US2097804A - Amplitude filter circuit for television receivers - Google Patents

Amplitude filter circuit for television receivers Download PDF

Info

Publication number
US2097804A
US2097804A US77416A US7741636A US2097804A US 2097804 A US2097804 A US 2097804A US 77416 A US77416 A US 77416A US 7741636 A US7741636 A US 7741636A US 2097804 A US2097804 A US 2097804A
Authority
US
United States
Prior art keywords
grid
valve
transformer
carrier frequency
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US77416A
Inventor
Schlesinger Kurt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL46052D priority Critical patent/NL46052C/xx
Priority to BE405607D priority patent/BE405607A/xx
Priority to NL52223D priority patent/NL52223C/xx
Priority to DER89049D priority patent/DE681003C/en
Priority to FR770575D priority patent/FR770575A/en
Priority to GB9249/34A priority patent/GB435417A/en
Priority claimed from US717310A external-priority patent/US2068768A/en
Priority to US717310A priority patent/US2068768A/en
Priority to FR45063D priority patent/FR45063E/en
Priority to US735600A priority patent/US2029640A/en
Priority to GB21084/34A priority patent/GB441285A/en
Priority to FR45442D priority patent/FR45442E/en
Priority to GB29093/34A priority patent/GB447401A/en
Priority to US749236A priority patent/US2118866A/en
Priority to FR45446D priority patent/FR45446E/en
Priority to GB30180/34A priority patent/GB449316A/en
Priority to FR45447D priority patent/FR45447E/en
Priority to GB4856/35A priority patent/GB452118A/en
Priority to FR46060D priority patent/FR46060E/en
Priority to US16430A priority patent/US2137354A/en
Priority to FR46091D priority patent/FR46091E/en
Priority to GB11940/35A priority patent/GB446707A/en
Application filed by Individual filed Critical Individual
Priority to US77416A priority patent/US2097804A/en
Priority to US80584A priority patent/US2094678A/en
Priority to US84660A priority patent/US2094768A/en
Publication of US2097804A publication Critical patent/US2097804A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/10Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials
    • G01N9/12Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials by observing the depth of immersion of the bodies, e.g. hydrometers
    • G01N9/14Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing bodies wholly or partially immersed in fluid materials by observing the depth of immersion of the bodies, e.g. hydrometers the body being built into a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/14Demodulation of amplitude-modulated oscillations by means of non-linear elements having more than two poles
    • H03D1/16Demodulation of amplitude-modulated oscillations by means of non-linear elements having more than two poles of discharge tubes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/163Special arrangements for the reduction of the damping of resonant circuits of receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • H04N5/08Separation of synchronising signals from picture signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • H04N5/12Devices in which the synchronising signals are only operative if a phase difference occurs between synchronising and synchronised scanning devices, e.g. flywheel synchronising
    • H04N5/123Devices in which the synchronising signals are only operative if a phase difference occurs between synchronising and synchronised scanning devices, e.g. flywheel synchronising whereby the synchronisation signal directly commands a frequency generator

Definitions

  • the present invention is an improvement of the arrangement according to the Patent No. 2,068,768, January 26, 1937, in that the carrier frequency modulated with the picture contents currents is directly connected in push-pull fashion to the grids of a double-grid detecting valve. Further features of the invention will be set forth in connection with the appended drawing, in which in Figs. 1 and 2 there are set forth two circuits, in which loss of potential is avoided and also the detrimental capacity of the grid circuit is still further reduced. In both circuits there is employed a detector tube l6 having two grids I!
  • grids in accordance with the invention are not arranged over the common cathode l9 twisted one within the other, but are situated side by side exactly symmetrically to the common anode 20 over the same. In this manner the grid current to the particular positive electrode will be greater than in the case of twisted grids.
  • the carrier frequency is introduced by the anode circuit coil '2! of the final high-frequency amplifier-tube 22 into the grid circuit coil 23. The latter is tuned with its mutual operating capacity and own self-induction to the highest side band frequency of the television image, and is also critically damped by means of parallel resistances 2e, 25.
  • the common bias of both grids as compared with the cathode is 0 volts or weakly positive, and is adjusted through the medium of a leak resistance 26 and battery 21.
  • the mutual capacity of the grid circuit to be charged is merely equal to the total of the two grid-cathode capacities, which together may be reduced to approximately 5 cm., plus the total earth capacity of the coil 23.
  • the latter may be made very small by large spatial disposal of this coil from all earthed conductors and also by the use of very thin wire, which at the same time enables to determine the damping of the coil by its own resistance, and small spatial arrangement in the vicinity of the detector tube.
  • the resistance 26 is determined after knowledge of the total capacity from the condition that the discharge period constant should be smaller than the highest television frequency and seldom attains values of more than 100,000 ohms.
  • the screening means should only have a low capacity against the grid coil itself.
  • the screening means may also be arranged to be shifted, for example in the form of a short ring, and then takes the place of the differential condenser 28, 29.
  • connection according to Fig. 2 in which the self-capacities 3!, 32 between the two windings in conjunction with an axial shiftability of the two coils in relation to each other, enable balancing to be performed, the total capacitative load of the secondary circuit being very small.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and be-' ing tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, and two damping resistances each connected between the one end of said secondary and earth across the two halves of said secondary, said resistances being so dimensioned as to render said secondary aperiodic.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids having lateral leads to the outside of said valve, whereby said control grids have a low capacity with respect to said earthed cathode, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary I'- and earth.
  • an input circuit comprising a transformor and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier.
  • the secondary of said transformer being galvanically coupled at its ends'to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids having lateral leads to the outside of said valve, whereby said control grids have a low capacity with respect to said earthed cathode, said cathode being connected ,to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, said grids being arranged side by side exactly symmetrically to said common anode and said common cathode.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output. of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance and a D.
  • C. grid bias source connected in series between a middle tapping point of said secondary and earth.
  • a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two-grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance and an.
  • C. grid bias source connected in series between a middle'tapping point of said secondary and earth, said resistance being so dimensioned as to obtain a discharge time constant of the grid circuit shorter than the maximum television frequency of said signal band.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tappingpoint of said secondary and earth, an electrical screening means arranged between said primary and said secondary for reducing capacity between said primary and said secondary.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanical ly coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, an electrical screening means shiftably arranged between said primary and said secondary for reducing capacity between said primary and said secondary.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, an electrical screening means arranged between said primary and said secondary, and a differential balancing condenser, the stators of which are connected to the ends of said secondary, and the rotor to said screening means.
  • an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve' and being tuned by its self-induction and by its natural inherent capacitiesto the highest side band frequency of the modulatedlcarrier frequency band, said primary and said secondary coils being arranged to be shiftable in relation to each other in axial direction for enabling balancing of the self capacities between said two windings, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Picture Signal Circuits (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Superheterodyne Receivers (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Plasma Technology (AREA)
  • Amplifiers (AREA)
  • Television Receiver Circuits (AREA)
  • Discharge Lamp (AREA)
  • Burglar Alarm Systems (AREA)

Description

Nov. 2, 1937. K. SCHLESINGER 2,097,804
AMPLITUDE FILTER CIRCUIT FOR TELEVISION RECEIVERS 4 Original Filed Oct. 5, 1934 Patented Nov. 2, 1937 UNITED STATES AMPLITUDE FILTER CIRCUIT FOR TELE- VISION RECEIVERS Kurt Schlesinger, Berlin, Germany 10 Claims.
The subject matter of the present invention which is a divisional one of application 747,011, filed 5 October 1934, is an arrangement for the reception of high-quality image transmissions employing a detector valve in push-pull connection.
For the reception of image transmissions it has already been set forth by the applicant in the Patent No. 2,068,768, January 26, 1937, on a previous occasion that a detector in push-pull connection and with modified dimensioning of the grid circuits is very well capable of being employed. With the push-pull detector there is still twice the total of grid condenser and grid capacity to charge, and moreover there must also be accepted the disadvantage of a loss in potential owing to the very small grid condenser.
The present invention is an improvement of the arrangement according to the Patent No. 2,068,768, January 26, 1937, in that the carrier frequency modulated with the picture contents currents is directly connected in push-pull fashion to the grids of a double-grid detecting valve. Further features of the invention will be set forth in connection with the appended drawing, in which in Figs. 1 and 2 there are set forth two circuits, in which loss of potential is avoided and also the detrimental capacity of the grid circuit is still further reduced. In both circuits there is employed a detector tube l6 having two grids I! and IS with small capacity by leading the connections out laterally, which grids in accordance with the invention are not arranged over the common cathode l9 twisted one within the other, but are situated side by side exactly symmetrically to the common anode 20 over the same. In this manner the grid current to the particular positive electrode will be greater than in the case of twisted grids. The carrier frequency is introduced by the anode circuit coil '2! of the final high-frequency amplifier-tube 22 into the grid circuit coil 23. The latter is tuned with its mutual operating capacity and own self-induction to the highest side band frequency of the television image, and is also critically damped by means of parallel resistances 2e, 25. The common bias of both grids as compared with the cathode is 0 volts or weakly positive, and is adjusted through the medium of a leak resistance 26 and battery 21. As will be seen, the mutual capacity of the grid circuit to be charged is merely equal to the total of the two grid-cathode capacities, which together may be reduced to approximately 5 cm., plus the total earth capacity of the coil 23. The latter may be made very small by large spatial disposal of this coil from all earthed conductors and also by the use of very thin wire, which at the same time enables to determine the damping of the coil by its own resistance, and small spatial arrangement in the vicinity of the detector tube. The resistance 26 is determined after knowledge of the total capacity from the condition that the discharge period constant should be smaller than the highest television frequency and seldom attains values of more than 100,000 ohms.
For balancing the inputs to the two grids there may be employed the following:
1. A differential neutralizing condenser 28, 29 with part capacities of approximately 2 cm., the rotor of which may not only be connected with earth, as shown in Fig. 1, but also with the centre of the coil, its capacity then having no adverse effect,
2. An electrostatic screening means 30 for overcoming a capacitative unbalance between primary and secondary coil.
This screening means, however, should only havea low capacity against the grid coil itself. The screening means may also be arranged to be shifted, for example in the form of a short ring, and then takes the place of the differential condenser 28, 29.
3. There may be employed the connection according to Fig. 2, in which the self-capacities 3!, 32 between the two windings in conjunction with an axial shiftability of the two coils in relation to each other, enable balancing to be performed, the total capacitative load of the secondary circuit being very small.
I claim:
1. In a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth.
2. In a push-pull grid-current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and be-' ing tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, and two damping resistances each connected between the one end of said secondary and earth across the two halves of said secondary, said resistances being so dimensioned as to render said secondary aperiodic.
3. In a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids having lateral leads to the outside of said valve, whereby said control grids have a low capacity with respect to said earthed cathode, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary I'- and earth.
4. In a push-pull grid-current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformor and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier. frequency amplifier, the secondary of said transformer being galvanically coupled at its ends'to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids having lateral leads to the outside of said valve, whereby said control grids have a low capacity with respect to said earthed cathode, said cathode being connected ,to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, said grids being arranged side by side exactly symmetrically to said common anode and said common cathode.
5. In a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output. of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance and a D. C. grid bias source connected in series between a middle tapping point of said secondary and earth.
6.111 a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two-grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance and an. C. grid bias source connected in series between a middle'tapping point of said secondary and earth, said resistance being so dimensioned as to obtain a discharge time constant of the grid circuit shorter than the maximum television frequency of said signal band.
'7. In a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tappingpoint of said secondary and earth, an electrical screening means arranged between said primary and said secondary for reducing capacity between said primary and said secondary.
8. In a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanical ly coupled at its ends to the two grids of said valve and being tuned by its self-induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, an electrical screening means shiftably arranged between said primary and said secondary for reducing capacity between said primary and said secondary.
9. In a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve and being tuned by its self induction and by its natural inherent capacities to the highest side band frequency of the modulated carrier frequency band, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth, an electrical screening means arranged between said primary and said secondary, and a differential balancing condenser, the stators of which are connected to the ends of said secondary, and the rotor to said screening means.
10. In a push-pull grid current detector arrangement for grid detection, more particularly in the case of a television signal band of large Width, modulated on an ultra-short carrier frequency, an input circuit comprising a transformer and a twin-grid detector valve, the primary of said transformer being coupled to the output of a carrier frequency amplifier, the secondary of said transformer being galvanically coupled at its ends to the two grids of said valve' and being tuned by its self-induction and by its natural inherent capacitiesto the highest side band frequency of the modulatedlcarrier frequency band, said primary and said secondary coils being arranged to be shiftable in relation to each other in axial direction for enabling balancing of the self capacities between said two windings, said valve comprising at least an anode, a cathode, and said two control grids, said cathode being connected to earth, a grid leak resistance connected between a middle tapping point of said secondary and earth.
KURT SCHLESINGER.
US77416A 1933-03-29 1936-05-01 Amplitude filter circuit for television receivers Expired - Lifetime US2097804A (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
BE405607D BE405607A (en) 1933-03-29
NL52223D NL52223C (en) 1933-03-29
NL46052D NL46052C (en) 1933-03-29
DER89049D DE681003C (en) 1933-03-29 1933-10-24 Audio rectifier circuit for television receivers
FR770575D FR770575A (en) 1933-03-29 1934-03-23 Hearing aid for ultra-short wave receivers, particularly intended for television
GB9249/34A GB435417A (en) 1933-03-29 1934-03-24 Detector arrangement for wireless receivers, more particularly for television purposes
US717310A US2068768A (en) 1933-03-29 1934-03-26 Detector for ultra short waves
FR45063D FR45063E (en) 1933-03-29 1934-07-17 Hearing aid for ultra-short wave receivers, particularly intended for television
US735600A US2029640A (en) 1933-03-29 1934-07-17 Audion arrangement for short wave television purposes
GB21084/34A GB441285A (en) 1933-03-29 1934-07-19 Detector arrangement for wireless receivers more particularly for television purposes
FR45442D FR45442E (en) 1933-03-29 1934-10-10 Hearing aid for ultra-short wave receivers, particularly intended for television
GB29093/34A GB447401A (en) 1933-03-29 1934-10-11 Detector arrangement for television reception
US749236A US2118866A (en) 1933-03-29 1934-10-20 Detector
FR45446D FR45446E (en) 1933-03-29 1934-10-20 Hearing aid for ultra-short wave receivers, particularly intended for television
GB30180/34A GB449316A (en) 1933-03-29 1934-10-22 Rectifier for wireless television reception
FR45447D FR45447E (en) 1933-03-29 1934-10-22 Hearing aid for ultra-short wave receivers, particularly intended for television
GB4856/35A GB452118A (en) 1933-03-29 1935-02-15 Detector circuit for television reception
FR46060D FR46060E (en) 1933-03-29 1935-02-15 Hearing device for ultra-short-wave receiver particularly intended for television
US16430A US2137354A (en) 1933-03-29 1935-04-15 Receiving connection system for televison receivers
FR46091D FR46091E (en) 1933-03-29 1935-04-17 Hearing device for ultra-short-wave receivers particularly intended for television
GB11940/35A GB446707A (en) 1933-03-29 1935-04-18 Television receiving circuit
US77416A US2097804A (en) 1933-03-29 1936-05-01 Amplitude filter circuit for television receivers
US80584A US2094678A (en) 1933-03-29 1936-05-19 Detector for ultra short waves
US84660A US2094768A (en) 1933-03-29 1936-06-11 Specific gravity meter

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE435417X 1933-03-29
DE2029640X 1933-07-19
DER89049D DE681003C (en) 1933-03-29 1933-10-24 Audio rectifier circuit for television receivers
US717310A US2068768A (en) 1933-03-29 1934-03-26 Detector for ultra short waves
US74701134A 1934-10-05 1934-10-05
US77416A US2097804A (en) 1933-03-29 1936-05-01 Amplitude filter circuit for television receivers
US80584A US2094678A (en) 1933-03-29 1936-05-19 Detector for ultra short waves

Publications (1)

Publication Number Publication Date
US2097804A true US2097804A (en) 1937-11-02

Family

ID=32512791

Family Applications (5)

Application Number Title Priority Date Filing Date
US735600A Expired - Lifetime US2029640A (en) 1933-03-29 1934-07-17 Audion arrangement for short wave television purposes
US749236A Expired - Lifetime US2118866A (en) 1933-03-29 1934-10-20 Detector
US16430A Expired - Lifetime US2137354A (en) 1933-03-29 1935-04-15 Receiving connection system for televison receivers
US77416A Expired - Lifetime US2097804A (en) 1933-03-29 1936-05-01 Amplitude filter circuit for television receivers
US80584A Expired - Lifetime US2094678A (en) 1933-03-29 1936-05-19 Detector for ultra short waves

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US735600A Expired - Lifetime US2029640A (en) 1933-03-29 1934-07-17 Audion arrangement for short wave television purposes
US749236A Expired - Lifetime US2118866A (en) 1933-03-29 1934-10-20 Detector
US16430A Expired - Lifetime US2137354A (en) 1933-03-29 1935-04-15 Receiving connection system for televison receivers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US80584A Expired - Lifetime US2094678A (en) 1933-03-29 1936-05-19 Detector for ultra short waves

Country Status (6)

Country Link
US (5) US2029640A (en)
BE (1) BE405607A (en)
DE (1) DE681003C (en)
FR (7) FR770575A (en)
GB (6) GB435417A (en)
NL (2) NL52223C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448771A (en) * 1943-09-23 1948-09-07 Du Mont Allen B Lab Inc Cathode-ray oscillograph circuit
US2721951A (en) * 1950-12-29 1955-10-25 Rca Corp Low reactance electron discharge device
US2840749A (en) * 1952-10-17 1958-06-24 Bell Telephone Labor Inc Electron discharge devices
RU2470399C1 (en) * 2011-05-16 2012-12-20 Сергей Владимирович Аликов Transformer

Also Published As

Publication number Publication date
US2029640A (en) 1936-02-04
FR45446E (en) 1935-09-04
FR45442E (en) 1935-09-04
GB449316A (en) 1936-06-22
US2118866A (en) 1938-05-31
DE681003C (en) 1939-09-13
GB452118A (en) 1936-08-17
GB441285A (en) 1936-01-16
NL46052C (en)
US2137354A (en) 1938-11-22
GB435417A (en) 1935-09-20
NL52223C (en)
GB447401A (en) 1936-05-11
FR45063E (en) 1935-05-29
FR45447E (en) 1935-09-04
FR46060E (en) 1936-02-15
GB446707A (en) 1936-05-05
FR46091E (en) 1936-02-15
BE405607A (en)
US2094678A (en) 1937-10-05
FR770575A (en) 1934-09-15

Similar Documents

Publication Publication Date Title
US1882128A (en) Radiofrequency amplification system
US2267120A (en) Limiting device
US2302798A (en) Thermionic valve amplifier
US2379168A (en) Thermionic tube circuits
US2097804A (en) Amplitude filter circuit for television receivers
US2246158A (en) Amplifier
US1998325A (en) Uniform impedance filter
US2296920A (en) Signal transmission circuit
US2178012A (en) Thermionic valve circuits
US2271519A (en) Neutralizing system
US2272385A (en) Detector circuit for television receivers
US1895774A (en) Signal shaping circuit
US2156659A (en) Amplifier device
US2256067A (en) Receiver selectivity control
US2068769A (en) Rectifier for wireless television reception
US2154327A (en) Signal amplifier
US2151747A (en) Receiving system
US1792961A (en) Electrical circuits for radioreceivers
US2595444A (en) Amplifier
US2125119A (en) Coupling transformer
US2004368A (en) Radio power supply system
US1671959A (en) Means for eliminating reactive coupling in radiocircuits
US2141412A (en) Detector for television
US2250090A (en) Arrangement for tuning high frequency oscillation circuits
US2072315A (en) Push-pull detector