US2074642A - Cooling apparatus - Google Patents

Cooling apparatus Download PDF

Info

Publication number
US2074642A
US2074642A US21652A US2165235A US2074642A US 2074642 A US2074642 A US 2074642A US 21652 A US21652 A US 21652A US 2165235 A US2165235 A US 2165235A US 2074642 A US2074642 A US 2074642A
Authority
US
United States
Prior art keywords
air
tubes
chamber
evaporation
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US21652A
Inventor
George C Coverston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US21652A priority Critical patent/US2074642A/en
Application granted granted Critical
Publication of US2074642A publication Critical patent/US2074642A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

G. C. COVERSTON March 23, 1937.
COOLING APPARATUS iled May 15, 1935 3 Sheets-Sheet l March 23, 1937. CQVERSTON 2,074,642
COOLING APPARATUS Filed May 15, 1935 5 Sheets-Sheet 2 mam-:5: 1
*0 47-g.@ a QI H ;J oloouooooooooo 0I00H00o0oo000 ofooliooooooooo ol0o 000000000 oioonooooooooo O{OO oOOOooo0 I oj o o ooooooo Q5- O:0O:1Q0O'OOOOOO -0 oo,{ooo00o00oo 0 (3}0011000'0000000 0 lopo 'loooooooooooo i0:00}{0;00000000 00 0:00H000000000000 o 0o,;-00ooo 0 00 000,0 fieargf, 63 i n 0000 o 000 00:0 Care/157%,
March 23, 1937. CQVERSTON 2,074,642
COOLI'NG APPARATUS Filed May 15, 1935 3 Sheets-Sheet 3 fee/ye C'Cbrersfaa,
arty/MM;
Patented Mar. '23, 1937 PATENT OFFICE COOLING APPARATUS George C. Coverston, Fallon, Nev.
Application May 15,
Claims.
This invention relates to cooling apparatus and especially to such as employ water or an equivalent fiuid as the cooling medium. It has for its objects to increase the comparative diiference be- 5 tween the wet point and the dry point temperatures of the refrigerant as well as to increase the general eificiency of such a system.
I attain my objects by causing relatively dry air to circulate into and out of thermic relation with the cooling medium. and by taking ofi the dry air from the bottom of the system and carrying it to the top and causing it to be reexposed to fractional cooling so as to produce a cumulative or additive effect, which may be repeated as often as desired, also feeding coldest air produced to an evaporating chamber, since cooling is relative, and lower temperatures are now obtained.
While I shall show and describe herein the use of dry air and water as the refrigerant and the cooling medium'respectively, I wish it understood that I may substitute other cooling mediums, other refrigerants and other forms of mechanical devices Without departing from the invention. Primarily, however, I employ the elements described.
In the accompanying drawings:
Figure 1 is a cross sectional view of an apparatus such as may be used in my system.
Figure 2 is a cross sectional view of Figure 1 taken along the line 2-2.
Figure 3 is a top plan view of the embodiment shown in Figure 5.
Figure 4 is a cross sectional view taken along line l-l of Figure 5.
Figure 5 is a part sectional view of a modified form of apparatus to be used with my method looking down from the top along the line 5-5 of Figure 3.
Figure 6 is a cross sectional view of the air tube and cooling medium feed construction.
Figure '7 is a view in transverse cross section of the air tube structure, showing the quarter sections formed in the interior of the tubes.
Referring more particularly to the drawings, Figure 1 is in the form of a single unit for cooling and feeding dry air into a space to be cooled.
and then returning a fraction of the dry air back for recirculation and to further cool the most portion 6f each side wall of casing l.
1935, Serial No. 21,652
Fastened to side wall 2 are baiiies ill and Ii with openings formed therein to permit tubes '8 to extend therethrough. The baffles l0 and H extend to a point short of the opposite side wall 3 from which a third bafiie plat'e l2 extends to a point short of wall 2 so as to provide a zigzag course, as shown in Figure 1, for the air which is directed upwardly to stack or flue 20.
The dry air initially fed downwardly through the tubes ll emerges from the tubes below the bottom plate or wall I at which point a fraction of the air will go into the space or room to be cooled and another fraction thereof will be turned upwardly by cup-like members 2i formed or attached to the plate I, and hence back around the bellies in, H, and i2 and ejected through stack 20.
These cup members are placed just below the lower end of a small number of the tubes 8 so as to supply the evaporating chamber with only a fraction of the downwardly fed dry air.
Extending from opening 2a. formed in top plate 6 are tubes or conduits 8. The tubes 8 extend downwardly through the water chamber 6, through openings in plate 5, through baffles M], H, and i2 and extend through the bottom wall plate 1. The dry air fed through these tubes is cooled by contact with the inside walls of the tubes 8 and fins 22 and 23 which extend longitudinally of each tube so as to divide it into four sections. The tubes 8 which may properly be called air cooling tubes are surrounded-@ 93 aj porous material 9 below the water chamber a. The air circulating around the porous material 9 causes rapid evaporation of moisture from the material and becomes'partial-ly saturated, thereby cooling the tubes 8 by evaporation. For the proper feeding of water from chamber 4, the openings formed in plate 5 are larger in diameter than the tubes 8, but only a small fraction of an inch larger so that the water fed to chamber ii will only seep through the openings around the tubes 8, as shown in Figure 6, sufliciently to merely moisten the porous covering 9 fastened around the tubes. To regulate the water level of tank or chamber 4 a float valve I8 is connected to water pipe IS.
The foregoing form as described involves the same principle of operation as the form shown and described in Figures 3, 4 and 5. The latter differs only in that the tubes 8 are elongated so as to project through 3 sections or units A, B and C instead of one unit as shown in Figure 1. The object being to reduce the temperature of the dry air with each section, thereby making the air of the second section colder than the first section and so on. The colder dry air having a greater density than the warmer air as first introduced into the tubes of section A will feed downward until it reaches the third and last section C. At this point the air will naturally be coldest and a fraction of dry air is then turned and fed upwardly through air duct through the evaporating chambers I of each section A, B and C and around the baflies Illa, Ila and I 2b. The dry air fed upwardly through duct 25 will fraction 01? into approximately three parts. One third entering section C at port 21 -as indicated by the arrows and around the bafil'es to vent duct 30. Another one-third enters a port 28 and through section B to the vent duct and the final fraction enters at port 29 and is fed through the section A to vent duct 30. The duct 30 serves as a common exit for the air from all three sections and may be provided with a suction fan 3| to speed the fiow of air through the evaporation chambers A, B and C to increase evaporation and is vented outside of the space to be cooled. The air as it is3;-fed and drawn upwardly through each of the three sections will cause very rapid evaporation of the moisture in the porous material 9 around the tubes 8a, especially rapid because it is dry air. The temperature of the air fed through my apparatus is reduced at each recirculation and hence I am enabled to produce air of a colder temperature at the end of each circulation. Inasmuch as the diiference between a wet and a dry bulb is relative, the lower the temperature of the dry air used in the evaporating process, the lower will be the final temperature.
To summarize the operation of the unit shown in Figure 1, dry air is fed by fan I5 through tubes 8. The dry air so fed now emerges from the tubes below the plate 'I of casing I and a fraction of the said air is turned by cup member or members 2| and fed through the evaporation chamber I around tubes 8 and their moist coverings 9 and around the baflies I0, II and I2 in a zig-zag course. The air thus fed causes evaporation of the moisture in material 9 and becomes saturated to a degree, thereby cooling the dry air feeding through the tubes indirectly. The evaporation cools the tube walls and fins 22 and 23 inside the tubes, with which the dry air contacts. The major portion of the dry air discharges into the lower part of the space to be cooled and by gravity or the aid of fan I5 is returned for recirculation. The minor portion of the dry air enters the evaporating chambers and is ejected from the space to be cooled, being replaced by air seeping into or being admitted by a duct for that purpose The modified form of Figure 5 operates in the same way and only difiers in that it has an additional air duct 25 mounted on the opposite side from the vent duct or stack 30. This is done to provide for dividing the air into. thirds to equal the number of sections used and to limit the proportional amount of air fed to each evaporating section. If five sections were used instead of three as shown in the drawings, the vent 25 would have five ports opening therefrom, one into each section. The air from each section is then fed into the duct 30 for exhaust.
While I have shown and described two particular forms of apparatus for carrying out my method, it is apparent that many changes may be made without departing from the spirit of the invention.
What I claim is: 1. A cooling device comprising an evaporation chamber, a liquid compartment within the evaporation chamber, air conduits partly covered with porous material extending through the evaporation chamber and liquid compartment and means to deflect a portion of the air emerging from the conduits through the evaporation chamber and around the air conduits for ejection to the atmosphere.
2. A cooling apparatus comprising an evaporating chamber, air conduits partly covered with porous material extending through theevaporating chamber, a liquid containing compartment within the evaporating chamber adapted'to feed liquid to the covered portion of said conduits and cup members formed around the ends of a portion of said air conduits to direct said air through the evaporating chamber.
3. A cooling apparatus comprising a casing, a
liquid container within the casing, an evaporation chamber within the casing below the said liquid container, air conduits extending through the evaporation chamber, fins secured inside of said air conduits and longitudinally thereof, porous material surrounding and spaced from said air conduits below the said liquid container, said liquid container being adapted to dispense and maintain a thin film of fiuid around the air conduits to moisten the porous material spaced from said conduits, air feeding means for forcing dry atmospheric air through the air conduits and deflecting means below a portion of said air conduits to direct a fraction of said air through the evaporation chamber to cool said air conduits.
4. An air cooling apparatus, comprising an evaporation chamber, air passages open to the atmosphere extending therethrough, air directing means mounted above the said air passages adapted to force air through the air passages, a porous medium mounted and spaced around each of said air passages within the evaporation chamber, a water feed chamber above the porous mediums, and means below a portion of said air passages adapted to turn a fraction of the air forced through the said air passages by the said first named means through the evaporation chamber for contact with the said porous mediums.
5. A cooling device comprising a series of evaporation chambers, air passages extending through the evaporation chambers and partly covered with porous material, a blower mounted at an end of the said air passages, deflecting means adapted to direct a portion of the air emerging from said air passages into each of said series of evaporation chambers and an elongated air duct extending from the top portion of the first evaporation chamber of said series adjacent each evaporation chamber with ports formed therein, whereby the air directed through the respective evaporation chambers by the said deflecting"
US21652A 1935-05-15 1935-05-15 Cooling apparatus Expired - Lifetime US2074642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US21652A US2074642A (en) 1935-05-15 1935-05-15 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21652A US2074642A (en) 1935-05-15 1935-05-15 Cooling apparatus

Publications (1)

Publication Number Publication Date
US2074642A true US2074642A (en) 1937-03-23

Family

ID=21805414

Family Applications (1)

Application Number Title Priority Date Filing Date
US21652A Expired - Lifetime US2074642A (en) 1935-05-15 1935-05-15 Cooling apparatus

Country Status (1)

Country Link
US (1) US2074642A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2445199A (en) * 1943-12-22 1948-07-13 Niagara Blower Co Apparatus for evaporative cooling of liquids
US2454883A (en) * 1943-12-22 1948-11-30 Niagara Blower Co Apparatus for cooling compressed gases
US4090370A (en) * 1976-03-11 1978-05-23 Vaughan Kenneth F Environmental control system
USRE32461E (en) * 1973-06-11 1987-07-21 Modular dry-air evaporative cooler
EP0388471A1 (en) * 1988-08-26 1990-09-26 Kievsky Politekhnichesky Institut Imeni 50-Letia Velikoi Oktyabrskoi Sotsialisticheskoi Revoljutsii Method and apparatus for indirect evaporation cooling
US5076347A (en) * 1990-11-19 1991-12-31 Coolex, Inc. Indirect evaporative cooler
WO2000011422A1 (en) * 1998-08-19 2000-03-02 Chill B.V. Device for chilling air

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2445199A (en) * 1943-12-22 1948-07-13 Niagara Blower Co Apparatus for evaporative cooling of liquids
US2454883A (en) * 1943-12-22 1948-11-30 Niagara Blower Co Apparatus for cooling compressed gases
USRE32461E (en) * 1973-06-11 1987-07-21 Modular dry-air evaporative cooler
US4090370A (en) * 1976-03-11 1978-05-23 Vaughan Kenneth F Environmental control system
EP0388471A1 (en) * 1988-08-26 1990-09-26 Kievsky Politekhnichesky Institut Imeni 50-Letia Velikoi Oktyabrskoi Sotsialisticheskoi Revoljutsii Method and apparatus for indirect evaporation cooling
EP0388471A4 (en) * 1988-08-26 1991-07-17 Kievsky Politekhnichesky Institut Imeni 50-Letia Velikoi Oktyabrskoi Sotsialisticheskoi Revoljutsii Method and apparatus for indirect evaporation cooling
US5076347A (en) * 1990-11-19 1991-12-31 Coolex, Inc. Indirect evaporative cooler
WO2000011422A1 (en) * 1998-08-19 2000-03-02 Chill B.V. Device for chilling air

Similar Documents

Publication Publication Date Title
US3116612A (en) Air conditioning by evaporative pad means
US2319091A (en) Egg container and method of operating the same
US2074642A (en) Cooling apparatus
US3541807A (en) Air drying device
US2111148A (en) Drier
US3214936A (en) Dry-air evaporative cooler
US4674295A (en) Evaporative air conditioner and method
US1994515A (en) Air conditioning system
US2525045A (en) Cooling air
US2048694A (en) Air conditioner
US2488116A (en) Refrigerator chamber cooled by evaporization of liquid by a current of air
US1808982A (en) Air conditioner
US2414135A (en) Cooling of gases or liquids
US2175758A (en) Air conditioning apparatus
US2541861A (en) Panel cooling system
US2045215A (en) Cooling apparatus
US2342689A (en) System for cooling and humidifying air
US1919197A (en) Air conditioning system
US2064808A (en) Air conditioning
US2023876A (en) Air cooling apparatus
US2303809A (en) Device for moistening paper, fabrics, and like weblike material
US2249625A (en) Apparatus for drying
USRE20933E (en) Apparatus and process for condition
US1909823A (en) Method and apparatus for conditioning air
US1715753A (en) Air-cooling device