US2088478A - Split-cycle timing device - Google Patents

Split-cycle timing device Download PDF

Info

Publication number
US2088478A
US2088478A US750304A US75030434A US2088478A US 2088478 A US2088478 A US 2088478A US 750304 A US750304 A US 750304A US 75030434 A US75030434 A US 75030434A US 2088478 A US2088478 A US 2088478A
Authority
US
United States
Prior art keywords
glow
index
timing device
potentiometer
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US750304A
Inventor
Joseph F Kovalsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric and Manufacturing Co filed Critical Westinghouse Electric and Manufacturing Co
Priority to US750304A priority Critical patent/US2088478A/en
Application granted granted Critical
Publication of US2088478A publication Critical patent/US2088478A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F13/00Apparatus for measuring unknown time intervals by means not provided for in groups G04F5/00 - G04F10/00
    • G04F13/02Apparatus for measuring unknown time intervals by means not provided for in groups G04F5/00 - G04F10/00 using optical means

Definitions

  • My invention relates to electric discharge apparatus, and, in one aspect, to such apparatus for measuring time intervals of the order of 1/60 of a second within accuracy limits of the order of 5 1/1200 of a second.
  • my invention is particularly applicable to the measurement of the time of response of high-speed electrical apparatus, such as regulator elements, protective relays and circuit breakers.
  • my invention embraces novel methods and apparatus for electrically storing a. measured indication and afterward utilizing such stored indication for electrical controlor other purposes.
  • my invention for the measurement of time intervals
  • recent development in high-speed regulators and in protective apparatus for transmission circuits have led to the introduction of relay elements which operate in a time interval of the order of 1 or 2 cycles of a 60 cycle supply, and of contactors which operate in a time interval of the order of 2 cycles.
  • the performance of such apparatus may be satisfactorily recorded by means of an oscillograph, but the cost of films and of the oscillograph itself, as well as the time and care necessary to obtain comparative results render the use of this instrument objectionable for such purposes.
  • Fig. 1 is a diagrammatic view of the control circuits used in one embodiment of my invention.
  • Fig. 2 is a diagrammatic view illustrating the optical system of a timing device embodying my invention.
  • Fig. 3 is a time-current curve showing the sequence of discharge of a pair of glow tubes employed in the practice of my invention.
  • a line switch I is provided for controlling the connection of a two-pole split-phase synchronous motor 2 and a rectifier transformer 3 to a suitable 6O cycle source (not shown).
  • An external condenser 4 is provided for producing quadrature phase energization of the motor 2, and the latter is provided with a suitable induction starting winding in accordance with the usual practice.
  • the rectifier transformer 3 is provided with a centrally-tapped plate winding 5, connected to the plates of a full-wave hot-cathode rectifier l, and with a filament winding 6 connected to the cathode of the rectifier l in the usual manner.
  • a filter 9, comprising a shunt condenser I l and a series reactor I3 is provided for reducing the harmonics in the output of the rectifier 1 and transformer 5 in accordance with the usual practice. Itwill be understood that the specific filter shown is illustrative only, and that the invention may be practiced with-any of a variety of such devices known in the art.
  • a potentiometer I5 comprising a pair of adjustably-tapped resistors ll connected in parallel to each other and in series to a third resistor I9, is connected to the output terminals of the filter 9.
  • the potentiometer l5 normally draws a load current which assists in reducing the ripple in the direct current voltage in a manner well understood in the art.
  • and 22 are connected to the adjustable taps of the potentiometer IS.
  • is connected in parallel to a circuit which includes a glow tube 23, a resistor 25 and one pole of a high-speed two-pole manually-operated switch 21.
  • the condenser 22 is connected in parallel to a similar circuit which includes. a glow tube 24,a resistor 26 and the contacts of a relay 30, under test.
  • the energizing circuit for the relay 30 includes the remaining pole of the switch 21 and a source (not shown) suitable for energizing the relay under test.
  • the glow-tubes 23 and 24 are preferably of the two-electrode gas-filled type, having the usual charateristic of becoming conducting at a predetermined value of voltage, and remaining conducting after their initial impedance has been broken down, until a zero value of current occurs.
  • the resistors 25 and 26 serve to limit the current which can flow from the corresponding condenser 2
  • the potentiometer l5 supplies a maximum voltage considerably above the break-down voltage of the glow-tubes 23 and 24.
  • the glow tubes 23 and 24 are arranged to illuminate an inner dial 3
  • the entire apparatus is preferably enclosed in an opaque casing (not shown) having windows for viewing the illuminated portions of the dials 3
  • An opaque stationary screen 34 is provided for preventing any crossillumination of the dials 3
  • the operation of the above-described apparatus may be set forth as follows:' The switch is initially closed thereby energizing the transformer 3 and starting the synchronous motor 2. When the cathode of rectifier 1 becomes sufficiently heated, rectified current is supplied through the filter 9 to the potentiometer l5, and the condensers 2
  • the switch 21 is closed, thereby causing the closure of the relay 30. If the adjustments of potentiometer it: are such that the voltages applied tothe glow tubes 23 and 24 exceed their breakdown values, the glow-tubes 23 and M break down, thereby discharging the condensers 2i.
  • the glow tubes 23 and 24 periodically break down at frequencies determined by the positions of the corresponding taps of the potentiometer l5.
  • a stroboscopic effect may be observed when the frequency of the glow tube circuit being adjusted approaches 30 cycles per second.
  • one flash of the glow tube occurs substantially at each revolution of the disc 33, and the corresponding dial 3
  • the potentiometer taps are adjusted until both dials 3
  • the switch 2'! is reclosed.
  • the switch 21 breaks down substantially instantaneously, and a point on the inner dial 3
  • the glow tube 24 breaks down and a portion of the outer dial 32 is similarly illuminated and appears station ary.
  • the time which elapsed between the initial breakdowns of the glow tubes 23 and 24 appears as the diiierence of readings of the dials 3
  • Fig. 3 illustrate" the character of the successive discharges in glow tubes 23 and 2 1.
  • the current impulses through the tube 23 are denoted by the reference character 23', and those through the tube 2d are similarly denoted by the reference character 24'.
  • the impulses 23' and 24' be of short time duration. This requires that the resistors 25 and 25 be of comparatively low value, consistent with the safety of condensers 2i.
  • an optical system cornprising an index and a pair di electric illuminat ing devices capable of producing light pulses of short time duration in response to predetermined condition of electrical energization, said. illuminating devices being arranged in optical paths with said index, timing means for causing said paths to sweep said index, initiating means i for producing said predetermined condition in said illuminating devices successively with a time diiierence dependent upon the magnitude of the time interval to be measured, and electric oscillating means effective upon operation of said ini tiating means to periodically energize said illu minating devices to said predetermined condition of energization, at the same frequency, with a phase difference corresponding to said time difference, whereby said time interval is translated to a distance interval between repeatedly illuminated portions of said index.
  • an optical system comprising an index and a pair of electric discharge devices capable of producing successive light pulses when energized by a periodically recurring electrical condition, said discharge devices being arranged inoptical paths with said index, timing means for causing said paths to sweep said index cyclically at a predetermined frequency, energizing circuits for said discharge devices ineluding individual oscillator means effective to produce periodically recurring electrical conditions of said predetermined frequency in said discharge devices, and means for initiating operation of said energizing circuits successively with a time difference dependent upon the time interval to be measured, whereby said time interval is translated to a distance interval between repeatedly illuminated portions oi said index.
  • an optical system comprising a rotary index and a pair of electric discharge devices capable of producing successive light pulses when energized by a periodically recurring electrical condition, said discharge devices bclng arranged to illuminate portions of said index, timing means for rotating said index at a predetermined frequenc energizing circuits for said discharge devices including individual electronic oscillator means effective to produce periodically recurring electrical conditions of said predetermined frequency in said discharge devices, and means for initiating operation of said energizing circuits successively with a time dii- 5.
  • an optical system comprising a rotary index and a pair of glow discharge devices arranged to illuminate portions of said index, timing.
  • direct-current energizing circuits for said discharge devices including series resistance elements and shunt capacitance elements effective to produce periodically recurring discharges of said predetermined frequency in said discharge devices, and means for closing said energizing circuits successively with a time difierence dependent upon the time interval to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

y 27, 1937- J. F. KOVALSKY 2,088,478
SPLIT-CYCLE TIMING DEVICE Filed Oct. 27, 1954 Current I v V l l .4 .6 l I a w 2 4 6 .a a0 a .4 .6 .a
INVENTOR AT EY Wine in Cycles.
Patented July 27, 1937 UNITED STATES PATENT OFFICE SPLIT -CYCLE TIMING DEVICE of Pennsylvania Application October 27, 1934, Serial No. 750,304
Claims.
- My invention relates to electric discharge apparatus, and, in one aspect, to such apparatus for measuring time intervals of the order of 1/60 of a second within accuracy limits of the order of 5 1/1200 of a second. For such purposes, my invention is particularly applicable to the measurement of the time of response of high-speed electrical apparatus, such as regulator elements, protective relays and circuit breakers.
In its more general aspects, my invention embraces novel methods and apparatus for electrically storing a. measured indication and afterward utilizing such stored indication for electrical controlor other purposes. In connection with the application of my invention for the measurement of time intervals, recent development in high-speed regulators and in protective apparatus for transmission circuits have led to the introduction of relay elements which operate in a time interval of the order of 1 or 2 cycles of a 60 cycle supply, and of contactors which operate in a time interval of the order of 2 cycles. The performance of such apparatus may be satisfactorily recorded by means of an oscillograph, but the cost of films and of the oscillograph itself, as well as the time and care necessary to obtain comparative results render the use of this instrument objectionable for such purposes.
It is an object of my invention to provide a simple direct-reading instrument which will give a numerical indication of the time values sought,
Fig. 1 is a diagrammatic view of the control circuits used in one embodiment of my invention. a
Fig. 2 is a diagrammatic view illustrating the optical system of a timing device embodying my invention.
Fig. 3 is a time-current curve showing the sequence of discharge of a pair of glow tubes employed in the practice of my invention.
Referring to Fig. 1 in detail, a line switch I is provided for controlling the connection of a two-pole split-phase synchronous motor 2 and a rectifier transformer 3 to a suitable 6O cycle source (not shown). An external condenser 4 is provided for producing quadrature phase energization of the motor 2, and the latter is provided with a suitable induction starting winding in accordance with the usual practice.
The rectifier transformer 3 is provided with a centrally-tapped plate winding 5, connected to the plates of a full-wave hot-cathode rectifier l, and with a filament winding 6 connected to the cathode of the rectifier l in the usual manner.
A filter 9, comprising a shunt condenser I l and a series reactor I3 is provided for reducing the harmonics in the output of the rectifier 1 and transformer 5 in accordance with the usual practice. Itwill be understood that the specific filter shown is illustrative only, and that the invention may be practiced with-any of a variety of such devices known in the art.
A potentiometer I5, comprising a pair of adjustably-tapped resistors ll connected in parallel to each other and in series to a third resistor I9, is connected to the output terminals of the filter 9. The potentiometer l5 normally draws a load current which assists in reducing the ripple in the direct current voltage in a manner well understood in the art.
A pair of condensers 2| and 22 are connected to the adjustable taps of the potentiometer IS. The condenser 2| is connected in parallel to a circuit which includes a glow tube 23, a resistor 25 and one pole of a high-speed two-pole manually-operated switch 21. The condenser 22 is connected in parallel to a similar circuit which includes. a glow tube 24,a resistor 26 and the contacts of a relay 30, under test. The energizing circuit for the relay 30 includes the remaining pole of the switch 21 and a source (not shown) suitable for energizing the relay under test.
The glow- tubes 23 and 24 are preferably of the two-electrode gas-filled type, having the usual charateristic of becoming conducting at a predetermined value of voltage, and remaining conducting after their initial impedance has been broken down, until a zero value of current occurs. The resistors 25 and 26 serve to limit the current which can flow from the corresponding condenser 2| or 22 when the associated glow tube 23 or 24, respectively, is in conducting condition. The potentiometer l5 supplies a maximum voltage considerably above the break-down voltage of the glow- tubes 23 and 24.
Referring to I-ig. 2, the glow tubes 23 and 24 are arranged to illuminate an inner dial 3| and an outer dial 32, respectively, on a disc 33 driven by the synchronous motor 2. The entire apparatus is preferably enclosed in an opaque casing (not shown) having windows for viewing the illuminated portions of the dials 3| and 32. An opaque stationary screen 34 is provided for preventing any crossillumination of the dials 3| and 32 by the glow tubes 24 and 23, respectively.
The operation of the above-described apparatus may be set forth as follows:' The switch is initially closed thereby energizing the transformer 3 and starting the synchronous motor 2. When the cathode of rectifier 1 becomes sufficiently heated, rectified current is supplied through the filter 9 to the potentiometer l5, and the condensers 2| and 22 become charged to voltages determined by the positions of the corresponding taps of potentiometer It.
To initially adjust the apparatus, the switch 21 is closed, thereby causing the closure of the relay 30. If the adjustments of potentiometer it: are such that the voltages applied tothe glow tubes 23 and 24 exceed their breakdown values, the glow-tubes 23 and M break down, thereby discharging the condensers 2i.
However, as soon as one of the condensers M is completely discharged, the voltage applied to the corresponding glow tube 33 or it becomes zero, and the initial impedance of the glow tube is reestablished thereby interrupting the condenser discharge current. The deenergized c0ndenser 2| accordingly re-charges exponentially at a rate determined by the resistances of the various paths through the potentiometer Hi. When the voltage of the condenser 2| again equals the break-down voltage of the corresponding glow tube, the latter again breaks down and the cycle repeats. If the voltage initially applied to either condenser 2| is insufficient to cause breakdown of the corresponding glow tube 23 or 24, this fact will be evident from a lack of illumination on the corresponding dial 3| or 32. The corre sponding tap of the potentiometer I5 is raised to a higher voltage position until breakdown occurs.
The glow tubes 23 and 24 periodically break down at frequencies determined by the positions of the corresponding taps of the potentiometer l5. By varying the positions of the potentiometer taps, a stroboscopic effect may be observed when the frequency of the glow tube circuit being adjusted approaches 30 cycles per second. Under these conditions, one flash of the glow tube occurs substantially at each revolution of the disc 33, and the corresponding dial 3| or 32 appears to be slowly rotating. The potentiometer taps are adjusted until both dials 3| and 32 appear to be stationary. When this adjustment is made, the switch 21 is opened, and a short time interval allowed to elapse in order to permit the condensers 2| to become fully charged.
To measure the time of operation of'the relay 30, the switch 2'! is reclosed. Upon closure oi"; the switch 21, the glow tube 23 breaks down substantially instantaneously, and a point on the inner dial 3| is illuminated and appears to be stationary because of the recurring flashes of glow tube 23. I
As soon as the relay 30 operates, the glow tube 24 breaks down and a portion of the outer dial 32 is similarly illuminated and appears station ary. The time which elapsed between the initial breakdowns of the glow tubes 23 and 24 appears as the diiierence of readings of the dials 3| and 32.
Fig. 3 illustrate". the character of the successive discharges in glow tubes 23 and 2 1. In this figure, the current impulses through the tube 23 are denoted by the reference character 23', and those through the tube 2d are similarly denoted by the reference character 24'. In order to produce clear definition of the dials, it is necessary that the impulses 23' and 24' be of short time duration. This requires that the resistors 25 and 25 be of comparatively low value, consistent with the safety of condensers 2i.
I do not intend that the present invention shall be restricted to the specific structural details, arrangement of parts or circuit connections herein set forth, as various modifications thereof may be effected without departing from the spirit and scope of my invention. I desire, therefore, that only such limitations shall be imposed as are indicated in the appended claims.
I claim as my invention:
1. In a timing device, an optical system cornprising an index and a pair di electric illuminat ing devices capable of producing light pulses of short time duration in response to predetermined condition of electrical energization, said. illuminating devices being arranged in optical paths with said index, timing means for causing said paths to sweep said index, initiating means i for producing said predetermined condition in said illuminating devices successively with a time diiierence dependent upon the magnitude of the time interval to be measured, and electric oscillating means effective upon operation of said ini tiating means to periodically energize said illu minating devices to said predetermined condition of energization, at the same frequency, with a phase difference corresponding to said time difference, whereby said time interval is translated to a distance interval between repeatedly illuminated portions of said index.
2. In a timing device, an optical system comprising an index and a pair of electric discharge devices capable of producing successive light pulses when energized by a periodically recurring electrical condition, said discharge devices being arranged inoptical paths with said index, timing means for causing said paths to sweep said index cyclically at a predetermined frequency, energizing circuits for said discharge devices ineluding individual oscillator means effective to produce periodically recurring electrical conditions of said predetermined frequency in said discharge devices, and means for initiating operation of said energizing circuits successively with a time difference dependent upon the time interval to be measured, whereby said time interval is translated to a distance interval between repeatedly illuminated portions oi said index.
3. In a timing device, an optical system comprising a rotary index and a pair of electric discharge devices capable of producing successive light pulses when energized by a periodically recurring electrical condition, said discharge devices bclng arranged to illuminate portions of said index, timing means for rotating said index at a predetermined frequenc energizing circuits for said discharge devices including individual electronic oscillator means effective to produce periodically recurring electrical conditions of said predetermined frequency in said discharge devices, and means for initiating operation of said energizing circuits successively with a time dii- 5. In a timing device, an optical system comprising a rotary index and a pair of glow discharge devices arranged to illuminate portions of said index, timing. means for rotating said index at a predetermined frequency, direct-current energizing circuits for said discharge devices including series resistance elements and shunt capacitance elements effective to produce periodically recurring discharges of said predetermined frequency in said discharge devices, and means for closing said energizing circuits successively with a time difierence dependent upon the time interval to be measured.
JOSEPH F. KOVAISKY.
US750304A 1934-10-27 1934-10-27 Split-cycle timing device Expired - Lifetime US2088478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US750304A US2088478A (en) 1934-10-27 1934-10-27 Split-cycle timing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US750304A US2088478A (en) 1934-10-27 1934-10-27 Split-cycle timing device

Publications (1)

Publication Number Publication Date
US2088478A true US2088478A (en) 1937-07-27

Family

ID=25017305

Family Applications (1)

Application Number Title Priority Date Filing Date
US750304A Expired - Lifetime US2088478A (en) 1934-10-27 1934-10-27 Split-cycle timing device

Country Status (1)

Country Link
US (1) US2088478A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420227A (en) * 1946-03-02 1947-05-06 Serdex Inc Nephoscope
US2433371A (en) * 1943-07-03 1947-12-30 Raytheon Mfg Co Indicating system for welding apparatus
US2517987A (en) * 1946-03-01 1950-08-08 Ibm Electrical system
US2617245A (en) * 1940-09-18 1952-11-11 Ervin G Johnson Time system
US3114893A (en) * 1958-03-19 1963-12-17 Ciaude Paz Et Visseaux Device for marking with light a high voltage overhead line

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617245A (en) * 1940-09-18 1952-11-11 Ervin G Johnson Time system
US2433371A (en) * 1943-07-03 1947-12-30 Raytheon Mfg Co Indicating system for welding apparatus
US2517987A (en) * 1946-03-01 1950-08-08 Ibm Electrical system
US2420227A (en) * 1946-03-02 1947-05-06 Serdex Inc Nephoscope
US3114893A (en) * 1958-03-19 1963-12-17 Ciaude Paz Et Visseaux Device for marking with light a high voltage overhead line

Similar Documents

Publication Publication Date Title
US1744840A (en) Voltage-indicating and translating device
US2021766A (en) Electronic timer
US2310335A (en) Electrical apparatus
US2349849A (en) Gas tube relay circuits
US2567928A (en) Cold cathode timer
US2088478A (en) Split-cycle timing device
US2434349A (en) Viscosity measuring apparatus
US2544685A (en) Testing device
US3614610A (en) Portable voltage and frequency tester
US2425124A (en) Automatic counter system
US2178112A (en) Control apparatus
US2264067A (en) Resistance spot welding system
US1909471A (en) Electrical timing apparatus
US2651022A (en) Time measurement system
US4137496A (en) Line frequency deviation monitor
US3489969A (en) Starting switch circuit for single phase electric motors
US2377969A (en) Apparatus for determining the duration of a transient effect
US2127605A (en) Stroboscopic apparatus
US3641545A (en) Device for indicating interrupted electric service
US2396497A (en) Timing control circuit
US3042860A (en) Capacitance measuring and dielectric strength test set
US2220602A (en) Device for logarithmic measurement of voltages
US2589070A (en) Electrical breakdown testing apparatus
US2058616A (en) Apparatus for timing watches
US2479274A (en) Timing circuit