US2091580A - Flying machine - Google Patents

Flying machine Download PDF

Info

Publication number
US2091580A
US2091580A US723517A US72351734A US2091580A US 2091580 A US2091580 A US 2091580A US 723517 A US723517 A US 723517A US 72351734 A US72351734 A US 72351734A US 2091580 A US2091580 A US 2091580A
Authority
US
United States
Prior art keywords
airship
ship
ground
hull
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US723517A
Inventor
Nicholas D Belinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US723517A priority Critical patent/US2091580A/en
Application granted granted Critical
Publication of US2091580A publication Critical patent/US2091580A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft

Definitions

  • This invention relates to that type of flying machine in which a major part of the lifting power necessary for the suspension in the air is supplied by the lighter-than-air gas, contained in the envelope of this flying machine, and the other part is generated aerodynamically during the motion of this envelope through the air under engine power.
  • the main purpose of this invention therefore, is to obtain a more rational and economical use of this engine power, by making it carry load, in addition to serving as the means of propulsion.
  • Another object of this invention is to produce an airship, autonomous in its operation, that isindependent of the special landing facilities and multitudinous ground-crews required by ordinary airships, which would possess superior strength of body, have better utilization of the interior spaces of the ship and better operating qualities.
  • Fig. 1 represents a side elevation of this flying machine, containing all the improvements within its structure, described and shown on all the remaining figures of this drawing.
  • Fig. 2 represents a plan view.
  • Fig. 3 shows a front view.
  • Fig. 4 shows a front view of this flying machine, in which for the floats, shown on a previous figure is substituted a landing ,gear, and with ailerons folded for parking.
  • Fig. 5 represents a front elevational view of the machine.
  • the envelope of this flying machine has the shape of an airfoil, or a narrow section of an aeroplane wing, with its upper surface formed to have a proper camber, or curvature, and with the lower surface made practically flat as shown in Figures 3 and 4 so as to develope the lifting force when this envelope attains an air speed.
  • This envelope is rounded oif on all sides, as may be seen in the front elevation, and it carries all the necessary apparatus and auxiliaries in order to make flight and maneuvering possible.
  • denote the air propellers, 22 the folding ailerons, 23 the folding vertical rudders and 24 the elevator or horizontal rudder disposed behind the cuneiform end 32 of the hull.
  • At 25 is located a control cabin. The entire ship rests on the landing gear which may be composed of floats, 26, or wheels 21, or it may have a. combination of both.
  • the front propellers 20 are mounted on the ailerons 22, and the rear propellers on the streamlined nacelles 28, supported from the airships envelope by the brackets.
  • These ailerons 22 are devised with the main object of improving the airships maneuvering qualities, which is important especially when the ship is flying close to the ground.
  • the lower part of the envelope 30 is made preferably more rigid, and has stronger covering than the upper part 3
  • the ailerons and vertical rudders with their stabilizing fins were made folding so as to reduce the space occupied by the airship on the ground and also to reduce to the least possible minimum the pressure of the wind blowing from the side, when the ship is parked on the ground, and so to minimize the danger of it being swept away.
  • the envelope having an airfoil shape, developes the lift in motion through the air.
  • the lift however, in this case appears only as a gratuitous effect of the speed, or its by-product, which, not taking into account the ailerons, does not absorb by itself any considerable amount of engine power, as long as the angle of attack is maintained, near zero.
  • the envelope of the airship being carefully streamlined, approximates the body of least resistance in any case, regardless of whether it is as commonly cigar shaped, or has an airfoil form.
  • the power requirements for a given speed therefore are substantially the same, and consequently the increase in the lifting power represents a net gain, derived merely from the change in the shape of the envelope. Since the gain in lift is very considerable, it appears that the operation of the airship of common shape is quite wasteful from the point of View of the proper use of the engine power.
  • a part of this gain could be used in covering the extra weight of the additional apparatus, like ailerons and landing gear, and also in the strengthening of the structure of the envelope, the balance remaining as an increase in the payload carried by the ship.
  • the oval shape of the airship with its flat bottom has further peculiar qualities, manifest when the air currents from the side sweep across the airship and tend to blow it oif its parking place.
  • the currents entering the under side of the ship at 32 in the narrow space between the ground and the bottom of it, acquire greater velocity, which, according to Bernoullis law, is accompanied by a fall in air pressure.
  • a partial vacuum is therefore created in this space, which tends to hold the ship to its place. Since the air pressure varies oppositely as the wind velocity, it follows that the stronger the wind blows, the higher the vacuum and the more firmly the ship will be held to the ground.
  • Vacuum anchorage is therefore of great importance to the safety of the ship, as it enables it to maneuver in the face of these winds under its own power, without the assistance of the ground crew.
  • the wheels of the landing gear are supplied with auxiliary motors.
  • the airfoil shape in addition to increasing the useful lift, also increases the safety of the ship on the ground, on account of the vacuum anchorage, and in the air allows the ship to glide. Such a shape further improves the airships maneuvering qualities. Further advantages of this shape lie also in the fact that the ship, once in the air, will be able to fly even if a considerable amount of the lifting gas is lost, as long as the engines are able to maintain the normal speed, in which case most of the weight of the ship will be supported aerodynamically.
  • An airship hull having: a bottom flat substantially throughout its entire extent; lateral cross sections with contours changing their tangential directions continuously and gradually at all points; and wing section contoured vertical longitudinal cross sections, whereby a transverse air flow between thev ground and the airship resting thereon produces an air pressure reduction beneath, the hull.
  • An airship hull having: a bottom flat substantially throughout its entire extent; lateral cross sections wider than high with contours changing their tangential directions continuously and gradually at all points; and wing section contoured vertical longitudinal cross sections, whereby a transverse air flow between the ground and the airship resting thereon'produces an air pressure reduction beneath the hull.
  • An airship hull having: a bottom-flat substantially throughout its entire extent, lateral cross sections wider than high with contours changing their tangential directions continuously and gradually at all points; and a wing section contoured vertical longitudinal cross section, whereby a transverse air flow between the ground and the airship resting thereon produces an air pressure reduction beneath the hull.
  • An airship hull having: a bottom flat substantially throughout its entire extent; a downwardly inclined rounded front portion; a cuneiform end portion with a horizontal rear edge; and lateral cross sections well rounded at all their points, whereby a transverse air flow be tween the ground and the airship resting thereon produces an air pressure reduction beneath the hull.
  • An airship hull having: a bottom flat substantially throughout its entire extent; a bent down rounded front portion; a cuneiform end portion with a rear horizontal edge; and a middle portion wider than high and well rounded on all sides, whereby a transverse air flow between the ground and the airship resting thereon produces an air pressure reduction beneath the hull.
  • a pronouncedly oblong airship hull having: a bottom fiat substantially throughout its en- ,tire extent; a bent down rounded front portion;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Description

Aug. 31, 1937. N. D. BELINSKI 2,091,530
FLYING MACHINE Filed May 2, 1954 Patented Aug. 31, 1937 UNITED STATES PATENT OFFME 6 Claims.
This invention relates to that type of flying machine in which a major part of the lifting power necessary for the suspension in the air is supplied by the lighter-than-air gas, contained in the envelope of this flying machine, and the other part is generated aerodynamically during the motion of this envelope through the air under engine power.
The main purpose of this invention therefore, is to obtain a more rational and economical use of this engine power, by making it carry load, in addition to serving as the means of propulsion.
Another object of this invention is to produce an airship, autonomous in its operation, that isindependent of the special landing facilities and multitudinous ground-crews required by ordinary airships, which would possess superior strength of body, have better utilization of the interior spaces of the ship and better operating qualities.
With these and other objects in view, the arrangement consists of many novel features, as hereinafter described, and shown on the accompanying drawing, on which:
Fig. 1 represents a side elevation of this flying machine, containing all the improvements within its structure, described and shown on all the remaining figures of this drawing.
Fig. 2 represents a plan view.
Fig. 3 shows a front view.
Fig. 4 shows a front view of this flying machine, in which for the floats, shown on a previous figure is substituted a landing ,gear, and with ailerons folded for parking.
Fig. 5 represents a front elevational view of the machine.
As may be seen from the drawing, the envelope of this flying machine has the shape of an airfoil, or a narrow section of an aeroplane wing, with its upper surface formed to have a proper camber, or curvature, and with the lower surface made practically flat as shown in Figures 3 and 4 so as to develope the lifting force when this envelope attains an air speed. This envelope is rounded oif on all sides, as may be seen in the front elevation, and it carries all the necessary apparatus and auxiliaries in order to make flight and maneuvering possible.
Thus numbers 20 and 2| denote the air propellers, 22 the folding ailerons, 23 the folding vertical rudders and 24 the elevator or horizontal rudder disposed behind the cuneiform end 32 of the hull. At 25 is located a control cabin. The entire ship rests on the landing gear which may be composed of floats, 26, or wheels 21, or it may have a. combination of both.
The front propellers 20 are mounted on the ailerons 22, and the rear propellers on the streamlined nacelles 28, supported from the airships envelope by the brackets. These ailerons 22 are devised with the main object of improving the airships maneuvering qualities, which is important especially when the ship is flying close to the ground.
The lower part of the envelope 30 is made preferably more rigid, and has stronger covering than the upper part 3|.
The ailerons and vertical rudders with their stabilizing fins were made folding so as to reduce the space occupied by the airship on the ground and also to reduce to the least possible minimum the pressure of the wind blowing from the side, when the ship is parked on the ground, and so to minimize the danger of it being swept away.
As was mentioned already, the envelope, having an airfoil shape, developes the lift in motion through the air. The lift however, in this case appears only as a gratuitous effect of the speed, or its by-product, which, not taking into account the ailerons, does not absorb by itself any considerable amount of engine power, as long as the angle of attack is maintained, near zero. The envelope of the airship, being carefully streamlined, approximates the body of least resistance in any case, regardless of whether it is as commonly cigar shaped, or has an airfoil form. The power requirements for a given speed therefore are substantially the same, and consequently the increase in the lifting power represents a net gain, derived merely from the change in the shape of the envelope. Since the gain in lift is very considerable, it appears that the operation of the airship of common shape is quite wasteful from the point of View of the proper use of the engine power.
A part of this gain could be used in covering the extra weight of the additional apparatus, like ailerons and landing gear, and also in the strengthening of the structure of the envelope, the balance remaining as an increase in the payload carried by the ship.
The oval shape of the airship with its flat bottom has further peculiar qualities, manifest when the air currents from the side sweep across the airship and tend to blow it oif its parking place. As illustrated on Fig. 5, the currents entering the under side of the ship at 32, in the narrow space between the ground and the bottom of it, acquire greater velocity, which, according to Bernoullis law, is accompanied by a fall in air pressure. A partial vacuum is therefore created in this space, which tends to hold the ship to its place. Since the air pressure varies oppositely as the wind velocity, it follows that the stronger the wind blows, the higher the vacuum and the more firmly the ship will be held to the ground.
This Vacuum anchorage is therefore of great importance to the safety of the ship, as it enables it to maneuver in the face of these winds under its own power, without the assistance of the ground crew. In order to make this maneuvering 0 easier, the wheels of the landing gear are supplied with auxiliary motors.
It is however obvious that during the take-off this vacuum force should be destroyed, in order to enable the ship to rise. This could be accomplished by giving the airship an initial angle of attack. In this case the air, rushing under the ship into the converging space a, produces instead of a vacuum, an area of higher pressure, providing that this angle is of sufficient magnitude. At the same time use is made of the ailerons by bringing them to the maximum angle of attack, to enable the nose of the ship to rise.
The airfoil shape, in addition to increasing the useful lift, also increases the safety of the ship on the ground, on account of the vacuum anchorage, and in the air allows the ship to glide. Such a shape further improves the airships maneuvering qualities. Further advantages of this shape lie also in the fact that the ship, once in the air, will be able to fly even if a considerable amount of the lifting gas is lost, as long as the engines are able to maintain the normal speed, in which case most of the weight of the ship will be supported aerodynamically. In
this way, through the multiplicity of means, the safety of operation of the airship is increased.
Having thus described my invention, I claim as novel features and desire to secure my rights by Letters Patent:
'1. An airship hull having: a bottom flat substantially throughout its entire extent; lateral cross sections with contours changing their tangential directions continuously and gradually at all points; and wing section contoured vertical longitudinal cross sections, whereby a transverse air flow between thev ground and the airship resting thereon produces an air pressure reduction beneath, the hull.
2. An airship hull having: a bottom flat substantially throughout its entire extent; lateral cross sections wider than high with contours changing their tangential directions continuously and gradually at all points; and wing section contoured vertical longitudinal cross sections, whereby a transverse air flow between the ground and the airship resting thereon'produces an air pressure reduction beneath the hull.
3. An airship hull having: a bottom-flat substantially throughout its entire extent, lateral cross sections wider than high with contours changing their tangential directions continuously and gradually at all points; and a wing section contoured vertical longitudinal cross section, whereby a transverse air flow between the ground and the airship resting thereon produces an air pressure reduction beneath the hull.
4. An airship hull having: a bottom flat substantially throughout its entire extent; a downwardly inclined rounded front portion; a cuneiform end portion with a horizontal rear edge; and lateral cross sections well rounded at all their points, whereby a transverse air flow be tween the ground and the airship resting thereon produces an air pressure reduction beneath the hull.
5. An airship hull having: a bottom flat substantially throughout its entire extent; a bent down rounded front portion; a cuneiform end portion with a rear horizontal edge; and a middle portion wider than high and well rounded on all sides, whereby a transverse air flow between the ground and the airship resting thereon produces an air pressure reduction beneath the hull.
6. A pronouncedly oblong airship hull having: a bottom fiat substantially throughout its en- ,tire extent; a bent down rounded front portion;
a cuneiform end portion with a horizontal tr'ai1- ing edge; and a middle portion wider 'thanhigh' and well rounded over its entire surfacefwhereby a transverse air flow between the ground andthe airship resting thereon produces an air pressure reduction beneath the hull.
NICHOLAS D. BELINSKI. 1
US723517A 1934-05-02 1934-05-02 Flying machine Expired - Lifetime US2091580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US723517A US2091580A (en) 1934-05-02 1934-05-02 Flying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US723517A US2091580A (en) 1934-05-02 1934-05-02 Flying machine

Publications (1)

Publication Number Publication Date
US2091580A true US2091580A (en) 1937-08-31

Family

ID=24906599

Family Applications (1)

Application Number Title Priority Date Filing Date
US723517A Expired - Lifetime US2091580A (en) 1934-05-02 1934-05-02 Flying machine

Country Status (1)

Country Link
US (1) US2091580A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2778585A (en) * 1955-01-03 1957-01-22 Goodyear Aircraft Corp Dynamic lift airship
US4052025A (en) * 1975-04-03 1977-10-04 Clark Frank M Semi-buoyant aircraft
WO1997015492A2 (en) * 1995-10-24 1997-05-01 Bothe Hans Jurgen Hybrid aircraft
US6880783B2 (en) * 2000-06-05 2005-04-19 Jeffery Roger Munk Hybrid air vehicle having air cushion landing gear

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2778585A (en) * 1955-01-03 1957-01-22 Goodyear Aircraft Corp Dynamic lift airship
US4052025A (en) * 1975-04-03 1977-10-04 Clark Frank M Semi-buoyant aircraft
WO1997015492A2 (en) * 1995-10-24 1997-05-01 Bothe Hans Jurgen Hybrid aircraft
WO1997015492A3 (en) * 1995-10-24 1997-05-29 Bothe Hans Jurgen Hybrid aircraft
US5823468A (en) * 1995-10-24 1998-10-20 Bothe; Hans-Jurgen Hybrid aircraft
US6880783B2 (en) * 2000-06-05 2005-04-19 Jeffery Roger Munk Hybrid air vehicle having air cushion landing gear

Similar Documents

Publication Publication Date Title
US3761041A (en) Lifting body aircraft
US3185411A (en) Multiple celled airship
US3221831A (en) Winged surface effect vehicles
US3614032A (en) Aircraft
US2091580A (en) Flying machine
US3572614A (en) Aircraft
US3025027A (en) Vertical airfoil
US1516295A (en) Aircraft
US1855695A (en) Aircraft
US1761444A (en) Aircraft construction
US1772586A (en) Aircraft
US1890553A (en) Airplane
US2942810A (en) Hydrofoil craft
US2623720A (en) Aircraft construction
US1948629A (en) Airplane
US1609978A (en) Counter propeller for air propeller-driven craft
US3253809A (en) Ultra low speed aircraft
US2412285A (en) Aircraft transport plane
US1775604A (en) Traffic airship of the rigid type
US1848578A (en) scroggs
US1413258A (en) Flying machine
US1603384A (en) Flying machine
US2730312A (en) Discoid-shaped aircraft
US1884599A (en) Aircraft having rotative wings
US3680814A (en) Aircraft