US20240041844A1 - Compositions and methods for ameliorating helicobacteraceae infections - Google Patents
Compositions and methods for ameliorating helicobacteraceae infections Download PDFInfo
- Publication number
- US20240041844A1 US20240041844A1 US18/356,182 US202318356182A US2024041844A1 US 20240041844 A1 US20240041844 A1 US 20240041844A1 US 202318356182 A US202318356182 A US 202318356182A US 2024041844 A1 US2024041844 A1 US 2024041844A1
- Authority
- US
- United States
- Prior art keywords
- compound
- helicobacteraceae
- formula
- pharmaceutical composition
- combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241001248432 Helicobacteraceae Species 0.000 title claims abstract description 79
- 208000015181 infectious disease Diseases 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000000203 mixture Substances 0.000 title claims description 22
- 239000002532 enzyme inhibitor Substances 0.000 claims abstract description 59
- 229940125532 enzyme inhibitor Drugs 0.000 claims abstract description 54
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 45
- 102000007456 Peroxiredoxin Human genes 0.000 claims abstract description 32
- 108030002458 peroxiredoxin Proteins 0.000 claims abstract description 32
- 239000003937 drug carrier Substances 0.000 claims abstract description 11
- 102000003992 Peroxidases Human genes 0.000 claims abstract description 9
- 101710085931 Peroxiredoxin Bcp Proteins 0.000 claims abstract description 9
- 101710176422 Putative peroxiredoxin bcp Proteins 0.000 claims abstract description 9
- 108040007629 peroxidase activity proteins Proteins 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims description 97
- 102000004190 Enzymes Human genes 0.000 claims description 27
- 108090000790 Enzymes Proteins 0.000 claims description 27
- 150000003839 salts Chemical class 0.000 claims description 27
- 239000002775 capsule Substances 0.000 claims description 17
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 13
- 229920001223 polyethylene glycol Polymers 0.000 claims description 11
- 239000012453 solvate Substances 0.000 claims description 11
- 210000002784 stomach Anatomy 0.000 claims description 11
- 239000002202 Polyethylene glycol Substances 0.000 claims description 9
- 210000001198 duodenum Anatomy 0.000 claims description 8
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 claims description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 8
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 7
- 239000006186 oral dosage form Substances 0.000 claims description 7
- 108010010803 Gelatin Proteins 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 229920000159 gelatin Polymers 0.000 claims description 6
- 239000008273 gelatin Substances 0.000 claims description 6
- 235000019322 gelatine Nutrition 0.000 claims description 6
- 235000011852 gelatine desserts Nutrition 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 229940122897 Peroxiredoxin inhibitor Drugs 0.000 claims description 5
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 4
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 4
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 4
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 4
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 4
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 4
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 4
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 229920000609 methyl cellulose Polymers 0.000 claims description 4
- 239000001923 methylcellulose Substances 0.000 claims description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 4
- 241000590002 Helicobacter pylori Species 0.000 claims description 3
- 229940037467 helicobacter pylori Drugs 0.000 claims description 3
- 238000001727 in vivo Methods 0.000 claims description 3
- 150000003573 thiols Chemical class 0.000 claims description 3
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- 239000004373 Pullulan Substances 0.000 claims description 2
- 229920001218 Pullulan Polymers 0.000 claims description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920001282 polysaccharide Polymers 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- 235000019423 pullulan Nutrition 0.000 claims description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 2
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 claims 3
- 125000001475 halogen functional group Chemical group 0.000 claims 3
- 206010019375 Helicobacter infections Diseases 0.000 claims 1
- 150000004676 glycans Chemical class 0.000 claims 1
- 125000003396 thiol group Chemical class [H]S* 0.000 abstract 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 201000010099 disease Diseases 0.000 description 13
- 208000024891 symptom Diseases 0.000 description 13
- DRSHXJFUUPIBHX-UHFFFAOYSA-N COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 Chemical compound COc1ccc(cc1)N1N=CC2C=NC(Nc3cc(OC)c(OC)c(OCCCN4CCN(C)CC4)c3)=NC12 DRSHXJFUUPIBHX-UHFFFAOYSA-N 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 101710172405 Thiol peroxidase Proteins 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- -1 H. heilmanii Species 0.000 description 7
- 241000589989 Helicobacter Species 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 229940125890 compound Ia Drugs 0.000 description 6
- 239000002552 dosage form Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 231100000252 nontoxic Toxicity 0.000 description 6
- 230000003000 nontoxic effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- PBVAJRFEEOIAGW-UHFFFAOYSA-N 3-[bis(2-carboxyethyl)phosphanyl]propanoic acid;hydrochloride Chemical compound Cl.OC(=O)CCP(CCC(O)=O)CCC(O)=O PBVAJRFEEOIAGW-UHFFFAOYSA-N 0.000 description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 206010017758 gastric cancer Diseases 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 201000011549 stomach cancer Diseases 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 4
- 150000002432 hydroperoxides Chemical class 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- 208000007882 Gastritis Diseases 0.000 description 3
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 101000655985 Plasmodium falciparum (isolate FCH-5) Thioredoxin reductase Proteins 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 101000772462 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Thioredoxin reductase 1 Proteins 0.000 description 3
- 208000007107 Stomach Ulcer Diseases 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 208000025865 Ulcer Diseases 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000004599 antimicrobial Substances 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 208000000718 duodenal ulcer Diseases 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 231100000397 ulcer Toxicity 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 206010000060 Abdominal distension Diseases 0.000 description 2
- 206010000087 Abdominal pain upper Diseases 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 2
- 206010015137 Eructation Diseases 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 102000002933 Thioredoxin Human genes 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 206010000059 abdominal discomfort Diseases 0.000 description 2
- 208000020560 abdominal swelling Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 230000036528 appetite Effects 0.000 description 2
- 235000019789 appetite Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 208000024330 bloating Diseases 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 231100000676 disease causative agent Toxicity 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000001839 endoscopy Methods 0.000 description 2
- 230000008029 eradication Effects 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 201000005917 gastric ulcer Diseases 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 231100000225 lethality Toxicity 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 108060008226 thioredoxin Proteins 0.000 description 2
- 229940094937 thioredoxin Drugs 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- QBWLKDFBINPHFT-UHFFFAOYSA-L 1,3,2$l^{2}-benzodioxabismin-4-one;hydrate Chemical compound O.C1=CC=C2C(=O)O[Bi]OC2=C1 QBWLKDFBINPHFT-UHFFFAOYSA-L 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- KKMOSYLWYLMHAL-UHFFFAOYSA-N 2-bromo-6-nitroaniline Chemical compound NC1=C(Br)C=CC=C1[N+]([O-])=O KKMOSYLWYLMHAL-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 206010061825 Duodenal neoplasm Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 208000012895 Gastric disease Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000543133 Helicobacter canadensis Species 0.000 description 1
- 241000590014 Helicobacter cinaedi Species 0.000 description 1
- 241000590010 Helicobacter fennelliae Species 0.000 description 1
- 241000368628 Helicobacter rappini Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical compound COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 229940123742 Peroxidase inhibitor Drugs 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 206010054184 Small intestine carcinoma Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000827142 Sulfuricurvum Species 0.000 description 1
- 241001164579 Sulfurimonas Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241000605236 Thiovulum Species 0.000 description 1
- HJLSLZFTEKNLFI-UHFFFAOYSA-N Tinidazole Chemical compound CCS(=O)(=O)CCN1C(C)=NC=C1[N+]([O-])=O HJLSLZFTEKNLFI-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 241000605941 Wolinella Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005360 alkyl sulfoxide group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960003121 arginine Drugs 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960000782 bismuth subsalicylate Drugs 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000001669 calcium Chemical class 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 210000002318 cardia Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960003568 dexlansoprazole Drugs 0.000 description 1
- MJIHNNLFOKEZEW-RUZDIDTESA-N dexlansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1C[S@@](=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-RUZDIDTESA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 102000038037 druggable proteins Human genes 0.000 description 1
- 108091007999 druggable proteins Proteins 0.000 description 1
- 230000002183 duodenal effect Effects 0.000 description 1
- 201000000312 duodenum cancer Diseases 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960004770 esomeprazole Drugs 0.000 description 1
- SUBDBMMJDZJVOS-DEOSSOPVSA-N esomeprazole Chemical compound C([S@](=O)C1=NC2=CC=C(C=C2N1)OC)C1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-DEOSSOPVSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 1
- 229960001596 famotidine Drugs 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 201000011587 gastric lymphoma Diseases 0.000 description 1
- 208000017215 gastric mucosa-associated lymphoid tissue lymphoma Diseases 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000007887 hard shell capsule Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960003174 lansoprazole Drugs 0.000 description 1
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 description 1
- 229960004872 nizatidine Drugs 0.000 description 1
- OIPZNTLJVJGRCI-UHFFFAOYSA-M octadecanoyloxyaluminum;dihydrate Chemical compound O.O.CCCCCCCCCCCCCCCCCC(=O)O[Al] OIPZNTLJVJGRCI-UHFFFAOYSA-M 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229960000381 omeprazole Drugs 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 229960005019 pantoprazole Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000006201 parenteral dosage form Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229940126409 proton pump inhibitor Drugs 0.000 description 1
- 239000000612 proton pump inhibitor Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229960004157 rabeprazole Drugs 0.000 description 1
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007886 soft shell capsule Substances 0.000 description 1
- 239000007892 solid unit dosage form Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000002563 stool test Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229940086735 succinate Drugs 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229960004906 thiomersal Drugs 0.000 description 1
- 229960005053 tinidazole Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- BFDBKMOZYNOTPK-UHFFFAOYSA-N vonoprazan Chemical compound C=1C=CN=CC=1S(=O)(=O)N1C=C(CNC)C=C1C1=CC=CC=C1F BFDBKMOZYNOTPK-UHFFFAOYSA-N 0.000 description 1
- 229950003825 vonoprazan Drugs 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/155—Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/17—Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/222—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/345—Nitrofurans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/351—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
Definitions
- compositions and methods for ameliorating Helicobacteraceae infections are disclosed.
- Embodiments of a pharmaceutical composition include a Helicobacteraceae enzyme inhibitor and a pharmaceutically acceptable carrier, wherein the pharmaceutical composition is formulated to release the Helicobacteraceae enzyme inhibitor in a subject's stomach and/or duodenum.
- the Helicobacteraceae enzyme inhibitor is a peroxiredoxin inhibitor.
- the peroxiredoxin inhibitor inhibits alkyl hydroperoxide reductase C (AhpC), thiol-specific peroxidase (Tpx), bacterioferritin comigratory protein (BCP), or any combination thereof.
- the Helicobacteraceae enzyme inhibitor may be a compound, or a pharmaceutically acceptable salt, solvate or hydrate thereof, wherein the compound has a structure according to formula I′, formula II′, formula III′, compound IV, formula V′, formula VI′, or any combination thereof:
- each X independently is halo; and R 1 -R 7 independently are H or C 1 -C 5 alkyl.
- the compound is compound I, compound II, compound III, compound IV, compound V, compound VI, or any combination thereof:
- the pharmaceutical composition comprises compound I, compound II, or a combination thereof.
- compound I is a stereoisomer having the structure
- the pharmaceutical composition may be formulated for parenteral or oral administration.
- the pharmaceutical composition is formulated into a solid dosage form for oral administration.
- the oral dosage form is formulated to release the Helicobacteraceae enzyme inhibitor in a subject's stomach and/or duodenum.
- oral dosage form further comprises a coating or a capsule shell encapsulating the pharmaceutical composition, wherein the coating or capsule shell is an immediate release coating or capsule shell formulated to dissolve in the subject's stomach and/or duodenum.
- a method for inhibiting an enzyme produced by a Helicobacteraceae species includes contacting the enzyme with an effective amount of compound I (or the stereoisomer compound IA), compound II, compound III, compound IV, compound V, compound VI (or the stereoisomer compound VIA), or any combination thereof. In some embodiments, contacting is performed in vivo.
- a method for ameliorating a Helicobacteraceae infection includes administering to a subject a therapeutically effective amount of a pharmaceutical composition as disclosed herein.
- the method may further include identifying the subject as having a Helicobacteraceae infection prior to administering the therapeutically effective amount of the pharmaceutical composition.
- the therapeutically effective amount may be administered at periodic intervals for an effective period of time to ameliorate the Helicobacteraceae infection.
- the therapeutically effective amount is administered daily for the effective period of time.
- the therapeutically effective amount is divided into two or more doses administered daily to the subject at periodic intervals.
- the Helicobacteraceae organism may be a Helicobacter species.
- the Helicobacter spp. is H. pylori
- the compound may be an H. pylori enzyme inhibitor.
- FIGS. 1 A- 1 H show the drug target protein H. pylori AhpC ( FIG. 1 A ), and the protein in complex with compounds I-VI ( FIGS. 1 B- 1 H ). Key hydrogen bond interactions are depicted as magenta lines. Nearby amino acid residues involved in the peroxiredoxin catalytic conversion of hydroperoxides to water are noted.
- FIGS. 2 A- 2 B show the antimicrobial activity of a representative compound against H. pylori , compound IV, relative to bacterial growth with a control treatment lacking inhibitor ( FIG. 2 A ) and a bar graph showing the antimicrobial activity of repeated experiments with compounds I-VI ( FIG. 2 B ). Error bars shown are standard error of the mean for eight replicates.
- compositions comprising one or more Helicobacteraceae enzyme inhibitors, as well as methods of using the disclosed compositions to inhibit a Helicobacteraceae enzyme, thereby treating a Helicobacteraceae infection.
- the Helicobacteraceae organism is a Helicobacter spp., such as Helicobacter pylori ( H. pylori ).
- H. pylori Yamakoa, ed., Helicobacter pylori : Molecular Genetics and Cellular Biology, Caister Academic Press, 2008.
- H. pylori is a causative agent of stomach/duodenal ulcers and cancers. Stomach cancer is a devastating disease with a 5-yr survival rate in the US of 15% and is responsible for the deaths of nearly 800,000 people every year. More than 95% of stomach cancer is driven by a widespread bacterial stomach pathogen, H. pylori , which infects about half of the world's population.
- H. pylori Yamakoa, ed., Helicobacter pylori : Molecular Genetics and Cellular Biology, Caister Academic Press, 2008.
- Stomach cancer is a devastating disease with a 5-yr survival rate in the US of 15% and is responsible for the deaths of nearly 800,000 people every year. More than 95% of stomach cancer is driven by a widespread bacterial stomach pathogen
- H. pylori is adept at avoiding natural elimination by the immune system, and infections can persist for decades leading to gastritis, ulcers, and adenocarcinomas.
- H. pylori is intrinsically resistant to many antimicrobials and to date there is no antibiotic therapy that guarantees successful eradication.
- 2017 the World Health Organization declared H. pylori a ‘high-priority’ pathogen, for which the design of new antimicrobials is urgently required.
- Bacteria can be attacked and killed by immune cells which introduce oxidizing molecules (such as hydroperoxides) that damage the bacterial cells.
- oxidizing molecules such as hydroperoxides
- some bacteria such as Helicobacteraceae organisms, can defend themselves by producing enzymes which catalyze reactions that destroy the oxidizing molecules through a process that converts them to harmless water or alcohols.
- the enzymes include peroxidases, such as peroxiredoxins.
- peroxiredoxin enzymes must alternate between two physical shapes, known as “conformations.” During the peroxiredoxin enzyme's physical transformation of shape a temporary “pocket” forms in the enzyme structure.
- the enzymes are inhibited by compounds that bind to the pocket, locking the enzyme in its deformed state and preventing the enzyme from decomposing the oxidizing molecules.
- the pocket, and binding of several exemplary compounds disclosed herein, are depicted in FIGS. 1 A- 1 H , respectively.
- the oxidizing molecules can then kill the bacterium, thereby treating a Helicobacteraceae infection.
- a Helicobacteraceae infection may cause gastric disease, colitis, hepatitis, or cancer (e.g., gastric cancer, liver cancer).
- an untreated H. pylori infection may manifest as a duodenal and/or gastric ulcer, and/or a H.
- gastric cancer such as gastric adenocarcinoma (e.g., non-cardia gastric adenocarcinoma) or gastric lymphoma (e.g., gastric mucosa-associated lymphoid tissue lymphoma).
- gastric adenocarcinoma e.g., non-cardia gastric adenocarcinoma
- gastric lymphoma e.g., gastric mucosa-associated lymphoid tissue lymphoma
- the presently disclosed compounds also include all isotopes of atoms present in the compounds, which can include, but are not limited to, deuterium, tritium, 18 F, 14 C, etc.
- Helicobacteraceae A family consisting of five genera— Helicobacter, Sulfuricurvum, Sulfurimonas, Sulfurovutn, Thiovulum, and Wolinella .
- the Helicohacter genus includes about 35 species, e.g., H. pylori, H. heilmanii, H. cinaedi, H. fennelliae, H. westmaedii, H. rappini , and H. canadensis , which are found in humans.
- the most common species found in humans is H. pylori.
- Isomer One of two or more molecules having the same number and kind of atoms, but differing in the arrangement or configuration of the atoms. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers.” Stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers.” When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible.
- An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or ( ⁇ ) isomers respectively).
- a chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture.”
- Parenteral administration Any non-oral means of administration that bypasses the skin and mucous membranes, e.g., by injection (e.g., intravenous, intramuscular, subcutaneous) or infusion.
- compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compositions and additional pharmaceutical agents are conventional.
- Remington The Science and Practice of Pharmacy , The University of the Sciences in Philadelphia, Editor, Lippincott, Williams, & Wilkins, Philadelphia, PA, 21 st Edition (2005), describes compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compositions and additional pharmaceutical agents.
- the nature of the carrier will depend on the particular mode of administration being employed.
- parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle.
- the pharmaceutically acceptable carrier may be sterile to be suitable for administration to a subject (for example, by parenteral, intramuscular, or subcutaneous injection).
- pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
- the pharmaceutically acceptable carrier is a non-naturally occurring or synthetic carrier.
- the carrier also can be formulated in a unit-dosage form that carries a preselected therapeutic dosage of the active agent, for example in a pill, vial, bottle, or syringe.
- compositions A biologically compatible salt of a compound that can be used as a drug, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate, and the like.
- Pharmaceutically acceptable acid addition salts are those salts that retain the biological effectiveness of the free bases while formed by acid partners that are not biologically or otherwise undesirable, e.g., inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, as well as organic acids such as acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, benzene sulfonic acid (besylate), cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
- inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid,
- Pharmaceutically acceptable base addition salts include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like.
- Exemplary salts are the ammonium, potassium, sodium, calcium, and magnesium salts.
- Salts derived from pharmaceutically acceptable organic non-toxic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins, and the like.
- salts of primary, secondary, and tertiary amines substituted amines including naturally occurring substituted amines, cyclic amines
- organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline, and caffeine. (See, for example, S. M. Berge, et al., “Pharmaceutical Salts,” J. Pharm. Sci., 1977; 66:1-19, which is incorporated herein by reference.)
- Solvate A complex formed by combination of solvent molecules with molecules or ions of a solute.
- the solvent can be an organic solvent, an inorganic solvent, or a mixture of both.
- Exemplary solvents include, but are not limited to, alcohols, such as methanol, ethanol, propanol; amides such as N,N-dialiphatic amides, such as N,N-dimethylformamide; tetrahydrofuran; alkylsulfoxides, such as dimethylsulfoxide; water; and combinations thereof.
- the compounds described herein can exist in un-solvated as well as solvated forms when combined with solvents, pharmaceutically acceptable or not, such as water, ethanol, and the like. Solvated forms of the presently disclosed compounds are within the scope of the embodiments disclosed herein.
- Subject An animal (human or non-human) subjected to a treatment, observation or experiment. Includes both human and veterinary subjects, including human and non-human mammals, such as rats, mice, cats, dogs, pigs, horses, cows, and non-human primates.
- Therapeutically effective amount or dose An amount sufficient to provide a beneficial, or therapeutic, effect to a subject or a given percentage of subjects.
- Treating or treatment refers to ameliorating a disease or condition of interest in a patient or subject, particularly a human having the disease or condition of interest, and includes by way of example, and without limitation:
- the terms “disease” and “condition” can be used interchangeably or can be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been determined) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, where a more or less specific set of symptoms have been identified by clinicians.
- a pharmaceutical composition comprises a Helicobacteraceae enzyme inhibitor and a pharmaceutically acceptable carrier.
- the Helicobacteraceae organism may be a Helicobacter spp.
- the Helicobacter spp. is H. pylori .
- the Helicobacteraceae enzyme inhibitor is an H. pylori enzyme inhibitor.
- the pharmaceutical composition may be formulated for parenteral or oral administration.
- the pharmaceutical composition is an oral formulation.
- the oral formulation may be a liquid, suspension, or solid dosage form.
- the pharmaceutical composition is formulated into oral dosage form, such as a solid dosage form, for oral administration.
- An oral dosage form may be formulated to release the enzyme inhibitor in a subject's stomach and/or duodenum.
- the oral dosage form further comprises a coating or a capsule shell encapsulating the pharmaceutical composition, wherein the coating or capsule shell is an immediate release coating or capsule shell formulated to dissolve in the subject's stomach and/or duodenum.
- Suitable coatings or capsule shells may comprise a polysaccharide, a vinyl alcohol polymer, an acrylic polymer, gelatin, or any combination thereof.
- the coating or capsule shell comprises hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), a PVP-PVA copolymer, a PVA-polyethylene glycol (PEG) copolymer, a dimethylaminoethyl methacrylate/butyl methacrylate/methyl methacrylate (2:1:1) copolymer, gelatin, pullulan, or any combination thereof.
- HPMC hydroxypropyl methylcellulose
- HPC hydroxypropyl cellulose
- HEC hydroxyethyl cellulose
- MC methylcellulose
- NaCMC sodium carboxymethyl cellulose
- PVA polyvinyl alcohol
- PVP polyvinylpyrrolidone
- PEG polyethylene glycol
- the enzyme inhibitor may be a peroxidase inhibitor, such as a peroxiredoxin inhibitor.
- the peroxiredoxin is AhpC, Tpx, BCP, or any combination thereof.
- the enzyme inhibitor has a size, shape, and/or composition complementary to a structural pocket formed by the enzyme when it undergoes a conformational change during a catalytic reaction.
- the enzyme inhibitor is a compound, or a stereoisomer or pharmaceutically acceptable salt, solvate or hydrate thereof, wherein the compound has a structure according to formula I′, formula II′, formula ET, compound IV, formula V′, formula VI′:
- each X independently is halo (Cl, F, Br, or I); and R 1 -R 7 independently are H or C 1 -C 5 alkyl.
- each X on compound I′ is the same halogen.
- each X on compound VI′ is the same halogen.
- each X is Cl.
- the compound has a structure according to formula II′ where R 1 is C 1 -C 5 alkyl and R 2 -R 4 are H.
- R 1 is methyl and R 2 -R 4 are H.
- the compound has a structure according to formula III′, formula V′, or formula V′ where R 5 -R 7 independently are C 1 -C 5 alkyl.
- R 5 , R 6 , and/or R 7 is methyl.
- the enzyme inhibitor is a compound, or a stereoisomer or pharmaceutically acceptable salt, solvate or hydrate thereof, wherein the compound is compound I, compound II, compound III, compound IV, compound V, compound VI, or any combination thereof:
- compound I is a stereoisomer IA and/or compound VI is a stereoisomer VIA:
- the enzyme inhibitor may be a compound according to formula I′, formula II′, or a combination thereof.
- the enzyme inhibitor is compound I, compound II, or a combination thereof.
- the pharmaceutical composition comprises compound I, compound II, or a combination thereof, and a pharmaceutically acceptable carrier.
- the enzyme inhibitor is compound IA, compound II, or a combination thereof.
- the enzyme inhibitor may be added to the pharmaceutical composition in the form of a salt, a solvate, or a hydrate.
- a salt for example, in cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate.
- pharmaceutically acceptable salts are organic acid addition salts formed with acids that form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartrate, succinate, benzoate, ascorbate, a-ketoglutarate, and b-glycerophosphate.
- Suitable inorganic salts may also be formed, including hydrochloride, halide, sulfate, nitrate, bicarbonate, and carbonate salts.
- the salts may be obtained using procedures known to persons of ordinary skill in the art, for example by reacting a sufficiently basic compound, such as an amine, with a suitable acid to provide a physiologically acceptable ionic compound.
- a sufficiently basic compound such as an amine
- Alkali metal for example, sodium, potassium or lithium
- alkaline earth metal for example, calcium
- compositions may be administered to a subject, such as a human or veterinary patient, in a variety of forms.
- the forms can be specifically adapted to a chosen route of administration, e.g., oral or parenteral administration (e.g., intravenous, intramuscular, or subcutaneous routes).
- the Helicobacteraceae enzyme inhibitor compounds described herein may be systemically administered in combination with a pharmaceutically acceptable carrier, such as an inert diluent or an assimilable edible carrier.
- a pharmaceutically acceptable carrier such as an inert diluent or an assimilable edible carrier.
- the enzyme inhibitors can be enclosed in hard or soft shell capsules, compressed into tablets, or a pharmaceutical composition comprising the enzyme inhibitor can be incorporated directly into the food of a subject's diet.
- the enzyme inhibitors also may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations typically contain at least 0.1 wt % of the enzyme inhibitor.
- the percentage of the compositions and preparations can vary and may conveniently be from about 2% to about 60% of the weight of a given unit dosage form.
- the tablets, troches, pills, capsules, and the like may also contain one or more of the following excipients: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; and a lubricant such as magnesium stearate.
- binders such as gum tragacanth, acacia, corn starch or gelatin
- excipients such as dicalcium phosphate
- a disintegrating agent such as corn starch, potato starch, alginic acid and the like
- a lubricant such as magnesium stearate.
- a sweetening agent such as sucrose, fructose, lactose or aspartame
- a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring
- the unit dosage form When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with an immediate release coating as described above.
- a syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propyl parabens as preservatives, a dye and flavoring such as cherry or orange flavor. Any material used in preparing a unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
- the enzyme inhibitor may be incorporated into sustained-release preparations and devices.
- the enzyme inhibitor may be administered by any suitable route.
- the enzyme inhibitor is administered intravenously or intraperitoneally by infusion or injection.
- Solutions of the enzyme inhibitor or its salts, solvates, or hydrates can be prepared in water, optionally mixed with a nontoxic surfactant.
- Dispersions can be prepared in glycerol, liquid polyethylene glycols, triacetin, or mixtures thereof, or in a pharmaceutically acceptable oil. Under ordinary conditions of storage and use, preparations may contain a preservative to prevent the growth of microorganisms.
- compositions suitable for injection or infusion can include sterile aqueous solutions, dispersions, or sterile powders comprising the enzyme inhibitor.
- the ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage.
- the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions, or by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thiomersal, and the like.
- isotonic agents for example, sugars, buffers, or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by agents delaying absorption, for example, aluminum monostearate and/or gelatin.
- Sterile injectable solutions can be prepared by incorporating the enzyme inhibitor in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
- methods of preparation can include vacuum drying and freeze drying techniques, which yield a powder of the enzyme inhibitor plus any additional desired ingredient present in the previously sterile-filtered solutions.
- Useful dosages of the enzyme inhibitors described herein can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949 (Borch et al.).
- an enzyme inhibitor, or an active salt, solvate, or hydrate thereof, required for use in treatment will vary not only with the particular enzyme inhibitor (or salt, solvate, or hydrate thereof) selected but also according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors, and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the enzyme inhibitor for eliciting the desired activity or biological response in the subject, and will be ultimately at the discretion of an attendant physician or clinician.
- factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors, and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the enzyme inhibitor for eliciting the desired activity or biological response in the subject, and will be ultimately at the discretion of an attendant physician or clinician.
- Dosage regimens can be adjusted to provide an optimum therapeutic response.
- a therapeutically effective amount is also one in which any toxic or detrimental side effects of the enzyme inhibitor is outweighed in clinical terms by therapeutically beneficial effects.
- a non-limiting range for a therapeutically effective amount of an H. pylori enzyme inhibitor within the methods and formulations of the disclosure is mg/kg body weight to 100 mg/kg body weight, such as 0.01 mg/kg body weight to 20 mg/kg body weight, 0.05 mg/kg to 5 mg/kg body weight, or 0.2 mg/kg to 2 mg/kg body weight.
- Dosage can be varied by the attending clinician to maintain a desired concentration at a target site (for example, in the stomach or duodenum). Higher or lower concentrations can be selected based on the mode of delivery, for example, oral delivery versus intravenous or subcutaneous delivery.
- Host immune cells may kill invading bacteria by producing cytotoxic hydroperoxides, such as H 2 O 2 .
- cytotoxic hydroperoxides such as H 2 O 2
- at least some Helicobacteraceae organisms have an especially robust enzyme defense system that eliminates H 2 O 2 by rapidly converting it to water.
- the enzyme produced by the Helicobacteraceae organism may be a peroxidase, such as a peroxiredoxin. Due to the enzyme defense system, the Helicobacteraceae organisms are adept at avoiding natural elimination by the immune system and infections can persist for decades. In some instances, a persistent infection leads to gastritis, ulcers, and/or adenocarcinomas.
- the Helicobacteraceae organism may be a Helicobacter spp.
- the Helicobacter spp. is H. pylori.
- H. pylori is intrinsically resistant to many antimicrobials and to date there is no antibiotic therapy that guarantees successful eradication.
- Embodiments of the disclosed compounds are Helicobacteraceae peroxiredoxin enzyme inhibitors.
- the peroxidase enzymes produced by a Helicobacteraceae organism enable it to survive inside a subject's stomach.
- inhibiting the Helicobacteraceae enzyme allows the hydroperoxides produced by the host's immune system to inhibit growth of the Helicobacteraceae organism and/or eradicate a Helicobacteraceae infection.
- the compound may be a H. pylori enzyme inhibitor.
- an enzyme produced by a Helicobacteraceae organism is inhibited by contacting the enzyme with an effective amount of a compound, or a stereoisomer, or pharmaceutically acceptable salt, solvate or hydrate thereof, the compound having a structure according to formula I′, formula II′, formula III′, compound IV, formula V′, formula VI′, or any combination thereof.
- the compound is compound I, compound II, compound III, compound IV, compound V, compound VI, or any combination thereof.
- compound I is the stereoisomer compound IA and/or compound VI is the stereoisomer compound VIA.
- the enzyme is contacted by compound I (or compound IA), compound or a combination thereof.
- a method for ameliorating a Helicobacteraceae infection comprises administering to a subject a therapeutically effective amount of a pharmaceutical composition as disclosed herein.
- the pharmaceutical composition may be formulated as an oral or parenteral dosage form.
- the subject is identified as having a Helicobacteraceae infection prior to administering the therapeutically effective amount of the pharmaceutical composition.
- the subject may be identified on the basis of signs/symptoms and/or diagnostic tests. Signs and symptoms of a Helicobacteraceae infection and/or cancer caused by a Helicobacteraceae infection include, but are not limited to, abdominal discomfort or swelling (e.g., stomach pain, bloating), nausea, unexplained weight loss, vomiting, burping, poor appetite, blood in the stool, early feeling of fullness while eating, fatigue, weakness, and combinations thereof.
- Diagnostic tests for the presence of a Helicobacteraceae organism and/or cancer caused by a Helicobacteraceae infection include, but are not limited to, blood tests (e.g., antibodies to the Helicobacteraceae organism); stool test (presence of Helicobacteraceae organisms); breath test (abnormal carbon dioxide levels are evidence of a Helicobacteraceae infection), endoscopy, and combinations thereof.
- the Helicobacteraceae organism may be H. pylori.
- the Helicobacteraceae enzyme may be a peroxidase.
- the enzyme is peroxiredoxin (Prx).
- the Prx is AhpC, Tpx, BCP, or any combination thereof.
- the Helicobacteraceae enzyme inhibitor may be a compound, or a stereoisomer or pharmaceutically acceptable salt, solvate, or hydrate thereof, having a structure according to formula I′, formula II′, formula compound IV, formula V′, formula VI′, or any combination thereof.
- the enzyme inhibitor is compound I (or compound IA), compound II, compound III, compound IV, compound V, compound VI (or compound VIA), or any combination thereof. In some embodiments, the enzyme inhibitor is compound I or compound II. In certain implementations, the enzyme inhibitor is compound IA or compound II.
- the therapeutically effective amount is administered at periodic intervals for an effective period of time to ameliorate the Helicobacteraceae infection.
- Ameliorating the infection may comprise (i) eradicating the Helicobacteraceae infection in the subject; or (ii) producing a negative result on a Helicobacteraceae test performed after the subject has been administered the pharmaceutical composition; or (iii) reducing or eliminating one or more symptoms of the Helicobacteraceae infection in the subject; or (iv) any combination of two or more of (i), (ii), and (iii).
- the therapeutically effective amount is administered daily for the effective period of time. In some dosing regimens, the therapeutically effective amount is divided into two or more doses administered daily to the subject at periodic intervals.
- the method may further include co-administering an additional therapeutic agent.
- the additional therapeutic agent is an antibiotic (e.g., amoxicillin, clarithromycin, levofloxacin, metronidazole, tetracycline, tinidazole, and combinations thereof), a proton pump inhibitor (e.g., omeprazole, esomeprazole, lansoprazole, pantoprazole, dexlansoprazole, rabeprazole, vonoprazan, and the like), bismuth subsalicylate, bismuth citrate, a histamine (H-2) blocker (e.g., cimetidine, famotidine, nizatidine, and the like), or any combination thereof.
- H-2 histamine
- the additional therapeutic agent may comprise a chemotherapeutic agent and/or radiation therapy.
- the Helicobacteraceae enzyme inhibitor and the additional therapeutic agent may be co-administered simultaneously or sequentially in any order. If administered simultaneously, the Helicobacteraceae enzyme inhibitor and the additional therapeutic agent may be administered together in a single pharmaceutical composition, or the Helicobacteraceae enzyme inhibitor and additional therapeutic agent may be administered in separate pharmaceutical compositions by the same or different routes of administration.
- Protein crystallography was used to determine the molecular structure of conformational changes that H. pylori Prx undergoes during its catalytic cycle of hydroperoxide reduction. Crystallography revealed a temporary structural “pocket” that forms in the protein during catalysis. The pocket exhibits features suitable for drug binding and will allow specific targeting of IL pylori Prx. On a standard scoring system developed by Merck, which ranges from negative (unpromising) to 0.5+(druggable), the H. pylori pocket scored as 0.62.
- VLS Virtual ligand screening
- ICM Molsoft® internal coordinate mechanics
- the VLS identified approximately 200 compounds appeared to have a shape and chemical complementarity to the H. pylori Prx pocket ( FIG. 1 A ).
- Compounds I-VI are presumed to directly bind H. pylon AhpC ( FIGS. 1 B- 1 H ) with dissociation constants of ⁇ 15, ⁇ 15, ⁇ 19, ⁇ 17, ⁇ 16, and ⁇ 14 kcal/mol, respectively.
- Compounds were screened experimentally for inhibition of AhpC enzymatic activity in vitro using the following method.
- Tris(2-carboxyethyl)phosphine hydrochloride (TCEP)-coated beads were washed 3 x .
- 150 ⁇ L of the beads were dispensed into a centrifuge tube, and 850 ⁇ L of buffer (25 mM potassium phosphate, 1 mM EDTA, pH 7) was added, followed by centrifugation at 1500 rcf for 60 seconds. After the third wash, 75 ⁇ L of buffer was added to the beads.
- a reaction mix was prepared by combining 17.136 mL buffer, 201.6 ⁇ L 25 ⁇ M TrxR, 201.6 ⁇ L 250 ⁇ M TrxA, and then adding 2.016 mL 1 mM H 2 O 2 and 201.6 ⁇ L 15 mM NADPH. Aliquots, 196 ⁇ L, of the reaction mix were added to wells of a microplate.
- H. pylori GFP-G27 Promising compound candidates (those that exhibited >75% inhibition of AhpC activity) were evaluated in a blood plate screening assay to test lethality against H. pylori strain GFP-G27. This assay determines bacterial growth in the presence or absence of the compound relative to control treatments.
- the H. pylori GFP-G27 strain is a clinical isolate engineered to express green fluorescence protein (GFP) with an engineered kanamycin resistance gene (KanR) to serve as a tool for growing cultures that contain only this specific bacterium. Blood plates were inoculated with H. pylori strain GIT-G27 and allowed to grow three days in 10% CO 2 .
- the cells were then inoculated in brucella broth supplemented with 10% fetal bovine serum (BB 10 media)+50 ⁇ g/ml kanamycin for a starter culture.
- Lethality was determined by adding 2 ⁇ l of compound dissolved in DMSO, to H. pylori cells in a 20 ⁇ l volume, such that the compound was at 500 ⁇ M final concentration and the cells were at a final OD 600 of 0.125.
- Experiments were compared to controls where cells were untreated, or treated with 2 ⁇ l DMSO. From each experiment, 2 ⁇ l of solution was spotted onto a fresh blood plate and allowed to incubate for 48 hours growing with 10% CO 2 . Eight individual experiments were performed for each treatment. Bacteria growth was determined by quantifying GFP fluorescence for each treatment area, relative to the growth of the untreated bacterial samples. The results are shown in FIGS. 2 A- 2 B .
- a subject having, or suspected of having, a Helicobacteraceae infection is administered a therapeutically effective amount of a pharmaceutical composition as disclosed herein.
- the subject has gastritis, a gastric or duodenal ulcer, or a gastric or duodenal cancer.
- the subject may be identified as having a Helicobacteraceae infection on the basis of laboratory testing (e.g., blood, stool, and/or breath tests) and/or diagnostic imaging (e.g., upper endoscopy).
- the subject is suspected of having a Helicobacteraceae infection on the basis of one or more symptoms characteristic of a Helicobacteraceae infection, including but not limited to abdominal discomfort or swelling (e.g., stomach pain, bloating), nausea, unexplained weight loss, vomiting, burping, poor appetite, blood in the stool, early feeling of fullness while eating, fatigue, weakness, and combinations thereof.
- abdominal discomfort or swelling e.g., stomach pain, bloating
- nausea unexplained weight loss
- vomiting, burping poor appetite
- blood in the stool early feeling of fullness while eating, fatigue, weakness, and combinations thereof.
- the subject may be administered the therapeutically effective amount of the pharmaceutical composition at periodic intervals for an effective period of time to ameliorate at least one sign or symptom characteristic of a Helicobacteraceae infection.
- the subject may be administered the therapeutically effective amount of the pharmaceutical composition once daily or in divided doses over the course of a day, such as 2-3 divided doses per day.
- the therapeutically effective amount may be determined by a clinician based on factors including, but not limited to, subject age, subject weight, infection severity, infection duration, the presence of an ulcer or a cancer, and combination thereof.
- the pharmaceutical composition is administered by any suitable route including, but not limited to, parenterally (e.g., intravenously, intramuscularly, subcutaneously) or orally.
- administration of a therapeutically effective dose of a compound as disclosed herein to a subject produces at least a 5% reduction in at least one sign or symptom characteristic of a Helicobacteraceae infection in the subject, such as at least a 10% reduction, at least a 20% reduction, at least 30% reduction, at least 40% reduction, at least 50% reduction, at least 60% reduction, at least 70% reduction, at least 80% reduction, or at least 90% reduction in at least one sign or symptom characteristic of a Helicobacteraceae infection.
- administration is continued until at least one sign or symptom consistent with an H. pylori infection are eliminated, or until the Helicobacteraceae infection is eradicated as determined by laboratory testing and/or diagnostic imaging.
- administration may continue for a period of time after signs and symptoms consistent with a Helicobacteraceae infection have ceased.
- the Helicobacteraceae infection may be an H. pylori infection.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A pharmaceutical composition includes a Helicobacteraceae enzyme inhibitor and a pharmaceutically acceptable carrier. The enzyme inhibitor may inhibit peroxiredoxin, such as alkyl hydroperoxide reductase C, thiol-specific peroxidase, bacterioferritin comigratory protein, or any combination thereof. A method for ameliorating a Helicobacteraceae infection includes administering to a subject a therapeutically effective amount of a pharmaceutical composition including a Helicobacteraceae enzyme inhibitor and a pharmaceutically acceptable carrier.
Description
- This application claims the benefit of the earlier filing date of U.S. Provisional Application No. 63/392,784, filed Jul. 27, 2022, which is incorporated by reference in its entirety herein.
- Compositions and methods for ameliorating Helicobacteraceae infections are disclosed.
- Embodiments of a pharmaceutical composition include a Helicobacteraceae enzyme inhibitor and a pharmaceutically acceptable carrier, wherein the pharmaceutical composition is formulated to release the Helicobacteraceae enzyme inhibitor in a subject's stomach and/or duodenum. In some embodiments, the Helicobacteraceae enzyme inhibitor is a peroxiredoxin inhibitor. In certain implementations, the peroxiredoxin inhibitor inhibits alkyl hydroperoxide reductase C (AhpC), thiol-specific peroxidase (Tpx), bacterioferritin comigratory protein (BCP), or any combination thereof. The aforementioned are all enzymes possessed by Helicobacteraceae organisms that are within the larger family of enzymes known as peroxiredoxins. In any of the foregoing or following embodiments, the Helicobacteraceae enzyme inhibitor may be a compound, or a pharmaceutically acceptable salt, solvate or hydrate thereof, wherein the compound has a structure according to formula I′, formula II′, formula III′, compound IV, formula V′, formula VI′, or any combination thereof:
- wherein each X independently is halo; and R1-R7 independently are H or C1-C5 alkyl.
- In some embodiments, the compound is compound I, compound II, compound III, compound IV, compound V, compound VI, or any combination thereof:
- In some embodiments, the pharmaceutical composition comprises compound I, compound II, or a combination thereof. In certain implementations, compound I is a stereoisomer having the structure
- and/or compound VI is a stereoisomer having the structure
- In any of the foregoing or following embodiments, the pharmaceutical composition may be formulated for parenteral or oral administration. In some implementations, the pharmaceutical composition is formulated into a solid dosage form for oral administration. Advantageously, the oral dosage form is formulated to release the Helicobacteraceae enzyme inhibitor in a subject's stomach and/or duodenum. In some embodiments, oral dosage form further comprises a coating or a capsule shell encapsulating the pharmaceutical composition, wherein the coating or capsule shell is an immediate release coating or capsule shell formulated to dissolve in the subject's stomach and/or duodenum.
- A method for inhibiting an enzyme produced by a Helicobacteraceae species includes contacting the enzyme with an effective amount of compound I (or the stereoisomer compound IA), compound II, compound III, compound IV, compound V, compound VI (or the stereoisomer compound VIA), or any combination thereof. In some embodiments, contacting is performed in vivo.
- A method for ameliorating a Helicobacteraceae infection includes administering to a subject a therapeutically effective amount of a pharmaceutical composition as disclosed herein. The method may further include identifying the subject as having a Helicobacteraceae infection prior to administering the therapeutically effective amount of the pharmaceutical composition. In any of the foregoing or following embodiments, the therapeutically effective amount may be administered at periodic intervals for an effective period of time to ameliorate the Helicobacteraceae infection. In some embodiments, the therapeutically effective amount is administered daily for the effective period of time. In certain implementations, the therapeutically effective amount is divided into two or more doses administered daily to the subject at periodic intervals.
- In any of the foregoing aspects, the Helicobacteraceae organism may be a Helicobacter species. In some aspects, the Helicobacter spp. is H. pylori, and the compound may be an H. pylori enzyme inhibitor.
- The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
- The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
-
FIGS. 1A-1H show the drug target protein H. pylori AhpC (FIG. 1A ), and the protein in complex with compounds I-VI (FIGS. 1B-1H ). Key hydrogen bond interactions are depicted as magenta lines. Nearby amino acid residues involved in the peroxiredoxin catalytic conversion of hydroperoxides to water are noted. -
FIGS. 2A-2B show the antimicrobial activity of a representative compound against H. pylori, compound IV, relative to bacterial growth with a control treatment lacking inhibitor (FIG. 2A ) and a bar graph showing the antimicrobial activity of repeated experiments with compounds I-VI (FIG. 2B ). Error bars shown are standard error of the mean for eight replicates. - This disclosure concerns pharmaceutical compositions comprising one or more Helicobacteraceae enzyme inhibitors, as well as methods of using the disclosed compositions to inhibit a Helicobacteraceae enzyme, thereby treating a Helicobacteraceae infection. In some aspects, the Helicobacteraceae organism is a Helicobacter spp., such as Helicobacter pylori (H. pylori).
- Up to 50% of the human population is infected with H. pylori (Yamakoa, ed., Helicobacter pylori: Molecular Genetics and Cellular Biology, Caister Academic Press, 2008). H. pylori is a causative agent of stomach/duodenal ulcers and cancers. Stomach cancer is a devastating disease with a 5-yr survival rate in the US of 15% and is responsible for the deaths of nearly 800,000 people every year. More than 95% of stomach cancer is driven by a widespread bacterial stomach pathogen, H. pylori, which infects about half of the world's population. H. pylori is adept at avoiding natural elimination by the immune system, and infections can persist for decades leading to gastritis, ulcers, and adenocarcinomas. H. pylori is intrinsically resistant to many antimicrobials and to date there is no antibiotic therapy that guarantees successful eradication. In 2017 the World Health Organization declared H. pylori a ‘high-priority’ pathogen, for which the design of new antimicrobials is urgently required.
- Bacteria can be attacked and killed by immune cells which introduce oxidizing molecules (such as hydroperoxides) that damage the bacterial cells. However, some bacteria, such as Helicobacteraceae organisms, can defend themselves by producing enzymes which catalyze reactions that destroy the oxidizing molecules through a process that converts them to harmless water or alcohols. The enzymes include peroxidases, such as peroxiredoxins. To perform this function, peroxiredoxin enzymes must alternate between two physical shapes, known as “conformations.” During the peroxiredoxin enzyme's physical transformation of shape a temporary “pocket” forms in the enzyme structure. In some aspects, the enzymes are inhibited by compounds that bind to the pocket, locking the enzyme in its deformed state and preventing the enzyme from decomposing the oxidizing molecules. The pocket, and binding of several exemplary compounds disclosed herein, are depicted in
FIGS. 1A-1H , respectively. The oxidizing molecules can then kill the bacterium, thereby treating a Helicobacteraceae infection. Left untreated, a Helicobacteraceae infection may cause gastric disease, colitis, hepatitis, or cancer (e.g., gastric cancer, liver cancer). For example, an untreated H. pylori infection may manifest as a duodenal and/or gastric ulcer, and/or a H. pylori infection may result in developing gastric cancer, such as gastric adenocarcinoma (e.g., non-cardia gastric adenocarcinoma) or gastric lymphoma (e.g., gastric mucosa-associated lymphoid tissue lymphoma). - The following explanations of terms and abbreviations are provided to better describe the present disclosure and to guide those of ordinary skill in the art in the practice of the present disclosure. As used herein, “comprising” means “including” and the singular forms “a” or “an” or “the” include plural references unless the context clearly dictates otherwise. The term “or” refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise.
- Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. The materials, methods, and examples are illustrative only and not intended to be limiting. Other features of the disclosure are apparent from the following detailed description and the claims.
- The disclosure of numerical ranges should be understood as referring to each discrete point within the range, inclusive of endpoints, unless otherwise noted. Unless otherwise indicated, all numbers expressing quantities of components, molecular weights, percentages, temperatures, times, and so forth, as used in the specification or claims are to be understood as being modified by the term “about.” Accordingly, unless otherwise implicitly or explicitly indicated, or unless the context is properly understood by a person of ordinary skill in the art to have a more definitive construction, the numerical parameters set forth are approximations that may depend on the desired properties sought and/or limits of detection under standard test conditions/methods as known to those of ordinary skill in the art. When directly and explicitly distinguishing embodiments from discussed prior art, the embodiment numbers are not approximates unless the word “about” is recited.
- Definitions of common terms in chemistry may be found in Richard J. Lewis, Sr. (ed.), Hawley's Condensed Chemical Dictionary, published by John Wiley & Sons, Inc., 2016 (ISBN 978-1-118-43515-0). The presently disclosed compounds also include all isotopes of atoms present in the compounds, which can include, but are not limited to, deuterium, tritium, 18F, 14C, etc.
- In order to facilitate review of the various embodiments of the disclosure, the following explanations of specific terms are provided:
-
- AhpC: alkyl hydroperoxide reductase C
- BCP: bacterioferritin comigratory protein
- Effective amount: An amount of a compound or composition sufficient to achieve a particular desired result, such as to inhibit a protein or enzyme, particularly a peroxidase, such as a peroxiredoxin: to elicit a desired biological or medical response in a tissue, system, subject or patient; to treat a specified disorder or disease; to ameliorate or eradicate one or more of its symptoms; and/or to prevent the occurrence of the disease or disorder. The amount of a compound which constitutes an “effective amount” may vary depending on the compound, the desired result, the disease state and its severity, the age of the patient to be treated, and the like.
- Helicobacteraceae: A family consisting of five genera—Helicobacter, Sulfuricurvum, Sulfurimonas, Sulfurovutn, Thiovulum, and Wolinella. The Helicohacter genus includes about 35 species, e.g., H. pylori, H. heilmanii, H. cinaedi, H. fennelliae, H. westmaedii, H. rappini, and H. canadensis, which are found in humans. The most common species found in humans is H. pylori.
- Isomer: One of two or more molecules having the same number and kind of atoms, but differing in the arrangement or configuration of the atoms. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers.” Stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers.” When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (−) isomers respectively). A chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture.”
- Parenteral administration: Any non-oral means of administration that bypasses the skin and mucous membranes, e.g., by injection (e.g., intravenous, intramuscular, subcutaneous) or infusion.
- Pharmaceutically acceptable carrier: The pharmaceutically acceptable carriers (vehicles) useful in this disclosure are conventional. Remington: The Science and Practice of Pharmacy, The University of the Sciences in Philadelphia, Editor, Lippincott, Williams, & Wilkins, Philadelphia, PA, 21st Edition (2005), describes compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compositions and additional pharmaceutical agents. In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. In some examples, the pharmaceutically acceptable carrier may be sterile to be suitable for administration to a subject (for example, by parenteral, intramuscular, or subcutaneous injection). In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate. In some examples, the pharmaceutically acceptable carrier is a non-naturally occurring or synthetic carrier. The carrier also can be formulated in a unit-dosage form that carries a preselected therapeutic dosage of the active agent, for example in a pill, vial, bottle, or syringe.
- Pharmaceutically acceptable salt: A biologically compatible salt of a compound that can be used as a drug, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate, and the like. Pharmaceutically acceptable acid addition salts are those salts that retain the biological effectiveness of the free bases while formed by acid partners that are not biologically or otherwise undesirable, e.g., inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, as well as organic acids such as acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, benzene sulfonic acid (besylate), cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. Pharmaceutically acceptable base addition salts include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Exemplary salts are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins, and the like. Exemplary organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline, and caffeine. (See, for example, S. M. Berge, et al., “Pharmaceutical Salts,” J. Pharm. Sci., 1977; 66:1-19, which is incorporated herein by reference.)
- Prx: peroxiredoxin
- Solvate: A complex formed by combination of solvent molecules with molecules or ions of a solute. The solvent can be an organic solvent, an inorganic solvent, or a mixture of both. Exemplary solvents include, but are not limited to, alcohols, such as methanol, ethanol, propanol; amides such as N,N-dialiphatic amides, such as N,N-dimethylformamide; tetrahydrofuran; alkylsulfoxides, such as dimethylsulfoxide; water; and combinations thereof. The compounds described herein can exist in un-solvated as well as solvated forms when combined with solvents, pharmaceutically acceptable or not, such as water, ethanol, and the like. Solvated forms of the presently disclosed compounds are within the scope of the embodiments disclosed herein.
- Subject: An animal (human or non-human) subjected to a treatment, observation or experiment. Includes both human and veterinary subjects, including human and non-human mammals, such as rats, mice, cats, dogs, pigs, horses, cows, and non-human primates.
- Therapeutically effective amount or dose: An amount sufficient to provide a beneficial, or therapeutic, effect to a subject or a given percentage of subjects.
- Tpx: thiol-specific peroxidase
- Treating or treatment: As used herein, these terms refer to ameliorating a disease or condition of interest in a patient or subject, particularly a human having the disease or condition of interest, and includes by way of example, and without limitation:
-
- (i) inhibiting the disease or condition, for example, arresting or slowing its development;
- (ii) relieving the disease or condition, for example, causing regression of the disease or condition or a symptom thereof; or
- (iii) stabilizing the disease or condition.
- As used herein, the terms “disease” and “condition” can be used interchangeably or can be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been determined) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, where a more or less specific set of symptoms have been identified by clinicians.
- A pharmaceutical composition comprises a Helicobacteraceae enzyme inhibitor and a pharmaceutically acceptable carrier. In any of the following aspects, the Helicobacteraceae organism may be a Helicobacter spp. In some aspects, the Helicobacter spp. is H. pylori. and the Helicobacteraceae enzyme inhibitor is an H. pylori enzyme inhibitor.
- In any of the foregoing or following embodiments, the pharmaceutical composition may be formulated for parenteral or oral administration. In certain implementations, the pharmaceutical composition is an oral formulation. The oral formulation may be a liquid, suspension, or solid dosage form. In some examples, the pharmaceutical composition is formulated into oral dosage form, such as a solid dosage form, for oral administration.
- An oral dosage form may be formulated to release the enzyme inhibitor in a subject's stomach and/or duodenum. In some embodiments, the oral dosage form further comprises a coating or a capsule shell encapsulating the pharmaceutical composition, wherein the coating or capsule shell is an immediate release coating or capsule shell formulated to dissolve in the subject's stomach and/or duodenum. Suitable coatings or capsule shells may comprise a polysaccharide, a vinyl alcohol polymer, an acrylic polymer, gelatin, or any combination thereof. In some implementations, the coating or capsule shell comprises hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), a PVP-PVA copolymer, a PVA-polyethylene glycol (PEG) copolymer, a dimethylaminoethyl methacrylate/butyl methacrylate/methyl methacrylate (2:1:1) copolymer, gelatin, pullulan, or any combination thereof.
- In any of the foregoing or following embodiments, the enzyme inhibitor may be a peroxidase inhibitor, such as a peroxiredoxin inhibitor. In some embodiments, the peroxiredoxin is AhpC, Tpx, BCP, or any combination thereof. In some implementations, the enzyme inhibitor has a size, shape, and/or composition complementary to a structural pocket formed by the enzyme when it undergoes a conformational change during a catalytic reaction.
- In some embodiments. the enzyme inhibitor is a compound, or a stereoisomer or pharmaceutically acceptable salt, solvate or hydrate thereof, wherein the compound has a structure according to formula I′, formula II′, formula ET, compound IV, formula V′, formula VI′:
- where each X independently is halo (Cl, F, Br, or I); and R1-R7 independently are H or C1-C5 alkyl. In one implementation, each X on compound I′ is the same halogen. In another implementation, each X on compound VI′ is the same halogen. In certain aspects, each X is Cl. In some implementations, the compound has a structure according to formula II′ where R1 is C1-C5 alkyl and R2-R4 are H. In certain implementations, R1 is methyl and R2-R4 are H. In some aspects, the compound has a structure according to formula III′, formula V′, or formula V′ where R5-R7 independently are C1-C5 alkyl. In certain aspects, R5, R6, and/or R7 is methyl.
- In some embodiments, the enzyme inhibitor is a compound, or a stereoisomer or pharmaceutically acceptable salt, solvate or hydrate thereof, wherein the compound is compound I, compound II, compound III, compound IV, compound V, compound VI, or any combination thereof:
- In some embodiments, compound I is a stereoisomer IA and/or compound VI is a stereoisomer VIA:
- In any of the foregoing or following embodiments, the enzyme inhibitor may be a compound according to formula I′, formula II′, or a combination thereof. In some embodiments, the enzyme inhibitor is compound I, compound II, or a combination thereof. In such embodiments, the pharmaceutical composition comprises compound I, compound II, or a combination thereof, and a pharmaceutically acceptable carrier. In certain implementations, the enzyme inhibitor is compound IA, compound II, or a combination thereof.
- In any of the foregoing or following embodiments, the enzyme inhibitor may be added to the pharmaceutical composition in the form of a salt, a solvate, or a hydrate. For example, in cases where compounds are sufficiently basic or acidic to form stable nontoxic acid or base salts, administration of the compounds as salts may be appropriate. Examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids that form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartrate, succinate, benzoate, ascorbate, a-ketoglutarate, and b-glycerophosphate. Suitable inorganic salts may also be formed, including hydrochloride, halide, sulfate, nitrate, bicarbonate, and carbonate salts. The salts may be obtained using procedures known to persons of ordinary skill in the art, for example by reacting a sufficiently basic compound, such as an amine, with a suitable acid to provide a physiologically acceptable ionic compound. Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example, calcium) salts of carboxylic acids can also be prepared by analogous methods.
- The disclosed pharmaceutical compositions may be administered to a subject, such as a human or veterinary patient, in a variety of forms. The forms can be specifically adapted to a chosen route of administration, e.g., oral or parenteral administration (e.g., intravenous, intramuscular, or subcutaneous routes).
- The Helicobacteraceae enzyme inhibitor compounds described herein may be systemically administered in combination with a pharmaceutically acceptable carrier, such as an inert diluent or an assimilable edible carrier. For oral administration, the enzyme inhibitors can be enclosed in hard or soft shell capsules, compressed into tablets, or a pharmaceutical composition comprising the enzyme inhibitor can be incorporated directly into the food of a subject's diet. The enzyme inhibitors also may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations typically contain at least 0.1 wt % of the enzyme inhibitor. The percentage of the compositions and preparations can vary and may conveniently be from about 2% to about 60% of the weight of a given unit dosage form. The amount of enzyme inhibitor in such therapeutically useful compositions is such that an effective dosage level can be obtained.
- The tablets, troches, pills, capsules, and the like may also contain one or more of the following excipients: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; and a lubricant such as magnesium stearate. A sweetening agent such as sucrose, fructose, lactose or aspartame; or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring, may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with an immediate release coating as described above. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propyl parabens as preservatives, a dye and flavoring such as cherry or orange flavor. Any material used in preparing a unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the enzyme inhibitor may be incorporated into sustained-release preparations and devices.
- The enzyme inhibitor may be administered by any suitable route. In some aspects, the enzyme inhibitor is administered intravenously or intraperitoneally by infusion or injection. Solutions of the enzyme inhibitor or its salts, solvates, or hydrates, can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can be prepared in glycerol, liquid polyethylene glycols, triacetin, or mixtures thereof, or in a pharmaceutically acceptable oil. Under ordinary conditions of storage and use, preparations may contain a preservative to prevent the growth of microorganisms.
- Pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions, dispersions, or sterile powders comprising the enzyme inhibitor. The ultimate dosage form should be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions, or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thiomersal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers, or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by agents delaying absorption, for example, aluminum monostearate and/or gelatin.
- Sterile injectable solutions can be prepared by incorporating the enzyme inhibitor in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation can include vacuum drying and freeze drying techniques, which yield a powder of the enzyme inhibitor plus any additional desired ingredient present in the previously sterile-filtered solutions.
- Useful dosages of the enzyme inhibitors described herein can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949 (Borch et al.). The amount of an enzyme inhibitor, or an active salt, solvate, or hydrate thereof, required for use in treatment will vary not only with the particular enzyme inhibitor (or salt, solvate, or hydrate thereof) selected but also according to factors such as the disease indication and particular status of the subject (for example, the subject's age, size, fitness, extent of symptoms, susceptibility factors, and the like), time and route of administration, other drugs or treatments being administered concurrently, as well as the specific pharmacology of the enzyme inhibitor for eliciting the desired activity or biological response in the subject, and will be ultimately at the discretion of an attendant physician or clinician.
- Dosage regimens can be adjusted to provide an optimum therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental side effects of the enzyme inhibitor is outweighed in clinical terms by therapeutically beneficial effects. A non-limiting range for a therapeutically effective amount of an H. pylori enzyme inhibitor within the methods and formulations of the disclosure is mg/kg body weight to 100 mg/kg body weight, such as 0.01 mg/kg body weight to 20 mg/kg body weight, 0.05 mg/kg to 5 mg/kg body weight, or 0.2 mg/kg to 2 mg/kg body weight. Dosage can be varied by the attending clinician to maintain a desired concentration at a target site (for example, in the stomach or duodenum). Higher or lower concentrations can be selected based on the mode of delivery, for example, oral delivery versus intravenous or subcutaneous delivery.
- Host immune cells may kill invading bacteria by producing cytotoxic hydroperoxides, such as H2O2. However, at least some Helicobacteraceae organisms have an especially robust enzyme defense system that eliminates H2O2 by rapidly converting it to water. The enzyme produced by the Helicobacteraceae organism may be a peroxidase, such as a peroxiredoxin. Due to the enzyme defense system, the Helicobacteraceae organisms are adept at avoiding natural elimination by the immune system and infections can persist for decades. In some instances, a persistent infection leads to gastritis, ulcers, and/or adenocarcinomas.
- In any of the foregoing or follow aspects, the Helicobacteraceae organism may be a Helicobacter spp. In certain aspects, the Helicobacter spp. is H. pylori. H. pylori is intrinsically resistant to many antimicrobials and to date there is no antibiotic therapy that guarantees successful eradication.
- Embodiments of the disclosed compounds are Helicobacteraceae peroxiredoxin enzyme inhibitors. The peroxidase enzymes produced by a Helicobacteraceae organism enable it to survive inside a subject's stomach. In some embodiments, inhibiting the Helicobacteraceae enzyme allows the hydroperoxides produced by the host's immune system to inhibit growth of the Helicobacteraceae organism and/or eradicate a Helicobacteraceae infection. In any of the foregoing or following aspects, the compound may be a H. pylori enzyme inhibitor.
- In one implementation, an enzyme produced by a Helicobacteraceae organism is inhibited by contacting the enzyme with an effective amount of a compound, or a stereoisomer, or pharmaceutically acceptable salt, solvate or hydrate thereof, the compound having a structure according to formula I′, formula II′, formula III′, compound IV, formula V′, formula VI′, or any combination thereof. In some aspects, the compound is compound I, compound II, compound III, compound IV, compound V, compound VI, or any combination thereof. In some examples, compound I is the stereoisomer compound IA and/or compound VI is the stereoisomer compound VIA. In certain examples, the enzyme is contacted by compound I (or compound IA), compound or a combination thereof.
- In some embodiments, a method for ameliorating a Helicobacteraceae infection comprises administering to a subject a therapeutically effective amount of a pharmaceutical composition as disclosed herein. The pharmaceutical composition may be formulated as an oral or parenteral dosage form.
- In some examples, the subject is identified as having a Helicobacteraceae infection prior to administering the therapeutically effective amount of the pharmaceutical composition. The subject may be identified on the basis of signs/symptoms and/or diagnostic tests. Signs and symptoms of a Helicobacteraceae infection and/or cancer caused by a Helicobacteraceae infection include, but are not limited to, abdominal discomfort or swelling (e.g., stomach pain, bloating), nausea, unexplained weight loss, vomiting, burping, poor appetite, blood in the stool, early feeling of fullness while eating, fatigue, weakness, and combinations thereof. Diagnostic tests for the presence of a Helicobacteraceae organism and/or cancer caused by a Helicobacteraceae infection include, but are not limited to, blood tests (e.g., antibodies to the Helicobacteraceae organism); stool test (presence of Helicobacteraceae organisms); breath test (abnormal carbon dioxide levels are evidence of a Helicobacteraceae infection), endoscopy, and combinations thereof. In any of the foregoing or following aspects, the Helicobacteraceae organism may be H. pylori.
- In any of the foregoing or following embodiments, the Helicobacteraceae enzyme may be a peroxidase. In some embodiments, the enzyme is peroxiredoxin (Prx). In certain examples, the Prx is AhpC, Tpx, BCP, or any combination thereof. In any of the foregoing or following embodiments, the Helicobacteraceae enzyme inhibitor may be a compound, or a stereoisomer or pharmaceutically acceptable salt, solvate, or hydrate thereof, having a structure according to formula I′, formula II′, formula compound IV, formula V′, formula VI′, or any combination thereof. In some embodiments, the enzyme inhibitor is compound I (or compound IA), compound II, compound III, compound IV, compound V, compound VI (or compound VIA), or any combination thereof. In some embodiments, the enzyme inhibitor is compound I or compound II. In certain implementations, the enzyme inhibitor is compound IA or compound II.
- In any of the foregoing or following embodiments, the therapeutically effective amount is administered at periodic intervals for an effective period of time to ameliorate the Helicobacteraceae infection. Ameliorating the infection may comprise (i) eradicating the Helicobacteraceae infection in the subject; or (ii) producing a negative result on a Helicobacteraceae test performed after the subject has been administered the pharmaceutical composition; or (iii) reducing or eliminating one or more symptoms of the Helicobacteraceae infection in the subject; or (iv) any combination of two or more of (i), (ii), and (iii). In some embodiments, the therapeutically effective amount is administered daily for the effective period of time. In some dosing regimens, the therapeutically effective amount is divided into two or more doses administered daily to the subject at periodic intervals.
- In any of the foregoing or following embodiments, the method may further include co-administering an additional therapeutic agent. In some embodiments, the additional therapeutic agent is an antibiotic (e.g., amoxicillin, clarithromycin, levofloxacin, metronidazole, tetracycline, tinidazole, and combinations thereof), a proton pump inhibitor (e.g., omeprazole, esomeprazole, lansoprazole, pantoprazole, dexlansoprazole, rabeprazole, vonoprazan, and the like), bismuth subsalicylate, bismuth citrate, a histamine (H-2) blocker (e.g., cimetidine, famotidine, nizatidine, and the like), or any combination thereof. If the subject has cancer resulting from a Helicobacteraceae infection, the additional therapeutic agent may comprise a chemotherapeutic agent and/or radiation therapy. The Helicobacteraceae enzyme inhibitor and the additional therapeutic agent may be co-administered simultaneously or sequentially in any order. If administered simultaneously, the Helicobacteraceae enzyme inhibitor and the additional therapeutic agent may be administered together in a single pharmaceutical composition, or the Helicobacteraceae enzyme inhibitor and additional therapeutic agent may be administered in separate pharmaceutical compositions by the same or different routes of administration.
- Protein crystallography was used to determine the molecular structure of conformational changes that H. pylori Prx undergoes during its catalytic cycle of hydroperoxide reduction. Crystallography revealed a temporary structural “pocket” that forms in the protein during catalysis. The pocket exhibits features suitable for drug binding and will allow specific targeting of IL pylori Prx. On a standard scoring system developed by Merck, which ranges from negative (unpromising) to 0.5+(druggable), the H. pylori pocket scored as 0.62.
- Virtual ligand screening (VLS) was performed on four million drug-like compounds with Molsoft® internal coordinate mechanics (ICM) modeling software (Molsoft LLC, San Diego, CA). The VLS identified approximately 200 compounds appeared to have a shape and chemical complementarity to the H. pylori Prx pocket (
FIG. 1A ). Compounds I-VI are presumed to directly bind H. pylon AhpC (FIGS. 1B-1H ) with dissociation constants of −15, −15, −19, −17, −16, and −14 kcal/mol, respectively. Compounds were screened experimentally for inhibition of AhpC enzymatic activity in vitro using the following method. - Tris(2-carboxyethyl)phosphine hydrochloride (TCEP)-coated beads were washed 3 x. For each washing, 150 μL of the beads were dispensed into a centrifuge tube, and 850 μL of buffer (25 mM potassium phosphate, 1 mM EDTA, pH 7) was added, followed by centrifugation at 1500 rcf for 60 seconds. After the third wash, 75 μL of buffer was added to the beads.
- The following reagents were prepared:
-
- 1. 25 μM AhpC (alkyl hydroperoxide reductase C)—652.47 [IL buffer, 39 μL washed TCEP beads, 88.5 μL concentrated AhpC protein.
- 2. 250]μM TrxA (thioredoxin A)—427 μL buffer, 39 μL washed TCEP beads, 314 μL concentrated TrxA protein.
- 3. 25 μM TrxR (thioredoxin R)—732.81 μL buffer, 39 μL washed TCEP beads, 8.19 μL concentrated TrxR protein.
- 4. 100 μM iodoacetamide in DMSO.
- 5. 1 mM hydrogen peroxide in H2O.
The prepared reagents 1-3 were incubated for 1 hour at room temperature and then centrifuged. The reduced proteins were extracted and transferred to new tubes.
- A reaction mix was prepared by combining 17.136 mL buffer, 201.6 μL 25 μM TrxR, 201.6 μL 250 μM TrxA, and then adding 2.016
mL 1 mM H2O2 and 201.6 μL 15 mM NADPH. Aliquots, 196 μL, of the reaction mix were added to wells of a microplate. - Compounds to be screened, 2 μL, were added to individual wells. Absorbance at 340 nm was monitored for up to 10 minutes, or until reaction curves became linear. Once absorbance stabilized, 2 μL of the 25 μM AhpC solution was added to the wells. A negative control was prepared by adding 2 μL to a well containing the reaction mixture. Positive controls were prepared by adding 2 μL of AhpC solution to two wells that contained the reaction mixture. Absorbance was then monitored at 340 nm for 1.5 hours. Three replicates were run for each compound, negative control, and positive control. Promising compound candidates were evaluated at 400 μM and 40 μM final concentrations.
- Promising compound candidates (those that exhibited >75% inhibition of AhpC activity) were evaluated in a blood plate screening assay to test lethality against H. pylori strain GFP-G27. This assay determines bacterial growth in the presence or absence of the compound relative to control treatments. The H. pylori GFP-G27 strain is a clinical isolate engineered to express green fluorescence protein (GFP) with an engineered kanamycin resistance gene (KanR) to serve as a tool for growing cultures that contain only this specific bacterium. Blood plates were inoculated with H. pylori strain GIT-G27 and allowed to grow three days in 10% CO2. The cells were then inoculated in brucella broth supplemented with 10% fetal bovine serum (BB10 media)+50 μg/ml kanamycin for a starter culture. Lethality was determined by adding 2 μl of compound dissolved in DMSO, to H. pylori cells in a 20 μl volume, such that the compound was at 500 μM final concentration and the cells were at a final OD600 of 0.125. Experiments were compared to controls where cells were untreated, or treated with 2 μl DMSO. From each experiment, 2 μl of solution was spotted onto a fresh blood plate and allowed to incubate for 48 hours growing with 10% CO2. Eight individual experiments were performed for each treatment. Bacteria growth was determined by quantifying GFP fluorescence for each treatment area, relative to the growth of the untreated bacterial samples. The results are shown in
FIGS. 2A-2B . - The purpose of the foregoing assays was to determine to what extent compounds I-VI inhibit the growth of H. pylori. Compounds I-VI substantially inhibited the growth, or were completely lethal, to H. pylori (
FIG. 2 ). - A subject having, or suspected of having, a Helicobacteraceae infection is administered a therapeutically effective amount of a pharmaceutical composition as disclosed herein. In some examples, the subject has gastritis, a gastric or duodenal ulcer, or a gastric or duodenal cancer. The subject may be identified as having a Helicobacteraceae infection on the basis of laboratory testing (e.g., blood, stool, and/or breath tests) and/or diagnostic imaging (e.g., upper endoscopy). In some implementations, the subject is suspected of having a Helicobacteraceae infection on the basis of one or more symptoms characteristic of a Helicobacteraceae infection, including but not limited to abdominal discomfort or swelling (e.g., stomach pain, bloating), nausea, unexplained weight loss, vomiting, burping, poor appetite, blood in the stool, early feeling of fullness while eating, fatigue, weakness, and combinations thereof.
- In any of the foregoing examples, the subject may be administered the therapeutically effective amount of the pharmaceutical composition at periodic intervals for an effective period of time to ameliorate at least one sign or symptom characteristic of a Helicobacteraceae infection. For example, the subject may be administered the therapeutically effective amount of the pharmaceutical composition once daily or in divided doses over the course of a day, such as 2-3 divided doses per day. The therapeutically effective amount may be determined by a clinician based on factors including, but not limited to, subject age, subject weight, infection severity, infection duration, the presence of an ulcer or a cancer, and combination thereof. The pharmaceutical composition is administered by any suitable route including, but not limited to, parenterally (e.g., intravenously, intramuscularly, subcutaneously) or orally.
- In some embodiments, administration of a therapeutically effective dose of a compound as disclosed herein to a subject produces at least a 5% reduction in at least one sign or symptom characteristic of a Helicobacteraceae infection in the subject, such as at least a 10% reduction, at least a 20% reduction, at least 30% reduction, at least 40% reduction, at least 50% reduction, at least 60% reduction, at least 70% reduction, at least 80% reduction, or at least 90% reduction in at least one sign or symptom characteristic of a Helicobacteraceae infection. In some instances, administration is continued until at least one sign or symptom consistent with an H. pylori infection are eliminated, or until the Helicobacteraceae infection is eradicated as determined by laboratory testing and/or diagnostic imaging. In certain cases, administration may continue for a period of time after signs and symptoms consistent with a Helicobacteraceae infection have ceased. In any of the foregoing embodiments, the Helicobacteraceae infection may be an H. pylori infection.
- In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
Claims (20)
1. A pharmaceutical composition comprising a Helicobacteraceae enzyme inhibitor and a pharmaceutically acceptable carrier, wherein the pharmaceutical composition is formulated to release the Helicobacteraceae enzyme inhibitor in a subject's stomach and/or duodenum.
2. The pharmaceutical composition of claim 1 , wherein the pharmaceutical composition comprises an oral dosage form further comprising a coating or a capsule shell encapsulating the pharmaceutical composition, wherein the coating or capsule shell is an immediate release coating or capsule shell formulated to dissolve in the subject's stomach and/or duodenum.
3. The pharmaceutical composition of claim 2 , wherein the coating or capsule shell comprises a polysaccharide, a vinyl alcohol polymer, an acrylic polymer, gelatin, or any combination thereof.
4. The pharmaceutical composition of claim 2 , wherein the coating or capsule shell comprises hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), a PVP-PVA copolymer, a PVA-polyethylene glycol (PEG) copolymer, a dimethylaminoethyl methacrylate/butyl methacrylate/methyl methacrylate (2:1:1) copolymer, gelatin, pullulan, or any combination thereof.
5. The pharmaceutical composition of claim 1 , wherein the Helicobacteraceae enzyme inhibitor is a peroxiredoxin inhibitor.
6. The phaunaceutical composition of claim 5 , wherein the peroxiredoxin inhibitor inhibits alkyl hydroperoxide reductase C (AhpC), thiol-specific peroxidase (Tpx), bacterioferritin comigratory protein (BCP), or any combination thereof.
7. The pharmaceutical composition of claim 1 , wherein the Helicobacteraceae enzyme inhibitor is a Helicobacter pylori enzyme inhibitor.
8. The pharmaceutical composition of claim 1 , wherein the Helicobacteraceae enzyme inhibitor is a compound, or a stereoisomer or pharmaceutically acceptable salt, solvate or hydrate thereof, wherein the compound has a structure according to formula I′, formula II′, formula III′, compound IV, formula V′, formula VI′, or any combination thereof:
11. A method for ameliorating a Helicobacteraceae infection, comprising administering to a subject having, or suspected of having, a Helicobacteraceae infection a therapeutically effective amount of a pharmaceutical composition comprising a Helicohacteraceae enzyme inhibitor.
12. The method of claim 11 , wherein the Helicohacteraceae infection is a Helicobacter pylori infection.
13. The method of claim 11 , wherein the Helicohacteraceae enzyme is a peroxiredoxin.
14. The method of claim 11 , wherein the Helicobacteraceae enzyme inhibitor is a compound having a structure according to formula I′, formula II′, formula III′, compound IV, formula V′, formula VI′, or any combination thereof:
16. The method of claim 11 , wherein the therapeutically effective amount is administered at periodic intervals for an effective period of time to ameliorate the Helicobacteraceae infection.
17. A method, comprising inhibiting an enzyme produced by a Helicobacteraceae organism by contacting the enzyme with an effective amount of a compound having a structure according to formula F, formula IF, formula III′, formula IV, formula V′, formula VI′, or any combination thereof:
19. The method of claim 17 , wherein contacting is performed in vivo.
20. The method of claim 17 , wherein the enzyme is a peroxiredoxin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/356,182 US20240041844A1 (en) | 2022-07-27 | 2023-07-20 | Compositions and methods for ameliorating helicobacteraceae infections |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263392784P | 2022-07-27 | 2022-07-27 | |
US18/356,182 US20240041844A1 (en) | 2022-07-27 | 2023-07-20 | Compositions and methods for ameliorating helicobacteraceae infections |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240041844A1 true US20240041844A1 (en) | 2024-02-08 |
Family
ID=89770084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/356,182 Pending US20240041844A1 (en) | 2022-07-27 | 2023-07-20 | Compositions and methods for ameliorating helicobacteraceae infections |
Country Status (1)
Country | Link |
---|---|
US (1) | US20240041844A1 (en) |
-
2023
- 2023-07-20 US US18/356,182 patent/US20240041844A1/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240298616A1 (en) | Animal models, screening methods, and treatment methods for intraocular diseases or disorders | |
CA2862193C (en) | Antituberculosis drug combination comprising oxazole compounds | |
JP2010529194A (en) | Antibiotics | |
RU2410100C2 (en) | Pharmaceutical composition of proton pump inhibitor and prebiotic for treating gastric and duodenal ulcers | |
US9284325B2 (en) | Spectinamides as anti-tuberculosis agents | |
US20230210807A1 (en) | Use of benzoate compound in treatment of sars-cov-2 infections | |
WO2018148206A1 (en) | Treatment of diabetes and associated metabolic conditions with epigenetic modulators | |
US20240041844A1 (en) | Compositions and methods for ameliorating helicobacteraceae infections | |
WO2002036203A2 (en) | Azole containing compositions with enhanced antifungal activity | |
US20240122903A1 (en) | Methods of treating cancer | |
US9815777B2 (en) | Metformin salts to treat Type2 diabetes | |
US20200215068A1 (en) | Treatment of type i and type ii diabetes | |
CN111658648A (en) | Application of 4-aminoquinoline compound in treating coronavirus infection | |
KR20100137442A (en) | Combination of a bis-thiazolium salt or a precursor thereof and artemisinin or a derivative thereof for treating acute malaria | |
EA002808B1 (en) | Betaines as adjuvants to susceptibility testing and antimicrobial therapy | |
JPH08231401A (en) | Preventive or remedy for malaria | |
US20210275505A1 (en) | Oxazolidinone for treatment of inffections with mycobacterium tuberculosis | |
CN108440446B (en) | Benzothiazine-4-ketone compound containing oximino fragment and preparation method thereof | |
CN113908165A (en) | Pharmaceutical composition and application thereof | |
WO2024179252A1 (en) | Novel use of belinostat or pharmaceutically acceptable salt thereof | |
CN113730550B (en) | Application of boningmycin in treating drug-resistant tuberculosis | |
US20220213047A1 (en) | Carbonic anhydrase inhibitors for treatment of neisseria gonorrhoeae infection | |
WO2024175053A1 (en) | Compound for treating or preventing sepsis or condition associated with sepsis | |
US10980811B2 (en) | Reversal of fosfomycin resistance | |
JPH11189529A (en) | Anti-helicobacter pylori agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF OREGON, OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYLINK, ARDEN;REEL/FRAME:064333/0199 Effective date: 20230711 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |