New! View global litigation for patent families

US2096765A - Method and apparatus for burning fuel - Google Patents

Method and apparatus for burning fuel Download PDF

Info

Publication number
US2096765A
US2096765A US67678033A US2096765A US 2096765 A US2096765 A US 2096765A US 67678033 A US67678033 A US 67678033A US 2096765 A US2096765 A US 2096765A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
combustion
air
vortex
fuel
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Aatto P Saha
Original Assignee
Aatto P Saha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel

Description

Oct. 26, 1937. p 2,096,765

METHOD AND APPARATUS FOR BURNING FUEL Filed June 21, 1933 INVENTOR Aaiio 2 152122 ATTORN EYS Patented Oct. 26 193 7 UNITED STATES PATENT OFFICE Aatto P. Saba, New York, N. Y. Application June 21, 1933, Serial No. 676,780 4 Claims. '(cl. 11o-2a) My present invention is concerned with a method of and apparatus for effecting the combustion of fuels in suspension and it is more particularly concerned with an improved method of 5 burning comminuted fuel, such as pulverized coke,

mote not only substantially complete and perfect combustion but a high intensity of combustion and a high rate of heat transmission by radiation from the flame. In other words with my apparatus and method there is effected an increased release of heat per unit volume of the furnace or combustion chamber and a large portion of the total energy liberated is transmitted by radiation from the flame.

Another object is to provide a method and apparatus of this character which insures rapid ignition and stable combustion. I

Other objects are to provide an apparatus of simple, practical construction, dependable in operation, rugged and durable in use and capable of effecting substantial fuel economy due to efficiency of operation, and to provide an apparatus of this character which is of compact, inexpensive construction.

Broadly considered the method involves the formation of a free vortex of air, moving circumferentially with a tangential velocity component and progressing with both radial and axial velocity components and the delivery of fuel to the core of the vortex the surface of which is the most rapidly rotating part of the vortex, thereby efl'ect- 40 stream, in such a fashion that the solid particles are moved continuously through fresh portions of the air. The result is that substantially complete and perfect combustion maybe efiected in a combustion chamber of relatively small volume,

the burning fuel taking the form of a luminous flame having a comparatively high radiating power.

The method is carried out in a combustion chamber or furnace which may be considered as 5 a passage for air and products of combustion having walls which are surfaces of revolution and containing a continuous body of fluid passing through it in a form of a free vortex. In a free vortex motion, the fluid moves with velocities such 55 that the velocity of whirl or tangential (circumferential) component of absolute velocity varies inversely as the radial distance from the axis. By free vortex is meant any rotating body of fluid in which the tangential velocity varies inversely as the distance from the axis of rotation. Further discussion of vortices, which support this definition, may be found in Hydraulics" by A. H. Gibson, page 103, published by Van Nostrand, 1925, and A. S. M. E. Transactions, 1921, paper 1824: Present Trend of Turbine Development" by L. F. Moody.

If a fluid while moving as a free vortex moves in an axial direction it is a free spiral vortex. By a free spiral vortex is meant that species of a free vortex in which the moving fluid has an axial velocity component. Inasmuch as the absolute velocity of each portion of a free spiral vortex is the same, each concentric portion thereof will pursue a different spiral course. The spiral currents nearer the axis possess a larger tangential velocity component and a smaller axial velocity component, and the spiral air currents near the outside of the vortex possess a smaller tangential velocity component and a larger axial velocity component.

- A core is formed along the axis of the vortex, in which core the fluid is rotating with a constant angular velocity and with substantially no axial velocity. In the core, therefore, the tangential velocity component is directly proportional to the radial distance from the axis.

When the combustion chamber has walls which are surfacesv of revolution, it will be obvious that the air current in the core will be rotating with a tangential velocity which increases as the distance from the axis of the core but without a substantial axial movement through the combustion chamber. This tangential velocity of the core reaches a maximum at its periphery. The inner layer of the free vortex will have the same movement as the outer layer of the core and will in effect he the same. However, each succeeding outer layer of the free vortex will be moving'with a slower tangential velocity component and greater axial velocity component.

The fuel to be burned is delivered preferably into the core of the vortex. The fuel particles will travel radially outward through the core and into and through the air streams of the free spiral vortex. The centrifugal force will act continuously to move the particles into new regions of the spirally progressing air streams of thevortex.

It is evident that with luminous combustion, the speed of combustion is controlled by the rate for accelerating the reaction consists in a violent destruction of the separating layers of products of combustion and the equalization of the oxygen concentration near the particles by most rapid relative motion between the solid particles and Bases.

While the particles rapidly acquire the velocity of any air stream in which they find themselves, they, however may be diverted from the carrying stream by centrifugal force developed when the carrying air is moving in a curved path.

The fuel particles introduced into the core will move outwardly due to the centrifugal force until they reach the outer layer of the core and will then move into the air currents of the free vortex. Inasmuch as these currents have an axial velocity component the particles will begin their travel through the length of the combustion chamber. The centrifugal force acting on the fuel particles will move them outwardly through or combustion chambers for carrying out the method. The preferable form of the combustion chamber is such that the confining walls of the same are surfaces of revolution. But it is understood that a combustion chamber of polygonal cross-section, may be used because the main air stream lines will move in substantially spiral The invention may be more fully understood from the following description in connection with the accompanying drawing whereinz- Fig. l is a fragmentary longitudinal sectional view through a fuel mixing and combustion chamber embodying the invention, the view being somewhat diagrammatic in its showing of the means for forming the vortex in air and means for injecting fuel,

Figs. 2 and 8 are transverse sectional views on the lines 2-! and 3-4 respectively of Fig. 1,

Fig. 4 is a view similar to Fig. l but showing the application of the invention to a boiler,

Fig. 5 is a transverse sectional view on the line 5-5 of Fig. 4, and

0,090,705 I v i for fuel. The fuel is introduced through a volute casing il having a tangential fuel inlet II. The opening ll through which the fuel discharges into the combustion supporting air is formed at the end of a generally frusto-conical upward extension ii of the casing ll.

'I'hevolutecssingilwillimparttofuelparticles entering the inlet II the motion of a free vortex as they exitfroni the opening it.

For the sake of clarity I have omitted any showing of the apparatus for forcing liquid, gaseous or puiverulent fuel through the casing II and um have not shown the usual mechanism for producing a powerful blast of air through the inlet ii of the casing ll.

It will be apparent that as the fuel is introduced it tends to partake of the movement of the air in the core. If fuel is introduced through the casing II and ignited, the combustion proceeds from a the contacting boundary of the core and the annular air stream of the free vortex, and. as

, perature to ignite the same. Stable combustible Fig. 8 is a transverse sectional view on the line M of Fig. 4.

Referring first to the form of invention illustrated in Figs. 1 to 3 of the drawing, I have used the reference numeral II to designate a volute casing having a tangential air inlet ll through which the air is introduced into the casing. 1n-

iloat it into the combustion chamber.

gases make contact with the oxygen of the air and are burned. Due to the rotation of the core, the fuel particles will pass through the contacting boundary of the streams of the core and the free spiral vortex, and into the combustion-supporting air of the free vortex. The thorough combustion of these particles is supported as they progress radially and axially in their course through the free spiral vortex. Combustion is completed within the furnace by the time the particles reach the periphery of the free spiral vortex and the ash remaining is removed with the products of combustion.

Where pulverized coal is used it is introduced I with only a sufficient mount of carrying air to Thus the thermal capacity of the fuel cloud is reduced to a minimum and its ignition is accelerated. Under such conditions the pulverized coal is rapidly ignited as it reaches the burning zone and the burning coal particles move continuously into zones of fresh air as they whirl in a spiral path toward the outside of the vortex and up the fiue. In the firing of bituminous coal powder the combustion process is such that the powder is gasified just before it reaches the combustion zone.

Inthestructureillustrated,inl"igs.4to inclusive, the combustion occurs wholly within thechamberll whichinthisinstanceiss'hown encircled by a jacket 2i containing water to be converted into steam. Here the fuel is intro-' duced through a straight nozzle 22 coaxial with the cylindrical air inlet chamber 2. and projecting axially through this chamber into casing II.

wardlycurvingvanesllinthecasingservetodirect the air toward the center of the casing and to create a free vortex of air which progresses axially through the furnace or fiue It due to the pressure of air entering the inlet ii. The volute casing ll communicates at its top with the fiue II and at its bottom in axial alignment with the-fiue there is provided an inlet ll to forma free vortex withinthe coreof whichthe fuel injector nozzle 12 is disposed.

The air inlet casing in this instance is found with a circular series of spaced tangential vanes .24. A volutecasing ii at the top of the furnace is connected to an exhaust fan (not shown) to induce the entry of air into chamber 20, as well as to increase the absolute velocity of rotation. The vane arrangement causes the induced draft The fuel may be injected through the male '22 by any suitable means. Liquid fuel may be injected by an air atomizer or a mechanical atomizer. Pulverized coal may be carried through in a stream of air. Ignition takes place in the core and the combustion of the particles begins at the contacting boundary of the core and the annular air stream of the free vortex and the fuel particles actuatedLboth by centrifugal force and by the drag of the free vortex move through the combustion-supporting air in radially and axially progressing spirals until they are completely burned.

It will thus be seen that there is herein described apparatus in which the several features of this invention are embodied, and which apparatus in its action attains the various objects of the invention and is well suited to meet the requirements of practical use.

As many changes could be made in the details of the apparatus, and many apparently widely different embodiments of this invention could be made without departing from the scope thereof, it is intended that the forms shown in the accompanying drawing shall be interpreted as illustrative and not ina limiting sense.

Having thus described my invention, what I claim as new and desire to secure by Letters Patent is:

LAn apparatus for burning solid powdered fuel in suspension comprising in combination a combustion chamber having an interior surface of a transverse cross sectional shape to maintain a free spiral vortex therein and having an air inlet at one end thereof, means at said air inlet end of the combustion chamber for introducing air in the form of a free spiral vortex into the combustion chamber, the proportions of the combustion chamber in respect to said means for producing the vortex being such that the air is tion from said chamber.

maintained in a free spiral vortex within the combustion chamber, and a fuel inlet at one end of the combustion chamber for introducing the solid powdered fuel into the core of the vortex.

2. An apparatus for burning solid powdered fuel in suspension comprising in combination a substantially cylindrical combustion chamber having an air inlet at one end thereof, means at the air inlet end of the combustion chamber for introducing air in the form of a free spiral vortex into the combustion chamber, the proportions of the combustion chamber in respect to said means for producing the vortex being such that the air is maintained in a free spiral vortex within the combustion chamber, and a fuel inlet at one end of the combustion chamber for introducing the solid powdered fuel into the core of the vortex.

3. A method of effecting combustion of comminuted fuel in suspension, which includes the steps of creating and maintaining a free spiral vortex of combustion-supporting air, introducing the fuel into the core of the free spiral vortex of air, whereby ignition occurs at the common boundary of the core and the combustion-supporting air and burning continues as the fuel particles move in expanding spirals through the free vortex.

4. The combination with a cylindric combustion chamber having flaring ends, of means at one end of said chamber for admitting air tangentially thereto, means at said end for delivering solid powdered fuel axially into said chamber,

and a volute casing at the opposite end of said chamber for delivering the products of combus- AA'ITO P. SAI-IA.

US2096765A 1933-06-21 1933-06-21 Method and apparatus for burning fuel Expired - Lifetime US2096765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US2096765A US2096765A (en) 1933-06-21 1933-06-21 Method and apparatus for burning fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2096765A US2096765A (en) 1933-06-21 1933-06-21 Method and apparatus for burning fuel

Publications (1)

Publication Number Publication Date
US2096765A true US2096765A (en) 1937-10-26

Family

ID=24715972

Family Applications (1)

Application Number Title Priority Date Filing Date
US2096765A Expired - Lifetime US2096765A (en) 1933-06-21 1933-06-21 Method and apparatus for burning fuel

Country Status (1)

Country Link
US (1) US2096765A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473347A (en) * 1943-04-08 1949-06-14 Cleaver Brooks Co Air directing means in gun type burners
US2516063A (en) * 1948-08-19 1950-07-18 Gilbert & Barker Mfg Co Pressure atomizing oil burner with a built-in combustion chamber
US2523462A (en) * 1945-12-10 1950-09-26 Tecnica Ind Y Com Societdad An Tangential injector burner for pulverulent fuel and air mixture
US2539165A (en) * 1946-11-30 1951-01-23 Cyclotherm Corp Dispersible fuel burner having a reverse gas flow flame stabilizer
US2560074A (en) * 1948-12-21 1951-07-10 Lummus Co Method and apparatus for burning fuel
US2560076A (en) * 1949-06-14 1951-07-10 Lummus Co Method and apparatus for burning fuel
US2565879A (en) * 1947-03-28 1951-08-28 Persiro Mfg Corp Burner for combustion chambers
US2678615A (en) * 1949-12-20 1954-05-18 Rosenblad Corp Method for burning sticky, watercontaining liquid fuel
US2921542A (en) * 1956-06-05 1960-01-19 Babcock & Wilcox Co Fluid fuel burner
US2985585A (en) * 1958-08-07 1961-05-23 California Research Corp Coking process
DE1240215B (en) * 1956-09-15 1967-05-11 Steinmueller Gmbh L & C Method of burning staubfoermiger, caking coal with gas in a vortex melting chamber
FR2452520A1 (en) * 1979-03-29 1980-10-24 Rheinische Braunkohlenw Ag Process for continuous injection of lignite fine grain in the crucible of a blast furnace
US4924784A (en) * 1984-02-27 1990-05-15 International Coal Refining Company Firing of pulverized solvent refined coal
US5236350A (en) * 1991-11-15 1993-08-17 Maxon Corporation Cyclonic combuster nozzle assembly
US6092518A (en) * 1996-10-09 2000-07-25 Sourdillon Cooking appliance, gas burner for this appliance and method for mounting such a gas burner on such appliance
US20080050687A1 (en) * 2006-08-25 2008-02-28 Tsen-Tung Wu Gas burner assembly
US20100192906A1 (en) * 2006-10-24 2010-08-05 David Littlewood Johnson Induction and fuel delivery system for piston engine
US20110104623A1 (en) * 2008-07-04 2011-05-05 Ammonia Casale S.A. Process and a Reactor for Oxidation of a Hydrocarbon

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473347A (en) * 1943-04-08 1949-06-14 Cleaver Brooks Co Air directing means in gun type burners
US2523462A (en) * 1945-12-10 1950-09-26 Tecnica Ind Y Com Societdad An Tangential injector burner for pulverulent fuel and air mixture
US2539165A (en) * 1946-11-30 1951-01-23 Cyclotherm Corp Dispersible fuel burner having a reverse gas flow flame stabilizer
US2565879A (en) * 1947-03-28 1951-08-28 Persiro Mfg Corp Burner for combustion chambers
US2516063A (en) * 1948-08-19 1950-07-18 Gilbert & Barker Mfg Co Pressure atomizing oil burner with a built-in combustion chamber
US2560074A (en) * 1948-12-21 1951-07-10 Lummus Co Method and apparatus for burning fuel
US2560076A (en) * 1949-06-14 1951-07-10 Lummus Co Method and apparatus for burning fuel
US2678615A (en) * 1949-12-20 1954-05-18 Rosenblad Corp Method for burning sticky, watercontaining liquid fuel
US2921542A (en) * 1956-06-05 1960-01-19 Babcock & Wilcox Co Fluid fuel burner
DE1240215B (en) * 1956-09-15 1967-05-11 Steinmueller Gmbh L & C Method of burning staubfoermiger, caking coal with gas in a vortex melting chamber
US2985585A (en) * 1958-08-07 1961-05-23 California Research Corp Coking process
FR2452520A1 (en) * 1979-03-29 1980-10-24 Rheinische Braunkohlenw Ag Process for continuous injection of lignite fine grain in the crucible of a blast furnace
US4924784A (en) * 1984-02-27 1990-05-15 International Coal Refining Company Firing of pulverized solvent refined coal
US5236350A (en) * 1991-11-15 1993-08-17 Maxon Corporation Cyclonic combuster nozzle assembly
US5344308A (en) * 1991-11-15 1994-09-06 Maxon Corporation Combustion noise damper for burner
US6092518A (en) * 1996-10-09 2000-07-25 Sourdillon Cooking appliance, gas burner for this appliance and method for mounting such a gas burner on such appliance
US20080050687A1 (en) * 2006-08-25 2008-02-28 Tsen-Tung Wu Gas burner assembly
US20100192906A1 (en) * 2006-10-24 2010-08-05 David Littlewood Johnson Induction and fuel delivery system for piston engine
US8627799B2 (en) * 2006-10-24 2014-01-14 David Littlewood Johnson Induction and fuel delivery system for piston engine
US20110104623A1 (en) * 2008-07-04 2011-05-05 Ammonia Casale S.A. Process and a Reactor for Oxidation of a Hydrocarbon
US9580313B2 (en) 2008-07-04 2017-02-28 Casale Sa Process and a reactor for oxidation of a hydrocarbon

Similar Documents

Publication Publication Date Title
US3376098A (en) Two-chamber burner and process
US3567399A (en) Waste combustion afterburner
US3557551A (en) Gas turbine engine with rotating combustion chamber
US3727401A (en) Rotary turbine engine
US2326072A (en) Gas turbine plant
US3228451A (en) Method of burning fuels
US4989549A (en) Ultra-low NOx combustion apparatus
US2515845A (en) Flame pocket fluid fuel burner
US20120097648A1 (en) Inductively Coupled Plasma Arc Device
US4348170A (en) Dual register, split stream burner assembly with divider cone
US3541787A (en) Self-compressed continuous circular internal combustion engine
US20070202452A1 (en) Direct combustion steam generator
US3738792A (en) Industrial burner
US2595505A (en) Coaxial combustion products generator, turbine, and compressor
US3749548A (en) High intensity burner
US4580504A (en) Method and apparatus for the recovery of hydrocarbons
US2904417A (en) Process for the production of synthesis
US2602292A (en) Fuel-air mixing device
US4996838A (en) Annular vortex slinger combustor
US3124086A (en) Slurry firex cyclone furnace
US2806517A (en) Oil atomizing double vortex burner
US2398654A (en) Combustion burner
US2488911A (en) Combustion apparatus for use with turbines
US2569710A (en) Fly ash precipitator
US4157889A (en) Burner for powdered fuel