US2038240A - Transmission system - Google Patents
Transmission system Download PDFInfo
- Publication number
- US2038240A US2038240A US752921A US75292134A US2038240A US 2038240 A US2038240 A US 2038240A US 752921 A US752921 A US 752921A US 75292134 A US75292134 A US 75292134A US 2038240 A US2038240 A US 2038240A
- Authority
- US
- United States
- Prior art keywords
- conductor
- sections
- coaxial
- line
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
Definitions
- This invention relates to conducting systems wholly satisfactory since the flexibility of the for the transmission of intelligence and more cable is thereby reduced and the cost of the conparticularly to such systems wherein one conducting material, already the major item of exductor serves as a coaxial return for another. sense in a system of this type, is increased.
- An object of the invention is to reduce the effect In accordance with the present invention, it is 5 of signals in a coaxial conductor transmission proposed to vary from section to section along a line on adjacent signaling circuits.
- Another coaxial conductor line the phase change of waves object is to reduce the disturbing effects of extransmitted transversely through the outer contraneous electric and magnetic fields on a coaxial ductor, in such manner that the fields created by conductor transmission system.
- a more parsignals in successive sections induce in adjacent 1 ticular object of the invention is to reduce the circuits waves that tend to neutralize each other. mutually disturbing effects of signal induction
- the conductor type in a coaxial conductor line so debetween parallel signaling circuits of the coaxial si d in acco dance With the invention the conductor type.
- the 15 invention is to make possible a reduction in the required transverse phase change may be obthickness of the return conductor of a coaxial tained by proper selection of the thickness, consystem without permitting interference to beductivity or permeability of the outer conductor. come excessive,
- the signaling waves traversing the outer con- A signaling line suitable for the transmission ductor of a coaxial pair are largely concentrated 20 of frequencies of the order of a megacycle per at the inner surface of that conductor.
- transverse phase change can be controlled determined not by the level of static and crossby varying the thickness, conductivity or pertalk as in other systems, but only by the resistance meability of the outer conductor or any comnoise of the conducting material and interference bination of these three factors.
- external sources of interductor line may be divided into a plurality of ference may be so powerful or so near the signallongitudinal sections and the physical properties ing line that the level of interference becomes of successive sections so chosen that the waves objectionably high.
- Such a condition might be extending from the outer conductor of one sec- -15 found, for example, where the transmission line tion are in phase opposition to those extending passes in the immediate vicinity of a powerful from the outer conductor of adjacent sections. radio broad-casting station.
- Fig. 1 illustrates the invention as embodied in a. single coaxial conductor line
- Fig. 2 shows schematically the application of the invention to a plurality of adjacent coaxial conductor lines.
- the effective thickness of the outer conductor of a coaxial pair is defined by where t is the actual thickness of the outer conductor in centimeters and A and are, respectively, the conductivity and the permeability in electromagnetic units of the material comprising the outer conductor and f is the frequency, then, if h is greater and 1r, the distributed mutual impedance Z12 between two coaxial pairs in metallic contact can be represented approximately in the following form:
- Equation ('75) of the paper referred to gives an accurate expression for the surface transfer impedance Zab which is shown in simplified form in Equation (82).
- the distributed mutual impedance of two coaxial pairs is equal to the product of the surface transfer impedances of their outer members and a quantity which depends upon the separation of the two pairs. If the two lines are alike, therefore, it follows that the expression for the distributed mutual impedance is of the form indicated in Equation (2).
- Equation (2) The quantity A lumps together several factors that are substantially independent of h.
- Equation (2) it is assumed that the outer conductors of both coaxial pairs are equally thick; if they are not equally thick, the quantity 2h should be replaced by the sum of the effective thicknesses of the outer conductors of the two pairs.
- the magnitude of the total mutual impedance is equal to PQ.
- P and Q can be made equal and the coupling thereby reduced to zero by properly relating the lengths of the two sections.
- the lengths of the sections having mutual impedances P and Q, respectively should be in the ratio of m to 65.
- the lesser shielding efficiency of the section having the smaller effective thickness is compensated by lesser length, so that the magnitudes of the mutual impedances of the two sections are made equal.
- crosstalk will be a minimum, then, when in one section the sum of the effective thicknesses of the two outer conductors differs by 1r or an odd multiple thereof from the sum of the effective thicknesses of the two outer conductors in the next successive section.
- Case 1 is illustrated in Fig. 1 of the drawing.
- Two coaxial conductor lines, I and 2 are shown, each connected to a respective source 3, 4 of high frequency signaling waves.
- the wave sources may be, for specific example, the terminal circuits of a multiplex two-way carrier telephone system operating over a frequency range of from fifty to five hundred kilocycles per second as described in U. S. Patent 1,978,419, October 30, 1934 to H. W. Dudley.
- Line I comprising central conductor 5, outer conductor 6, and separators I, is indicated as being quasi-transposed at intervals, whereas line 2, similar in other respects, is not.
- the quasi-transposition system is designed to be of maximum effectiveness at some frequency in the lower portion of the signaling spectrum, let us assume for purposes of further discussion, the lowest frequency, fifty kilocycles per second.
- the average length of the sections may be chosen almost at will, the only limitation being that there be a sufiicient number of sections per wave-length at fifty kilocycles that within any section the system shall not lose its effectiveness by reason of phase reversal in the longitudinal transmission.
- the outer conductor of the quasitransposed line is a copper tube 50 mils in thickness in one section.
- the effective thickness h is, as given by Equation (1)
- the effective thickness h of the adjacent section is determined by the condition Solving this equation for t", the actual thickness of the conductor,
- Complete quasi-transposition can be effected at a plurality of frequencies, however, if conductor sections of more than two different thicknesses are employed. Thus if two non-identical pairs of sections balanced at some one frequency are connected in tandem, they can be so designed as to be mutually balanced at some second frequency.
- a composite outer conductor consisting of two or more layers of material having different electromagnetic constants may be designed to provide the desire-d phase change, in this case due account being taken of the reflection taking place between different media.
- Iron, lead or aluminum for example, might be deposited electrolytically on the surface of a hollow copper cylinder, or the material might be provided in tape form and wrapped about the outer conductor.
- the latter construction is preferred where the outer conductor is a composite one, as shown, for example, in U. S. Patent 2,018,477, October 22, 1935, to J. F. Wentz.
- the lengths of the sections in each line should not be the same as those of the paralleling sections in the adjacent lines, else the effect of a phase reversal in one line may be offset by the effect of a similar phase reversal in another line.
- the desired result may be obtained by employing different lengths of sections in the sev eral lines or by disposing the sections in accordance with schemes analogous to those employed for the transposition of open-wire lines.
- Fig. 2 shows schematically a system of quasitransposition that might be employed in the case of a six-pair cable.
- the transposition points therein indicated represent the junctions of the several sections of the conductors.
- the system of transposition may be varied or extended in accordance with the number of conductors in the cable.
- a high frequency signaling system comprising a coaxial conductor transmission line divided into a multiplicity of successive sections, the effective thickness of the outer conductor of said line in adjacent sections difiering by 1r or an odd multiple thereof, at the lowest signaling frequency transmitted.
- a high frequency signaling system comprising a coaxial conductor transmission line, the material comprising the outer conductor of said line being uniform in conductivity and permeability and the thickness of said outer conductor differing in successive sections of said line by Mix r where A and a are the conductivity and permeability, respectively, of said material and f is the signaling frequency at which interference is most severe.
- a high frequency signaling system comprising a coaxial conductor transmission line, the thickness of the outer conductor of said line and the electromagnet constants of the material comprising said outer conductor being so related in successive sections of said line that the effective thickness of said outer conductor varies from section to section and waves induced in one of said sections from an external interfering source are opposed by other waves induced in adjacent sections from said source.
- a multiplex carrier telephone signaling systern comprising two adjacent coaxial conductor transmission lines, both of said lines being divided similarly into a plurality of successive sections, the combined electrical thickness of the two outer conductors of said lines differing in successive sections by 7r or an odd multiple thereof at the lowest signaling frequency transmitted, the length of said sections being a fraction of a wave-length at said lowest signaling frequency.
- a high frequency signaling system comprising a plurality of pairs of parallel coaxial conductor transmission lines, each of said lines being divided into a plurality of sections of which adjoining ones are unequal in electrical thickness, the electrical thickness at a predetermined signaling frequency and the lengths of all of said sections being so interrelated that inter-pair induction in one section of each of said lines is counteracted by inter-pair induction in another section of the same line.
Landscapes
- Waveguides (AREA)
Description
Apr-51H 21 19% S. A. ECEIELKUNOFF TRANSMIS S ION SYSTEM Filed Nov. 14, 1934 FIG. 2
INI/ENTOR 5.14. SCHELKUWUFF ATTORNEY Patented Apr. 21, 1936 UNITED STATES PATENT OFFICE TRAN SMIS SION SYSTEM Sergei A. Schelkunoff, New York, N. Y., assignor to Bell Telephone Laboratories, Incorporated, New York, N. Y., a corporation of New York Application November 14, 1934, Serial No. 752,921
Claims. (Cl. 178-44) This invention relates to conducting systems wholly satisfactory since the flexibility of the for the transmission of intelligence and more cable is thereby reduced and the cost of the conparticularly to such systems wherein one conducting material, already the major item of exductor serves as a coaxial return for another. sense in a system of this type, is increased.
An object of the invention is to reduce the effect In accordance with the present invention, it is 5 of signals in a coaxial conductor transmission proposed to vary from section to section along a line on adjacent signaling circuits. Another coaxial conductor line the phase change of waves object is to reduce the disturbing effects of extransmitted transversely through the outer contraneous electric and magnetic fields on a coaxial ductor, in such manner that the fields created by conductor transmission system. A more parsignals in successive sections induce in adjacent 1 ticular object of the invention is to reduce the circuits waves that tend to neutralize each other. mutually disturbing effects of signal induction Conversely, in a coaxial conductor line so debetween parallel signaling circuits of the coaxial si d in acco dance With the invention the conductor type. Waves induced in the line by external fields are In another aspect, the object of the present mutually opposing in successive sections. The 15 invention is to make possible a reduction in the required transverse phase change may be obthickness of the return conductor of a coaxial tained by proper selection of the thickness, consystem without permitting interference to beductivity or permeability of the outer conductor. come excessive, The signaling waves traversing the outer con- A signaling line suitable for the transmission ductor of a coaxial pair are largely concentrated 20 of frequencies of the order of a megacycle per at the inner surface of that conductor. They second has been found to be one comprising a extend outward too, but with diminishing intencentral conductor and a tubular or shell-like sity, to the outer surface of the conductor and return conductor maintained in coaxial relation from that Outer Surface they eXteIld o a by with the first conductor and separated from it circuits where they induce disturbing currents. 25 by a dielectric that is substantially gaseous. The The rate of transve s D p O fIOm e outer conductor, since it completely surrounds inner surface to the outer surface, is slow comthe central conductor and is normally grounded, pa d With e rate of propagation of the Waves affords almost perfect shielding against external longitudinally of the conductor or through space,
electric disturbances. External magnetic fields, and the phase of the waves at the outer surface 30 because of the arrangement of the conductors, may therefore be quite different from that at the also have little effect on the system, at least at n e su Calculations ShOW, for p high frequencies. Where the conductors are that in cylind pp S s greater than ten thick enough to be mechanically self-supporting mils in thickness the phase shift at forty thousand the shielding may be so efficient, in fact, that the cycles per second is 0.077 radian per mil. The 35 extent to which signals may be attenuated is precise transverse phase change can be controlled determined not by the level of static and crossby varying the thickness, conductivity or pertalk as in other systems, but only by the resistance meability of the outer conductor or any comnoise of the conducting material and interference bination of these three factors.
from sources inherent in the system. Applicant has discovered that a coaxial con- 0 In some situations external sources of interductor line may be divided into a plurality of ference may be so powerful or so near the signallongitudinal sections and the physical properties ing line that the level of interference becomes of successive sections so chosen that the waves objectionably high. Such a condition might be extending from the outer conductor of one sec- -15 found, for example, where the transmission line tion are in phase opposition to those extending passes in the immediate vicinity of a powerful from the outer conductor of adjacent sections. radio broad-casting station. Where also a multi- The waves induced in successive portions of plicity of coaxial conductor pairs are brought tonearby conductors are then likewise in phase opgether to form a cable as disclosed in U. S. Patent position and tend to neutralize each other, thus 1,978,418, October 30, 1934 to H. W. Dudley, mureducing the resultant disturbing current reach- 50 tual induction between circuits becomes a serious ing the terminals of those conductors. consideration, in some cases determining the Conversely, extraneous fields linking successive frequency range that may be utilized. Increasing sections of a coaxial conductor line designed in the thickness of the outer conductor alleviates accordance with the invention generate in the the difficulty, but as a practical matter itis not main current path of the outer conductor waves 55 that are mutually opposing so that the resultant disturbing effect of the field is diminished.
The principles underlying the present invention will more fully appear from the mathematical treatment herein to follow. Other objects, features, modifications and applications of the invention will also be set forth, reference being made to the accompanying drawing, in which:
Fig. 1 illustrates the invention as embodied in a. single coaxial conductor line; and
Fig. 2 shows schematically the application of the invention to a plurality of adjacent coaxial conductor lines.
The factors and relations involved in the design of a coaxial conductor system in accordance with the present invention may be arrived at by considering the mathematical expression for the distributed mutual impedance between one coaxial pair and an adjacent coaxial pair.
If the effective thickness of the outer conductor of a coaxial pair is defined by where t is the actual thickness of the outer conductor in centimeters and A and are, respectively, the conductivity and the permeability in electromagnetic units of the material comprising the outer conductor and f is the frequency, then, if h is greater and 1r, the distributed mutual impedance Z12 between two coaxial pairs in metallic contact can be represented approximately in the following form:
(2) Z12=Ae [cos 2h-z' sin 2h] abohms per cm.
If a single coaxial line is considered,
(2a) Z12=Ar [cos h-i sin It] abohms per cm.
These equations for distributed mutual impedance may be derived from those found in applicants paper on the Electromagnetic theory of coaxial transmission lines and cylindrical shields published in the Bell System Technical Journal, ()ctober 1934. Thus, Equation ('75) of the paper referred to gives an accurate expression for the surface transfer impedance Zab which is shown in simplified form in Equation (82). In the latter equation the expression of is the same as h+ih. If it be assumed that the electrical thickness h is large enough to make 6- small by comparison with unity, then csch h=2 r and Equation (82) becomes Z,,;,=7r7E e' (cos h--i sin 11) The relation to Equation (2a) is apparent.
The distributed mutual impedance of two coaxial pairs is equal to the product of the surface transfer impedances of their outer members and a quantity which depends upon the separation of the two pairs. If the two lines are alike, therefore, it follows that the expression for the distributed mutual impedance is of the form indicated in Equation (2). The quantity A lumps together several factors that are substantially independent of h.
In Equation (2) it is assumed that the outer conductors of both coaxial pairs are equally thick; if they are not equally thick, the quantity 2h should be replaced by the sum of the effective thicknesses of the outer conductors of the two pairs.
If we now treat the two coaxial pairs as divided into a plurality of axially successive sections, the
mutual impedance for two such sets of parallel sections can be represented, respectively, as:
(3) P [cos 1+2 sin a] and Q [cos n+1 sin 5] where a is the effective thickness for one set of sections and ,8 for the other. P and Q, representing the respective magnitudes of these vector quantities, each obviously depends on the combined thickness of outer conductors in the corresponding set of sections. P and Q are in fact very nearly proportional to r and 6 B, respectively. Each varies also directly as the length of the section.
The mutual impedance of the two sets of sections in tandem is (4) [P cos m-i-Q cos 5]+i[P sin a-l-Q sin ,8]
the magnitude of which may be expressed as:
The last equation shows that the magnitude of the total mutual impedance is:
(A) Maximum, if the difference between a and [3 is zero or any even multiple of 1r; and
(B) Minimum, if this difference is 1r or any odd multiple of 1r.
In the second case, that giving minimum coupling, the magnitude of the total mutual impedance is equal to PQ. P and Q can be made equal and the coupling thereby reduced to zero by properly relating the lengths of the two sections. Specifically, the lengths of the sections having mutual impedances P and Q, respectively, should be in the ratio of m to 65. Thus, the lesser shielding efficiency of the section having the smaller effective thickness is compensated by lesser length, so that the magnitudes of the mutual impedances of the two sections are made equal.
Continuing to confine our attention to the case of two parallel coaxial conductor pairs, crosstalk will be a minimum, then, when in one section the sum of the effective thicknesses of the two outer conductors differs by 1r or an odd multiple thereof from the sum of the effective thicknesses of the two outer conductors in the next successive section.
Mathematically expressed:
This condition permits a wide latitude in design, ranging from the case (1) where one outer conductor is uniform in electrical and physical thickness throughout its length and the other conductor is divided into a plurality of sections each differing in electrical thickness from the two adjoining sections by 1r or an odd multiple thereof, to the case (2) where the outer conductors of both pairs vary in electrical thickness, and in identical manner, from section to section along the line, successive sections of each outer conductor in this case differing from each other in electrical thickness by or if 1r 5 or by a l-Zak,
(1) that a coaxial pair to which a system of quasitransposition has been applied as there set forth will be immune not only from adjacent untransposed signaling pairs but also from such sources of interference as nearby radio transmitters. This is true because the interfering waves can be assumed toarrive in substantially the same phase at each pair of successive sections within that portion of line seriously affected.
Case 1 is illustrated in Fig. 1 of the drawing. Two coaxial conductor lines, I and 2, are shown, each connected to a respective source 3, 4 of high frequency signaling waves. The wave sources may be, for specific example, the terminal circuits of a multiplex two-way carrier telephone system operating over a frequency range of from fifty to five hundred kilocycles per second as described in U. S. Patent 1,978,419, October 30, 1934 to H. W. Dudley. Line I, comprising central conductor 5, outer conductor 6, and separators I, is indicated as being quasi-transposed at intervals, whereas line 2, similar in other respects, is not.
The quasi-transposition system is designed to be of maximum effectiveness at some frequency in the lower portion of the signaling spectrum, let us assume for purposes of further discussion, the lowest frequency, fifty kilocycles per second. The average length of the sections may be chosen almost at will, the only limitation being that there be a sufiicient number of sections per wave-length at fifty kilocycles that within any section the system shall not lose its effectiveness by reason of phase reversal in the longitudinal transmission.
Assume that the outer conductor of the quasitransposed line is a copper tube 50 mils in thickness in one section. The effective thickness h is, as given by Equation (1) The effective thickness h of the adjacent section is determined by the condition Solving this equation for t", the actual thickness of the conductor,
or t 13.5 mils.
Having determined the thickness of the sections, it now remains to determine the relative lengths of adjacent sections. We have indicated that the lengths should be in the ratio e te That is, for the illustrative case assumed,
When the effective thickness h is less than 1r,
the formula for the mutual impedance is:
Where B is independent of the thicknesses of the outer conductors. The phase of the mutual impedance, it will be seen, changes with effective thickness. Hence, again, the transverse phase change in successive sections of the coaxial conductor'line may be adjusted in accordance with the invention to reduce interference.
Since electrical thickness depends upon frequency, the complete elimination of interference is obtained only at some one particular frequency. If the coaxial pairs are designed to give the most complete neutralization of interference at the lowest frequency of the signaling range, where interference is ordinarily most severe, then as the frequency increases the reduction in the neutralizing effect is compensated for by the general increase in the shielding effect of the outer conductor. The length of the section, as previously observed, should be small compared with the length of the lowest frequency wave.
Complete quasi-transposition can be effected at a plurality of frequencies, however, if conductor sections of more than two different thicknesses are employed. Thus if two non-identical pairs of sections balanced at some one frequency are connected in tandem, they can be so designed as to be mutually balanced at some second frequency.
A composite outer conductor consisting of two or more layers of material having different electromagnetic constants may be designed to provide the desire-d phase change, in this case due account being taken of the reflection taking place between different media. Iron, lead or aluminum, for example, might be deposited electrolytically on the surface of a hollow copper cylinder, or the material might be provided in tape form and wrapped about the outer conductor. The latter construction is preferred where the outer conductor is a composite one, as shown, for example, in U. S. Patent 2,018,477, October 22, 1935, to J. F. Wentz.
Where the invention is to be applied to reduce crosstalk between a plurality of coaxial conductor lines in close proximity to each other the lengths of the sections in each line should not be the same as those of the paralleling sections in the adjacent lines, else the effect of a phase reversal in one line may be offset by the effect of a similar phase reversal in another line. In general, the desired result may be obtained by employing different lengths of sections in the sev eral lines or by disposing the sections in accordance with schemes analogous to those employed for the transposition of open-wire lines.
Fig. 2 shows schematically a system of quasitransposition that might be employed in the case of a six-pair cable. The transposition points therein indicated represent the junctions of the several sections of the conductors. Obviously, the system of transposition may be varied or extended in accordance with the number of conductors in the cable.
Although in the foregoing discussion it has been assumed that successive sections of outer conductors are so designed that the interfering electromotive force from one section is exactly in phase opposition to the interfering electromotive force from an adjoining section, it is clear that a reduction in interference will be obtained so long as there is any relative phase difference between these waves. Other modifications and adaptations of the specific system that have been disclosed herein for purposes of illustration will occur to those skilled in the art and they are intended to be embraced by the appended claims.
In the claims the term effective thickness has the significance indicated by Equation (1).
What is claimed is:
1. A high frequency signaling system comprising a coaxial conductor transmission line divided into a multiplicity of successive sections, the effective thickness of the outer conductor of said line in adjacent sections difiering by 1r or an odd multiple thereof, at the lowest signaling frequency transmitted.
2. A high frequency signaling system comprising a coaxial conductor transmission line, the material comprising the outer conductor of said line being uniform in conductivity and permeability and the thickness of said outer conductor differing in successive sections of said line by Mix r where A and a are the conductivity and permeability, respectively, of said material and f is the signaling frequency at which interference is most severe.
3. A high frequency signaling system comprising a coaxial conductor transmission line, the thickness of the outer conductor of said line and the electromagnet constants of the material comprising said outer conductor being so related in successive sections of said line that the effective thickness of said outer conductor varies from section to section and waves induced in one of said sections from an external interfering source are opposed by other waves induced in adjacent sections from said source.
4. A multiplex carrier telephone signaling systern comprising two adjacent coaxial conductor transmission lines, both of said lines being divided similarly into a plurality of successive sections, the combined electrical thickness of the two outer conductors of said lines differing in successive sections by 7r or an odd multiple thereof at the lowest signaling frequency transmitted, the length of said sections being a fraction of a wave-length at said lowest signaling frequency.
5. A high frequency signaling system comprising a plurality of pairs of parallel coaxial conductor transmission lines, each of said lines being divided into a plurality of sections of which adjoining ones are unequal in electrical thickness, the electrical thickness at a predetermined signaling frequency and the lengths of all of said sections being so interrelated that inter-pair induction in one section of each of said lines is counteracted by inter-pair induction in another section of the same line.
SERGEI A. SCHEIKUNOFF.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US752921A US2038240A (en) | 1934-11-14 | 1934-11-14 | Transmission system |
FR797921D FR797921A (en) | 1934-11-14 | 1935-11-13 | Improvements made to concentric cables |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US752921A US2038240A (en) | 1934-11-14 | 1934-11-14 | Transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
US2038240A true US2038240A (en) | 1936-04-21 |
Family
ID=25028441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US752921A Expired - Lifetime US2038240A (en) | 1934-11-14 | 1934-11-14 | Transmission system |
Country Status (2)
Country | Link |
---|---|
US (1) | US2038240A (en) |
FR (1) | FR797921A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2419855A (en) * | 1939-06-22 | 1947-04-29 | Roosenstein Hans Otto | Arrangement adapted to suppress radio frequency currents on conductors |
US2518271A (en) * | 1945-02-07 | 1950-08-08 | Telecommunications Sa | Device for reduction of cross talk between two coaxial pairs of a telephone cable |
US2520945A (en) * | 1943-08-18 | 1950-09-05 | Sperry Corp | Wave transmission apparatus |
US2991336A (en) * | 1956-09-10 | 1961-07-04 | Insul 8 Corp | Electrical trolley systems, low reactance type |
US3017450A (en) * | 1957-07-19 | 1962-01-16 | Western Electric Co | Cables |
US3125199A (en) * | 1964-03-17 | Thompson | ||
US3764727A (en) * | 1972-06-12 | 1973-10-09 | Western Electric Co | Electrically conductive flat cable structures |
US6023201A (en) * | 1996-09-09 | 2000-02-08 | Alcatel Cit | Electrical signal transmission device protected against electromagnetic interference |
US6348651B1 (en) * | 2000-03-27 | 2002-02-19 | Hon Hai Precision Ind. Co., Ltd. | Twist pattern to improve electrical performances of twisted-pair cable |
US20030099190A1 (en) * | 2001-11-16 | 2003-05-29 | Zerbe Jared L. | Signal line routing to reduce crosstalk effects |
-
1934
- 1934-11-14 US US752921A patent/US2038240A/en not_active Expired - Lifetime
-
1935
- 1935-11-13 FR FR797921D patent/FR797921A/en not_active Expired
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3125199A (en) * | 1964-03-17 | Thompson | ||
US2419855A (en) * | 1939-06-22 | 1947-04-29 | Roosenstein Hans Otto | Arrangement adapted to suppress radio frequency currents on conductors |
US2520945A (en) * | 1943-08-18 | 1950-09-05 | Sperry Corp | Wave transmission apparatus |
US2518271A (en) * | 1945-02-07 | 1950-08-08 | Telecommunications Sa | Device for reduction of cross talk between two coaxial pairs of a telephone cable |
US2991336A (en) * | 1956-09-10 | 1961-07-04 | Insul 8 Corp | Electrical trolley systems, low reactance type |
US3017450A (en) * | 1957-07-19 | 1962-01-16 | Western Electric Co | Cables |
US3764727A (en) * | 1972-06-12 | 1973-10-09 | Western Electric Co | Electrically conductive flat cable structures |
US6023201A (en) * | 1996-09-09 | 2000-02-08 | Alcatel Cit | Electrical signal transmission device protected against electromagnetic interference |
US6348651B1 (en) * | 2000-03-27 | 2002-02-19 | Hon Hai Precision Ind. Co., Ltd. | Twist pattern to improve electrical performances of twisted-pair cable |
US20030099190A1 (en) * | 2001-11-16 | 2003-05-29 | Zerbe Jared L. | Signal line routing to reduce crosstalk effects |
US7706524B2 (en) * | 2001-11-16 | 2010-04-27 | Rambus Inc. | Signal line routing to reduce crosstalk effects |
US8442210B2 (en) | 2001-11-16 | 2013-05-14 | Rambus Inc. | Signal line routing to reduce crosstalk effects |
Also Published As
Publication number | Publication date |
---|---|
FR797921A (en) | 1936-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oliver | Directional electromagnetic couplers | |
US2769147A (en) | Wave propagation in composite conductors | |
US2243851A (en) | Wire line transmission | |
US2038240A (en) | Transmission system | |
US1996186A (en) | Transmission line conductor | |
Schelkunoff et al. | Crosstalk between coaxial transmission lines | |
US2424156A (en) | Apparatus for transmitting and receiving radio signals | |
US2086629A (en) | Shielded cable system | |
US1854255A (en) | Triple concentric conductor system | |
US2848695A (en) | Electromagnetic wave transmission | |
US2319744A (en) | Shielding for communication circuits | |
US2775740A (en) | Directional coupling systems | |
US2119853A (en) | Electric wave transmission system | |
US2034033A (en) | Shielded stranded pair | |
US2034032A (en) | Shielded pair of wires | |
Green et al. | The proportioning of shielded circuits for minimum high-frequency attenuation | |
US2210636A (en) | Guided wave transmission | |
US2034047A (en) | Coaxial circuit with stranded inner conductor | |
US2052317A (en) | Coaxial conductor transmission system | |
US1759332A (en) | Wave transmission circuit | |
US1933261A (en) | Shielding | |
US1781124A (en) | Concentric conducting system | |
US1978419A (en) | Transmission system | |
US2526942A (en) | Process for reducing the far-end crosstalk between concentric pairs due to tertiary circuits | |
US2110278A (en) | Translating circuit |