US2080570A - Carburetor - Google Patents

Carburetor Download PDF

Info

Publication number
US2080570A
US2080570A US61247A US6124736A US2080570A US 2080570 A US2080570 A US 2080570A US 61247 A US61247 A US 61247A US 6124736 A US6124736 A US 6124736A US 2080570 A US2080570 A US 2080570A
Authority
US
United States
Prior art keywords
air
air valve
hill
weight
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US61247A
Inventor
George M Holley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US61247A priority Critical patent/US2080570A/en
Application granted granted Critical
Publication of US2080570A publication Critical patent/US2080570A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/02Feeding by means of suction apparatus, e.g. by air flow through carburettors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M17/00Carburettors having pertinent characteristics not provided for in, or of interest apart from, the apparatus of preceding main groups F02M1/00 - F02M15/00
    • F02M17/08Carburettors having one or more fuel passages opening in a valve-seat surrounding combustion-air passage, the valve being opened by passing air
    • F02M17/09Carburettors having one or more fuel passages opening in a valve-seat surrounding combustion-air passage, the valve being opened by passing air the valve being of an eccentrically mounted butterfly type

Definitions

  • the object of this invention is to provide means whereby a. self-lift carburetor will automatically increase the lift on its fuel supply chamber when a car is climbing a hill and during the early stages of accelerating from a low engine speed.
  • a. self-lift carburetor will automatically increase the lift on its fuel supply chamber when a car is climbing a hill and during the early stages of accelerating from a low engine speed.
  • the lift required increases from 22 inches to almost 50 inches on a 25% grade.
  • the carburetor is designed to perform on the level, the air flow should be the greatest possible and therefore the resistance of the air valve will be as little as possible. Hence the resistance created by the air valve should be just suflicient to lift the fuel 22 inches when idling.
  • the difficulty comes when it is required to idle the engine on a hill or to climb the hill with the engine running at low engine speed, wide open. -In either event, there is a shortage oflift and-this is especially noticeable when idling on a hill. Hence, a 50 to 90% increase in lift when idling on a hill is desirable.
  • Figure 1 shows retor in the position it assumes when climbing an extremely steep hill.
  • Figure 2 shows the corresponding parts with the air valve substantially wide open.
  • an air valve II is counterbal- 25 anced by a weight l2, the center of gravity of' which is at A.
  • the center of the air valve H is at B.
  • a vertical ordinate B-C dropped from the center B and a corresponding ordinate A-D dropped from the that the weight l2 has a leverage C-D around the center B.
  • the carburetor is horizontal, that is, when the plane E-F is horizontal, the vertical ordinate B-G dropped from the center B and the vertical ordinate A-H dropped from 35 the center of gravity A perpendicular to the plane EF demonstrates that the leverage of the weight l2 around the center B is equal to G-H.
  • I3 is the air entrance. is the cylindrical It is noted that this ade is weight l2 moves.
  • Fuel is supplied from a tank, not shown, to a pipe 22 through the float valve 23 controlled by the float 24.
  • Float valve 24 is contained in a float chamber 25, the upper part of which 26 communicates through a pipe 21 with the throat of the venturi 28.
  • a second air bypass 29 supplies air from the air entrance l3 to this venturi 28 and to the passage 30 which communicates through the restriction 3
  • air 'valve thus controls the depression in the upper part 25 of the float chamber 25.
  • the flow of fuel from the float'chamber 25 to the small venturi I8 . is controlled by the throttle in the following manner;
  • a -th'rottle lever 34 controls the movement of the'throttle 2
  • -A lever 35 is connected through a .link .36 with a rocking lever 31 which is connected through-a link 38 with a hook-39, which carries the needle valve or economizer pin'jp.
  • This economizer pin is guided'initube ll and controls the fuel flow a passage ing in which the air valve ll rotates.
  • I5 ;4ti1 ⁇ -ou is the space back of this housing in which th restriction 42 which is connected by l3 with the orifices 44 located in the down stream side of the throat of the small venturi l8.
  • Figure 2 shows the position the weight l2 assumes when the airvalve II is wide open.
  • a fuel lift carburetor for motor vehicles having an air entrance, an automatic valve therein, a mixing chamber, a mixture outlet therefrom, a throttle valve therein, a fuel supply chamber, a fuel passage leading therefrom discharging into the throat of a Venturi passage through which air is bypassed into said mixing chamber around said air valve, a second venturi passage through which air is also bypassed around said air valve into said mixing chamber, a passage connecting the throat of said second venturi with the upper part of said fuel supply chamber so as to create a vacuum therein, means for increasing this vacuum when a vehicle is ascending a hill, comprising a weight attached to said air valve and adapted to swing as the air valve opens into the direction of motion of the vehicle.

Description

' INVENTOR. G0fi6 N/hOLL E).
ATTORNEY.
,3 17m \Q1. 0 M
May 18, 1937. G. M. HOLLEY CARBURETOR Filed Jan. 28, 1956 V increased 50 or 90% Patented May 18, 1937 A UNITED STATES PATENT OFFICE CARBURETOR George M. Holley, Grosse Pointe Farms Mich. Application January 28, 1936, Serial No. 61,247,
4 Claims.
The object of this invention is to provide means whereby a. self-lift carburetor will automatically increase the lift on its fuel supply chamber when a car is climbing a hill and during the early stages of accelerating from a low engine speed. When a tank is located in the rear and the engine in front, the lift required increases from 22 inches to almost 50 inches on a 25% grade. Obviously, if the carburetor is designed to perform on the level, the air flow should be the greatest possible and therefore the resistance of the air valve will be as little as possible. Hence the resistance created by the air valve should be just suflicient to lift the fuel 22 inches when idling.
- When climbing a hill such an air valve will not create suflicient lift to raise the fuel to the float chamber of the car. I have discovered that if I hang a weight on the air valve less than 40, for example 20 from the vertical and arrange that this weight Swings out into the direction of motion of the vehicle so that when-the air valve is wide open, this weight is over 70 and less .than
90 to the vertical, then on ascending a hill the weight when idle will be effective torque of the depending on the steepness of the hill, whereas the effective torque when the air valve is wide open would only vary 1 Eflective pounds inch torque of one pound at a radius of 1" when the valve is inclined .from the vertical on a. hill is as follows:',
Idle Wide open Hill X1133: Torque X35: Torque Degrees Egg? Inch Inch pound pound 20 0.34 so 0.985 0 Level 0.50 90 1.00 10 17% 40 0.64 100 0. 985 20 34 The carburetor when running at high speed creates sufficient vacuum on the .fuel nozzle due to the high air velocity so that the fuel nozzle has no difliculty in taking the fuel away from the float chamber even though the float chamber has in it a vacuum of 50" .of gasoline. Hence, it is possible to maintain at all times sufiicient vacuum in the float chamber to climb any hill at high engine speed. The difficulty comes when it is required to idle the engine on a hill or to climb the hill with the engine running at low engine speed, wide open. -In either event, there is a shortage oflift and-this is especially noticeable when idling on a hill. Hence, a 50 to 90% increase in lift when idling on a hill is desirable.
By arranging that the weight swings from about 20 to 30 when idling and from 80 to 90 wide open, I can obtain the desired result, name- 5 1y, an air valve which automatically increases the lift when idling on a hill and does not change the resistance to air flow appreciably when an engine is running at high engine speed on a hill.- The power of the interfered with but the performance at part throttle and low engine speed is greatly improved. During acceleration from 7 M. P. H. at say 3 or 4 feet per second, obviously there is a greater demand for'fuel and to this demand the 'weighted air valve responds- As the car gains speed the weight assumes its horizontal position and the effect of acceleration disappears automatically.
Figure 1 shows retor in the position it assumes when climbing an extremely steep hill.
Figure 2 shows the corresponding parts with the air valve substantially wide open.
In the figures, an air valve II is counterbal- 25 anced by a weight l2, the center of gravity of' which is at A. The center of the air valve H is at B. A vertical ordinate B-C dropped from the center B and a corresponding ordinate A-D dropped from the that the weight l2 has a leverage C-D around the center B. When the carburetor is horizontal, that is, when the plane E-F is horizontal, the vertical ordinate B-G dropped from the center B and the vertical ordinate A-H dropped from 35 the center of gravity A perpendicular to the plane EF demonstrates that the leverage of the weight l2 around the center B is equal to G-H.
If JK indicates the horizontal plane when climbing a hill indicated by the plane EF, then 40 the effect of going from the horizontal plane JK to the inclined plane EF Will be to in: crease the leverage of the weight l2 around the center B'from the leverage GH to the leverage CD. It will be noted that this is due to the fact that the angle B-A makes with the line BG is small. When this angle increases, that is, when the air valve ll opens, the effect ofgoing from the horizontal plane JK to the hill engine at top speed is thus not diagrammatically the carbu- 20- centerof gravity A indicate 30 indicated by the plane E,-F will be negligible.
I3 is the air entrance. is the cylindrical It is noted that this ade is weight l2 moves.
air valye l l. I6
under the depression below the I is the stop in the air entrance l3 agf'ainst which the air valve II comes to rest When the engine is not running. l1 isthe entrance to the air bypass'around the air valve l I. The air drawn through this bypass passes through the small venturi l8- and discharges through the tube 19; This tube l9 terminates in the throat 20 of the main 'air passagu Located in this throat 20 is the throttle M. The tube l9 terminates adjacent to this throttle as shown in my co-pending patent Serial No. 744,160. The throat 20 discharges into the mixture outlet 45 with which it forms a Venturi passage.
Fuel is supplied from a tank, not shown, to a pipe 22 through the float valve 23 controlled by the float 24. Float valve 24 is contained in a float chamber 25, the upper part of which 26 communicates through a pipe 21 with the throat of the venturi 28. A second air bypass 29 supplies air from the air entrance l3 to this venturi 28 and to the passage 30 which communicates through the restriction 3| to the underside of the air valve H, the :area of which restriction 3| is controlled by a needle valve 32 which is connected by means of a link 33 with the air valve ll.
It will be noted that the air flowing through the passages 29, 28, 30, and 3| discharge into the space l5 in which the weight l2 swings, that is, on the vacuum side of the air valve II. The
air 'valve thus controls the depression in the upper part 25 of the float chamber 25. The flow of fuel from the float'chamber 25 to the small venturi I8 .is controlled by the throttle in the following manner; A -th'rottle lever 34 controls the movement of the'throttle 2|: -A lever 35 is connected through a .link .36 with a rocking lever 31 which is connected through-a link 38 with a hook-39, which carries the needle valve or economizer pin'jp. This economizer pin is guided'initube ll and controls the fuel flow a passage ing in which the air valve ll rotates. I5 ;4ti1 {-ou is the space back of this housing in which th restriction 42 which is connected by l3 with the orifices 44 located in the down stream side of the throat of the small venturi l8.
Figure 2 shows the position the weight l2 assumes when the airvalve II is wide open.
What I claim is:
1. A fuel lift carburetor for motor vehicles having an air entrance, an automatic valve therein, a mixing chamber, a mixture outlet therefrom, a throttle valve therein, a fuel supply chamber, a fuel passage leading therefrom discharging into the throat of a Venturi passage through which air is bypassed into said mixing chamber around said air valve, a second venturi passage through which air is also bypassed around said air valve into said mixing chamber, a passage connecting the throat of said second venturi with the upper part of said fuel supply chamber so as to create a vacuum therein, means for increasing this vacuum when a vehicle is ascending a hill, comprising a weight attached to said air valve and adapted to swing as the air valve opens into the direction of motion of the vehicle. I
2. In a fuel lift carburetor as described in claim 1 in which the plane passing through the axis of the swinging weight and its center of gravity is substantially horizontal when the air valve is wide open and the vehicle is moving in the horizontal plane.
3. A fuel lift carburetor as described, in claim 1 in which the plane passing through the axis of the swinging weight and its center of gravity is less than to the vertical when the air valve is in its closed position and the vehicleis on a horizontal plane.
4. A fuel lift carburetor as described in claim 1, in which the center of gravity of the swinging weight oscillates in a substantially vertical plane
US61247A 1936-01-28 1936-01-28 Carburetor Expired - Lifetime US2080570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US61247A US2080570A (en) 1936-01-28 1936-01-28 Carburetor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61247A US2080570A (en) 1936-01-28 1936-01-28 Carburetor

Publications (1)

Publication Number Publication Date
US2080570A true US2080570A (en) 1937-05-18

Family

ID=22034576

Family Applications (1)

Application Number Title Priority Date Filing Date
US61247A Expired - Lifetime US2080570A (en) 1936-01-28 1936-01-28 Carburetor

Country Status (1)

Country Link
US (1) US2080570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2639834A (en) * 1950-05-26 1953-05-26 George M Holley Fastening means for closures
DE1012122B (en) * 1955-01-26 1957-07-11 Dr Jur Tore Stroemberg Overspeed controller for petrol engines driven with liquid or gaseous fuels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2639834A (en) * 1950-05-26 1953-05-26 George M Holley Fastening means for closures
DE1012122B (en) * 1955-01-26 1957-07-11 Dr Jur Tore Stroemberg Overspeed controller for petrol engines driven with liquid or gaseous fuels

Similar Documents

Publication Publication Date Title
US2212926A (en) Carburetor
US1727265A (en) Charge-forming device for internal-combustion engines
US2633342A (en) Automotive carburetor
US2080570A (en) Carburetor
US1855383A (en) Automatically controlled fuel atomizing device
US2419956A (en) Carbureting and fuel supply means for motor-driven vehicles
US2261490A (en) Carburetor
US2252960A (en) Carburetor structure
US3107657A (en) Device for supplying moisture-laden air to the intake manifold of an internal combustion engine
US2199509A (en) Carburetor accelerating means
US2209511A (en) Carburetor
US3020030A (en) Carburetor device
US2210991A (en) Self-feed carburetor
US1831056A (en) Carburetor
US2182580A (en) Carburetor
US3382881A (en) Float mechanism for a carburetor
US1795319A (en) Carburetor
US3171467A (en) Carburetor control
US3317196A (en) Carburetor
US1387484A (en) Carbureter
US2556463A (en) Carburetor for submersible vehicles
US1314056A (en) Apparatus
US1269177A (en) Carbureter.
US2717771A (en) Carburetor
US1785573A (en) Fuel-feed system for internal-combustion engines of automobiles