the two bodies 5 to be soldered.
The metallization of ceramic bodies, 1. e. the application of an intimate metallic layer to such bodies presents great difficulties. This is particularly true if it is required to obtain highly conductive coatings which readily dissipate the heat and whose adhesive force is not impaired by rapid changes in temperature.
It is well known in the art to provide the ceramic bodies at first with a glaze, to fire there upon a thin platinum layer according to the platinum-chloride method and then to reenforce the layer by electroplating it, for instance with copper. This method is, however, relatively expensive and has further the disadvantage that a component of low melting point is employed, viz. the glaze, which easily evaporates when subjected to a high temperature and which when employed in connection with vacuum discharge devices may contaminate their contents of gas or impair their vacuum.
Another well-known method of applying conductive layers to ceramic bodies consists in applying the metallic coating by volatillzation of the cathode or in producing with the aid of shellac a slightly conducting graphite layer which may then be electrolytically strengthened.
However, the metallic coatings produced by the above-mentioned methods do not adhere so firmly as to serve as a support for a reliable bond. The
need of such ceramic to ceramic or ceramic to metal bonds of substantially absolute vacuumtightness is becoming more and more general. Thus, for instance, in the case of spark plugs consisting of sintered aluminium oxide it is necessary to provide a coherent bond between the ceramic and the metallic parts. Particularly in vacuum discharge devices in which a relatively absolute vacuum is to be maintained the formation of gas-tight bonds is imperative, insofar as in the manufacture of vacuum discharge devices besides metals also ceramic materials are now being employed. It is, therefore, necessary that such bonds be highly adhesive and of an absolute vacuum-tightness. It is well known to solder bodies of ceramic material to one another or to metal bodies by soft soldering, i. e. by a method which consists in applying at first a thin coating oi! silver, platinum or copper to the 5 ceramic material and in strengthening this layer by electroplating it with a soft solder according to one of the known methods.
The known methods, however, present the further drawback in that it is impossible to obtain a reliable joint by the use of hard solders. For this reason, the bonds produced according to these methods cannot, for instance, withstand the temperatures to which the vacuum discharge devices must be ordinarily subjected when degasifying the metallic parts thereof. Further- 10 more, such bonds frequently present leakages owing to the porosity of the galvanic coatings and cannot, therefore, be employed for vacuum discharge devices in which an absolutely vacuum-tight bond is indispensable. 15
According to the invention a highly refractory base metal such as, for instance, iron, chromium, tungsten or nickel or an alloy of such a metal is applied to the'ceramic body in the form of finely divided powder and then the whole is heated in 20 an atmosphere free of oxygen until the metal sinters. To enhance the adhesive force of the metallic powder on the ceramic material before sintering the same it is advisable to stir the powder with a liquid. To this end organic bind- 25 ing agents well known in the art may be employed.
In applying a metallic coating to ceramic bodies any base metal capable of being sintered may be employed, especially highly refractory metals 30 such as, for instance, iron, chromium, nickel, tungsten or the like. They may be singly employed or alloyed with one another or with other metals. The essential point is that the melting point of the metallic coating is higher than the 35 melting point of the solder to be employed.
When sintering the metallic body the temperature must be accurately maintained. With a temperature of 1100 C. the sintering when employing, for instance, iron is still insuflicient or it 40 requires at least such a long time as to render the method expensive and complicated. On the other hand, with a temperature of above 1280 0. instead of a uniformly compact iron coating a black spotted metallic coating is formed which 45 does not permit, for instance, a soldering with metals. When using pulverized iron it is, therefore, preferable to carry out the method according to the invention within a temperature range of 1220-1260 C. 50
The metallic coatings made according to the invention may be used for various purposes. Thus, for instance, in the case of vacuum discharge devices electrodes, such as anodes, may be soldered according to the invention to the inner walls of ceramic vessels. Experiments have shown that such coatings are highly heat-conductive. It is also possible according to the same method to provide the surfaces of the ceramic discharge vessels with coatings which prevent the formation of charges along the walls.
According to the novel method resistances, particularly vacuum resistances, may be manufactured, if the coating to be applied is sumciently thick. This may be accomplished by molding the metallic powder paste-app1ied to the inner or outer surfaces of a ceramic body having, for instance, a cylindrical shape-directly into a spiral or thread by means of a molding device and then heating the coating thus molded to the sintering temperature according to the method of the invention. Also the entire ceramic body forming part of the resistance may be provided with a coating by immersing it in the paste, heating it to the sintering temperature and then forming the coating thus obtained, for instance, into a spiral by a grinding operation.
By substituting a spiral consisting of metallic powder which is heated on a ceramic body to the sintering temperature for the usual iron wire the method according to the invention may also be used for the manufacture of resistances having the characteristic of the so-called hydrogen-iron resistances.
Finally the novel method according to the invention may be also used to a great extent in connection with insulators.
The application of a highly refractory base metal has further the advantage that a hard solder may be employed for joining such metallized bodies with one another or with other bodies. By the methods hitherto employed for metallizing ceramic bodies with gold, silver, platinum or copper this is not possible, since the hard solders available form with such metals coatings which are not sufficiently resistant owing to their low melting temperature. Only a coating of a highly refractory base metal produces a durable bond which is also sufliciently resistant to high temperatures. Furthermore, such a bond has a great adhesive force and is vacuum-tight and, therefore, meets all requirements in the manufacture of vacuum-discharge devices.
In forming bonds between metallized ceramic bodies it is preferable to use a solder as ductile as possible which forms an intimate joint with the metallic coatings even if the coemcients of expansion of the solder and of the ceramic body differ from each other. If, however, materials are employed for the bonds, the coefficients of expansion of which have the same or nearly the same value, the particular ductility of the solder may, of course, be dispensed with.
It has been found that it suffices to apply the metallic solder to the joint in a solid form; for instance, in the form of a ribbon, rod or ring, in order that the solder when heated may spread over all surfaces of the metallic coating, thus forming the desired vacuum-tight bond. Both the sintering and the soldering process may be effected in the open air if materials are employed for the metallic layer which neither oxidize her experience any detrimental changes when exposed to the open air. Otherwise the heattreatment is effected under vacuum or also in a nonoxidizing or reducing atmosphere.
If as above described the hard solder is applied to the joint in the form of a ribbon, rod or ring the sintering and soldering process may be combined in a single operation.
In the accompanying drawing are shown some applications of the invention in diagrammatic form.
In Fig. 1, I and 2 denote ceramic cylinders to be joined at the points as indicated at 3. I are the layers consisting of iron which are sintcred at the points to be soldered, for instance, at a temperature of 1200 C. 5 is a ring of hard solder which during the heating process spreads over the entire surface of the metallic layer 4, thus forming a vacuum-tight bond between the parts I and 2.
In Fig. 2 is shown a fuse for lightning arresters frequently employed in telegraphy and telephony. The body I consists of ceramic material. 6 and l are metallic caps which are to be joined with the central portion so as to form a vacuum-tight bond. 4 denotes the metallic layer and I the ring of hard solder. Also in this case a coherent and vacuum-tight bond is produced by causing the hard solder during the heating process to flow along the entire surfaces to be united and t0 penetrate the joint so as to form a vacuum-tight bond therebetween.
Fig. 3 illustrates a spark plug, the part 8 of which, consisting of sintered aluminium oxide, is to be soldered at the joint as indicated at 3 with the metallic part 9. Also in this case 4 denotes the metallic layer sintered on the part 8, whereas 5 denotes the circular metallic solder. The soldering process is effected in the above-described manner.
In Fig. 4, l0 denotes a portion of an electric discharge vessel made of ceramic material on which a vacuum-tight metallic cap H is to be placed. The metallic layer and the ring of metallic solder are denoted by I and 5 respectively.
The method according to the invention for metallizing or soldering ceramic bodies may be employed for various other purposes than those shown in the drawing. It is particularly suitable in all cases in which a durable and vacuumtight bond is required. By the method according to the invention, for instance, a reliable joint between the individual parts of vacuum discharge devices may be obtained which are mounted either on vehicles or are subjected when in operation to great mechanical stresses.
According to the invention also other insulating materials than those above described may be metallized and soldered to one another or to metals.
I claim as my invention:
1. The method of soldering a body having a metallic surface to a ceramic body, consisting of applying a metallic coating of iron directly to the ceramic surface of said ceramic body in the form of a finely divided powder, heating the body in an atmosphere inert with respect to the iron at a temperature between 1220 and 1260 C. until the iron sinters to a. solid and gas-tight layer, and soldering said-layer to said first body with hard solder.
2. The method of producing a gas-tight joint between a ceramic body and another body having a metallic surface, comprising the steps of apply ing a metallic coating consisting of a finely divided powder of a metal having a melting point above 1000 C, and being selected from the group consisting of refractory base metals and their alloys and of a liquid organic binding agent directly to said ceramic body, heating said ceramic body in an atmosphere inert with respect to said metal until saidcoating sinters, joining said ceramic body and said other body together at said sintered coating, applying a hard solder to the joint and heating both bodies in an atmosphere inert with respect to said sintered metal and said hard solder until said hard solder melts.
3. The method of joining a body having a me-' tallic surface with a ceramic body having an unglazed surface, comprising the steps of applying to said surface of said ceramic body a finely divided mass consisting of a metal selected from the group consisting of refractory base metals and their alloys and having a melting point above 1000" C., heating said ceramic body in an atmosphere inert with respect to said metal until said metal sinters, joining said two bodies, interposing hard solder in the joint so as to 1111 only part of the interstice between said two bodies, and
heating the joint until the hard solder fuses and penetrates the joint.
4. The method of soldering a body having a metallic surface to a ceramic body having an unglazed surface, comprising the steps of applying to said surface of said ceramic body a coatin consisting of a finely divided metal having a melting point above 1000 C. and selected from the group consisting of refractory base metals and their alloys, heating said ceramic body in an atmosphere inert with respect to said metal at a temperature causing said metal to sinter and to form a gas-tight layer, and soldering said layer to said first body by means of hard solder.
US84669A 1935-06-19 1936-06-11 Method for applying metallic coatings to ceramic bodies Expired - Lifetime US2139431A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2139431X 1935-06-19

Publications (1)

Publication Number Publication Date
US2139431A true US2139431A (en) 1938-12-06

Family

ID=7986809

Family Applications (1)

Application Number Title Priority Date Filing Date
US84669A Expired - Lifetime US2139431A (en) 1935-06-19 1936-06-11 Method for applying metallic coatings to ceramic bodies

Country Status (1)

Country Link
US (1) US2139431A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2434555A (en) * 1944-05-16 1948-01-13 Westinghouse Electric Corp Electrical insulator
US2478656A (en) * 1946-07-17 1949-08-09 Hastings Mfg Co Spark plug
US2505424A (en) * 1946-08-27 1950-04-25 Tomlinson I Moseley Radar scanner antenna feed
US2570248A (en) * 1948-06-30 1951-10-09 Gen Electric Method of metalizing and bonding nonmetallic bodies
US2671746A (en) * 1950-06-17 1954-03-09 Richard D Brew & Company Inc Bonding system
US2754238A (en) * 1951-05-22 1956-07-10 David L Arenberg Method of bonding and article thereby formed
US2776472A (en) * 1952-07-24 1957-01-08 Gen Electric Method of making a ceramic-to-metal bond
US2835967A (en) * 1952-11-05 1958-05-27 Ericsson Telefon Ab L M Method of producing a solderable metallic coating on a ceramic body and of solderingto the coating
US2974404A (en) * 1956-04-02 1961-03-14 Ford Motor Co Heat exchanger matrix
US2995475A (en) * 1958-11-04 1961-08-08 Bell Telephone Labor Inc Fabrication of semiconductor devices
US3006069A (en) * 1957-05-23 1961-10-31 Rca Corp Method of sealing a metal member to a ceramic member
US3132044A (en) * 1957-11-19 1964-05-05 Varian Associates Metalized ceramic for bonding to metals
US3178271A (en) * 1960-02-26 1965-04-13 Philco Corp High temperature ohmic joint for silicon semiconductor devices and method of forming same
US3314140A (en) * 1964-05-14 1967-04-18 Merritt W Albright Method of making a surface joint
US4033668A (en) * 1976-04-08 1977-07-05 Bell Telephone Laboratories, Incorporated Solderable glass splices, terminations and hermetic seals
US4313749A (en) * 1980-05-27 1982-02-02 Itek Corporation Method for making lightweight mirror facesheets
US4350744A (en) * 1980-12-12 1982-09-21 United Technologies Corporation Metallic solder composite bonding
US4358512A (en) * 1980-12-12 1982-11-09 United Technologies Corporation Metal-composite bonding
US4398659A (en) * 1980-12-12 1983-08-16 United Technologies Corporation Metal-composite bonding
US4471008A (en) * 1981-08-21 1984-09-11 Mtu Motoren-Und-Turbinen Union Munchen Gmbh Metal intermediate layer and method of making it
US4567110A (en) * 1979-11-13 1986-01-28 Massachusetts Institute Of Technology High-temperature brazed ceramic joints
US4678683A (en) * 1985-12-13 1987-07-07 General Electric Company Process for cofiring structure comprised of ceramic substrate and refractory metal metallization
US5044406A (en) * 1987-03-18 1991-09-03 Semiconductor Energy Laboratory Co., Ltd. Pipe made from a superconducting ceramic material
US5161908A (en) * 1987-04-06 1992-11-10 Ngk Insulators, Ltd. Joined structure comprising members of different coefficients of thermal expansion and joining method thereof
US5163770A (en) * 1985-12-11 1992-11-17 Ngk Insulators, Ltd. Method of bonding members having different coefficients of thermal expansion
US5474975A (en) * 1987-04-01 1995-12-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an elongated member from a superconducting ceramic material
US11021259B1 (en) 2021-01-07 2021-06-01 Philip Onni Jarvinen Aircraft exhaust mitigation system and process

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2434555A (en) * 1944-05-16 1948-01-13 Westinghouse Electric Corp Electrical insulator
US2478656A (en) * 1946-07-17 1949-08-09 Hastings Mfg Co Spark plug
US2505424A (en) * 1946-08-27 1950-04-25 Tomlinson I Moseley Radar scanner antenna feed
US2570248A (en) * 1948-06-30 1951-10-09 Gen Electric Method of metalizing and bonding nonmetallic bodies
US2671746A (en) * 1950-06-17 1954-03-09 Richard D Brew & Company Inc Bonding system
US2754238A (en) * 1951-05-22 1956-07-10 David L Arenberg Method of bonding and article thereby formed
US2776472A (en) * 1952-07-24 1957-01-08 Gen Electric Method of making a ceramic-to-metal bond
US2835967A (en) * 1952-11-05 1958-05-27 Ericsson Telefon Ab L M Method of producing a solderable metallic coating on a ceramic body and of solderingto the coating
US2974404A (en) * 1956-04-02 1961-03-14 Ford Motor Co Heat exchanger matrix
US3006069A (en) * 1957-05-23 1961-10-31 Rca Corp Method of sealing a metal member to a ceramic member
US3132044A (en) * 1957-11-19 1964-05-05 Varian Associates Metalized ceramic for bonding to metals
US2995475A (en) * 1958-11-04 1961-08-08 Bell Telephone Labor Inc Fabrication of semiconductor devices
US3178271A (en) * 1960-02-26 1965-04-13 Philco Corp High temperature ohmic joint for silicon semiconductor devices and method of forming same
US3314140A (en) * 1964-05-14 1967-04-18 Merritt W Albright Method of making a surface joint
US4033668A (en) * 1976-04-08 1977-07-05 Bell Telephone Laboratories, Incorporated Solderable glass splices, terminations and hermetic seals
US4567110A (en) * 1979-11-13 1986-01-28 Massachusetts Institute Of Technology High-temperature brazed ceramic joints
US4313749A (en) * 1980-05-27 1982-02-02 Itek Corporation Method for making lightweight mirror facesheets
US4350744A (en) * 1980-12-12 1982-09-21 United Technologies Corporation Metallic solder composite bonding
US4358512A (en) * 1980-12-12 1982-11-09 United Technologies Corporation Metal-composite bonding
US4398659A (en) * 1980-12-12 1983-08-16 United Technologies Corporation Metal-composite bonding
US4471008A (en) * 1981-08-21 1984-09-11 Mtu Motoren-Und-Turbinen Union Munchen Gmbh Metal intermediate layer and method of making it
US5163770A (en) * 1985-12-11 1992-11-17 Ngk Insulators, Ltd. Method of bonding members having different coefficients of thermal expansion
US4678683A (en) * 1985-12-13 1987-07-07 General Electric Company Process for cofiring structure comprised of ceramic substrate and refractory metal metallization
US5044406A (en) * 1987-03-18 1991-09-03 Semiconductor Energy Laboratory Co., Ltd. Pipe made from a superconducting ceramic material
US5474975A (en) * 1987-04-01 1995-12-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an elongated member from a superconducting ceramic material
US5987731A (en) * 1987-04-01 1999-11-23 Semiconductor Energy Laboratory Co., Ltd. Elongated superconductive member
US5161908A (en) * 1987-04-06 1992-11-10 Ngk Insulators, Ltd. Joined structure comprising members of different coefficients of thermal expansion and joining method thereof
US11021259B1 (en) 2021-01-07 2021-06-01 Philip Onni Jarvinen Aircraft exhaust mitigation system and process

Similar Documents

Publication Publication Date Title
US2139431A (en) Method for applying metallic coatings to ceramic bodies
US2282106A (en) Ceramic-to-metal seal
US2100187A (en) Entrance insulation for electrical conductors
EP0654174B1 (en) Sealed conductive active alloy feedthroughs
US3979187A (en) Vacuum-tight metal-ceramic soldered joint
US5156322A (en) Process for the production of a solder coating on metallized materials
US2464591A (en) Method of bonding a tungsten member to a backing member
US2226944A (en) Method of bonding dissimilar metals
US3226822A (en) Art of bonding ceramic to metal
US3001269A (en) Composite material, brazing alloys and process of manufacture
US2837679A (en) Glass sealed centerwire structure
US4500383A (en) Process for bonding copper or copper-chromium alloy to ceramics, and bonded articles of ceramics and copper or copper-chromium alloy
US3013328A (en) Method of forming a conductive film
US2820534A (en) Hermetic ceramic-metal seal and method of making the same
US3196536A (en) Method of connecting graphite articles to one another or to articles of different materials
US3062981A (en) Electron tube stem conductors having improved surface wettability
US1498908A (en) Evacuated container
US3305324A (en) Tungsten powder bodies infiltrated with copper-titanium-bismuth or copper-titanium-tin
US3906311A (en) Metal-to-glass-to-ceramic seal
US2250986A (en) Vacuum-tight metal-to-ceramic seal and method of making same
US3337338A (en) Tungsten powder bodies infiltrated with copper-titanium bismuth or copper-titanium-tin
US3224072A (en) Method of forming an electrical connection to an insulating base
US2150379A (en) Mercury switch
US3371406A (en) Hermetic electrical lead-in assembly
US3334205A (en) Micro-circuit bridge and method