US2033561A - Method of packing wells - Google Patents

Method of packing wells Download PDF

Info

Publication number
US2033561A
US2033561A US734170A US73417034A US2033561A US 2033561 A US2033561 A US 2033561A US 734170 A US734170 A US 734170A US 73417034 A US73417034 A US 73417034A US 2033561 A US2033561 A US 2033561A
Authority
US
United States
Prior art keywords
well
valve
pressure
refrigerant
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US734170A
Inventor
Walter T Wells
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNICRAFT ENGINEERING Corp
Original Assignee
TECHNICRAFT ENGINEERING CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US642369A external-priority patent/US2033560A/en
Application filed by TECHNICRAFT ENGINEERING CORP filed Critical TECHNICRAFT ENGINEERING CORP
Priority to US734170A priority Critical patent/US2033561A/en
Application granted granted Critical
Publication of US2033561A publication Critical patent/US2033561A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D1/00Sinking shafts
    • E21D1/10Preparation of the ground
    • E21D1/12Preparation of the ground by freezing
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/001Cooling arrangements

Definitions

  • the present invention relates to a method of packing wells and is a division of my co-pendlng application entitled: Means for packing oil wells and the like; illed: November 12, 1932, Serial No. 642,369. l
  • the objects of my present invention are:
  • Figure 1 is a vertical cross sectional view of an apparatus designed to execute my method, showing the apparatus in position within a well bore;
  • Figure 2 is an enlarged sectional view thereof taken through 2-2 of Figure 1 illustrating particularlyV the check valve incorporated 'in the sampler means;
  • Figure 3 is a diagrammatical view illustrating a modification of my method wherein hydraulic pressure is utilized.
  • the numeral I indicates a tubing string lowered into a well bore 2, here shown as open formation, filled with drilling iiuid 3, and terminating below an oil producing stratum 4.
  • the device hereinafter described is operated in association with a divided tubing string wherein two sections of said tubing are provided with means permitting relative movement of the sections and said movement is utilized to expel a refrigerating agent for the purpose of solidifying all water bearing matter cognate to said tubing string.
  • member I2 Welded or suitably secured to member I2 is a cylinder head I3 to which is threaded, at I4, one end of a cylinder I6, the opposite end of which is threaded at Il to a cylinder head I8, provided with a packing gland I3 through which slides the tubing I.
  • the structure so far described provides a cylindrical chamber 2
  • the member I2 is threaded into a bore 23 in a connector 24. Said bore is enlarged from below and tapped to admit therein a threaded collar 26, a valve cage 21, and one end of a pipe 28 provided with perforations 23.
  • a rigid connection is thus formed between perforated pipe 28 and member I2 and it results from this that, when pipe 28 encounters the bottom of well 2, cylinder I6 is held stationary and the weight of the entire upper section of the tubing string I is eiective to move piston 8 through said cylinder and expel the refrigerant 22 through an expansion valve 3
  • a go-devil indicated in dotted lines at 43 is dropped through tubing string I, from the mouth of the well, and it strikes the top of a piston valve 44, which rests on said disc 42 and is thereby prevented from seating in its cage 21 until said disc is broken out as described.
  • Fluid continues to rise in the' tubing string until it reaches its normal head, being relieved of hydrostatic pressure of drilling fluid in the well by the frozen area 33.
  • piston valve 44 acts as a foot valve, entrapping the fluid content of the tubing, as the lower tapered end of said valve seats in cage 21 and closes channels 46.
  • Check valve 31 prevents escape of drilling fluid from cylinder I6 and said fluid, being entrapped, forms a connecting link between the upper and lower sections of tubing string I, automatically responsive to the first lifting strain.
  • Said check valve 31 also provides a means for applying pump pressure to piston 3 as shown in Figure 3.
  • a pump 43 is connected, by a pipe line 49, to the well 2 which is closed at the mouth as indicated at 5
  • the refrigerant may be introduced in the cylinder 2
  • the additional pressure need not be such as to heat the refrigerant materially; furthermore, the chamber 2
  • is designed to withstand this pressure.
  • the movement of the piston is gradual and the heat of compression is dissipated to the well fiuid as fast as it is generated so that the temperature of the refrigerant does not increase materially.
  • additional prure either hydraulically or by gravity is applied to open valve 3
  • valve 31 may be designed to remain closed against the pressure of the well nuid. After the refrigerator is in position the tubing string is moved downwardly shifting the piston a predetermined distance calculated to compress the refrigerant but not open valve 3
  • Pump pressure can also be applied to tubing string I to ush the formation below the frozen zone, or to increase pressure at that point.
  • a check valve 52 is provided in the piston valve v44 and said valve normally closes a port However when said check valve is unseated fluid enters the port 53 and finds its way through passages I3 which open into a bore l1 in valve cage 21, when the piston valve is seated in said cage.
  • pipe 23 can be removed from the foot member 24 and other anchoring means substituted therefor.
  • This fluid exerts pressure, dependent upon the height of the fiuid, which opposes the natural pressure of the oil or gas contained in the formation through which the well is being drilled.
  • Oil is usually encountered in formations at considerable depth and at pressures insumcient to overcome the pressure of the fluid in the well.
  • My apparatus is assembled as shown in Figure 1 and lowered into the well 2 on the lower end of tubing string I, the lower section of which is movable with respect to the upper section.
  • go-devil 43 When the well has been packed in this manner, go-devil 43 is dropped through tubing string I and -its impact shatters the frangible disc 42, opening the tubing string I to the inux of fluid from the formation 4. Said fluid, being now opposed by-no pressure other than atmospheric, rises within the tubing string I to its natural head or level.
  • the frozen pack A is allowed to thaw and the tubing string I is raised.
  • Foot valve 44 seats under pressure of the entrapped fluid sample in the tubing and said sample is lifted within s the string.
  • a cementitious material is introduced through the casing and allowed to set aroImd the casing and below its lower end for a considerable distance.
  • the cement plug so formed is then drilled through, the bore extending beyond the casing and into formation below.
  • the relatively small volume of iiuid between the casing and the drill stem need be solidified to effect a pack.
  • a quantity of refrigerant 22 is injected through a loading bore 59, Figure l, through the cylinder head I3, and said bore is closed by a plug 6I.
  • the device is lowered as before and the drilling fluid solidified at a point above the shoe of the casing, go-devil 43 is dropped to open the tubing string I to admit a sample of fluid through pipe 28.v
  • the seal is allowed to thaw and the entrapped sample recovered as previously described.
  • Removing coated accumulations from formation MIL- Formation walls become plastered or encrusted with drilling fluid which impedes filtration of oil into the bore.
  • the weight of the column of dense fluid and the action of the boring tool combine to produce this effect.
  • the accumulation contains water it can be removed by submitting it 'to -alternate freezing and thawing and the solid content of the encrustation will gravitate to the bottom of the well-leaving ⁇ the. formation wall in a better condition to exude oil.
  • Buch bodies can be fractures by expansive treatment a batch of refrigerant isolated from the surface, restrained in an inert condition but capable upon being released to absorb a predetermined quantity of heat; and then releasing said refrigerant charge to cause it to undergo-a single refrigerating cycle.
  • the method of obtaining fluid samples from liquid illled well bores characterized by: causing a refrlgerating charge to undergo a single refrigerating cycle while being dissipated and temporarily divide the well bore by .congelation into an upper and a lower zone; and then collecting a sample from the lower zone while the well bore is so divided.
  • the method ⁇ of obtaining fluid samples from liquid filled well bores characterized by: introducing above the region from which the sample is desired an isolated refrigerant charge restrained in an inert condition but capable of being released to absorb a suili'cient quantity of heat to divide by congelation the well bore into an upper and a lower zone; then collecting a sample from the lower zone.
  • the method of obtaining fluid samples from liquid filled well bores characterized by: introducing above the region from which Ythe sample is desired, a compressed refrigerant body isolated from the mouth of the well bore; then reducing the effective pressure against the refrigerant body whereby the refrigerant body is caused to absorb heat, the refrlgerating capacity of said refrigerant body being calculated to provide upon completing its refrigerating action a congelation plug dividing the well bore into an upper and a lower zone; then 'collecting a sample from the lower zone.
  • the method of producing such division of a well bore charactera fluid sample from the lower zone without du. ized by: introducing at the point ot division a placement oi' nuid from the upper none, char. refrigerant charge calculated to absorb suillcient terized by: causing a relrigerant to form by ⁇ heat from the surrounding formation while the congelation a plug dividing the well bore extecharge is being dissipated to divide temporarily riorly of the sampling device and above its inlet;

Description

March 10, 1936. w T. WELLS METHOD vOF PACKING WELLS Original Filed Nov. l
IN V EN TOR.
y WQL .75e TM/z/ S BY A TTOR EYS.
CII
soA
Patented Mar. 10, 1936 UNITED STATES METHOD F PACKING WELLS Walter T. Wells, Glendale, Calif., assignor to The Technicraft Engineering Corporation, Los Angeles, Calif., a corporation of California Original application November 12, 1932, Serial No.
Divided and this application July '1, l1934, Serial No. 734,1707L 9 Claims. (Cl. 16S- 21) The present invention relates to a method of packing wells and is a division of my co-pendlng application entitled: Means for packing oil wells and the like; illed: November 12, 1932, Serial No. 642,369. l
The objects of my present invention are:
First, to provide a method of this character which has a wide range of application, it being useful inperforming for such operations as formation testing or testing for shoe leaks, location of water intrusion in oil or gas wells, fractures in cement jobs, and segregation or orientation of oil or water producing zones in bores of great depth, breaking up cement that has been set to facilitate its removal, cleaning the well bore of mud accumulations, and many other uses;
Second, to provide a method of this character which is readily adaptable to and usable in conjunction with present-day oil well practice and requires a minimum of special equipment for its execution; and 4 Third, to provide a method of this character which may be easily and quickly executed.
With these and other objects in view as may appear hereinafter, attention is directed to the accompanying drawing in which Figure 1 is a vertical cross sectional view of an apparatus designed to execute my method, showing the apparatus in position within a well bore; Figure 2 is an enlarged sectional view thereof taken through 2-2 of Figure 1 illustrating particularlyV the check valve incorporated 'in the sampler means; and Figure 3 is a diagrammatical view illustrating a modification of my method wherein hydraulic pressure is utilized.
Referring to the drawing, the numeral I indicates a tubing string lowered into a well bore 2, here shown as open formation, filled with drilling iiuid 3, and terminating below an oil producing stratum 4.
The device hereinafter describedis operated in association with a divided tubing string wherein two sections of said tubing are provided with means permitting relative movement of the sections and said movement is utilized to expel a refrigerating agent for the purpose of solidifying all water bearing matter cognate to said tubing string.
But one string of tubing is employed and it serves several purposes. the well dry", that is to say, closed at the bottom to keep it empty of iluid as it is lowered into drilling iiuid or the like.
It thus provides a conduit for the discharge refrigerating agent at substantially atmospheric Said string is run intol pressure. When subsequently opened, it affords a means of communication with the producing zone below the frozen area for the recovery of a sample of fluid therefrom, and for circulating, from the mouth of the well, a stream of liquid to expedite thawing or to create hydraulic pressure in the zone below the frozen core. 'Ihe lower end of tubing I, (upper section) is threaded to receive collars 6 and 'I. Between said collars is a piston 8, provided with rings 9 and cup leathers II.
Slidable within the tubing is the upper end member I2 of the lower section of tubing string I.
. Welded or suitably secured to member I2 is a cylinder head I3 to which is threaded, at I4, one end of a cylinder I6, the opposite end of which is threaded at Il to a cylinder head I8, provided with a packing gland I3 through which slides the tubing I.
The structure so far described provides a cylindrical chamber 2| which is loaded, before the device is lowered into the well 2, with a refrigerant 22, which may be anhydrous ammonia, carbon dioxide, sulphur dioxide or other suitably equivalent.
The member I2 is threaded into a bore 23 in a connector 24. Said bore is enlarged from below and tapped to admit therein a threaded collar 26, a valve cage 21, and one end of a pipe 28 provided with perforations 23.
A rigid connection is thus formed between perforated pipe 28 and member I2 and it results from this that, when pipe 28 encounters the bottom of well 2, cylinder I6 is held stationary and the weight of the entire upper section of the tubing string I is eiective to move piston 8 through said cylinder and expel the refrigerant 22 through an expansion valve 3| which, under urge of -a spring 32, normally closes one end of a pipe coil 33, here shown as a double coil surrounding the member I2 and terminating in a valve cage 34.
As the weight of tubing string -I moves piston 8 downwardly the space behind said piston is illled with drilling uid 36, from well bore 2, which enters through passages 31 and 38 normally closed by a spring actuated check valve 39.
Therefrigerant 22, under pressure, unseats expansion valve 3|, passes through coil 33, lifts a flapper valve 4I (in valve cage 34) to its dotted line position and exhausts into member I2 of the dry tubing string.
The rapid expansion of the refrigerant, thus released, congeals the liquid surrounding the coil 33 and solidiiles an area of considerable size in the adJacent formation as indicated by the broken line shaded area A in Figure 1.
'I'his method of sealing or packing an open hole or formation bore, which has no casing, assures a fluid tight seal betwen the tubing string and a surrounding wall which is completely effective, irrespective of inequalities or irregularities of surface, or formation characteristics, which so often defeat mechanically operated packers.
'I'he tubing string I has been kept dry up to this point by a. membrane or disc 42 compressed between collar 26 and pipe 23 in a manner obstructing passage of liquid into member I2.
When the refrigerating action has taken place, a go-devil indicated in dotted lines at 43 is dropped through tubing string I, from the mouth of the well, and it strikes the top of a piston valve 44, which rests on said disc 42 and is thereby prevented from seating in its cage 21 until said disc is broken out as described.
As soon as said disc is broken, fluid in the zone below the frozen area is released at substantially atmospheric pressure, and it rushes into member i2 of the tubing string, lifting piston 44 until it abuts collar 26. Said piston is provided with quadrilaterally disposed channels 46, Figures 2 and 3, which communicate with a bore 41 in collar 26. f
Fluid continues to rise in the' tubing string until it reaches its normal head, being relieved of hydrostatic pressure of drilling fluid in the well by the frozen area 33.
When the pack thaws 33 suillciently to permit raising of the tubing string, piston valve 44 acts as a foot valve, entrapping the fluid content of the tubing, as the lower tapered end of said valve seats in cage 21 and closes channels 46.
Check valve 31 prevents escape of drilling fluid from cylinder I6 and said fluid, being entrapped, forms a connecting link between the upper and lower sections of tubing string I, automatically responsive to the first lifting strain.
Said check valve 31 also provides a means for applying pump pressure to piston 3 as shown in Figure 3. Should it be desirable to augment the pressure provided by the weight of tubing string I, a pump 43 is connected, by a pipe line 49, to the well 2 which is closed at the mouth as indicated at 5|. As the pump increases the pressure in the Well valve 3| is unseated and piston 3 moved downwardly to discharge refrigerant 22.
It is of course recognized that heat resulting from compressing of the refrigerant before opening of valve 3| must be dissipated to obtain an efficient refrigerating action in coil 33. This may be accomplished in several ways. First, the refrigerant may be introduced in the cylinder 2| under pressure; but such pressure being lower than that necessary to open valve 3|. Then upon applying additional pressure either through tubing string I or hydraulically through valve 31 the valve 3| is caused to open. The additional pressure need not be such as to heat the refrigerant materially; furthermore, the chamber 2| is quite elongated and the pressure therein may be maintained fairly uniform after the valve 3| is open so that a large percentage of such additional heat will be dissipated through the walls of the cylinder. Very little of this heat will be absorbed by the chilling coil as heat tends to be dissipated upwardly.
Second, as the refrigerator is lowered, the liquid in the well bore tends to maintain an equality `53 under urge of a spring 54.
of pressure between the exterior of the refrigerator and the upper end of the piston 3, providing valve 31 does not offer too much resistance. This pressure increase lifts the refrigerator structure relative to the tubing string moving the piston relatively downwardly and compressing the refrigerant. In this case as in the first, valve 3| is designed to withstand this pressure. The movement of the piston is gradual and the heat of compression is dissipated to the well fiuid as fast as it is generated so that the temperature of the refrigerant does not increase materially. When the refrigerator is in position, additional prure either hydraulically or by gravity is applied to open valve 3|.
Third. valve 31 may be designed to remain closed against the pressure of the well nuid. After the refrigerator is in position the tubing string is moved downwardly shifting the piston a predetermined distance calculated to compress the refrigerant but not open valve 3|, and is then held until the resulting heat is dissipated; whereupon the additional pressure is applied.
Pump pressure can also be applied to tubing string I to ush the formation below the frozen zone, or to increase pressure at that point.
A check valve 52 is provided in the piston valve v44 and said valve normally closes a port However when said check valve is unseated fluid enters the port 53 and finds its way through passages I3 which open into a bore l1 in valve cage 21, when the piston valve is seated in said cage.
'I'he piston valve 44, check 82, and cage 21 are also shown and described in my co-pending application for patents, filed September 6, 1932, Serial Number 631,781.
In order to prevent accumulation of frost around expansion valve 3| and its orifice I load coil 33 with an inert iiuid containing-no moisture. Said fluid is also placed in the lower portion of pipe I2 to a level indicated by the dotted line 5B, Figure 1. Said fluid is driven out of coil 32 by the release of refrigerant 22 ahead of piston 3.
It will be seen that pipe 23 can be removed from the foot member 24 and other anchoring means substituted therefor.
I employ a standard thread which makes possible the interchangeable use of either a rathole packer of the type illustrated in my copending application Serial Number 634,599, filed September 23, 1932, or a hook-wall packer such as is described in my application Serial Number 614,731, filed June 1st, 1932.
The operation of my invention is as follows:
Formation test-During the drilling of an oil well, the bit progresses into the ground or formation, passing through various strata. The object is to temiinate the well when a formation has been reached containing a supply of oil or gas in quantity suilicient for practical production. While the well is being drilled it contains a quantity of mud laden fiuid, known as drilling fluid.
This fluid exerts pressure, dependent upon the height of the fiuid, which opposes the natural pressure of the oil or gas contained in the formation through which the well is being drilled.
Oil is usually encountered in formations at considerable depth and at pressures insumcient to overcome the pressure of the fluid in the well.
As the driller does not know the depth at which oil may be present, and to prevent drilling on past an oil bearing stratum of formation without knowledge of its existence, a formation test is made to determine the productivity at a given depth. y
My apparatus is assembled as shown in Figure 1 and lowered into the well 2 on the lower end of tubing string I, the lower section of which is movable with respect to the upper section.
said movement being limited to .the degree of travel of piston 8 in cylinder I6.
When the lower end member 2l of the bottom section encounters the bottom of the well, the weight of the upper section moves piston 3 and displaces the refrigerant 22, the rapid dissipation of which lowers the temperature in the zone surrounding the coil 33 until a pack or seal A is solidified and seals off the drilling fluid 3 from formation below.
When the well has been packed in this manner, go-devil 43 is dropped through tubing string I and -its impact shatters the frangible disc 42, opening the tubing string I to the inux of fluid from the formation 4. Said fluid, being now opposed by-no pressure other than atmospheric, rises within the tubing string I to its natural head or level.
The frozen pack A is allowed to thaw and the tubing string I is raised. Foot valve 44 seats under pressure of the entrapped fluid sample in the tubing and said sample is lifted within s the string.
Water shut op* test.-Before a well is placed on a production basis, a string of casing is set and said casing is cemented around its shoe, or bottom end, and measures must be taken to ascertain the eiilcacy of said cement seal in excluding extrusion of water from upper levels into oil Yproducing formation. Laws, enacted in the interest of the eld as a whole, require .a test furnishing proof that this water shut oil! is complete.
A cementitious material is introduced through the casing and allowed to set aroImd the casing and below its lower end for a considerable distance. The cement plug so formed is then drilled through, the bore extending beyond the casing and into formation below. As it is impracticable to bail out the casing at great depths owing to danger of collapse of casing under external pressure it is necessary to pack within the casing and near the shoe and thereafter recover a sample of the content of formation below.
In this instance, the relatively small volume of iiuid between the casing and the drill stem need be solidified to effect a pack.
A quantity of refrigerant 22 is injected through a loading bore 59, Figure l, through the cylinder head I3, and said bore is closed by a plug 6I.
The device is lowered as before and the drilling fluid solidified at a point above the shoe of the casing, go-devil 43 is dropped to open the tubing string I to admit a sample of fluid through pipe 28.v The seal is allowed to thaw and the entrapped sample recovered as previously described. Y
Removing coated accumulations from formation MIL- Formation walls become plastered or encrusted with drilling fluid which impedes filtration of oil into the bore. The weight of the column of dense fluid and the action of the boring tool combine to produce this effect.
As the accumulation contains water it can be removed by submitting it 'to -alternate freezing and thawing and the solid content of the encrustation will gravitate to the bottom of the well-leaving` the. formation wall in a better condition to exude oil.
. Disintegrationbf cement bodies-It some-l times happens, in a cementing operation, that cement introduced in plastic state sets prematurely, or improperly, leaving an obstruction to re-cementing efforts. and not effectively preventing inilltration of water from above.
Buch bodies can be fractures by expansive treatment a batch of refrigerant isolated from the surface, restrained in an inert condition but capable upon being released to absorb a predetermined quantity of heat; and then releasing said refrigerant charge to cause it to undergo-a single refrigerating cycle.
2. The method of extracting heat from a predetermined section of ajwell bore characterized by: introducing opposite the section to undergo treatment a batch of refrigerant isolated from the surface; then influencing the. 'r frigerant body to cause it to undergo a refrigerat cycle.
3. The method of extracting heat from a predetermined section of a well bore characterized by: introducing opposite the section to undergo treatment a batch of compressed refrigerant isolated from the surface; then reducing the eifective pressure against the refrigerant body.
4. The method of forming a congelation plug in a well bore characterized by: introducing op posite a predeterminedv point in the well bore a batch of refrigerating material isolated from the surface and calculated to absorb suilicient heat from the surrounding formation while being dissipated to `divide temporarily by congelation said well bore into upper and lower zones.
5. The method of obtaining fluid samples from liquid illled well bores characterized by: causing a refrlgerating charge to undergo a single refrigerating cycle while being dissipated and temporarily divide the well bore by .congelation into an upper and a lower zone; and then collecting a sample from the lower zone while the well bore is so divided.
46. The method`of obtaining fluid samples from liquid filled well bores characterized by: introducing above the region from which the sample is desired an isolated refrigerant charge restrained in an inert condition but capable of being released to absorb a suili'cient quantity of heat to divide by congelation the well bore into an upper and a lower zone; then collecting a sample from the lower zone.
7. The method of obtaining fluid samples from liquid filled well bores characterized by: introducing above the region from which Ythe sample is desired, a compressed refrigerant body isolated from the mouth of the well bore; then reducing the effective pressure against the refrigerant body whereby the refrigerant body is caused to absorb heat, the refrlgerating capacity of said refrigerant body being calculated to provide upon completing its refrigerating action a congelation plug dividing the well bore into an upper and a lower zone; then 'collecting a sample from the lower zone.
8. In the art of obtaining fluid samples from well bores wherein the well bores are divided into upper and lower zones and the fluid samples are collected from the lower zones, the method of producing such division of a well bore charactera fluid sample from the lower zone without du. ized by: introducing at the point ot division a placement oi' nuid from the upper none, char. refrigerant charge calculated to absorb suillcient terized by: causing a relrigerant to form by `heat from the surrounding formation while the congelation a plug dividing the well bore extecharge is being dissipated to divide temporarily riorly of the sampling device and above its inlet;
said well bore into an upper and a lower zone. and discharging the dissipated refrigerant into 9. A method of dividing into an upper and the sampling device.
lower zone a well bore in which a sampling device WALTER 'n WELLS.
hasbeen positioned for the Purpose of obtaining
US734170A 1932-11-12 1934-07-07 Method of packing wells Expired - Lifetime US2033561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US734170A US2033561A (en) 1932-11-12 1934-07-07 Method of packing wells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US642369A US2033560A (en) 1932-11-12 1932-11-12 Refrigerating packer
US734170A US2033561A (en) 1932-11-12 1934-07-07 Method of packing wells

Publications (1)

Publication Number Publication Date
US2033561A true US2033561A (en) 1936-03-10

Family

ID=27093998

Family Applications (1)

Application Number Title Priority Date Filing Date
US734170A Expired - Lifetime US2033561A (en) 1932-11-12 1934-07-07 Method of packing wells

Country Status (1)

Country Link
US (1) US2033561A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2521294A (en) * 1944-09-25 1950-09-05 Eastman Oil Well Survey Co Well survey apparatus
US2552901A (en) * 1949-05-16 1951-05-15 Otis Pressure Control Inc Method of controlling wells
US2661066A (en) * 1948-06-26 1953-12-01 Pure Oil Co Increasing permeability of sands in oil, gas, and injection wells by forming solids in the strata
US2695063A (en) * 1950-06-13 1954-11-23 Stanolind Oil & Gas Co Method for completing wells
US2696260A (en) * 1950-06-13 1954-12-07 Stanolind Oil & Gas Co Apparatus for completing wells
US2772737A (en) * 1954-12-21 1956-12-04 Pure Oil Co Fracturing oil and gas producing formations
US3004601A (en) * 1958-05-09 1961-10-17 Albert G Bodine Method and apparatus for augmenting oil recovery from wells by refrigeration
US3194315A (en) * 1962-06-26 1965-07-13 Charles D Golson Apparatus for isolating zones in wells
US3301326A (en) * 1963-12-31 1967-01-31 Eline Acid Co Method for selectively increasing the porosity and permeability of subterranean geologic formations
US3439744A (en) * 1967-06-23 1969-04-22 Shell Oil Co Selective formation plugging
US3756317A (en) * 1972-02-09 1973-09-04 G Hall Method for cryogenically freeing drilling pipe
US4125159A (en) * 1977-10-17 1978-11-14 Vann Roy Randell Method and apparatus for isolating and treating subsurface stratas
US20080087427A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20080087426A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing a subsurface freeze zone using formation fractures
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20080230219A1 (en) * 2007-03-22 2008-09-25 Kaminsky Robert D Resistive heater for in situ formation heating
US20080283241A1 (en) * 2007-05-15 2008-11-20 Kaminsky Robert D Downhole burner wells for in situ conversion of organic-rich rock formations
US20080289819A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20090050319A1 (en) * 2007-05-15 2009-02-26 Kaminsky Robert D Downhole burners for in situ conversion of organic-rich rock formations
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US20100218946A1 (en) * 2009-02-23 2010-09-02 Symington William A Water Treatment Following Shale Oil Production By In Situ Heating
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US20110132600A1 (en) * 2003-06-24 2011-06-09 Robert D Kaminsky Optimized Well Spacing For In Situ Shale Oil Development
US20110146982A1 (en) * 2009-12-17 2011-06-23 Kaminsky Robert D Enhanced Convection For In Situ Pyrolysis of Organic-Rich Rock Formations
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2521294A (en) * 1944-09-25 1950-09-05 Eastman Oil Well Survey Co Well survey apparatus
US2661066A (en) * 1948-06-26 1953-12-01 Pure Oil Co Increasing permeability of sands in oil, gas, and injection wells by forming solids in the strata
US2552901A (en) * 1949-05-16 1951-05-15 Otis Pressure Control Inc Method of controlling wells
US2695063A (en) * 1950-06-13 1954-11-23 Stanolind Oil & Gas Co Method for completing wells
US2696260A (en) * 1950-06-13 1954-12-07 Stanolind Oil & Gas Co Apparatus for completing wells
US2772737A (en) * 1954-12-21 1956-12-04 Pure Oil Co Fracturing oil and gas producing formations
US3004601A (en) * 1958-05-09 1961-10-17 Albert G Bodine Method and apparatus for augmenting oil recovery from wells by refrigeration
US3194315A (en) * 1962-06-26 1965-07-13 Charles D Golson Apparatus for isolating zones in wells
US3301326A (en) * 1963-12-31 1967-01-31 Eline Acid Co Method for selectively increasing the porosity and permeability of subterranean geologic formations
US3439744A (en) * 1967-06-23 1969-04-22 Shell Oil Co Selective formation plugging
US3756317A (en) * 1972-02-09 1973-09-04 G Hall Method for cryogenically freeing drilling pipe
US4125159A (en) * 1977-10-17 1978-11-14 Vann Roy Randell Method and apparatus for isolating and treating subsurface stratas
US7631691B2 (en) 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20100078169A1 (en) * 2003-06-24 2010-04-01 Symington William A Methods of Treating Suberranean Formation To Convert Organic Matter Into Producible Hydrocarbons
US20080173443A1 (en) * 2003-06-24 2008-07-24 Symington William A Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US20110132600A1 (en) * 2003-06-24 2011-06-09 Robert D Kaminsky Optimized Well Spacing For In Situ Shale Oil Development
US8596355B2 (en) 2003-06-24 2013-12-03 Exxonmobil Upstream Research Company Optimized well spacing for in situ shale oil development
US8641150B2 (en) 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US20100089575A1 (en) * 2006-04-21 2010-04-15 Kaminsky Robert D In Situ Co-Development of Oil Shale With Mineral Recovery
US20090101348A1 (en) * 2006-10-13 2009-04-23 Kaminsky Robert D Method of Developing Subsurface Freeze Zone
US7516785B2 (en) 2006-10-13 2009-04-14 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US20080087426A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Method of developing a subsurface freeze zone using formation fractures
US20090107679A1 (en) * 2006-10-13 2009-04-30 Kaminsky Robert D Subsurface Freeze Zone Using Formation Fractures
US8104537B2 (en) 2006-10-13 2012-01-31 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US20100319909A1 (en) * 2006-10-13 2010-12-23 Symington William A Enhanced Shale Oil Production By In Situ Heating Using Hydraulically Fractured Producing Wells
US7647971B2 (en) 2006-10-13 2010-01-19 Exxonmobil Upstream Research Company Method of developing subsurface freeze zone
US7647972B2 (en) 2006-10-13 2010-01-19 Exxonmobil Upstream Research Company Subsurface freeze zone using formation fractures
US7669657B2 (en) 2006-10-13 2010-03-02 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US7516787B2 (en) 2006-10-13 2009-04-14 Exxonmobil Upstream Research Company Method of developing a subsurface freeze zone using formation fractures
US20100089585A1 (en) * 2006-10-13 2010-04-15 Kaminsky Robert D Method of Developing Subsurface Freeze Zone
US8151884B2 (en) 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20080087427A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20080230219A1 (en) * 2007-03-22 2008-09-25 Kaminsky Robert D Resistive heater for in situ formation heating
US9347302B2 (en) 2007-03-22 2016-05-24 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8622133B2 (en) 2007-03-22 2014-01-07 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
US8122955B2 (en) 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US20080283241A1 (en) * 2007-05-15 2008-11-20 Kaminsky Robert D Downhole burner wells for in situ conversion of organic-rich rock formations
US8151877B2 (en) 2007-05-15 2012-04-10 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
US20090050319A1 (en) * 2007-05-15 2009-02-26 Kaminsky Robert D Downhole burners for in situ conversion of organic-rich rock formations
US8875789B2 (en) 2007-05-25 2014-11-04 Exxonmobil Upstream Research Company Process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US20080289819A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Utilization of low BTU gas generated during in situ heating of organic-rich rock
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20090145598A1 (en) * 2007-12-10 2009-06-11 Symington William A Optimization of untreated oil shale geometry to control subsidence
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8230929B2 (en) 2008-05-23 2012-07-31 Exxonmobil Upstream Research Company Methods of producing hydrocarbons for substantially constant composition gas generation
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
US8616279B2 (en) 2009-02-23 2013-12-31 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US20100218946A1 (en) * 2009-02-23 2010-09-02 Symington William A Water Treatment Following Shale Oil Production By In Situ Heating
US8540020B2 (en) 2009-05-05 2013-09-24 Exxonmobil Upstream Research Company Converting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US20100282460A1 (en) * 2009-05-05 2010-11-11 Stone Matthew T Converting Organic Matter From A Subterranean Formation Into Producible Hydrocarbons By Controlling Production Operations Based On Availability Of One Or More Production Resources
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US20110146982A1 (en) * 2009-12-17 2011-06-23 Kaminsky Robert D Enhanced Convection For In Situ Pyrolysis of Organic-Rich Rock Formations
US8616280B2 (en) 2010-08-30 2013-12-31 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8622127B2 (en) 2010-08-30 2014-01-07 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en) 2014-11-21 2017-05-09 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en) 2014-11-21 2017-08-22 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation

Similar Documents

Publication Publication Date Title
US2033561A (en) Method of packing wells
US2033560A (en) Refrigerating packer
US1811560A (en) Method of and apparatus for recovering oil
US2775304A (en) Apparatus for providing ducts between borehole wall and casing
US2043225A (en) Method and apparatus for testing the productivity of the formation in wells
US5103911A (en) Method and apparatus for perforating a well liner and for fracturing a surrounding formation
US3277962A (en) Gravel packing method
US1342780A (en) Method and apparatus for shutting water out of oil-wells
US2675082A (en) Method for cementing oil and gas wells
US5890538A (en) Reverse circulation float equipment tool and process
US2214551A (en) Method and apparatus for taking samples
US2361558A (en) Hydraulic surge method
US2756828A (en) Completing oil wells
US2708000A (en) Apparatus for sealing a bore hole casing
US3720065A (en) Making holes in the ground and freezing the surrounding soil
US4488834A (en) Method for using salt deposits for storage
US1307027A (en) Method of excluding water from drilled wells for oil.
US2623595A (en) Well completion
US2959225A (en) Pressure-proportioning device
US3427653A (en) Methods for drill stem testing
US3126963A (en) Well completion tool
US2107327A (en) Method for cementing well casings
US3038539A (en) Method and apparatus for sampling well fluids
US2087297A (en) Method of shutting off water sands in wells
US4498541A (en) Method of well completion