US2122039A - Pulsating jig - Google Patents

Pulsating jig Download PDF

Info

Publication number
US2122039A
US2122039A US20015A US2001535A US2122039A US 2122039 A US2122039 A US 2122039A US 20015 A US20015 A US 20015A US 2001535 A US2001535 A US 2001535A US 2122039 A US2122039 A US 2122039A
Authority
US
United States
Prior art keywords
screen
hutch
tank
valve
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US20015A
Inventor
Leland H Logue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENVER PATENT Co
Original Assignee
DENVER PATENT Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENVER PATENT Co filed Critical DENVER PATENT Co
Priority to US20015A priority Critical patent/US2122039A/en
Application granted granted Critical
Publication of US2122039A publication Critical patent/US2122039A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/02Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
    • B03B5/10Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs
    • B03B5/12Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs using pulses generated mechanically in fluid
    • B03B5/16Diaphragm jigs

Definitions

  • This invention relates to improvements in pulsator riflle jigs of which the following is a. specification.
  • This invention relates to devices for concentrating metallic ores and has reference more particularly to devices for concentrating fine gold, ores and/or recovering gold from sands and fine gravel.
  • Another. object of the invention is to produce a device having a flexible'diaphragm and means 'for flexing the same without producing lateral movements thereof or twisting strains.
  • a further object of this invention is to produce an apparatus of the class described in which there will be no cross-currents set up and inwhich the water will flow upwardly only through the screen.
  • a still further object is toproduce a riflie jig of the 'pu'lsator type in which the screen can be readily removed for cleaning.
  • a shows the machine partly in section and partly in elevation
  • p Fig. 2' is a section taken online 2-2.
  • FIG. 3 is a section of the screen box, taken on line 3-3 Fig.4; I
  • Fig.4 is a section throughthe screen box'taken on line 4- -4, Fig. 3;
  • Fig. 5 is a section taken on line 5-5, Fig. 6;
  • Fig. 6 is a top plan view'looking downwardly in the direction of arrow 6 in Fig. 1;
  • Fig. '7 is a diagrammatic viewshowing the relationship ofthe valve and thediaphragms
  • Fig. 8 is a view similar to that shown in Fig. 7 and shows the invention embodied ina single unit; and 1- Fig. 9 .is a section through. the valve,taken on line 9+9, Fig. l, the cover beingshown in place thereon. Y
  • numeral 5 designates the hutch of which there are two in the preferred embodiment. Each hutch has a rectangular top portion,-one side 6 of which extends downwardly to the lowest point.
  • the sides I and. fl -termlnate in triangular wall portions Ia and 8a and thefront sides 9 also terminatein downwardly and rearwardly inclined triangular wall portions So, all as 5 shown in Figs. 1 and 2.
  • a concentrate dis.- charge opening lll is provided whose size can be controlled by a movable slide ll.
  • Walls 1 and 8 have parts that terminate along line l2, and other parts that extend upwardly to the bottoms of the discharge spout l3 and the feed hopper I 4, and to the corresponding positions on the chute 15.
  • a parti 15 tion wall I6 extends upwardly from point I1 and forms with'walls 6, I and 8 a rectangular compartment in which the screen box is located.
  • the screen or, launder boxes are substantially identical in size and shape and have been illustrated in Figs. 3. .4 and 5.
  • Each screen box has two parallel sides l9 and 26 to the upper ends of which angle irons 2
  • Bolts 24 extend through registering openings in flanges 22 and 23 and serve to clamp. the screen box against the supporting brackets 18.
  • Eachbox has. end walls 25 and 26, and wall 26 carries the discharge spout I3. Secured to each flange 22 is a handle 21. by .means of which the screen box can be removed and replaced.
  • Each screen box has a perforated bottom 29 that is supported on spaced rods 36. Located some distance above the bottom is an inclined screen 3
  • a flexible diaphragm 34 Located between walls 9 and i6 and walls I and 3 of each hutch is a flexible diaphragm 34 of rubberized fabric or rubber composition. The edges of the diaphragm are secured to the horizontal flanges of the angle irons 35 by means of bolts 36. In the machine illustrated the diaphragm is rectangular and has a central opening that is closed by a metal plate 31, and which is held in place by means of bolts 36 and a ring 38.
  • a walking beam 39 is mounted for oscillation about a pivot 40 and has attached to one end a connecting rod 4
  • Shaft 43 is journalled in bearings 44 and 45, the former of which is attached to the wall l6 and the latter to an angle iron 46 supported on two vertical angle irons 41.
  • a pulley 49 is connected to the shaft 43 between the bearing and the rotary valve 48. Further reference to valve 48 will be made hereinafter.
  • Connecting rods 50 have their upper ends pivotally connected at 5
  • the lower ends of rods 50 are connected to the center points of the plates 31 as shown in Figs. 1 and 2.
  • a rotary valve member 46a is carried by the shaft 43 and held against rotation thereon.
  • a water supply pipe 53 which is in communication with a source of water under pressure, is connected with the cover 54 of the rotary valve and pipes and 56 are also connected with the valve casing.
  • the connection between the pipes 55 and 55 and the casing are 180 degrees apart.
  • the rotor 48a has a flange 51 that extends 180 degrees about its circumference and serves in one position to connect pipe 53 with pipe 55 and when in another position to connect pipe 53 with pipe 56.
  • valve is so related to the operation of the diaphragms that water will be admitted to each unit on the upstroke of the diaphragms only, and in Fig. 7, the parts have been shown so positioned that the water is just being admitted to the left-hand unit and the diaphragm is at the beginning of the upward stroke.
  • each pipe 55 and 56 receives water through a half revolution of shaft 43. It is also evident that instead of a single rotary valve a separate valve can be used for each pipe.
  • Fig. 8 a modification has been shown in which a single unit is employed.
  • the diaphragm is flexed by a mechanism employing a walking beam but the valve 48 has a rotor 480 that is provided with a flange 51 that extends 180 and which disconnects pipe 53 from pipe 55 during half of each revolution of shaft 43.
  • pulp or sand and gravel mixed with water is fed to the intake hopper l4 and flows over the coarse screen 3
  • the coarser particles flow through the chute l5 and onto the screen 3
  • shaft 43 is rotated the pulsations of the water produced thereby keeps the material on screens 29 continually agitated thereby facilitating the downward movement of the gold par-- ticles which finally pass through this screen and into the hutch.
  • the effect of the pulsations on the material supported on screen 29 is to produce a classification in which the light material is on the top, the heavy material forms a bedding at the bottom, the heavy large-concentrates are on top of the bedding and directly above this are the middlings.
  • the gold and other metal values that pass through the screen 29 are finally discharged through the opening I and, owing to their passage through the sand and gravel on screen 23, they are thoroughly cleaned and are therefore in proper condition for amalgamation.
  • the screen boxes can be readily removed for cleaning by loosening the clamping bolts 24 after which the handles 21 can be grasped and the screen boxes lifted out and cleaned.
  • the level of the overflow weirs at the outlet from the screen or launder sections can .be varied by adding or removing bars 58 as indicated in Fig. 4.
  • a jig of the character described comprising a tank having a feed inlet and a discharge outlet determining a liquid' level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutchin a cyclic movement, and a driven valveelement cooperative'with said means for introducing into the hutch pressure fluid in an amount corresponding to the capacity increase, said valve-element and said means being relatively timed to introduce said fluid during the capacity increase.
  • a jig of the character described comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, a reciprocatory flexible diaphragm for alternately increasing and decreasing the capacity of the hutch, and a driven valve-element synchronized therewith for introducing into the hutch pressure fluid in an amount corresponding to the capacity increase, said valve-elementand said means being relatively timed to introduce said fluid during the capacity increase.
  • a jig of the character described comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, a driven valve-element cooperative with said means for introducing into the hutch pressure fluid in an amount corresponding to the capacity increase, said valveelement and said means being relatively timed to introduce said fluid during the capacity increase, and a control to vary the quantity of fluid admitted to the hutch.
  • a jig of the character described comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, a reciprocatory flexible diaphragm limiting the capacity of the hutch, a mechanism for reciprocating the diaphragm whereby to increase and decrease the capacity of the hutch, and a driven valve-element eooperative with said 'means for introducing into the hutch pressure fluid in -an amount corresponding to the capacity increase, said valveelement and said means being relatively timed to introduce said fluid during the capacity increase.
  • a jig of the character described comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen div1d-' ing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, and a driven valve-element co: operative with and timed relative to said means for introducing into the hutch at each capacity increase, an amountof pressure fluid equal to the increase.
  • a jig of the'character described comprising a-tank having a feed inlet and a dischargeoutlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means operable by a rotary shaft for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, and a mechanism including a driven valveelement operable by rotation of theshaft and timed with relation to said means for introduc- -ing a pressure fluid into the hutch during each capacity increase thereof.
  • a jig of the character described comprising a tank for fluids, an upright partition terminating at a distance from the bottom of the tank and dividing the tank into communicating chambers, there being a feed inlet and a discharge outlet in one of said chambers determining a liquid level in the tank, a flexible diaphragm in the other chamber at a lower elevation than the outlet and defining the upper end of said chamber, a screen in the discharge chamber providing a sluice compartment and a thereto lower hutch for settling solids, means for flexing the diaphragm whereby to increase and decrease the capacity of the hutch, and a driven valve-element operating with said means, and timed with respect thereto, to introduce a pressure fluid into the diaphragm chamber at each capacity increase.
  • a jig of the character described comprising a tank having two communicating chambers, one of the chambers having a feed inlet and a discharge outlet determining a liquid level in the tank, a reciprocating closure for the other chamber below the liquid level in the tank to alternately increase anddecrease the capacity of the hutch, a screen-element in the discharge chamber dividing the tank into an upper sluice compartment and a lower hutch for settling solids, and means including a driven valve-element timed relative to said reciprocating closure to admit a pressure fluid to the closed chamber at each capacity increase.
  • a jig of the character described comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, two spaced screens in the upper portion of the tank, the uppermost screen being spaced from the discharge side of the tank to provide a passage to the discharge, and the lowermost screen being of finer mesh than the upper screen and dividing the tank into a sluice compartment and a hutch therebelow, means for increasing and decreasing the capacity of the hutch and a driven valve-element cooperative with said means, and timed relative thereto, to introduce into the hutch at each capacity increase, pressure fluid in an amount corresponding to the capacity increase, to thereby effect an upward flow through the screens and passage to the discharge.
  • a jig of the character described comprising two tanks in side-by-side arrangement, each of the tanks having a feed inlet and a discharge outlet determining a liquid level therein, the discharge outlet of one tank extending into and providing the feed inlet for the second tank, a
  • a screen dividing the tank into a.- sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, mechanism including a driven valve-element cooperative with said means for introducing pressure fluid into the hutch in an amount corresponding to the capacity increase, and a regulator controlling the flow of pressure fluid to the hutch, said valve-element and said means being relatively timed to introduce said fluid during the capacity increase.
  • a jig of the character described comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, and a valve-controlled system including a driven valve-element cooperative with said means for introducing pressure fluid into the hutch in an amount corresponding to the capacity increase, said valve-element and said means being relatively timed to introduce said fluid during the capacity increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filtration Of Liquid (AREA)

Description

June 28, '1938. H. LOGUE 2,122,039
' PULSATING JIG Filed May 6, 1935 2 Sheets-Sheet 1 f l a. .5
INVENTOR.
LELAND H. Lo Gui.
June 28, 1938. H. LOGUE PULSATING JIG Filed May 6, 1935 2 Sheets-Sheet 2 INVENTOR. LE LAND H. Lo GUE.
@QQW
Patented June 28, 1938 PATENT- OFFICE PULSATING no.
Leland H. Logue, Denver, (1010., assignor to Denver Patent Company, Denver, 0010.
Application May 6,1935, Serial No. 20,015'
12 Claims.
- This invention relates to improvements in pulsator riflle jigs of which the following is a. specification.
This invention relates to devices for concentrating metallic ores and has reference more particularly to devices for concentrating fine gold, ores and/or recovering gold from sands and fine gravel. i
It is an. object of this invention to produce a pulsator riflle jig that shall beprovidedwith both a flexible diaphragm and a periodically opening and closing valve or a pump operated in synchronisrn with the diaphragm for admitting water-on the up stroke of the diaphragm only.
' Another. object of the invention is to produce a device having a flexible'diaphragm and means 'for flexing the same without producing lateral movements thereof or twisting strains.
A further object of this invention is to produce an apparatus of the class described in which there will be no cross-currents set up and inwhich the water will flow upwardly only through the screen. A still further object is toproduce a riflie jig of the 'pu'lsator type in which the screen can be readily removed for cleaning.
The above and other objects that may become apparent as this description proceeds are attained by means of a construction and an arrangement of parts that will now be described in U detail and for this purpose reference will be had to'the accompanying drawings in which the invention has been illustrated in its preferred form,
r and in which 1 Fig. l is avview taken on line l-I, Fig.2, and
a shows the machine partly in section and partly in elevation; p Fig. 2'is a section taken online 2-2. Fig. 1;
'Fig. 3 is a section of the screen box, taken on line 3-3 Fig.4; I
' Fig.4 is a section throughthe screen box'taken on line 4- -4, Fig. 3;
Fig. 5 is a section taken on line 5-5, Fig. 6;
Fig. 6 is a top plan view'looking downwardly in the direction of arrow 6 in Fig. 1;
Fig. '7 is a diagrammatic viewshowing the relationship ofthe valve and thediaphragms;
Fig. 8 is a view similar to that shown in Fig. 7 and shows the invention embodied ina single unit; and 1- Fig. 9 .is a section through. the valve,taken on line 9+9, Fig. l, the cover beingshown in place thereon. Y
In the drawings numeral 5 designates the hutch of which there are two in the preferred embodiment. Each hutch has a rectangular top portion,-one side 6 of which extends downwardly to the lowest point. The sides I and. fl -termlnate in triangular wall portions Ia and 8a and thefront sides 9 also terminatein downwardly and rearwardly inclined triangular wall portions So, all as 5 shown in Figs. 1 and 2.
At the bottom of each hutch a concentrate dis.- charge opening lll is provided whose size can be controlled by a movable slide ll. Wall Sterminates at l2, which is a considerable distance 10 below the top of wall 6. Walls 1 and 8 have parts that terminate along line l2, and other parts that extend upwardly to the bottoms of the discharge spout l3 and the feed hopper I 4, and to the corresponding positions on the chute 15. A parti 15 tion wall I6 extends upwardly from point I1 and forms with'walls 6, I and 8 a rectangular compartment in which the screen box is located. Walls 6 and 16 .are provided on their inner surfaces with supporting brackets l8 (Fig. 2). The screen or, launder boxes are substantially identical in size and shape and have been illustrated in Figs. 3. .4 and 5. Each screen box has two parallel sides l9 and 26 to the upper ends of which angle irons 2| have been attached, as shown in Figs. 3 and 4; each angle has a flange 22 that extendsoutwardly in spaced parallel relation with the flanges 23 on walls 6 and i6. Bolts 24 extend through registering openings in flanges 22 and 23 and serve to clamp. the screen box against the supporting brackets 18. Eachbox has. end walls 25 and 26, and wall 26 carries the discharge spout I3. Secured to each flange 22 is a handle 21. by .means of which the screen box can be removed and replaced. Each screen box has a perforated bottom 29 that is supported on spaced rods 36. Located some distance above the bottom is an inclined screen 3| that is also supported on rods 32. The screen 3| terminates short of wall 26 so as to leave an opening. I I i 'In the preferred form, illustrated in Figs. 1, 5 and 6, there are two hutches placed side by side and connected by the chute l5 and these are substantially identical but the, one shown on the right side in Fig. 1 is somewhat. taller thanthe one on the left and carries the feed hopper or chute I l; the difierence in height makes itpossible to, position the lower end of the screen 3] ,of the intake hutch above the upper end of the corresponding screen in the other hutch, all as shown in Fig. 1. When material, such as pulp or sand, is fed into the hopper l4 itwill flow through the two screen boxes in series and will be discharged through the spout I3. I
Located between walls 9 and i6 and walls I and 3 of each hutch is a flexible diaphragm 34 of rubberized fabric or rubber composition. The edges of the diaphragm are secured to the horizontal flanges of the angle irons 35 by means of bolts 36. In the machine illustrated the diaphragm is rectangular and has a central opening that is closed by a metal plate 31, and which is held in place by means of bolts 36 and a ring 38.
A walking beam 39 is mounted for oscillation about a pivot 40 and has attached to one end a connecting rod 4| whose other end is operatively connected with an eccentric 42 that is carried on the drive shaft 43. Shaft 43 is journalled in bearings 44 and 45, the former of which is attached to the wall l6 and the latter to an angle iron 46 supported on two vertical angle irons 41.
A pulley 49 is connected to the shaft 43 between the bearing and the rotary valve 48. Further reference to valve 48 will be made hereinafter. Connecting rods 50 have their upper ends pivotally connected at 5| to the walking beam. Pivots 5| are equidistantly spaced from pivot 40, but this is not an essential but in the construction shown it is believed to be preferable. The lower ends of rods 50 are connected to the center points of the plates 31 as shown in Figs. 1 and 2.
When shaft 43 rotates the walking beam oscillates about pivot 40 and reciprocates the rods 50 and thereby flexes the diaphragms equally in opposite directions. Owing to the fact that the distance from pivots '40 and 5| is quite large and the angle of oscillation quite small and to the further fact that the beam is horizontal at the center of its arc of oscillation there is only a very small movement of the upper ends of the rods 50 toward and away from the pivot 40 with the result that the rods, for all practical purposes, may be said to reciprocate in a straight line. At any rate, the sidewise or rocking movement of the rods-50 is so small that it has no injurious effect on the diaphragms. If the same degree of flexure of the diaphragm were obtained by a construction in which the upper ends of rods 50 were connected with cranks or eccentrics giving the same effect, the rocking of the rods would be comparatively great and would subject the diaphragms to strains that would tend to greatly shorten their lives.
The use of a walking beam is a feature of construction that has considerable advantage in the combination shown and is in no sense a mere mechanical equivalent of a crank of equal throw.
The construction of the rotary valve 48 has been shown in Figs. '7, 8 and. 9, from which it will be seen that a rotary valve member 46a is carried by the shaft 43 and held against rotation thereon. A water supply pipe 53, which is in communication with a source of water under pressure, is connected with the cover 54 of the rotary valve and pipes and 56 are also connected with the valve casing. The connection between the pipes 55 and 55 and the casing are 180 degrees apart. The rotor 48a has a flange 51 that extends 180 degrees about its circumference and serves in one position to connect pipe 53 with pipe 55 and when in another position to connect pipe 53 with pipe 56. When the pipes are connected to the housing 180 degrees apart pipe 53 will be connected with pipes 55 and 56 alternately, each pipe receiving water from pipe 53 during one half of each revolution of shaft 43.
The operation of the valve is so related to the operation of the diaphragms that water will be admitted to each unit on the upstroke of the diaphragms only, and in Fig. 7, the parts have been shown so positioned that the water is just being admitted to the left-hand unit and the diaphragm is at the beginning of the upward stroke.
The length of time that the water is permitted to flow depends on the angular extent of the flange 51 and, as has been explained above, each pipe 55 and 56 receives water through a half revolution of shaft 43. It is also evident that instead of a single rotary valve a separate valve can be used for each pipe. I
When the diaphragm moves downwardly water is displaced and this is then forced to the other side of the wall l6 and produces an upward flow through the screen. When the diaphragm moves upwardly the increased volume thus produced will be filled with water admitted through pipe 55 or 56, as the case may be, through the action of the valve and in this way a downward flow through the screen as well as the production of cross currents are prevented. It will be understood of course that the water or pressure fluid is introduced in an amount corresponding to or approximating the capacity or volume increase of the hutch under the action of the diaphragm.
It is evident that when the device is in operation there will'be a continuous pulsation of water upwardly through the screen which produces an agitation of the sand and gravel supported on the screen 29, which is the fine screen, thereby facilitating the downward movement of the heavier metal particles which pass through the gravel bed, through'the screen 29 and into the hutch and are finally discharged through the opening Hi.
In Fig. 8 a modification has been shown in which a single unit is employed. The diaphragm is flexed by a mechanism employing a walking beam but the valve 48 has a rotor 480 that is provided with a flange 51 that extends 180 and which disconnects pipe 53 from pipe 55 during half of each revolution of shaft 43.
When this machine is in use pulp or sand and gravel mixed with water is fed to the intake hopper l4 and flows over the coarse screen 3|, which removes the oversized particles in the screen box, and water and the smaller particles pass through this screen and onto the fine screen 23. The coarser particles flow through the chute l5 and onto the screen 3| in the unit to the left where a'further screening action takes place. When shaft 43 is rotated the pulsations of the water produced thereby keeps the material on screens 29 continually agitated thereby facilitating the downward movement of the gold par-- ticles which finally pass through this screen and into the hutch. The upward flow of the water, produced by the downward flexing of the diaphragms agitates the material on screens 29 and causes some of it to pass upwardly through the openings 33. The effect of the pulsations on the material supported on screen 29 is to produce a classification in which the light material is on the top, the heavy material forms a bedding at the bottom, the heavy large-concentrates are on top of the bedding and directly above this are the middlings.
The gold and other metal values that pass through the screen 29 are finally discharged through the opening I and, owing to their passage through the sand and gravel on screen 23, they are thoroughly cleaned and are therefore in proper condition for amalgamation.
The screen boxes can be readily removed for cleaning by loosening the clamping bolts 24 after which the handles 21 can be grasped and the screen boxes lifted out and cleaned.
The level of the overflow weirs at the outlet from the screen or launder sections can .be varied by adding or removing bars 58 as indicated in Fig. 4.
Attention is called to the construction, includingthe walking beam 39, for flexing the diaphragms as this gives a substantially straight line movementto the connecting rods 50 and avoids the productionv of twisting strains such as would be produced by a crank and this greatlyprolongs the life of the diaphragms.
The combined action 'of thediaphragms and thevaive that controls the admission of water produce a pulsating action without setting up of any cross currents.
The removable screen or launder sections make it convenient to clean the same and to remove the matted gold bedded on screen 29 Instead of the valve 48 it is possible to substitute a pump that is driven from shaft 43. This has not been illustrated because it is an obvious substitution of a mechanical equivalent. Owing to the fact that water is admitted when the diaphragm is flexed so as to increase the volume of the hutch a suction producing a downward flow through the screen as well as cross currents is prevented because suflicient water to compensate for the additional volume is admitted through the action of the valve.
Having described the invention what is claimed as new is:
. 1. A jig of the character described, comprising a tank having a feed inlet and a discharge outlet determining a liquid' level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutchin a cyclic movement, and a driven valveelement cooperative'with said means for introducing into the hutch pressure fluid in an amount corresponding to the capacity increase, said valve-element and said means being relatively timed to introduce said fluid during the capacity increase.
2. A jig of the character described, comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, a reciprocatory flexible diaphragm for alternately increasing and decreasing the capacity of the hutch, and a driven valve-element synchronized therewith for introducing into the hutch pressure fluid in an amount corresponding to the capacity increase, said valve-elementand said means being relatively timed to introduce said fluid during the capacity increase.
3. A jig of the character described, comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, a driven valve-element cooperative with said means for introducing into the hutch pressure fluid in an amount corresponding to the capacity increase, said valveelement and said means being relatively timed to introduce said fluid during the capacity increase, and a control to vary the quantity of fluid admitted to the hutch.
4. A jig of the character described, comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, a reciprocatory flexible diaphragm limiting the capacity of the hutch, a mechanism for reciprocating the diaphragm whereby to increase and decrease the capacity of the hutch, and a driven valve-element eooperative with said 'means for introducing into the hutch pressure fluid in -an amount corresponding to the capacity increase, said valveelement and said means being relatively timed to introduce said fluid during the capacity increase. v
5. A jig of the character described, comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen div1d-' ing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, and a driven valve-element co: operative with and timed relative to said means for introducing into the hutch at each capacity increase, an amountof pressure fluid equal to the increase.
6. A jig of the'character described, comprising a-tank having a feed inlet and a dischargeoutlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means operable by a rotary shaft for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, and a mechanism including a driven valveelement operable by rotation of theshaft and timed with relation to said means for introduc- -ing a pressure fluid into the hutch during each capacity increase thereof.
7. A jig of the character described, comprising a tank for fluids, an upright partition terminating at a distance from the bottom of the tank and dividing the tank into communicating chambers, there being a feed inlet and a discharge outlet in one of said chambers determining a liquid level in the tank, a flexible diaphragm in the other chamber at a lower elevation than the outlet and defining the upper end of said chamber, a screen in the discharge chamber providing a sluice compartment and a thereto lower hutch for settling solids, means for flexing the diaphragm whereby to increase and decrease the capacity of the hutch, and a driven valve-element operating with said means, and timed with respect thereto, to introduce a pressure fluid into the diaphragm chamber at each capacity increase.
8. A jig of the character described, comprising a tank having two communicating chambers, one of the chambers having a feed inlet and a discharge outlet determining a liquid level in the tank, a reciprocating closure for the other chamber below the liquid level in the tank to alternately increase anddecrease the capacity of the hutch, a screen-element in the discharge chamber dividing the tank into an upper sluice compartment and a lower hutch for settling solids, and means including a driven valve-element timed relative to said reciprocating closure to admit a pressure fluid to the closed chamber at each capacity increase.
9. A jig of the character described, comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, two spaced screens in the upper portion of the tank, the uppermost screen being spaced from the discharge side of the tank to provide a passage to the discharge, and the lowermost screen being of finer mesh than the upper screen and dividing the tank into a sluice compartment and a hutch therebelow, means for increasing and decreasing the capacity of the hutch and a driven valve-element cooperative with said means, and timed relative thereto, to introduce into the hutch at each capacity increase, pressure fluid in an amount corresponding to the capacity increase, to thereby effect an upward flow through the screens and passage to the discharge.
10. A jig of the character described, comprising two tanks in side-by-side arrangement, each of the tanks having a feed inlet and a discharge outlet determining a liquid level therein, the discharge outlet of one tank extending into and providing the feed inlet for the second tank, a
outlet determining a liquid level therein, a screen dividing the tank into a.- sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, mechanism including a driven valve-element cooperative with said means for introducing pressure fluid into the hutch in an amount corresponding to the capacity increase, and a regulator controlling the flow of pressure fluid to the hutch, said valve-element and said means being relatively timed to introduce said fluid during the capacity increase.
12. A jig of the character described, comprising a tank having a feed inlet and a discharge outlet determining a liquid level therein, a screen dividing the tank into a sluice compartment and a hutch therebelow, means for alternately increasing and decreasing the capacity of the hutch in a cyclic movement, and a valve-controlled system including a driven valve-element cooperative with said means for introducing pressure fluid into the hutch in an amount corresponding to the capacity increase, said valve-element and said means being relatively timed to introduce said fluid during the capacity increase.
LELAND H. LOGUE.
US20015A 1935-05-06 1935-05-06 Pulsating jig Expired - Lifetime US2122039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US20015A US2122039A (en) 1935-05-06 1935-05-06 Pulsating jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20015A US2122039A (en) 1935-05-06 1935-05-06 Pulsating jig

Publications (1)

Publication Number Publication Date
US2122039A true US2122039A (en) 1938-06-28

Family

ID=21796285

Family Applications (1)

Application Number Title Priority Date Filing Date
US20015A Expired - Lifetime US2122039A (en) 1935-05-06 1935-05-06 Pulsating jig

Country Status (1)

Country Link
US (1) US2122039A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2416450A (en) * 1944-09-18 1947-02-25 Yuba Mfg Company Multiple cell diaphragm jig with common actuating means
US2694490A (en) * 1950-11-07 1954-11-16 Link Belt Co Method and apparatus for hydraulically classifying coal of very small sizes
US2776752A (en) * 1957-01-08 Harvengt
DE1155071B (en) * 1957-09-23 1963-10-03 Aubrey Thomas Norton Pneumatically driven setting machine with two setting chambers and intermediate recovery discharge
US4708789A (en) * 1986-06-27 1987-11-24 Mineral Preparation, Inc. Mobile mineral preparation plant
WO2001056701A2 (en) * 2000-02-01 2001-08-09 Cicero Combrinck Jig for density based separation of matter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2776752A (en) * 1957-01-08 Harvengt
US2416450A (en) * 1944-09-18 1947-02-25 Yuba Mfg Company Multiple cell diaphragm jig with common actuating means
US2694490A (en) * 1950-11-07 1954-11-16 Link Belt Co Method and apparatus for hydraulically classifying coal of very small sizes
DE1155071B (en) * 1957-09-23 1963-10-03 Aubrey Thomas Norton Pneumatically driven setting machine with two setting chambers and intermediate recovery discharge
US4708789A (en) * 1986-06-27 1987-11-24 Mineral Preparation, Inc. Mobile mineral preparation plant
WO2001056701A2 (en) * 2000-02-01 2001-08-09 Cicero Combrinck Jig for density based separation of matter
WO2001056701A3 (en) * 2000-02-01 2002-02-21 Cicero Combrinck Jig for density based separation of matter

Similar Documents

Publication Publication Date Title
US2122039A (en) Pulsating jig
US2082467A (en) Coal cleaning apparatus
US2238338A (en) Mineral jig
US697353A (en) Apparatus for screening crushed ores or other materials.
US506751A (en) Territory
US2824644A (en) Stratifier with suction separation
US3385432A (en) Combined stratification and aqueous suspension separator
US859354A (en) Ore washer or concentrator.
US285098A (en) Teeeitoey
US798064A (en) Ore-concentrator.
US351057A (en) Ore concentrator and separator
US2793750A (en) peterson
US1025231A (en) Apparatus for separating substances of different specific gravities.
US1176403A (en) Pulsator riffle-jig.
US452393A (en) Ore-concentrator
US2012192A (en) hancock
US694255A (en) Gold-separator.
US1798451A (en) Flotation apparatus
USRE6165E (en) Improvement in ore-concentrators
US231429A (en) Half of his eight to john eobson
US1438125A (en) Coal screening and washing machine
US460732A (en) Ore-separator
US973180A (en) Ore-concentrating jig.
US2056190A (en) Concentrator
US751911A (en) Amalgamator