US20240148662A1 - Methods and systems for making polymer microspheres - Google Patents
Methods and systems for making polymer microspheres Download PDFInfo
- Publication number
- US20240148662A1 US20240148662A1 US18/548,702 US202218548702A US2024148662A1 US 20240148662 A1 US20240148662 A1 US 20240148662A1 US 202218548702 A US202218548702 A US 202218548702A US 2024148662 A1 US2024148662 A1 US 2024148662A1
- Authority
- US
- United States
- Prior art keywords
- api
- polymer
- solution
- vessel
- dispersed phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 101
- 239000004005 microsphere Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000008186 active pharmaceutical agent Substances 0.000 claims abstract description 89
- 239000002904 solvent Substances 0.000 claims abstract description 31
- 238000000265 homogenisation Methods 0.000 claims abstract description 23
- 230000015556 catabolic process Effects 0.000 claims abstract description 21
- 238000006731 degradation reaction Methods 0.000 claims abstract description 21
- 229920002988 biodegradable polymer Polymers 0.000 claims abstract description 13
- 239000004621 biodegradable polymer Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 12
- 230000004660 morphological change Effects 0.000 claims abstract 3
- 239000000243 solution Substances 0.000 claims description 63
- 239000000203 mixture Substances 0.000 claims description 22
- 238000009472 formulation Methods 0.000 claims description 15
- 230000003068 static effect Effects 0.000 claims description 14
- 238000005086 pumping Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 8
- 229960005343 ondansetron Drugs 0.000 claims description 5
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229960001534 risperidone Drugs 0.000 claims description 4
- FELGMEQIXOGIFQ-CYBMUJFWSA-N (3r)-9-methyl-3-[(2-methylimidazol-1-yl)methyl]-2,3-dihydro-1h-carbazol-4-one Chemical compound CC1=NC=CN1C[C@@H]1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FELGMEQIXOGIFQ-CYBMUJFWSA-N 0.000 claims description 2
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 claims description 2
- 229960000715 nimodipine Drugs 0.000 claims description 2
- 229960005017 olanzapine Drugs 0.000 claims description 2
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 239000013256 coordination polymer Substances 0.000 abstract description 31
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 19
- 229940079593 drug Drugs 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000005538 encapsulation Methods 0.000 description 9
- 239000000725 suspension Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 4
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 2
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 2
- ITQTTZVARXURQS-UHFFFAOYSA-N 3-methylpyridine Chemical compound CC1=CC=CN=C1 ITQTTZVARXURQS-UHFFFAOYSA-N 0.000 description 2
- FKNQCJSGGFJEIZ-UHFFFAOYSA-N 4-methylpyridine Chemical compound CC1=CC=NC=C1 FKNQCJSGGFJEIZ-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- -1 poly(ortho ester) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- CTPDSKVQLSDPLC-UHFFFAOYSA-N 2-(oxolan-2-ylmethoxy)ethanol Chemical compound OCCOCC1CCCO1 CTPDSKVQLSDPLC-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- NEWKHUASLBMWRE-UHFFFAOYSA-N 2-methyl-6-(phenylethynyl)pyridine Chemical compound CC1=CC=CC(C#CC=2C=CC=CC=2)=N1 NEWKHUASLBMWRE-UHFFFAOYSA-N 0.000 description 1
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NCYVXEGFNDZQCU-UHFFFAOYSA-N nikethamide Chemical compound CCN(CC)C(=O)C1=CC=CN=C1 NCYVXEGFNDZQCU-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 229960001494 octreotide acetate Drugs 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229940106887 risperdal Drugs 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5031—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5089—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4178—1,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4422—1,4-Dihydropyridines, e.g. nifedipine, nicardipine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
- A61K31/5513—1,4-Benzodiazepines, e.g. diazepam or clozapine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/49—Mixing systems, i.e. flow charts or diagrams
Definitions
- Polymer microspheres can be used to deliver medication in a rate-controlled and sometimes targeted manner.
- medication is released from the polymer microsphere by an active pharmaceutical ingredient (an “API”) diffusing from the polymer, by degradation of the polymer matrix, or both.
- API active pharmaceutical ingredient
- a dispersed phase (a “DP”) and a continuous phase (a “CP”) are brought together at well-defined flow rates into a fluid shear stress zone to produce microspheres.
- the DP typically comprises the API dispersed or dissolved in an organic solution, along with a dissolved polymer.
- the CP typically comprises water and, optionally, a surfactant, such as polyvinyl alcohol (“PVA”).
- the API has been observed to cause degradation of the polymer while in the DP—that is, prior to formation of the polymer microspheres.
- the API has been observed that the drug engages in a nucleophilic attack on the polymer in solution, leading to degradation of the polymer and reduced or unpredictable drug release times.
- Risperdal® Consta® requires a high molecular weight polymer to overcome these issues.
- the API has been observed to undergo polymorphism of the API, e.g., shifting from one crystalline form to another or from a crystalline form to an amorphous form.
- polymorphism of the API e.g., shifting from one crystalline form to another or from a crystalline form to an amorphous form.
- non-dissolved drug crystal changes form while in the DP phase, which has a negative effect on the processability of the formulation.
- negative effects may include, for example, low encapsulation efficiencies and low batch yields.
- a “DP On-Demand” method for making API-encapsulated polymer microspheres.
- the method comprises: (A) preparing a DP, comprising the steps of: (1) dissolving an API in a first solvent in a first vessel to form an API solution; (2) dissolving a biodegradable polymer in a second solvent in a second vessel to form a polymer solution; (3) combining the API solution and the polymer solution; and (4) mixing the combined solution to form the DP; (B) introducing the DP into a homogenization unit, wherein the time between the combining and the introducing consists of a predetermined contact time that is sufficiently short that the biodegradable polymer does not undergo significant degradation attributable to the API, and the API does not undergo significant degradation or changes attributable to the polymer; (C) contacting the DP with a CP in the homogenization unit; and (D) homogenizing the combined DP and CP.
- a system for making API-encapsulated polymer microspheres.
- the system comprises: a first vessel, configured to contain and dispense an API solution; a second vessel, configured to contain and dispense a biodegradable polymer solution; a static mixer, configured to receive and mix the API solution and the polymer solution; a first pump, configured to pump the API solution from the first vessel to the static mixer; a second pump, configured to pump the polymer solution from the second vessel to the static mixer; a third vessel, configured to contain and dispense a CP; a homogenization unit; a third pump, configured to pump the continuous phase into the homogenization unit; a controller, configured to cause the first pump, the second pump, the static mixer, the third pump, and the homogenizer to act in concert such that a total amount of time between a pumping of the API solution and a pumping of the polymer solution into the static mixer, and a pumping of the continuous phase into the homogenizer, is less than a pre
- FIG. 1 is a schematic representation of an example system for implementing the “DP On-Demand” method for making a DP for use in a polymer microsphere formulation.
- FIG. 2 is a schematic representation of an example downstream processing system for making a polymer microsphere formulation using a DP made according to the DP On-Demand method.
- DP On-Demand methods are provided for minimizing API/polymer exposure time during formation of the polymer microspheres, thereby minimizing at least one of polymer or API degradation and API polymorph changes during formation of the polymer microspheres.
- the DP On-Demand method comprises: (A) preparing a DP, comprising the steps of: (1) dissolving an API in a first solvent in a first vessel to form an API solution; (2) dissolving a biodegradable polymer in a second solvent in a second vessel to form a polymer solution; (3) combining the API solution and the polymer solution; and (4) mixing the combined solution to form the DP; (B) introducing the DP into a homogenization unit, wherein the time between the combining and the introducing consists of a predetermined contact time that is sufficiently short that the polymer does not undergo significant degradation attributable to contact with the API and/or the API does not undergo significant degradation or polymorph changes attributable to contact with the polymer; (C) contacting the DP with a CP in the homogenization unit; and (D) homogenizing the combined DP and CP.
- a degradation of the polymer is “significant” if the polymer's molecular weight in the polymer microsphere that is at least 20% less than the raw polymer's initial molecular weight prior to contact with the API. In one aspect, a degradation of the API is “significant” if the impurity levels of the API increase by 0.10% relative to the initial API purity or the API undergoes a polymorphic change that results in a reduction in encapsulation efficiency of the API.
- the combining comprises pumping the API solution and the polymer solution into a y-connector or equivalent structure. In one aspect, the mixing comprises mixing in a static mixer.
- the contacting comprises pumping the CP into the homogenizing unit.
- the CP comprises water.
- the CP comprises an aqueous solution comprising a surfactant.
- the CP comprises an aqueous solution comprising PVA.
- the CP comprises between about 0.20 and about 1.5 wt % PVA solution prior to the contacting.
- the CP comprises about 0.35 wt % PVA solution prior to the contacting.
- the CP comprises about 1.0 wt % PVA solution prior to the contacting.
- the predetermined time is less than about one minute. In another aspect, the predetermined time is less than about 30 seconds, less than about 20 seconds, or less than about 15 seconds.
- Suitable biodegradable polymers may include a polylactic acid (“PLA”), a poly(lactic-co-glycolic acid) (“PLGA”), a polyesteramide, a polyanhydride, a polyacetal, a poly(ortho ester), a polyphosphoester, a polycaprolactone, a polycarbonate, and co- and tri-block polymers of any of them.
- the biodegradable polymer comprises a PLGA.
- the biodegradable polymer may comprise a co-polymer having a co-monomer ratio for lactide to glycolide content of about 50:50, about 55:45, about 75:25, about 85:15, less than 100:0, and any ratio in between.
- the biodegradable polymer may have an average molecular weight of from about 10 kDa to about 300 kDa.
- the inherent viscosity (“IV”) of the polymer may be from about 0.10 to about 3.0 dL/g.
- the API may be any suitable pharmaceutical ingredient where there is an advantage to minimizing the contact time between the API and the polymer during polymer microsphere formation.
- Suitable APIs may include, for example, risperidone, ondansetron, nimpodipine, leuprolide acetate, octreotide acetate, and olanzapine.
- the formation of the API solution and the polymer solution may be accomplished using various solvent systems, with solvents necessary to solubilize or suspend the API and solubilize the biodegradable polymer.
- the phrase “API solution” contemplates either or both of a solution and a suspension.
- the phrases “first solvent” and “second solvent” are used herein to signify the initial separateness of the API solution and the polymer solution.
- the first solvent and the second solvent may be the same (e.g., both may be dichloromethane or “DCM”) or they may be different.
- the first solvent and the second solvent may also each separately be a mixture of solvents.
- Suitable solvents may include, for example, DCM, benzyl alcohol (“BA”), chloroform, methanol, ethyl acetate, acetic acid, acetone, acetonitrile, acetyl acetone, acrolein, acrylonitrile, allyl alcohol, 1,3-butanediol, 1,4-butanediol, 1-butanol, 2-butanol, tert-butanol, 2-butoxyethanol, n-butyl amine, butyl dioxitol acetate, butyraldehyde, butyric acid, 2-chloroethanol, diacetone alcohol, diacetyl, diethylamine, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether
- the term “homogenize” is meant to include homogenization and/or emulsification.
- the phrase “homogenization unit” contemplates a system or apparatus that can homogenize the DP and the CP, emulsify the DP and the CP, or both, which systems and apparatuses are known in the art.
- the homogenization unit is of the type of system described in U.S. Pat. No. 11,167,256, which is incorporated by reference herein in its entirety.
- the homogenization unit is a membrane emulsifier or a second static mixer.
- an API solution 10 and a polymer solution 12 are prepared in separate vessels.
- an API solution 10 an API is dissolved, dispersed, or both in a first solvent.
- a polymer is dissolved in a second solvent.
- the API solution 10 and the polymer solution 12 are each pumped, at defined flow rates, into a “Y” connector 14 , where they are mixed in-line using a static mixer 16 to form the DP.
- the DP is introduced into a homogenization unit 18 (e.g., a Levitronix® BPS-i100 integrated pump system).
- the DP may be formulated immediately (e.g., less than about 1 minute, but in any event, less than an amount of time that would permit the API to significantly degrade the polymer or permit the API to undergo an undesirable polymorph change or degradation) before it is combined with a CP.
- the CP may comprise an aqueous solution optionally comprising a surfactant, such as PVA.
- PVA surfactant
- the formed or forming microspheres exit the homogenization unit 18 and enter a solvent removal vessel (SRV) 26 .
- SRV solvent removal vessel
- Water may be added to the SRV 26 from a water dilution composition vessel 28 to reduce the organic solvent level. See, e.g., U.S. Pat. No. 9,017,715, which is incorporated by reference herein in its entirety.
- the resulting suspension is mixed in the SRV 26 .
- the CP 22 and water dilution composition vessel 28 pumps are stopped, and washing steps are initiated. In some aspects, solvent removal is achieved using water washing and a hollow fiber filter 30 .
- the washing steps may comprise washing the microsphere suspension with room temperature water, followed by washing the suspension with hot water (about 35-39° C.) with several volume exchanges before cooling the suspension back down to room temperature.
- the washed microspheres are collected and lyophilized overnight (Virtis) to remove moisture.
- the resulting API-encapsulated polymer microspheres are a free-flowing off-white bulk powder.
- Example 1 One batch of ondansetron-encapsulated microspheres was prepared according to the DP On-Demand method described in Example 1 (Batch #1), using Resomer® RG 503 H, Poly(D,L-lactide-co-glycolide), 50:50, acid end-capped, as the polymer, and BA/DCM (1:1) as the solvent system.
- the API solution flow rate was 28 mL/min
- the polymer solution flow rate was 22 mL/min.
- a control batch (Batch #2) was made using a DP that was prepared by mixing the polymer, API, and both solvents in one vessel for approximately four hours before it was combined with the CP, to approximate the conditions (i.e. exposure times) of a large scale batch.
- the DP solution flow rate was 50 mL/min.
- the CP flow rate was 4 L/min for a CP:DP ratio for both batches of 80:1.
- the characterization data for Batch #s 1 and 2 are shown in Table 1:
- Batch #1 has a ⁇ 2.5 ⁇ higher molecular weight than the Batch #2 control, indicating that the DP On-Demand method is surprisingly effective to reduce the degradation of the polymer during microsphere formation.
- Batch #3 has a ⁇ 1.5 ⁇ higher molecular weight than the Batch #4 control, indicating that the DP On-Demand method is surprisingly effective to reduce the degradation of the polymer during microsphere formation.
- Example 1 One batch of ondansetron-encapsulated microspheres was prepared according to the DP On-Demand method described in Example 1 (Batch #5), using ViatelTM DLG 5505A, Poly(D,L-lactide-co-glycolide), 55:45, acid end-capped, as the polymer, and BA/DCM (1:1.25) as the solvent system.
- the API solution flow rate was 27 mL/min, and the polymer solution flow rate was 23 mL/min.
- a control batch (Batch #6) was made using a DP that was prepared by mixing the polymer, API, and both solvents in one vessel for approximately four hours before it was combined with the CP, to approximate the conditions of a large scale batch.
- the DP solution flow rate was 50 mL/min.
- the CP flow rate was 4 L/min for a CP:DP ratio for both batches of 80:1.
- the characterization data for Batch #s 5 and 6 are shown in Table 3:
- Batch #5 has a ⁇ 2.8 ⁇ higher molecular weight than the Batch #6 control, indicating that the DP On-Demand method is surprisingly effective to reduce the degradation of the polymer during microsphere formation.
- each it is not meant to mean “each and every, without exception.”
- microsphere formulation comprising polymer microspheres, and “each polymer microsphere” is said to have a particular API content, if there are 10 polymer microspheres, and two or more of the polymer microspheres have the particular API content, then that subset of two or more polymer microspheres is intended to meet the limitation.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A method for making active pharmaceutical ingredient (“API”)-encapsulated polymer microspheres is provided, comprising: (A) preparing a dispersed phase (“DP”), comprising the steps of: (1) dissolving an API in a first solvent in a first vessel to form an API solution; (2) dissolving a biodegradable polymer in a second solvent in a second vessel to form a polymer solution; (3) combining the API solution and the polymer solution; and (4) mixing the combined solution to form the DP; (B) introducing the DP into a homogenization unit, wherein the time between the combining and the introducing consists of a predetermined contact time that is sufficiently short that the polymer does not undergo significant degradation attributable to the API, and the API does not undergo significant degradation or morphologic changes attributable to the polymer; (C) contacting the DP with a continuous phase (“CP”) in the homogenization unit; and (D) homogenizing the combined DP and CP.
Description
- This application claims priority from U.S. Provisional Patent Application No. 63/159,523, filed on Mar. 11, 2021, which is incorporated by reference herein in its entirety.
- Polymer microspheres can be used to deliver medication in a rate-controlled and sometimes targeted manner. In its simplest form, medication is released from the polymer microsphere by an active pharmaceutical ingredient (an “API”) diffusing from the polymer, by degradation of the polymer matrix, or both.
- Generally, during a continuous polymer microsphere formation process, a dispersed phase (a “DP”) and a continuous phase (a “CP”) are brought together at well-defined flow rates into a fluid shear stress zone to produce microspheres. See, e.g., U.S. Pat. No. 11,167,256 and U.S. Patent Publication No. US20220054420A1, each of which is incorporated by reference herein in its entirety. The DP typically comprises the API dispersed or dissolved in an organic solution, along with a dissolved polymer. The CP typically comprises water and, optionally, a surfactant, such as polyvinyl alcohol (“PVA”).
- For some API and polymer combinations, the API has been observed to cause degradation of the polymer while in the DP—that is, prior to formation of the polymer microspheres. For example, when using risperidone as the API, it has been observed that the drug engages in a nucleophilic attack on the polymer in solution, leading to degradation of the polymer and reduced or unpredictable drug release times. One risperidone commercial product, Risperdal® Consta®, requires a high molecular weight polymer to overcome these issues.
- In other API and polymer combinations, the API has been observed to undergo polymorphism of the API, e.g., shifting from one crystalline form to another or from a crystalline form to an amorphous form. For example, during the encapsulation of nimodipine drug powder, it has been observed that the non-dissolved drug crystal changes form while in the DP phase, which has a negative effect on the processability of the formulation. Such negative effects may include, for example, low encapsulation efficiencies and low batch yields.
- While these issues may not be particularly acute and/or apparent at a lab scale, they become so as the scale of batches increases and the exposure time of the API to the polymer in the DP increases. A formulation that cannot be scaled up has limited value in the pharmaceutical field.
- Thus, a need exists for methods to limit the exposure time between certain APIs and certain polymers in solution during formation of polymer microspheres, and more particularly during formation of the DP, to minimize scale up issues, such as polymer degradation or API degradation, including API polymorph changes.
- A “DP On-Demand” method is provided for making API-encapsulated polymer microspheres. In one aspect, the method comprises: (A) preparing a DP, comprising the steps of: (1) dissolving an API in a first solvent in a first vessel to form an API solution; (2) dissolving a biodegradable polymer in a second solvent in a second vessel to form a polymer solution; (3) combining the API solution and the polymer solution; and (4) mixing the combined solution to form the DP; (B) introducing the DP into a homogenization unit, wherein the time between the combining and the introducing consists of a predetermined contact time that is sufficiently short that the biodegradable polymer does not undergo significant degradation attributable to the API, and the API does not undergo significant degradation or changes attributable to the polymer; (C) contacting the DP with a CP in the homogenization unit; and (D) homogenizing the combined DP and CP.
- In another aspect, a system is provided for making API-encapsulated polymer microspheres. In one aspect, the system comprises: a first vessel, configured to contain and dispense an API solution; a second vessel, configured to contain and dispense a biodegradable polymer solution; a static mixer, configured to receive and mix the API solution and the polymer solution; a first pump, configured to pump the API solution from the first vessel to the static mixer; a second pump, configured to pump the polymer solution from the second vessel to the static mixer; a third vessel, configured to contain and dispense a CP; a homogenization unit; a third pump, configured to pump the continuous phase into the homogenization unit; a controller, configured to cause the first pump, the second pump, the static mixer, the third pump, and the homogenizer to act in concert such that a total amount of time between a pumping of the API solution and a pumping of the polymer solution into the static mixer, and a pumping of the continuous phase into the homogenizer, is less than a predetermined time.
- In the accompanying figures, structures are illustrated that, together with the detailed description provided below, describe example aspects of the claimed invention. Like elements are identified with the same reference numerals. Elements shown as a single component may be replaced with multiple components, and elements shown as multiple components may be replaced with a single component. The drawings are not to scale, and the proportion of certain elements may be exaggerated for the purpose of illustration.
-
FIG. 1 is a schematic representation of an example system for implementing the “DP On-Demand” method for making a DP for use in a polymer microsphere formulation. -
FIG. 2 is a schematic representation of an example downstream processing system for making a polymer microsphere formulation using a DP made according to the DP On-Demand method. - Methods for making polymer microspheres are provided. More specifically, “DP On-Demand” methods are provided for minimizing API/polymer exposure time during formation of the polymer microspheres, thereby minimizing at least one of polymer or API degradation and API polymorph changes during formation of the polymer microspheres. In one aspect, the DP On-Demand method comprises: (A) preparing a DP, comprising the steps of: (1) dissolving an API in a first solvent in a first vessel to form an API solution; (2) dissolving a biodegradable polymer in a second solvent in a second vessel to form a polymer solution; (3) combining the API solution and the polymer solution; and (4) mixing the combined solution to form the DP; (B) introducing the DP into a homogenization unit, wherein the time between the combining and the introducing consists of a predetermined contact time that is sufficiently short that the polymer does not undergo significant degradation attributable to contact with the API and/or the API does not undergo significant degradation or polymorph changes attributable to contact with the polymer; (C) contacting the DP with a CP in the homogenization unit; and (D) homogenizing the combined DP and CP. In one aspect, a degradation of the polymer is “significant” if the polymer's molecular weight in the polymer microsphere that is at least 20% less than the raw polymer's initial molecular weight prior to contact with the API. In one aspect, a degradation of the API is “significant” if the impurity levels of the API increase by 0.10% relative to the initial API purity or the API undergoes a polymorphic change that results in a reduction in encapsulation efficiency of the API.
- In one aspect, the combining comprises pumping the API solution and the polymer solution into a y-connector or equivalent structure. In one aspect, the mixing comprises mixing in a static mixer.
- In one aspect, the contacting comprises pumping the CP into the homogenizing unit. In one aspect, the CP comprises water. In one aspect, the CP comprises an aqueous solution comprising a surfactant. In one aspect, the CP comprises an aqueous solution comprising PVA. In one aspect, the CP comprises between about 0.20 and about 1.5 wt % PVA solution prior to the contacting. In one aspect, the CP comprises about 0.35 wt % PVA solution prior to the contacting. In one aspect, the CP comprises about 1.0 wt % PVA solution prior to the contacting.
- In one aspect, the predetermined time is less than about one minute. In another aspect, the predetermined time is less than about 30 seconds, less than about 20 seconds, or less than about 15 seconds.
- Suitable biodegradable polymers may include a polylactic acid (“PLA”), a poly(lactic-co-glycolic acid) (“PLGA”), a polyesteramide, a polyanhydride, a polyacetal, a poly(ortho ester), a polyphosphoester, a polycaprolactone, a polycarbonate, and co- and tri-block polymers of any of them. In some aspects, the biodegradable polymer comprises a PLGA. In some aspects, the biodegradable polymer may comprise a co-polymer having a co-monomer ratio for lactide to glycolide content of about 50:50, about 55:45, about 75:25, about 85:15, less than 100:0, and any ratio in between.
- The biodegradable polymer may have an average molecular weight of from about 10 kDa to about 300 kDa. In one aspect, the inherent viscosity (“IV”) of the polymer may be from about 0.10 to about 3.0 dL/g.
- The API may be any suitable pharmaceutical ingredient where there is an advantage to minimizing the contact time between the API and the polymer during polymer microsphere formation. Suitable APIs may include, for example, risperidone, ondansetron, nimpodipine, leuprolide acetate, octreotide acetate, and olanzapine.
- The formation of the API solution and the polymer solution may be accomplished using various solvent systems, with solvents necessary to solubilize or suspend the API and solubilize the biodegradable polymer. For brevity, and because the methods are equally applicable to either, the phrase “API solution” contemplates either or both of a solution and a suspension. Further, the phrases “first solvent” and “second solvent” are used herein to signify the initial separateness of the API solution and the polymer solution. Unless otherwise specified, the first solvent and the second solvent may be the same (e.g., both may be dichloromethane or “DCM”) or they may be different. The first solvent and the second solvent may also each separately be a mixture of solvents. Suitable solvents may include, for example, DCM, benzyl alcohol (“BA”), chloroform, methanol, ethyl acetate, acetic acid, acetone, acetonitrile, acetyl acetone, acrolein, acrylonitrile, allyl alcohol, 1,3-butanediol, 1,4-butanediol, 1-butanol, 2-butanol, tert-butanol, 2-butoxyethanol, n-butyl amine, butyl dioxitol acetate, butyraldehyde, butyric acid, 2-chloroethanol, diacetone alcohol, diacetyl, diethylamine, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, N,N-diethylnicotinamide, dimethyl sulfoxide, N,N-dimethylacetamide, N,N-dimethylformamide, 1,4-dioxane, 2-ethoxyethanol, 2-ethoxyethyl acetate, ethyl formate, ethylene glycol methyl ether acetate, formic acid, furfural, glycofurol, hexylene glycol, isobutanol, isopropyl alcohol, 2,6-lutidine, methyl acetate, methyl ethyl ketone, methyl isopropyl ketone, methyl propionate, N-methylpyrrolidone, morpholine, tert-pentanol, 2-picoline, 3-picoline, 4-picoline, piperidine, 1-propanol, propionaldehyde, propylene oxide, pyridine, pyrimidine, pyrrolidine, tetrahydrofuran, tetramethylurea, triacetin, triethylene glycol, trimethyl phosphate, and combinations thereof.
- As used herein, the term “homogenize” is meant to include homogenization and/or emulsification. Thus, for brevity, and because the methods are equally applicable to either, the phrase “homogenization unit” contemplates a system or apparatus that can homogenize the DP and the CP, emulsify the DP and the CP, or both, which systems and apparatuses are known in the art. For example, in one aspect, the homogenization unit is of the type of system described in U.S. Pat. No. 11,167,256, which is incorporated by reference herein in its entirety. In one aspect, the homogenization unit is a membrane emulsifier or a second static mixer.
- Referring to
FIG. 1 , anAPI solution 10 and apolymer solution 12 are prepared in separate vessels. For theAPI solution 10, an API is dissolved, dispersed, or both in a first solvent. For thepolymer solution 12, a polymer is dissolved in a second solvent. TheAPI solution 10 and thepolymer solution 12 are each pumped, at defined flow rates, into a “Y”connector 14, where they are mixed in-line using astatic mixer 16 to form the DP. The DP is introduced into a homogenization unit 18 (e.g., a Levitronix® BPS-i100 integrated pump system). - The DP may be formulated immediately (e.g., less than about 1 minute, but in any event, less than an amount of time that would permit the API to significantly degrade the polymer or permit the API to undergo an undesirable polymorph change or degradation) before it is combined with a CP. The CP may comprise an aqueous solution optionally comprising a surfactant, such as PVA. Thus, with reference to
FIG. 2 , theCP 22 is pumped at a defined flow rate into thehomogenization unit 18 and into contact with the DP. - The formed or forming microspheres exit the
homogenization unit 18 and enter a solvent removal vessel (SRV) 26. Water may be added to theSRV 26 from a waterdilution composition vessel 28 to reduce the organic solvent level. See, e.g., U.S. Pat. No. 9,017,715, which is incorporated by reference herein in its entirety. The resulting suspension is mixed in theSRV 26. After the DP in thehomogenization unit 18 has been exhausted, theCP 22 and waterdilution composition vessel 28 pumps are stopped, and washing steps are initiated. In some aspects, solvent removal is achieved using water washing and ahollow fiber filter 30. - The washing steps may comprise washing the microsphere suspension with room temperature water, followed by washing the suspension with hot water (about 35-39° C.) with several volume exchanges before cooling the suspension back down to room temperature.
- The washed microspheres are collected and lyophilized overnight (Virtis) to remove moisture. The resulting API-encapsulated polymer microspheres are a free-flowing off-white bulk powder.
- One batch of ondansetron-encapsulated microspheres was prepared according to the DP On-Demand method described in Example 1 (Batch #1), using Resomer® RG 503 H, Poly(D,L-lactide-co-glycolide), 50:50, acid end-capped, as the polymer, and BA/DCM (1:1) as the solvent system. The API solution flow rate was 28 mL/min, and the polymer solution flow rate was 22 mL/min. A control batch (Batch #2) was made using a DP that was prepared by mixing the polymer, API, and both solvents in one vessel for approximately four hours before it was combined with the CP, to approximate the conditions (i.e. exposure times) of a large scale batch. The DP solution flow rate was 50 mL/min. The CP flow rate was 4 L/min for a CP:DP ratio for both batches of 80:1. The characterization data for Batch #s 1 and 2 are shown in Table 1:
-
TABLE 1 Batch # 1 DP On- 2 Demand Control Formulations Polymer 503H Monomer Ratio 50:50 Polymer IV (dL/g) 0.34 Target Drug Load (%) 20.0 Analytical Drug Load (%) 22.0 18.0 Encapsulation 110 90 Efficiency (%) Impurities (%) N/A Residual Solvent 2.5/ND 1.5/ND BA/DCM (%) Particle D v10 11 10 Size Dv50 23 21 (μm) Dv90 39 41 Sample MW (kDa) 29.7 12.0 Polymer MW (kDa) 30.5 - As can be seen from Table 1, Batch #1 has a ˜2.5× higher molecular weight than the Batch #2 control, indicating that the DP On-Demand method is surprisingly effective to reduce the degradation of the polymer during microsphere formation.
- One batch of ondansetron-encapsulated microspheres was prepared according to the DP On-Demand method described in Example 1 (Batch #3), using Resomer® RG 753 H, Poly(D,L-lactide-co-glycolide), 75:25, acid end-capped, as the polymer, and BA/DCM (1:1) as the solvent system. The API solution flow rate was 28 mL/min, and the polymer solution flow rate was 22 mL/min. A control batch (Batch #4) was made using a DP that was prepared by mixing the polymer, API, and both solvents in one vessel for approximately four hours before it was combined with the CP, to approximate the conditions of a large scale batch. The DP solution flow rate was 50 mL/min. The CP flow rate was 4 L/min for a CP:DP ratio for both batches of 80:1. The characterization data for Batch #s 3 and 4 are shown in Table 2:
-
TABLE 2 Lot 3 4 DP-OD Control Formulations Polymer Evonik 753H Monomer Ratio 75:25 Polymer IV (dL/g) 0.39 Target Drug Load (%) 20 Analytical Drug Load (%) 18.0 16.4 Encapsulation 90 82 Efficiency (%) Residual Solvent 1.9/ND 2.6/ND BA/DCM (%) Particle D v10 11 10 Size Dv50 27 23 (μm) Dv90 54 41 Sample MW (kDa) 36 23 Polymer MW (kDa) 38 - As can be seen from Table 2, Batch #3 has a ˜1.5× higher molecular weight than the Batch #4 control, indicating that the DP On-Demand method is surprisingly effective to reduce the degradation of the polymer during microsphere formation.
- One batch of ondansetron-encapsulated microspheres was prepared according to the DP On-Demand method described in Example 1 (Batch #5), using Viatel™ DLG 5505A, Poly(D,L-lactide-co-glycolide), 55:45, acid end-capped, as the polymer, and BA/DCM (1:1.25) as the solvent system. The API solution flow rate was 27 mL/min, and the polymer solution flow rate was 23 mL/min. A control batch (Batch #6) was made using a DP that was prepared by mixing the polymer, API, and both solvents in one vessel for approximately four hours before it was combined with the CP, to approximate the conditions of a large scale batch. The DP solution flow rate was 50 mL/min. The CP flow rate was 4 L/min for a CP:DP ratio for both batches of 80:1. The characterization data for Batch #s 5 and 6 are shown in Table 3:
-
TABLE 3 Lot 5 6 DP-OD Control Formulations Polymer Viatel ™ DLG 5505A Monomer Ratio 55:45 Polymer IV (dL/g) 0.59 Target Drug Load (%) 20 Analytical Drug Load (%) 15.4 17.2 Encapsulation 77 86 Efficiency (%) Residual Solvent 1.9/ND 2.6/ND BA/DCM (%) Sample MW (kDa) 68.1 24.3 Polymer MW (kDa) 76.1 - As can be seen from Table 3, Batch #5 has a ˜2.8× higher molecular weight than the Batch #6 control, indicating that the DP On-Demand method is surprisingly effective to reduce the degradation of the polymer during microsphere formation.
- The aspects disclosed herein are not intended to be exhaustive or to be limiting. A skilled artisan would acknowledge that other aspects or modifications to instant aspects can be made without departing from the spirit or scope of the invention. The aspects of the present disclosure, as generally described herein and illustrated in the figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are contemplated herein.
- Unless otherwise specified, “a,” “an,” “the,” “one or more of,” and “at least one” are used interchangeably. The singular forms “a”, “an,” and “the” are inclusive of their plural forms. The recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.). The terms “comprising” and “including” are intended to be equivalent and open-ended. The phrase “consisting essentially of” means that the composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method. The phrase “selected from the group consisting of” is meant to include mixtures of the listed group.
- When reference is made to the term “each,” it is not meant to mean “each and every, without exception.” For example, if reference is made to microsphere formulation comprising polymer microspheres, and “each polymer microsphere” is said to have a particular API content, if there are 10 polymer microspheres, and two or more of the polymer microspheres have the particular API content, then that subset of two or more polymer microspheres is intended to meet the limitation.
- The term “about” in conjunction with a number is intended to include ±10% of the number. This is true whether “about” is modifying a stand-alone number or modifying a number at either or both ends of a range of numbers. In other words, “about 10” means from 9 to 11. Likewise, “about 10 to about 20” contemplates 9 to 22 and 11 to 18. In the absence of the term “about,” the exact number is intended. In other words, “10” means 10.
- The phrase “operatively connected” is “a general descriptive claim term frequently used in patent drafting to reflect a functional relationship between claimed components,” that is, the term “means the claimed components must be connected in a way to perform a designated function.” MPEP 2173.05(g).
Claims (15)
1. A method for preparing an active pharmaceutical ingredient (“API”)-encapsulating polymer microsphere formulation, the method comprising:
(A) preparing a dispersed phase, comprising the steps of:
(1) dissolving and/or suspending an API in a first solvent in a first vessel to form an API solution;
(2) dissolving a biodegradable polymer in a second solvent in a second vessel different from the first vessel to form a polymer solution;
(3) combining the API solution and the polymer solution; and
(4) mixing the combined solution to form the dispersed phase;
(B) introducing the dispersed phase into a homogenization unit, wherein the time between the combining and the introducing consists of a predetermined contact time that is sufficiently short that the polymer does not undergo significant degradation attributable to contact with the API, and/or the API does not undergo significant degradation or morphologic changes attributable to contact with the polymer;
(C) contacting the dispersed phase with a continuous phase in the homogenization unit; and
(D) homogenizing the combined dispersed phase and continuous phase.
2. The method according to claim 1 , wherein the combining comprises pumping the API solution and the polymer solution into a y-connector.
3. The method according to claim 1 , wherein the mixing comprises mixing in a static mixer.
4. The method according to claim 1 , wherein the contacting comprises pumping the continuous phase into the homogenizing unit.
5. The method according to claim 1 , wherein the continuous phase comprises water.
6. The method according to claim 1 , wherein the continuous phase comprises an aqueous solution comprising polyvinyl alcohol in a concentration of from about 0.35 wt % to about 1.0 wt % prior to the contacting.
7. The method according to claim 1 , wherein the predetermined contact time is less than about one minute.
8. The method according to claim 1 , wherein the predetermined contact time is less than about 30 seconds.
9. The method according to claim 1 , wherein the predetermined contact time is less than about 15 seconds.
10. A system for preparing an active pharmaceutical ingredient (“API”)-encapsulating polymer microsphere formulation, the system comprising:
a first vessel containing an API solution;
a second vessel different from the first vessel containing a polymer solution;
a static mixer;
a first pump, operatively connected to the first vessel and the static mixer;
a second pump, operatively connected to the second vessel and the static mixer;
a third vessel different from the first vessel and the second vessel containing a continuous phase;
a homogenization unit;
a third pump, operatively connected to the third vessel and the homogenization unit; and
a controller, configured to cause the first pump, the second pump, the static mixer, the homogenizer, and the third pump to act in concert such that a total amount of time between a pumping of the API solution and a pumping of the polymer solution into the static mixer, and a pumping of the continuous phase into the homogenizer, is less than a predetermined time.
11. An active pharmaceutical ingredient (“API”)-encapsulated polymer microsphere formulation, prepared by a process comprising:
(A) preparing a dispersed phase, comprising the steps of:
(1) dissolving and/or suspending an API in a first solvent in a first vessel to form an API solution;
(2) dissolving a biodegradable polymer in a second solvent in a second vessel different from the first vessel to form a polymer solution;
(3) combining the API solution and the polymer solution; and
(4) mixing the combined solution to form the dispersed phase;
(B) introducing the dispersed phase into a homogenization unit, wherein the time between the combining and the introducing consists of a predetermined contact time that is sufficiently short that the polymer does not undergo significant degradation attributable to contact with the API, and/or the API does not undergo significant degradation or morphologic changes attributable to contact the polymer;
(C) contacting the dispersed phase with a continuous phase in the homogenization unit; and
(D) homogenizing the combined dispersed phase and continuous phase.
12. The formulation according to claim 11 , wherein the API is ondansetron.
13. The formulation according to claim 11 , wherein the API is risperidone.
14. The formulation according to claim 11 , wherein the API is nimodipine.
15. The formulation according to claim 11 , wherein the API is olanzapine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/548,702 US20240148662A1 (en) | 2021-03-11 | 2022-03-02 | Methods and systems for making polymer microspheres |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163159523P | 2021-03-11 | 2021-03-11 | |
PCT/US2022/070918 WO2022192838A1 (en) | 2021-03-11 | 2022-03-02 | Methods and systems for making polymer microspheres |
US18/548,702 US20240148662A1 (en) | 2021-03-11 | 2022-03-02 | Methods and systems for making polymer microspheres |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240148662A1 true US20240148662A1 (en) | 2024-05-09 |
Family
ID=83228399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/548,702 Pending US20240148662A1 (en) | 2021-03-11 | 2022-03-02 | Methods and systems for making polymer microspheres |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240148662A1 (en) |
WO (1) | WO2022192838A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6705757B2 (en) * | 1999-11-12 | 2004-03-16 | Alkermes Controlled Therapeutics, Inc. Ii | Method and apparatus for preparing microparticles using in-line solvent extraction |
US20120183593A1 (en) * | 2003-04-09 | 2012-07-19 | Directcontact Llc | Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases |
JP2016515517A (en) * | 2013-03-15 | 2016-05-30 | オークウッド ラボラトリーズ,エル.エル.シー. | Sustained release microsphere and method for producing the same |
US20170340740A1 (en) * | 2016-05-25 | 2017-11-30 | Heron Therapeutics, Inc. | Long-acting polymeric delivery systems comprising olanzapine and a 5-ht3 receptor antagonist |
KR102474965B1 (en) * | 2019-07-01 | 2022-12-07 | 오크우드 레버러토리즈, 엘엘씨 | Systems and methods for preparing microspheres and emulsions |
-
2022
- 2022-03-02 WO PCT/US2022/070918 patent/WO2022192838A1/en active Application Filing
- 2022-03-02 US US18/548,702 patent/US20240148662A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2022192838A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9393211B2 (en) | High drug load buprenorphine microspheres and method of producing same | |
EP3785704B1 (en) | Method for preparing biodegradable microsheres using stabilized single-phase mixed solution | |
US20240148662A1 (en) | Methods and systems for making polymer microspheres | |
US20160317453A1 (en) | High drug load buprenorphine microspheres and method of producing same | |
US20220054420A1 (en) | Microsphere formulations comprising ketamine and methods for making and using the same | |
WO2022198167A1 (en) | Microsphere formulations comprising naltrexone and methods for making and using the same | |
WO2022226534A2 (en) | Microsphere formulations comprising multiple non-identical peptides and methods for making the same | |
US20230225993A1 (en) | Microsphere formulations comprising ketamine and methods for making and using the same | |
US20240000772A1 (en) | Microsphere formulations comprising naltrexone and methods for making and using the same | |
US11992559B2 (en) | Microsphere formulations comprising lurasidone and methods for making and using the same | |
US20240307381A1 (en) | Microsphere formulations comprising lurasidone and methods for making and using the same | |
WO2023097204A1 (en) | Microsphere formulations comprising asenapine and methods for making and using the same | |
WO2023133554A2 (en) | Microsphere formulations comprising ketamine and methods for making and using the same | |
US20240342115A1 (en) | Microsphere formulations comprising ketamine and methods formaking and using the same | |
WO2024163997A1 (en) | Microsphere formulations comprising naltrexone and methods for making and using the same | |
WO2024097696A1 (en) | Mixed release profile polymer microsphere formulations comprising octreotide and methods for making and using the same | |
CN116916920A (en) | Microsphere formulations comprising lurasidone and methods of making and using the same | |
JP6915540B2 (en) | Microcapsules containing risperidone, their production methods and release control methods | |
US20230404922A1 (en) | Microsphere formulations comprising btk inhibitors and methods for making and using the same | |
CN116916893A (en) | Microsphere formulations comprising BTK inhibitors and methods of making and using the same | |
CN113440597A (en) | Method for preparing leuprorelin microspheres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OAKWOOD LABORATORIES, LLC, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GALASKA, RACHEL;RICHEY, TRACY;REEL/FRAME:065023/0903 Effective date: 20220719 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |