US2087993A - Aluminum-base alloys - Google Patents

Aluminum-base alloys Download PDF

Info

Publication number
US2087993A
US2087993A US95182A US9518236A US2087993A US 2087993 A US2087993 A US 2087993A US 95182 A US95182 A US 95182A US 9518236 A US9518236 A US 9518236A US 2087993 A US2087993 A US 2087993A
Authority
US
United States
Prior art keywords
per cent
alloy
nickel
tin
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US95182A
Inventor
Jr Joseph A Nock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminum Company of America filed Critical Aluminum Company of America
Priority to US95182A priority Critical patent/US2087993A/en
Application granted granted Critical
Publication of US2087993A publication Critical patent/US2087993A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • This invention relates generally, to the heat treatable strong aluminum-base alloys containing copper, with or without the so-called hardeners or hardening elements manganese, chromium, zirconium, molybdenum, beryllium, boron, and titanium. More particularly the invention relates to aluminum-copper alloys containing silicon.
  • One of the objects of the invention is to provide thermally treated articles of such alloys, possessing greater improvement in one or another physical property than has heretofore been obtainable by thermal treatment.
  • Another object of the invention is to provide articles composed of alloys of the' type indicated, with improvement particularly in the direction of yield strength in the artificially aged condition.
  • Another object is to provide high hardness in articles composed of such alloys.
  • a further object is to provide alloy articles which will have improved /resistance to corrosion in the artificially aged condition.
  • the alloys to which the invention herein claimed is directed are those aluminum-base a1- loyscontaining copper 2.0 to 12.0 per cent, nickel 0.05 to 7.0 per cent, and zinc 0.05 to 14.0 per cent, the total amount of said nickel and zinc lying between 0.1 and 14.0 per cent, the nickel in no case exceeding 7.0 percent.
  • To these alloys may be added a total of 0.1 to 3.0 per cent of one or more of the so-called hardening elements mentioned above.
  • tin has been known asan alloying element whichin aluminum-base alloys containing copper increases the fluidity and improves the machining and polishing characteristics of the alloy. Its use, however, has been generally discontinued, it having been learned, as investigators have pointed out, that tin in the amounts heretofore used adversely affects the hot Working characteristics of aluminum and aluminum-base alloys, diminishes the corrosion resistance of such materials, and, generally, serves no useful function not more advantageously obtained with other alloying elements.
  • tin is extremely beneficial and desirable when (l) the tin is present in amounts of 0.005 to 0.1 per cent by weight; (2) the alloy contains copper; (3) the alloy contains no magnesium or contains that metal only in so small an amount asto constitute a mere im-v purity; (4) the alloy is artificially aged, that is to say, when the alloy is subjected to artificial aging (preferably but not necessarily after high temperature heat treatment), say at a temperature between about 100 and 200 C.
  • artificial aging preferably but not necessarily after high temperature heat treatment
  • Aging phenomena in aluminum-base alloys are believed to be the result of the precipitation of an alloying element from a solid solution thereof in aluminum which is super-saturated with respect thereto.
  • the precipitation is submicroscopic or on the border line between submicroscopic and microscopic.
  • a'section of an artificially aged wrought aluminum alloy article composed of 4.0 per cent of copper without tin, etched with a mixture of hydrofluoric, hydrochloric and nitric acids shows under a magnification of 500 diameters an aluminum matrix composed of contrasting grains having distinctly marked boundaries. Particles of the constituent CllAlz are seen scattered through the matrix but substantially none are found in the grain boundaries.
  • the same alloy containing 0.05 per cent of tin shows after the same artificial aging only slight grain contract, the grain boundaries are distinctly less sharp, and they contain multitudes of small parti cles of Cuhlz.
  • the difierences in structure noted in the tin-containing alloy indicate a more advanced stage of submicroscopic precinitation of CuAlz, in fact showing that the precipitation has advanced to a large extent beyond the submicroscopic to the microscopic stage. This is evidenced by the particles of CuAl2 in the grain boundaries, resulting from coalescence of particles precipitated in submicroscopic size.
  • an alloy containing about 4.0 per cent of copper, about 10.0 per cent of silicon, and about 0.04 per cent of tin developed a Brinell hardness of 124, while a similar alloy not containing tin developed a Brinell hardness of only 106.
  • the aluminum-base alloys which are improved by the enhanced aging induced therein by the addition of small amounts of tin are those containing 2.0 to 12.0 per cent of copper, with or without certain other alloying elements which I have found to be useful in modifying the general properties of the alloy without masking or destroying the beneficial. properties above noted.
  • the aluminum-copper alloys may contain 0.1 to 3.0 per cent of a class of hardening elements which may be present, separately or together; each, however. not exceeding greatly the following limits: manganese 0.1 to 2.0 per cent,
  • chromium 0.1 to 1.0 per cent boron 0.1 to 0.5 per' cent, molybdenum 0.1 to 1.0 per cent, zirconium 0.1
  • these alloys may also contain 0.1 to 1.0 per cent, in total, of one or more of the hardening elements above mentioned.
  • the alloys may contain a total of 0.1 to 5.0 per cent of an element of the class consisting of zinc, nickel, and silicon.
  • the total should not exceed 5.0 per cent, the lower limits being nickel 0.05 .per cent, zinc 0.05per cent, and silicon 0.05 per cent.
  • the upper limits should be, nickel-1.0 per cent, silicon 3.0 per cent, and zinc 5.0 per cent.
  • the total amount of these elements should not exceed 3.0 or 4.0 per cent, but if the alloy is to be extruded a total of about 9.0 per cent is permissible.
  • the upper limits should be, silicon 14.0 per cent, nickel 7.0 per cent, and zinc 14.0 per cent. Furthermore, if two or more of the elements are present in cast unworked articles, the lower limits should be, silicon 0.05 per cent, nickel 0.05 per cent, and zinc 0.05 per cent, the total amount of any two or more of the elements being 14.0 per cent, the total nickel content, however, not exceeding 7 .0 per cent.
  • the other alloy containing 0.05 per cent of tin had a tensile strength of of 46,250 pounds per square inch, and an elongation of 11.0 per cent in two, inches.
  • the heat treatment usually. comprises heating the aluminum-copper alloys to above about 400 C. but below the temperature at which the lowest melting constituent of the alloy becomes molten, generally known as the point of incipient fusion.
  • the alloy thus treated is, in the preferred practice,.cooled rapidly, as by quenching in water or air, to room temperature.
  • the artificial aging usually comprises heating the aluminum-copper alloy 'to temperatures of about 100 to 200 C. until the desired increase inproperties is obtained.
  • the artificial aging in the preferred practice of the invention is preceded by heat treatment, but the enhanced aging efiect herein described and its general results may be developed to an advantageous extent by the artificial aging alone. r
  • the aluminum-base alloys herein described and claimed are those containing at least 70.0 per cent of aluminum, which metal may contain impurities, such as amounts of iron up to about 1.5 per cent and, .likewise, small amounts of silicon such as are known to occur in virgin aluminum.
  • the term tensile prop- .erty, or the like is intended to include hardness as a property which canbe favorably affected by the enhanced artificial aging produced by my invention.
  • the article may be an ingot or other body designed for further casting or for working, or it may be a cast or wrought article which is suitable for immediate use or sale or which may require some further operation to fit it for use or sale.
  • the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum; and artificially aging the article whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
  • nickel and zinc being between 0.1 and 5.0 per cent, the remainder being essentially aluminum; heat treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 C; and200 C. inclusive, whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
  • the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminumj the'alloy'being characterized by a structureproduced by heating the alloy to over 400 C. but below incipient fusion, cooling the alloy,
  • the alloy being characterized by a structure produced by heating the cooling the ing the alloy.
  • the total amount of nickel and zinc being between 0.1 and 5.0 per cent; and at least one element of the class of hardeners composed of manganese, chromium, boron, molybdenum, zirconium, beryllium, and titanium, the
  • the remainder being essentially aluminum; the alloy being characterized by a structure produced by heating the alloy to over 400 C. but below incipient fusion, cooling the alloy, and thereafter'artificially aging the alloy.

Description

Cal
Til
Patented July 27, 19a
UNITED TATS PATENT OFFICE v 2,087,993 ALNUM-IBASE armors No Drawing. Application August 10, 1936, I
Serial No. 95,182
20 Claims.
This invention relates generally, to the heat treatable strong aluminum-base alloys containing copper, with or without the so-called hardeners or hardening elements manganese, chromium, zirconium, molybdenum, beryllium, boron, and titanium. More particularly the invention relates to aluminum-copper alloys containing silicon. One of the objects of the invention is to provide thermally treated articles of such alloys, possessing greater improvement in one or another physical property than has heretofore been obtainable by thermal treatment. Another object of the invention is to provide articles composed of alloys of the' type indicated, with improvement particularly in the direction of yield strength in the artificially aged condition. Another object is to provide high hardness in articles composed of such alloys. A further object is to provide alloy articles which will have improved /resistance to corrosion in the artificially aged condition. These and other objects I attain with these alloys by the addition thereto of a small amount of tin, not exceeding 0.1 per cent and preferably more than about 0.05 per cent. In fact, I have found beneficial results to be obtained with as little as 0.005 per cent. are, however, obtained only when the alloy is free from magnesium, that is, when the metal is either totally absent or is present only in amount so small as to be a mere impurity, not exceeding, say, about 0.1 per cent.
The alloys to which the invention herein claimed is directed are those aluminum-base a1- loyscontaining copper 2.0 to 12.0 per cent, nickel 0.05 to 7.0 per cent, and zinc 0.05 to 14.0 per cent, the total amount of said nickel and zinc lying between 0.1 and 14.0 per cent, the nickel in no case exceeding 7.0 percent. To these alloys may be added a total of 0.1 to 3.0 per cent of one or more of the so-called hardening elements mentioned above. v
In amounts of about 0.15 to 15.0 per cent, tin has been known asan alloying element whichin aluminum-base alloys containing copper increases the fluidity and improves the machining and polishing characteristics of the alloy. Its use, however, has been generally discontinued, it having been learned, as investigators have pointed out, that tin in the amounts heretofore used adversely affects the hot Working characteristics of aluminum and aluminum-base alloys, diminishes the corrosion resistance of such materials, and, generally, serves no useful function not more advantageously obtained with other alloying elements.
The' advantages of the invention Contrary to the accepted opinion and trend of the art, I have discovered that certain small amounts of tin are beneficial and desirable in aluminum-copper alloys with or without one or more of the elements silicon, nickel, and zinc; any of which alloys may also contain one or more of the hardeners manganese, chromium, boron, molybdenum, zirconium,.beryllium, and titanium. In accordance with these discoveries and as a result of a series of experiments directed thereto, I have determined that tin is extremely beneficial and desirable when (l) the tin is present in amounts of 0.005 to 0.1 per cent by weight; (2) the alloy contains copper; (3) the alloy contains no magnesium or contains that metal only in so small an amount asto constitute a mere im-v purity; (4) the alloy is artificially aged, that is to say, when the alloy is subjected to artificial aging (preferably but not necessarily after high temperature heat treatment), say at a temperature between about 100 and 200 C. The benefits of my invention appear. to be due to the response of a peculiar internal alloy structure to the artificial aging treatment. Aging phenomena in aluminum-base alloys are believed to be the result of the precipitation of an alloying element from a solid solution thereof in aluminum which is super-saturated with respect thereto. The precipitation is submicroscopic or on the border line between submicroscopic and microscopic. By careful methods, however, it is possible to prepare metal specimens which, under the action of an etching agent, reveal a structure indicative of the artificially aged condition of the metal.
For example, a'section of an artificially aged wrought aluminum alloy article composed of 4.0 per cent of copper without tin, etched with a mixture of hydrofluoric, hydrochloric and nitric acids, shows under a magnification of 500 diameters an aluminum matrix composed of contrasting grains having distinctly marked boundaries. Particles of the constituent CllAlz are seen scattered through the matrix but substantially none are found in the grain boundaries. The same alloy containing 0.05 per cent of tin shows after the same artificial aging only slight grain contract, the grain boundaries are distinctly less sharp, and they contain multitudes of small parti cles of Cuhlz. According to the theories of submicrosoopic precipitation, the difierences in structure noted in the tin-containing alloy indicate a more advanced stage of submicroscopic precinitation of CuAlz, in fact showing that the precipitation has advanced to a large extent beyond the submicroscopic to the microscopic stage. This is evidenced by the particles of CuAl2 in the grain boundaries, resulting from coalescence of particles precipitated in submicroscopic size.
The foregoing enhanced aging phenomenon which occurs in the above described aluminum alloys containing tin is particularly manifested in such alloys by the development, under the action of the artificial aging treatment, of certain unusual and distinctive properties now to be described.
When tin in amounts of 0.005 to 0.1 per cent is present in aluminum alloys containing 2.0 to 12.0 per cent of copper and free from magnesium, a relatively short artificial aging treatment will develop high hardness. Thus an aluminum alloy casting containing 11.78 per cent of copper and 0.05 per cent of tin, heat treated for 16 hours at 515 C. and aged for 15 hours at 150 0., had a Brinell hardness of 122. The same alloy without tin, similarly heat treated and aged, had a Brinell hardness of only 107. Similarly, and under the same treatment, an alloy containing about 4.0 per cent of copper, about 10.0 per cent of silicon, and about 0.04 per cent of tin, developed a Brinell hardness of 124, while a similar alloy not containing tin developed a Brinell hardness of only 106.
A further effect of the tin addition upon aging is particularly evidenced in certain specially valuable and preferred alloys. I Under the influence of aging treatments, aluminum alloys containing 2.0 to 6.5 per cent of copper, 0.005 to 0.1 per cent of tin, and substantially free from magnesium, developed yield strengths which are on the order of 30 to 200- per cent greater than the yield strengths of similar alloys not containing tin. While the fundamental reasons for such increase in yield strength are obscure, the effect is very pronounced. For instance, a magnesium-free aluminum-base alloy containing 4.0 per cent of copper and 0.05 per cent of tin was heat treated at 510 C. for 20 minutes, quenched to room temperature, and artificially aged for 18 hours at 150 C. This alloy had a. yield strength of 43,000
pounds per square inch. A similar alloy, similarly per cent asv stated above), contain tin in the;
" amount prescribed by' my invention this detrimental result is considerably lessened by the enhanced aging effect. In particular the artificially aged alloys show a marked decrease in propensity to undergo intercrystalline or intergranular corrosion, a type of corrosion which is more objectionable than the ordinary surface typebecause it is'often not readily apparent and so is apt to escape observation untilthe corroded part or article fails as. a; result of the internal weakening.
The aluminum-base alloys which are improved by the enhanced aging induced therein by the addition of small amounts of tin are those containing 2.0 to 12.0 per cent of copper, with or without certain other alloying elements which I have found to be useful in modifying the general properties of the alloy without masking or destroying the beneficial. properties above noted.
Thus the aluminum-copper alloys may contain 0.1 to 3.0 per cent of a class of hardening elements which may be present, separately or together; each, however. not exceeding greatly the following limits: manganese 0.1 to 2.0 per cent,
chromium 0.1 to 1.0 per cent, boron 0.1 to 0.5 per' cent, molybdenum 0.1 to 1.0 per cent, zirconium 0.1
to 0.5 per cent, beryllium 0.1 to 2.0 per cent, and v These alloys, as above noted, contain 2.0 to 6.5
per cent of copper and 0.005 to 0.1 per cent of tin, 0.05 to 0.1 per cent being preferred, and they are characterized in the artificially aged condition by a yield strength substantially higher than that of the same alloy devoid of tin. In their preferred form, these alloys may also contain 0.1 to 1.0 per cent, in total, of one or more of the hardening elements above mentioned. For making castings of the preferred alloys that are to be used in the unworked condition the alloys may contain a total of 0.1 to 5.0 per cent of an element of the class consisting of zinc, nickel, and silicon. When two or all three of the elements zinc, nickel, and silicon are present, the total should not exceed 5.0 per cent, the lower limits being nickel 0.05 .per cent, zinc 0.05per cent, and silicon 0.05 per cent. For making wrought articles, the same foregoing lower limits should be observed, but where two or all three of the named elements are present, the upper limits should be, nickel-1.0 per cent, silicon 3.0 per cent, and zinc 5.0 per cent. For rolling or forging, the total amount of these elements should not exceed 3.0 or 4.0 per cent, but if the alloy is to be extruded a total of about 9.0 per cent is permissible. cast unworked articles the lower limits for each element, when used alone, should be, silicon 0.1 per cent, nickel 0.1 per cent, and zinc 0.1 per cent,
-' and the upper limits should be, silicon 14.0 per cent, nickel 7.0 per cent, and zinc 14.0 per cent. Furthermore, if two or more of the elements are present in cast unworked articles, the lower limits should be, silicon 0.05 per cent, nickel 0.05 per cent, and zinc 0.05 per cent, the total amount of any two or more of the elements being 14.0 per cent, the total nickel content, however, not exceeding 7 .0 per cent.
As specifically illustrating these alloys, an example of a wrought aluminumebase alloy without magnesium, containing about 4.4 per cent of copper, about 0.85 per cent ofmanganese, about 0.75 per cent of silicon,'about 0.4 per cent of 7 iron may be ,cited. Two alloys of this composition, with and Without the addition of 0.05 per cent of tin, were heat treated at 520 C. for 15 minutes, quenched in water, and subjected for 18 hours to an aging treatment at 143 C. Thetin-free alloy had a tensile strength of 58,700 pounds per square inch, 2. yield strength of 33,250
, pounds per square inch, and an elongation of 16.8
per cent in two inches. The other alloy containing 0.05 per cent of tin had a tensile strength of of 46,250 pounds per square inch, and an elongation of 11.0 per cent in two, inches.
heat treated and artificially aged cast alloys is 63,190 pounds per square inch, 2. yield strength,
The effect of tin upon the yield strength and hardness ofv illustrated by the following examples. Aluminum-base alloys containing copper 4.0 per cent, nickel 2.0 per cent, zinc 7.0 per cent; and
copper 4.0 per cent, nickel 4.0 per cent, zinc 10.0 per cent; with and without the addition of 0.05 per cent of tin, were cast, heat treated at 504 C. for 20 hours, quenched in water, and aged at 154. C. for 16 hours. The yield strength and hardness values of these alloys that were obtained l The aging treatments and heat treatments towhich the above mentioned alloys are subjected in order to develop their advantageous properties are the thermal treatments well'known to the art.
The heat treatment usually. comprises heating the aluminum-copper alloys to above about 400 C. but below the temperature at which the lowest melting constituent of the alloy becomes molten, generally known as the point of incipient fusion. The alloy thus treated is, in the preferred practice,.cooled rapidly, as by quenching in water or air, to room temperature. The artificial aging usually comprises heating the aluminum-copper alloy 'to temperatures of about 100 to 200 C. until the desired increase inproperties is obtained. The artificial aging in the preferred practice of the invention is preceded by heat treatment, but the enhanced aging efiect herein described and its general results may be developed to an advantageous extent by the artificial aging alone. r
The aluminum-base alloys herein described and claimed are those containing at least 70.0 per cent of aluminum, which metal may contain impurities, such as amounts of iron up to about 1.5 per cent and, .likewise, small amounts of silicon such as are known to occur in virgin aluminum.
The enhanced aging herein described as resulting from the addition of tin in the stated amount to magnesium-free aluminum alloys containing from 2.0 to 12.0 per cent of copper is obtained in both cast and wrought articles. In the case of castings of such alloys containing tin, I have found that heat treatment at elevated temperatures without artificial aging produces a higher ductility than is obtainable by heat treatment of a casting of the same alloy without the, tin. This species of the invention I do not claim specifically herein but do so in my copending application Serial No. 606,755, filed April 21, 1932, and issued as United States Letters Patent 2,022,- 686, under date of December 3, 1935.
In the appended claims the term tensile prop- .erty, or the like, is intended to include hardness as a property which canbe favorably affected by the enhanced artificial aging produced by my invention. Also within the spirit of the appended claims the article may be an ingot or other body designed for further casting or for working, or it may be a cast or wrought article which is suitable for immediate use or sale or which may require some further operation to fit it for use or sale.
Articles and methods involving aluminum-copper alloys containing silicon; nickel; zinc; silicon and nickel; silicon and zinc; and silicon, nickel and zinc; and aluminum-copper alloys containing none of the elements silicon, nickel and zinc; are not claimed herein but are claimed in my copending applications Serial Nos. 95,177, 95,178, 95,179, 95,180, 95,181, 95,183 and 606,756, respectively. This application is a continuation-in-part of my copending application Serial No. 606,756, filed April 21, 1932.
I claim:
1. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of said nickel and zinc being between 0.1 and 14.0
per cent, the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum; and artificially aging the article whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
2. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 6.5 per cent copper,
0.005 to 0.1 per cent tin, at least 0.05 per cent nickel andat least 0.05 per cent zinc, the total amount of nickel and zinc being between 0.1 and 5.0 percent, the remainder being essentially aluminum; whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
3. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper; 0.005 to 0.1 per cent tin;' at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of said nickel and zinc being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent; and at least one hardening element of the class consisting of manganese 0.1 to 2.0 per cent, chromium 0.1 to 1.0 per cent, boron 0.1 to 0.5 per cent, molybdenum 0.1 to 1.0 per cent, zirconium 0.1 to 0.5 per cent, beryllium 0.1 to 2.0 per cent, and titanium 0.03 to 0.5 per cent, the total hardening content being 0.1 to 3.0 per cent, and the remainder being essentially aluminum; and artificially aging the article whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
4. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper,
0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of said nickel and zinc being between 0.1 and 14.0 per cent, the nickel in any case notbeing in excess of 7.0 per cent, the remainder being essentially aluminum; and artificially aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
5. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 6.5 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of nickel and zinc being between 0.1 and 5.0 per cent, the remainder being essentially aluminur n; and artificially aging the article between about 100 C. and 200 C. inclusive, whereby atensile property of the alloy is improved over that of a like alloy free from tin. f
6. In a method of making an article of alumiand artificially aging the article.
num alloy, forming an article of a. magnesiumfree alloy containing 2.0 to 12.0 per cent copper;
0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of said nickel and zinc being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent; and at least one hardening element of the class consisting of manganese 0.1 to 2.0 per cent, chromium 0.1 to 1.0 per cent, boron 0.1 to 0.5 per cent, molybdenum 0.1 to 1.0 per cent, zirconium 0.1 to 0.5 per cent, beryllium 0.1 to 2.0 per cent, and titanium 0.03 to 0.5 per cent, the total hardening content being 0.1 to 3.0 per cent, and the remainder being essentially aluminum; and artis ficially aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
7. In a method of making an article'of aluminum alloy, forming an article of a magnesiumi'ree alloy containing 2.0 to 12.0 per cent copper, 0.005-t0 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total 'amountof said nickel and zinc being between 0.1 and 14.0 per cent the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum; heat treating the article between about 400 C. and the temperature ,of incipient fusion; and artificially aging the article between about 100 C. and 200 C.
being essentially aluminum; heat treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 C. and 200 C.
inclusive, whereby a tensile property of the alloy is improved over that of a like alloy free from tin. I
9. ma method of making an article of aluminum alloy, forming an article of magnesiumfree alloy containing 2.0 to 6.5 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of nickel and zinc being between 0.1
nickel and at least 0.05 per cent zinc, the total.
amount of nickel and zinc being between 0.1 and 5.0 per cent, the remainder being essentially aluminum; heat treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 C; and200 C. inclusive, whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
11. In a method of making an article of aluminum alloy, forming an article of a magnesiumfree alloy containing 2.0 to 12.0 per cent copper; 0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of said nickel and zinc being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent; and at least one hardening element of the class consisting of manganese 0.1 to 2.0 per cent, chromium 0.1 to 1.0 percent, boron 0.1 to 0.5 per cent, molybdenum 0.1 to 1.0 per cent, zirconium 0:1 to 0.5 per 'cent, beryllium 0.1 to 2.0 per cent, and titanium free alloy containing 2.0 to 6.5 per cent copper; 0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05 per cent zinc; the total amount of nickel and zinc' being between 0.1 and 5.0 per cent; and at least one hardening element of the'class consisting of manganese, chromium, boron, molybdenum, zirconium, beryllium, and titanium, the total hardening content being 0.1
to 3.0 per cent, and the remainder being 'essen-" tially aluminum; heat'treating the article between about 400 C. and the temperature of incipient fusion; and artificially aging the article between about 100 C. and 200 C. inclusive, whereby a tensile property of the alloy is improved over that of a like alloy free from tin.
13. An article of artificially aged aluminum-.
alloy free from magnesium and containing 2.0 to- 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of said nickel and zinc being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminum.
14. An article of artificially aged aluminum alloy free from magnesium and containing 2.0 to
12.0 per cent copper; 0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of'said nickel and zinc being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per cent; and at least one element of the class of hardeners composed of manganese, chromium, boron, molybdenum, zirconium, beryllium and titanium, the total hardening content being 0.1 to 3.0 per cent, the remainder of the alloy being essentially aluminum.
15. An article of artificially aged aluminum alloy free from magnesium and containing 2.0 to 6.5 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of nickel and zinc being .between 0.1 and 5.0 percent, the re-- malnder of the alloy being essentially-aluminum.
16. An article of artificially aged aluminum alloy free from magnesium and containing 2.0 to 6.5 per cent copper; 0.005 to 0.1 per cent tin; at
least 0.05 per cent nickel and at least 0.05
per cent zinc, the total amount of nickel and zinc being between 0.1 and 5.0 per' alloy freefrom magnesium and containing 2.0
to 12.0 per cent copper, 0.005 to 0.1 per cent tin, at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of said nickel and zinc being between 0.1 and 14.0 per cent,
the nickel in any case not being in excess of 7.0 per cent, the remainder being essentially aluminumj the'alloy'being characterized by a structureproduced by heating the alloy to over 400 C. but below incipient fusion, cooling the alloy,
and thereafter artificially aging. the alloy.
18. An article ofthermally treated aluminum alloy free from'magnesium and containing 2.0 to 12.0 per cent copper; 0.005 to 0.1 per cent tin; at least 0.05 per cent nickel and at least 0.05 per cent zinc, the total' amount. of said nickel and zinc being between 0.1 and 14.0 per cent, the nickel in any case not being in excess of 7.0 per centjand at least one element of the class of hardeners composed of manganese, chromium, boron, molybdenum, zirconium, beryllium, and titanium,-the total hardening content being 0.1 to 3.0 per cent the remainder being essentially aluminum; the alloy being characterized by a structure produced by heating the alloy to over 400 C. but below incipient fusion, cooling the alloy, and thereafter, artificially aging the alloy.
19. An article of thermally treated aluminum alloy free from magnesium and containing 2.0.
to 6.5 per cent copper, 0.005 to 0.1 per cent tin, at least'0.05 per cent nickel and at least 0.05 per cent zinc, the total amount of nickel and zinc being between 0.1 and 5.0 '1' cent, the remainder being'essentially aluminum; the alloy being characterized by a structure produced by heating the cooling the ing the alloy.
20. An article of thermally treated aluminum alloy free from magnesium and containing 2.0 to 6.5 per cent copper, 0.005 to 0.1 per cent tin.
alloy to over 400 C. but below incipient fusion,.
alloymand thereafter artificially agat least 0.05 per 'cent nickel and at least 0.05 I
per cent zinc, the total amount of nickel and zinc being between 0.1 and 5.0 per cent; and at least one element of the class of hardeners composed of manganese, chromium, boron, molybdenum, zirconium, beryllium, and titanium, the
' total hardening content being 0.1 to 3.0-per cent,
the remainder being essentially aluminum; the alloy being characterized by a structure produced by heating the alloy to over 400 C. but below incipient fusion, cooling the alloy, and thereafter'artificially aging the alloy.
JOSEPH A. NOCK, JR-
US95182A 1936-08-10 1936-08-10 Aluminum-base alloys Expired - Lifetime US2087993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US95182A US2087993A (en) 1936-08-10 1936-08-10 Aluminum-base alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US95182A US2087993A (en) 1936-08-10 1936-08-10 Aluminum-base alloys

Publications (1)

Publication Number Publication Date
US2087993A true US2087993A (en) 1937-07-27

Family

ID=22250518

Family Applications (1)

Application Number Title Priority Date Filing Date
US95182A Expired - Lifetime US2087993A (en) 1936-08-10 1936-08-10 Aluminum-base alloys

Country Status (1)

Country Link
US (1) US2087993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213694A1 (en) * 2003-04-24 2004-10-28 Ford Global Technologies, Llc A high strength cast aluminum alloy with accelerated response to heat treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213694A1 (en) * 2003-04-24 2004-10-28 Ford Global Technologies, Llc A high strength cast aluminum alloy with accelerated response to heat treatment

Similar Documents

Publication Publication Date Title
EP0124286B1 (en) Aluminium alloys
US5593516A (en) High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
US2062329A (en) Thermal treatment of aluminum alloys containing copper
US1816509A (en) Method of treatment of nonferrous alloys
US1945297A (en) Aluminum alloy
US1947121A (en) Aluminum base alloys
US1928747A (en) Nonferrous alloy
US3703367A (en) Copper-zinc alloys
US2101087A (en) Copper base alloy
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
US3320055A (en) Magnesium-base alloy
JPH1112705A (en) Production of high strength aluminum alloy forging excellent in machinability
US2087992A (en) Aluminum-base alloys
US2087993A (en) Aluminum-base alloys
US2087988A (en) Aluminum-base alloys
US2087989A (en) Aluminum-base alloys
US2087994A (en) Aluminum-base alloys
US2087991A (en) Aluminum-base alloys
US3366477A (en) Copper base alloys
US2087990A (en) Aluminum-base alloys
JPS602644A (en) Aluminum alloy
US2022686A (en) Aluminum alloy casting and method of making the same
US1716943A (en) Aluminum-beryllium alloy and method of treatment
US2101626A (en) Hot workable copper alloys
US2245166A (en) Cold worked aluminum base alloy and method of producing it