US20240041783A1 - Aggregating microparticles for medical therapy - Google Patents
Aggregating microparticles for medical therapy Download PDFInfo
- Publication number
- US20240041783A1 US20240041783A1 US18/102,541 US202318102541A US2024041783A1 US 20240041783 A1 US20240041783 A1 US 20240041783A1 US 202318102541 A US202318102541 A US 202318102541A US 2024041783 A1 US2024041783 A1 US 2024041783A1
- Authority
- US
- United States
- Prior art keywords
- microparticles
- modified solid
- microparticle
- stmp
- surface treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011859 microparticle Substances 0.000 title claims abstract description 448
- 230000004931 aggregating effect Effects 0.000 title claims description 77
- 238000013160 medical therapy Methods 0.000 title abstract description 3
- 239000003814 drug Substances 0.000 claims abstract description 179
- 239000007787 solid Substances 0.000 claims abstract description 103
- 238000001727 in vivo Methods 0.000 claims abstract description 51
- 229920000642 polymer Polymers 0.000 claims description 81
- 229940124597 therapeutic agent Drugs 0.000 claims description 66
- 238000002347 injection Methods 0.000 claims description 62
- 239000007924 injection Substances 0.000 claims description 62
- 239000004094 surface-active agent Substances 0.000 claims description 37
- 239000008188 pellet Substances 0.000 claims description 35
- 238000012377 drug delivery Methods 0.000 claims description 26
- 230000004048 modification Effects 0.000 claims description 22
- 238000012986 modification Methods 0.000 claims description 22
- 230000002459 sustained effect Effects 0.000 claims description 22
- 229920002988 biodegradable polymer Polymers 0.000 claims description 19
- 239000004621 biodegradable polymer Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 abstract description 183
- 229940079593 drug Drugs 0.000 abstract description 108
- 238000000034 method Methods 0.000 abstract description 105
- 230000008569 process Effects 0.000 abstract description 38
- 238000002560 therapeutic procedure Methods 0.000 abstract description 10
- 230000007774 longterm Effects 0.000 abstract description 8
- 230000028709 inflammatory response Effects 0.000 abstract description 2
- 239000007972 injectable composition Substances 0.000 abstract description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 213
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 171
- 238000004381 surface treatment Methods 0.000 description 88
- 150000001875 compounds Chemical class 0.000 description 81
- 210000001508 eye Anatomy 0.000 description 72
- 239000000203 mixture Substances 0.000 description 72
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 70
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 69
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 69
- 239000002953 phosphate buffered saline Substances 0.000 description 69
- -1 inserts Substances 0.000 description 65
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 59
- 229920002451 polyvinyl alcohol Polymers 0.000 description 57
- 229960001796 sunitinib Drugs 0.000 description 57
- 239000000243 solution Substances 0.000 description 56
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 53
- 229910001868 water Inorganic materials 0.000 description 44
- 238000011282 treatment Methods 0.000 description 42
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 40
- 229920001223 polyethylene glycol Polymers 0.000 description 40
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 35
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 34
- 238000004519 manufacturing process Methods 0.000 description 33
- 239000003795 chemical substances by application Substances 0.000 description 32
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 32
- 238000011534 incubation Methods 0.000 description 32
- 239000000725 suspension Substances 0.000 description 32
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 30
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 30
- 239000002904 solvent Substances 0.000 description 30
- 241000283973 Oryctolagus cuniculus Species 0.000 description 28
- 239000002202 Polyethylene glycol Substances 0.000 description 28
- 239000004005 microsphere Substances 0.000 description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- 230000002776 aggregation Effects 0.000 description 27
- 229940117392 provisc Drugs 0.000 description 27
- 238000004220 aggregation Methods 0.000 description 26
- 208000035475 disorder Diseases 0.000 description 26
- 239000003112 inhibitor Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 26
- 229920000747 poly(lactic acid) Polymers 0.000 description 24
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 23
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 21
- 108010016672 Syk Kinase Proteins 0.000 description 21
- 102100038183 Tyrosine-protein kinase SYK Human genes 0.000 description 21
- 239000000839 emulsion Substances 0.000 description 21
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 150000003839 salts Chemical class 0.000 description 21
- 229960002812 sunitinib malate Drugs 0.000 description 21
- 238000011068 loading method Methods 0.000 description 20
- 208000010412 Glaucoma Diseases 0.000 description 19
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 19
- 238000000338 in vitro Methods 0.000 description 19
- 239000006185 dispersion Substances 0.000 description 18
- 239000003960 organic solvent Substances 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 210000001525 retina Anatomy 0.000 description 16
- 238000013019 agitation Methods 0.000 description 15
- 238000009826 distribution Methods 0.000 description 15
- 238000009472 formulation Methods 0.000 description 15
- 230000001225 therapeutic effect Effects 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 14
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 14
- 230000004410 intraocular pressure Effects 0.000 description 14
- 229920001610 polycaprolactone Polymers 0.000 description 14
- 239000003085 diluting agent Substances 0.000 description 13
- 239000004632 polycaprolactone Substances 0.000 description 13
- 239000011118 polyvinyl acetate Substances 0.000 description 13
- 229920002689 polyvinyl acetate Polymers 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 206010061218 Inflammation Diseases 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 12
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 12
- 230000004054 inflammatory process Effects 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 206010012689 Diabetic retinopathy Diseases 0.000 description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 239000007943 implant Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 11
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 10
- 229930195725 Mannitol Natural products 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 239000000594 mannitol Substances 0.000 description 10
- 235000010355 mannitol Nutrition 0.000 description 10
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 238000013268 sustained release Methods 0.000 description 9
- 239000012730 sustained-release form Substances 0.000 description 9
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 8
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 8
- 208000022873 Ocular disease Diseases 0.000 description 8
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 8
- 229920002385 Sodium hyaluronate Polymers 0.000 description 8
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 8
- 229960004592 isopropanol Drugs 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 8
- 210000001328 optic nerve Anatomy 0.000 description 8
- KASDHRXLYQOAKZ-XDSKOBMDSA-N pimecrolimus Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C/C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@H](Cl)[C@H](OC)C1 KASDHRXLYQOAKZ-XDSKOBMDSA-N 0.000 description 8
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 8
- 229940010747 sodium hyaluronate Drugs 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 8
- 208000002177 Cataract Diseases 0.000 description 7
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 7
- 108010036949 Cyclosporine Proteins 0.000 description 7
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 7
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 7
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 208000002205 allergic conjunctivitis Diseases 0.000 description 7
- 239000008346 aqueous phase Substances 0.000 description 7
- 210000003161 choroid Anatomy 0.000 description 7
- 238000005354 coacervation Methods 0.000 description 7
- 210000000695 crystalline len Anatomy 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- 229920001983 poloxamer Polymers 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 7
- YOVVNQKCSKSHKT-HNNXBMFYSA-N (2s)-1-[4-[[2-(2-aminopyrimidin-5-yl)-7-methyl-4-morpholin-4-ylthieno[3,2-d]pyrimidin-6-yl]methyl]piperazin-1-yl]-2-hydroxypropan-1-one Chemical compound C1CN(C(=O)[C@@H](O)C)CCN1CC1=C(C)C2=NC(C=3C=NC(N)=NC=3)=NC(N3CCOCC3)=C2S1 YOVVNQKCSKSHKT-HNNXBMFYSA-N 0.000 description 6
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 6
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 6
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 6
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 6
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 6
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 6
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 6
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 6
- 229920000954 Polyglycolide Polymers 0.000 description 6
- 229920001213 Polysorbate 20 Polymers 0.000 description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 108091008605 VEGF receptors Proteins 0.000 description 6
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 6
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 6
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 6
- 239000013543 active substance Substances 0.000 description 6
- 230000036760 body temperature Effects 0.000 description 6
- BSMCAPRUBJMWDF-KRWDZBQOSA-N cobimetinib Chemical compound C1C(O)([C@H]2NCCCC2)CN1C(=O)C1=CC=C(F)C(F)=C1NC1=CC=C(I)C=C1F BSMCAPRUBJMWDF-KRWDZBQOSA-N 0.000 description 6
- 229960002271 cobimetinib Drugs 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 229960005167 everolimus Drugs 0.000 description 6
- 238000004108 freeze drying Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 239000000017 hydrogel Substances 0.000 description 6
- 229960004716 idoxuridine Drugs 0.000 description 6
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 6
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000002207 retinal effect Effects 0.000 description 6
- 229960002930 sirolimus Drugs 0.000 description 6
- 108010024976 Asparaginase Proteins 0.000 description 5
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 5
- 206010022941 Iridocyclitis Diseases 0.000 description 5
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 5
- 208000001344 Macular Edema Diseases 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 5
- 206010046851 Uveitis Diseases 0.000 description 5
- 208000000208 Wet Macular Degeneration Diseases 0.000 description 5
- 206010064930 age-related macular degeneration Diseases 0.000 description 5
- 201000004612 anterior uveitis Diseases 0.000 description 5
- 208000024998 atopic conjunctivitis Diseases 0.000 description 5
- 229960000397 bevacizumab Drugs 0.000 description 5
- ACWZRVQXLIRSDF-UHFFFAOYSA-N binimetinib Chemical compound OCCONC(=O)C=1C=C2N(C)C=NC2=C(F)C=1NC1=CC=C(Br)C=C1F ACWZRVQXLIRSDF-UHFFFAOYSA-N 0.000 description 5
- 229960001265 ciclosporin Drugs 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 208000011325 dry age related macular degeneration Diseases 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 239000002158 endotoxin Substances 0.000 description 5
- 230000003628 erosive effect Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 206010023332 keratitis Diseases 0.000 description 5
- 208000002780 macular degeneration Diseases 0.000 description 5
- 229960000485 methotrexate Drugs 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 239000002829 mitogen activated protein kinase inhibitor Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229920001440 poly(ε-caprolactone)-block-poly(ethylene glycol) Polymers 0.000 description 5
- 239000004633 polyglycolic acid Substances 0.000 description 5
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 4
- RWEVIPRMPFNTLO-UHFFFAOYSA-N 2-(2-fluoro-4-iodoanilino)-N-(2-hydroxyethoxy)-1,5-dimethyl-6-oxo-3-pyridinecarboxamide Chemical compound CN1C(=O)C(C)=CC(C(=O)NOCCO)=C1NC1=CC=C(I)C=C1F RWEVIPRMPFNTLO-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- INYSELGLAAADNH-UHFFFAOYSA-N 2-bromo-1,5,6,7-tetrahydropyrrolo[2,3-c]azepine-4,8-dione Chemical compound O=C1NCCC(=O)C2=C1NC(Br)=C2 INYSELGLAAADNH-UHFFFAOYSA-N 0.000 description 4
- RCLQNICOARASSR-SECBINFHSA-N 3-[(2r)-2,3-dihydroxypropyl]-6-fluoro-5-(2-fluoro-4-iodoanilino)-8-methylpyrido[2,3-d]pyrimidine-4,7-dione Chemical compound FC=1C(=O)N(C)C=2N=CN(C[C@@H](O)CO)C(=O)C=2C=1NC1=CC=C(I)C=C1F RCLQNICOARASSR-SECBINFHSA-N 0.000 description 4
- FSASIHFSFGAIJM-UHFFFAOYSA-N 3-methyladenine Chemical compound CN1C=NC(N)=C2N=CN=C12 FSASIHFSFGAIJM-UHFFFAOYSA-N 0.000 description 4
- BUROJSBIWGDYCN-GAUTUEMISA-N AP 23573 Chemical compound C1C[C@@H](OP(C)(C)=O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 BUROJSBIWGDYCN-GAUTUEMISA-N 0.000 description 4
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 4
- 229930105110 Cyclosporin A Natural products 0.000 description 4
- 108010092160 Dactinomycin Proteins 0.000 description 4
- 108010008165 Etanercept Proteins 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 4
- 108090001061 Insulin Proteins 0.000 description 4
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 4
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 4
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 4
- 239000005536 L01XE08 - Nilotinib Substances 0.000 description 4
- 239000002145 L01XE14 - Bosutinib Substances 0.000 description 4
- VIUAUNHCRHHYNE-JTQLQIEISA-N N-[(2S)-2,3-dihydroxypropyl]-3-(2-fluoro-4-iodoanilino)-4-pyridinecarboxamide Chemical compound OC[C@@H](O)CNC(=O)C1=CC=NC=C1NC1=CC=C(I)C=C1F VIUAUNHCRHHYNE-JTQLQIEISA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 4
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 4
- 206010038848 Retinal detachment Diseases 0.000 description 4
- 239000004231 Riboflavin-5-Sodium Phosphate Substances 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000011260 aqueous acid Substances 0.000 description 4
- AQOKCDNYWBIDND-FTOWTWDKSA-N bimatoprost Chemical compound CCNC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\[C@@H](O)CCC1=CC=CC=C1 AQOKCDNYWBIDND-FTOWTWDKSA-N 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- UBPYILGKFZZVDX-UHFFFAOYSA-N bosutinib Chemical compound C1=C(Cl)C(OC)=CC(NC=2C3=CC(OC)=C(OCCCN4CCN(C)CC4)C=C3N=CC=2C#N)=C1Cl UBPYILGKFZZVDX-UHFFFAOYSA-N 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 229940127089 cytotoxic agent Drugs 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 229960002448 dasatinib Drugs 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 229960003957 dexamethasone Drugs 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 208000030533 eye disease Diseases 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- 229920001600 hydrophobic polymer Polymers 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 description 4
- 239000003018 immunosuppressive agent Substances 0.000 description 4
- 229940125396 insulin Drugs 0.000 description 4
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 4
- 229940124302 mTOR inhibitor Drugs 0.000 description 4
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 4
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- RDSACQWTXKSHJT-UHFFFAOYSA-N n-[3,4-difluoro-2-(2-fluoro-4-iodoanilino)-6-methoxyphenyl]-1-(2,3-dihydroxypropyl)cyclopropane-1-sulfonamide Chemical compound C1CC1(CC(O)CO)S(=O)(=O)NC=1C(OC)=CC(F)=C(F)C=1NC1=CC=C(I)C=C1F RDSACQWTXKSHJT-UHFFFAOYSA-N 0.000 description 4
- CDOOFZZILLRUQH-GDLZYMKVSA-N n-[3-[6-[4-[(2r)-1,4-dimethyl-3-oxopiperazin-2-yl]anilino]-4-methyl-5-oxopyrazin-2-yl]-2-methylphenyl]-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxamide Chemical compound CN1CCN(C)C(=O)[C@H]1C(C=C1)=CC=C1NC1=NC(C=2C(=C(NC(=O)C=3SC=4CCCCC=4C=3)C=CC=2)C)=CN(C)C1=O CDOOFZZILLRUQH-GDLZYMKVSA-N 0.000 description 4
- 230000004112 neuroprotection Effects 0.000 description 4
- HHZIURLSWUIHRB-UHFFFAOYSA-N nilotinib Chemical compound C1=NC(C)=CN1C1=CC(NC(=O)C=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)=CC(C(F)(F)F)=C1 HHZIURLSWUIHRB-UHFFFAOYSA-N 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 229960001972 panitumumab Drugs 0.000 description 4
- SZFPYBIJACMNJV-UHFFFAOYSA-N perifosine Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OC1CC[N+](C)(C)CC1 SZFPYBIJACMNJV-UHFFFAOYSA-N 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 229960005330 pimecrolimus Drugs 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 230000004264 retinal detachment Effects 0.000 description 4
- 229960001302 ridaforolimus Drugs 0.000 description 4
- 238000013341 scale-up Methods 0.000 description 4
- 210000003786 sclera Anatomy 0.000 description 4
- 238000000935 solvent evaporation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229960000235 temsirolimus Drugs 0.000 description 4
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 4
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 229960000575 trastuzumab Drugs 0.000 description 4
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 4
- 210000004127 vitreous body Anatomy 0.000 description 4
- STUWGJZDJHPWGZ-LBPRGKRZSA-N (2S)-N1-[4-methyl-5-[2-(1,1,1-trifluoro-2-methylpropan-2-yl)-4-pyridinyl]-2-thiazolyl]pyrrolidine-1,2-dicarboxamide Chemical compound S1C(C=2C=C(N=CC=2)C(C)(C)C(F)(F)F)=C(C)N=C1NC(=O)N1CCC[C@H]1C(N)=O STUWGJZDJHPWGZ-LBPRGKRZSA-N 0.000 description 3
- OYYVWNDMOQPMGE-SDQBBNPISA-N (5z)-5-[[5-(4-fluoro-2-hydroxyphenyl)furan-2-yl]methylidene]-1,3-thiazolidine-2,4-dione Chemical compound OC1=CC(F)=CC=C1C(O1)=CC=C1\C=C/1C(=O)NC(=O)S\1 OYYVWNDMOQPMGE-SDQBBNPISA-N 0.000 description 3
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 3
- YABJJWZLRMPFSI-UHFFFAOYSA-N 1-methyl-5-[[2-[5-(trifluoromethyl)-1H-imidazol-2-yl]-4-pyridinyl]oxy]-N-[4-(trifluoromethyl)phenyl]-2-benzimidazolamine Chemical compound N=1C2=CC(OC=3C=C(N=CC=3)C=3NC(=CN=3)C(F)(F)F)=CC=C2N(C)C=1NC1=CC=C(C(F)(F)F)C=C1 YABJJWZLRMPFSI-UHFFFAOYSA-N 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- IRTDIKMSKMREGO-OAHLLOKOSA-N 2-[[(1R)-1-[7-methyl-2-(4-morpholinyl)-4-oxo-9-pyrido[1,2-a]pyrimidinyl]ethyl]amino]benzoic acid Chemical compound N([C@H](C)C=1C=2N(C(C=C(N=2)N2CCOCC2)=O)C=C(C)C=1)C1=CC=CC=C1C(O)=O IRTDIKMSKMREGO-OAHLLOKOSA-N 0.000 description 3
- BEUQXVWXFDOSAQ-UHFFFAOYSA-N 2-methyl-2-[4-[2-(5-methyl-2-propan-2-yl-1,2,4-triazol-3-yl)-5,6-dihydroimidazo[1,2-d][1,4]benzoxazepin-9-yl]pyrazol-1-yl]propanamide Chemical compound CC(C)N1N=C(C)N=C1C1=CN(CCOC=2C3=CC=C(C=2)C2=CN(N=C2)C(C)(C)C(N)=O)C3=N1 BEUQXVWXFDOSAQ-UHFFFAOYSA-N 0.000 description 3
- FIMYFEGKMOCQKT-UHFFFAOYSA-N 3,4-difluoro-2-(2-fluoro-4-iodoanilino)-n-(2-hydroxyethoxy)-5-[(3-oxooxazinan-2-yl)methyl]benzamide Chemical compound FC=1C(F)=C(NC=2C(=CC(I)=CC=2)F)C(C(=O)NOCCO)=CC=1CN1OCCCC1=O FIMYFEGKMOCQKT-UHFFFAOYSA-N 0.000 description 3
- XYLJNLCSTIOKRM-UHFFFAOYSA-N Alphagan Chemical compound C1=CC2=NC=CN=C2C(Br)=C1NC1=NCCN1 XYLJNLCSTIOKRM-UHFFFAOYSA-N 0.000 description 3
- CWHUFRVAEUJCEF-UHFFFAOYSA-N BKM120 Chemical compound C1=NC(N)=CC(C(F)(F)F)=C1C1=CC(N2CCOCC2)=NC(N2CCOCC2)=N1 CWHUFRVAEUJCEF-UHFFFAOYSA-N 0.000 description 3
- 229940124291 BTK inhibitor Drugs 0.000 description 3
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 3
- 101100361281 Caenorhabditis elegans rpm-1 gene Proteins 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 102000003846 Carbonic anhydrases Human genes 0.000 description 3
- 108090000209 Carbonic anhydrases Proteins 0.000 description 3
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 3
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 3
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 3
- 239000002118 L01XE12 - Vandetanib Substances 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 3
- 206010025415 Macular oedema Diseases 0.000 description 3
- 206010029113 Neovascularisation Diseases 0.000 description 3
- 229920002732 Polyanhydride Polymers 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- 208000017442 Retinal disease Diseases 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 3
- HJSSPYJVWLTYHG-UHFFFAOYSA-N XL765 Chemical compound COC1=CC(OC)=CC(NC=2C(=NC3=CC=CC=C3N=2)NS(=O)(=O)C=2C=CC(NC(=O)C=3C=C(OC)C(C)=CC=3)=CC=2)=C1 HJSSPYJVWLTYHG-UHFFFAOYSA-N 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 3
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000000048 adrenergic agonist Substances 0.000 description 3
- 108010081667 aflibercept Proteins 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000002876 beta blocker Substances 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 3
- 229960002470 bimatoprost Drugs 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 3
- 239000003489 carbonate dehydratase inhibitor Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229960005395 cetuximab Drugs 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 229930182912 cyclosporin Natural products 0.000 description 3
- 229960000684 cytarabine Drugs 0.000 description 3
- 229960000640 dactinomycin Drugs 0.000 description 3
- JOGKUKXHTYWRGZ-UHFFFAOYSA-N dactolisib Chemical compound O=C1N(C)C2=CN=C3C=CC(C=4C=C5C=CC=CC5=NC=4)=CC3=C2N1C1=CC=C(C(C)(C)C#N)C=C1 JOGKUKXHTYWRGZ-UHFFFAOYSA-N 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 229960001259 diclofenac Drugs 0.000 description 3
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- IAVUPMFITXYVAF-XPUUQOCRSA-N dorzolamide Chemical compound CCN[C@H]1C[C@H](C)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 IAVUPMFITXYVAF-XPUUQOCRSA-N 0.000 description 3
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 3
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 3
- 229940093915 gynecological organic acid Drugs 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 229920002674 hyaluronan Polymers 0.000 description 3
- 235000011167 hydrochloric acid Nutrition 0.000 description 3
- XYFPWWZEPKGCCK-GOSISDBHSA-N ibrutinib Chemical compound C1=2C(N)=NC=NC=2N([C@H]2CN(CCC2)C(=O)C=C)N=C1C(C=C1)=CC=C1OC1=CC=CC=C1 XYFPWWZEPKGCCK-GOSISDBHSA-N 0.000 description 3
- 229960001680 ibuprofen Drugs 0.000 description 3
- 229960002411 imatinib Drugs 0.000 description 3
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 3
- 229940125721 immunosuppressive agent Drugs 0.000 description 3
- 229960000905 indomethacin Drugs 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 201000010666 keratoconjunctivitis Diseases 0.000 description 3
- GGXICVAJURFBLW-CEYXHVGTSA-N latanoprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1CC[C@@H](O)CCC1=CC=CC=C1 GGXICVAJURFBLW-CEYXHVGTSA-N 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 201000010230 macular retinal edema Diseases 0.000 description 3
- 229960005027 natalizumab Drugs 0.000 description 3
- 229960003301 nivolumab Drugs 0.000 description 3
- CGBJSGAELGCMKE-UHFFFAOYSA-N omipalisib Chemical compound COC1=NC=C(C=2C=C3C(C=4C=NN=CC=4)=CC=NC3=CC=2)C=C1NS(=O)(=O)C1=CC=C(F)C=C1F CGBJSGAELGCMKE-UHFFFAOYSA-N 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 229950010632 perifosine Drugs 0.000 description 3
- 239000008177 pharmaceutical agent Substances 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- CDRPUGZCRXZLFL-OWOJBTEDSA-N piceatannol Chemical compound OC1=CC(O)=CC(\C=C\C=2C=C(O)C(O)=CC=2)=C1 CDRPUGZCRXZLFL-OWOJBTEDSA-N 0.000 description 3
- LHNIIDJUOCFXAP-UHFFFAOYSA-N pictrelisib Chemical compound C1CN(S(=O)(=O)C)CCN1CC1=CC2=NC(C=3C=4C=NNC=4C=CC=3)=NC(N3CCOCC3)=C2S1 LHNIIDJUOCFXAP-UHFFFAOYSA-N 0.000 description 3
- 229920001993 poloxamer 188 Polymers 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 229960004618 prednisone Drugs 0.000 description 3
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 3
- 150000003180 prostaglandins Chemical class 0.000 description 3
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 3
- 208000004644 retinal vein occlusion Diseases 0.000 description 3
- 239000002151 riboflavin Substances 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 229950007866 tanespimycin Drugs 0.000 description 3
- AYUNIORJHRXIBJ-TXHRRWQRSA-N tanespimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](O)[C@@H](OC)C[C@H](C)CC2=C(NCC=C)C(=O)C=C1C2=O AYUNIORJHRXIBJ-TXHRRWQRSA-N 0.000 description 3
- 229960001278 teniposide Drugs 0.000 description 3
- 239000002407 tissue scaffold Substances 0.000 description 3
- 229960004066 trametinib Drugs 0.000 description 3
- LIRYPHYGHXZJBZ-UHFFFAOYSA-N trametinib Chemical compound CC(=O)NC1=CC=CC(N2C(N(C3CC3)C(=O)C3=C(NC=4C(=CC(I)=CC=4)F)N(C)C(=O)C(C)=C32)=O)=C1 LIRYPHYGHXZJBZ-UHFFFAOYSA-N 0.000 description 3
- MKPLKVHSHYCHOC-AHTXBMBWSA-N travoprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\[C@@H](O)COC1=CC=CC(C(F)(F)F)=C1 MKPLKVHSHYCHOC-AHTXBMBWSA-N 0.000 description 3
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 3
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 3
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 3
- UHTHHESEBZOYNR-UHFFFAOYSA-N vandetanib Chemical compound COC1=CC(C(/N=CN2)=N/C=3C(=CC(Br)=CC=3)F)=C2C=C1OCC1CCN(C)CC1 UHTHHESEBZOYNR-UHFFFAOYSA-N 0.000 description 3
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 3
- 229960004528 vincristine Drugs 0.000 description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 3
- QCHFTSOMWOSFHM-WPRPVWTQSA-N (+)-Pilocarpine Chemical compound C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C QCHFTSOMWOSFHM-WPRPVWTQSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 2
- SVNJBEMPMKWDCO-KCHLEUMXSA-N (2s)-2-[[(2s)-3-carboxy-2-[[2-[[(2s)-5-(diaminomethylideneamino)-2-[[4-oxo-4-[[4-(4-oxo-8-phenylchromen-2-yl)morpholin-4-ium-4-yl]methoxy]butanoyl]amino]pentanoyl]amino]acetyl]amino]propanoyl]amino]-3-hydroxypropanoate Chemical compound C=1C(=O)C2=CC=CC(C=3C=CC=CC=3)=C2OC=1[N+]1(COC(=O)CCC(=O)N[C@@H](CCCNC(=N)N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C([O-])=O)CCOCC1 SVNJBEMPMKWDCO-KCHLEUMXSA-N 0.000 description 2
- KCOYQXZDFIIGCY-CZIZESTLSA-N (3e)-4-amino-5-fluoro-3-[5-(4-methylpiperazin-1-yl)-1,3-dihydrobenzimidazol-2-ylidene]quinolin-2-one Chemical compound C1CN(C)CCN1C1=CC=C(N\C(N2)=C/3C(=C4C(F)=CC=CC4=NC\3=O)N)C2=C1 KCOYQXZDFIIGCY-CZIZESTLSA-N 0.000 description 2
- DKSZLDSPXIWGFO-BLOJGBSASA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;phosphoric acid;hydrate Chemical compound O.OP(O)(O)=O.OP(O)(O)=O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC DKSZLDSPXIWGFO-BLOJGBSASA-N 0.000 description 2
- QDITZBLZQQZVEE-YBEGLDIGSA-N (5z)-5-[(4-pyridin-4-ylquinolin-6-yl)methylidene]-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)\C1=C\C1=CC=C(N=CC=C2C=3C=CN=CC=3)C2=C1 QDITZBLZQQZVEE-YBEGLDIGSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- DWZAEMINVBZMHQ-UHFFFAOYSA-N 1-[4-[4-(dimethylamino)piperidine-1-carbonyl]phenyl]-3-[4-(4,6-dimorpholin-4-yl-1,3,5-triazin-2-yl)phenyl]urea Chemical compound C1CC(N(C)C)CCN1C(=O)C(C=C1)=CC=C1NC(=O)NC1=CC=C(C=2N=C(N=C(N=2)N2CCOCC2)N2CCOCC2)C=C1 DWZAEMINVBZMHQ-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IDINUJSAMVOPCM-UHFFFAOYSA-N 15-Deoxyspergualin Natural products NCCCNCCCCNC(=O)C(O)NC(=O)CCCCCCN=C(N)N IDINUJSAMVOPCM-UHFFFAOYSA-N 0.000 description 2
- MVXVYAKCVDQRLW-UHFFFAOYSA-N 1h-pyrrolo[2,3-b]pyridine Chemical compound C1=CN=C2NC=CC2=C1 MVXVYAKCVDQRLW-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 2
- KBPYMFSSFLOJPH-UONOGXRCSA-N 2-[[(3r,4r)-3-aminooxan-4-yl]amino]-4-(4-methylanilino)pyrimidine-5-carboxamide Chemical compound C1=CC(C)=CC=C1NC1=NC(N[C@H]2[C@H](COCC2)N)=NC=C1C(N)=O KBPYMFSSFLOJPH-UONOGXRCSA-N 0.000 description 2
- 125000005273 2-acetoxybenzoic acid group Chemical group 0.000 description 2
- MWYDSXOGIBMAET-UHFFFAOYSA-N 2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydro-1H-imidazo[1,2-c]quinazolin-5-ylidene]pyrimidine-5-carboxamide Chemical compound NC1=NC=C(C=N1)C(=O)N=C1N=C2C(=C(C=CC2=C2N1CCN2)OCCCN1CCOCC1)OC MWYDSXOGIBMAET-UHFFFAOYSA-N 0.000 description 2
- WXJLXRNWMLWVFB-UHFFFAOYSA-N 2-chloro-5-(2-phenyl-5-pyridin-4-yl-1H-imidazol-4-yl)phenol Chemical compound C1=C(Cl)C(O)=CC(C2=C(NC(=N2)C=2C=CC=CC=2)C=2C=CN=CC=2)=C1 WXJLXRNWMLWVFB-UHFFFAOYSA-N 0.000 description 2
- CQOQDQWUFQDJMK-SSTWWWIQSA-N 2-methoxy-17beta-estradiol Chemical compound C([C@@H]12)C[C@]3(C)[C@@H](O)CC[C@H]3[C@@H]1CCC1=C2C=C(OC)C(O)=C1 CQOQDQWUFQDJMK-SSTWWWIQSA-N 0.000 description 2
- NZNTWOVDIXCHHS-LSDHHAIUSA-N 2-{[(1r,2s)-2-aminocyclohexyl]amino}-4-[(3-methylphenyl)amino]pyrimidine-5-carboxamide Chemical compound CC1=CC=CC(NC=2C(=CN=C(N[C@H]3[C@H](CCCC3)N)N=2)C(N)=O)=C1 NZNTWOVDIXCHHS-LSDHHAIUSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- ZGBGPEDJXCYQPH-UHFFFAOYSA-N 3-(2-cyanopropan-2-yl)-N-[4-methyl-3-[(3-methyl-4-oxo-6-quinazolinyl)amino]phenyl]benzamide Chemical compound C1=C(NC=2C=C3C(=O)N(C)C=NC3=CC=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)C#N)=C1 ZGBGPEDJXCYQPH-UHFFFAOYSA-N 0.000 description 2
- JDQNYWYMNFRKNQ-UHFFFAOYSA-N 3-ethyl-4-methylpyridine Chemical compound CCC1=CN=CC=C1C JDQNYWYMNFRKNQ-UHFFFAOYSA-N 0.000 description 2
- ZCCPLJOKGAACRT-UHFFFAOYSA-N 4-methyl-3-[[1-methyl-6-(3-pyridinyl)-4-pyrazolo[3,4-d]pyrimidinyl]amino]-N-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1NC(C=1C=NN(C)C=1N=1)=NC=1C1=CC=CN=C1 ZCCPLJOKGAACRT-UHFFFAOYSA-N 0.000 description 2
- JIFCFQDXHMUPGP-UHFFFAOYSA-N 4-tert-butyl-n-[2-methyl-3-[4-methyl-6-[4-(morpholine-4-carbonyl)anilino]-5-oxopyrazin-2-yl]phenyl]benzamide Chemical compound C1=CC=C(C=2N=C(NC=3C=CC(=CC=3)C(=O)N3CCOCC3)C(=O)N(C)C=2)C(C)=C1NC(=O)C1=CC=C(C(C)(C)C)C=C1 JIFCFQDXHMUPGP-UHFFFAOYSA-N 0.000 description 2
- RXRZPHQBTHQXSV-UHFFFAOYSA-N 5-(2-amino-8-fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-n-tert-butylpyridine-3-sulfonamide Chemical compound CC(C)(C)NS(=O)(=O)C1=CN=CC(C2=CN3N=C(N)N=C3C(F)=C2)=C1 RXRZPHQBTHQXSV-UHFFFAOYSA-N 0.000 description 2
- XSMSNFMDVXXHGJ-UHFFFAOYSA-N 6-(1h-indazol-6-yl)-n-(4-morpholin-4-ylphenyl)imidazo[1,2-a]pyrazin-8-amine Chemical compound C1COCCN1C(C=C1)=CC=C1NC1=NC(C=2C=C3NN=CC3=CC=2)=CN2C1=NC=C2 XSMSNFMDVXXHGJ-UHFFFAOYSA-N 0.000 description 2
- DOCINCLJNAXZQF-LBPRGKRZSA-N 6-fluoro-3-phenyl-2-[(1s)-1-(7h-purin-6-ylamino)ethyl]quinazolin-4-one Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=NC2=CC=C(F)C=C2C(=O)N1C1=CC=CC=C1 DOCINCLJNAXZQF-LBPRGKRZSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- CPRAGQJXBLMUEL-UHFFFAOYSA-N 9-(1-anilinoethyl)-7-methyl-2-(4-morpholinyl)-4-pyrido[1,2-a]pyrimidinone Chemical compound C=1C(C)=CN(C(C=C(N=2)N3CCOCC3)=O)C=2C=1C(C)NC1=CC=CC=C1 CPRAGQJXBLMUEL-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 2
- 102000015790 Asparaginase Human genes 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 208000009137 Behcet syndrome Diseases 0.000 description 2
- LMMJFBMMJUMSJS-UHFFFAOYSA-N CH5126766 Chemical compound CNS(=O)(=O)NC1=NC=CC(CC=2C(OC3=CC(OC=4N=CC=CN=4)=CC=C3C=2C)=O)=C1F LMMJFBMMJUMSJS-UHFFFAOYSA-N 0.000 description 2
- 229940122739 Calcineurin inhibitor Drugs 0.000 description 2
- 101710192106 Calcineurin-binding protein cabin-1 Proteins 0.000 description 2
- 102100024123 Calcineurin-binding protein cabin-1 Human genes 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229940122072 Carbonic anhydrase inhibitor Drugs 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- 208000002691 Choroiditis Diseases 0.000 description 2
- 208000028006 Corneal injury Diseases 0.000 description 2
- 206010058202 Cystoid macular oedema Diseases 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 206010012688 Diabetic retinal oedema Diseases 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 2
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 208000007465 Giant cell arteritis Diseases 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 108010069236 Goserelin Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 2
- 239000003798 L01XE11 - Pazopanib Substances 0.000 description 2
- 239000002146 L01XE16 - Crizotinib Substances 0.000 description 2
- 239000002177 L01XE27 - Ibrutinib Substances 0.000 description 2
- 229940124647 MEK inhibitor Drugs 0.000 description 2
- FLOSMHQXBMRNHR-QPJJXVBHSA-N Methazolamide Chemical compound CC(=O)\N=C1\SC(S(N)(=O)=O)=NN1C FLOSMHQXBMRNHR-QPJJXVBHSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 102000006538 Nitric Oxide Synthase Type I Human genes 0.000 description 2
- 108010008858 Nitric Oxide Synthase Type I Proteins 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 241000283977 Oryctolagus Species 0.000 description 2
- 239000012828 PI3K inhibitor Substances 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- PBBRWFOVCUAONR-UHFFFAOYSA-N PP2 Chemical compound C12=C(N)N=CN=C2N(C(C)(C)C)N=C1C1=CC=C(Cl)C=C1 PBBRWFOVCUAONR-UHFFFAOYSA-N 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- SHGAZHPCJJPHSC-UHFFFAOYSA-N Panrexin Chemical compound OC(=O)C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-UHFFFAOYSA-N 0.000 description 2
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 2
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 2
- IIXHQGSINFQLRR-UHFFFAOYSA-N Piceatannol Natural products Oc1ccc(C=Cc2c(O)c(O)c3CCCCc3c2O)cc1O IIXHQGSINFQLRR-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 2
- 229940078123 Ras inhibitor Drugs 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 2
- QCHFTSOMWOSFHM-UHFFFAOYSA-N SJ000285536 Natural products C1OC(=O)C(CC)C1CC1=CN=CN1C QCHFTSOMWOSFHM-UHFFFAOYSA-N 0.000 description 2
- 206010039705 Scleritis Diseases 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004147 Sorbitan trioleate Substances 0.000 description 2
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 2
- SHGAZHPCJJPHSC-NWVFGJFESA-N Tretinoin Chemical compound OC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NWVFGJFESA-N 0.000 description 2
- VGQOVCHZGQWAOI-UHFFFAOYSA-N UNPD55612 Natural products N1C(O)C2CC(C=CC(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-UHFFFAOYSA-N 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 208000034699 Vitreous floaters Diseases 0.000 description 2
- LVBMFPUTQOHXQE-UHFFFAOYSA-N [2-[6-(diaminomethylideneamino)hexylamino]-2-oxoethyl] n-[4-(3-aminopropylamino)butyl]carbamate Chemical compound NCCCNCCCCNC(=O)OCC(=O)NCCCCCCN=C(N)N LVBMFPUTQOHXQE-UHFFFAOYSA-N 0.000 description 2
- YYLKKYCXAOBSRM-JXMROGBWSA-N [4-[(e)-2-(1h-indazol-3-yl)ethenyl]phenyl]-piperazin-1-ylmethanone Chemical compound C=1C=C(\C=C\C=2C3=CC=CC=C3NN=2)C=CC=1C(=O)N1CCNCC1 YYLKKYCXAOBSRM-JXMROGBWSA-N 0.000 description 2
- 229960003697 abatacept Drugs 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229960000571 acetazolamide Drugs 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 229960002964 adalimumab Drugs 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 229960002459 alefacept Drugs 0.000 description 2
- 229950010482 alpelisib Drugs 0.000 description 2
- 229960002932 anastrozole Drugs 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 210000002159 anterior chamber Anatomy 0.000 description 2
- 229940045799 anthracyclines and related substance Drugs 0.000 description 2
- VGQOVCHZGQWAOI-HYUHUPJXSA-N anthramycin Chemical compound N1[C@@H](O)[C@@H]2CC(\C=C\C(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-HYUHUPJXSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940124599 anti-inflammatory drug Drugs 0.000 description 2
- 230000001494 anti-thymocyte effect Effects 0.000 description 2
- 229960002610 apraclonidine Drugs 0.000 description 2
- IEJXVRYNEISIKR-UHFFFAOYSA-N apraclonidine Chemical compound ClC1=CC(N)=CC(Cl)=C1NC1=NCCN1 IEJXVRYNEISIKR-UHFFFAOYSA-N 0.000 description 2
- 239000008365 aqueous carrier Substances 0.000 description 2
- 210000001742 aqueous humor Anatomy 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 229940059756 arava Drugs 0.000 description 2
- 229940072224 asacol Drugs 0.000 description 2
- ZDQSOHOQTUFQEM-PKUCKEGBSA-N ascomycin Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C\C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@@H](O)[C@H](OC)C1 ZDQSOHOQTUFQEM-PKUCKEGBSA-N 0.000 description 2
- ZDQSOHOQTUFQEM-XCXYXIJFSA-N ascomycin Natural products CC[C@H]1C=C(C)C[C@@H](C)C[C@@H](OC)[C@H]2O[C@@](O)([C@@H](C)C[C@H]2OC)C(=O)C(=O)N3CCCC[C@@H]3C(=O)O[C@H]([C@H](C)[C@@H](O)CC1=O)C(=C[C@@H]4CC[C@@H](O)[C@H](C4)OC)C ZDQSOHOQTUFQEM-XCXYXIJFSA-N 0.000 description 2
- 229960003272 asparaginase Drugs 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 229940092117 atgam Drugs 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 2
- 229960004669 basiliximab Drugs 0.000 description 2
- 229960005347 belatacept Drugs 0.000 description 2
- 229960004277 benorilate Drugs 0.000 description 2
- FEJKLNWAOXSSNR-UHFFFAOYSA-N benorilate Chemical compound C1=CC(NC(=O)C)=CC=C1OC(=O)C1=CC=CC=C1OC(C)=O FEJKLNWAOXSSNR-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 229960001467 bortezomib Drugs 0.000 description 2
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 2
- 229940083476 bosulif Drugs 0.000 description 2
- 229960003736 bosutinib Drugs 0.000 description 2
- PZOHOALJQOFNTB-UHFFFAOYSA-M brequinar sodium Chemical compound [Na+].N1=C2C=CC(F)=CC2=C(C([O-])=O)C(C)=C1C(C=C1)=CC=C1C1=CC=CC=C1F PZOHOALJQOFNTB-UHFFFAOYSA-M 0.000 description 2
- 229960003679 brimonidine Drugs 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 229950003628 buparlisib Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229940112129 campath Drugs 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229960005243 carmustine Drugs 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- LWAFSWPYPHEXKX-UHFFFAOYSA-N carteolol Chemical compound N1C(=O)CCC2=C1C=CC=C2OCC(O)CNC(C)(C)C LWAFSWPYPHEXKX-UHFFFAOYSA-N 0.000 description 2
- 229940107810 cellcept Drugs 0.000 description 2
- 229960001602 ceritinib Drugs 0.000 description 2
- WRXDGGCKOUEOPW-UHFFFAOYSA-N ceritinib Chemical compound CC=1C=C(NC=2N=C(NC=3C(=CC=CC=3)NS(=O)(=O)C(C)C)C(Cl)=CN=2)C(OC(C)C)=CC=1C1CCNCC1 WRXDGGCKOUEOPW-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 229960004630 chlorambucil Drugs 0.000 description 2
- 210000004240 ciliary body Anatomy 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- RESIMIUSNACMNW-BXRWSSRYSA-N cobimetinib fumarate Chemical compound OC(=O)\C=C\C(O)=O.C1C(O)([C@H]2NCCCC2)CN1C(=O)C1=CC=C(F)C(F)=C1NC1=CC=C(I)C=C1F.C1C(O)([C@H]2NCCCC2)CN1C(=O)C1=CC=C(F)C(F)=C1NC1=CC=C(I)C=C1F RESIMIUSNACMNW-BXRWSSRYSA-N 0.000 description 2
- 229960004415 codeine phosphate Drugs 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000599 controlled substance Substances 0.000 description 2
- 229960005061 crizotinib Drugs 0.000 description 2
- KTEIFNKAUNYNJU-GFCCVEGCSA-N crizotinib Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NC=1)N)=CC=1C(=C1)C=NN1C1CCNCC1 KTEIFNKAUNYNJU-GFCCVEGCSA-N 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 201000010206 cystoid macular edema Diseases 0.000 description 2
- 231100000599 cytotoxic agent Toxicity 0.000 description 2
- 229960002806 daclizumab Drugs 0.000 description 2
- 229950006418 dactolisib Drugs 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 201000011190 diabetic macular edema Diseases 0.000 description 2
- 229920000359 diblock copolymer Polymers 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 229960003933 dorzolamide Drugs 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 229950005778 dovitinib Drugs 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229960000284 efalizumab Drugs 0.000 description 2
- 229940020485 elidel Drugs 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 229940073621 enbrel Drugs 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 229950002798 enlimomab Drugs 0.000 description 2
- 229960001433 erlotinib Drugs 0.000 description 2
- 229960000403 etanercept Drugs 0.000 description 2
- 229960005293 etodolac Drugs 0.000 description 2
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 229960001395 fenbufen Drugs 0.000 description 2
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 description 2
- 229960000556 fingolimod Drugs 0.000 description 2
- KKGQTZUTZRNORY-UHFFFAOYSA-N fingolimod Chemical compound CCCCCCCCC1=CC=C(CCC(N)(CO)CO)C=C1 KKGQTZUTZRNORY-UHFFFAOYSA-N 0.000 description 2
- XHEFDIBZLJXQHF-UHFFFAOYSA-N fisetin Chemical compound C=1C(O)=CC=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 XHEFDIBZLJXQHF-UHFFFAOYSA-N 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 2
- 229960004884 fluconazole Drugs 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 239000013022 formulation composition Substances 0.000 description 2
- 229950004792 gavilimomab Drugs 0.000 description 2
- 229950008209 gedatolisib Drugs 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 229940048921 humira Drugs 0.000 description 2
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical class CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- UWYVPFMHMJIBHE-OWOJBTEDSA-N hydroxymaleic acid group Chemical group O/C(/C(=O)O)=C/C(=O)O UWYVPFMHMJIBHE-OWOJBTEDSA-N 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 229960001507 ibrutinib Drugs 0.000 description 2
- 229960003445 idelalisib Drugs 0.000 description 2
- YKLIKGKUANLGSB-HNNXBMFYSA-N idelalisib Chemical compound C1([C@@H](NC=2[C]3N=CN=C3N=CN=2)CC)=NC2=CC=CC(F)=C2C(=O)N1C1=CC=CC=C1 YKLIKGKUANLGSB-HNNXBMFYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 229960000598 infliximab Drugs 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 210000000554 iris Anatomy 0.000 description 2
- 201000004614 iritis Diseases 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 2
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 2
- 229960001160 latanoprost Drugs 0.000 description 2
- 229960000681 leflunomide Drugs 0.000 description 2
- 229960003881 letrozole Drugs 0.000 description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229960002247 lomustine Drugs 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 229960004963 mesalazine Drugs 0.000 description 2
- CAAULPUQFIIOTL-UHFFFAOYSA-N methyl dihydrogen phosphate Chemical compound COP(O)(O)=O CAAULPUQFIIOTL-UHFFFAOYSA-N 0.000 description 2
- BQIPXWYNLPYNHW-UHFFFAOYSA-N metipranolol Chemical compound CC(C)NCC(O)COC1=CC(C)=C(OC(C)=O)C(C)=C1C BQIPXWYNLPYNHW-UHFFFAOYSA-N 0.000 description 2
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 2
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 2
- 229960004866 mycophenolate mofetil Drugs 0.000 description 2
- 229960000951 mycophenolic acid Drugs 0.000 description 2
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 2
- BLUYEPLOXLPVCJ-INIZCTEOSA-N n-[(1s)-2-[4-(3-aminopropylamino)butylamino]-1-hydroxyethyl]-7-(diaminomethylideneamino)heptanamide Chemical compound NCCCNCCCCNC[C@H](O)NC(=O)CCCCCCNC(N)=N BLUYEPLOXLPVCJ-INIZCTEOSA-N 0.000 description 2
- RDSACQWTXKSHJT-NSHDSACASA-N n-[3,4-difluoro-2-(2-fluoro-4-iodoanilino)-6-methoxyphenyl]-1-[(2s)-2,3-dihydroxypropyl]cyclopropane-1-sulfonamide Chemical compound C1CC1(C[C@H](O)CO)S(=O)(=O)NC=1C(OC)=CC(F)=C(F)C=1NC1=CC=C(I)C=C1F RDSACQWTXKSHJT-NSHDSACASA-N 0.000 description 2
- 229940090008 naprosyn Drugs 0.000 description 2
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 2
- 229940063121 neoral Drugs 0.000 description 2
- 210000005157 neural retina Anatomy 0.000 description 2
- 229960001346 nilotinib Drugs 0.000 description 2
- 231100000062 no-observed-adverse-effect level Toxicity 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 201000005111 ocular hyperemia Diseases 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 229960002969 oleic acid Drugs 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 229940029358 orthoclone okt3 Drugs 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 239000000734 parasympathomimetic agent Substances 0.000 description 2
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 description 2
- 108010001564 pegaspargase Proteins 0.000 description 2
- 229960002621 pembrolizumab Drugs 0.000 description 2
- 229940072223 pentasa Drugs 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- 239000002935 phosphatidylinositol 3 kinase inhibitor Substances 0.000 description 2
- 229940043441 phosphoinositide 3-kinase inhibitor Drugs 0.000 description 2
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229960001416 pilocarpine Drugs 0.000 description 2
- 229950002592 pimasertib Drugs 0.000 description 2
- 229920001992 poloxamer 407 Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- OGSBUKJUDHAQEA-WMCAAGNKSA-N pralatrexate Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CC(CC#C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OGSBUKJUDHAQEA-WMCAAGNKSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 201000007914 proliferative diabetic retinopathy Diseases 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- QDXGKRWDQCEABB-UHFFFAOYSA-N pyrimidine-5-carboxamide Chemical compound NC(=O)C1=CN=CN=C1 QDXGKRWDQCEABB-UHFFFAOYSA-N 0.000 description 2
- ALVVERXWBOWPKK-UHFFFAOYSA-N pyrimidine-5-carboxamide hydrochloride Chemical compound Cl.NC(=O)C1=CN=CN=C1 ALVVERXWBOWPKK-UHFFFAOYSA-N 0.000 description 2
- 229960002633 ramucirumab Drugs 0.000 description 2
- 229960003876 ranibizumab Drugs 0.000 description 2
- 229940099538 rapamune Drugs 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229940075993 receptor modulator Drugs 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 229950008933 refametinib Drugs 0.000 description 2
- FNHKPVJBJVTLMP-UHFFFAOYSA-N regorafenib Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=C(F)C(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 FNHKPVJBJVTLMP-UHFFFAOYSA-N 0.000 description 2
- 229940116176 remicade Drugs 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 229960004641 rituximab Drugs 0.000 description 2
- OHRURASPPZQGQM-GCCNXGTGSA-N romidepsin Chemical compound O1C(=O)[C@H](C(C)C)NC(=O)C(=C/C)/NC(=O)[C@H]2CSSCC\C=C\[C@@H]1CC(=O)N[C@H](C(C)C)C(=O)N2 OHRURASPPZQGQM-GCCNXGTGSA-N 0.000 description 2
- 108010091666 romidepsin Proteins 0.000 description 2
- OHRURASPPZQGQM-UHFFFAOYSA-N romidepsin Natural products O1C(=O)C(C(C)C)NC(=O)C(=CC)NC(=O)C2CSSCCC=CC1CC(=O)NC(C(C)C)C(=O)N2 OHRURASPPZQGQM-UHFFFAOYSA-N 0.000 description 2
- HFNKQEVNSGCOJV-OAHLLOKOSA-N ruxolitinib Chemical compound C1([C@@H](CC#N)N2N=CC(=C2)C=2C=3C=CNC=3N=CN=2)CCCC1 HFNKQEVNSGCOJV-OAHLLOKOSA-N 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- CYOHGALHFOKKQC-UHFFFAOYSA-N selumetinib Chemical compound OCCONC(=O)C=1C=C2N(C)C=NC2=C(F)C=1NC1=CC=C(Br)C=C1Cl CYOHGALHFOKKQC-UHFFFAOYSA-N 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229950003804 siplizumab Drugs 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229960003787 sorafenib Drugs 0.000 description 2
- BQAZCCVUZDIZDC-UHFFFAOYSA-N sorafenib n-oxide Chemical compound C1=[N+]([O-])C(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 BQAZCCVUZDIZDC-UHFFFAOYSA-N 0.000 description 2
- 235000019337 sorbitan trioleate Nutrition 0.000 description 2
- 229960000391 sorbitan trioleate Drugs 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 229940034785 sutent Drugs 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 229950001269 taselisib Drugs 0.000 description 2
- 229940069905 tasigna Drugs 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 206010043207 temporal arteritis Diseases 0.000 description 2
- 229940107955 thymoglobulin Drugs 0.000 description 2
- 229960004605 timolol Drugs 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 229960003989 tocilizumab Drugs 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 229960002368 travoprost Drugs 0.000 description 2
- 229950007229 tresperimus Drugs 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 229960000241 vandetanib Drugs 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- AQTQHPDCURKLKT-JKDPCDLQSA-N vincristine sulfate Chemical compound OS(O)(=O)=O.C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 AQTQHPDCURKLKT-JKDPCDLQSA-N 0.000 description 2
- 230000004393 visual impairment Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- BICRTLVBTLFLRD-PTWUADNWSA-N voclosporin Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C=C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O BICRTLVBTLFLRD-PTWUADNWSA-N 0.000 description 2
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- CGTADGCBEXYWNE-JUKNQOCSSA-N zotarolimus Chemical compound N1([C@H]2CC[C@@H](C[C@@H](C)[C@H]3OC(=O)[C@@H]4CCCCN4C(=O)C(=O)[C@@]4(O)[C@H](C)CC[C@H](O4)C[C@@H](/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C3)OC)C[C@H]2OC)C=NN=N1 CGTADGCBEXYWNE-JUKNQOCSSA-N 0.000 description 2
- 229950009819 zotarolimus Drugs 0.000 description 2
- BMKDZUISNHGIBY-ZETCQYMHSA-N (+)-dexrazoxane Chemical compound C([C@H](C)N1CC(=O)NC(=O)C1)N1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-ZETCQYMHSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- GRZXWCHAXNAUHY-NSISKUIASA-N (2S)-2-(4-chlorophenyl)-1-[4-[(5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]-1-piperazinyl]-3-(propan-2-ylamino)-1-propanone Chemical compound C1([C@H](C(=O)N2CCN(CC2)C=2C=3[C@H](C)C[C@@H](O)C=3N=CN=2)CNC(C)C)=CC=C(Cl)C=C1 GRZXWCHAXNAUHY-NSISKUIASA-N 0.000 description 1
- HBPXWEPKNBHKAX-NSHDSACASA-N (2S)-N1-[5-(2-tert-butyl-4-thiazolyl)-4-methyl-2-thiazolyl]pyrrolidine-1,2-dicarboxamide Chemical compound S1C(C=2N=C(SC=2)C(C)(C)C)=C(C)N=C1NC(=O)N1CCC[C@H]1C(N)=O HBPXWEPKNBHKAX-NSHDSACASA-N 0.000 description 1
- KGWWHPZQLVVAPT-STTJLUEPSA-N (2r,3r)-2,3-dihydroxybutanedioic acid;6-(4-methylpiperazin-1-yl)-n-(5-methyl-1h-pyrazol-3-yl)-2-[(e)-2-phenylethenyl]pyrimidin-4-amine Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1CN(C)CCN1C1=CC(NC2=NNC(C)=C2)=NC(\C=C\C=2C=CC=CC=2)=N1 KGWWHPZQLVVAPT-STTJLUEPSA-N 0.000 description 1
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 1
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- SQWZFLMPDUSYGV-POHAHGRESA-N (5Z)-5-(quinoxalin-6-ylmethylidene)-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)\C1=C\C1=CC=C(N=CC=N2)C2=C1 SQWZFLMPDUSYGV-POHAHGRESA-N 0.000 description 1
- SRLVNYDXMUGOFI-YWEYNIOJSA-N (5e)-5-[(2,2-difluoro-1,3-benzodioxol-5-yl)methylene]-1,3-thiazolidine-2,4-dione Chemical compound C1=C2OC(F)(F)OC2=CC=C1\C=C1/SC(=O)NC1=O SRLVNYDXMUGOFI-YWEYNIOJSA-N 0.000 description 1
- UFBTYTGRUBUUIL-KPKJPENVSA-N (5e)-5-[[5-(4-fluorophenyl)furan-2-yl]methylidene]-1,3-thiazolidine-2,4-dione Chemical compound C1=CC(F)=CC=C1C(O1)=CC=C1\C=C\1C(=O)NC(=O)S/1 UFBTYTGRUBUUIL-KPKJPENVSA-N 0.000 description 1
- YJGVMLPVUAXIQN-LGWHJFRWSA-N (5s,5ar,8ar,9r)-5-hydroxy-9-(3,4,5-trimethoxyphenyl)-5a,6,8a,9-tetrahydro-5h-[2]benzofuro[5,6-f][1,3]benzodioxol-8-one Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-LGWHJFRWSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- MLSAQOINCGAULQ-QFMPWRQOSA-N (E)-SB-590885 Chemical compound C1=CC(OCCN(C)C)=CC=C1C1=NC(C=2C=CN=CC=2)=C(C=2C=C3CCC(/C3=CC=2)=N\O)N1 MLSAQOINCGAULQ-QFMPWRQOSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 1
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 description 1
- WLRMANUAADYWEA-NWASOUNVSA-N (S)-timolol maleate Chemical compound OC(=O)\C=C/C(O)=O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 WLRMANUAADYWEA-NWASOUNVSA-N 0.000 description 1
- JLOXTZFYJNCPIS-FYWRMAATSA-N (z)-3-amino-3-(4-aminophenyl)sulfanyl-2-[2-(trifluoromethyl)phenyl]prop-2-enenitrile Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(\C#N)=C(/N)SC1=CC=C(N)C=C1 JLOXTZFYJNCPIS-FYWRMAATSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- ONBWNNUYXGJKKD-UHFFFAOYSA-N 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonic acid;sodium Chemical compound [Na].CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC ONBWNNUYXGJKKD-UHFFFAOYSA-N 0.000 description 1
- SGUVLZREKBPKCE-UHFFFAOYSA-N 1,5-diazabicyclo[4.3.0]-non-5-ene Chemical compound C1CCN=C2CCCN21 SGUVLZREKBPKCE-UHFFFAOYSA-N 0.000 description 1
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- MCCACAIVAXEFAL-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]imidazole;nitric acid Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 MCCACAIVAXEFAL-UHFFFAOYSA-N 0.000 description 1
- DKNUPRMJNUQNHR-UHFFFAOYSA-N 1-[3-(6,7-dimethoxyquinazolin-4-yl)oxyphenyl]-3-[5-(1,1,1-trifluoro-2-methylpropan-2-yl)-1,2-oxazol-3-yl]urea Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1OC(C=1)=CC=CC=1NC(=O)NC=1C=C(C(C)(C)C(F)(F)F)ON=1 DKNUPRMJNUQNHR-UHFFFAOYSA-N 0.000 description 1
- ZAXFYGBKZSQBIV-UHFFFAOYSA-N 1-[4-(3-ethyl-7-morpholin-4-yltriazolo[4,5-d]pyrimidin-5-yl)phenyl]-3-[4-(4-methylpiperazine-1-carbonyl)phenyl]urea Chemical compound N1=C2N(CC)N=NC2=C(N2CCOCC2)N=C1C(C=C1)=CC=C1NC(=O)NC(C=C1)=CC=C1C(=O)N1CCN(C)CC1 ZAXFYGBKZSQBIV-UHFFFAOYSA-N 0.000 description 1
- NUBQKPWHXMGDLP-UHFFFAOYSA-N 1-[4-benzyl-2-hydroxy-5-[(2-hydroxy-2,3-dihydro-1h-inden-1-yl)amino]-5-oxopentyl]-n-tert-butyl-4-(pyridin-3-ylmethyl)piperazine-2-carboxamide;sulfuric acid Chemical compound OS(O)(=O)=O.C1CN(CC(O)CC(CC=2C=CC=CC=2)C(=O)NC2C3=CC=CC=C3CC2O)C(C(=O)NC(C)(C)C)CN1CC1=CC=CN=C1 NUBQKPWHXMGDLP-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 1
- IIELZHYJYZBSGG-UHFFFAOYSA-N 10-(3-aminopropyl)-3,4-dimethylacridin-9-one;oxalic acid Chemical compound OC(=O)C(O)=O.C1=CC=C2C(=O)C3=CC=C(C)C(C)=C3N(CCCN)C2=C1 IIELZHYJYZBSGG-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- MIXZGJHGSYDMRA-UHFFFAOYSA-N 1H-benzo[h][1,6]naphthyridin-2-one Chemical compound C1=CC=CC2=C(NC(=O)C=C3)C3=CN=C21 MIXZGJHGSYDMRA-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- HDIFHQMREAYYJW-FMIVXFBMSA-N 2,3-dihydroxypropyl (e)-12-hydroxyoctadec-9-enoate Chemical compound CCCCCCC(O)C\C=C\CCCCCCCC(=O)OCC(O)CO HDIFHQMREAYYJW-FMIVXFBMSA-N 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- QFWCYNPOPKQOKV-UHFFFAOYSA-N 2-(2-amino-3-methoxyphenyl)chromen-4-one Chemical compound COC1=CC=CC(C=2OC3=CC=CC=C3C(=O)C=2)=C1N QFWCYNPOPKQOKV-UHFFFAOYSA-N 0.000 description 1
- GFMMXOIFOQCCGU-UHFFFAOYSA-N 2-(2-chloro-4-iodoanilino)-N-(cyclopropylmethoxy)-3,4-difluorobenzamide Chemical compound C=1C=C(I)C=C(Cl)C=1NC1=C(F)C(F)=CC=C1C(=O)NOCC1CC1 GFMMXOIFOQCCGU-UHFFFAOYSA-N 0.000 description 1
- OOVTUOCTLAERQD-OJMBIDBESA-N 2-(2-chlorophenyl)-5,7-dihydroxy-8-[(2r,3s)-2-(hydroxymethyl)-1-methylpyrrolidin-3-yl]chromen-4-one;hydrochloride Chemical compound Cl.OC[C@@H]1N(C)CC[C@H]1C1=C(O)C=C(O)C2=C1OC(C=1C(=CC=CC=1)Cl)=CC2=O OOVTUOCTLAERQD-OJMBIDBESA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- KQDBVHKNIYROHU-UHFFFAOYSA-N 2-[(4-aminopyrazolo[3,4-d]pyrimidin-1-yl)methyl]-5-methyl-3-(2-methylphenyl)quinazolin-4-one Chemical compound CC1=CC=CC=C1N1C(=O)C2=C(C)C=CC=C2N=C1CN1C2=NC=NC(N)=C2C=N1 KQDBVHKNIYROHU-UHFFFAOYSA-N 0.000 description 1
- QXLQZLBNPTZMRK-UHFFFAOYSA-N 2-[(dimethylamino)methyl]-1-(2,4-dimethylphenyl)prop-2-en-1-one Chemical compound CN(C)CC(=C)C(=O)C1=CC=C(C)C=C1C QXLQZLBNPTZMRK-UHFFFAOYSA-N 0.000 description 1
- HJRDNARELSKHEF-CLFAGFIQSA-N 2-[2-[(z)-octadec-9-enoyl]oxyethoxy]ethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCOCCOC(=O)CCCCCCC\C=C/CCCCCCCC HJRDNARELSKHEF-CLFAGFIQSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- MCIDWGZGWVSZMK-UHFFFAOYSA-N 2-[6-(1h-indol-4-yl)-1h-indazol-4-yl]-5-[(4-propan-2-ylpiperazin-1-yl)methyl]-1,3-oxazole Chemical compound C1CN(C(C)C)CCN1CC1=CN=C(C=2C=3C=NNC=3C=C(C=2)C=2C=3C=CNC=3C=CC=2)O1 MCIDWGZGWVSZMK-UHFFFAOYSA-N 0.000 description 1
- TXGKRVFSSHPBAJ-JKSUJKDBSA-N 2-[[(1r,2s)-2-aminocyclohexyl]amino]-4-[3-(triazol-2-yl)anilino]pyrimidine-5-carboxamide Chemical compound N[C@H]1CCCC[C@H]1NC1=NC=C(C(N)=O)C(NC=2C=C(C=CC=2)N2N=CC=N2)=N1 TXGKRVFSSHPBAJ-JKSUJKDBSA-N 0.000 description 1
- RMNLLPXCNDZJMJ-IDVLALEDSA-N 2-[[(1r,2s)-2-aminocyclohexyl]amino]-4-[3-(triazol-2-yl)anilino]pyrimidine-5-carboxamide;hydrochloride Chemical compound Cl.N[C@H]1CCCC[C@H]1NC1=NC=C(C(N)=O)C(NC=2C=C(C=CC=2)N2N=CC=N2)=N1 RMNLLPXCNDZJMJ-IDVLALEDSA-N 0.000 description 1
- FSPQCTGGIANIJZ-UHFFFAOYSA-N 2-[[(3,4-dimethoxyphenyl)-oxomethyl]amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C(=O)NC1=C(C(N)=O)C(CCCC2)=C2S1 FSPQCTGGIANIJZ-UHFFFAOYSA-N 0.000 description 1
- WFSLJOPRIJSOJR-UHFFFAOYSA-N 2-[[4-amino-3-(3-hydroxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]methyl]-5-methyl-3-(2-methylphenyl)quinazolin-4-one Chemical compound CC1=CC=CC=C1N1C(=O)C2=C(C)C=CC=C2N=C1CN1C2=NC=NC(N)=C2C(C=2C=C(O)C=CC=2)=N1 WFSLJOPRIJSOJR-UHFFFAOYSA-N 0.000 description 1
- JWQOJVOKBAAAAR-UHFFFAOYSA-N 2-[[7-(3,4-dimethoxyphenyl)-5-imidazo[1,2-c]pyrimidinyl]amino]-3-pyridinecarboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C1=CC2=NC=CN2C(NC=2C(=CC=CN=2)C(N)=O)=N1 JWQOJVOKBAAAAR-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- RGHYDLZMTYDBDT-UHFFFAOYSA-N 2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone Chemical compound O=C1N(CC)C2=NC(N)=NC(C)=C2C=C1C=1C=CNN=1 RGHYDLZMTYDBDT-UHFFFAOYSA-N 0.000 description 1
- QINPEPAQOBZPOF-UHFFFAOYSA-N 2-amino-n-[3-[[3-(2-chloro-5-methoxyanilino)quinoxalin-2-yl]sulfamoyl]phenyl]-2-methylpropanamide Chemical compound COC1=CC=C(Cl)C(NC=2C(=NC3=CC=CC=C3N=2)NS(=O)(=O)C=2C=C(NC(=O)C(C)(C)N)C=CC=2)=C1 QINPEPAQOBZPOF-UHFFFAOYSA-N 0.000 description 1
- XTKLTGBKIDQGQL-UHFFFAOYSA-N 2-methyl-1-[[2-methyl-3-(trifluoromethyl)phenyl]methyl]-6-morpholin-4-ylbenzimidazole-4-carboxylic acid Chemical compound CC1=NC2=C(C(O)=O)C=C(N3CCOCC3)C=C2N1CC1=CC=CC(C(F)(F)F)=C1C XTKLTGBKIDQGQL-UHFFFAOYSA-N 0.000 description 1
- VDEKRYFLVUQCDF-UHFFFAOYSA-N 2-methyl-1-[[2-methyl-3-(trifluoromethyl)phenyl]methyl]-6-morpholin-4-ylbenzimidazole-4-carboxylic acid dihydrochloride Chemical compound Cl.Cl.Cc1nc2c(cc(cc2n1Cc1cccc(c1C)C(F)(F)F)N1CCOCC1)C(O)=O VDEKRYFLVUQCDF-UHFFFAOYSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- AZSNMRSAGSSBNP-UHFFFAOYSA-N 22,23-dihydroavermectin B1a Natural products C1CC(C)C(C(C)CC)OC21OC(CC=C(C)C(OC1OC(C)C(OC3OC(C)C(O)C(OC)C3)C(OC)C1)C(C)C=CC=C1C3(C(C(=O)O4)C=C(C)C(O)C3OC1)O)CC4C2 AZSNMRSAGSSBNP-UHFFFAOYSA-N 0.000 description 1
- FVKFHMNJTHKMRX-UHFFFAOYSA-N 3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidine Chemical compound C1CCN2CCCNC2=N1 FVKFHMNJTHKMRX-UHFFFAOYSA-N 0.000 description 1
- AXRCEOKUDYDWLF-UHFFFAOYSA-N 3-(1-methyl-3-indolyl)-4-[1-[1-(2-pyridinylmethyl)-4-piperidinyl]-3-indolyl]pyrrole-2,5-dione Chemical compound C12=CC=CC=C2N(C)C=C1C(C(NC1=O)=O)=C1C(C1=CC=CC=C11)=CN1C(CC1)CCN1CC1=CC=CC=N1 AXRCEOKUDYDWLF-UHFFFAOYSA-N 0.000 description 1
- PYEFPDQFAZNXLI-UHFFFAOYSA-N 3-(dimethylamino)-N-[3-[[(4-hydroxyphenyl)-oxomethyl]amino]-4-methylphenyl]benzamide Chemical compound CN(C)C1=CC=CC(C(=O)NC=2C=C(NC(=O)C=3C=CC(O)=CC=3)C(C)=CC=2)=C1 PYEFPDQFAZNXLI-UHFFFAOYSA-N 0.000 description 1
- UFKSWYKDQZBJTH-UHFFFAOYSA-N 3-[(3,5-dibromo-4-hydroxyphenyl)methylidene]-5-iodo-1,2-dihydroindol-2-ol Chemical compound OC1NC2=CC=C(I)C=C2C1=CC1=CC(Br)=C(O)C(Br)=C1 UFKSWYKDQZBJTH-UHFFFAOYSA-N 0.000 description 1
- UZFPOOOQHWICKY-UHFFFAOYSA-N 3-[13-[1-[1-[8,12-bis(2-carboxyethyl)-17-(1-hydroxyethyl)-3,7,13,18-tetramethyl-21,24-dihydroporphyrin-2-yl]ethoxy]ethyl]-18-(2-carboxyethyl)-8-(1-hydroxyethyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(=C(C)C(C=C4N5)=N3)CCC(O)=O)=N2)C)=C(C)C(C(C)O)=C1C=C5C(C)=C4C(C)OC(C)C1=C(N2)C=C(N3)C(C)=C(C(O)C)C3=CC(C(C)=C3CCC(O)=O)=NC3=CC(C(CCC(O)=O)=C3C)=NC3=CC2=C1C UZFPOOOQHWICKY-UHFFFAOYSA-N 0.000 description 1
- UJIAQDJKSXQLIT-UHFFFAOYSA-N 3-[2,4-diamino-7-(3-hydroxyphenyl)-6-pteridinyl]phenol Chemical compound C=1C=CC(O)=CC=1C1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC(O)=C1 UJIAQDJKSXQLIT-UHFFFAOYSA-N 0.000 description 1
- OCUQMWSIGPQEMX-UHFFFAOYSA-N 3-[3-[N-[4-[(dimethylamino)methyl]phenyl]-C-phenylcarbonimidoyl]-2-hydroxy-1H-indol-6-yl]-N-ethylprop-2-ynamide Chemical compound CCNC(=O)C#CC1=CC2=C(C=C1)C(=C(N2)O)C(=NC3=CC=C(C=C3)CN(C)C)C4=CC=CC=C4 OCUQMWSIGPQEMX-UHFFFAOYSA-N 0.000 description 1
- WGPXKFOFEXJMBD-UHFFFAOYSA-N 3-[N-[3-[(dimethylamino)methyl]phenyl]-C-phenylcarbonimidoyl]-2-hydroxy-1H-indole-6-carboxamide Chemical compound CN(C)CC1=CC(=CC=C1)N=C(C2=CC=CC=C2)C3=C(NC4=C3C=CC(=C4)C(=O)N)O WGPXKFOFEXJMBD-UHFFFAOYSA-N 0.000 description 1
- ZGXOBLVQIVXKEB-UHFFFAOYSA-N 3-[N-[3-[(dimethylamino)methyl]phenyl]-C-phenylcarbonimidoyl]-2-hydroxy-N,N-dimethyl-1H-indole-6-carboxamide Chemical compound CN(C)CC1=CC(=CC=C1)N=C(C2=CC=CC=C2)C3=C(NC4=C3C=CC(=C4)C(=O)N(C)C)O ZGXOBLVQIVXKEB-UHFFFAOYSA-N 0.000 description 1
- WUIABRMSWOKTOF-OYALTWQYSA-N 3-[[2-[2-[2-[[(2s,3r)-2-[[(2s,3s,4r)-4-[[(2s,3r)-2-[[6-amino-2-[(1s)-3-amino-1-[[(2s)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(2r,3s,4s,5s,6s)-3-[(2r,3s,4s,5r,6r)-4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)ox Chemical compound OS([O-])(=O)=O.N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C WUIABRMSWOKTOF-OYALTWQYSA-N 0.000 description 1
- TVKGTSHBQZEFEE-UHFFFAOYSA-N 3-[[5-fluoro-2-(3-hydroxyanilino)pyrimidin-4-yl]amino]phenol Chemical compound OC1=CC=CC(NC=2N=C(NC=3C=C(O)C=CC=3)C(F)=CN=2)=C1 TVKGTSHBQZEFEE-UHFFFAOYSA-N 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-M 3-hydroxybutyrate Chemical compound CC(O)CC([O-])=O WHBMMWSBFZVSSR-UHFFFAOYSA-M 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- MUENOTXSRZEFJV-UHFFFAOYSA-N 4-(4-cyano-2-fluorophenyl)-2-morpholin-4-yl-5-(1h-1,2,4-triazol-5-yl)thiophene-3-carbonitrile Chemical compound FC1=CC(C#N)=CC=C1C1=C(C=2NN=CN=2)SC(N2CCOCC2)=C1C#N MUENOTXSRZEFJV-UHFFFAOYSA-N 0.000 description 1
- BGLPECHZZQDNCD-UHFFFAOYSA-N 4-(cyclopropylamino)-2-[4-(4-ethylsulfonylpiperazin-1-yl)anilino]pyrimidine-5-carboxamide Chemical compound C1CN(S(=O)(=O)CC)CCN1C(C=C1)=CC=C1NC1=NC=C(C(N)=O)C(NC2CC2)=N1 BGLPECHZZQDNCD-UHFFFAOYSA-N 0.000 description 1
- ITEKDBLBCIMYAT-UHFFFAOYSA-N 4-[(4-carboxyphenoxy)methoxy]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OCOC1=CC=C(C(O)=O)C=C1 ITEKDBLBCIMYAT-UHFFFAOYSA-N 0.000 description 1
- JVYNJRBSXBYXQB-UHFFFAOYSA-N 4-[3-(4-carboxyphenoxy)propoxy]benzoic acid;decanedioic acid Chemical compound OC(=O)CCCCCCCCC(O)=O.C1=CC(C(=O)O)=CC=C1OCCCOC1=CC=C(C(O)=O)C=C1 JVYNJRBSXBYXQB-UHFFFAOYSA-N 0.000 description 1
- VVLHQJDAUIPZFH-UHFFFAOYSA-N 4-[4-[[5-fluoro-4-[3-(prop-2-enoylamino)anilino]pyrimidin-2-yl]amino]phenoxy]-n-methylpyridine-2-carboxamide Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC=3N=C(NC=4C=C(NC(=O)C=C)C=CC=4)C(F)=CN=3)=CC=2)=C1 VVLHQJDAUIPZFH-UHFFFAOYSA-N 0.000 description 1
- YDNOHCOYQVZOMC-UHFFFAOYSA-N 4-[6-[[4-(cyclopropylmethyl)piperazin-1-yl]methyl]-2-(5-fluoro-1h-indol-4-yl)thieno[3,2-d]pyrimidin-4-yl]morpholine Chemical compound FC1=CC=C2NC=CC2=C1C(N=C1C=C(CN2CCN(CC3CC3)CC2)SC1=1)=NC=1N1CCOCC1 YDNOHCOYQVZOMC-UHFFFAOYSA-N 0.000 description 1
- JDUBGYFRJFOXQC-KRWDZBQOSA-N 4-amino-n-[(1s)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide Chemical compound C1([C@H](CCO)NC(=O)C2(CCN(CC2)C=2C=3C=CNC=3N=CN=2)N)=CC=C(Cl)C=C1 JDUBGYFRJFOXQC-KRWDZBQOSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- 125000004195 4-methylpiperazin-1-yl group Chemical group [H]C([H])([H])N1C([H])([H])C([H])([H])N(*)C([H])([H])C1([H])[H] 0.000 description 1
- JEGHXKRHKHPBJD-UHFFFAOYSA-N 5-(7-methylsulfonyl-2-morpholin-4-yl-5,6-dihydropyrrolo[2,3-d]pyrimidin-4-yl)pyrimidin-2-amine Chemical compound CS(=O)(=O)N1CCC2=C1N=C(N1CCOCC1)N=C2C1=CN=C(N)N=C1 JEGHXKRHKHPBJD-UHFFFAOYSA-N 0.000 description 1
- QYBGBLQCOOISAR-UHFFFAOYSA-N 5-(8-methyl-2-morpholin-4-yl-9-propan-2-ylpurin-6-yl)pyrimidin-2-amine Chemical compound N1=C2N(C(C)C)C(C)=NC2=C(C=2C=NC(N)=NC=2)N=C1N1CCOCC1 QYBGBLQCOOISAR-UHFFFAOYSA-N 0.000 description 1
- XOZLHJMDLKDZAL-UHFFFAOYSA-N 5-[6-(3-methoxyoxetan-3-yl)-7-methyl-4-morpholin-4-ylthieno[3,2-d]pyrimidin-2-yl]pyrimidin-2-amine Chemical compound S1C2=C(N3CCOCC3)N=C(C=3C=NC(N)=NC=3)N=C2C(C)=C1C1(OC)COC1 XOZLHJMDLKDZAL-UHFFFAOYSA-N 0.000 description 1
- XXSSGBYXSKOLAM-UHFFFAOYSA-N 5-bromo-n-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodoanilino)benzamide Chemical compound OCC(O)CONC(=O)C1=CC(Br)=C(F)C(F)=C1NC1=CC=C(I)C=C1F XXSSGBYXSKOLAM-UHFFFAOYSA-N 0.000 description 1
- XJZVCDVZCRLIKN-QWHCGFSZSA-N 6-[[(1r,2s)-2-aminocyclohexyl]amino]-4-[(5,6-dimethylpyridin-2-yl)amino]pyridazine-3-carboxamide Chemical compound N1=C(C)C(C)=CC=C1NC1=CC(N[C@H]2[C@H](CCCC2)N)=NN=C1C(N)=O XJZVCDVZCRLIKN-QWHCGFSZSA-N 0.000 description 1
- SEJLPXCPMNSRAM-GOSISDBHSA-N 6-amino-9-[(3r)-1-but-2-ynoylpyrrolidin-3-yl]-7-(4-phenoxyphenyl)purin-8-one Chemical compound C1N(C(=O)C#CC)CC[C@H]1N1C(=O)N(C=2C=CC(OC=3C=CC=CC=3)=CC=2)C2=C(N)N=CN=C21 SEJLPXCPMNSRAM-GOSISDBHSA-N 0.000 description 1
- YBPIBGNBHHGLEB-UHFFFAOYSA-N 6-amino-N-[3-[4-(4-morpholinyl)-2-pyrido[2,3]furo[2,4-b]pyrimidinyl]phenyl]-3-pyridinecarboxamide Chemical compound C1=NC(N)=CC=C1C(=O)NC1=CC=CC(C=2N=C3C4=CC=CN=C4OC3=C(N3CCOCC3)N=2)=C1 YBPIBGNBHHGLEB-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- WLCZTRVUXYALDD-IBGZPJMESA-N 7-[[(2s)-2,6-bis(2-methoxyethoxycarbonylamino)hexanoyl]amino]heptoxy-methylphosphinic acid Chemical compound COCCOC(=O)NCCCC[C@H](NC(=O)OCCOC)C(=O)NCCCCCCCOP(C)(O)=O WLCZTRVUXYALDD-IBGZPJMESA-N 0.000 description 1
- RHXHGRAEPCAFML-UHFFFAOYSA-N 7-cyclopentyl-n,n-dimethyl-2-[(5-piperazin-1-ylpyridin-2-yl)amino]pyrrolo[2,3-d]pyrimidine-6-carboxamide Chemical compound N1=C2N(C3CCCC3)C(C(=O)N(C)C)=CC2=CN=C1NC(N=C1)=CC=C1N1CCNCC1 RHXHGRAEPCAFML-UHFFFAOYSA-N 0.000 description 1
- YEAHTLOYHVWAKW-UHFFFAOYSA-N 8-(1-hydroxyethyl)-2-methoxy-3-[(4-methoxyphenyl)methoxy]benzo[c]chromen-6-one Chemical compound C1=CC(OC)=CC=C1COC(C(=C1)OC)=CC2=C1C1=CC=C(C(C)O)C=C1C(=O)O2 YEAHTLOYHVWAKW-UHFFFAOYSA-N 0.000 description 1
- JAMULYFATHSZJM-UHFFFAOYSA-N 8-(4-dibenzothiophenyl)-2-(4-morpholinyl)-1-benzopyran-4-one Chemical compound O1C2=C(C=3C=4SC5=CC=CC=C5C=4C=CC=3)C=CC=C2C(=O)C=C1N1CCOCC1 JAMULYFATHSZJM-UHFFFAOYSA-N 0.000 description 1
- LMJFJIDLEAWOQJ-CQSZACIVSA-N 8-[(1r)-1-(3,5-difluoroanilino)ethyl]-n,n-dimethyl-2-morpholin-4-yl-4-oxochromene-6-carboxamide Chemical compound N([C@H](C)C=1C2=C(C(C=C(O2)N2CCOCC2)=O)C=C(C=1)C(=O)N(C)C)C1=CC(F)=CC(F)=C1 LMJFJIDLEAWOQJ-CQSZACIVSA-N 0.000 description 1
- SJVQHLPISAIATJ-ZDUSSCGKSA-N 8-chloro-2-phenyl-3-[(1S)-1-(7H-purin-6-ylamino)ethyl]-1-isoquinolinone Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=CC(Cl)=C2C(=O)N1C1=CC=CC=C1 SJVQHLPISAIATJ-ZDUSSCGKSA-N 0.000 description 1
- SPBDXSGPUHCETR-JFUDTMANSA-N 8883yp2r6d Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](OC)C[C@H](O[C@@H]2C(=C/C[C@@H]3C[C@@H](C[C@@]4(O[C@@H]([C@@H](C)CC4)C(C)C)O3)OC(=O)[C@@H]3C=C(C)[C@@H](O)[C@H]4OC\C([C@@]34O)=C/C=C/[C@@H]2C)/C)O[C@H]1C.C1C[C@H](C)[C@@H]([C@@H](C)CC)O[C@@]21O[C@H](C\C=C(C)\[C@@H](O[C@@H]1O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](OC)C3)[C@@H](OC)C1)[C@@H](C)\C=C\C=C/1[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\1)O)C[C@H]4C2 SPBDXSGPUHCETR-JFUDTMANSA-N 0.000 description 1
- SHGAZHPCJJPHSC-ZVCIMWCZSA-N 9-cis-retinoic acid Chemical compound OC(=O)/C=C(\C)/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-ZVCIMWCZSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- HPLNQCPCUACXLM-PGUFJCEWSA-N ABT-737 Chemical compound C([C@@H](CCN(C)C)NC=1C(=CC(=CC=1)S(=O)(=O)NC(=O)C=1C=CC(=CC=1)N1CCN(CC=2C(=CC=CC=2)C=2C=CC(Cl)=CC=2)CC1)[N+]([O-])=O)SC1=CC=CC=C1 HPLNQCPCUACXLM-PGUFJCEWSA-N 0.000 description 1
- 102100033793 ALK tyrosine kinase receptor Human genes 0.000 description 1
- 229960005531 AMG 319 Drugs 0.000 description 1
- VRQMAABPASPXMW-HDICACEKSA-N AZD4547 Chemical compound COC1=CC(OC)=CC(CCC=2NN=C(NC(=O)C=3C=CC(=CC=3)N3C[C@@H](C)N[C@@H](C)C3)C=2)=C1 VRQMAABPASPXMW-HDICACEKSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 108010029445 Agammaglobulinaemia Tyrosine Kinase Proteins 0.000 description 1
- 229940126638 Akt inhibitor Drugs 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 206010057380 Allergic keratitis Diseases 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 229940122531 Anaplastic lymphoma kinase inhibitor Drugs 0.000 description 1
- BCFCRXOJOFDUMZ-ONKRVSLGSA-N Anecortave Chemical compound O=C1CC[C@]2(C)C3=CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 BCFCRXOJOFDUMZ-ONKRVSLGSA-N 0.000 description 1
- 208000031104 Arterial Occlusive disease Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000012664 BCL-2-inhibitor Substances 0.000 description 1
- QADPYRIHXKWUSV-UHFFFAOYSA-N BGJ-398 Chemical compound C1CN(CC)CCN1C(C=C1)=CC=C1NC1=CC(N(C)C(=O)NC=2C(=C(OC)C=C(OC)C=2Cl)Cl)=NC=N1 QADPYRIHXKWUSV-UHFFFAOYSA-N 0.000 description 1
- YUXMAKUNSXIEKN-BTJKTKAUSA-N BGT226 Chemical compound OC(=O)\C=C/C(O)=O.C1=NC(OC)=CC=C1C1=CC=C(N=CC2=C3N(C=4C=C(C(N5CCNCC5)=CC=4)C(F)(F)F)C(=O)N2C)C3=C1 YUXMAKUNSXIEKN-BTJKTKAUSA-N 0.000 description 1
- 229940125814 BTK kinase inhibitor Drugs 0.000 description 1
- 229940123711 Bcl2 inhibitor Drugs 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- 208000024304 Choroidal Effusions Diseases 0.000 description 1
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 1
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 1
- VWFCHDSQECPREK-LURJTMIESA-N Cidofovir Chemical compound NC=1C=CN(C[C@@H](CO)OCP(O)(O)=O)C(=O)N=1 VWFCHDSQECPREK-LURJTMIESA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 206010010984 Corneal abrasion Diseases 0.000 description 1
- 206010052117 Corneal decompensation Diseases 0.000 description 1
- 206010055665 Corneal neovascularisation Diseases 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 101710112752 Cytotoxin Proteins 0.000 description 1
- 206010011844 Dacryocystitis Diseases 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- JDRSMPFHFNXQRB-CMTNHCDUSA-N Decyl beta-D-threo-hexopyranoside Chemical compound CCCCCCCCCCO[C@@H]1O[C@H](CO)C(O)[C@H](O)C1O JDRSMPFHFNXQRB-CMTNHCDUSA-N 0.000 description 1
- 208000034423 Delivery Diseases 0.000 description 1
- ZINBFGBAIFRYSH-UHFFFAOYSA-N Demethoxyviridin Natural products CC12C(O)C(O)C(=O)c3coc(C(=O)c4c5CCC(=O)c5ccc14)c23 ZINBFGBAIFRYSH-UHFFFAOYSA-N 0.000 description 1
- 206010066786 Diabetic keratopathy Diseases 0.000 description 1
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- MBYXEBXZARTUSS-QLWBXOBMSA-N Emetamine Natural products O(C)c1c(OC)cc2c(c(C[C@@H]3[C@H](CC)CN4[C@H](c5c(cc(OC)c(OC)c5)CC4)C3)ncc2)c1 MBYXEBXZARTUSS-QLWBXOBMSA-N 0.000 description 1
- 108010041308 Endothelial Growth Factors Proteins 0.000 description 1
- 208000001351 Epiretinal Membrane Diseases 0.000 description 1
- 206010015084 Episcleritis Diseases 0.000 description 1
- 201000004173 Epithelial basement membrane dystrophy Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010029961 Filgrastim Proteins 0.000 description 1
- MPJKWIXIYCLVCU-UHFFFAOYSA-N Folinic acid Natural products NC1=NC2=C(N(C=O)C(CNc3ccc(cc3)C(=O)NC(CCC(=O)O)CC(=O)O)CN2)C(=O)N1 MPJKWIXIYCLVCU-UHFFFAOYSA-N 0.000 description 1
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 1
- RFWVETIZUQEJEF-UHFFFAOYSA-N GDC-0623 Chemical compound OCCONC(=O)C=1C=CC2=CN=CN2C=1NC1=CC=C(I)C=C1F RFWVETIZUQEJEF-UHFFFAOYSA-N 0.000 description 1
- DEZZLWQELQORIU-RELWKKBWSA-N GDC-0879 Chemical compound N=1N(CCO)C=C(C=2C=C3CCC(/C3=CC=2)=N\O)C=1C1=CC=NC=C1 DEZZLWQELQORIU-RELWKKBWSA-N 0.000 description 1
- KGPGFQWBCSZGEL-ZDUSSCGKSA-N GSK690693 Chemical compound C=12N(CC)C(C=3C(=NON=3)N)=NC2=C(C#CC(C)(C)O)N=CC=1OC[C@H]1CCCNC1 KGPGFQWBCSZGEL-ZDUSSCGKSA-N 0.000 description 1
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 206010018258 Giant papillary conjunctivitis Diseases 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- QYZRTBKYBJRGJB-PCMHIUKPSA-N Granisetron hydrochloride Chemical compound Cl.C1=CC=C2C(C(=O)NC3C[C@H]4CCC[C@@H](C3)N4C)=NN(C)C2=C1 QYZRTBKYBJRGJB-PCMHIUKPSA-N 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000003084 Graves Ophthalmopathy Diseases 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 1
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- BYTORXDZJWWIKR-UHFFFAOYSA-N Hinokiol Natural products CC(C)c1cc2CCC3C(C)(CO)C(O)CCC3(C)c2cc1O BYTORXDZJWWIKR-UHFFFAOYSA-N 0.000 description 1
- 101000830565 Homo sapiens Tumor necrosis factor ligand superfamily member 10 Proteins 0.000 description 1
- 206010020565 Hyperaemia Diseases 0.000 description 1
- 208000031354 Hyphema Diseases 0.000 description 1
- GNWHRHGTIBRNSM-UHFFFAOYSA-N IC-87114 Chemical compound CC1=CC=CC=C1N1C(=O)C2=C(C)C=CC=C2N=C1CN1C2=NC=NC(N)=C2N=C1 GNWHRHGTIBRNSM-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 108010079944 Interferon-alpha2b Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 206010053678 Iridocorneal endothelial syndrome Diseases 0.000 description 1
- 208000010038 Ischemic Optic Neuropathy Diseases 0.000 description 1
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 description 1
- 201000002287 Keratoconus Diseases 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 239000002144 L01XE18 - Ruxolitinib Substances 0.000 description 1
- 239000002138 L01XE21 - Regorafenib Substances 0.000 description 1
- 239000002137 L01XE24 - Ponatinib Substances 0.000 description 1
- 239000002176 L01XE26 - Cabozantinib Substances 0.000 description 1
- UVSVTDVJQAJIFG-VURMDHGXSA-N LFM-A13 Chemical compound C\C(O)=C(/C#N)C(=O)NC1=CC(Br)=CC=C1Br UVSVTDVJQAJIFG-VURMDHGXSA-N 0.000 description 1
- CZQHHVNHHHRRDU-UHFFFAOYSA-N LY294002 Chemical compound C1=CC=C2C(=O)C=C(N3CCOCC3)OC2=C1C1=CC=CC=C1 CZQHHVNHHHRRDU-UHFFFAOYSA-N 0.000 description 1
- HHCBMISMPSAZBF-UHFFFAOYSA-N LY3009120 Chemical compound CC1=NC2=NC(NC)=NC=C2C=C1C1=CC(NC(=O)NCCC(C)(C)C)=C(F)C=C1C HHCBMISMPSAZBF-UHFFFAOYSA-N 0.000 description 1
- 206010069698 Langerhans' cell histiocytosis Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 229940124640 MK-2206 Drugs 0.000 description 1
- ULDXWLCXEDXJGE-UHFFFAOYSA-N MK-2206 Chemical compound C=1C=C(C=2C(=CC=3C=4N(C(NN=4)=O)C=CC=3N=2)C=2C=CC=CC=2)C=CC=1C1(N)CCC1 ULDXWLCXEDXJGE-UHFFFAOYSA-N 0.000 description 1
- 208000031471 Macular fibrosis Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- XOGTZOOQQBDUSI-UHFFFAOYSA-M Mesna Chemical compound [Na+].[O-]S(=O)(=O)CCS XOGTZOOQQBDUSI-UHFFFAOYSA-M 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- YXOLAZRVSSWPPT-UHFFFAOYSA-N Morin Chemical compound OC1=CC(O)=CC=C1C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 YXOLAZRVSSWPPT-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- IKMDFBPHZNJCSN-UHFFFAOYSA-N Myricetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC(O)=C(O)C(O)=C1 IKMDFBPHZNJCSN-UHFFFAOYSA-N 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- FOFDIMHVKGYHRU-UHFFFAOYSA-N N-(1,3-benzodioxol-5-ylmethyl)-4-(4-benzofuro[3,2-d]pyrimidinyl)-1-piperazinecarbothioamide Chemical compound C12=CC=CC=C2OC2=C1N=CN=C2N(CC1)CCN1C(=S)NCC1=CC=C(OCO2)C2=C1 FOFDIMHVKGYHRU-UHFFFAOYSA-N 0.000 description 1
- FCKJZIRDZMVDEM-UHFFFAOYSA-N N-(7,8-dimethoxy-2,3-dihydro-1H-imidazo[1,2-c]quinazolin-5-ylidene)pyridine-3-carboxamide Chemical compound COC1=C(C2=NC(=NC(=O)C3=CN=CC=C3)N4CCNC4=C2C=C1)OC FCKJZIRDZMVDEM-UHFFFAOYSA-N 0.000 description 1
- GCIKSSRWRFVXBI-UHFFFAOYSA-N N-[4-[[4-(4-methyl-1-piperazinyl)-6-[(5-methyl-1H-pyrazol-3-yl)amino]-2-pyrimidinyl]thio]phenyl]cyclopropanecarboxamide Chemical compound C1CN(C)CCN1C1=CC(NC2=NNC(C)=C2)=NC(SC=2C=CC(NC(=O)C3CC3)=CC=2)=N1 GCIKSSRWRFVXBI-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010064997 Necrotising retinitis Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 229920001007 Nylon 4 Polymers 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 208000021957 Ocular injury Diseases 0.000 description 1
- 206010072139 Ocular rosacea Diseases 0.000 description 1
- FELGMEQIXOGIFQ-UHFFFAOYSA-N Ondansetron Chemical compound CC1=NC=CN1CC1C(=O)C(C=2C(=CC=CC=2)N2C)=C2CC1 FELGMEQIXOGIFQ-UHFFFAOYSA-N 0.000 description 1
- 208000003435 Optic Neuritis Diseases 0.000 description 1
- 206010030924 Optic ischaemic neuropathy Diseases 0.000 description 1
- SUDAHWBOROXANE-SECBINFHSA-N PD 0325901 Chemical compound OC[C@@H](O)CONC(=O)C1=CC=C(F)C(F)=C1NC1=CC=C(I)C=C1F SUDAHWBOROXANE-SECBINFHSA-N 0.000 description 1
- 239000012270 PD-1 inhibitor Substances 0.000 description 1
- 239000012668 PD-1-inhibitor Substances 0.000 description 1
- TUVCWJQQGGETHL-UHFFFAOYSA-N PI-103 Chemical compound OC1=CC=CC(C=2N=C3C4=CC=CN=C4OC3=C(N3CCOCC3)N=2)=C1 TUVCWJQQGGETHL-UHFFFAOYSA-N 0.000 description 1
- 229940116355 PI3 kinase inhibitor Drugs 0.000 description 1
- YZDJQTHVDDOVHR-UHFFFAOYSA-N PLX-4720 Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(Cl)=CN=C3NC=2)=C1F YZDJQTHVDDOVHR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QIUASFSNWYMDFS-NILGECQDSA-N PX-866 Chemical compound CC(=O)O[C@@H]1C[C@]2(C)C(=O)CC[C@H]2C2=C1[C@@]1(C)[C@@H](COC)OC(=O)\C(=C\N(CC=C)CC=C)C1=C(O)C2=O QIUASFSNWYMDFS-NILGECQDSA-N 0.000 description 1
- CZYWHNTUXNGDGR-UHFFFAOYSA-L Pamidronate disodium Chemical compound O.O.O.O.O.[Na+].[Na+].NCCC(O)(P(O)([O-])=O)P(O)([O-])=O CZYWHNTUXNGDGR-UHFFFAOYSA-L 0.000 description 1
- 201000010183 Papilledema Diseases 0.000 description 1
- 206010033708 Papillitis Diseases 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 208000004788 Pars Planitis Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010034277 Pemphigoid Diseases 0.000 description 1
- 208000018262 Peripheral vascular disease Diseases 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920002023 Pluronic® F 87 Polymers 0.000 description 1
- 229920002511 Poloxamer 237 Polymers 0.000 description 1
- 229920002517 Poloxamer 338 Polymers 0.000 description 1
- 229920000148 Polycarbophil calcium Polymers 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 206010036346 Posterior capsule opacification Diseases 0.000 description 1
- 208000003971 Posterior uveitis Diseases 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- 208000002158 Proliferative Vitreoretinopathy Diseases 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 1
- WHBMMWSBFZVSSR-UHFFFAOYSA-N R3HBA Natural products CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 1
- 206010064714 Radiation retinopathy Diseases 0.000 description 1
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 1
- 101710151245 Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 1
- 201000007527 Retinal artery occlusion Diseases 0.000 description 1
- 201000007737 Retinal degeneration Diseases 0.000 description 1
- 206010048955 Retinal toxicity Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 1
- 206010038934 Retinopathy proliferative Diseases 0.000 description 1
- 206010038935 Retinopathy sickle cell Diseases 0.000 description 1
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 1
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 1
- AUVVAXYIELKVAI-UHFFFAOYSA-N SJ000285215 Natural products N1CCC2=CC(OC)=C(OC)C=C2C1CC1CC2C3=CC(OC)=C(OC)C=C3CCN2CC1CC AUVVAXYIELKVAI-UHFFFAOYSA-N 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- IRHXGOXEBNJUSN-YOXDLBRISA-N Saquinavir mesylate Chemical compound CS(O)(=O)=O.C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 IRHXGOXEBNJUSN-YOXDLBRISA-N 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102000011011 Sphingosine 1-phosphate receptors Human genes 0.000 description 1
- 108050001083 Sphingosine 1-phosphate receptors Proteins 0.000 description 1
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- 208000004350 Strabismus Diseases 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010042742 Sympathetic ophthalmia Diseases 0.000 description 1
- 108700002718 TACI receptor-IgG Fc fragment fusion Proteins 0.000 description 1
- OJFKUJDRGJSAQB-UHFFFAOYSA-N TAK-632 Chemical compound C1=C(NC(=O)CC=2C=C(C=CC=2)C(F)(F)F)C(F)=CC=C1OC(C(=C1S2)C#N)=CC=C1N=C2NC(=O)C1CC1 OJFKUJDRGJSAQB-UHFFFAOYSA-N 0.000 description 1
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 1
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- AOBORMOPSGHCAX-UHFFFAOYSA-N Tocophersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-UHFFFAOYSA-N 0.000 description 1
- IWEQQRMGNVVKQW-OQKDUQJOSA-N Toremifene citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 IWEQQRMGNVVKQW-OQKDUQJOSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- UFLGIAIHIAPJJC-UHFFFAOYSA-N Tripelennamine Chemical compound C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CC=C1 UFLGIAIHIAPJJC-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 102100029823 Tyrosine-protein kinase BTK Human genes 0.000 description 1
- CFQULUVMLGZVAF-OYJDLGDISA-N U0126.EtOH Chemical compound CCO.C=1C=CC=C(N)C=1SC(\N)=C(/C#N)\C(\C#N)=C(/N)SC1=CC=CC=C1N CFQULUVMLGZVAF-OYJDLGDISA-N 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 206010064996 Ulcerative keratitis Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 206010047663 Vitritis Diseases 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- 208000029977 White Dot Syndromes Diseases 0.000 description 1
- MQMKRQLTIWPEDM-UHFFFAOYSA-N XL147 Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC1=NC2=CC=CC=C2N=C1NC1=CC2=NSN=C2C=C1 MQMKRQLTIWPEDM-UHFFFAOYSA-N 0.000 description 1
- HGVNLRPZOWWDKD-UHFFFAOYSA-N ZSTK-474 Chemical compound FC(F)C1=NC2=CC=CC=C2N1C(N=1)=NC(N2CCOCC2)=NC=1N1CCOCC1 HGVNLRPZOWWDKD-UHFFFAOYSA-N 0.000 description 1
- OUUYBRCCFUEMLH-YDALLXLXSA-N [(1s)-2-[4-[bis(2-chloroethyl)amino]phenyl]-1-carboxyethyl]azanium;chloride Chemical compound Cl.OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 OUUYBRCCFUEMLH-YDALLXLXSA-N 0.000 description 1
- JLPULHDHAOZNQI-JLOPVYAASA-N [(2r)-3-hexadecanoyloxy-2-[(9e,12e)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC JLPULHDHAOZNQI-JLOPVYAASA-N 0.000 description 1
- JMNXSNUXDHHTKQ-QVMSTPCGSA-N [(3r,6r)-6-[(3s,5r,7r,8r,9s,10s,13r,14s,17r)-3-[3-(4-aminobutylamino)propylamino]-7-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylheptan-3-yl] hydrogen sulfate;(2s)-2-hydroxypropanoic ac Chemical compound C[C@H](O)C(O)=O.C([C@@H]1C[C@H]2O)[C@@H](NCCCNCCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CC[C@H](C(C)C)OS(O)(=O)=O)[C@@]2(C)CC1 JMNXSNUXDHHTKQ-QVMSTPCGSA-N 0.000 description 1
- IBXPAFBDJCXCDW-MHFPCNPESA-A [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].Cc1cn([C@H]2C[C@H](O)[C@@H](COP([S-])(=O)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3CO)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].Cc1cn([C@H]2C[C@H](O)[C@@H](COP([S-])(=O)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3COP([O-])(=S)O[C@H]3C[C@@H](O[C@@H]3CO)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3cnc4c3nc(N)[nH]c4=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O IBXPAFBDJCXCDW-MHFPCNPESA-A 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- WDENQIQQYWYTPO-IBGZPJMESA-N acalabrutinib Chemical compound CC#CC(=O)N1CCC[C@H]1C1=NC(C=2C=CC(=CC=2)C(=O)NC=2N=CC=CC=2)=C2N1C=CN=C2N WDENQIQQYWYTPO-IBGZPJMESA-N 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000023564 acute macular neuroretinopathy Diseases 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229940042992 afinitor Drugs 0.000 description 1
- 229960002833 aflibercept Drugs 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- 229960005310 aldesleukin Drugs 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001445 alitretinoin Drugs 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 229960003235 allopurinol sodium Drugs 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 229940003677 alphagan Drugs 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229960001097 amifostine Drugs 0.000 description 1
- JKOQGQFVAUAYPM-UHFFFAOYSA-N amifostine Chemical compound NCCCNCCSP(O)(O)=O JKOQGQFVAUAYPM-UHFFFAOYSA-N 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 229960001232 anecortave Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 201000007058 anterior ischemic optic neuropathy Diseases 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical compound C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000002137 anti-vascular effect Effects 0.000 description 1
- 229940006133 antiglaucoma drug and miotics carbonic anhydrase inhibitors Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940127088 antihypertensive drug Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 1
- 235000008714 apigenin Nutrition 0.000 description 1
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 1
- 229940117893 apigenin Drugs 0.000 description 1
- 229950004111 apitolisib Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229940087620 aromasin Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 229950009925 atacicept Drugs 0.000 description 1
- 229950003462 atiprimod Drugs 0.000 description 1
- SERHTTSLBVGRBY-UHFFFAOYSA-N atiprimod Chemical compound C1CC(CCC)(CCC)CCC11CN(CCCN(CC)CC)CC1 SERHTTSLBVGRBY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- GKQTUHKAQKWLIN-UHFFFAOYSA-L barium(2+);dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Ba+2] GKQTUHKAQKWLIN-UHFFFAOYSA-L 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229960000817 bazedoxifene Drugs 0.000 description 1
- UCJGJABZCDBEDK-UHFFFAOYSA-N bazedoxifene Chemical compound C=1C=C(OCCN2CCCCCC2)C=CC=1CN1C2=CC=C(O)C=C2C(C)=C1C1=CC=C(O)C=C1 UCJGJABZCDBEDK-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229960003094 belinostat Drugs 0.000 description 1
- NCNRHFGMJRPRSK-MDZDMXLPSA-N belinostat Chemical compound ONC(=O)\C=C\C1=CC=CC(S(=O)(=O)NC=2C=CC=CC=2)=C1 NCNRHFGMJRPRSK-MDZDMXLPSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 229940098085 betagan Drugs 0.000 description 1
- AKUJBENLRBOFTD-QZIXMDIESA-N betamethasone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(C)=O)(O)[C@@]1(C)C[C@@H]2O AKUJBENLRBOFTD-QZIXMDIESA-N 0.000 description 1
- 229960004648 betamethasone acetate Drugs 0.000 description 1
- PLCQGRYPOISRTQ-LWCNAHDDSA-L betamethasone sodium phosphate Chemical compound [Na+].[Na+].C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COP([O-])([O-])=O)(O)[C@@]1(C)C[C@@H]2O PLCQGRYPOISRTQ-LWCNAHDDSA-L 0.000 description 1
- 229960005354 betamethasone sodium phosphate Drugs 0.000 description 1
- 229960004324 betaxolol Drugs 0.000 description 1
- CHDPSNLJFOQTRK-UHFFFAOYSA-N betaxolol hydrochloride Chemical compound [Cl-].C1=CC(OCC(O)C[NH2+]C(C)C)=CC=C1CCOCC1CC1 CHDPSNLJFOQTRK-UHFFFAOYSA-N 0.000 description 1
- 229960002938 bexarotene Drugs 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 229950003054 binimetinib Drugs 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229960004395 bleomycin sulfate Drugs 0.000 description 1
- 208000010217 blepharitis Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000002164 blood-aqueous barrier Anatomy 0.000 description 1
- 230000004420 blood-aqueous barrier Effects 0.000 description 1
- RSIHSRDYCUFFLA-DYKIIFRCSA-N boldenone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 RSIHSRDYCUFFLA-DYKIIFRCSA-N 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229950004272 brigatinib Drugs 0.000 description 1
- 229960000722 brinzolamide Drugs 0.000 description 1
- HCRKCZRJWPKOAR-JTQLQIEISA-N brinzolamide Chemical compound CCN[C@H]1CN(CCCOC)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 HCRKCZRJWPKOAR-JTQLQIEISA-N 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 229960001292 cabozantinib Drugs 0.000 description 1
- ONIQOQHATWINJY-UHFFFAOYSA-N cabozantinib Chemical compound C=12C=C(OC)C(OC)=CC2=NC=CC=1OC(C=C1)=CC=C1NC(=O)C1(C(=O)NC=2C=CC(F)=CC=2)CC1 ONIQOQHATWINJY-UHFFFAOYSA-N 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 235000008207 calcium folinate Nutrition 0.000 description 1
- 239000011687 calcium folinate Substances 0.000 description 1
- KVUAALJSMIVURS-ZEDZUCNESA-L calcium folinate Chemical compound [Ca+2].C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 KVUAALJSMIVURS-ZEDZUCNESA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 1
- 229930195731 calicheamicin Natural products 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 229940056434 caprelsa Drugs 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229960002438 carfilzomib Drugs 0.000 description 1
- BLMPQMFVWMYDKT-NZTKNTHTSA-N carfilzomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)[C@]1(C)OC1)NC(=O)CN1CCOCC1)CC1=CC=CC=C1 BLMPQMFVWMYDKT-NZTKNTHTSA-N 0.000 description 1
- 108010021331 carfilzomib Proteins 0.000 description 1
- 229960001222 carteolol Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 201000005667 central retinal vein occlusion Diseases 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 229950006295 cerdulatinib Drugs 0.000 description 1
- VERWOWGGCGHDQE-UHFFFAOYSA-N ceritinib Chemical compound CC=1C=C(NC=2N=C(NC=3C(=CC=CC=3)S(=O)(=O)C(C)C)C(Cl)=CN=2)C(OC(C)C)=CC=1C1CCNCC1 VERWOWGGCGHDQE-UHFFFAOYSA-N 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- XDLYKKIQACFMJG-WKILWMFISA-N chembl1234354 Chemical compound C1=NC(OC)=CC=C1C(C1=O)=CC2=C(C)N=C(N)N=C2N1[C@@H]1CC[C@@H](OCCO)CC1 XDLYKKIQACFMJG-WKILWMFISA-N 0.000 description 1
- NDAYQJDHGXTBJL-MWWSRJDJSA-N chembl557217 Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 NDAYQJDHGXTBJL-MWWSRJDJSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- QCDFRRQWKKLIKV-UHFFFAOYSA-M chloroplatinum Chemical compound [Pt]Cl QCDFRRQWKKLIKV-UHFFFAOYSA-M 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960000724 cidofovir Drugs 0.000 description 1
- 229950009003 cilengitide Drugs 0.000 description 1
- AMLYAMJWYAIXIA-VWNVYAMZSA-N cilengitide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](C(C)C)N(C)C(=O)[C@H]1CC1=CC=CC=C1 AMLYAMJWYAIXIA-VWNVYAMZSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940035811 conjugated estrogen Drugs 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 206010011005 corneal dystrophy Diseases 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 201000007717 corneal ulcer Diseases 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 239000002619 cytotoxin Substances 0.000 description 1
- BFSMGDJOXZAERB-UHFFFAOYSA-N dabrafenib Chemical compound S1C(C(C)(C)C)=NC(C=2C(=C(NS(=O)(=O)C=3C(=CC=CC=3F)F)C=CC=2)F)=C1C1=CC=NC(N)=N1 BFSMGDJOXZAERB-UHFFFAOYSA-N 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229950007409 dacetuzumab Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 229940026692 decadron Drugs 0.000 description 1
- 229940073499 decyl glucoside Drugs 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- RSIHSRDYCUFFLA-UHFFFAOYSA-N dehydrotestosterone Natural products O=C1C=CC2(C)C3CCC(C)(C(CC4)O)C4C3CCC2=C1 RSIHSRDYCUFFLA-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- SWJBYJJNDIXFSA-KUHUBIRLSA-N demethoxyviridin Chemical compound O=C1C2=C3CCC(=O)C3=CC=C2[C@]2(C)C3=C1OC=C3C(=O)C[C@H]2O SWJBYJJNDIXFSA-KUHUBIRLSA-N 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 229960002923 denileukin diftitox Drugs 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960000605 dexrazoxane Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940099238 diamox Drugs 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- OCUJLLGVOUDECM-UHFFFAOYSA-N dipivefrin Chemical compound CNCC(O)C1=CC=C(OC(=O)C(C)(C)C)C(OC(=O)C(C)(C)C)=C1 OCUJLLGVOUDECM-UHFFFAOYSA-N 0.000 description 1
- VKFAUCPBMAGVRG-UHFFFAOYSA-N dipivefrin hydrochloride Chemical compound [Cl-].C[NH2+]CC(O)C1=CC=C(OC(=O)C(C)(C)C)C(OC(=O)C(C)(C)C)=C1 VKFAUCPBMAGVRG-UHFFFAOYSA-N 0.000 description 1
- 229960000966 dipivefrine Drugs 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- HSYBQXDGYCYSGA-UHFFFAOYSA-L disodium;[6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)pyrimidin-4-yl]amino]-2,2-dimethyl-3-oxopyrido[3,2-b][1,4]oxazin-4-yl]methyl phosphate Chemical compound [Na+].[Na+].COC1=C(OC)C(OC)=CC(NC=2N=C(NC=3N=C4N(COP([O-])([O-])=O)C(=O)C(C)(C)OC4=CC=3)C(F)=CN=2)=C1 HSYBQXDGYCYSGA-UHFFFAOYSA-L 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 229960003218 dolasetron mesylate Drugs 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 229950000317 dulanermin Drugs 0.000 description 1
- 229950009791 durvalumab Drugs 0.000 description 1
- 229950004949 duvelisib Drugs 0.000 description 1
- 229960003913 econazole Drugs 0.000 description 1
- 229940120655 eloxatin Drugs 0.000 description 1
- 229940073038 elspar Drugs 0.000 description 1
- 229960002694 emetine Drugs 0.000 description 1
- AUVVAXYIELKVAI-CKBKHPSWSA-N emetine Chemical compound N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@@H]1CC AUVVAXYIELKVAI-CKBKHPSWSA-N 0.000 description 1
- AUVVAXYIELKVAI-UWBTVBNJSA-N emetine Natural products N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@H]1CC AUVVAXYIELKVAI-UWBTVBNJSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229950001969 encorafenib Drugs 0.000 description 1
- 206010014801 endophthalmitis Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 1
- 229950004136 entospletinib Drugs 0.000 description 1
- 229950002189 enzastaurin Drugs 0.000 description 1
- 208000003401 eosinophilic granuloma Diseases 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229960001766 estramustine phosphate sodium Drugs 0.000 description 1
- IIUMCNJTGSMNRO-VVSKJQCTSA-L estramustine sodium phosphate Chemical compound [Na+].[Na+].ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 IIUMCNJTGSMNRO-VVSKJQCTSA-L 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229950009569 etaracizumab Drugs 0.000 description 1
- OCLXJTCGWSSVOE-UHFFFAOYSA-N ethanol etoh Chemical compound CCO.CCO OCLXJTCGWSSVOE-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- SEKOTFCHZNXZMM-UHFFFAOYSA-N ethyl 6-[5-(benzenesulfonamido)pyridin-3-yl]imidazo[1,2-a]pyridine-3-carboxylate Chemical compound C=1N2C(C(=O)OCC)=CN=C2C=CC=1C(C=1)=CN=CC=1NS(=O)(=O)C1=CC=CC=C1 SEKOTFCHZNXZMM-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 229940009626 etidronate Drugs 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 229960000752 etoposide phosphate Drugs 0.000 description 1
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229950008085 figitumumab Drugs 0.000 description 1
- 229960004177 filgrastim Drugs 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000011990 fisetin Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 229960005304 fludarabine phosphate Drugs 0.000 description 1
- FAOZLTXFLGPHNG-KNAQIMQKSA-N fluorometholone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FAOZLTXFLGPHNG-KNAQIMQKSA-N 0.000 description 1
- 150000005699 fluoropyrimidines Chemical class 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 229940039573 folotyn Drugs 0.000 description 1
- 229960005102 foscarnet Drugs 0.000 description 1
- 229950005309 fostamatinib Drugs 0.000 description 1
- GKDRMWXFWHEQQT-UHFFFAOYSA-N fostamatinib Chemical compound COC1=C(OC)C(OC)=CC(NC=2N=C(NC=3N=C4N(COP(O)(O)=O)C(=O)C(C)(C)OC4=CC=3)C(F)=CN=2)=C1 GKDRMWXFWHEQQT-UHFFFAOYSA-N 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229960003923 gatifloxacin Drugs 0.000 description 1
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229940080856 gleevec Drugs 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940074046 glyceryl laurate Drugs 0.000 description 1
- 229940068939 glyceryl monolaurate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 229960002913 goserelin Drugs 0.000 description 1
- 229960003690 goserelin acetate Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003481 heat shock protein 90 inhibitor Substances 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- FVYXIJYOAGAUQK-UHFFFAOYSA-N honokiol Chemical compound C1=C(CC=C)C(O)=CC=C1C1=CC(CC=C)=CC=C1O FVYXIJYOAGAUQK-UHFFFAOYSA-N 0.000 description 1
- VVOAZFWZEDHOOU-UHFFFAOYSA-N honokiol Natural products OC1=CC=C(CC=C)C=C1C1=CC(CC=C)=CC=C1O VVOAZFWZEDHOOU-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 102000044949 human TNFSF10 Human genes 0.000 description 1
- 208000013653 hyalitis Diseases 0.000 description 1
- 229940099552 hyaluronan Drugs 0.000 description 1
- 229940014041 hyaluronate Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960003685 imatinib mesylate Drugs 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229960004243 indinavir sulfate Drugs 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 229940011083 istodax Drugs 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229960002418 ivermectin Drugs 0.000 description 1
- 229940126401 izorlisib Drugs 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 201000000909 keratomalacia Diseases 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 1
- 229960004752 ketorolac Drugs 0.000 description 1
- 229960004891 lapatinib Drugs 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- PYIDGJJWBIBVIA-UYTYNIKBSA-N lauryl glucoside Chemical compound CCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PYIDGJJWBIBVIA-UYTYNIKBSA-N 0.000 description 1
- 229940048848 lauryl glucoside Drugs 0.000 description 1
- 229960004942 lenalidomide Drugs 0.000 description 1
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- 229960002293 leucovorin calcium Drugs 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 229960000831 levobunolol Drugs 0.000 description 1
- IXHBTMCLRNMKHZ-LBPRGKRZSA-N levobunolol Chemical compound O=C1CCCC2=C1C=CC=C2OC[C@@H](O)CNC(C)(C)C IXHBTMCLRNMKHZ-LBPRGKRZSA-N 0.000 description 1
- DNTDOBSIBZKFCP-YDALLXLXSA-N levobunolol hydrochloride Chemical compound [Cl-].O=C1CCCC2=C1C=CC=C2OC[C@@H](O)C[NH2+]C(C)(C)C DNTDOBSIBZKFCP-YDALLXLXSA-N 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- 229950002884 lexatumumab Drugs 0.000 description 1
- CMJCXYNUCSMDBY-ZDUSSCGKSA-N lgx818 Chemical compound COC(=O)N[C@@H](C)CNC1=NC=CC(C=2C(=NN(C=2)C(C)C)C=2C(=C(NS(C)(=O)=O)C=C(Cl)C=2)F)=N1 CMJCXYNUCSMDBY-ZDUSSCGKSA-N 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 229950004563 lucatumumab Drugs 0.000 description 1
- 229940112534 lumigan Drugs 0.000 description 1
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 description 1
- LRDGATPGVJTWLJ-UHFFFAOYSA-N luteolin Natural products OC1=CC(O)=CC(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)=C1 LRDGATPGVJTWLJ-UHFFFAOYSA-N 0.000 description 1
- 235000009498 luteolin Nutrition 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000003692 lymphatic flow Effects 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- 229950001869 mapatumumab Drugs 0.000 description 1
- 229950002736 marizomib Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QZIQJVCYUQZDIR-UHFFFAOYSA-N mechlorethamine hydrochloride Chemical compound Cl.ClCCN(C)CCCl QZIQJVCYUQZDIR-UHFFFAOYSA-N 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960005558 mertansine Drugs 0.000 description 1
- 229960004635 mesna Drugs 0.000 description 1
- 229960004083 methazolamide Drugs 0.000 description 1
- SULMJWJPVDSFFN-SNVBAGLBSA-N methyl-oxo-[(2r)-1-phenoxybutan-2-yl]oxyphosphanium Chemical compound C[P+](=O)O[C@H](CC)COC1=CC=CC=C1 SULMJWJPVDSFFN-SNVBAGLBSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- 229960002704 metipranolol Drugs 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 229960005040 miconazole nitrate Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- DDLIGBOFAVUZHB-UHFFFAOYSA-N midazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NC=C2CN=C1C1=CC=CC=C1F DDLIGBOFAVUZHB-UHFFFAOYSA-N 0.000 description 1
- 229960003793 midazolam Drugs 0.000 description 1
- 229960003775 miltefosine Drugs 0.000 description 1
- PQLXHQMOHUQAKB-UHFFFAOYSA-N miltefosine Chemical compound CCCCCCCCCCCCCCCCOP([O-])(=O)OCC[N+](C)(C)C PQLXHQMOHUQAKB-UHFFFAOYSA-N 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- VYGYNVZNSSTDLJ-HKCOAVLJSA-N monorden Natural products CC1CC2OC2C=C/C=C/C(=O)CC3C(C(=CC(=C3Cl)O)O)C(=O)O1 VYGYNVZNSSTDLJ-HKCOAVLJSA-N 0.000 description 1
- UXOUKMQIEVGVLY-UHFFFAOYSA-N morin Natural products OC1=CC(O)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UXOUKMQIEVGVLY-UHFFFAOYSA-N 0.000 description 1
- 235000007708 morin Nutrition 0.000 description 1
- 229960003702 moxifloxacin Drugs 0.000 description 1
- FABPRXSRWADJSP-MEDUHNTESA-N moxifloxacin Chemical compound COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 FABPRXSRWADJSP-MEDUHNTESA-N 0.000 description 1
- 230000004682 mucosal barrier function Effects 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- PCOBUQBNVYZTBU-UHFFFAOYSA-N myricetin Natural products OC1=C(O)C(O)=CC(C=2OC3=CC(O)=C(O)C(O)=C3C(=O)C=2)=C1 PCOBUQBNVYZTBU-UHFFFAOYSA-N 0.000 description 1
- 235000007743 myricetin Nutrition 0.000 description 1
- 229940116852 myricetin Drugs 0.000 description 1
- KWRYMZHCQIOOEB-LBPRGKRZSA-N n-[(1s)-1-(7-fluoro-2-pyridin-2-ylquinolin-3-yl)ethyl]-7h-purin-6-amine Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=C(F)C=C2N=C1C1=CC=CC=N1 KWRYMZHCQIOOEB-LBPRGKRZSA-N 0.000 description 1
- QTHCAAFKVUWAFI-DJKKODMXSA-N n-[(e)-(6-bromoimidazo[1,2-a]pyridin-3-yl)methylideneamino]-n,2-dimethyl-5-nitrobenzenesulfonamide Chemical compound C=1N=C2C=CC(Br)=CN2C=1/C=N/N(C)S(=O)(=O)C1=CC([N+]([O-])=O)=CC=C1C QTHCAAFKVUWAFI-DJKKODMXSA-N 0.000 description 1
- BLCLNMBMMGCOAS-UHFFFAOYSA-N n-[1-[[1-[[1-[[1-[[1-[[1-[[1-[2-[(carbamoylamino)carbamoyl]pyrrolidin-1-yl]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-[(2-methylpropan-2-yl)oxy]-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amin Chemical compound C1CCC(C(=O)NNC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)C(COC(C)(C)C)NC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 BLCLNMBMMGCOAS-UHFFFAOYSA-N 0.000 description 1
- IJMHHZDBRUGXNO-UHFFFAOYSA-N n-[3-(8-anilinoimidazo[1,2-a]pyrazin-6-yl)phenyl]-4-tert-butylbenzamide Chemical compound C1=CC(C(C)(C)C)=CC=C1C(=O)NC1=CC=CC(C=2N=C(NC=3C=CC=CC=3)C3=NC=CN3C=2)=C1 IJMHHZDBRUGXNO-UHFFFAOYSA-N 0.000 description 1
- CDOOFZZILLRUQH-UHFFFAOYSA-N n-[3-[6-[4-(1,4-dimethyl-3-oxopiperazin-2-yl)anilino]-4-methyl-5-oxopyrazin-2-yl]-2-methylphenyl]-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxamide Chemical compound CN1CCN(C)C(=O)C1C(C=C1)=CC=C1NC1=NC(C=2C(=C(NC(=O)C=3SC=4CCCCC=4C=3)C=CC=2)C)=CN(C)C1=O CDOOFZZILLRUQH-UHFFFAOYSA-N 0.000 description 1
- KEDAVYHDQWPBEY-UHFFFAOYSA-N n-[3-[[3-(3,5-dimethoxyanilino)quinoxalin-2-yl]sulfamoyl]phenyl]-3-methoxy-4-methylbenzamide Chemical compound COC1=CC(OC)=CC(NC=2C(=NC3=CC=CC=C3N=2)NS(=O)(=O)C=2C=C(NC(=O)C=3C=C(OC)C(C)=CC=3)C=CC=2)=C1 KEDAVYHDQWPBEY-UHFFFAOYSA-N 0.000 description 1
- KXBDTLQSDKGAEB-UHFFFAOYSA-N n-[3-[[5-fluoro-2-[4-(2-methoxyethoxy)anilino]pyrimidin-4-yl]amino]phenyl]prop-2-enamide Chemical compound C1=CC(OCCOC)=CC=C1NC1=NC=C(F)C(NC=2C=C(NC(=O)C=C)C=CC=2)=N1 KXBDTLQSDKGAEB-UHFFFAOYSA-N 0.000 description 1
- VRQXRVAKPDCRCI-ZNMIVQPWSA-N n-[4-[(1r,3s,5s)-3-amino-5-methylcyclohexyl]pyridin-3-yl]-6-(2,6-difluorophenyl)-5-fluoropyridine-2-carboxamide Chemical compound C1[C@H](C)C[C@H](N)C[C@@H]1C1=CC=NC=C1NC(=O)C1=CC=C(F)C(C=2C(=CC=CC=2F)F)=N1 VRQXRVAKPDCRCI-ZNMIVQPWSA-N 0.000 description 1
- GDCJHDUWWAKBIW-UHFFFAOYSA-N n-[4-[4-[2-(difluoromethyl)-4-methoxybenzimidazol-1-yl]-6-morpholin-4-yl-1,3,5-triazin-2-yl]phenyl]-2-(dimethylamino)ethanesulfonamide Chemical compound FC(F)C1=NC=2C(OC)=CC=CC=2N1C(N=1)=NC(N2CCOCC2)=NC=1C1=CC=C(NS(=O)(=O)CCN(C)C)C=C1 GDCJHDUWWAKBIW-UHFFFAOYSA-N 0.000 description 1
- JFVNFXCESCXMBC-UHFFFAOYSA-N n-[5-[4-chloro-3-(2-hydroxyethylsulfamoyl)phenyl]-4-methyl-1,3-thiazol-2-yl]acetamide Chemical compound S1C(=N/C(=O)C)\NC(C)=C1C1=CC=C(Cl)C(S(=O)(=O)NCCO)=C1 JFVNFXCESCXMBC-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- JOWXJLIFIIOYMS-UHFFFAOYSA-N n-hydroxy-2-[[2-(6-methoxypyridin-3-yl)-4-morpholin-4-ylthieno[3,2-d]pyrimidin-6-yl]methyl-methylamino]pyrimidine-5-carboxamide Chemical compound C1=NC(OC)=CC=C1C1=NC(N2CCOCC2)=C(SC(CN(C)C=2N=CC(=CN=2)C(=O)NO)=C2)C2=N1 JOWXJLIFIIOYMS-UHFFFAOYSA-N 0.000 description 1
- RIWRFSMVIUAEBX-UHFFFAOYSA-N n-methyl-1-phenylmethanamine Chemical compound CNCC1=CC=CC=C1 RIWRFSMVIUAEBX-UHFFFAOYSA-N 0.000 description 1
- 229960003255 natamycin Drugs 0.000 description 1
- NCXMLFZGDNKEPB-FFPOYIOWSA-N natamycin Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C[C@@H](C)OC(=O)/C=C/[C@H]2O[C@@H]2C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 NCXMLFZGDNKEPB-FFPOYIOWSA-N 0.000 description 1
- 235000010298 natamycin Nutrition 0.000 description 1
- 239000004311 natamycin Substances 0.000 description 1
- 229960000513 necitumumab Drugs 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 229960005230 nelfinavir mesylate Drugs 0.000 description 1
- NQHXCOAXSHGTIA-SKXNDZRYSA-N nelfinavir mesylate Chemical compound CS(O)(=O)=O.CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 NQHXCOAXSHGTIA-SKXNDZRYSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 201000003142 neovascular glaucoma Diseases 0.000 description 1
- 208000021971 neovascular inflammatory vitreoretinopathy Diseases 0.000 description 1
- QEFAQIPZVLVERP-UHFFFAOYSA-N nepafenac Chemical compound NC(=O)CC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1N QEFAQIPZVLVERP-UHFFFAOYSA-N 0.000 description 1
- 229960001002 nepafenac Drugs 0.000 description 1
- 229940101054 neptazane Drugs 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 229940080607 nexavar Drugs 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- HYWYRSMBCFDLJT-UHFFFAOYSA-N nimesulide Chemical compound CS(=O)(=O)NC1=CC=C([N+]([O-])=O)C=C1OC1=CC=CC=C1 HYWYRSMBCFDLJT-UHFFFAOYSA-N 0.000 description 1
- 239000002353 niosome Substances 0.000 description 1
- IICQZTQZQSBHBY-UHFFFAOYSA-N non-2-ene Chemical compound CCCCCCC=CC IICQZTQZQSBHBY-UHFFFAOYSA-N 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 229960000435 oblimersen Drugs 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 229960001494 octreotide acetate Drugs 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 229940100003 ocupress Drugs 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 229940060184 oil ingredients Drugs 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229950008089 omipalisib Drugs 0.000 description 1
- 229940099216 oncaspar Drugs 0.000 description 1
- 229960005343 ondansetron Drugs 0.000 description 1
- 201000002166 optic papillitis Diseases 0.000 description 1
- 229940100022 optipranolol Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- YOURXVGYNVXQKT-UHFFFAOYSA-N oxacycloundecane-2,11-dione Chemical compound O=C1CCCCCCCCC(=O)O1 YOURXVGYNVXQKT-UHFFFAOYSA-N 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- GIPDEPRRXIBGNF-KTKRTIGZSA-N oxolan-2-ylmethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC1CCCO1 GIPDEPRRXIBGNF-KTKRTIGZSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- RARSHUDCJQSEFJ-UHFFFAOYSA-N p-Hydroxypropiophenone Chemical compound CCC(=O)C1=CC=C(O)C=C1 RARSHUDCJQSEFJ-UHFFFAOYSA-N 0.000 description 1
- AHJRHEGDXFFMBM-UHFFFAOYSA-N palbociclib Chemical compound N1=C2N(C3CCCC3)C(=O)C(C(=O)C)=C(C)C2=CN=C1NC(N=C1)=CC=C1N1CCNCC1 AHJRHEGDXFFMBM-UHFFFAOYSA-N 0.000 description 1
- 229960003978 pamidronic acid Drugs 0.000 description 1
- 229960005184 panobinostat Drugs 0.000 description 1
- FWZRWHZDXBDTFK-ZHACJKMWSA-N panobinostat Chemical compound CC1=NC2=CC=C[CH]C2=C1CCNCC1=CC=C(\C=C\C(=O)NO)C=C1 FWZRWHZDXBDTFK-ZHACJKMWSA-N 0.000 description 1
- 229940096763 panretin Drugs 0.000 description 1
- 201000007407 panuveitis Diseases 0.000 description 1
- 230000001499 parasympathomimetic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229960000639 pazopanib Drugs 0.000 description 1
- 229940121655 pd-1 inhibitor Drugs 0.000 description 1
- 229960003407 pegaptanib Drugs 0.000 description 1
- 229960001744 pegaspargase Drugs 0.000 description 1
- 229960005547 pelareorep Drugs 0.000 description 1
- NYDXNILOWQXUOF-GXKRWWSZSA-L pemetrexed disodium Chemical compound [Na+].[Na+].C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 NYDXNILOWQXUOF-GXKRWWSZSA-L 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229960002087 pertuzumab Drugs 0.000 description 1
- 208000015385 phacoanaphylactic uveitis Diseases 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 238000000614 phase inversion technique Methods 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000000649 photocoagulation Effects 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229950004941 pictilisib Drugs 0.000 description 1
- 229950010773 pidilizumab Drugs 0.000 description 1
- 229950005769 pilaralisib Drugs 0.000 description 1
- RNAICSBVACLLGM-GNAZCLTHSA-N pilocarpine hydrochloride Chemical compound Cl.C1OC(=O)[C@@H](CC)[C@H]1CC1=CN=CN1C RNAICSBVACLLGM-GNAZCLTHSA-N 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 229950008499 plitidepsin Drugs 0.000 description 1
- UUSZLLQJYRSZIS-LXNNNBEUSA-N plitidepsin Chemical compound CN([C@H](CC(C)C)C(=O)N[C@@H]1C(=O)N[C@@H]([C@H](CC(=O)O[C@H](C(=O)[C@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(OC)=CC=2)C(=O)O[C@@H]1C)C(C)C)O)[C@@H](C)CC)C(=O)[C@@H]1CCCN1C(=O)C(C)=O UUSZLLQJYRSZIS-LXNNNBEUSA-N 0.000 description 1
- 108010049948 plitidepsin Proteins 0.000 description 1
- 229940098901 polifeprosan 20 Drugs 0.000 description 1
- 229940044519 poloxamer 188 Drugs 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000141 poly(maleic anhydride) Polymers 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229950005134 polycarbophil Drugs 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001299 polypropylene fumarate Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229960001131 ponatinib Drugs 0.000 description 1
- PHXJVRSECIGDHY-UHFFFAOYSA-N ponatinib Chemical compound C1CN(C)CCN1CC(C(=C1)C(F)(F)F)=CC=C1NC(=O)C1=CC=C(C)C(C#CC=2N3N=CC=CC3=NC=2)=C1 PHXJVRSECIGDHY-UHFFFAOYSA-N 0.000 description 1
- 229960004293 porfimer sodium Drugs 0.000 description 1
- LZMJNVRJMFMYQS-UHFFFAOYSA-N poseltinib Chemical compound C1CN(C)CCN1C(C=C1)=CC=C1NC1=NC(OC=2C=C(NC(=O)C=C)C=CC=2)=C(OC=C2)C2=N1 LZMJNVRJMFMYQS-UHFFFAOYSA-N 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229960000214 pralatrexate Drugs 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000006785 proliferative vitreoretinopathy Effects 0.000 description 1
- WSOSYBUSMXEYDO-UHFFFAOYSA-N propamidine isethionate Chemical compound OCCS(O)(=O)=O.OCCS(O)(=O)=O.C1=CC(C(=N)N)=CC=C1OCCCOC1=CC=C(C(N)=N)C=C1 WSOSYBUSMXEYDO-UHFFFAOYSA-N 0.000 description 1
- 229960000771 propamidine isethionate Drugs 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 239000003197 protein kinase B inhibitor Substances 0.000 description 1
- 229940117820 purinethol Drugs 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004527 pyrimidin-4-yl group Chemical group N1=CN=C(C=C1)* 0.000 description 1
- 239000002718 pyrimidine nucleoside Substances 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 235000005875 quercetin Nutrition 0.000 description 1
- 229960001285 quercetin Drugs 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- CVWXJKQAOSCOAB-UHFFFAOYSA-N quizartinib Chemical compound O1C(C(C)(C)C)=CC(NC(=O)NC=2C=CC(=CC=2)C=2N=C3N(C4=CC=C(OCCN5CCOCC5)C=C4S3)C=2)=N1 CVWXJKQAOSCOAB-UHFFFAOYSA-N 0.000 description 1
- AECPBJMOGBFQDN-YMYQVXQQSA-N radicicol Chemical compound C1CCCC(=O)C[C@H]2[C@H](Cl)C(=O)CC(=O)[C@H]2C(=O)O[C@H](C)C[C@H]2O[C@@H]21 AECPBJMOGBFQDN-YMYQVXQQSA-N 0.000 description 1
- 229930192524 radicicol Natural products 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229960004836 regorafenib Drugs 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000004258 retinal degeneration Effects 0.000 description 1
- 230000004283 retinal dysfunction Effects 0.000 description 1
- 231100000385 retinal toxicity Toxicity 0.000 description 1
- 229950003238 rilotumumab Drugs 0.000 description 1
- 229960001487 rimexolone Drugs 0.000 description 1
- QTTRZHGPGKRAFB-OOKHYKNYSA-N rimexolone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CC)(C)[C@@]1(C)C[C@@H]2O QTTRZHGPGKRAFB-OOKHYKNYSA-N 0.000 description 1
- 229960000311 ritonavir Drugs 0.000 description 1
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 1
- 229960003452 romidepsin Drugs 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- 229960000215 ruxolitinib Drugs 0.000 description 1
- NGWSFRIPKNWYAO-SHTIJGAHSA-N salinosporamide A Chemical compound C([C@@H]1[C@H](O)[C@]23C(=O)O[C@]2([C@H](C(=O)N3)CCCl)C)CCC=C1 NGWSFRIPKNWYAO-SHTIJGAHSA-N 0.000 description 1
- NGWSFRIPKNWYAO-UHFFFAOYSA-N salinosporamide A Natural products N1C(=O)C(CCCl)C2(C)OC(=O)C21C(O)C1CCCC=C1 NGWSFRIPKNWYAO-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 229960003542 saquinavir mesylate Drugs 0.000 description 1
- 229960002530 sargramostim Drugs 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 229950010746 selumetinib Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- BLGWHBSBBJNKJO-UHFFFAOYSA-N serabelisib Chemical compound C=1C=C2OC(N)=NC2=CC=1C(=CN12)C=CC1=NC=C2C(=O)N1CCOCC1 BLGWHBSBBJNKJO-UHFFFAOYSA-N 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000012890 simulated body fluid Substances 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- AGBSXNCBIWWLHD-FQEVSTJZSA-N siremadlin Chemical compound COC1=NC(OC)=NC=C1C(N1C(C)C)=NC2=C1[C@H](C=1C=CC(Cl)=CC=1)N(C=1C(N(C)C=C(Cl)C=1)=O)C2=O AGBSXNCBIWWLHD-FQEVSTJZSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229940083542 sodium Drugs 0.000 description 1
- ODZPKZBBUMBTMG-UHFFFAOYSA-N sodium amide Chemical compound [NH2-].[Na+] ODZPKZBBUMBTMG-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 1
- PTJRZVJXXNYNLN-UHFFFAOYSA-M sodium;2h-pyrazolo[3,4-d]pyrimidin-1-id-4-one Chemical compound [Na+].[O-]C1=NC=NC2=C1C=NN2 PTJRZVJXXNYNLN-UHFFFAOYSA-M 0.000 description 1
- IBUIVNCCBFLEJL-UHFFFAOYSA-M sodium;phosphoric acid;chloride Chemical compound [Na+].[Cl-].OP(O)(O)=O IBUIVNCCBFLEJL-UHFFFAOYSA-M 0.000 description 1
- WGRULTCAYDOGQK-UHFFFAOYSA-M sodium;sodium;hydroxide Chemical compound [OH-].[Na].[Na+] WGRULTCAYDOGQK-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229950007865 sonolisib Drugs 0.000 description 1
- IVDHYUQIDRJSTI-UHFFFAOYSA-N sorafenib tosylate Chemical compound [H+].CC1=CC=C(S([O-])(=O)=O)C=C1.C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 IVDHYUQIDRJSTI-UHFFFAOYSA-N 0.000 description 1
- 229960000487 sorafenib tosylate Drugs 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 1
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 229940090374 stivarga Drugs 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 229960004458 tafluprost Drugs 0.000 description 1
- WSNODXPBBALQOF-VEJSHDCNSA-N tafluprost Chemical compound CC(C)OC(=O)CCC\C=C/C[C@H]1[C@@H](O)C[C@@H](O)[C@@H]1\C=C\C(F)(F)COC1=CC=CC=C1 WSNODXPBBALQOF-VEJSHDCNSA-N 0.000 description 1
- 229950008389 talmapimod Drugs 0.000 description 1
- ZMELOYOKMZBMRB-DLBZAZTESA-N talmapimod Chemical compound C([C@@H](C)N(C[C@@H]1C)C(=O)C=2C(=CC=3N(C)C=C(C=3C=2)C(=O)C(=O)N(C)C)Cl)N1CC1=CC=C(F)C=C1 ZMELOYOKMZBMRB-DLBZAZTESA-N 0.000 description 1
- UXXQOJXBIDBUAC-UHFFFAOYSA-N tandutinib Chemical compound COC1=CC2=C(N3CCN(CC3)C(=O)NC=3C=CC(OC(C)C)=CC=3)N=CN=C2C=C1OCCCN1CCCCC1 UXXQOJXBIDBUAC-UHFFFAOYSA-N 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- URLYINUFLXOMHP-HTVVRFAVSA-N tcn-p Chemical compound C=12C3=NC=NC=1N(C)N=C(N)C2=CN3[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O URLYINUFLXOMHP-HTVVRFAVSA-N 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- 229940072958 tetrahydrofurfuryl oleate Drugs 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- GGNIKGLUPSHSBV-UHFFFAOYSA-N thiazole-5-carboxamide Chemical compound NC(=O)C1=CN=CS1 GGNIKGLUPSHSBV-UHFFFAOYSA-N 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 239000003634 thrombocyte concentrate Substances 0.000 description 1
- 229940034744 timoptic Drugs 0.000 description 1
- PLHJCIYEEKOWNM-HHHXNRCGSA-N tipifarnib Chemical compound CN1C=NC=C1[C@](N)(C=1C=C2C(C=3C=C(Cl)C=CC=3)=CC(=O)N(C)C2=CC=1)C1=CC=C(Cl)C=C1 PLHJCIYEEKOWNM-HHHXNRCGSA-N 0.000 description 1
- 229950009158 tipifarnib Drugs 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960004167 toremifene citrate Drugs 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 229950000185 tozasertib Drugs 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000032895 transmembrane transport Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 229960001612 trastuzumab emtansine Drugs 0.000 description 1
- 229940113006 travatan Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 1
- 229960002117 triamcinolone acetonide Drugs 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 229950003873 triciribine Drugs 0.000 description 1
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 1
- 229960003223 tripelennamine Drugs 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229940108420 trusopt Drugs 0.000 description 1
- 229940094060 tykerb Drugs 0.000 description 1
- QTFFGPOXNNGTGZ-RCSCTSIBSA-N u3c8e5bwkr Chemical compound O.CS(O)(=O)=O.C1=CC=C2C(C(OC3C[C@@H]4CC5C[C@@H](N4CC5=O)C3)=O)=CNC2=C1 QTFFGPOXNNGTGZ-RCSCTSIBSA-N 0.000 description 1
- 230000001982 uveitic effect Effects 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 230000009677 vaginal delivery Effects 0.000 description 1
- 229960000653 valrubicin Drugs 0.000 description 1
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229950000578 vatalanib Drugs 0.000 description 1
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 1
- 229960003862 vemurafenib Drugs 0.000 description 1
- 201000005539 vernal conjunctivitis Diseases 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229960004982 vinblastine sulfate Drugs 0.000 description 1
- KDQAABAKXDWYSZ-PNYVAJAMSA-N vinblastine sulfate Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 KDQAABAKXDWYSZ-PNYVAJAMSA-N 0.000 description 1
- 229960002110 vincristine sulfate Drugs 0.000 description 1
- 229960002166 vinorelbine tartrate Drugs 0.000 description 1
- GBABOYUKABKIAF-IWWDSPBFSA-N vinorelbinetartrate Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC(C23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IWWDSPBFSA-N 0.000 description 1
- 239000008154 viscoelastic solution Substances 0.000 description 1
- 208000029257 vision disease Diseases 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229950001212 volociximab Drugs 0.000 description 1
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- 229960000237 vorinostat Drugs 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 229940069559 votrient Drugs 0.000 description 1
- 229950001576 voxtalisib Drugs 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- QDLHCMPXEPAAMD-QAIWCSMKSA-N wortmannin Chemical compound C1([C@]2(C)C3=C(C4=O)OC=C3C(=O)O[C@@H]2COC)=C4[C@@H]2CCC(=O)[C@@]2(C)C[C@H]1OC(C)=O QDLHCMPXEPAAMD-QAIWCSMKSA-N 0.000 description 1
- QDLHCMPXEPAAMD-UHFFFAOYSA-N wortmannin Natural products COCC1OC(=O)C2=COC(C3=O)=C2C1(C)C1=C3C2CCC(=O)C2(C)CC1OC(C)=O QDLHCMPXEPAAMD-UHFFFAOYSA-N 0.000 description 1
- 229940002639 xalatan Drugs 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 229940036061 zaltrap Drugs 0.000 description 1
- 229940034727 zelboraf Drugs 0.000 description 1
- 229960002760 ziv-aflibercept Drugs 0.000 description 1
- 229940061261 zolinza Drugs 0.000 description 1
- 229940052129 zykadia Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5089—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/38—Heterocyclic compounds having sulfur as a ring hetero atom
- A61K31/382—Heterocyclic compounds having sulfur as a ring hetero atom having six-membered rings, e.g. thioxanthenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/593—Polyesters, e.g. PLGA or polylactide-co-glycolide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
- A61K9/1623—Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
- A61K9/1647—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5031—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
Definitions
- the present invention is a surface treated drug-loaded solid (e.g., non-porous) microparticle that aggregates in vivo to form a consolidated larger particle for medical therapy.
- the particles are used for ocular therapy.
- Processes for producing the surface treated microparticle and injectable formulations, including the surface treated microparticle, are also provided. When used in the eye, long-term consistent intraocular delivery can be achieved that minimizes disruption of vision and minimizes undesirable inflammatory responses.
- the structure of the eye can be divided into two segments: the anterior and posterior.
- the anterior segment comprises the front third of the eye and includes the structures in front of the vitreous humor: the cornea, iris, ciliary body, and lens.
- the posterior segment includes the back two-thirds of the eye and includes the sclera, choroid, retinal pigment epithelium, neural retina, optic nerve, and vitreous humor.
- Important diseases affecting the anterior segment of the eye include glaucoma, allergic conjunctivitis, anterior uveitis, and cataracts.
- Diseases affecting the posterior segment of the eye include dry and wet age-related macular degeneration (AMD), cytomegalovirus (CMV) infection, diabetic retinopathy, choroidal neovascularization, acute macular neuroretinopathy, macular edema (such as cystoid macular edema and diabetic macular edema), Behcet's disease, retinal disorders, diabetic retinopathy (including proliferative diabetic retinopathy), retinal arterial occlusive disease, central retinal vein occlusion, uveitic retinal disease, retinal detachment, ocular trauma, damage caused by ocular laser treatment or photodynamic therapy, photocoagulation, radiation retinopathy, epiretinal membrane disorders, branch retinal vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retina
- Typical routes of drug administration to the eye include topical, systemic, intravitreal, intraocular, intracameral, subconjunctival, subtenon, retrobulbar, and posterior juxtascleral.
- a number of types of delivery systems have been developed to deliver therapeutic agents to the eye.
- Such delivery systems include conventional (solution, suspension, emulsion, ointment, inserts, and gels), vesicular (liposomes, niosomes, discomes, and pharmacosomes), advanced materials (scleral plugs, gene delivery, siRNA, and stem cells), and controlled-release systems (implants, hydrogels, dendrimers, iontophoresis, collagen shields, polymeric solutions, therapeutic contact lenses, cyclodextrin carriers, microneedles, microemulsions, and particulates (microparticles and nanoparticles)).
- Drug delivery to the posterior segment of the eye is typically achieved via an intravitreal injection, the periocular route, implant, or by systemic administration.
- Drug delivery to the posterior segment by way of the periocular route can involve the application of a drug solution to the close proximity of the sclera, which results in high retinal and vitreal concentrations.
- Intravitreal injection is often carried out with a 30 gauge or less needle. While intravitreal injections offer high concentrations of drug to the vitreous chamber and retina, they can be associated with various short term complications such as retinal detachment, endophthalmitis and intravitreal hemorrhages. Experience shows that injection of small particles can lead to the rapid dispersal of the particles which can obstruct vision (experienced by the patient as “floaties” or “floaters”) and the rapid removal of the particles from the injection site (which can occur via the lymphatic drainage system or by phagocytosis). In addition, immunogenicity can occur upon recognition of the microspheres by macrophages and other cells and mediators of the immune ddsy stem .
- Complications in periocular injections include rises in intraocular pressure, cataract, hyphema, strabismus, and corneal decompensation.
- Transscleral delivery with periocular administration is seen as an alternative to intravitreal injections.
- ocular barriers such as the sclera, choroid, retinal pigment epithelium, lymphatic flow, and general blood flow can compromise efficacy.
- Systemic administration which is not advantageous given the ratio of the volume of the eye to the entire body, can lead to potential systemic toxicity.
- Allergan has disclosed a biodegradable microsphere to deliver a therapeutic agent that is formulated in a high viscosity carrier suitable for intraocular injection or to treat a non-ocular disorder (U.S. publication 2010/0074957 and U.S. publication 2015/0147406 claiming priority to a series of applications back to Dec. 16, 2003).
- the '957 application describes a biocompatible, intraocular drug delivery system that includes a plurality of biodegradable microspheres, a therapeutic agent, and a viscous carrier, wherein the carrier has a viscosity of at least about 10 cps ata shear rate of 0.1/second at 25° C.
- Allergan has also disclosed a composite drug delivery material that can be injected into the eye of a patient that includes a plurality of microparticles dispersed in a media, wherein the microparticles contain a drug and a biodegradable or bioerodible coating and the media includes the drug dispersed in a depot-forming material, wherein the media composition may gel or solidify on injection into the eye (WO 2013/112434 A1, claiming priority to Jan. 23, 2012). Allergan states that this invention can be used to provide a depot means to implant a solid sustained drug delivery system into the eye without an incision. In general, the depot on injection transforms to a material that has a viscosity that may be difficult or impossible to administer by injection.
- Allergan has disclosed biodegradable microspheres between 40 and 200 ⁇ m in diameter, with a mean diameter between 60 and 150 ⁇ m that are effectively retained in the anterior chamber of the eye without producing hyperemia (US 2014/0294986).
- the microspheres contain a drug effective for an ocular condition with greater than seven day release following administration to the anterior chamber of the eye. The administration of these large particles is intended to overcome the disadvantages of injecting 1-30 ⁇ m particles which are generally poorly tolerated.
- Regentec Limited has filed a series of patent applications on the preparation of porous particles that can be used as tissue scaffolding (WO 2004/084968 and U.S. publication 2006/0263335 (filed Mar. 27, 2003) and U.S. publication 2008/0241248 (filed Sep. 20, 2005) and WO 2008/041001 (filed Oct. 7, 2006)).
- the porosity of the particles must be sufficient to receive cells to be held in the particle.
- the cells can be added to the matrix at, or prior to, implantation of the matrix or afterward in the case of recruitment from endogenous cells in situ.
- Regentec also published an article on tissue scaffolding with porous particles (Qutachi et al. “Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature”, Acta Biomaterialia, 10, 5080-5098, (2014)).
- Regentec Limited also filed patent applications on the preparation of large porous particles that can be used in drug delivery (WO 2010/100506 and U.S. publication 2012/0063997 (filed Mar. 5, 2009)).
- the porosity of the particles allows for quick delivery of the therapeutic agent.
- the particles are intended to form a scaffold that fills the space in which they are injected by a trigger such as a change in temperature.
- EP 2125048 filed by Locate Therapeutics Limited (filed Feb. 1, 2007) as well as WO 2008/093094, U.S. publication 2010/0063175 (filed Feb. 1, 2007), and WO 2008/093095 (filed February 1, 2007) filed by Regentec Limited disclose the preparation of particles that are not necessarily porous but that when exposed to a trigger (such as temperature) form a tissue scaffold useful in the repair of damaged or missing tissue in a host.
- a trigger such as temperature
- Additional references pertaining to particles for ocular delivery include the following. Ayalasomayajula, S. P. and Kompella, U. B. have disclosed the subconjunctival administration of celecoxib-poly(lactide co-glycolide) (PLGA) microparticles in rats (Ayalasomayajula, S. P. and Kompella, U. B., “Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model”, Eur. J. Pharm., 511, 191-198 (2005)).
- PLGA celecoxib-poly(lactide co-glycolide)
- Danbiosyst UK Ltd. has disclosed a microparticle comprising a mixture of a biodegradable polymer, a water soluble polymer of 8,000 Daltons or higher and an active agent (U.S. Pat. No. 5,869,103).
- Poly-Med, Inc. has disclosed compositions comprising a hydrogel mass and a carrier having a biological active agent deposited on the carrier (U.S. Pat. No. 6,413,539).
- MacroMed Inc. has disclosed the use of an agent delivery system comprising a microparticle and a biodegradable gel (U.S. Pat. Nos. 6,287,588 and 6,589,549).
- Novartis has disclosed ophthalmic depot formulations for periocular or subconjunctival administration where the pharmacologically acceptable polymer is a polylactide-co-glycolide ester of a polyol (U.S. publication 2004/0234611, U.S. publication 2008/0305172, U.S. publication 2012/0269894, and U.S. publication 2013/0122064).
- the Universidad De Navarra has disclosed oral pegylated nanoparticles for carrying biologically active molecules comprising a pegylated biodegradable polymer (U.S. Pat. No. 8,628,801).
- Surmodics, Inc. has disclosed microparticles containing matrices for drug delivery (U.S. Pat. No.
- Minu, L.L.C. has disclosed the use of an agent in microparticle of nanoparticle form to facilitate transmembrane transport.
- Emory University and Georgia Tech Research Corporation have disclosed particles dispersed in a non-Newtonian fluid that facilitates the migration of the therapeutic particles from the insertion site in the suprachoroidal space to the treatment site (U.S. 2016/0310417).
- Pfizer has disclosed nanoparticles as injectable depot formulations (U.S. publication 2008/0166411).
- Abbott has disclosed a pharmaceutical dosage form that comprises a pharmaceutically acceptable polymer for the delivery of a tyrosine kinase inhibitor (U.S. publication 2009/0203709). The Brigham and Women's Hospital, Inc.
- BIND Therapeutics, Inc. has disclosed therapeutic nanoparticles comprising about 50 to 99.75 weight percent of a diblock poly (lactic) acid-poly(ethylene)glycol copolymer or a diblock poly (lactic acid-co-glycolic acid)-poly(ethylene)glycol copolymer wherein the therapeutic nanoparticle comprises 10 to about 30 weight percent poly(ethylene)glycol (U.S. publication 2014/0178475). Additional publications assigned to BIND Therapeutics, Inc. include U.S. publication 2014/0248358 and U.S. publication 2014/0249158.
- Allergan has disclosed the use of biodegradable microspheres containing a drug to treat an ocular condition (U.S. publication 2010/0074957, U.S. publication 2014/0294986, U.S. publication 2015/0147406, EP 1742610, and WO 2013/112434). Allergan has also disclosed a biocompatible implant containing a prostamide component, which can exist in particle form, and a biodegradable polymer that allows for slow release of the drug over the course of 1 week to 6 months for the treatment of an ocular condition, such as glaucoma (U.S. application 2015/0157562 and U.S. application 2015/0099805).
- Jade Therapeutics has disclosed formulations containing an active agent and a polymer matrix that can be delivered directly to the target tissue or placed in a suitable delivery device (U.S. publication 2014/0107025).
- Bayer Healthcare has disclosed a topical ophthalmological pharmaceutical composition comprising sunitinib and at least one pharmaceutically acceptable vehicle (WO 2013/188283).
- pSivida Us, Inc. has disclosed biodegradable drug eluting particles comprising a microporous or mesoporous silicon body for intraocular use (U.S. Pat. No. 9,023,896). Additional patents assigned to pSivida Us, Inc. include: U.S. Pat. Nos.
- ForSight Vision4, Inc. has disclosed therapeutic devices for implantation in the eye (U.S. Pat. Nos. 8,808,727). Additional patents assigned to ForSight Vision4, Inc. include: U.S. Pat. Nos.
- the drug In order to treat ocular diseases, and in particular diseases of the posterior segment, the drug must be delivered in therapeutic levels and for a sufficient duration to achieve efficacy. This seemingly straightforward goal is difficult to achieve in practice.
- the object of this invention is to provide compositions and methods to treat ocular disorders. Another objective is to provide drug delivering microparticles for sustained administration of therapeutic materials generally in vivo.
- the present invention provides mildly surface treated solid biodegradable microparticles that on injection in vivo, aggregate to a larger particle (pellet) in a manner that reduces unwanted side effects of the smaller particles and are suitable for long term (for example, up to, or alternatively at least, three months, four months, five months, six months or seven months or longer) sustained delivery of a therapeutic agent.
- the mildly surface treated solid biodegradable microparticles are suitable for ocular injection, at which point the particles aggregate to form a pellet that remains outside the visual axis so as not to significantly impair vision.
- the particles can aggregate into one or several pellets. The size of the aggregate depends on the concentration and volume of the microparticle suspensions injected and the diluent in which the microparticles are suspended.
- the invention is thus surface-modified solid aggregating microparticles that include at least one biodegradable polymer, wherein the surface-modified solid aggregating microparticles have a solid core, include a therapeutic agent, have a modified surface which has been treated under mild conditions at a temperature at or less than about 18° C. to remove surface surfactant, are sufficiently small to be injected in vivo, and are capable of aggregating in vivo to form at least one pellet of at least 500 ⁇ m in vivo to provide sustained drug delivery in vivo for at least one month, two months, three months, four months, five months, six months or seven months or more.
- the surface modified solid aggregating microparticles are suitable, for example, for an intravitreal injection, implant, including an ocular implant, periocular delivery, or delivery in vivo outside of the eye.
- the surface-modified solid aggregating microparticles described herein upon injection in vivo, aggregate in vivo to form at least one pellet of at least 500 ⁇ m in vivo to provide sustained drug delivery in vivo for at least one month, two months, three months, four months, five months, six months or seven months or more.
- the invention is an injectable material that includes the microparticles of the present invention in a pharmaceutically acceptable carrier for administration in vivo.
- the injectable material may include a compound that inhibits aggregation of microparticles prior to injection and/or a viscosity enhancer and/or a salt.
- the injectable material has a range of concentration of the surface-modified solid aggregating microparticles of about 50 to 700 mg/ml. In certain examples, the injectable material has a concentration of the surface-modified solid aggregating microparticles that is not more than about 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 or 700 mg/ml.
- the injectable material has a concentration of the surface-modified solid aggregating microparticles of about 200-400 mg/ml, 150-450 or 100-500 mg/ml. In certain embodiments, the injectable material has about up to 150, 200, 300 or 400 mg/ml.
- the present invention further includes a process for the preparation of surface-modified solid aggregating microparticles that includes
- the process can be achieved in a continuous manufacturing line or via one step or in step-wise fashion.
- wet biodegradable microparticles can be used without isolation to manufacture surface treated solid biodegradable microparticles.
- the surface treated solid biodegradable microparticles do not significantly aggregate during the manufacturing process.
- the surface treated solid biodegradable microparticles do not significantly aggregate when resuspended and loaded into a syringe.
- the syringe is approximately 30, 29, 28, 27, 26 or 25 gauge, with either normal or thin wall.
- a method for the treatment of an ocular disorder includes administering to a host in need thereof mildly surface-modified solid aggregating microparticles that include an effective amount of a therapeutic agent, wherein the surface-modified solid aggregating microparticles are injected into the eye and aggregate in vivo to form at least one pellet of at least 500 ⁇ m that provides sustained drug delivery for at least approximately one, two, three, four, five, six or seven or more months in such a manner that the pellet stays substantially outside the visual axis so as not to significantly impair vision.
- the surface treated solid biodegradable microparticles release about 1 to about 20 percent, about 1 to about 15 percent, about 1 to about 10 percent, or about 5 to 20 percent, for example, up to about 1, 5, 10, 15 or 20 percent, of the therapeutic agent over the first twenty-four (?) hour period. In one embodiment, the surface treated solid biodegradable microparticles release less therapeutic agent in vivo in comparison to non-treated solid biodegradable microparticles over up to about 1, 2, 3, 4, 5, 6, 7 day or even up to about a 1, 2, 3, 4, or 5 month period. In one embodiment, the surface treated solid biodegradable microparticles induce less inflammation in vivo in comparison to non-treated solid biodegradable microparticles over the course of treatment.
- This invention addresses the problem of intraocular therapy using small drug loaded particles (for example, 20 to 40 ⁇ m, 10 to 30, 20 to 30, or 25 to 30 ⁇ m average diameter, or for example, not greater than about 20, 25, 26, 27, 28, 29, 30, 35 or 40 ⁇ m average diameter (Dv)) that tend to disperse in the eye due to body movement and/or aqueous flow in the vitreous.
- the dispersed microparticles can cause vision disruption and aggravation from floaters, inflammation, etc.
- the microparticles of the invention aggregate in vivo to form at least one pellet of at least 500 ⁇ m and minimize vision disruption and inflammation. Further, the aggregated pellet of the surface treated microparticles is biodegradable so the aggregated pellet of the surface treated microparticles does not have to be surgically removed.
- the surface treatment includes treating microparticles with aqueous base, for example, sodium hydroxide and a solvent (such as an alcohol, for example ethanol or methanol, or an organic solvent such as DMF, DMSO or ethyl acetate) as otherwise described above.
- a hydroxide base is used, for example, potassium hydroxide.
- An organic base can also be used.
- the surface treatment as described above is carried out in aqueous acid, for example hydrochloric acid.
- the surface treatment includes treating microparticles with phosphate buffered saline and ethanol.
- the surface treatment is carried out at a temperature of not more than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18° C. at a reduced temperature of about 5 to about 18° C., about 5 to about 16° C., about 5 to about 15° C., about 0 to about 10° C., about 0 to about 8° C., or about 1 to about 5° C., about 5 to about 20° C., about 1 to about 10° C., about 0 to about 15° C., about 0 to about 10° C., about 1 to about 8° C., or about 1 to about 5° C.
- Each combination of each of these conditions is considered independently disclosed as if each combination were separately listed.
- the pH of the surface treatment will of course vary based on whether the treatment is carried out in basic, neutral or acidic conditions.
- the pH may range from about 7.5 to about 14, including not more than about 8, 9, 10, 11, 12, 13 or 14.
- the pH may range from about 6.5 to about 1, including not less than 1, 2, 3, 4, 5, or 6.
- the pH may typically range from about 6.4 or 6.5 to about 7.4 or 7.5.
- a key aspect of the present invention is that the treatment, whether done in basic, neutral or acidic conditions, includes a selection of the combination of the time, temperature, pH agent and solvent that causes a mild treatment that does not significantly damage the particle in a manner that forms pores, holes or channels.
- Each combination of each of these conditions is considered independently disclosed as if each combination were separately listed.
- the treatment conditions should simply mildly treat the surface in a manner that allows the particles to remain as solid particles, be injectable without undue aggregation or clumping, and form at least one aggregate particle of at least 500 ⁇ m.
- the surface treatment includes treating microparticles with an organic solvent at a reduced temperature of about 0 to about 18° C., about 0 to about 16° C., about 0 to about 15° C., about 0 to about 10° C., about 0 to about 8° C., or about 0 to about 5° C.
- the decreased temperature of processing assists to ensure that the particles are only “mildly” surface treated.
- compositions can be delivered in a controlled fashion using the invention.
- the pharmaceutical agent is a tyrosine kinase inhibitor such as sunitinib.
- One goal of the invention is to provide for the sustained release of pharmaceutically active compounds to the eye, and in particular the posterior of the eye, over a period of at least about one, two, three, four, five, six, seven months or more in a manner that maintains at least a concentration of a drug in the eye that is effective for the disorder to be treated.
- the drug is administered in a surface treated microparticle that provides for a sustained release that is substantially linear.
- the release is not linear; however, even the lowest concentration of release over the designated time period is at or above a therapeutically effective dose.
- the surface treated microparticle includes poly(lactic-co-glycolic acid) (PLGA). In another embodiment, the surface treated microparticle includes a polymer or copolymer that has at least PLGA and PLGA-polyethylene glycol (PEG) (referred to as PLGA-PEG). In one embodiment, the surface treated microparticle includes poly(lactic acid) (PLA). In another embodiment, the surface treated microparticle includes a polymer or copolymer that has at least PLA and PLA-polyethylene glycol (PEG) (referred to as PLA-PEG). In one embodiment, the surface treated microparticle includes polycaprolactone (PCL).
- PCL polycaprolactone
- the surface treated microparticle includes a polymer or copolymer that has at least PCL and PCL-polyethylene glycol (PEG) (referred to as PCL-PEG).
- the surface treated microparticle includes at least PLGA, PLGA-PEG and polyvinyl alcohol (PVA).
- the surface treated microparticle includes at least PLA, PLA-PEG and polyvinyl alcohol (PVA).
- the surface treated microparticle includes at least PCL, PCL-PEG and polyvinyl alcohol (PVA).
- any combination of PLA, PLGA or PCL can be mixed with any combination of PLA-PEG, PLGA-PEG or PCL-PEG, with or without PVA, and each combination of each of these conditions is considered independently disclosed as if each were separately listed.
- the polyvinyl alcohol is a partially hydrolyzed polyvinyl acetate.
- the polyvinyl acetate is at least about 78% hydrolyzed so that the polyvinyl acetate is substantially hydrolyzed.
- the polyvinyl acetate is at least about 88% to 98% hydrolyzed so that the polyvinyl acetate is substantially hydrolyzed.
- the surface treated microparticle including a pharmaceutically active compound contains from about 80 percent or 89 percent to about 99 percent PLGA, for example, at least about 80, 85, 90, 95, 96, 97, 98 or 99 percent PLGA.
- PLA or PCL is used in place of PLGA.
- a combination of PLA, PLGA and/or PCL is used.
- the surface treated microparticle includes from about 0.5 percent to about 10 percent PLGA-PEG, about 0.5 percent to about 5 percent PLGA-PEG, about 0.5 percent to about 4 percent PLGA-PEG, about 0.5 percent to about 3 percent PLGA-PEG, or about 0.1 percent to about 1, 2, 5, or 10 percent PLGA-PEG.
- PLA-PEG or PCL-PEG is used in place of PLGA-PEG.
- any combination of PLGA-PEG, PLA-PEG or PCL-PEG is used in the polymeric composition with any combination of PLGA, PLA or PCL. Each combination is considered specifically described as if set out individually herein.
- the polymeric formulation includes up to about 1, 2, 3, 4, 5, 6, 10, or 14% of the selected pegylated polymer.
- the microparticle contains from about 0.01 percent to about 0.5 percent PVA (polyvinyl alcohol), about 0.05 percent to about 0.5 percent PVA, about 0.1 percent to about 0.5 percent PVA, or about 0.25 percent to about 0.5 percent PVA. In some examples, the microparticle contains from about 0.001 percent to about 1 percent PVA, about 0.005 percent to about 1 percent PVA, about 0.075 percent to about 1 percent PVA, or about 0.085 percent to about 1 percent PVA. In some examples, the microparticle contains from about 0.01 percent to about 5.0 percent PVA, about 0.05 percent to about 5.0 percent PVA, about 0.1 percent to about 5.0 percent PVA, about 0.50 percent to about 5.0 percent PVA.
- PVA polyvinyl alcohol
- the microparticle contains from about 0.10 percent to about 1.0 percent PVA or about 0.50 percent to about 1.0 percent. In some embodiments, the microparticle contains up to about 0.10, 0.15, 0.20, 0.25, 0.30, 0.40 or 0.5% PVA. Any molecular weight PVA can be used that achieves the desired results. In one embodiment, the PVA has a molecular weight of up to about 10, 15, 20, 25, 30, 35 or 40 kd. In some embodiments, the PVA is partially hydrolyzed polyvinyl acetate, including but not limited to, up to about 70, 75, 80, 85, 88, 90 or even 95% hydrolyzed polyvinyl acetate.
- the PVA is about 88% hydrolyzed polyvinyl acetate. In one embodiment, the PVA polymer has a molecule weight of 20,000 to 40,000 g/mol. In one embodiment, the PVA polymer has a molecular weight of 24,000 to 35,000 g/mol.
- the PLGA polymer has a molecular weight of 30,000 to 60,000 g/mol (also kilodalton, kDa or kD). In one embodiment, the PLGA polymer has a molecular weight of 40,000 to 50,000 g/mol (for example 40,000; 45,000 or 50,000g/mol). In one embodiment, the PLA polymer has a molecular weight of 30,000 to 60,000 g/ mol (for example 40,000; 45,000 or 50,000 g/mol). In one embodiment, the PCL polymer is used in the same range of kDa as described for PLGA or PLA.
- a surface treated microparticle comprises a pharmaceutically active compound.
- the encapsulation efficiency of the pharmaceutically active compound in the microparticle can range widely based on specific microparticle formation conditions and the properties of the therapeutic agent, for example from about 20 percent to about 90 percent, about 40 percent to about 85 percent, about 50 percent to about 75 percent. In some embodiments, the encapsulation efficiency is for example, up to about 50, 55, 60, 65, 70, 75 or 80 percent.
- the amount of pharmaceutical active compound in the surface treated microparticle is dependent on the molecular weight, potency, and pharmacokinetic properties of the pharmaceutical active compound.
- the pharmaceutically active compound is present in an amount of at least 1.0 weight percent to about 40 weight percent based on the total weight of the surface treated microparticle. In some embodiments, the pharmaceutically active compound is present in an amount of at least 1.0 weight percent to about 35 weight percent, at least 1.0 weight percent to about 30 weight percent, at least 1.0 weight percent to about 25 weight percent, or at least 1.0 weight percent to about 20 weight percent based on the total weight of the surface treated microparticle.
- weight of active material in the microparticle are at least about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15% by weight. In one example, the microparticle has about 10% by weight of active compound.
- the invention provides a process for producing a microparticle comprising a microparticle and a pharmaceutically active compound encapsulated in the microparticle; which process comprises:
- FIG. 1 illustrates the aggregation of non-surface treated microparticles (NSTMP) (S-1 and S-5) and surface treated microparticles (STMP) (S-3 and S-8) after injection into PBS and incubation at 37° C. for 2 hours.
- NSTMP non-surface treated microparticles
- STMP surface treated microparticles
- S-1 and S-5 started to disperse immediately when the tubes were inverted after the 2 hour-incubation, while the STMP, S-3 and S-8, remained aggregated at the bottom of the tubes without dispersion throughout the entire period of observation (about 10 minutes).
- Samples from left to right are S-1, S-3, S-5 and S-8 (Example 5).
- FIG. 2 illustrates the aggregation of surface treated microparticles (STMP) (S-3 and S-8) after injection into HA and incubation at 37° C. for 2 hours. Samples left to right are S-1, S-3, S-5 and S-8 (Example 5).
- STMP surface treated microparticles
- FIG. 3 illustrates the result of in vitro aggregation and dispersion of particles after a 2-hour incubation in PBS at 37° C. followed by agitation to detach the aggregates from the bottom of the tubes.
- FIG. 4 illustrates in vitro aggregation of representative surface treated microparticles (STMP) treated with PBS/EtOH (sample S-21) after a 2 hour incubation in PBS at 37° C. followed by agitation by tapping and flicking the tube (Example 6).
- STMP surface treated microparticles
- FIG. 5 illustrates the in vitro accelerated drug release profile of a representative batch of surface treated microparticles (STMP) (S-12) (Example 12).
- STMP surface treated microparticles
- S-12 Example 12
- the x-axis is time measured in days and the y-axis is cumulative release percent.
- FIG. 6 illustrates the in vitro drug release profiles for samples S-1, S-2, and S-3 in PBS with 1% Tween 20 at 37° C. (Example 13).
- the x-axis is time measured in days and the y-axis is cumulative release percent.
- FIG. 7 illustrates the in vitro drug release profile of S-13, S-14, 5-15 and S-16 in PBS with 1% Tween 20 at 37° C. (Example 15).
- the x-axis is time measured in days and the y-axis is cumulative release percent.
- FIG. 8 A illustrates the in vitro aggregation of surface treated microparticles (STMP) in 5-fold diluted ProVisc at a concentration of 100 mg/mL into 4 mL of PBS after incubation at 37° C. for 2 hours (top) and after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17).
- STMP surface treated microparticles
- FIG. 8 B illustrates the in vitro aggregation of surface treated microparticles (STMP) in 5-fold diluted ProVisc at a concentration of 100 mg/mL into 4 mL of HA (5 mg/mL solution) after incubation at 37° C. for 2 hours (top) and after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17).
- STMP surface treated microparticles
- FIG. 8 C illustrates the in vitro aggregation of surface treated microparticles (STMP) in 5-fold diluted ProVisc at a concentration of 200 mg/mL into 4 mL of PBS after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17).
- STMP surface treated microparticles
- FIG. 8 D illustrates the in vitro aggregation of surface treated microparticles (STMP) in diluted ProVisc at a concentration of 200 mg/mL into 4 mL of HA (5 mg/mL solution) after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17).
- STMP surface treated microparticles
- FIG. 9 illustrates photos of aggregates of particles in an ex vivo cow eye 2 hours after injection (Example 18).
- FIG. 10 A are photos of particle aggregates in the vitreous (left) and out of the vitreous (right) following injection of STMP, S-10, suspended in PBS into the central vitreous of rabbit eyes (Example 19).
- FIG. 10 B are photos of particle aggregates in the vitreous (left) and out of the vitreous (right) following injection of STMP, S-10, suspended in 5-fold diluted ProVisc into the central vitreous of rabbit eyes (Example 19).
- FIG. 11 A illustrates representative 1-month histology images of rabbit eyes injected with surface treated microparticles (STMP) (Example 20).
- STMP surface treated microparticles
- FIG. 11 B illustrates representative 1-month histology images of rabbit eyes injected with non-surface treated microparticles (NSTMP) (Example 20).
- FIG. 12 illustrates the size distribution of a representative batch of surface treated microparticles (STMP) (S-12) (Example 22).
- STMP surface treated microparticles
- S-12 Example 22
- the x-axis represents particle diameter measured in micrometers and the y-axis represents volume percent.
- FIG. 13 A illustrates select PK profiles for sunitinib in the retina following a bilateral injection of sunitinib malate (free drug) at a dose of 0.0125 mg/eye or 0.00125 mg/eye in pigmented rabbits (Example 24).
- the x-axis is time measured in hours and the y-axis is the concentration of sunitinib in ng/g.
- FIG. 13 B illustrates select PK profiles for sunitinib in the vitreous following a bilateral injection of sunitinib malate (free drug) at a dose of 0.0125 mg/eye or 0.00125 mg/eye in pigmented rabbits (Example 24).
- the x-axis is time measured in hours and the y-axis is the concentration of sunitinib in ng/g.
- FIG. 13 C illustrates select PK profiles for sunitinib in the plasma following a bilateral injection of sunitinib malate (free drug) at a dose of 2.5 mg/eye, 0.25 mg/eye, or 0.025 mg/eye in pigmented rabbits (Example 24).
- the x-axis is time measured in hours and the y-axis is the concentration of sunitinib in ng/g.
- FIG. 14 illustrates subitinib levels (ng/g) in rabbits injected with 10 mg of STMP containing 1 mg sunitinib for 7 months post-dose.
- the rabbits were sacrificed at 4 months and sunitinib levels (ng/g) were determined in the vitreous, retina, plasma, and RPE-Choroid.
- Sunitinib levels were above the Ki for sunitinib against VEGFR and PDGFR (Example 20).
- the x-axis represents time post-dose in month and the y-axis represents the concentration of sunitinib measured in ng/g.
- FIG. 15 illustrates sunitinib levels (ng/g) in rabbits injected with 2 mg of STMP containing 0.2 mg sunitinib (10% w/w STMP) for 4 months post-dose.
- the rabbits were sacrificed at 4 months and sunitinib levels (ng/g) were determined in the vitreous, retina, plasma, and RPE-Choroid.
- Sunitinib levels were above the K i for sunitinib against VEGFR and PDGFR in the RPE-Choroid and retina (Example 20).
- the x-axis represents time post-dose in months and the y-axis represents the concentration of sunitinib measured in ng/g.
- FIG. 16 illustrates sunitinib levels (ng/g) in rabbits injected with 10 mg of STMP containing 0.2 mg sunitinib (2% w/w STMP). The rabbits were sacrificed at 4 months and sunitinib levels (ng/g) were determined in the vitreous, retina, plasma, and RPE-Choroid. Sunitinib levels were above the K i for sunitinib against VEGFR and PDGFR in the RPE-Choroid and retina (Example 20). The x-axis represents time post-dose in month and the y-axis represents the concentration of sunitinib measured in ng/g.
- FIG. 17 illustrates the aggregation of surface treated microparticles (STMP) (S-28 to 5-37 and S-12) after injection into PBS and incubation at 37° C. for 2 hours. After the 2 hour-incubation, the non-surface treated microparticles (NSTMP), S-27, became dispersed when the test tube was placed on an orbital shaker at 400 rpm for 30 seconds, while the surface treated microparticles (STMP), S-28 to S-37 and S-12, remained aggregated under the same agitation condition.
- STMP surface treated microparticles
- Samples from left to right, top row to bottom row are S-28, S-29, S-30, S-31, S-32, S-33, S-34, S-35, S-36, S-37, S-12 and S-27 (Example 10).
- FIG. 18 illustrates the aggregation of surface treated microparticles (STMP) (S-39 to S-after injection into PBS and incubation at 37° C. for 2 hours. After the 2 hour-incubation, the non-surface treated microparticles (NSTMP), S-38, became dispersed when the test tube was placed on an orbital shaker at 400 rpm for 30 seconds, while the surface treated microparticles (STMP), S-39 to S-45, remained aggregated under the same agitation condition. Samples from left to right, top row to bottom row are S-39, S-40, S-41, S-42, S-43, S-44 and S-45 (Example 10).
- STMP surface treated microparticles
- FIG. 19 is a graph depicting PK after a single IVT injection of STMP containing 1 mg sunitinib malate in rabbits.
- the rabbits were sacrificed at 10 days and 3 months and sunitinib levels (ng/g) were determined in the vitreous, retina, and RPE-Choroid.
- Sunitinib levels were above the K i for sunitinib against VEGFR and PDGFR in the RPE-Choroid and retina (Example 29).
- the x-axis represents time post-dose in moths and the y-axis represents the concentration of sunitinib measured in ng/g.
- carrier refers to a diluent, excipient, or vehicle.
- a “dosage form” means a unit of administration of a composition that includes a surface treated microparticle and a therapeutically active compound.
- dosage forms include injections, suspensions, liquids, emulsions, implants, particles, spheres, creams, ointments, inhalable forms, transdermal forms, buccal, sublingual, topical, gel, mucosal, and the like.
- a “dosage form” can also include, for example, a surface treated microparticle comprising a pharmaceutically active compound in a carrier.
- microparticle means a particle whose size is measured in micrometers ( ⁇ m). Typically, the microparticle has an average diameter of from about 1 ⁇ m to 100 ⁇ m. In some embodiments, the microparticle has an average diameter of from about 11 ⁇ m to 60 ⁇ m, for instance from about 11 ⁇ m to 40 ⁇ m; from about 10 ⁇ m to 40 ⁇ m; from about 20 ⁇ m to 40 ⁇ m; from about 25 ⁇ m to 40 ⁇ m; from about 20 ⁇ m to 35 ⁇ m. For example, the microparticle may have an average diameter of from 20 ⁇ m to 40 ⁇ m. As used herein, the term “microsphere” means a substantially spherical microparticle.
- a “patient” or “host” or “subject” is typically a human, however, may be more generally a mammal. In an alternative embodiment it can refer to, for example, a cow, sheep, goat, horse, dog, cat, rabbit, rat, mouse, bird and the like.
- the term “mild” or “mildly” when used to describe the surface modification of the microparticles means that the modification (typically the removal of surfactant from the surface, as opposed to the inner core, of the particle) is less severe, pronounced or extensive than when carried out at room temperature with the otherwise same conditions.
- the surface modification of the solid microparticles of the present invention is carried out in a manner that does not create significant channels or large pores that would significantly accelerate the degradation of the microparticle in vivo, yet serves to soften and decrease the hydrophilicity of the surface to facilitate in vivo aggregation.
- solid as used to characterize the mildly surface treated microparticle means that the particle is substantially continuous in material structure as opposed to heterogeneous with significant channels and large pores that would undesirably shorten the time of biodegradation.
- the present invention provides mildly surface treated solid biodegradable microparticles that on injection in vivo, aggregate to a larger particle (pellet) in a manner that reduces unwanted side effects of the smaller particles and are suitable for long term (for example, up to or at least three month, up to four month, up to five month, up to six months, up to seven months or longer) sustained delivery of a therapeutic agent.
- the lightly surface treated solid biodegradable microparticles are suitable for ocular injection, at which point the particles aggregate to form a pellet and thus remains outside the visual axis as not to significantly impair vision.
- the particles can aggregate into one or several pellets. The size of the aggregate depends on the mass (weight) of the particles injected.
- the mildly surface treated biodegradable microparticles provided herein are distinguished from “scaffold” microparticles, which are used for tissue regrowth via pores that cells or tissue material can occupy.
- the present microparticles are designed to be solid materials of sufficiently low porosity that they can aggregate to form a larger combined particle that erodes primarily by surface erosion for long term controlled drug delivery.
- the surface modified solid aggregating microparticles of the present invention are suitable, for example, for intravitreal injection, implant, periocular delivery, or delivery in vivo outside the eye.
- the surface modified solid aggregating microparticles of the present invention are also suitable for systemic, parenteral, transmembrane, transdermal, buccal, subcutaneous, endosinusial, intra-abdominal, intra-articular, intracartilaginous, intracerebral, intracoronal, dental, intradiscal, intramuscular, intratumor, topical, or vaginal delivery in any manner useful for in vivo delivery.
- the invention is thus surface-modified solid aggregating microparticles that include at least one biodegradable polymer, wherein the surface-modified solid aggregating microparticles have a solid core, include a therapeutic agent, have a modified surface which has been treated under mild conditions at a temperature at or less than about 18° C. to remove surface surfactant, are sufficiently small to be injected in vivo, and aggregate in vivo to form at least one pellet of at least 500 ⁇ m in vivo in a manner that provides sustained drug delivery in vivo for at least one, two, three, four, five, six or seven months or more.
- the surface modified solid aggregating microparticles are suitable, for example, for an intravitreal injection, implant, including an ocular implant, periocular delivery or delivery in vivo outside of the eye.
- the surface treatment is conducted at a temperature at or less than about 10° C., 8° C. or 5° C.
- the surface treatment can be carried out at any pH that achieves the desired purpose.
- Nonlimiting examples of the pH are between about 6 and about 8, 6.5 and about 7.5, about 1 and about 4; about 4 and about 6; and 6 and about 8.
- the surface treatment can be conducted at a pH between about 8 and about 10.
- the surface treatment can be conducted at a pH between about 10.0 and about 13.0.
- the surface treatment can be conducted at a pH between about 12 and about 14.
- the surface treatment can be conducted with an organic solvent.
- the surface treatment can be conducted with ethanol.
- the surface treatment is carried out in a solvent selected from methanol, ethyl acetate and ethanol.
- Nonlimiting examples are ethanol with an aqueous organic base; ethanol and aqueous inorganic base; ethanol and sodium hydroxide; ethanol and potassium hydroxide; an aqueous acidic solution in ethanol; aqueous hydrochloric acid in ethanol; and aqueous potassium chloride in ethanol.
- solid cores included in the present invention include solid cores comprising a biodegradable polymer with less than 10 percent porosity, 8 percent porosity, 7 percent porosity, 6 percent porosity, 5 percent porosity, 4 percent porosity, 3 percent porosity, or 2 percent porosity.
- Porosity as used herein is defined by ratio of void space to total volume of the surface-modified solid aggregating microparticle.
- the surface-modified solid aggregating microparticles of the present invention provides sustained delivery for at least one month, or at least two months, or at least three months, or at least four months, or at least five months, or at least six months, or at least seven months.
- the therapeutic agent delivered by the surface-modified solid aggregating microparticle is in one embodiment a pharmaceutical drug or a biologic.
- the pharmaceutical drugs include sunitinib, another tyrosine kinase inhibitor, an anti-inflammatory drug, an antibiotic, an immunosuppressing agent, an anti-VEGF agent, an anti-PDGF agent, or other therapeutic agents as described below.
- the surface-modified solid aggregating microparticle has a mean diameter between 10 and 60 ⁇ m, 20 and 50 ⁇ m, 20 and 40 ⁇ m, 20 and 30 ⁇ m, 25 and 40 ⁇ m, or 25 and 35 ⁇ m.
- the surface-modified solid aggregating microparticles of the disclosed invention can aggregate to produce at least one pellet when administered in vivo that has a diameter of at least about 300, 400, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 1 mm, 1.5 mm, 2 mm, 3 mm, 4 mm, or 5 mm.
- the surface-modified solid aggregating microparticles of the present invention produces a pellet in vivo that releases the therapeutic agent without a burst of more than about 10 percent or 15 percent of total payload over a one week, or a five, four, three, two day or one day period.
- the long term controlled drug delivery is accomplished by a combination of surface erosion of an aggregated microparticle over several months (for example, one, two, three, or four months or more) followed by erosion of remaining parts of the aggregated microparticle, followed by slow release of active material from in vivo proteins to which it has bound over the period of long term release from the aggregated particle.
- the microparticle degrades substantially by surface erosion over a period of at least about one, two, three, four, five or six months or more.
- the surface-modified solid aggregating microparticles of the present invention have a drug loading of 1-40 percent, 5-25 percent, or 5-15 percent weight/weight.
- polymeric compositions included in surface-modified solid aggregating microparticles of the present invention include, but are not limited to poly(lactide co-glycolide), poly(lactide-co-glycolide) covalently linked to polyethylene glycol, more than one biodegradable polymer or copolymer mixed together, for example, a mixture of poly(lactide-co-glycolide) and poly(lactide-co-glycolide) covalently linked to polyethylene glycol, poly(lactic acid), a surfactant, such as polyvinyl alcohol (which can be hydrolyzed polyvinyl acetate).
- poly(lactide co-glycolide) poly(lactide-co-glycolide) covalently linked to polyethylene glycol
- more than one biodegradable polymer or copolymer mixed together for example, a mixture of poly(lactide-co-glycolide) and poly(lactide-co-glycolide) covalently linked to polyethylene
- the invention is an injectable material that includes the microparticles of the present invention in a pharmaceutically acceptable carrier for administration in vivo.
- the injectable material may include a compound that inhibits aggregation of microparticles prior to injection and/or a viscosity enhancer and/or a salt.
- the injectable material has a range of concentration of the surface-modified solid aggregating microparticles of about 50-700 mg/ml, 500 or less mg/ml, 400 or less mg/ml, 300 or less mg/ml, 200 or less mg/ml, or 150 or less mg/ml.
- the present invention further includes a process for the preparation of surface-modified solid aggregating microparticles that includes
- step (ii) above is carried out at a temperature below 17° C., 15° C., 10° C., or 5° C. Further, step (iii) is optionally carried out at a temperature below 25° C., below 17° C., 15° C., 10° C., 8° C. or 5° C. Step (ii), for example, can be carried out for less than 8, less than 6, less than 4, less than 3, less than 2, or less than 1 minutes. In one embodiment, step (ii) is carried out for less than 60, 50, 40, 30, 20, or 10 minutes.
- the process of manufacturing surface-modified solid aggregating microparticles includes using an agent that removes surface surfactant.
- an agent that removes surface surfactant include for example, those selected from: aqueous acid, phosphate buffered saline, water, aqueous NaOH, aqueous hydrochloric acid, aqueous potassium chloride, alcohol or ethanol.
- the process of manufacturing surface-modified solid aggregating microparticles includes using an agent that removes surface surfactant which comprises, for example, a solvent selected from an alcohol, for example, ethanol; ether, acetone, acetonitrile, DMSO, DMF, THF, dimethylacetamide, carbon disulfide, chloroform, 1,1-dichloroethane, dichloromethane, ethyl acetate, heptane, hexane, methanol, methyl acetate, methyl t-butyl ether (MTBE), pentane, propanol, 2-propanol, toluene, N-methyl pyrrolidinone (NMP), acetamide, piperazine, triethylenediamine, diols, and CO 2 .
- an agent that removes surface surfactant which comprises, for example, a solvent selected from an alcohol, for example, ethanol; ether, acetone, acetonitrile,
- the agent that removes the surface surfactant can comprise a basic buffer solution. Further, the agent that removes surface surfactant can comprises a base selected from sodium hydroxide, lithium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, lithium amide, sodium amide, barium carbonate, barium hydroxide, barium hydroxide hydrate, calcium carbonate, cesium carbonate, cesium hydroxide, lithium carbonate, magnesium carbonate, potassium carbonate, sodium carbonate, strontium carbonate, ammonia, methylamine, ethylamine, propylamine, isopropylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, trimethylamine, triethylamine, tripropylamine, triisopropylamine, aniline, methylaniline, dimethylaniline, pyridine, azajulolidine, benzylamine, methylbenzylamine, dimethylbenzylamine, DABCO, 1,5-di
- the process of manufacturing surface-modified solid aggregating microparticles includes using an agent that removes surface surfactant, for example, those selected from the following: aqueous acid, phosphate buffered saline, water, or NaOH in the presence of a solvent such as an alcohol, for example, ethanol, ether, acetone, acetonitrile, DMSO, DMF, THF, dimethylacetamide, carbon disulfide, chloroform, 1, 1-di chl oroethane, dichloromethane, ethyl acetate, heptane, hexane, methanol, methyl acetate, methyl t-butyl ether (MTBE), pentane, ethanol, propanol, 2-propanol, toluene, N-methyl pyrrolidinone (NMP), acetamide, piperazine, triethylenediamine, diols, and CO 2 .
- a solvent such as an alcohol,
- the agent that removes the surface surfactant can comprise an aqueous acid.
- the agent that removes the surface surfactant can comprise an acid derived from inorganic acids including, but not limited to, hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; or organic acids including, but not limited to, acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, mesylic, esylic, besylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, HOOC—(CH 2 ) n —COOH where n is 0-4, and
- the agent that removes surface surfactant is not a degrading agent of the biodegradable polymer under the conditions of the reaction.
- the hydrophilicity of the microparticles can be decreased by removing surfactant.
- the process of manufacturing surface-modified solid aggregating microparticles comprises using an agent that removes surface surfactant that comprises a solvent selected from an alcohol, for example, ethanol, ether, acetone, acetonitrile, DMSO, DMF, THF, dimethylacetamide, carbon disulfide, chloroform, 1, 1-dichl oroethane, dichloromethane, ethyl acetate, heptane, hexane, methanol, methyl acetate, methyl t-butyl ether (MTBE), pentane, ethanol, propanol, 2-propanol, toluene, N-methyl pyrrolidinone (NMP), acetamide, piperazine, triethylenediamine, diols, and CO 2 .
- the process of surface treating comprises an agent that removes surface surfactant that comprises ethanol.
- the encapsulation efficiency of the process of manufacturing surface-modified solid aggregating microparticles depends on the microparticle forming conditions and the properties of the therapeutic agent. In certain embodiments, the encapsulation efficiency can be greater than about 50 percent, greater than about 75 percent, greater than about 80 percent, or greater than about 90 percent.
- the process of manufacturing surface-modified solid aggregating microparticles includes 75/25 PLGA as a biodegradable polymer.
- the process of manufacturing surface-modified solid aggregating microparticles is carried out below about a pH of 14 and above a pH of 12, below a pH of 12 and above a pH of 10, below a pH of about 10 and above a pH of 8, below about a pH of 8 and above a pH of about 6, neutral pH, below about a pH of 7 and above a pH of 4, below about a pH of 4 and above a pH of about 1.0.
- step (ii) above is carried out for a time of about less than 140, 120, 110, 100, 90, 60, 40, 30, 20, 10, 3, 2, or 1 minutes.
- a method for the treatment of an ocular disorder includes administering to a host in need thereof surface-modified solid aggregating microparticles that include an effective amount of a therapeutic agent, wherein the therapeutic agent containing surface-modified solid aggregating microparticles are injected into the eye and in vivo aggregate to form at least one pellet of at least 500 ⁇ m that provides sustained drug delivery for at least one, two, or three, four, five, six, seven or more months in such a manner that the pellet stays substantially outside the visual axis as not to significantly impair vision.
- the weight percent of surface-modified solid aggregating microparticles that are not aggregated into a larger pellet in vivo is about 10 percent or less, 7 percent or less, 5 percent or less, or 2 percent or less by total weight administered.
- the surface-modified solid aggregating microparticles do not cause substantial inflammation in the eye.
- the surface-modified solid aggregating microparticles do not cause an immune response in the eye.
- the surface-modified microparticles of the present invention are used to treat a medical disorder which is glaucoma, a disorder mediated by carbonic anhydrase, a disorder or abnormality related to an increase in intraocular pressure (IOP), a disorder mediated by nitric oxide synthase (NOS), or a disorder requiring neuroprotection such as to regenerate/repair optic nerves.
- a medical disorder which is glaucoma, a disorder mediated by carbonic anhydrase, a disorder or abnormality related to an increase in intraocular pressure (IOP), a disorder mediated by nitric oxide synthase (NOS), or a disorder requiring neuroprotection such as to regenerate/repair optic nerves.
- IOP intraocular pressure
- NOS nitric oxide synthase
- the disorder treated is allergic conjunctivitis, anterior uveitis, cataracts, dry or wet age-related macular degeneration (AMD), or
- a surface treated microparticle comprising an effective amount of a pharmaceutically active compound or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier, to a host to treat an ocular or other disorder that can benefit from topical or local delivery.
- the therapy can be delivery to the anterior or posterior chamber of the eye.
- a surface treated microparticle comprising an effective amount of a pharmaceutically active compound is administered to treat a disorder of the cornea, conjunctiva, aqueous humor, iris, ciliary body, lens sclera, choroid, retinal pigment epithelium, neural retina, optic nerve, or vitreous humor.
- compositions described can be administered to the eye as described further herein in any desired form of administration, including via intravitreal, intrastromal, intracameral, subtenon, sub-retinal, retrobulbar, peribulbar, suprachoroidal, subchoroidal, conjunctival, subconjunctival, episcleral, posterior juxtascleral, circumcorneal, tear duct injections, or through a mucus, mucin, or a mucosal barrier, in an immediate or controlled release fashion.
- the disclosure provides a beta-adrenergic antagonist for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- the disclosure provides a prostaglandin analog for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- the disclosure provides an adrenergic agonist for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- the disclosure provides a carbonic anhydrase inhibitor for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- the disclosure provides a parasympathomimetic agent for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- the disclosure provides a dual anti-VEGF/anti-PDGF agent for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- Methods of treating or preventing ocular disorders including glaucoma, a disorder mediated by carbonic anhydrase, a disorder or abnormality related to an increase in intraocular pressure (TOP), a disorder mediated by nitric oxide synthase (NOS), a disorder requiring neuroprotection such as to regenerate/repair optic nerves, allergic conjunctivitis, anterior uveitis, cataracts, dry or wet age-related macular degeneration (AMD) or diabetic retinopathy are disclosed comprising administering a therapeutically effective amount of a surface treated microparticle comprising a pharmaceutically active compound to a host, including a human, in need of such treatment.
- the host is a human.
- an effective amount of a surface treated microparticle comprising a pharmaceutically active compound is provided to decrease intraocular pressure (IOP) caused by glaucoma.
- the surface treated microparticle comprising a pharmaceutically active compound can be used to decrease intraocular pressure (IOP), regardless of whether it is associated with glaucoma.
- the disorder is associated with an increase in intraocular pressure (IOP) caused by potential or previously poor patient compliance to glaucoma treatment.
- the disorder is associated with potential or poor neuroprotection through neuronal nitric oxide synthase (NOS).
- the surface treated microparticle comprising a pharmaceutically active compound provided herein may thus dampen or inhibit glaucoma in a host, by administration of an effective amount in a suitable manner to a host, typically a human, in need thereof.
- TOP intraocular pressure
- TOP optic nerve damage caused by either high intraocular pressure
- NOS neuronal nitric oxide synthase
- an effective amount of a pharmaceutically active compound as described herein is incorporated into a surface treated microparticle, e.g., for convenience of delivery and/or sustained release delivery.
- a surface treated microparticle e.g., for convenience of delivery and/or sustained release delivery.
- the use of materials in micrometer scale provides one the ability to modify fundamental physical properties such as solubility, diffusivity, and drug release characteristics. These micrometer scale agents may provide more effective and/or more convenient routes of administration, lower therapeutic toxicity, extend the product life cycle, and ultimately reduce healthcare costs.
- surface treated microparticles can allow targeted delivery and sustained release.
- the surface treated microparticle is coated with a surface agent.
- the present invention further comprises a method of producing surface treated microparticles comprising a pharmaceutically active compound.
- the present invention further comprises methods of using the surface treated microparticles comprising a pharmaceutically active compound to treat a patient.
- surface treated microparticles including a pharmaceutically active compound are obtained by forming an emulsion and using a bead column as described in, for example, U.S. Pat. No. 8,916,196.
- surface treated microparticles including a pharmaceutically active compound are obtained by using a vibrating mesh or microsieve.
- surface treated microparticles including a pharmaceutically active compound are obtained by using slurry sieving.
- the processes of producing microspheres described herein are amenable to methods of manufacture that narrow the size distribution of the resultant particles.
- the particles are manufactured by a method of spraying the material through a nozzle with acoustic excitation (vibrations) to produce uniform droplets.
- a carrier stream can also be utilized through the nozzle to allow further control of droplet size.
- Such methods are described in detail in: Berkland, C., K. Kim, et al. (2001). “Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions.” J Control Release 73(1): 59-74; Berkland, C., M. King, et al. (2002).
- microparticles of uniform size can be manufactured by methods that utilize microsieves of the desired size.
- the microsieves can either be used directly during production to influence the size of microparticles formed, or alternatively post production to purify the microparticles to a uniform size.
- the microsieves can either be mechanical (inorganic material) or biological in nature (organic material such as a membrane). One such method is described in detail in U.S. Pat. No. 8,100,348.
- the surface treated microparticles comprise a therapeutically active compound and have a particle size of 25 ⁇ Dv50 ⁇ 40 ⁇ m, Dv90 ⁇ 45 ⁇ m.
- the surface treated microparticles comprise a therapeutically active compound and have a particle size of Dv 10>10 ⁇ m.
- the surface treated microparticles comprise a therapeutically active compound and have only residual solvents that are pharmaceutically acceptable.
- the surface treated microparticles comprise a therapeutically active compound and afford a total release of greater than eighty percent by day 14.
- the surface treated microparticles comprise a therapeutically active agent and have syringeability with a regular-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- the surface treated microparticles comprise a therapeutically active agent and have syringeability with a thin-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- the surface treated microparticles comprises sunitinib have a particle size of 25 ⁇ Dv50 ⁇ 40 ⁇ m, Dv90 ⁇ 45 ⁇ m.
- the surface treated microparticles comprising sunitinib have a particle size of Dv10>10 ⁇ m.
- the surface treated microparticles comprising sunitinib have only residual solvents that are pharmaceutically acceptable.
- the surface treated microparticles comprising sunitinib afford a total release of greater than eighty percent by day 14.
- the surface treated microparticles comprising sunitinib have syringeability with a regular-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- the surface treated microparticles comprising sunitinib have syringeability with a thin-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- the surface treated microparticles comprising sunitinib have an endotoxin level of less than 0.02 EU/mg.
- the surface treated microparticles comprising sunitinib have a bioburden level of less than 10 CFU/g.
- the surface treated microparticles can include one or more biodegradable polymers or copolymers.
- the polymers should be biocompatible in that they can be administered to a patient without an unacceptable adverse effect.
- Biodegradable polymers are well known to those in the art and are the subject of extensive literature and patents.
- the biodegradable polymer or combination of polymers can be selected to provide the target characteristics of the microparticles, including the appropriate mix of hydrophobic and hydrophilic qualities, half-life and degradation kinetics in vivo, compatibility with the therapeutic agent to be delivered, appropriate behavior at the site of injection, etc.
- microparticles of the present invention can be tailored to the desired level of solubility, rate of release of pharmaceutical agent, and rate of degradation.
- the microparticle includes a poly( ⁇ -hydroxyacid).
- poly( ⁇ -hydroxyacids) include poly lactic acid (PLA), polyglycolic acid (PGA), poly(D,L-lactide-co-glycolide)(PLGA), and poly D,L-lactic acid (PDLLA).
- polyesters poly ( ⁇ -caprolactone), poly (3-hydroxy-butyrate), poly (s-caproic acid), poly (p-dioxanone), poly (propylene fumarate), poly (ortho esters), polyol/diketene acetals, addition polymers, polyanhydrides, poly (sebacic anhydride) (PSA), poly (carboxybis-carboxyphenoxyphosphazene) (PCPP), poly [bis (p-carboxyphenoxy) methane] (PCPM), copolymers of SA, CPP and CPM (as described in Tamat and Langer in Journal of Biomaterials Science Polymer Edition, 3, 315-353, 1992 and by Domb in Chapter 8 of The Handbook of Biodegradable Polymers , Editors Domb A J and Wiseman R M, Harwood Academic Publishers), and poly (amino acids).
- PSA poly (sebacic anhydride)
- PCPP poly (carboxybis-carboxyphenoxyphos
- the microparticle includes about at least 90 percent hydrophobic polymer and about not more than 10 percent hydrophilic polymer.
- hydrophobic polymers include polyesters such as poly lactic acid (PLA), polyglycolic acid (PGA), poly(D,L-lactide-co-glycolide)(PLGA), and poly D,L-lactic acid (PDLLA); polycaprolactone; polyanhydrides, such as polysebacic anhydride, poly(maleic anhydride); and copolymers thereof.
- hydrophilic polymers examples include poly(alkylene glycols) such as polyethylene glycol (PEG), polyethylene oxide (PEO), and poly(ethylene glycol) amine; polysaccharides; poly(vinyl alcohol) (PVA); polypyrrolidone; polyacrylamide (PAM); polyethylenimine (PEI); poly(acrylic acid); poly(vinylpyrolidone) (PVP); or a copolymer thereof.
- PEG polyethylene glycol
- PEO polyethylene oxide
- PEO poly(ethylene glycol) amine
- PVA poly(vinyl alcohol)
- PAM polypyrrolidone
- PEI polyethylenimine
- PVP poly(acrylic acid); poly(vinylpyrolidone) (PVP); or a copolymer thereof.
- the microparticle includes about at least 85 percent hydrophobic polymer and at most 15 percent hydrophilic polymer.
- the microparticle includes about at least 80 percent hydrophobic polymer and at most 20 percent hydrophilic polymer.
- the microparticle includes PLGA.
- the microparticle includes a copolymer of PLGA and PEG.
- the microparticle includes a copolymer of PLA and PEG.
- the microparticle comprises PLGA and PLGA-PEG, and combinations thereof.
- the microparticle comprises PLA and PLA-PEG.
- the microparticle includes PVA.
- the microparticles include PLGA, PLGA-PEG, PVA, or combinations thereof.
- the microparticles include the biocompatible polymers PLA, PLA-PEG, PVA, or combinations thereof.
- the microparticles have a mean size of about 25 ⁇ m to about 30 ⁇ m and a median size of about 29 ⁇ m to about 31 ⁇ m before surface treatment.
- the microparticles after surface treatment have about the same mean size and median size. In another embodiment, the microparticles after surface treatment have a mean size which is larger than the median size. In another embodiment, the microparticles after surface treatment have a mean size which is smaller than the median size.
- the microparticles have a mean size of about 25 ⁇ m to about 30 ⁇ m or 30 to 33 ⁇ m and a median size of about 31 ⁇ m to about 33 ⁇ m after surface treatment with approximately 0.0075 M NaOH/ethanol to 0.75 M NaOH/ethanol (30:70, v:v).
- the microparticles have a mean size of about 25 ⁇ m to about 30 ⁇ m or 30 to 33 ⁇ m and a median size of about 31 ⁇ m to about 33 ⁇ m after surface treatment with approximately 0.75 M NaOH/ethanol to 2.5 M NaOH/ethanol (30:70, v:v).
- the microparticles have a mean size of about 25 ⁇ m to about 30 ⁇ m or 30 to 33 ⁇ m and a median size of about 31 ⁇ m to about 33 ⁇ m after surface treatment with approximately 0.0075 M HC1/ethanol to 0.75 M NaOH/ethanol (30:70, v:v).
- the microparticles have a mean size of about 25 ⁇ m to about 30 ⁇ m or 30 to 33 ⁇ m and a median size of about 31 ⁇ m to about 33 ⁇ m after surface treatment with approximately 0.75 M NaOH/ethanol to 2.5 M HCl/ethanol (30:70, v:v).
- a surface-modified solid aggregating microparticle is manufactured using a wet microparticle.
- the surface-modified solid aggregating microparticle can release a therapeutic agent over a longer period of time when compared to a non-surface treated microparticle.
- a surface-modified solid aggregating microparticle contains less surfactant than a microparticle prior to the surface modification.
- a surface-modified solid aggregating microparticle is more hydrophobic than a microparticle prior to the surface modification.
- a surface-modified solid aggregating microparticle is less inflammatory than a non-surface treated microparticle.
- the agent that removes the surface surfactant of a surface-modified solid aggregating microparticle comprises a solvent that partially dissolves or swells the surface-modified solid aggregating microparticle.
- an effective amount of a pharmaceutically active compound as described herein is incorporated into a surface treated microparticle, e.g., for convenience of delivery and/or sustained release delivery.
- a surface treated microparticle e.g., for convenience of delivery and/or sustained release delivery.
- the use of materials provides the ability to modify fundamental physical properties such as solubility, diffusivity, and drug release characteristics.
- These micrometer scale agents may provide more effective and/or more convenient routes of administration, lower therapeutic toxicity, extend the product life cycle, and ultimately reduce healthcare costs.
- surface treated microparticles can allow targeted delivery and sustained release.
- the manufacture of the microparticle includes a surfactant.
- surfactants include, for example, polyoxyethylene glycol, polyoxypropylene glycol, decyl glucoside, lauryl glucoside, octyl glucoside, polyoxyethylene glycol octylphenol, Triton X-100, glycerol alkyl ester, glyceryl laurate, cocamide MEA, cocamide DEA, dodecyldimethylamine oxide, and poloxamers.
- poloxamers include, poloxamers 188, 237, 338 and 407.
- Poloxamer 188 is a block copolymer with an average molecular mass of about 7,000 to about 10,000 Da, or about 8,000 to about 9,000 Da, or about 8,400 Da.
- Poloxamer 237 is a block copolymer with an average molecular mass of about 6,000 to about 9,000 Da, or about 6,500 to about 8,000 Da, or about 7,700 Da.
- Poloxamer 338 is a block copolymer with an average molecular mass of about 12,000 to about 18,000 Da, or about 13,000 to about 15,000 Da, or about 14,600 Da.
- Poloxamer 407 is a polyoxyethylene-polyoxypropylene triblock copolymer in a ratio of between about E101 P56 E101 to about E106 P70 E106, or about E101 P56E101, or about E106 P70 E106, with an average molecular mass of about 10,000 to about 15,000 Da, or about 12,000 to about 14,000 Da, or about 12,000 to about 13,000 Da, or about 12,600 Da.
- surfactants that can be used in the invention include, but are not limited to, polyvinyl alcohol (which can be hydrolyzed polyvinyl acetate), polyvinyl acetate, Vitamin E-TPGS, poloxamers, cholic acid sodium salt, dioctyl sulfosuccinate sodium, hexadecyltrimethyl ammonium bromide, saponin, TWEEN® 20, TWEEN® 80, sugar esters, Triton X series, L-a-phosphatidylcholine (PC), 1 ,2-dipalmitoylphosphatidycholine (DPPC), oleic acid, sorbitan trioleate, sorbitan mono-oleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monooleate, natural lecithin, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxy
- some surfactants can be used as polymers in the manufacture of the microparticle. It should also be recognized by one skilled in the art that in some manufacture the microparticle may retain a small amount of surfactant which allows further modification of properties as desired.
- the composition includes a surface treated microparticle which comprises: a surface treated microparticle and a pharmaceutically active compound encapsulated in the surface treated microparticle optionally in combination with a pharmaceutically acceptable carrier, excipient, or diluent.
- the composition is a pharmaceutical composition for treating an eye disorder or eye disease.
- Non-limiting exemplary eye disorders or diseases treatable with the composition include age related macular degeneration, alkaline erosive keratoconjunctivitis, allergic conjunctivitis, allergic keratitis, anterior uveitis, Behcet's disease, blepharitis, blood-aqueous barrier disruption, chorioiditis, chronic uveitis, conjunctivitis, contact lens-induced keratoconjunctivitis, corneal abrasion, corneal trauma, corneal ulcer, crystalline retinopathy, cystoid macular edema, dacryocystitis, diabetic keratopathy, diabetic macular edema, diabetic retinopathy, dry eye disease, dry age-related macular degeneration, eosinophilic granuloma, episcleritis, exudative macular edema, Fuchs' Dystrophy, giant cell arteritis, giant papillary conjunc
- a wide variety of therapeutic agents can be delivered in a long term sustained manner in vivo using the present invention.
- a “therapeutically effective amount” of a pharmaceutical composition/combination of this invention means an amount effective, when administered to a patient, to provide a therapeutic benefit such as an amelioration of symptoms of the selected disorder, typically an ocular disorder.
- the disorder is glaucoma, a disorder mediated by carbonic anhydrase, a disorder or abnormality related to an increase in intraocular pressure (IOP), a disorder mediated by nitric oxide synthase (NOS), a disorder requiring neuroprotection such as to regenerate/repair optic nerves, allergic conjunctivitis, anterior uveitis, cataracts, dry or wet age-related macular degeneration (AMD), or diabetic retinopathy.
- IOP intraocular pressure
- NOS nitric oxide synthase
- APD age-related macular degeneration
- a “pharmaceutically acceptable salt” is formed when a therapeutically active compound is modified by making an inorganic or organic, non-toxic, acid or base addition salt thereof.
- Salts can be synthesized from a parent compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such a salt can be prepared by reacting a free acid form of the compound with a stoichiometric amount of the appropriate base (such as Na, Ca, Mg, or K hydroxide, carbonate, bicarbonate, or the like), or by reacting a free base form of the compound with a stoichiometric amount of the appropriate acid. Such reactions are typically carried out in water or in an organic solvent, or in a mixture of the two.
- a stoichiometric amount of the appropriate base such as Na, Ca, Mg, or K hydroxide, carbonate, bicarbonate, or the like
- non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are typical, where practicable.
- pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
- the pharmaceutically acceptable salts include the conventional non-toxic salts and the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
- conventional non-toxic acid salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, mesylic, esylic, besylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, HOOC—(CH 2 ) n —COOH where n is 0-4, and the like.
- inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phospho
- the surface treated microparticle of the present invention can comprise a compound for the treatment of glaucoma, for instance a beta-adrenergic antagonists, a prostaglandin analog, an adrenergic agonist, a carbonic anhydrase inhibitor, a parasympathomimetic agent, a dual anti-VEGF/Anti-PDGF therapeutic or a dual leucine zipper kinase (DLK) inhibitor.
- the surface treated microparticle of the present invention can comprise a compound for the treatment of diabetic retinopathy. Such compounds may be administered in lower doses according to the invention as they may be administered at the site of the ocular disease.
- beta-adrenergic antagonists include, but are not limited to, timolol (Timoptic®), levobunolol (Betagan®), carteolol (Ocupress®), and metipranolol (OptiPranolol®).
- prostaglandin analogs include, but are not limited to, latanoprost (Xalatan®), travoprost (Travatan®), bimatoprost (Lumigan®) and tafluprost (ZioptanTM).
- adrenergic agonists include, but are not limited to, brimonidine (Alphagan®), epinephrine, dipivefrin (Propine®) and apraclonidine (Lopidine®).
- carbonic anhydrase inhibitors include, but are not limited to, dorzolamide (Trusopt®), brinzol ami de (Azopt®), acetazolamide (Diamox®) and methazolamide (Neptazane®), see structures below:
- An example of a parasympathomimetic includes, but is not limited to, pilocarpine.
- DLK inhibitors include, but are not limited to, Crizotinib, KW-2449 and Tozasertib, see structure below.
- Drugs used to treat diabetic retinopathy include, but are not limited to, ranibizumab (Lucenti OD).
- the dual anti-VEGF/Anti-PDGF therapeutic is sunitinib malate (Sutent®). As de
- the compound is a treatment for glaucoma and can be used as an effective amount to treat a host in need of glaucoma treatment.
- the compound acts through a mechanism other than those associated with glaucoma to treat a disorder described herein in a host, typically a human.
- the therapeutic agent is selected from a phosphoinositide 3-kinase (PI3K) inhibitor, a Bruton's tyrosine kinase (BTK) inhibitor, or a spleen tyrosine kinase (Syk) inhibitor, or a combination thereof.
- PI3K phosphoinositide 3-kinase
- BTK Bruton's tyrosine kinase
- Syk spleen tyrosine kinase
- PI3K inhibitors that may be used in the present invention are well known.
- PI3 kinase inhibitors include but are not limited to Wortmannin, demethoxyviridin, perifosine, idelalisib, Pictilisib , Palomid 529, ZSTK474, PWT33597, CUDC-907, and AEZS-136, duvelisib, GS-9820, BKM120, GDC-0032 (Taselisib) (2-[4-[2-(2-Isopropyl-5-methyl-1,2,4-triazol-3-yl)-5,6-dihydroimidazo[1,2-d][1,4]benzoxazepin-9-yl]pyrazol-1-yl]-2-methylpropanamide), MLN-1117 ((2R)-1-Phenoxy-2-butanyl hydrogen (5)-methylphosphonate; or Methyl(oxo) ⁇ [(2R
- BTK inhibitors for use in the present invention are well known.
- BTK inhibitors include ibrutinib (also known as PCI-32765)(ImbruvicaTM)(1-[(3R)-3-[4-amino-3-(4-phenoxy-phenyl)pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one), dianilinopyrimidine-based inhibitors such as AVL-101 and AVL-291/292 (N-(3-((5-fluoro-2-((4-(2-methoxyethoxy)phenyl)amino)pyrimidin-4-yl)amino)phenyl)acrylamide) (Avila Therapeutics) (US Patent publication No 2011/0117073, incorporated herein in its entirety), Dasatinib ([N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)pipe
- Syk inhibitors for use in the present invention are well known, and include, for example, Cerdulatinib (4-(cy cl opropyl amino)-2-((4-(4-(ethyl sulfonyl)piperazin-1-yl)phenyl)amino)pyrimi dine-5-carboxamide), entospletinib (6-(1H-indazol-6-yl)-N-(4- morpholinophenyl)imidazo[1,2-a]pyrazin-8-amine), fostamatinib ([64 ⁇ -Fluoro-2-[(3 ,4, 5-trimethoxyphenyl)amino]-4-pyrimidinyl ⁇ amino)-2,2-dimethyl-3-oxo-2,3-dihydro-4H-pyrido[3,2-b][1,4]oxazin-4-yl]methyl dihydrogen phosphate), fostamatinib disodium salt (s
- the therapeutic agent is a MEK inhibitor.
- MEK inhibitors for use in the present invention are well known, and include, for example, trametinib/GSK1120212 (N-(3- ⁇ 3-Cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyri do [4,3-d]pyrimidin-1(2H-yl ⁇ phenyl)acetamide), selumetinib (6-(4-bromo-2-chl oroanilino)-7-fluoro-N-(2-hy droxy ethoxy)-3-methylbenzimidazole-5-carboxamide), pimasertib/AS703026NISC 1935369 ((S)-N-(2,3-dihydroxypropyl)-3-((2-fluoro-4-iodophenyl)amino)
- the therapeutic agent is a Raf inhibitor.
- Raf inhibitors for use in the present invention are well known, and include, for example, Vemurafinib (N-[3-[[5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl] carbonyl]-2,4-difluorophenyl]-1-propanesulfonamide), sorafenib tosylate (4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methylpyridine-2-carboxamide;4-methylbenzenesulfonate), AZ628 (3-(2-cyanoprop an-2-yl)-N-(4-methyl-3-(3-methyl-4-oxo-3,4-dihydroquinazolin-6-ylamino)phenyl)benzamide), NVP-BHG712 (4-methyl-3-(1-(
- the therapeutic agent is a programmed death protein 1 (PD-1) inhibitor, a programmed death protein ligand 1 (PDL1) inhibitor, or a programmed death protein ligand 2 (PDL2) inhibitor.
- PD-1, PDL1, and PDL2 inhibitors are known in the art, and include, for example, nivolumab (BMS), pembrolizumab (Merck), pidilizumab (CureTech/Teva), AMP-244 (Amplimmune/GSK), BMS-936559 (BMS), and MEDI4736 (Roche/Genentech), and MPDL3280A (Genentech).
- a therapeutic agent can be administered in a sustained fashion.
- the therapeutic agent is a monoclonal antibody (MAb).
- MAbs stimulate an immune response that destroys cancer cells. Similar to the antibodies produced naturally by B cells, these MAbs “coat” the cancer cell surface, triggering its destruction by the immune system.
- bevacizumab targets vascular endothelial growth factor(VEGF), a protein secreted by tumor cells and other cells in the tumor's microenvironment that promotes the development of tumor blood vessels. When bound to bevacizumab, VEGF cannot interact with its cellular receptor, preventing the signaling that leads to the growth of new blood vessels.
- VEGF vascular endothelial growth factor
- cetuximab and panitumumab target the epidermal growth factor receptor (EGFR), and trastuzumab targets the human epidermal growth factor receptor 2 (HER-2).
- MAbs that bind to cell surface growth factor receptors prevent the targeted receptors from sending their normal growth-promoting signals. They may also trigger apoptosis and activate the immune system to destroy tumor cells.
- agents may include, but are not limited to, at least one of tamoxifen, midazolam, letrozole, bortezomib, anastrozole, goserelin, an mTOR inhibitor, a PI3 kinase inhibitor as described above, a dual mTOR-PI3K inhibitor, a MEK inhibitor, a RAS inhibitor, ALK inhibitor, an HSP inhibitor (for example, HSP70 and HSP 90 inhibitor, or a combination thereof), a BCL-2 inhibitor as described above, apopototic inducing compounds, an AKT inhibitor, including but not limited to, MK-2206, GSK690693, Perifosine, (KRX-0401), GDC-0068, Triciribine, AZD5363, Honokiol, PF-04691502, and Miltefosine, a PD-1 inhibitor as described above including but not limited to, Nivolumab, CT-011, MK-3475, BMS936558, and AMP
- mTOR inhibitors include but are not limited to rapamycin and its analogs, everolimus (Afinitor), temsirolimus, ridaforolimus, sirolimus, and deforolimus.
- MEK inhibitors include but are not limited to tametinib/GSK1120212 (N-(3- ⁇ 3-Cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyrido[4,3-d]pyrimidin-1(2H-yl ⁇ phenyl)acetamide), selumetinob (6-(4-bromo-2-chloroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-methylbenzimidazole-5-carboxamide), pimasertib/AS703026NISC1935369 ((S)-N-(2,3
- RAS inhibitors include but are not limited to Reolysin and siG12D LODER.
- ALK inhibitors include but are not limited to Crizotinib, Ceritinib (Zykadia), AP26113, and LDK378.
- HSP inhibitors include but are not limited to Geldanamycin or 17-N-Allylamino-17-demethoxygeldanamycin (17AAG), and Radicicol.
- the therapeutic agent is an anti-inflammatory agent, a chemotherapeutic agent, a radiotherapeutic, an additional therapeutic agent, or an immunosuppressive agent.
- a chemotherapeutic is selected from, but not limited to, imatinib mesylate (Gleevac®), dasatinib (Sprycel®), nilotinib (Tasigna®), bosutinib (Bosulif®), trastuzumab (Herceptin®), trastuzumab-DM1, pertuzumab (PerjetaTM), lapatinib (Tykerb®), gefitinib (Iressa®), erlotinib (Tarceva®), cetuximab (Erbitux®), panitumumab (Vectibix®), vandetanib (Caprelsa®), vemurafenib (Zelboraf®), vorinostat (Zolinza®), romidepsin (Istodax®), bexarotene (Tagretin®), alitretinoin (Panretin®), tretinoi
- Additional chemotherapeutic agents include, but are not limited to, a radioactive molecule, a toxin, also referred to as cytotoxin or cytotoxic agent, which includes any agent that is detrimental to the viability of cells, and liposomes or other vesicles containing chemotherapeutic compounds.
- General anticancer pharmaceutical agents include: vincristine (Oncovin®) or liposomal vincristine (Marqibog®), daunorubicin (daunomycin or Cerubidine®) or doxorubicin (Adriamycin®), cytarabine (cytosine arabinoside, ara-C, or Cytosar®), L-asparaginase (Elspar®) or PEG-L-asparaginase (pegaspargase or Oncaspar®), etoposide (VP-16), teniposide (Vumon®), 6-mercaptopurine (6-MP or Purinethol®), Methotrexate, cyclophosphamide (Cytoxan®), Prednisone, dexamethasone (Decadron), imatinib (Gleevec®), dasatinib (Sprycel®), nilotinib (Tasigna®), bosutinib (
- chemotherapeutic agents include but are not limited to 1-dehydrotestosterone, 5-fluorouracil decarbazine, 6-mercaptopurine, 6-thioguanine, actinomycin D, adriamycin, aldesleukin, an alkylating agent, allopurinol sodium, altretamine, amifostine, anastrozole, anthramycin (AMC)), an anti-mitotic agent, ci s-dichl orodi amine platinum (II) (DDP) cisplatin), di amino di chl oro platinum, anthracycline, an antibiotic, an antimetabolite, asparaginase, BCG live (intravesical), betamethasone sodium phosphate and betamethasone acetate, bicalutamide, bleomycin sulfate, busulfan, calcium leucouorin, calicheamicin, capecitabine, carboplatin, lomustine (CCNU), 5-de
- Additional therapeutic agents can include bevacizumab, sutinib, sorafenib, 2-methoxyestradiol or 2ME2, finasunate, vatalanib, vandetanib, aflibercept, volociximab, etaracizumab (MEDI-522), cilengitide, erlotinib, cetuximab, panitumumab, gefitinib, trastuzumab, dovitinib, figitumumab, atacicept, rituximab, alemtuzumab, aldesleukine, atlizumab, tocilizumab, temsirolimus, everolimus, lucatumumab, dacetuzumab, HLL1, huN901-DM1, atiprimod, natalizumab, bortezomib, carfilzomib, marizomib, tanespimycin,
- an immunosuppressive agent is used, preferably selected from the group consisting of a calcineurin inhibitor, e.g. a cyclosporin or an ascomycin, e.g. Cyclosporin A (NEORAL®), FK506 (tacrolimus), pimecrolimus, a mTOR inhibitor, e.g. rapamycin or a derivative thereof, e.g. Sirolimus (RAPAMUNE®), Everolimus (Certican®), temsirolimus, zotarolimus, biolimus-7, biolimus-9, a rapalog, e.g.
- Mycophenolate Mofetil (CELLCEPT®), OKT3 (ORTHOCLONE OKT3®), Prednisone, ATGAM®, THYMOGLOBULIN®, Brequinar Sodium, OKT4, T10B9.A-3A, 33B3.1, 15-deoxyspergualin, tresperimus, Leflunomide ARAVA®, CTLAI-Ig, anti-CD25, anti-IL2R, Basiliximab (SEVIULECT®), Daclizumab (ZENAPAX®), mizorbine, methotrexate, dexamethasone, ISAtx-247, SDZ ASM 981 (pimecrolimus, Elidel®), CTLA4lg (Abatacept), belatacept, LFA3lg, etanercept (sold as Enbrel® by Immunex), adalimumab (Humira®), infliximab (Remicade®), an anti-LFA-1 antibody,
- therapeutic agents examples include anti-inflammatory drugs, antimicrobial agents, anti-angiogenesis agents, immunosuppressants, antibodies, steroids, ocular antihypertensive drugs and combinations thereof.
- therapeutic agents include amikacin, anecortane acetate, anthracenedione, anthracycline, an azole, amphotericin B, bevacizumab, camptothecin, cefuroxime, chloramphenicol, chlorhexidine, chlorhexidine digluconate, clortrimazole, a clotrimazole cephalosporin, corticosteroids, dexamethasone, desamethazone, econazole, eftazidime, epipodophyllotoxin, fluconazole, flucytosine, fluoropyrimidines, fluoroquinolines, gatifloxacin, glycopeptides, imidazoles, itraconazole, ivermectin,
- immunosuppressive agents are calcineurin inhibitor, e.g., a cyclosporin or an ascomycin, e.g., Cyclosporin A (NEORAL®), FK506 (tacrolimus), pimecrolimus, a mTOR inhibitor, e.g., rapamycin or a derivative thereof, e.g., Sirolimus (RAPAMUNE®), Everolimus (Certican®), temsirolimus, zotarolimus, biolimus-7, biolimus-9, a rapalog, e.g., ridaforolimus, azathioprine, campath 1H, a S11 3 receptor modulator, e.g., fingolimod or an analogue thereof, an anti IL-8 antibody, mycophenolic acid or a salt thereof, e.g., sodium salt, or a prodrug thereof, e.g., Mycophenolate Mofetil (CELLCEPT®),
- An aspect of the invention is a method for the treatment of a disorder, comprising administering to a host in need thereof surface-modified solid aggregating microparticles comprising an effective amount of a therapeutic agent, wherein the therapeutic agent containing surface-modified solid aggregating microparticles are injected into the body and aggregate in vivo to form at least one pellet of at least 500 ⁇ m that provides sustained drug delivery for at least one month.
- any suitable pharmaceutically acceptable carrier for example, ophthalmically acceptable viscous carrier, may be employed in accordance with the invention.
- the carrier is present in an amount effective in providing the desired viscosity to the drug delivery system.
- the viscous carrier is present in an amount in a range of from about 0.5 wt percent to about 95 wt percent of the drug delivery particles.
- the specific amount of the viscous carrier used depends upon a number of factors including, for example and without limitation, the specific viscous carrier used, the molecular weight of the viscous carrier used, the viscosity desired for the present drug delivery system being produced and/or used and like factors.
- useful viscous carriers include, but are not limited to, hyaluronic acid, sodium hyaluronate, carbomers, polyacrylic acid, cellulosic derivatives, polycarbophil, polyvinylpyrrolidone, gelatin, dextrin, polysaccharides, polyacrylamide, polyvinyl alcohol (which can be partially hydrolyzed polyvinyl acetate), polyvinyl acetate, derivatives thereof and mixtures thereof.
- the carrier can also be an aqueous carrier.
- aqueous carriers include, but are not limited to, an aqueous solution or suspension, such as saline, plasma, bone marrow aspirate, buffers, such as Hank's Buffered Salt Solution (HBSS), HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), Ringers buffer, ProVisc®, diluted ProVisc®, ProVisc® diluted with PBS, Krebs buffer, Dulbecco's PBS, normal PBS; sodium hyaluronate solution (HA, 5 mg/mL in PBS), simulated body fluids, plasma platelet concentrate and tissue culture medium or an aqueous solution or suspension comprising an organic solvent.
- HBSS Hank's Buffered Salt Solution
- HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- Ringers buffer ProVisc®, diluted ProVisc®,
- the carrier is PBS.
- the carrier is HA, 5 mg/mL in PBS.
- the carrier is ProVisc® diluted with water.
- the carrier is ProVisc® dilution in PBS.
- the carrier is ProVisc® 5-fold diluted with water.
- the carrier is ProVisc® 5-fold dilution in PBS.
- the carrier is ProVisc® 10-fold diluted with water.
- the carrier is ProVisc® 10-fold dilution in PBS.
- the carrier is ProVisc® 20-fold dilution with water.
- the carrier is ProVisc® 20-fold dilution in PBS.
- the carrier is HA, 1.25 mg/mL in an isotonic buffer solution with neutral pH.
- the carrier may, optionally, contain one or more suspending agent.
- the suspending agent may be selected from carboxy methylcellulose (CMC), mannitol, polysorbate, poly propylene glycol, poly ethylene glycol, gelatin, albumin, alginate, hydroxyl propyl methyl cellulose (HPMC), hydroxyl ethyl methyl cellulose (HEMC), bentonite, tragacanth, dextrin, sesame oil, almond oil, sucrose, acacia gum and xanthan gum and combinations thereof.
- CMC carboxy methylcellulose
- HPMC hydroxyl propyl methyl cellulose
- HEMC hydroxyl ethyl methyl cellulose
- bentonite tragacanth, dextrin, sesame oil, almond oil, sucrose, acacia gum and xanthan gum and combinations thereof.
- the carrier may, optionally, contain one or more plasticizers.
- the carrier may also include a plasticizer.
- the plasticizer may, for example, be polyethylene glycol (PEG), polypropylene glycol, poly (lactic acid) or poly (glycolic acid) or a copolymer thereof, polycaprolactone, and low molecule weight oligomers of these polymers, or conventional plasticizers, such as, adipates, phosphates, phthalates, sabacates, azelates and citrates.
- the carrier can also include other known pharmaceutical excipients in order to improve the stability of the agent.
- one or more additional excipients or delivery enhancing agents may also be included e.g., surfactants and/or hydrogels, in order to further influence release rate.
- the rate of release of the pharmaceutically active compound can be related to the concentration of pharmaceutically active compound dissolved in the surface treated microparticle.
- the polymeric composition of the surface treated microparticle includes non-therapeutic agents that are selected to provide a desired solubility of the pharmaceutically active compound.
- the selection of the polymeric composition can be made to provide the desired solubility of the pharmaceutically active compound in the surface treated microparticle, for example, a hydrogel may promote solubility of a hydrophilic material.
- functional groups can be added to the polymer to increase the desired solubility of the pharmaceutically active compound in the surface treated microparticle.
- additives may be used to control the release kinetics of the pharmaceutically active compound, for example, the additives may be used to control the concentration of the pharmaceutically active compound by increasing or decreasing the solubility of the pharmaceutically active compound in the polymer so as to control the release kinetics of the pharmaceutically active compound.
- the solubility may be controlled by including appropriate molecules and/or substances that increase and/or decrease the solubility of the dissolved form of the pharmaceutically active compound in the surface treated microparticle.
- the solubility of the pharmaceutically active compound may be related to the hydrophobic and/or hydrophilic properties of the surface treated microparticle and the pharmaceutically active compound. Oils and hydrophobic molecules can be added to the polymer(s) to increase the solubility of a pharmaceutically active compound in the surface treated microparticle.
- the surface area of the polymeric composition can be controlled to attain the desired rate of drug migration out of the surface treated microparticle comprising a pharmaceutically active compound.
- a larger exposed surface area will increase the rate of migration of the pharmaceutically active compound to the surface, and a smaller exposed surface area will decrease the rate of migration of the pharmaceutically active compound to the surface.
- the exposed surface area can be increased in any number of ways, for example, by any of castellation of the exposed surface, a porous surface having exposed channels connected with the tear or tear film, indentation of the exposed surface, or protrusion of the exposed surface.
- the exposed surface can be made porous by the addition of salts that dissolve and leave a porous cavity once the salt dissolves.
- these trends can be used to decrease the release rate of the active material from the polymeric composition by avoiding these paths to quicker release.
- the surface area can be minimized, or channels can be avoided.
- each surface treated microparticle may have a different solidifying or setting property.
- the surface treated microparticles may be made from similar polymers but may have different gelling pHs or different melting temperatures or glass transition points.
- the temperature around the particles is approximately equal to, or greater than, the glass transition temperature (T g ) of the polymer particles.
- T g glass transition temperature
- the polymer particles will cross-link to one or more other polymer particles to form a consolidated aggregate.
- cross-link it is meant that adjacent polymer particles become joined together.
- the particles may cross-link due to entanglement of the polymer chains at the surface of one particle with polymer chains at the surface of another particle. There may be adhesion, cohesion or fusion between adjacent particles.
- the injectable surface treated microparticles which are formed of a polymer or a polymer blend have a glass transition temperature (T g ) either close to or just above body temperature (such as from about 30° C. to 45° C., e.g., from about 35° C. to 40° C., for example, from about 37° C. to 40° C.). Accordingly, at room temperature the surface treated microparticles are below their T g and behave as discrete particles, but in the body the surface treated microparticles soften and interact/stick to themselves. Typically, agglomeration begins within 20 seconds to about 15 minutes of the raise in temperature from room to body temperature.
- T g glass transition temperature
- the surface treated microparticles may be formed from a polymer which has a T g from about 35° C. to 40° C., for example from about 37° C. to 40° C., wherein the polymer is a poly( ⁇ -hydroxyacid) (such as PLA, PGA, PLGA, or PDLLA or a combination thereof), or a blend thereof with PLGA-PEG. Typically, these particles will agglomerate at body temperature.
- the injectable surface treated microparticles may comprise only poly( ⁇ -hydroxyacid) particles or other particle types may be included.
- the microparticles can be formed from a blend of poly(D,L-lactide-co-glycolide)(PLGA), PLGA-PEG and PVA which has a T g at or above body temperature. In one embodiment, at body temperature the surface treated microparticles will interact to form a consolidated aggregate.
- the injectable microparticle may comprise only PLGA/PLGA-PEG/PVA surface treated microparticles or other particle types may be included.
- the composition may comprise a mixture of temperature sensitive surface treated microparticles and non-temperature sensitive surface treated microparticles.
- Non-temperature sensitive surface treated microparticles are particles with a glass transition temperature which is above the temperature at which the composition is intended to be used.
- the ratio of temperature sensitive to non-temperature sensitive surface treated microparticles is about 3:1, or lower, for example, 4:3.
- the temperature sensitive surface treated microparticles are advantageously capable of crosslinking to each other when the temperature of the composition is raised to or above the glass transition of these microparticles.
- the surface treated microparticles may be solid, that is with a solid outer surface, or they may be porous.
- the particles may be irregular or substantially spherical in shape.
- the surface treated microparticles can have a size in their longest dimension, or their diameter if they are substantially spherical, of less than about 100 ⁇ m and more than about 1 ⁇ m.
- the surface treated microparticles can have a size in their longest dimension, or their diameter, of less than about 100 ⁇ m.
- the surface treated microparticles can have a size in their longest dimension, or their diameter, of between about 1 ⁇ m and about 40 ⁇ m, more typically, between about 20 ⁇ m and about 40 ⁇ m. Polymer particles of the desired size will pass through a sieve or filter with a pore size of about 40 ⁇ m.
- Formation of the consolidated aggregate from the composition typically takes from about 20 seconds to about 24 hours, for example, between about 1 minute and about 5 hours, between about 1 minute and about 1 hour, less than about 30 minutes, less than about 20 minutes.
- the solidification occurs in between about 1 minute and about 20 minutes from administration.
- the composition comprises from about 20 percent to about 80 percent injectable surface treated microparticle material and from about 20 percent to about 80 percent carrier; from about 30 percent to about 70 percent injectable surface treated microparticle material and from about 30 percent to about 70 percent carrier; e.g., the composition may comprise from about 40 percent to about 60 percent injectable surface treated microparticle material and from about 40 percent to about 60 percent carrier; the composition may comprise about 50 percent injectable surface treated microparticle material and about 50 percent carrier.
- the aforementioned percentages all refer to percentage by weight.
- the surface treated microparticles are loaded, for example, in the surface treated microparticle or as a coating on the surface treated microparticle, with a pharmaceutically active compound.
- the system of the invention can allow for the pharmaceutically active compound release to be sustained for some time, for example, release can be sustained for at least about 2 hours, at least about 4 hours, at least about 6 hours, at least about 10 hours, at least about 12 hours, at least about 24 hours, at least 48 hours, at least a week, more than one week, at least a month, at least two months, at least three months, at least four months, at least five months, at least six months, or at least seven months.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 1 percent to about 5 percent of total payload over a 24 hour period.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 10 percent of total payload over a 24 hour period.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 15 percent of total payload over a 24 hour period.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 20 percent of total payload over a 24 hour period.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 1 percent to about 5 percent of total payload over a 12 hour period.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 10 percent of total payload over a 12 hour period.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 15 percent of total payload over a 12 hour period.
- the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 15 percent of total payload over a 12 hour period.
- the pharmaceutically active compound is released in an amount effective to have a desired local or systemic physiological or pharmacologically effect.
- delivery of a pharmaceutically active compound means that the pharmaceutically active compound is released from the consolidated aggregate into the environment around the consolidated aggregate, for example, the vitreal fluid.
- a surface treated microparticle comprising a pharmaceutically active compound of the invention allows a substantially zero or first order release rate of the pharmaceutically active compound from the consolidated aggregate once the consolidated aggregate has formed.
- a zero order release rate is a constant release of the pharmaceutically active compound over a defined time; such release is difficult to achieve using known delivery methods.
- Microparticles can be formed using any suitable method for the formation of polymer microparticles known in the art.
- the method employed for particle formation will depend on a variety of factors, including the characteristics of the polymers present in the drug or polymer matrix, as well as the desired particle size and size distribution.
- the type of drug(s) being incorporated in the microparticles may also be a factor as some drugs are unstable in the presence of certain solvents, in certain temperature ranges, and/or in certain pH ranges.
- Particles having an average particle size of between 1 micron and 100 microns are useful in the compositions described herein.
- the particles have an average particle size of between 1 micron and 40 microns, more typically between about 10 micron and about 40 microns, more typically between about 20 micron and about 40 microns.
- the particles can have any shape but are generally spherical in shape.
- the particles may be formed using a method which produces a monodisperse population of microparticles.
- methods producing polydispersed microparticle distributions can be used, and the particles can be separated using methods known in the art, such as sieving, following particle formation to provide a population of particles having the desired average particle size and particle size distribution.
- microparticles include, but are not limited to, solvent evaporation, hot melt particle formation, solvent removal, spray drying, phase inversion, coacervation, and low temperature casting. Suitable methods of particle formulation are briefly described below. Pharmaceutically acceptable excipients, including pH modifying agents, disintegrants, preservatives, and antioxidants, can optionally be incorporated into the particles during particle formation.
- surface treated microparticles are prepared using continuous chemistry manufacturing processes. In one embodiment, surface treated microparticles are prepared using step-wise manufacturing processes.
- microparticles containing a therapeutic agent can be prepared as described in PCT/US2015/065894. In one embodiment, the microparticles are prepared by:
- polyesters such as PLGA, PEG-PLGA(PLA) and PEG-PLGA/PLGA blend microparticles display sustained release of the therapeutic agent or its pharmaceutically acceptable salt.
- Polymer microparticles composed of PLGA and PEG covalently conjugated to PLGA (M w 45 kDa) (PLGA45k-PEG5k) loaded with the therapeutic agent were prepared using a single emulsion solvent evaporation method.
- Loading improvement was achieved by increasing the alkalinity of the therapeutic agent in solution, up to 16.1% with PEG-PLGA, which could be further increased by adding DMF, compared to only 1% with no alkaline added.
- the therapeutic agent loading was further increased by increasing the pH of the aqueous solution as well as the polymer solution. Still further significant increases in therapeutic agent loading in the microparticles was achieved by increasing polymer concentration or viscosity.
- the therapeutic agent is sunitinib.
- the drug (or polymer matrix and drug) is dissolved in a volatile organic solvent, such as methylene chloride, acetone, acetonitrile, 2-butanol, 2-butanone, t-butyl alcohol, benzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof.
- a volatile organic solvent such as methylene chloride, acetone, acetonitrile, 2-butanol, 2-butanone, t-butyl alcohol, benzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, eth
- the organic solution containing the drug is then suspended in an aqueous solution that contains a surface active agent such as poly(vinyl alcohol).
- a surface active agent such as poly(vinyl alcohol).
- the resulting emulsion is stirred until most of the organic solvent is evaporated, leaving solid microparticles.
- the resulting microparticles are washed with water and dried overnight in a lyophilizer. Microparticles with different sizes and morphologies can be obtained by this method.
- Microparticles which contain labile polymers such as certain polyanhydrides, may degrade during the fabrication process due to the presence of water.
- labile polymers such as certain polyanhydrides
- the following two methods which are performed in completely anhydrous organic solvents, can be used.
- Solvent removal can also be used to prepare particles from drugs that are hydrolytically unstable.
- the drug or polymer matrix and drug
- a volatile organic solvent such as methylene chloride, acetone, acetonitrile, benzene, 2-butanol, 2-butanone, t-butyl alcohol, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof.
- a volatile organic solvent such as methylene chloride, acetone, acetonitrile, benzene, 2-butanol, 2-butanone, t-butyl alcohol, chloroform, cyclohexane, 1,2-dichloroe
- This mixture is then suspended by stirring in an organic oil (such as silicon oil, castor oil, paraffin oil, or mineral oil) to form an emulsion.
- an organic oil such as silicon oil, castor oil, paraffin oil, or mineral oil
- Solid particles form from the emulsion, which can subsequently be isolated from the supernatant.
- the external morphology of spheres produced with this technique is highly dependent on the identity of the drug.
- the drug (or polymer matrix and drug) is dispersed or dissolved in a volatile organic solvent such as methylene chloride, acetone, acetonitrile, benzene, 2-butanol, 2-butanone, t-butyl alcohol, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof.
- a volatile organic solvent such as methylene chloride, acetone, acetonitrile, benzene, 2-butanol, 2-butanone, t-butyl alcohol, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol,
- This mixture is then suspended by stirring in an aqueous solution of surface active agent, such as poly(vinyl alcohol), to form an emulsion.
- surface active agent such as poly(vinyl alcohol)
- Solid particles form from the emulsion, which can subsequently be isolated from the supernatant.
- the external morphology of spheres produced with this technique is highly dependent on the identity of the drug.
- microparticles with a therapeutic agent can be prepared using the oil-in-water emulsion method.
- sunitinib microparticles were prepared by dissolving 100 mg PEG-PLGA (5K, 45) in 1 mL methylene chloride, and dissolving 20 mg sunitinib malate in 0.5 mL DMSO and triethylamine. The solutions were then mixed together, homogenized at 5000 rpm, 1 minute into an aqueous solution containing 1% polyvinyl alcohol (PVA) and stirred for 2 hours. The particles were collected, washed with double distilled water, and freeze dried.
- PVA polyvinyl alcohol
- sunitinib microparticles were also prepared according to PCT/US2015/065894 by dissolving 200 mg PLGA (2A, Alkermers) in 3 mL methylene chloride, and 40 mg sunitinib malate in 0.5 mL DMSO and triethylamine. The solutions were then mixed together and homogenized at 5000 rpm, 1 minute in 1% PVA and stirred for 2 hours. The particles were collected, washed with double distilled water, and freeze dried.
- the drug (or polymer matrix and drug) is dissolved in an organic solvent such as methylene chloride, acetone, acetonitrile, 2-butanol, 2-butanone, t-butyl alcohol, benzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof.
- organic solvent such as methylene chloride, acetone, acetonitrile, 2-butanol, 2-butanone, t-butyl alcohol, benzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate,
- the solution is pumped through a micronizing nozzle driven by a flow of compressed gas, and the resulting aerosol is suspended in a heated cyclone of air, allowing the solvent to evaporate from the microdroplets, forming particles. Particles ranging between 0.1-10 microns can be obtained using this method.
- Particles can be formed from drugs using a phase inversion method.
- the drug or polymer matrix and drug
- the solution is poured into a strong non solvent for the drug to spontaneously produce, under favorable conditions, microparticles or nanoparticles.
- the method can be used to produce nanoparticles in a wide range of sizes, including, for example, about 100 nanometers to about 10 microns, typically possessing a narrow particle size distribution.
- Coacervation involves the separation of a drug (or polymer matrix and drug) solution into two immiscible liquid phases.
- One phase is a dense coacervate phase, which contains a high concentration of the drug, while the second phase contains a low concentration of the drug.
- the drug forms nanoscale or microscale droplets, which harden into particles.
- Coacervation may be induced by a temperature change, addition of a non-solvent or addition of a micro-salt (simple coacervation), or by the addition of another polymer thereby forming an interpolymer complex (complex coacervation).
- U.S. Pat. No. 6,270,802 and U.S. Pat. No. 6,361,798 describe the large scale method of manufacture of polymeric microparticles whilst maintaining a sterile field.
- U.S. Pat. No. 8,708,159 describes the processing of microparticles on scale using a hydrocyclone apparatus.
- U.S. publication 2010/0143479 describes the method of manufacture of microparticles on large scale specifically for slow release microparticles.
- XSpray has disclosed a device and the use of supercritical fluids to produce particles of a size below 10 ⁇ M (U.S. Pat. No. 8,167,279). Additional patents to XSpray include U.S. Pat. No. 8,585,942 and U.S. Pat. No. 8,585,943. Sun Pharmaceuticals has disclosed a process for the manufacture of microspheres or microcapsules, WO 2006/123359, herein incorporated by reference.
- Process A involves five steps that include 1) the preparation of a first dispersed phase comprising a therapeutically active ingredient, a biodegradable polymer and an organic solvent 2) mixing the first dispersed phase with an aqueous phase to form an emulsion 3) spraying the emulsion into a vessel equipped to remove an organic solvent and 4) passing the resulting microspheres or microcapsules through a first and second screen thereby collecting a fractionated size of the microspheres or microcapsules and 5) drying the microspheres or microcapsules.
- Xu, Q. et al. have disclosed the preparation of monodispersed biodegradable polymer microparticles using a microfluidic flow-focusing device (Xu, Q., et al “Preparation of Monodispersed Biodegradable Polymer Microparticles Using a Microfluidic Flow-Focusing Device for Controlled Drug Delivery”, Small, Vol 5(13): 1575-1581, 2009).
- U.S. Pat. No. 8,916,196 to Evonik describes an apparatus and method for the production of emulsion based microparticles that can be used in connection with the present invention.
- Polyvinyl alcohol (PVA) (88 percent hydrolyzed, MW approximately 25 kD) (catalog#: 02975) was purchased from Polysciences, Inc. Sunitinib malate was purchased from LC Laboratories (catalog #: S-8803). ProVisc® (10 mg/mL, 0.85 mL, catalog#: 21989, Alcon) was purchased from Besse Medical.
- Poly(lactic-co-glycolic acid) (PLGA) polymer, poly(lactic-acid) (PLA) polymer, and diblock co-polymers of PLGA and polyethylene glycol (PLGA-PEG) were purchased from the Evonik Corporation (RESOMER Select 5050 DLG mPEG 5000 (10 wt percent PEG)).
- a FreeZone 4.5 liter benchtop freeze dry system was used for lyophilization.
- ProVisc® OVD Ophthalmic Viscosurgical Device
- Sodium hyaluronate is a derivative of hyaluronan for clinical use.
- Hyaluronan, also known as hyaluronic acid is a naturally occurring glycosaminoglycan found throughout the body including in the aqueous and vitreous humors of the eye.
- Polymer microparticles comprising PLGA and diblock copolymer of PLGA and PEG with or without sunitinib malate were prepared using a single emulsion solvent evaporation method. Briefly, PLGA (560 mg) and PLGA-PEG (5.6 mg) were co-dissolved in dichloromethane (DCM) (4 mL). Sunitinib malate (90 mg) was dissolved in dimethyl sulfoxide (DMSO) (2 mL). The polymer solution and the drug solution were mixed to form a homogeneous solution (organic phase). For empty NSTMP, DMSO (2 mL) without drug was used.
- DCM dichloromethane
- DMSO dimethyl sulfoxide
- the organic phase was added to an aqueous 1% PVA solution in PBS (200 mL) and homogenized at 5,00 rpm for 1 minute using an L5M-A laboratory mixer (Silverson Machines Inc., East Longmeadow, MA) to obtain an emulsion.
- PBS aqueous 1% PVA solution in PBS
- L5M-A laboratory mixer Silverson Machines Inc., East Longmeadow, MA
- the emulsion (solvent-laden microparticles) was then hardened by stirring at room temperature for more than 2 hours to allow the DCM to evaporate.
- the microparticles were collected by sedimentation and centrifugation, washed three times in water, and filtered through a 40- ⁇ m sterile Falcon ® cell strainer (Corning Inc., Corning, NY).
- the non-surface treated microparticles were either used directly in the surface treatment process or dried by lyophilization and stored as a dry powder at ⁇ 20° C. until used.
- a pre-chilled solution containing 0.25 M NaOH (aq) and ethanol at a predetermined ratio was added to microparticles in a glass vial under stirring in an ice bath at approximately 4° C. to form a suspension at 100 mg/mL.
- the suspension was then stirred for a predetermined time (e.g., 3, 6 or 10 minutes) on ice and poured into a pre-chilled filtration apparatus to remove the NaOH (aq)/EtOH solution.
- the microparticles were further rinsed with pre-chilled water and transferred to a 50-mL centrifuge tube. The particles were then suspended in pre-chilled water and kept in a refrigerator for 30 minutes to allow the particles to settle.
- STMP Surface treated microparticles
- PBS phosphate buffered saline
- HA sodium hyaluronate solution
- NSTEP Non-surface treated microparticles
- a successful surface treatment process is expected to result in STMP that maintain good suspendability, syringeability and injectability.
- STMP are expected to form consolidated aggregate(s) that do not break into smaller aggregates or free floating particles under gentle agitation, a key feature that differentiates STMP from NSTMP and STMP with low aggregability.
- the effect of temperature on surface treatment was studied by comparing particles treated at room temperature vs. treated at 4° C.
- the procedure for surface treatment at room temperature was identical to the procedure described in Example 2 except that it was conducted at room temperature instead of at 4° C.
- formulation S-3 contained 1% PLGA-PEG and S-8 contained 10% of PLGA-PEG.
- Samples S-3 and S-8 were individually treated in a mixture of 0.25M NaOH and EtOH at a volume ratio of 30/70 at 4° C. for 6 minutes. Following injection in PBS and incubation at 37° C. for 2 hours, the microcentrifuge tubes were inverted and the aggregability of the particles was assessed by visual inspection. As illustrated in FIG. 1 , the NSTMP S-1 and S-5 started to disperse immediately after the tubes were inverted, while the STMP, S-3 and S-8, remained aggregated at the bottom of the tubes without dispersion throughout the entire period of observation (about 10 minutes).
- Example 4 To further optimize the surface treatment conditions with NaOH(aq)/EtOH, the impact of various parameters, such as NaOH concentration, aqueous/EtOH ratio, and treatment time, on surface treatment were studied (Table 4). It is worth noting that in this Example, the overall molar concentration of NaOH in the entire aqueous/EtOH mixture was used as a variable independent of the ratio of aqueous solution to EtOH instead of using the molarity of NaOH in the aqueous phase only as in Example 2. For example, 0.25M NaOH(aq)/EtOH (v/v: 30/70) in Example 2 is equivalent to 0.075 M of NaOH in an aqueous/EtOH (v/v: 30/70) mixture.
- volume ratio of aqueous to EtOH was modified from 30/70 to 50/50 and 70/30 with the same total amount of NaOH in the mixture.
- amount of NaOH was decreased by 10- or 100-fold without changing the ratio of aqueous solution to EtOH.
- the different treatment time was chosen to achieve comparable effectiveness of surface treatment.
- the procedure for surface treatment on microparticles was the same as Example 2.
- Example 8 As surface treatment using an aqueous solution of basic pH (Example 2 and Example 7) or neutral pH (Example 6) had been tested previously, the effect of aqueous solution of acidic pH was evaluated in Example 8.
- HCl was selected as a representative acid. As shown in Table 5, microparticles were treated for 3 minutes in 0.075 M or 0.0075 M of HCl in H 2 O/EtOH (v/v: 30/70) mixture, respectively.
- the procedure for HCl/EtOH surface treatment was the same as in Example 2 except that HCl (aq) was used to replace NaOH (aq).
- Drug loading was determined by UV-Vis spectrophotometry. Microparticles containing sunitinib (10 mg total weight) were dissolved in anhydrous DMSO (1 mL) and further diluted until the concentration of drug was in the linear range of the standard curve of UV absorbance of the drug. The concentration of the drug was determined by comparing the UV absorbance to a standard curve. Drug loading is defined as the weight ratio of drug to microparticles.
- Microparticles containing sunitinib (10 mg total weight) were suspended in PBS (4 mL) containing 1% Tween 20 in a 6-mL glass vial and incubated at 37° C. under shaking at 150 rpm. At predetermined time points, 3 mL of the supernatant was withdrawn after particles settled to the bottom of the vial and replaced with 3 mL of fresh release medium. The drug content in the supernatant was determined by UV-Vis spectrophotometry or HPLC. Alternatively, the above procedure can be run at 50° C. to determine an accelerated in vitro drug release rate as shown in FIG. 5 .
- STMP treated with HCl(aq)/EtOH in Example 8 maintained the DL prior to surface treatment with relatively high yield (S-36 and S-37).
- STMP (S-42, S-4-and S-45) produced by surface treatment on wet microparticles in Example 9 also maintained the DL prior to surface treatment with comparable yield as STMP produced by surface treatment on dry particles in Example 7 and 8.
- FIG. 6 illustrates representative in vitro drug release profiles of NSTMP (S-1) and the corresponding STMP (S-2 and S-3) generated from the same batch of NSTMP.
- S-1 NSTMP
- STMP STMP
- S-2 and S-3 STMP
- the release profiles are similar for microparticles before and after surface treatment except that the initial release rate of STMP was lower than that of NSTMP. This suggests that under the surface treatment conditions drug molecules that are bound to or near the microparticle surface may have been removed during the surface treatment process.
- the wettability of representative batches of STMP and NSTMP was characterized using the Washburn method. Briefly, two glass capillary tubes with filter bases were separately filled with equivalent masses of STMP and NSTMP dry powder. The bottom of the capillary tubes were then inserted into a beaker with water and water was drawn into the tubes over time due to capillary action. The increase in mass of the tube and the height of water in the tubes were determined as a function of time. The rate of water absorption was relatively rapid in the tube containing NSTMP, but relatively slow for STMP.
- the mass increase of the tubes was much higher for NSTMP than for STMP, indicating that the surface modification leads to reduction of wettability of the microparticles likely due to removal of surfactant or both surfactant and polymer from particle surface.
- Samples S-10 to S-16 and S-18 were prepared at a larger scale of 1 to 3.6 grams. The yield and drug loading of these batches are shown in Table 6 above. It is worth noting that the drug loading was not significantly changed by surface treatment. The average particle size of these STMP samples was similar to that of the corresponding NSTMP prior to surface treatment (data not shown). As shown in FIG. 7 , the release profiles of the STMP prepared at a larger scale (S-14 and S-16) were similar to the corresponding NSTMP as well, indicating that the surface treatment process had minimal effect on the overall drug release.
- a suspension of STMP (ST-1-5, approximately 10 percent drug loading) at approximately 200 mg/mL was prepared by suspending the microparticles in 5-fold diluted ProVisc® solution containing 2 mg/mL of HA. After an incubation period of 2 hours at room temperature, 10 ⁇ L of the STMP suspension was loaded into a 50 ⁇ L Hamilton syringe with an attached 27-gauge needle. Following brief vortexing to fully suspend the STMP, the syringe was held horizontally for 2 minutes and vertically for 2 minutes prior to injection into a microcentrifuge tube. The injection was repeated using 3 different syringes and each syringe was tested 3 times.
- the STMP in each tube was then dissolved in DMSO and the dose of drug was determined by UV-Vis spectrophotometry. As shown in Table 8, excellent dosing consistency between injections using the same syringe and between different syringes was observed, suggesting that the STMP suspension in diluted ProVisc® remained stable at room temperature for a sufficient amount of time to allow consistent dosing of the relatively small volume of injection (e.g., 10 ⁇ L).
- STMP suspensions 50 ⁇ L in 5-fold diluted ProVisc® at 2 different microparticle concentrations (100 mg/mL and 200 mg/mL) were injected into 4 mL of PBS or HA solution and incubated at 37° C. for 2 hours.
- the STMP at 200 mg/mL in diluted ProVisc® were able to form a consolidated aggregate in both PBS and HA following a 2 hour incubation at 37° C.
- the aggregation of 200 mg/mL STMP in diluted ProVisc® appeared slower, but the aggregate became more consolidated over time, suggesting the HA molecules in the particle diluent may hinder the contact between STMP and slow down the aggregation process.
- due to its viscoelastic properties HA may help keep particles localized and allow sufficient time for STMP to form an aggregate.
- the particle aggregates formed in HA also appeared to have a more spherical morphology than those formed in PBS, suggesting that if a viscoelastic solution is used as the particle diluent, an optimal range of diluent concentration needs to be identified to improve the overall performance of STMP aggregation.
- the strength of the aggregates was tested by shaking the test tubes at 250 rpm on an orbital shaker. As illustrated in the bottom panel of FIG. 8 C and FIG. 8 D , the aggregates were able to endure the shear stress generated by shaking with no or limited dispersion of microparticles.
- the HA molecules in the test medium may further decrease particle-particle contact and reduce the chance of forming a consolidated aggregate.
- the results suggest that the aggregability of STMP decreases at lower microparticle concentration, possibly due to increased average particle-particle distance and decreased chance of direct contact between particles.
- the aggregation may also be further hindered by other molecules, such as HA, in the test medium.
- the aggregation of STMP can be affected by particle concentration, particle diluent and the environment into which the particles are delivered. Overall the data demonstrate that under appropriate conditions, the STMP have good aggregability in different particle diluents and test media.
- the frozen vitreous containing particles was placed in a cassette to allow the vitreous to thoroughly thaw.
- the aggregates of STMP in the vitreous could be easily separated from vitreous using forceps, proving the formation of consolidated STMP aggregates in rabbit eyes.
- Example 20 Distribution, Tolerability and Pharmacokinetics of Sunitinib-Encapsulated Surface Treated Microparticles (STMP) Following an Intravitreal (IVT) injEction in Rabbits
- FIG. 11 A illustrates a representative 1-month histology image following injection with surface treated microparticles (STMP) and FIG. 11 B illustrates a representative 1-month histology images following injection with non-surface treated microparticles (NSTMP).
- STMP surface treated microparticles
- NSTEP non-surface treated microparticles
- the microspheres remained localized at the site of injection in the vitreous as a depot for all the injections.
- fundus examination using a retina lens showed that in the eyes injected with STMP, most particle injections remained consolidated in the vitreous without dispersion and no vision impairment or disturbance was observed. In contrast, particle dispersion was more commonly observed in the eyes injected with NSTMP.
- the sunitinib levels in the retina or RPE/choroid of rabbits receiving STMP containing 1 or 0.2 mg of sunitinib malate were above the K i for sunitinib against VEGFR and PDGFR at 1, 2, and 4 months, respectively. Low levels of sunitinib were detected in plasma only at 1 and 2 months.
- Sample S-12 (10.5 mg) was measured into an amber vial. N,N-dimethylacetamide (0.3 mL) and acetonitrile (0.6 mL) were added to dissolve the particles. Water (2.1 mL) was added and the mixture was thoroughly mixed. The final concentration of particles in N,N-dimethylacetamide/acetonitrile/water (v/v 1:2:7) mixture was 3.5 mg/mL.
- the purity of active compound in STMP S-12 was determined by HPLC and is reported in Table 10. The results suggest that the surface treatment did not affect the purity of encapsulated drug.
- the mean particle size and distributions were determined using a Coulter Multisizer IV (Beckman Coulter, Inc., Brea, CA).
- the distribution shown in FIG. 12 has the following statistics: D10 of 20.98 ⁇ m, D50 of 32.32 ⁇ m, D90 of 41.50 ⁇ m, mean of 31.84 ⁇ m, and standard deviation of 8.07 ⁇ m.
- Microparticles (5-10 mg, S-12) were added to a sterile vial in a biosafety cabinet. The particles were suspended in endotoxin-free PBS. Using a ToxinSensorTM chromogenic LAL endotoxin assay kit (GenScript USA Inc., Piscataway, NJ) and the instructions provided by the manufacture, the sample's total level of endotoxin was measured. S-12 had a low endotoxin level of less than 10 ⁇ EU/mg.
- FIG. 13 A , FIG. 13 B , and FIG. 13 C illustrate select PK profiles for sunitinib malate in the retina, vitreous, and plasma, respectively, from pigmented rabbits.
- PLGA 555 mg
- PLGA-PEGSK 5.6 mg
- Sunitinib malate 90 mg
- DMSO 2 mL
- the polymer and drug solutions were then mixed.
- the resulting reaction mixture was filtered through a 0.22 ⁇ m PTFE syringe filter.
- the resulting reaction mixture was diluted with 1% PVA in PBS (200 mL) in a 250 mL beaker and then homogenized at 5,000 rpm for 1 minute.
- the polymer/drug solution was poured into the aqueous phase using homogenization conditions and homogenized at 5,000 rpm for 1 minute)
- the reaction was next stirred at 800 rpm at room temperature for 3 hours in a biosafety cabinet.
- the particles were allowed to settle in the beaker for 30 minutes and approximately 150 mL of the supernatant was decanted off.
- the microparticle suspension underwent centrifugation at 56 ⁇ g for 4.5 minutes, the solvent was removed, and the microparticles were then washed three times with water.
- the microparticle size and size distribution was determined using a Coulter Multisizer IV prior to lyophilization.
- the microparticles were lyophilized using a FreeZone 4.5 liter benchtop lyophilizer. Light exposure was avoided throughout the entire process.
- Microparticle dry powder was weighed and placed in a small beaker and a stirring bar was added. The beaker was placed in an ice bath and cooled to about 4° C.
- a NaOH/EtOH solution was prepared by mixing NaOH in water (0.25M) with EtOH at 3:7 (v/v) and cooling to about 4° C.
- the cold NaOH/EtOH solution was added with stirring to the beaker containing the microparticles to afford a particle suspension of 100 mg/mL.
- the suspension was stirred for 3 minutes at about 4° C. and poured into a filtration apparatus to quickly remove the NaOH/EtOH solution. (The filtration apparatus needed to be pre-chilled in a ⁇ 20° C. freezer prior to use.)
- the microparticles were rinsed in the filtration apparatus with ice cold deionized water and transferred to 50 mL centrifuge tubes. Each 50 mL centrifuge tube with filled with cold water to afford a 40 mL particle suspension at a concentration of 5-10 mg/mL. The centrifuge tubes were placed in a regenerator and the particles were allowed to settle for 30 minutes. The supernatant was then decanted. The particles were resuspended in cold water and filtered through a 40 ⁇ m cell strainer to remove any large aggregates. The particles were collected by centrifugation (56 ⁇ g for 4.5 minutes) and washed twice with water. The product was lyophilized using a FreeZone 4.5 liter benchtop lyophilizer. The surface treatment process was conducted at approximately 4° C. and light exposure was avoided throughout the entire process.
- Example 27 Method for Determining Accelerating in Vitro Drug Release at 50° C.
- Microparticles (10 mg) were added to glass scintillation vials.
- Four milliliters of the release medium (1% Tween 20 in 1 ⁇ PBS at pH 7.4) was added into the vials and the mixtures were vortexed.
- the vials were shaken on an orbital shaker at 150 rpm in a Fisher general-purpose incubator at 50° C. At pre-determined time points, the appropriate vial was cooled and the particles were allowed to settle for 10 minutes. Release medium (3 mL) was then carefully removed from the top of the vial and replaced with fresh release medium (3 mL). The vial was then returned to the orbital shaker and the amount of drug in the release medium was measured by UV spectroscopy. The concentration of drug was determined by comparing to a standard curve for the drug.
- NSTMP were first produced similarly as described in Example 1. Briefly, PLA and PLGA-PEG were co-dissolved in dichloromethane (DCM) and sunitinib malate was dissolved in dimethyl sulfoxide (DMSO). The polymer solution and the drug solution were mixed to form a homogeneous solution (organic phase). For empty microparticles, DMSO without drug was used. The organic phase was added to an aqueous 1% PVA solution and homogenized at 5,000 rpm for 1 minute using an L5M-A laboratory mixer (Silverson Machines Inc., East Longmeadow, MA) to obtain an emulsion.
- DCM dichloromethane
- DMSO dimethyl sulfoxide
- the emulsion (solvent-laden microparticles) was then hardened by stirring at room temperature for more than 2 hours to allow the DCM to evaporate.
- the microparticles were collected by sedimentation and centrifugation, washed three times in water, and filtered through a 40- ⁇ m sterile Falcon ® cell strainer (Corning Inc., Corning, NY).
- the non-surface-treated microparticles were either used directly in the surface treatment process or dried by lyophilization and stored as a dry powder at ⁇ 20° C. until used.
- a pre-chilled solution containing NaOH and ethanol was added to microparticles in a glass vial under stirring in an ice bath at approximately 4° C. to form a suspension.
- the suspension was then stirred for a predetermined time on ice and poured into a pre-chilled filtration apparatus to remove the NaOH (aq)/EtOH solution.
- the microparticles were further rinsed with pre-chilled water and transferred to a 50-mL centrifuge tube.
- the STMP were then suspended in pre-chilled water and kept in a refrigerator for 30 minutes to allow the particles to settle. Following removal of the supernatant, the particles were resuspended and filtered through a 40- ⁇ m cell strainer to remove large aggregates. Subsequently, the particles were washed twice with water at room temperature and freeze-dried overnight.
- the in vitro aggregability of the STMP was characterized similarly as described in Example 3. Briefly, STMP were suspended in PBS at 200 mg/mL and 30-50 uL of the suspension was injected into 1.5-2.0 mL of PBS pre-warmed at 37° C. After incubation at 37° C. for 2 hours, the aggregability of the microparticles was assessed by visual observation and/or imaging following gentle mechanical agitation. Overall all STMP described in Table 11 were able to aggregate upon incubation at 37° C. for 2 hours.
- Sunitinib-encapsulated STMP comprising PLA were suspended in ProVisc® diluted 5-fold in PBS to achieve a target dose of 1 mg sunitinib malate in a 50 uL particle suspension.
- the tolerability and pharmacokinetics were studied in pigmented New Zealand rabbits (F1) following an intravitreal injection of the STMP suspension.
- F1 pigmented New Zealand rabbits
- complete ocular examinations were performed and the drug levels of sunitinib (ng/g) in various ocular tissues (e.g. vitreous, retina, and RPE/choroid) were also analyzed ( FIG. 19 ).
- Example 30 Production of Surface-Treated Microparticles (STMP) on a Larger Scale (100 g and Higher)
- NSTMP were produced using a continuous flow, oil-in-water emulsification method.
- the scale of the pilot batches was 100-200 g.
- a dispersed phase (DP) and a continuous phase (CP) were first prepared.
- the DP was prepared by co-dissolving PLGA and PLGA-PEG polymers in DCM.
- the CP was a 0.25% PVA solution in water.
- the DP was prepared by dissolving sunitinib malate in DMSO and mixing with the polymer solution in DCM.
- the CP was a 0.25% PVA solution in PBS (pH approximately7).
- Table 12 Detailed formulation parameters are listed in Table 12.
- An emulsion was produced by mixing the DP and the CP using a high shear inline mixer.
- the solvents in the DP were diluted by the CP, causing the emulsion droplets to solidify and become polymer microparticles.
- the microparticles were then washed with water using the volume exchange principle with the addition of fresh water and removal of solvent-containing water with a hollow fiber filter.
- the washed microparticles were subsequently suspended in a solution containing NaOH and ethanol for surface modification of the NSTMP. This step was performed in a jacketed vessel and the temperature of the suspension was maintained around 8° C.
- Table 12 Several surface treatment conditions have been tested as shown in Table 12.
- the STMP suspension was adjusted to target concentration prior to filling of glass vials.
- mannitol was added to the final suspension.
- the vials were then lyophilized and sealed.
- the manufacturing process can be completed aseptically and the final product in vials may also be terminally sterilized by E-Beam or gamma irradiation.
- the in vitro aggregability of the STMP was characterized by a similar method to that in Example 3. Briefly, STMP was suspended in PBS at 200 mg/mL and 30-50 uL of the suspension was injected into 1.5-2.0 mL of PBS pre-warmed to 37° C. After incubation at 37° C. for 2 hours, the aggregability of the microparticles was assessed by visual observation and/or imaging following gentle mechanical agitation. In general, all STMP treated with a solution containing 0.75 mM NaOH and EtOH of 40% or higher were able to aggregate upon incubation at 37° C. Following suspension in hyaluronate solution and injection in PBS, STMP treated with a higher concentration of EtOH showed a higher tendency of floatation in PBS, suggesting reduced wettability and increased surface hydrophobicity as a result of the surface treatment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Ophthalmology & Optometry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Dermatology (AREA)
- Molecular Biology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Biotechnology (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Inorganic Chemistry (AREA)
Abstract
The present invention is a surface treated drug-loaded solid (e.g., non-porous) microparticle that aggregates in vivo to form a consolidated larger particle for medical therapy. In one embodiment, the particles are used for ocular therapy. Processes for producing the surface treated microparticle and injectable formulations which include the surface treated microparticle are also provided. When used in the eye, long-term consistent intraocular delivery can be achieved without disrupting vision and minimizing undesirable inflammatory responses.
Description
- This application is a continuation of U.S. application Ser. No. 16/566,724, filed Sep. 10, 2019, which is a continuation of U.S. application Ser. No. 15/349,985, filed Nov. 11, 2016, now issued as U.S. Pat. No. 10,441,548, issued on Oct. 15, 2019, which claims the benefit of U.S. application Ser. No. 62/254,707, filed Nov. 12, 2015, U.S. application Ser. No. 62/257,608, filed Nov. 19, 2015, and U.S. application Ser. No. 62/276,530, filed Jan. 8, 2016. The entirety of each of these applications is incorporated by reference herein for all purposes.
- The present invention is a surface treated drug-loaded solid (e.g., non-porous) microparticle that aggregates in vivo to form a consolidated larger particle for medical therapy. In one embodiment, the particles are used for ocular therapy. Processes for producing the surface treated microparticle and injectable formulations, including the surface treated microparticle, are also provided. When used in the eye, long-term consistent intraocular delivery can be achieved that minimizes disruption of vision and minimizes undesirable inflammatory responses.
- The structure of the eye can be divided into two segments: the anterior and posterior. The anterior segment comprises the front third of the eye and includes the structures in front of the vitreous humor: the cornea, iris, ciliary body, and lens. The posterior segment includes the back two-thirds of the eye and includes the sclera, choroid, retinal pigment epithelium, neural retina, optic nerve, and vitreous humor.
- Important diseases affecting the anterior segment of the eye include glaucoma, allergic conjunctivitis, anterior uveitis, and cataracts. Diseases affecting the posterior segment of the eye include dry and wet age-related macular degeneration (AMD), cytomegalovirus (CMV) infection, diabetic retinopathy, choroidal neovascularization, acute macular neuroretinopathy, macular edema (such as cystoid macular edema and diabetic macular edema), Behcet's disease, retinal disorders, diabetic retinopathy (including proliferative diabetic retinopathy), retinal arterial occlusive disease, central retinal vein occlusion, uveitic retinal disease, retinal detachment, ocular trauma, damage caused by ocular laser treatment or photodynamic therapy, photocoagulation, radiation retinopathy, epiretinal membrane disorders, branch retinal vein occlusion, anterior ischemic optic neuropathy, non-retinopathy diabetic retinal dysfunction and retinitis pigmentosa. Glaucoma is sometimes also considered a posterior ocular condition because a therapeutic goal of glaucoma treatment is to prevent or reduce the loss of vision due to damage or loss of retinal cells or optic nerve cells.
- Typical routes of drug administration to the eye include topical, systemic, intravitreal, intraocular, intracameral, subconjunctival, subtenon, retrobulbar, and posterior juxtascleral. (Gaudana, R., et al., “Ocular Drug Delivery”, The American Association of Pharmaceutical Scientist Journal, 12(3)348-360, 2010).
- A number of types of delivery systems have been developed to deliver therapeutic agents to the eye. Such delivery systems include conventional (solution, suspension, emulsion, ointment, inserts, and gels), vesicular (liposomes, niosomes, discomes, and pharmacosomes), advanced materials (scleral plugs, gene delivery, siRNA, and stem cells), and controlled-release systems (implants, hydrogels, dendrimers, iontophoresis, collagen shields, polymeric solutions, therapeutic contact lenses, cyclodextrin carriers, microneedles, microemulsions, and particulates (microparticles and nanoparticles)).
- Treatment of posterior segment diseases remains a daunting challenge for formulation scientists. Drug delivery to the posterior segment of the eye is typically achieved via an intravitreal injection, the periocular route, implant, or by systemic administration. Drug delivery to the posterior segment by way of the periocular route can involve the application of a drug solution to the close proximity of the sclera, which results in high retinal and vitreal concentrations.
- Intravitreal injection is often carried out with a 30 gauge or less needle. While intravitreal injections offer high concentrations of drug to the vitreous chamber and retina, they can be associated with various short term complications such as retinal detachment, endophthalmitis and intravitreal hemorrhages. Experience shows that injection of small particles can lead to the rapid dispersal of the particles which can obstruct vision (experienced by the patient as “floaties” or “floaters”) and the rapid removal of the particles from the injection site (which can occur via the lymphatic drainage system or by phagocytosis). In addition, immunogenicity can occur upon recognition of the microspheres by macrophages and other cells and mediators of the immune ddsy stem .
- Complications in periocular injections include rises in intraocular pressure, cataract, hyphema, strabismus, and corneal decompensation. Transscleral delivery with periocular administration is seen as an alternative to intravitreal injections. However, ocular barriers such as the sclera, choroid, retinal pigment epithelium, lymphatic flow, and general blood flow can compromise efficacy. Systemic administration, which is not advantageous given the ratio of the volume of the eye to the entire body, can lead to potential systemic toxicity.
- A number of companies have developed microparticles for treatment of eye disorders. For example, Allergan has disclosed a biodegradable microsphere to deliver a therapeutic agent that is formulated in a high viscosity carrier suitable for intraocular injection or to treat a non-ocular disorder (U.S. publication 2010/0074957 and U.S. publication 2015/0147406 claiming priority to a series of applications back to Dec. 16, 2003). In one embodiment, the '957 application describes a biocompatible, intraocular drug delivery system that includes a plurality of biodegradable microspheres, a therapeutic agent, and a viscous carrier, wherein the carrier has a viscosity of at least about 10 cps ata shear rate of 0.1/second at 25° C.
- Allergan has also disclosed a composite drug delivery material that can be injected into the eye of a patient that includes a plurality of microparticles dispersed in a media, wherein the microparticles contain a drug and a biodegradable or bioerodible coating and the media includes the drug dispersed in a depot-forming material, wherein the media composition may gel or solidify on injection into the eye (WO 2013/112434 A1, claiming priority to Jan. 23, 2012). Allergan states that this invention can be used to provide a depot means to implant a solid sustained drug delivery system into the eye without an incision. In general, the depot on injection transforms to a material that has a viscosity that may be difficult or impossible to administer by injection.
- In addition, Allergan has disclosed biodegradable microspheres between 40 and 200 μm in diameter, with a mean diameter between 60 and 150 μm that are effectively retained in the anterior chamber of the eye without producing hyperemia (US 2014/0294986). The microspheres contain a drug effective for an ocular condition with greater than seven day release following administration to the anterior chamber of the eye. The administration of these large particles is intended to overcome the disadvantages of injecting 1-30 μm particles which are generally poorly tolerated.
- Regentec Limited has filed a series of patent applications on the preparation of porous particles that can be used as tissue scaffolding (WO 2004/084968 and U.S. publication 2006/0263335 (filed Mar. 27, 2003) and U.S. publication 2008/0241248 (filed Sep. 20, 2005) and WO 2008/041001 (filed Oct. 7, 2006)). The porosity of the particles must be sufficient to receive cells to be held in the particle. The cells can be added to the matrix at, or prior to, implantation of the matrix or afterward in the case of recruitment from endogenous cells in situ. Regentec also published an article on tissue scaffolding with porous particles (Qutachi et al. “Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature”, Acta Biomaterialia, 10, 5080-5098, (2014)).
- In addition, Regentec Limited also filed patent applications on the preparation of large porous particles that can be used in drug delivery (WO 2010/100506 and U.S. publication 2012/0063997 (filed Mar. 5, 2009)). The porosity of the particles allows for quick delivery of the therapeutic agent. The particles are intended to form a scaffold that fills the space in which they are injected by a trigger such as a change in temperature.
- Additional references pertaining to highly porous microparticles include publications by Rahman and Kim. Rahman et al. “PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties” J. of Biomedical Materials Research, 101, 648-655, (2013) describes hydrogels of approximately 50 percent porosity and their corresponding mechanical properties. Kim et al. “Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone” J. of Controlled Release, 112, 167-174, (2006) describes PLGA polymers with pores for the delivery of human growth hormone.
- EP 2125048 filed by Locate Therapeutics Limited (filed Feb. 1, 2007) as well as WO 2008/093094, U.S. publication 2010/0063175 (filed Feb. 1, 2007), and WO 2008/093095 (filed February 1, 2007) filed by Regentec Limited disclose the preparation of particles that are not necessarily porous but that when exposed to a trigger (such as temperature) form a tissue scaffold useful in the repair of damaged or missing tissue in a host.
- U.S. Pat. No. 9,161,903 issued on Oct. 20, 2015 to Warsaw Orthopedic and U.S. publication 2016/0038407 filed by Warsaw Orthopedic Inc. disclose a flowable composition for injection at a target tissue site beneath the skin that includes a flowable composition that hardens at or near the target tissue site.
- Bible et al. “Attachment of stem cells to scaffold particles for intra-cerebral transplantation”, Nat. Protoc., 10, 1440-1453, (2009) describes a detailed process to make microparticles of PLGA that do not clump or aggregate.
- U.S. Patent Application Publication 2011/0123446 filed by Liquidia Technologies titled “Degradable compounds and methods of use thereof, particularly with particle replication in non-wetting templates” describes degradable polymers that utilize a silyl core and can form rapidly degrading matrixes.
- Additional references pertaining to particles for ocular delivery include the following. Ayalasomayajula, S. P. and Kompella, U. B. have disclosed the subconjunctival administration of celecoxib-poly(lactide co-glycolide) (PLGA) microparticles in rats (Ayalasomayajula, S. P. and Kompella, U. B., “Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model”, Eur. J. Pharm., 511, 191-198 (2005)). Danbiosyst UK Ltd., has disclosed a microparticle comprising a mixture of a biodegradable polymer, a water soluble polymer of 8,000 Daltons or higher and an active agent (U.S. Pat. No. 5,869,103). Poly-Med, Inc. has disclosed compositions comprising a hydrogel mass and a carrier having a biological active agent deposited on the carrier (U.S. Pat. No. 6,413,539). MacroMed Inc. has disclosed the use of an agent delivery system comprising a microparticle and a biodegradable gel (U.S. Pat. Nos. 6,287,588 and 6,589,549). Novartis has disclosed ophthalmic depot formulations for periocular or subconjunctival administration where the pharmacologically acceptable polymer is a polylactide-co-glycolide ester of a polyol (U.S. publication 2004/0234611, U.S. publication 2008/0305172, U.S. publication 2012/0269894, and U.S. publication 2013/0122064). The Universidad De Navarra has disclosed oral pegylated nanoparticles for carrying biologically active molecules comprising a pegylated biodegradable polymer (U.S. Pat. No. 8,628,801). Surmodics, Inc. has disclosed microparticles containing matrices for drug delivery (U.S. Pat. No. 8,663,674). Minu, L.L.C., has disclosed the use of an agent in microparticle of nanoparticle form to facilitate transmembrane transport. Emory University and Georgia Tech Research Corporation have disclosed particles dispersed in a non-Newtonian fluid that facilitates the migration of the therapeutic particles from the insertion site in the suprachoroidal space to the treatment site (U.S. 2016/0310417). Pfizer has disclosed nanoparticles as injectable depot formulations (U.S. publication 2008/0166411). Abbott has disclosed a pharmaceutical dosage form that comprises a pharmaceutically acceptable polymer for the delivery of a tyrosine kinase inhibitor (U.S. publication 2009/0203709). The Brigham and Woman's Hospital, Inc. has disclosed modified poly(lactic-co-glycolic) polymers having therapeutic agents covalently bound to the polymer (U.S. 2012/0052041). BIND Therapeutics, Inc. has disclosed therapeutic nanoparticles comprising about 50 to 99.75 weight percent of a diblock poly (lactic) acid-poly(ethylene)glycol copolymer or a diblock poly (lactic acid-co-glycolic acid)-poly(ethylene)glycol copolymer wherein the therapeutic nanoparticle comprises 10 to about 30 weight percent poly(ethylene)glycol (U.S. publication 2014/0178475). Additional publications assigned to BIND Therapeutics, Inc. include U.S. publication 2014/0248358 and U.S. publication 2014/0249158. Allergan has disclosed the use of biodegradable microspheres containing a drug to treat an ocular condition (U.S. publication 2010/0074957, U.S. publication 2014/0294986, U.S. publication 2015/0147406, EP 1742610, and WO 2013/112434). Allergan has also disclosed a biocompatible implant containing a prostamide component, which can exist in particle form, and a biodegradable polymer that allows for slow release of the drug over the course of 1 week to 6 months for the treatment of an ocular condition, such as glaucoma (U.S. application 2015/0157562 and U.S. application 2015/0099805). Jade Therapeutics has disclosed formulations containing an active agent and a polymer matrix that can be delivered directly to the target tissue or placed in a suitable delivery device (U.S. publication 2014/0107025). Bayer Healthcare has disclosed a topical ophthalmological pharmaceutical composition comprising sunitinib and at least one pharmaceutically acceptable vehicle (WO 2013/188283). pSivida Us, Inc. has disclosed biodegradable drug eluting particles comprising a microporous or mesoporous silicon body for intraocular use (U.S. Pat. No. 9,023,896). Additional patents assigned to pSivida Us, Inc. include: U.S. Pat. Nos. 8,871,241; 8,815,284; 8,574,659; 8,574,613; 8,252,307; 8,192,408 and 7,998,108. ForSight Vision4, Inc. has disclosed therapeutic devices for implantation in the eye (U.S. Pat. Nos. 8,808,727). Additional patents assigned to ForSight Vision4, Inc. include: U.S. Pat. Nos. 9,125,735; 9,107,748; 9,066,779; 9,050,765; 9,033,911; 8,939,948; 9,905,963; 8,795,712; 8,715,346; 8,623,395; 8,414,646; 8,399,006; 8,298,578; 8,277,830; 8,167,941; 7,883,520; 7,828,844 and 7,585,075. The Nagoya Industrial Science Research Institute has recently disclosed the use to liposomes to deliver a drug to the posterior segment of the eye (U.S. Pat. No. 9,114,070).
- In order to treat ocular diseases, and in particular diseases of the posterior segment, the drug must be delivered in therapeutic levels and for a sufficient duration to achieve efficacy. This seemingly straightforward goal is difficult to achieve in practice.
- The object of this invention is to provide compositions and methods to treat ocular disorders. Another objective is to provide drug delivering microparticles for sustained administration of therapeutic materials generally in vivo.
- The present invention provides mildly surface treated solid biodegradable microparticles that on injection in vivo, aggregate to a larger particle (pellet) in a manner that reduces unwanted side effects of the smaller particles and are suitable for long term (for example, up to, or alternatively at least, three months, four months, five months, six months or seven months or longer) sustained delivery of a therapeutic agent. In one embodiment, the mildly surface treated solid biodegradable microparticles are suitable for ocular injection, at which point the particles aggregate to form a pellet that remains outside the visual axis so as not to significantly impair vision. The particles can aggregate into one or several pellets. The size of the aggregate depends on the concentration and volume of the microparticle suspensions injected and the diluent in which the microparticles are suspended.
- In one embodiment, the invention is thus surface-modified solid aggregating microparticles that include at least one biodegradable polymer, wherein the surface-modified solid aggregating microparticles have a solid core, include a therapeutic agent, have a modified surface which has been treated under mild conditions at a temperature at or less than about 18° C. to remove surface surfactant, are sufficiently small to be injected in vivo, and are capable of aggregating in vivo to form at least one pellet of at least 500 μm in vivo to provide sustained drug delivery in vivo for at least one month, two months, three months, four months, five months, six months or seven months or more. The surface modified solid aggregating microparticles are suitable, for example, for an intravitreal injection, implant, including an ocular implant, periocular delivery, or delivery in vivo outside of the eye.
- In one embodiment, the surface-modified solid aggregating microparticles described herein, upon injection in vivo, aggregate in vivo to form at least one pellet of at least 500 μm in vivo to provide sustained drug delivery in vivo for at least one month, two months, three months, four months, five months, six months or seven months or more.
- In another embodiment, the invention is an injectable material that includes the microparticles of the present invention in a pharmaceutically acceptable carrier for administration in vivo. The injectable material may include a compound that inhibits aggregation of microparticles prior to injection and/or a viscosity enhancer and/or a salt. In one embodiment, the injectable material has a range of concentration of the surface-modified solid aggregating microparticles of about 50 to 700 mg/ml. In certain examples, the injectable material has a concentration of the surface-modified solid aggregating microparticles that is not more than about 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 or 700 mg/ml. In one embodiment, the injectable material has a concentration of the surface-modified solid aggregating microparticles of about 200-400 mg/ml, 150-450 or 100-500 mg/ml. In certain embodiments, the injectable material has about up to 150, 200, 300 or 400 mg/ml.
- The present invention further includes a process for the preparation of surface-modified solid aggregating microparticles that includes
-
- (i) a first step of preparing microparticles comprising one or more biodegradable polymers by dissolving or dispersing the polymer(s) and a therapeutic agent in one or more solvents to form a polymer and therapeutic agent solution or dispersion, mixing the polymer and the therapeutic agent solution or dispersion with an aqueous phase containing a surfactant to produce solvent-laden microparticles and then removing the solvent(s) to produce polymer microparticles that contain the therapeutic agent, polymer and surfactant; and
- (ii) a second step of mildly treating the surface of microparticles of step (i) at a temperature at or below about 18, 15, 10, 8 or 5° C. optionally up to about 1, 2, 3, 4, 5, 10, 30, 40, 50, 60, 70, 80, 90 100, 11, 120 or 140 minutes with an agent that removes surface surfactant, surface polymer, or surface oligomer in a manner that does not significantly produce internal pores; and
- (iii) isolating the surface treated microparticles.
- The process can be achieved in a continuous manufacturing line or via one step or in step-wise fashion. In one embodiment, wet biodegradable microparticles can be used without isolation to manufacture surface treated solid biodegradable microparticles. In one embodiment, the surface treated solid biodegradable microparticles do not significantly aggregate during the manufacturing process. In another embodiment, the surface treated solid biodegradable microparticles do not significantly aggregate when resuspended and loaded into a syringe. In some embodiments, the syringe is approximately 30, 29, 28, 27, 26 or 25 gauge, with either normal or thin wall.
- In yet another embodiment, a method for the treatment of an ocular disorder is provided that includes administering to a host in need thereof mildly surface-modified solid aggregating microparticles that include an effective amount of a therapeutic agent, wherein the surface-modified solid aggregating microparticles are injected into the eye and aggregate in vivo to form at least one pellet of at least 500 μm that provides sustained drug delivery for at least approximately one, two, three, four, five, six or seven or more months in such a manner that the pellet stays substantially outside the visual axis so as not to significantly impair vision. In one embodiment, the surface treated solid biodegradable microparticles release about 1 to about 20 percent, about 1 to about 15 percent, about 1 to about 10 percent, or about 5 to 20 percent, for example, up to about 1, 5, 10, 15 or 20 percent, of the therapeutic agent over the first twenty-four (?) hour period. In one embodiment, the surface treated solid biodegradable microparticles release less therapeutic agent in vivo in comparison to non-treated solid biodegradable microparticles over up to about 1, 2, 3, 4, 5, 6, 7 day or even up to about a 1, 2, 3, 4, or 5 month period. In one embodiment, the surface treated solid biodegradable microparticles induce less inflammation in vivo in comparison to non-treated solid biodegradable microparticles over the course of treatment.
- This invention addresses the problem of intraocular therapy using small drug loaded particles (for example, 20 to 40 μm, 10 to 30, 20 to 30, or 25 to 30 μm average diameter, or for example, not greater than about 20, 25, 26, 27, 28, 29, 30, 35 or 40 μm average diameter (Dv)) that tend to disperse in the eye due to body movement and/or aqueous flow in the vitreous. The dispersed microparticles can cause vision disruption and aggravation from floaters, inflammation, etc. The microparticles of the invention aggregate in vivo to form at least one pellet of at least 500 μm and minimize vision disruption and inflammation. Further, the aggregated pellet of the surface treated microparticles is biodegradable so the aggregated pellet of the surface treated microparticles does not have to be surgically removed.
- In one embodiment, the surface treatment includes treating microparticles with aqueous base, for example, sodium hydroxide and a solvent (such as an alcohol, for example ethanol or methanol, or an organic solvent such as DMF, DMSO or ethyl acetate) as otherwise described above. More generally, a hydroxide base is used, for example, potassium hydroxide. An organic base can also be used. In other embodiments, the surface treatment as described above is carried out in aqueous acid, for example hydrochloric acid. In one embodiment, the surface treatment includes treating microparticles with phosphate buffered saline and ethanol.
- In some embodiments, the surface treatment is carried out at a temperature of not more than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18° C. at a reduced temperature of about 5 to about 18° C., about 5 to about 16° C., about 5 to about 15° C., about 0 to about 10° C., about 0 to about 8° C., or about 1 to about 5° C., about 5 to about 20° C., about 1 to about 10° C., about 0 to about 15° C., about 0 to about 10° C., about 1 to about 8° C., or about 1 to about 5° C. Each combination of each of these conditions is considered independently disclosed as if each combination were separately listed.
- The pH of the surface treatment will of course vary based on whether the treatment is carried out in basic, neutral or acidic conditions. When carrying out the treatment in base, the pH may range from about 7.5 to about 14, including not more than about 8, 9, 10, 11, 12, 13 or 14. When carrying out the treatment in acid, the pH may range from about 6.5 to about 1, including not less than 1, 2, 3, 4, 5, or 6. When carrying out under neutral conditions, the pH may typically range from about 6.4 or 6.5 to about 7.4 or 7.5.
- A key aspect of the present invention is that the treatment, whether done in basic, neutral or acidic conditions, includes a selection of the combination of the time, temperature, pH agent and solvent that causes a mild treatment that does not significantly damage the particle in a manner that forms pores, holes or channels. Each combination of each of these conditions is considered independently disclosed as if each combination were separately listed.
- The treatment conditions should simply mildly treat the surface in a manner that allows the particles to remain as solid particles, be injectable without undue aggregation or clumping, and form at least one aggregate particle of at least 500 μm.
- In one embodiment, the surface treatment includes treating microparticles with an aqueous solution of pH=6.6 to 7.4 or 7.5 and ethanol at a reduced temperature of about 1 to about 10° C., about 1 to about 15° C., about 5 to about 15° C., or about 0 to about 5° C. In one embodiment, the surface treatment includes treating microparticles with an aqueous solution of pH=6.6 to 7.4 or 7.5 and an organic solvent at a reduced temperature of about 0 to about 10° C., about 5 to about 8° C., or about 0 to about 5° C. In one embodiment, the surface treatment includes treating microparticles with an aqueous solution of pH=1 to 6.6 and ethanol at a reduced temperature of about 0 to about 10° C., about 0 to about 8° C., or about 0 to about 5° C. In one embodiment, the surface treatment includes treating microparticles with an organic solvent at a reduced temperature of about 0 to about 18° C., about 0 to about 16° C., about 0 to about 15° C., about 0 to about 10° C., about 0 to about 8° C., or about 0 to about 5° C. The decreased temperature of processing (less than room temperature, and typically less than 18° C.) assists to ensure that the particles are only “mildly” surface treated.
- Pharmaceutical and biologic therapeutic agents can be delivered in a controlled fashion using the invention. In one embodiment, the pharmaceutical agent is a tyrosine kinase inhibitor such as sunitinib. One goal of the invention is to provide for the sustained release of pharmaceutically active compounds to the eye, and in particular the posterior of the eye, over a period of at least about one, two, three, four, five, six, seven months or more in a manner that maintains at least a concentration of a drug in the eye that is effective for the disorder to be treated. In one embodiment, the drug is administered in a surface treated microparticle that provides for a sustained release that is substantially linear. In another embodiment, the release is not linear; however, even the lowest concentration of release over the designated time period is at or above a therapeutically effective dose.
- In one embodiment, the surface treated microparticle includes poly(lactic-co-glycolic acid) (PLGA). In another embodiment, the surface treated microparticle includes a polymer or copolymer that has at least PLGA and PLGA-polyethylene glycol (PEG) (referred to as PLGA-PEG). In one embodiment, the surface treated microparticle includes poly(lactic acid) (PLA). In another embodiment, the surface treated microparticle includes a polymer or copolymer that has at least PLA and PLA-polyethylene glycol (PEG) (referred to as PLA-PEG). In one embodiment, the surface treated microparticle includes polycaprolactone (PCL). In another embodiment, the surface treated microparticle includes a polymer or copolymer that has at least PCL and PCL-polyethylene glycol (PEG) (referred to as PCL-PEG). In another embodiment, the surface treated microparticle includes at least PLGA, PLGA-PEG and polyvinyl alcohol (PVA). In another embodiment, the surface treated microparticle includes at least PLA, PLA-PEG and polyvinyl alcohol (PVA). In another embodiment, the surface treated microparticle includes at least PCL, PCL-PEG and polyvinyl alcohol (PVA). In other embodiments, any combination of PLA, PLGA or PCL can be mixed with any combination of PLA-PEG, PLGA-PEG or PCL-PEG, with or without PVA, and each combination of each of these conditions is considered independently disclosed as if each were separately listed.
- In one embodiment, the polyvinyl alcohol is a partially hydrolyzed polyvinyl acetate. For example, the polyvinyl acetate is at least about 78% hydrolyzed so that the polyvinyl acetate is substantially hydrolyzed. In one example, the polyvinyl acetate is at least about 88% to 98% hydrolyzed so that the polyvinyl acetate is substantially hydrolyzed.
- In one embodiment, the surface treated microparticle including a pharmaceutically active compound contains from about 80 percent or 89 percent to about 99 percent PLGA, for example, at least about 80, 85, 90, 95, 96, 97, 98 or 99 percent PLGA. In other embodiments, PLA or PCL is used in place of PLGA. In yet other embodiments, a combination of PLA, PLGA and/or PCL is used.
- In certain examples, the surface treated microparticle includes from about 0.5 percent to about 10 percent PLGA-PEG, about 0.5 percent to about 5 percent PLGA-PEG, about 0.5 percent to about 4 percent PLGA-PEG, about 0.5 percent to about 3 percent PLGA-PEG, or about 0.1 percent to about 1, 2, 5, or 10 percent PLGA-PEG. In other embodiments, PLA-PEG or PCL-PEG is used in place of PLGA-PEG. In other embodiments, any combination of PLGA-PEG, PLA-PEG or PCL-PEG is used in the polymeric composition with any combination of PLGA, PLA or PCL. Each combination is considered specifically described as if set out individually herein. In one embodiment, the polymeric formulation includes up to about 1, 2, 3, 4, 5, 6, 10, or 14% of the selected pegylated polymer.
- In some examples, the microparticle contains from about 0.01 percent to about 0.5 percent PVA (polyvinyl alcohol), about 0.05 percent to about 0.5 percent PVA, about 0.1 percent to about 0.5 percent PVA, or about 0.25 percent to about 0.5 percent PVA. In some examples, the microparticle contains from about 0.001 percent to about 1 percent PVA, about 0.005 percent to about 1 percent PVA, about 0.075 percent to about 1 percent PVA, or about 0.085 percent to about 1 percent PVA. In some examples, the microparticle contains from about 0.01 percent to about 5.0 percent PVA, about 0.05 percent to about 5.0 percent PVA, about 0.1 percent to about 5.0 percent PVA, about 0.50 percent to about 5.0 percent PVA. In some examples, the microparticle contains from about 0.10 percent to about 1.0 percent PVA or about 0.50 percent to about 1.0 percent. In some embodiments, the microparticle contains up to about 0.10, 0.15, 0.20, 0.25, 0.30, 0.40 or 0.5% PVA. Any molecular weight PVA can be used that achieves the desired results. In one embodiment, the PVA has a molecular weight of up to about 10, 15, 20, 25, 30, 35 or 40 kd. In some embodiments, the PVA is partially hydrolyzed polyvinyl acetate, including but not limited to, up to about 70, 75, 80, 85, 88, 90 or even 95% hydrolyzed polyvinyl acetate. In one embodiment, the PVA is about 88% hydrolyzed polyvinyl acetate. In one embodiment, the PVA polymer has a molecule weight of 20,000 to 40,000 g/mol. In one embodiment, the PVA polymer has a molecular weight of 24,000 to 35,000 g/mol.
- In one embodiment, the PLGA polymer has a molecular weight of 30,000 to 60,000 g/mol (also kilodalton, kDa or kD). In one embodiment, the PLGA polymer has a molecular weight of 40,000 to 50,000 g/mol (for example 40,000; 45,000 or 50,000g/mol). In one embodiment, the PLA polymer has a molecular weight of 30,000 to 60,000 g/ mol (for example 40,000; 45,000 or 50,000 g/mol). In one embodiment, the PCL polymer is used in the same range of kDa as described for PLGA or PLA.
- In one embodiment, a surface treated microparticle comprises a pharmaceutically active compound. The encapsulation efficiency of the pharmaceutically active compound in the microparticle can range widely based on specific microparticle formation conditions and the properties of the therapeutic agent, for example from about 20 percent to about 90 percent, about 40 percent to about 85 percent, about 50 percent to about 75 percent. In some embodiments, the encapsulation efficiency is for example, up to about 50, 55, 60, 65, 70, 75 or 80 percent.
- The amount of pharmaceutical active compound in the surface treated microparticle is dependent on the molecular weight, potency, and pharmacokinetic properties of the pharmaceutical active compound.
- In one embodiment, the pharmaceutically active compound is present in an amount of at least 1.0 weight percent to about 40 weight percent based on the total weight of the surface treated microparticle. In some embodiments, the pharmaceutically active compound is present in an amount of at least 1.0 weight percent to about 35 weight percent, at least 1.0 weight percent to about 30 weight percent, at least 1.0 weight percent to about 25 weight percent, or at least 1.0 weight percent to about 20 weight percent based on the total weight of the surface treated microparticle. Nonlimiting examples of weight of active material in the microparticle are at least about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15% by weight. In one example, the microparticle has about 10% by weight of active compound.
- In one embodiment, the invention provides a process for producing a microparticle comprising a microparticle and a pharmaceutically active compound encapsulated in the microparticle; which process comprises:
-
- (a) preparing a solution or suspension (organic phase) comprising: (i) PLGA or PLA (ii) PLGA-PEG or PLA-PEG (iii) a pharmaceutically active compound and (iv) one or more organic solvents;
- (b) preparing an emulsion in an aqueous polyvinyl alcohol (PVA) solution (aqueous phase) by adding the organic phase into the aqueous phase and mixing at about 3,000 to about 10,000 rpm for about 1 to about 30 minutes;
- (c) hardening the emulsion including solvent-laden microparticles including the pharmaceutically active compound by stirring at about room temperature until solvent substantially evaporates;
- (d) centrifuging the microparticle including a pharmaceutically active compound;
- (e) removing the solvent and washing the microparticle including the pharmaceutically active compound with water;
- (f) filtering the microparticle including the pharmaceutically active compound to remove aggregates or particles larger than the desired size;
- (g) optionally lyophilizing the microparticle comprising the pharmaceutically active compound and storing the microparticle as a dry powder in a manner that maintains stability for up to about 6, 8, 10, 12, 20, 22, or 24 months or more.
-
FIG. 1 illustrates the aggregation of non-surface treated microparticles (NSTMP) (S-1 and S-5) and surface treated microparticles (STMP) (S-3 and S-8) after injection into PBS and incubation at 37° C. for 2 hours. The NSTMP, S-1 and S-5, started to disperse immediately when the tubes were inverted after the 2 hour-incubation, while the STMP, S-3 and S-8, remained aggregated at the bottom of the tubes without dispersion throughout the entire period of observation (about 10 minutes). Samples from left to right are S-1, S-3, S-5 and S-8 (Example 5). -
FIG. 2 illustrates the aggregation of surface treated microparticles (STMP) (S-3 and S-8) after injection into HA and incubation at 37° C. for 2 hours. Samples left to right are S-1, S-3, S-5 and S-8 (Example 5). -
FIG. 3 illustrates the result of in vitro aggregation and dispersion of particles after a 2-hour incubation in PBS at 37° C. followed by agitation to detach the aggregates from the bottom of the tubes. Top row from left to right samples: S-1, S-2, S-3, S-4; Bottom row from left to right samples: S-5, S-6, S-7 and S-8 (Example 5). -
FIG. 4 illustrates in vitro aggregation of representative surface treated microparticles (STMP) treated with PBS/EtOH (sample S-21) after a 2 hour incubation in PBS at 37° C. followed by agitation by tapping and flicking the tube (Example 6). -
FIG. 5 illustrates the in vitro accelerated drug release profile of a representative batch of surface treated microparticles (STMP) (S-12) (Example 12). The x-axis is time measured in days and the y-axis is cumulative release percent. -
FIG. 6 illustrates the in vitro drug release profiles for samples S-1, S-2, and S-3 in PBS with 1% Tween 20 at 37° C. (Example 13). The x-axis is time measured in days and the y-axis is cumulative release percent. -
FIG. 7 illustrates the in vitro drug release profile of S-13, S-14, 5-15 and S-16 in PBS with 1% Tween 20 at 37° C. (Example 15). The x-axis is time measured in days and the y-axis is cumulative release percent. -
FIG. 8A illustrates the in vitro aggregation of surface treated microparticles (STMP) in 5-fold diluted ProVisc at a concentration of 100 mg/mL into 4 mL of PBS after incubation at 37° C. for 2 hours (top) and after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17). -
FIG. 8B illustrates the in vitro aggregation of surface treated microparticles (STMP) in 5-fold diluted ProVisc at a concentration of 100 mg/mL into 4 mL of HA (5 mg/mL solution) after incubation at 37° C. for 2 hours (top) and after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17). -
FIG. 8C illustrates the in vitro aggregation of surface treated microparticles (STMP) in 5-fold diluted ProVisc at a concentration of 200 mg/mL into 4 mL of PBS after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17). -
FIG. 8D illustrates the in vitro aggregation of surface treated microparticles (STMP) in diluted ProVisc at a concentration of 200 mg/mL into 4 mL of HA (5 mg/mL solution) after incubation at 37° C. for 2 hours followed by shaking at 250 rpm for 2 minutes on an orbital shaker (bottom) (Example 17). -
FIG. 9 illustrates photos of aggregates of particles in an exvivo cow eye 2 hours after injection (Example 18). -
FIG. 10A are photos of particle aggregates in the vitreous (left) and out of the vitreous (right) following injection of STMP, S-10, suspended in PBS into the central vitreous of rabbit eyes (Example 19). -
FIG. 10B are photos of particle aggregates in the vitreous (left) and out of the vitreous (right) following injection of STMP, S-10, suspended in 5-fold diluted ProVisc into the central vitreous of rabbit eyes (Example 19). -
FIG. 11A illustrates representative 1-month histology images of rabbit eyes injected with surface treated microparticles (STMP) (Example 20). -
FIG. 11B illustrates representative 1-month histology images of rabbit eyes injected with non-surface treated microparticles (NSTMP) (Example 20). -
FIG. 12 illustrates the size distribution of a representative batch of surface treated microparticles (STMP) (S-12) (Example 22). The x-axis represents particle diameter measured in micrometers and the y-axis represents volume percent. -
FIG. 13A illustrates select PK profiles for sunitinib in the retina following a bilateral injection of sunitinib malate (free drug) at a dose of 0.0125 mg/eye or 0.00125 mg/eye in pigmented rabbits (Example 24). The x-axis is time measured in hours and the y-axis is the concentration of sunitinib in ng/g. -
FIG. 13B illustrates select PK profiles for sunitinib in the vitreous following a bilateral injection of sunitinib malate (free drug) at a dose of 0.0125 mg/eye or 0.00125 mg/eye in pigmented rabbits (Example 24). The x-axis is time measured in hours and the y-axis is the concentration of sunitinib in ng/g. -
FIG. 13C illustrates select PK profiles for sunitinib in the plasma following a bilateral injection of sunitinib malate (free drug) at a dose of 2.5 mg/eye, 0.25 mg/eye, or 0.025 mg/eye in pigmented rabbits (Example 24). The x-axis is time measured in hours and the y-axis is the concentration of sunitinib in ng/g. -
FIG. 14 illustrates subitinib levels (ng/g) in rabbits injected with 10 mg of STMP containing 1 mg sunitinib for 7 months post-dose. The rabbits were sacrificed at 4 months and sunitinib levels (ng/g) were determined in the vitreous, retina, plasma, and RPE-Choroid. Sunitinib levels were above the Ki for sunitinib against VEGFR and PDGFR (Example 20). The x-axis represents time post-dose in month and the y-axis represents the concentration of sunitinib measured in ng/g. -
FIG. 15 illustrates sunitinib levels (ng/g) in rabbits injected with 2 mg of STMP containing 0.2 mg sunitinib (10% w/w STMP) for 4 months post-dose. The rabbits were sacrificed at 4 months and sunitinib levels (ng/g) were determined in the vitreous, retina, plasma, and RPE-Choroid. Sunitinib levels were above the Ki for sunitinib against VEGFR and PDGFR in the RPE-Choroid and retina (Example 20). The x-axis represents time post-dose in months and the y-axis represents the concentration of sunitinib measured in ng/g. -
FIG. 16 illustrates sunitinib levels (ng/g) in rabbits injected with 10 mg of STMP containing 0.2 mg sunitinib (2% w/w STMP). The rabbits were sacrificed at 4 months and sunitinib levels (ng/g) were determined in the vitreous, retina, plasma, and RPE-Choroid. Sunitinib levels were above the Ki for sunitinib against VEGFR and PDGFR in the RPE-Choroid and retina (Example 20). The x-axis represents time post-dose in month and the y-axis represents the concentration of sunitinib measured in ng/g. -
FIG. 17 illustrates the aggregation of surface treated microparticles (STMP) (S-28 to 5-37 and S-12) after injection into PBS and incubation at 37° C. for 2 hours. After the 2 hour-incubation, the non-surface treated microparticles (NSTMP), S-27, became dispersed when the test tube was placed on an orbital shaker at 400 rpm for 30 seconds, while the surface treated microparticles (STMP), S-28 to S-37 and S-12, remained aggregated under the same agitation condition. Samples from left to right, top row to bottom row are S-28, S-29, S-30, S-31, S-32, S-33, S-34, S-35, S-36, S-37, S-12 and S-27 (Example 10). -
FIG. 18 illustrates the aggregation of surface treated microparticles (STMP) (S-39 to S-after injection into PBS and incubation at 37° C. for 2 hours. After the 2 hour-incubation, the non-surface treated microparticles (NSTMP), S-38, became dispersed when the test tube was placed on an orbital shaker at 400 rpm for 30 seconds, while the surface treated microparticles (STMP), S-39 to S-45, remained aggregated under the same agitation condition. Samples from left to right, top row to bottom row are S-39, S-40, S-41, S-42, S-43, S-44 and S-45 (Example 10). -
FIG. 19 is a graph depicting PK after a single IVT injection of STMP containing 1 mg sunitinib malate in rabbits. The rabbits were sacrificed at 10 days and 3 months and sunitinib levels (ng/g) were determined in the vitreous, retina, and RPE-Choroid. Sunitinib levels were above the Ki for sunitinib against VEGFR and PDGFR in the RPE-Choroid and retina (Example 29). The x-axis represents time post-dose in moths and the y-axis represents the concentration of sunitinib measured in ng/g. - Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this presently described subject matter belongs.
- Compounds are described using standard nomenclature. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs.
- The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
- Recitation of ranges of values are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. The endpoints of all ranges are included within the range and are independently combinable. All methods described herein can be performed in a suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of examples, or exemplary language (e.g., “such as”), is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed.
- The term “carrier” refers to a diluent, excipient, or vehicle.
- A “dosage form” means a unit of administration of a composition that includes a surface treated microparticle and a therapeutically active compound. Examples of dosage forms include injections, suspensions, liquids, emulsions, implants, particles, spheres, creams, ointments, inhalable forms, transdermal forms, buccal, sublingual, topical, gel, mucosal, and the like. A “dosage form” can also include, for example, a surface treated microparticle comprising a pharmaceutically active compound in a carrier.
- The term “microparticle” means a particle whose size is measured in micrometers (μm). Typically, the microparticle has an average diameter of from about 1 μm to 100 μm. In some embodiments, the microparticle has an average diameter of from about 11 μm to 60 μm, for instance from about 11 μm to 40 μm; from about 10 μm to 40 μm; from about 20 μm to 40 μm; from about 25 μm to 40 μm; from about 20 μm to 35 μm. For example, the microparticle may have an average diameter of from 20 μm to 40 μm. As used herein, the term “microsphere” means a substantially spherical microparticle.
- A “patient” or “host” or “subject” is typically a human, however, may be more generally a mammal. In an alternative embodiment it can refer to, for example, a cow, sheep, goat, horse, dog, cat, rabbit, rat, mouse, bird and the like.
- The term “mild” or “mildly” when used to describe the surface modification of the microparticles means that the modification (typically the removal of surfactant from the surface, as opposed to the inner core, of the particle) is less severe, pronounced or extensive than when carried out at room temperature with the otherwise same conditions. In general, the surface modification of the solid microparticles of the present invention is carried out in a manner that does not create significant channels or large pores that would significantly accelerate the degradation of the microparticle in vivo, yet serves to soften and decrease the hydrophilicity of the surface to facilitate in vivo aggregation.
- The term “solid” as used to characterize the mildly surface treated microparticle means that the particle is substantially continuous in material structure as opposed to heterogeneous with significant channels and large pores that would undesirably shorten the time of biodegradation.
- The present invention provides mildly surface treated solid biodegradable microparticles that on injection in vivo, aggregate to a larger particle (pellet) in a manner that reduces unwanted side effects of the smaller particles and are suitable for long term (for example, up to or at least three month, up to four month, up to five month, up to six months, up to seven months or longer) sustained delivery of a therapeutic agent. In one embodiment, the lightly surface treated solid biodegradable microparticles are suitable for ocular injection, at which point the particles aggregate to form a pellet and thus remains outside the visual axis as not to significantly impair vision. The particles can aggregate into one or several pellets. The size of the aggregate depends on the mass (weight) of the particles injected.
- The mildly surface treated biodegradable microparticles provided herein are distinguished from “scaffold” microparticles, which are used for tissue regrowth via pores that cells or tissue material can occupy. In contrast, the present microparticles are designed to be solid materials of sufficiently low porosity that they can aggregate to form a larger combined particle that erodes primarily by surface erosion for long term controlled drug delivery.
- The surface modified solid aggregating microparticles of the present invention are suitable, for example, for intravitreal injection, implant, periocular delivery, or delivery in vivo outside the eye.
- The surface modified solid aggregating microparticles of the present invention are also suitable for systemic, parenteral, transmembrane, transdermal, buccal, subcutaneous, endosinusial, intra-abdominal, intra-articular, intracartilaginous, intracerebral, intracoronal, dental, intradiscal, intramuscular, intratumor, topical, or vaginal delivery in any manner useful for in vivo delivery.
- In one embodiment, the invention is thus surface-modified solid aggregating microparticles that include at least one biodegradable polymer, wherein the surface-modified solid aggregating microparticles have a solid core, include a therapeutic agent, have a modified surface which has been treated under mild conditions at a temperature at or less than about 18° C. to remove surface surfactant, are sufficiently small to be injected in vivo, and aggregate in vivo to form at least one pellet of at least 500 μm in vivo in a manner that provides sustained drug delivery in vivo for at least one, two, three, four, five, six or seven months or more. The surface modified solid aggregating microparticles are suitable, for example, for an intravitreal injection, implant, including an ocular implant, periocular delivery or delivery in vivo outside of the eye.
- Alternatively, the surface treatment is conducted at a temperature at or less than about 10° C., 8° C. or 5° C.
- The surface treatment can be carried out at any pH that achieves the desired purpose. Nonlimiting examples of the pH are between about 6 and about 8, 6.5 and about 7.5, about 1 and about 4; about 4 and about 6; and 6 and about 8. In one embodiment the surface treatment can be conducted at a pH between about 8 and about 10. In one embodiment the surface treatment can be conducted at a pH between about 10.0 and about 13.0. In one embodiment the surface treatment can be conducted at a pH between about 12 and about 14. In one embodiment the surface treatment can be conducted with an organic solvent. In one embodiment the surface treatment can be conducted with ethanol. In other various embodiments, the surface treatment is carried out in a solvent selected from methanol, ethyl acetate and ethanol. Nonlimiting examples are ethanol with an aqueous organic base; ethanol and aqueous inorganic base; ethanol and sodium hydroxide; ethanol and potassium hydroxide; an aqueous acidic solution in ethanol; aqueous hydrochloric acid in ethanol; and aqueous potassium chloride in ethanol.
- Examples of solid cores included in the present invention include solid cores comprising a biodegradable polymer with less than 10 percent porosity, 8 percent porosity, 7 percent porosity, 6 percent porosity, 5 percent porosity, 4 percent porosity, 3 percent porosity, or 2 percent porosity. Porosity as used herein is defined by ratio of void space to total volume of the surface-modified solid aggregating microparticle.
- The surface-modified solid aggregating microparticles of the present invention provides sustained delivery for at least one month, or at least two months, or at least three months, or at least four months, or at least five months, or at least six months, or at least seven months.
- The therapeutic agent delivered by the surface-modified solid aggregating microparticle is in one embodiment a pharmaceutical drug or a biologic. In nonlimiting examples, the pharmaceutical drugs include sunitinib, another tyrosine kinase inhibitor, an anti-inflammatory drug, an antibiotic, an immunosuppressing agent, an anti-VEGF agent, an anti-PDGF agent, or other therapeutic agents as described below.
- In one embodiment the surface-modified solid aggregating microparticle has a mean diameter between 10 and 60 μm, 20 and 50 μm, 20 and 40 μm, 20 and 30 μm, 25 and 40 μm, or 25 and 35 μm.
- Further, the surface-modified solid aggregating microparticles of the disclosed invention can aggregate to produce at least one pellet when administered in vivo that has a diameter of at least about 300, 400, 500 μm, 600 μm, 700 μm, 1 mm, 1.5 mm, 2 mm, 3 mm, 4 mm, or 5 mm.
- In one embodiment the surface-modified solid aggregating microparticles of the present invention produces a pellet in vivo that releases the therapeutic agent without a burst of more than about 10 percent or 15 percent of total payload over a one week, or a five, four, three, two day or one day period.
- In some embodiments, the long term controlled drug delivery is accomplished by a combination of surface erosion of an aggregated microparticle over several months (for example, one, two, three, or four months or more) followed by erosion of remaining parts of the aggregated microparticle, followed by slow release of active material from in vivo proteins to which it has bound over the period of long term release from the aggregated particle. In another embodiment, the microparticle degrades substantially by surface erosion over a period of at least about one, two, three, four, five or six months or more.
- In another embodiment the surface-modified solid aggregating microparticles of the present invention have a drug loading of 1-40 percent, 5-25 percent, or 5-15 percent weight/weight.
- Examples of polymeric compositions included in surface-modified solid aggregating microparticles of the present invention include, but are not limited to poly(lactide co-glycolide), poly(lactide-co-glycolide) covalently linked to polyethylene glycol, more than one biodegradable polymer or copolymer mixed together, for example, a mixture of poly(lactide-co-glycolide) and poly(lactide-co-glycolide) covalently linked to polyethylene glycol, poly(lactic acid), a surfactant, such as polyvinyl alcohol (which can be hydrolyzed polyvinyl acetate).
- In another embodiment, the invention is an injectable material that includes the microparticles of the present invention in a pharmaceutically acceptable carrier for administration in vivo. The injectable material may include a compound that inhibits aggregation of microparticles prior to injection and/or a viscosity enhancer and/or a salt. In one embodiment, the injectable material has a range of concentration of the surface-modified solid aggregating microparticles of about 50-700 mg/ml, 500 or less mg/ml, 400 or less mg/ml, 300 or less mg/ml, 200 or less mg/ml, or 150 or less mg/ml.
- The present invention further includes a process for the preparation of surface-modified solid aggregating microparticles that includes
-
- (i) a first step of preparing microparticles comprising one or more biodegradable polymers by dissolving or dispersing the polymer(s) and a therapeutic agent in one or more solvents to form a polymer and therapeutic agent solution or dispersion, mixing the polymer and the therapeutic agent solution or dispersion with an aqueous phase containing a surfactant to produce solvent-laden microparticles and then removing the solvent(s) to produce microparticles that contain the therapeutic agent, polymer and surfactant; and
- (ii) a second step of mildly surface-only treating the microparticles of step (i) at a temperature at or below about 18° C. for optionally up to about 140, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 10, 8, 5, 4, 3, 2, or 1 minutes with an agent that removes surface surfactant, surface polymers, or surface oligomers in a manner that does not significantly produce internal pores; and
- (iii) isolating the surface treated microparticles.
- In certain embodiments step (ii) above is carried out at a temperature below 17° C., 15° C., 10° C., or 5° C. Further, step (iii) is optionally carried out at a temperature below 25° C., below 17° C., 15° C., 10° C., 8° C. or 5° C. Step (ii), for example, can be carried out for less than 8, less than 6, less than 4, less than 3, less than 2, or less than 1 minutes. In one embodiment, step (ii) is carried out for less than 60, 50, 40, 30, 20, or 10 minutes.
- In one embodiment, the process of manufacturing surface-modified solid aggregating microparticles includes using an agent that removes surface surfactant. Nonlimiting examples include for example, those selected from: aqueous acid, phosphate buffered saline, water, aqueous NaOH, aqueous hydrochloric acid, aqueous potassium chloride, alcohol or ethanol.
- In one embodiment, the process of manufacturing surface-modified solid aggregating microparticles includes using an agent that removes surface surfactant which comprises, for example, a solvent selected from an alcohol, for example, ethanol; ether, acetone, acetonitrile, DMSO, DMF, THF, dimethylacetamide, carbon disulfide, chloroform, 1,1-dichloroethane, dichloromethane, ethyl acetate, heptane, hexane, methanol, methyl acetate, methyl t-butyl ether (MTBE), pentane, propanol, 2-propanol, toluene, N-methyl pyrrolidinone (NMP), acetamide, piperazine, triethylenediamine, diols, and CO2.
- The agent that removes the surface surfactant can comprise a basic buffer solution. Further, the agent that removes surface surfactant can comprises a base selected from sodium hydroxide, lithium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, lithium amide, sodium amide, barium carbonate, barium hydroxide, barium hydroxide hydrate, calcium carbonate, cesium carbonate, cesium hydroxide, lithium carbonate, magnesium carbonate, potassium carbonate, sodium carbonate, strontium carbonate, ammonia, methylamine, ethylamine, propylamine, isopropylamine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, trimethylamine, triethylamine, tripropylamine, triisopropylamine, aniline, methylaniline, dimethylaniline, pyridine, azajulolidine, benzylamine, methylbenzylamine, dimethylbenzylamine, DABCO, 1,5-diazabicyclo[4.3.0]non-5-ene, 1, 8-diazabicyclo[5.4.0]non-7-ene, 2,6-lutidine, morpholine, piperidine, piperazine, Proton-sponge, 1,5,7-Triazabicyclo[4.4.0]dec-5-ene, tripelennamine, ammonium hydroxide, triethanolamine, ethanolamine, and Trizma.
- In one embodiment, the process of manufacturing surface-modified solid aggregating microparticles includes using an agent that removes surface surfactant, for example, those selected from the following: aqueous acid, phosphate buffered saline, water, or NaOH in the presence of a solvent such as an alcohol, for example, ethanol, ether, acetone, acetonitrile, DMSO, DMF, THF, dimethylacetamide, carbon disulfide, chloroform, 1, 1-di chl oroethane, dichloromethane, ethyl acetate, heptane, hexane, methanol, methyl acetate, methyl t-butyl ether (MTBE), pentane, ethanol, propanol, 2-propanol, toluene, N-methyl pyrrolidinone (NMP), acetamide, piperazine, triethylenediamine, diols, and CO2.
- In one embodiment, the agent that removes the surface surfactant can comprise an aqueous acid. The agent that removes the surface surfactant can comprise an acid derived from inorganic acids including, but not limited to, hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; or organic acids including, but not limited to, acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, mesylic, esylic, besylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, HOOC—(CH2)n—COOH where n is 0-4, and the like.
- In one embodiment, the agent that removes surface surfactant is not a degrading agent of the biodegradable polymer under the conditions of the reaction. The hydrophilicity of the microparticles can be decreased by removing surfactant.
- In one embodiment, the process of manufacturing surface-modified solid aggregating microparticles comprises using an agent that removes surface surfactant that comprises a solvent selected from an alcohol, for example, ethanol, ether, acetone, acetonitrile, DMSO, DMF, THF, dimethylacetamide, carbon disulfide, chloroform, 1, 1-dichl oroethane, dichloromethane, ethyl acetate, heptane, hexane, methanol, methyl acetate, methyl t-butyl ether (MTBE), pentane, ethanol, propanol, 2-propanol, toluene, N-methyl pyrrolidinone (NMP), acetamide, piperazine, triethylenediamine, diols, and CO2. In a typical embodiment the process of surface treating, comprises an agent that removes surface surfactant that comprises ethanol.
- The encapsulation efficiency of the process of manufacturing surface-modified solid aggregating microparticles depends on the microparticle forming conditions and the properties of the therapeutic agent. In certain embodiments, the encapsulation efficiency can be greater than about 50 percent, greater than about 75 percent, greater than about 80 percent, or greater than about 90 percent.
- In one embodiment, the process of manufacturing surface-modified solid aggregating microparticles includes 75/25 PLGA as a biodegradable polymer.
- In an alternative embodiment, the process of manufacturing surface-modified solid aggregating microparticles is carried out below about a pH of 14 and above a pH of 12, below a pH of 12 and above a pH of 10, below a pH of about 10 and above a pH of 8, below about a pH of 8 and above a pH of about 6, neutral pH, below about a pH of 7 and above a pH of 4, below about a pH of 4 and above a pH of about 1.0.
- In one embodiment, step (ii) above is carried out for a time of about less than 140, 120, 110, 100, 90, 60, 40, 30, 20, 10, 3, 2, or 1 minutes.
- In yet another embodiment, a method for the treatment of an ocular disorder is provided that includes administering to a host in need thereof surface-modified solid aggregating microparticles that include an effective amount of a therapeutic agent, wherein the therapeutic agent containing surface-modified solid aggregating microparticles are injected into the eye and in vivo aggregate to form at least one pellet of at least 500 μm that provides sustained drug delivery for at least one, two, or three, four, five, six, seven or more months in such a manner that the pellet stays substantially outside the visual axis as not to significantly impair vision. In an alternative embodiment, the weight percent of surface-modified solid aggregating microparticles that are not aggregated into a larger pellet in vivo is about 10 percent or less, 7 percent or less, 5 percent or less, or 2 percent or less by total weight administered.
- In one embodiment, the surface-modified solid aggregating microparticles do not cause substantial inflammation in the eye.
- In another embodiment, the surface-modified solid aggregating microparticles do not cause an immune response in the eye.
- In one embodiment, the surface-modified microparticles of the present invention, as described herein, are used to treat a medical disorder which is glaucoma, a disorder mediated by carbonic anhydrase, a disorder or abnormality related to an increase in intraocular pressure (IOP), a disorder mediated by nitric oxide synthase (NOS), or a disorder requiring neuroprotection such as to regenerate/repair optic nerves. In another embodiment more generally, the disorder treated is allergic conjunctivitis, anterior uveitis, cataracts, dry or wet age-related macular degeneration (AMD), or diabetic retinopathy.
- Another embodiment is provided that includes the administration of a surface treated microparticle comprising an effective amount of a pharmaceutically active compound or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier, to a host to treat an ocular or other disorder that can benefit from topical or local delivery. The therapy can be delivery to the anterior or posterior chamber of the eye. In specific aspects, a surface treated microparticle comprising an effective amount of a pharmaceutically active compound is administered to treat a disorder of the cornea, conjunctiva, aqueous humor, iris, ciliary body, lens sclera, choroid, retinal pigment epithelium, neural retina, optic nerve, or vitreous humor.
- Any of the compositions described can be administered to the eye as described further herein in any desired form of administration, including via intravitreal, intrastromal, intracameral, subtenon, sub-retinal, retrobulbar, peribulbar, suprachoroidal, subchoroidal, conjunctival, subconjunctival, episcleral, posterior juxtascleral, circumcorneal, tear duct injections, or through a mucus, mucin, or a mucosal barrier, in an immediate or controlled release fashion.
- In one embodiment the disclosure provides a beta-adrenergic antagonist for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- In one embodiment the disclosure provides a prostaglandin analog for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- In one embodiment the disclosure provides an adrenergic agonist for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- In one embodiment the disclosure provides a carbonic anhydrase inhibitor for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- In one embodiment the disclosure provides a parasympathomimetic agent for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- In one embodiment the disclosure provides a dual anti-VEGF/anti-PDGF agent for ocular therapy, which can be released from a surface treated microparticle while maintaining efficacy over an extended time such as up to at least 1, 2, 3, 4, 5, 6, or 7 months.
- Methods of treating or preventing ocular disorders, including glaucoma, a disorder mediated by carbonic anhydrase, a disorder or abnormality related to an increase in intraocular pressure (TOP), a disorder mediated by nitric oxide synthase (NOS), a disorder requiring neuroprotection such as to regenerate/repair optic nerves, allergic conjunctivitis, anterior uveitis, cataracts, dry or wet age-related macular degeneration (AMD) or diabetic retinopathy are disclosed comprising administering a therapeutically effective amount of a surface treated microparticle comprising a pharmaceutically active compound to a host, including a human, in need of such treatment. In one embodiment, the host is a human.
- In another embodiment, an effective amount of a surface treated microparticle comprising a pharmaceutically active compound is provided to decrease intraocular pressure (IOP) caused by glaucoma. In an alternative embodiment, the surface treated microparticle comprising a pharmaceutically active compound can be used to decrease intraocular pressure (IOP), regardless of whether it is associated with glaucoma.
- In one embodiment, the disorder is associated with an increase in intraocular pressure (IOP) caused by potential or previously poor patient compliance to glaucoma treatment. In yet another embodiment, the disorder is associated with potential or poor neuroprotection through neuronal nitric oxide synthase (NOS). The surface treated microparticle comprising a pharmaceutically active compound provided herein may thus dampen or inhibit glaucoma in a host, by administration of an effective amount in a suitable manner to a host, typically a human, in need thereof.
- Methods for the treatment of a disorder associated with glaucoma, increased intraocular pressure (TOP), optic nerve damage caused by either high intraocular pressure (TOP) or neuronal nitric oxide synthase (NOS) are provided that includes the administration of an effective amount of a surface treated microparticle comprising a pharmaceutically active compound are also disclosed.
- In one aspect of the present invention, an effective amount of a pharmaceutically active compound as described herein is incorporated into a surface treated microparticle, e.g., for convenience of delivery and/or sustained release delivery. The use of materials in micrometer scale provides one the ability to modify fundamental physical properties such as solubility, diffusivity, and drug release characteristics. These micrometer scale agents may provide more effective and/or more convenient routes of administration, lower therapeutic toxicity, extend the product life cycle, and ultimately reduce healthcare costs. As therapeutic delivery systems, surface treated microparticles can allow targeted delivery and sustained release.
- In another aspect of the present invention, the surface treated microparticle is coated with a surface agent. The present invention further comprises a method of producing surface treated microparticles comprising a pharmaceutically active compound. The present invention further comprises methods of using the surface treated microparticles comprising a pharmaceutically active compound to treat a patient.
- In one embodiment, surface treated microparticles including a pharmaceutically active compound are obtained by forming an emulsion and using a bead column as described in, for example, U.S. Pat. No. 8,916,196.
- In one embodiment, surface treated microparticles including a pharmaceutically active compound are obtained by using a vibrating mesh or microsieve.
- In one embodiment, surface treated microparticles including a pharmaceutically active compound are obtained by using slurry sieving.
- The processes of producing microspheres described herein are amenable to methods of manufacture that narrow the size distribution of the resultant particles. In one embodiment, the particles are manufactured by a method of spraying the material through a nozzle with acoustic excitation (vibrations) to produce uniform droplets. A carrier stream can also be utilized through the nozzle to allow further control of droplet size. Such methods are described in detail in: Berkland, C., K. Kim, et al. (2001). “Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions.” J Control Release 73(1): 59-74; Berkland, C., M. King, et al. (2002). “Precise control of PLG microsphere size provides enhanced control of drug release rate.” J Control Release 82(1): 137-147; Berkland, C., E. Pollauf, et al. (2004). “Uniform double-walled polymer microspheres of controllable shell thickness.” J Control Release 96(1): 101-111.
- In another embodiment, microparticles of uniform size can be manufactured by methods that utilize microsieves of the desired size. The microsieves can either be used directly during production to influence the size of microparticles formed, or alternatively post production to purify the microparticles to a uniform size. The microsieves can either be mechanical (inorganic material) or biological in nature (organic material such as a membrane). One such method is described in detail in U.S. Pat. No. 8,100,348.
- In one embodiment, the surface treated microparticles comprise a therapeutically active compound and have a particle size of 25 <Dv50<40 μm, Dv90<45 μm.
- In one embodiment, the surface treated microparticles comprise a therapeutically active compound and have a particle size of
Dv 10>10 μm. - In one embodiment, the surface treated microparticles comprise a therapeutically active compound and have only residual solvents that are pharmaceutically acceptable.
- In one embodiment, the surface treated microparticles comprise a therapeutically active compound and afford a total release of greater than eighty percent by
day 14. - In one embodiment, the surface treated microparticles comprise a therapeutically active agent and have syringeability with a regular-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- In one embodiment, the surface treated microparticles comprise a therapeutically active agent and have syringeability with a thin-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- In one embodiment, the surface treated microparticles comprises sunitinib have a particle size of 25<Dv50<40 μm, Dv90<45 μm.
- In one embodiment, the surface treated microparticles comprising sunitinib have a particle size of Dv10>10 μm.
- In one embodiment, the surface treated microparticles comprising sunitinib have only residual solvents that are pharmaceutically acceptable.
- In one embodiment, the surface treated microparticles comprising sunitinib afford a total release of greater than eighty percent by
day 14. - In one embodiment, the surface treated microparticles comprising sunitinib have syringeability with a regular-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- In one embodiment, the surface treated microparticles comprising sunitinib have syringeability with a thin-walled 26, 27, 28, 29 or 30 gauge needle of 200 mg/ml with no clogging of the syringe.
- In one embodiment, the surface treated microparticles comprising sunitinib have an endotoxin level of less than 0.02 EU/mg.
- In one embodiment, the surface treated microparticles comprising sunitinib have a bioburden level of less than 10 CFU/g.
- The surface treated microparticles can include one or more biodegradable polymers or copolymers. The polymers should be biocompatible in that they can be administered to a patient without an unacceptable adverse effect. Biodegradable polymers are well known to those in the art and are the subject of extensive literature and patents. The biodegradable polymer or combination of polymers can be selected to provide the target characteristics of the microparticles, including the appropriate mix of hydrophobic and hydrophilic qualities, half-life and degradation kinetics in vivo, compatibility with the therapeutic agent to be delivered, appropriate behavior at the site of injection, etc.
- For example, it should be understood by one skilled in the art that by manufacturing a microparticle from multiple polymers with varied ratios of hydrophobic, hydrophilic, and biodegradable character that the properties of the microparticle can be designed for the target use. As an illustration, a microparticle manufactured with 90 percent PLGA and 10 percent PEG is more hydrophilic than a microparticle manufactured with 95 percent PLGA and 5 percent PEG. Further, a microparticle manufactured with a higher content of a less biodegradable polymer will in general degrade more slowly. This flexibility allows microparticles of the present invention to be tailored to the desired level of solubility, rate of release of pharmaceutical agent, and rate of degradation.
- In certain embodiments, the microparticle includes a poly(α-hydroxyacid). Examples of poly(α-hydroxyacids) include poly lactic acid (PLA), polyglycolic acid (PGA), poly(D,L-lactide-co-glycolide)(PLGA), and poly D,L-lactic acid (PDLLA). polyesters, poly (ε-caprolactone), poly (3-hydroxy-butyrate), poly (s-caproic acid), poly (p-dioxanone), poly (propylene fumarate), poly (ortho esters), polyol/diketene acetals, addition polymers, polyanhydrides, poly (sebacic anhydride) (PSA), poly (carboxybis-carboxyphenoxyphosphazene) (PCPP), poly [bis (p-carboxyphenoxy) methane] (PCPM), copolymers of SA, CPP and CPM (as described in Tamat and Langer in Journal of Biomaterials Science Polymer Edition, 3, 315-353, 1992 and by Domb in
Chapter 8 of The Handbook of Biodegradable Polymers, Editors Domb A J and Wiseman R M, Harwood Academic Publishers), and poly (amino acids). - In one embodiment, the microparticle includes about at least 90 percent hydrophobic polymer and about not more than 10 percent hydrophilic polymer. Examples of hydrophobic polymers include polyesters such as poly lactic acid (PLA), polyglycolic acid (PGA), poly(D,L-lactide-co-glycolide)(PLGA), and poly D,L-lactic acid (PDLLA); polycaprolactone; polyanhydrides, such as polysebacic anhydride, poly(maleic anhydride); and copolymers thereof. Examples of hydrophilic polymers include poly(alkylene glycols) such as polyethylene glycol (PEG), polyethylene oxide (PEO), and poly(ethylene glycol) amine; polysaccharides; poly(vinyl alcohol) (PVA); polypyrrolidone; polyacrylamide (PAM); polyethylenimine (PEI); poly(acrylic acid); poly(vinylpyrolidone) (PVP); or a copolymer thereof.
- In one embodiment, the microparticle includes about at least 85 percent hydrophobic polymer and at most 15 percent hydrophilic polymer.
- In one embodiment, the microparticle includes about at least 80 percent hydrophobic polymer and at most 20 percent hydrophilic polymer.
- In one embodiment, the microparticle includes PLGA.
- In one embodiment, the microparticle includes a copolymer of PLGA and PEG.
- In one embodiment, the microparticle includes a copolymer of PLA and PEG.
- In one embodiment, the microparticle comprises PLGA and PLGA-PEG, and combinations thereof.
- In one embodiment, the microparticle comprises PLA and PLA-PEG.
- In one embodiment, the microparticle includes PVA.
- In one embodiment, the microparticles include PLGA, PLGA-PEG, PVA, or combinations thereof.
- In one embodiment, the microparticles include the biocompatible polymers PLA, PLA-PEG, PVA, or combinations thereof.
- In one embodiment, the microparticles have a mean size of about 25 μm to about 30 μm and a median size of about 29 μm to about 31 μm before surface treatment.
- In one embodiment, the microparticles after surface treatment have about the same mean size and median size. In another embodiment, the microparticles after surface treatment have a mean size which is larger than the median size. In another embodiment, the microparticles after surface treatment have a mean size which is smaller than the median size.
- In one embodiment, the microparticles have a mean size of about 25 μm to about 30 μm or 30 to 33 μm and a median size of about 31 μm to about 33 μm after surface treatment with approximately 0.0075 M NaOH/ethanol to 0.75 M NaOH/ethanol (30:70, v:v).
- In one embodiment, the microparticles have a mean size of about 25 μm to about 30 μm or 30 to 33 μm and a median size of about 31 μm to about 33 μm after surface treatment with approximately 0.75 M NaOH/ethanol to 2.5 M NaOH/ethanol (30:70, v:v).
- In one embodiment, the microparticles have a mean size of about 25 μm to about 30 μm or 30 to 33 μm and a median size of about 31 μm to about 33 μm after surface treatment with approximately 0.0075 M HC1/ethanol to 0.75 M NaOH/ethanol (30:70, v:v).
- In one embodiment, the microparticles have a mean size of about 25 μm to about 30 μm or 30 to 33 μm and a median size of about 31 μm to about 33 μm after surface treatment with approximately 0.75 M NaOH/ethanol to 2.5 M HCl/ethanol (30:70, v:v).
- In one embodiment, a surface-modified solid aggregating microparticle is manufactured using a wet microparticle.
- In one embodiment, the surface-modified solid aggregating microparticle can release a therapeutic agent over a longer period of time when compared to a non-surface treated microparticle.
- In one embodiment, a surface-modified solid aggregating microparticle contains less surfactant than a microparticle prior to the surface modification.
- In one embodiment, a surface-modified solid aggregating microparticle is more hydrophobic than a microparticle prior to the surface modification.
- In one embodiment, a surface-modified solid aggregating microparticle is less inflammatory than a non-surface treated microparticle.
- In one embodiment, the agent that removes the surface surfactant of a surface-modified solid aggregating microparticle comprises a solvent that partially dissolves or swells the surface-modified solid aggregating microparticle.
- In one aspect of the present invention, an effective amount of a pharmaceutically active compound as described herein is incorporated into a surface treated microparticle, e.g., for convenience of delivery and/or sustained release delivery. The use of materials provides the ability to modify fundamental physical properties such as solubility, diffusivity, and drug release characteristics. These micrometer scale agents may provide more effective and/or more convenient routes of administration, lower therapeutic toxicity, extend the product life cycle, and ultimately reduce healthcare costs. As therapeutic delivery systems, surface treated microparticles can allow targeted delivery and sustained release.
- In one embodiment, the manufacture of the microparticle includes a surfactant. Examples of surfactants include, for example, polyoxyethylene glycol, polyoxypropylene glycol, decyl glucoside, lauryl glucoside, octyl glucoside, polyoxyethylene glycol octylphenol, Triton X-100, glycerol alkyl ester, glyceryl laurate, cocamide MEA, cocamide DEA, dodecyldimethylamine oxide, and poloxamers. Examples of poloxamers include, poloxamers 188, 237, 338 and 407. These poloxamers are available under the trade name Pluronic® (available from BASF, Mount Olive, N.J.) and correspond to Pluronic® F-68, F-87, F-108 and F-127, respectively. Poloxamer 188 (corresponding to Pluronic® F-68) is a block copolymer with an average molecular mass of about 7,000 to about 10,000 Da, or about 8,000 to about 9,000 Da, or about 8,400 Da. Poloxamer 237 (corresponding to Pluronic® F-87) is a block copolymer with an average molecular mass of about 6,000 to about 9,000 Da, or about 6,500 to about 8,000 Da, or about 7,700 Da. Poloxamer 338 (corresponding to Pluronic® F-108) is a block copolymer with an average molecular mass of about 12,000 to about 18,000 Da, or about 13,000 to about 15,000 Da, or about 14,600 Da. Poloxamer 407 (corresponding to Pluronic® F-127) is a polyoxyethylene-polyoxypropylene triblock copolymer in a ratio of between about E101 P56 E101 to about E106 P70 E106, or about E101 P56E101, or about E106 P70 E106, with an average molecular mass of about 10,000 to about 15,000 Da, or about 12,000 to about 14,000 Da, or about 12,000 to about 13,000 Da, or about 12,600 Da.
- Additional examples of surfactants that can be used in the invention include, but are not limited to, polyvinyl alcohol (which can be hydrolyzed polyvinyl acetate), polyvinyl acetate, Vitamin E-TPGS, poloxamers, cholic acid sodium salt, dioctyl sulfosuccinate sodium, hexadecyltrimethyl ammonium bromide, saponin,
TWEEN® 20,TWEEN® 80, sugar esters, Triton X series, L-a-phosphatidylcholine (PC), 1 ,2-dipalmitoylphosphatidycholine (DPPC), oleic acid, sorbitan trioleate, sorbitan mono-oleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monooleate, natural lecithin, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, block copolymers of oxyethylene and oxypropylene, synthetic lecithin, diethylene glycol dioleate, tetrahydrofurfuryl oleate, ethyl oleate, isopropyl myristate, glyceryl monooleate, glyceryl monostearate, glyceryl monoricinoleate, cetyl alcohol, stearyl alcohol, cetylpyridinium chloride, benzalkonium chloride, olive oil, glyceryl monolaurate, corn oil, cotton seed oil, sunflower seed oil, lecithin, oleic acid, and sorbitan trioleate. - It should be recognized by one skilled in the art that some surfactants can be used as polymers in the manufacture of the microparticle. It should also be recognized by one skilled in the art that in some manufacture the microparticle may retain a small amount of surfactant which allows further modification of properties as desired.
- In one embodiment, the composition includes a surface treated microparticle which comprises: a surface treated microparticle and a pharmaceutically active compound encapsulated in the surface treated microparticle optionally in combination with a pharmaceutically acceptable carrier, excipient, or diluent. In one embodiment, the composition is a pharmaceutical composition for treating an eye disorder or eye disease.
- Non-limiting exemplary eye disorders or diseases treatable with the composition include age related macular degeneration, alkaline erosive keratoconjunctivitis, allergic conjunctivitis, allergic keratitis, anterior uveitis, Behcet's disease, blepharitis, blood-aqueous barrier disruption, chorioiditis, chronic uveitis, conjunctivitis, contact lens-induced keratoconjunctivitis, corneal abrasion, corneal trauma, corneal ulcer, crystalline retinopathy, cystoid macular edema, dacryocystitis, diabetic keratopathy, diabetic macular edema, diabetic retinopathy, dry eye disease, dry age-related macular degeneration, eosinophilic granuloma, episcleritis, exudative macular edema, Fuchs' Dystrophy, giant cell arteritis, giant papillary conjunctivitis, glaucoma, glaucoma surgery failure, graft rejection, herpes zoster, inflammation after cataract surgery, iridocorneal endothelial syndrome, iritis, keratoconjunctivitis sicca, keratoconjunctivitis inflammatory disease, keratoconus, lattice dystrophy, map-dot-fingerprint dystrophy, necrotic keratitis, neovascular diseases involving the retina, uveal tract or cornea, for example, neovascular glaucoma, corneal neovascularization, neovascularization resulting following a combined vitrectomy and lensectomy, neovascularization of the optic nerve, and neovascularization due to penetration of the eye or contusive ocular injury, neuroparalytic keratitis, non-infectious uveitis ocular herpes, ocular lymphoma, ocular rosacea, ophthalmic infections, ophthalmic pemphigoid, optic neuritis, panuveitis, papillitis, pars planitis, persistent macular edema, phacoanaphylaxis, posterior uveitis, post-operative inflammation, proliferative diabetic retinopathy, proliferative sickle cell retinopathy, proliferative vitreoretinopathy, retinal artery occlusion, retinal detachment, retinal vein occlusion, retinitis pigmentosa, retinopathy of prematurity, rubeosis iritis, scleritis, Stevens-Johnson syndrome, sympathetic ophthalmia, temporal arteritis, thyroid associated ophthalmopathy, uveitis, vernal conjunctivitis, vitamin A insufficiency-induced keratomalacia, vitritis, and wet age-related macular degeneration.
- A wide variety of therapeutic agents can be delivered in a long term sustained manner in vivo using the present invention.
- A “therapeutically effective amount” of a pharmaceutical composition/combination of this invention means an amount effective, when administered to a patient, to provide a therapeutic benefit such as an amelioration of symptoms of the selected disorder, typically an ocular disorder. In certain aspects, the disorder is glaucoma, a disorder mediated by carbonic anhydrase, a disorder or abnormality related to an increase in intraocular pressure (IOP), a disorder mediated by nitric oxide synthase (NOS), a disorder requiring neuroprotection such as to regenerate/repair optic nerves, allergic conjunctivitis, anterior uveitis, cataracts, dry or wet age-related macular degeneration (AMD), or diabetic retinopathy.
- A “pharmaceutically acceptable salt” is formed when a therapeutically active compound is modified by making an inorganic or organic, non-toxic, acid or base addition salt thereof. Salts can be synthesized from a parent compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such a salt can be prepared by reacting a free acid form of the compound with a stoichiometric amount of the appropriate base (such as Na, Ca, Mg, or K hydroxide, carbonate, bicarbonate, or the like), or by reacting a free base form of the compound with a stoichiometric amount of the appropriate acid. Such reactions are typically carried out in water or in an organic solvent, or in a mixture of the two. Generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are typical, where practicable. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts and the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, conventional non-toxic acid salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, mesylic, esylic, besylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, HOOC—(CH2)n—COOH where n is 0-4, and the like. Lists of additional suitable salts may be found, e.g., in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., p. 1418 (1985). In one embodiment, the surface treated microparticle of the present invention can comprise a compound for the treatment of glaucoma, for instance a beta-adrenergic antagonists, a prostaglandin analog, an adrenergic agonist, a carbonic anhydrase inhibitor, a parasympathomimetic agent, a dual anti-VEGF/Anti-PDGF therapeutic or a dual leucine zipper kinase (DLK) inhibitor. In another embodiment, the surface treated microparticle of the present invention can comprise a compound for the treatment of diabetic retinopathy. Such compounds may be administered in lower doses according to the invention as they may be administered at the site of the ocular disease.
- Examples of beta-adrenergic antagonists include, but are not limited to, timolol (Timoptic®), levobunolol (Betagan®), carteolol (Ocupress®), and metipranolol (OptiPranolol®).
- Examples of prostaglandin analogs include, but are not limited to, latanoprost (Xalatan®), travoprost (Travatan®), bimatoprost (Lumigan®) and tafluprost (Zioptan™).
- Examples of adrenergic agonists include, but are not limited to, brimonidine (Alphagan®), epinephrine, dipivefrin (Propine®) and apraclonidine (Lopidine®).
- Examples of carbonic anhydrase inhibitors include, but are not limited to, dorzolamide (Trusopt®), brinzol ami de (Azopt®), acetazolamide (Diamox®) and methazolamide (Neptazane®), see structures below:
- An example of a parasympathomimetic includes, but is not limited to, pilocarpine.
- DLK inhibitors include, but are not limited to, Crizotinib, KW-2449 and Tozasertib, see structure below.
- Drugs used to treat diabetic retinopathy include, but are not limited to, ranibizumab (Lucenti OD).
- In one embodiment, the dual anti-VEGF/Anti-PDGF therapeutic is sunitinib malate (Sutent®). As de
- In one embodiment, the compound is a treatment for glaucoma and can be used as an effective amount to treat a host in need of glaucoma treatment.
- In another embodiment, the compound acts through a mechanism other than those associated with glaucoma to treat a disorder described herein in a host, typically a human.
- In one embodiment, the therapeutic agent is selected from a phosphoinositide 3-kinase (PI3K) inhibitor, a Bruton's tyrosine kinase (BTK) inhibitor, or a spleen tyrosine kinase (Syk) inhibitor, or a combination thereof.
- PI3K inhibitors that may be used in the present invention are well known. Examples of PI3 kinase inhibitors include but are not limited to Wortmannin, demethoxyviridin, perifosine, idelalisib, Pictilisib , Palomid 529, ZSTK474, PWT33597, CUDC-907, and AEZS-136, duvelisib, GS-9820, BKM120, GDC-0032 (Taselisib) (2-[4-[2-(2-Isopropyl-5-methyl-1,2,4-triazol-3-yl)-5,6-dihydroimidazo[1,2-d][1,4]benzoxazepin-9-yl]pyrazol-1-yl]-2-methylpropanamide), MLN-1117 ((2R)-1-Phenoxy-2-butanyl hydrogen (5)-methylphosphonate; or Methyl(oxo) {[(2R)-1-phenoxy-2-butanyl]oxy}phosphonium)), BYL-719 ((2S)-N1-[4-Methyl-5-[2-(2,2,2-trifluoro-1, 1-dimethylethyl)-4-pyridinyl]-2-thiazolyl]-1,2-pyrrolidinedicarboxamide), GSK2126458 (2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl }benzenesulfonamide) (omipalisib), TGX-221 ((±)-7-Methyl-2-(morpholin-4-yl)-9-(1-phenylaminoethyl)-pyrido[1,2-a]-pyrimi din-4-one), GSK2636771 (2-Methyl-1-(2-methyl-3-(trifluoromethyl)benzyl)-6-morpholino-1H-benzo[d]imidazole-4-carboxylic acid dihydrochloride), KIN-193 ((R)-2-((1-(7-methyl-2-morpholino-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-yl)ethyl)amino)benzoic acid), TGR-1202/RP5264, GS-9820 ((S)-1-(4-((2-(2-aminopyrimidin-5-yl)-7-methyl-4-mohydroxypropan-1-one), GS-1101 (5-fluoro-3-phenyl-2-([S)]-1-[9H-purin-6-ylamino]-propyl)-3H-quinazolin-4-one), AMG-319, GSK-2269557, SAR245409 (N-(4-(N-(3-((3,5 -dimethoxyphenyl)amino)quinoxalin-2 -yl) sulfamoyl)phenyl)-3-methoxy-4 methylbenzamide), BAY80-6946 (2-amino-N-(7-methoxy-8-(3-morpholinopropoxy)-2,3 -dihydroimi dazo [1,2-c]quinaz), AS 252424 (5-[1-[5-(4-Fluoro-2-hydroxy-phenyl)-furan-2-yl]-meth-(Z)-ylidene]-thiazolidine-2,4-dione), CZ 24832 (5-(2-amino-8-fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-N-tert-butylpyridine-3-sulfonamide), Buparlisib (5-[2,6-Di(4-morpholinyl)-4-pyrimidinyl]-4-(trifluoromethyl)-2-pyridinamine), GDC-0941 (2-(1H-Indazol-4-yl)-6[[4-(methylsulfonyl)-1-piperazinyl]methyl]-4-(4-morpholinyl)thieno[3,2-d]pyrimidine), GDC-0980 ((S)-1-(4-((2-(2-aminopyrimidin-5-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-6 yl)methyl)piperazin-l-yl)-2-hydroxypropan-l-one (also known as RG7422)), SF1126 ((8S,14S,17S)-14-(carboxymethyl)-8-(3-guanidinopropyl)-17-(hydroxymethyl)-3,6,9,12,15-pentaoxo-1-(4-(4-oxo-8-phenyl-4H-chromen-2-yl)morpholino-4-ium)-2-oxa-7,10,13,16-tetraazaoctadecan-18-oate), PF-05212384 (N-[4-[[4-(Dimethylamino)-1-piperidinyl]carbonyl]phenyl]-N44-(4,6-di-4-morpholinyl-1,3,5-triazin-2-yl)phenyflurea) (gedatolisib), LY3023414, BEZ235 (2-Methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-l-yl]phenyl}propanenitrile) (dactoli sib), XL-765 (N-(3 -(N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)sulfamoyl)phenyl)-3-methoxy-4-methylbenzamide), and GSK1059615 (5[[4-(4-Pyridinyl)-6-quinolinyl]methylene]-2,4-thiazolidenedione), PX886 ([(3aR,6E,9S,9aR,10R,11aS)-6-[[bis(prop-2-enyl)amino]methylidene]-5-hydroxy-9-(methoxymethyl)-9a,11a-dimethyl-1,4,7-trioxo-2,3,3a,9,10,11-hexahydroindeno[4,5h]isochromen-acetate (also known as sonolisib)), LY294002, AZD8186, PF-4989216, pilaralisib, GNE-317, PI-3065, PI-103, NU7441 (KU-57788), HS 173, VS-5584 (SB2343), CZC24832, TG100-115, A66, YM201636, CAY10505, PIK-75, PIK-93, AS-605240, BGT226 (NVP-BGT226), AZD6482, voxtalisib, alpelisib, IC-87114, TGI100713, CH5132799, PKI-402, copanlisib (BAY 80-6946), XL 147, PIK-90, PIK-293, PIK-294, 3-MA (3-methyladenine), AS-252424, AS-604850, apitolisib (GDC-0980; RG7422), and the structure described in WO2014/071109 having the formula:
- BTK inhibitors for use in the present invention are well known. Examples of BTK inhibitors include ibrutinib (also known as PCI-32765)(Imbruvica™)(1-[(3R)-3-[4-amino-3-(4-phenoxy-phenyl)pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one), dianilinopyrimidine-based inhibitors such as AVL-101 and AVL-291/292 (N-(3-((5-fluoro-2-((4-(2-methoxyethoxy)phenyl)amino)pyrimidin-4-yl)amino)phenyl)acrylamide) (Avila Therapeutics) (US Patent publication No 2011/0117073, incorporated herein in its entirety), Dasatinib ([N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-l-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide], LFM-A13 (alpha-cyano-beta-hy droxy-beta-methyl-N-(2,5-ibromophenyl) propenamide), GDC-0834 ([R-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7- tetrahydrobenzo[b]thiophene-2-carboxamide], CGI-560 4-(tent-butyl)-N-(3-(8-(phenylamino)imidazo[1,2-a]pyrazin-6-yl)phenyl)benzamide, CGI-1746 (4-(tert-butyl)-N-(2-methyl-3-(4-methyl-6-((4-(morpholine-4-carbonyl)phenyl)amino)-5-oxo-4,5-dihydropyrazin-2-yl)phenyl)benzamide), CNX-774 (4-(4(4((4(3- acrylamidophenyl)amino)-5-fluoropyrimidin-2-yl)amino)phenoxy)-N-methylpi colinami de), CTA056 (7-b enzyl-1-(3-(piperidin-1-yl)propyl)-2-(4-(pyridin-4-yl)phenyl)-1H-imidazo[4,5-g]quinoxalin-6(5H)-one), GDC-0834 ((R)-N-(3- (6((4-(1,4-dimethyl-3-oxopip erazin-2-yl)phenyl)amino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5, 6,7-tetrahy drob enzo [b]thi ophene-2-carboxamide), GDC-0837 ((R)-N-(3-(6-((4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenyl)amino)-4-methyl-5-oxo-4, 5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahy drob enzo [b]thi ophene-2-carboxamide), HM-71224, ACP-196, ONO-4059 (Ono Pharmaceuticals), PRT062607 (44(3-(2H-1,2,3-triazol-2-yl)phenyl)amino)-2-(((1R,2S)-2-aminocyclohexyl)amino)pyrimidine-5-carboxamide hydrochloride), QL-47 (1-(1-acryl oylindolin-6-yl)-9-(1-methyl-1H-pyrazol-4-yl)benzo[h][1, 6]naphthyridin-2(1H)-one), and RN486 (6-cyclopropyl-8-fluoro-2-(2-hydroxymethyl-3-{1-methyl-5-[5-(4-methyl-piperazin-1-y1)-pyridin-2-ylamino]-6-oxo-1,6-dihydro-pyridin-3-yl}-phenyl)-2H-i soquinolin-1-one), and other molecules capable of inhibiting BTK activity, for example those BTK inhibitors disclosed in Akinleye et ah, Journal of Hematology & Oncology, 2013, 6:59, the entirety of which is incorporated herein by reference.
- Syk inhibitors for use in the present invention are well known, and include, for example, Cerdulatinib (4-(cy cl opropyl amino)-2-((4-(4-(ethyl sulfonyl)piperazin-1-yl)phenyl)amino)pyrimi dine-5-carboxamide), entospletinib (6-(1H-indazol-6-yl)-N-(4- morpholinophenyl)imidazo[1,2-a]pyrazin-8-amine), fostamatinib ([64 {-Fluoro-2-[(3 ,4, 5-trimethoxyphenyl)amino]-4-pyrimidinyl } amino)-2,2-dimethyl-3-oxo-2,3-dihydro-4H-pyrido[3,2-b][1,4]oxazin-4-yl]methyl dihydrogen phosphate), fostamatinib disodium salt (sodium (6-((5-fluoro-2-((3,4,5-trimethoxyphenyl)amino)pyrimi din-4-yl)amino)-2,2-dimethyl-3-oxo-2H-pyrido[3,2-b] [1,4] oxazin-4(31/)-yl)methyl phosphate), BAY 61-3606 (2-(7-(3,4-Dimethoxyphenyl)-imi dazo[1,2-c]pyrimi din-5-ylamino)-ni cotinami de HC1), R09021 (6-[(1R,2S)-2-Amino-cyclohexylamino]-4-(5,6-dimethyl-pyridin-2-ylamino)-pyridazine-3-carboxylic acid amide), imatinib (Gleevac; 4-[(4-methylpiperazin-1-yl)methyl]-N-(4-methyl-3-{[4-(pyridin-3-yl)pyrimidin-2-yl]amino}phenyl)b enzamide), staurosporine, GSK143 (2-(((3R,4R)-3-aminotetrahydro-2H-pyran-4-yl)amino)-4-(p-tolylamino)pyrimidine-5-carboxamide), PP2 (1-(tert-butyl)-3-(4-chlorophenyl)-1H-pyrazolo[3 ,4-d]pyrimidin-4-amine), PRT-060318 (24(1R,2S)-2-aminocyclohexyl)amino)-4-(m-tolylamino)pyrimidine-5-carboxamide), PRT-062607 (443-(2H-1,2,3-tri azol-2-yl)phenyl)amino)-24(1R,2S)-2-aminocycl ohexyl)amino)pyrimi dine-5-carboxamide hydrochloride), R112 (3,3′4(5-fluoropyrimidine-2,4-diyl)bis(azanediyl))diphenol), R348 (3-Ethyl-4-methylpyridine), R406 (6-((5-fluoro-243,4,5-trimethoxyphenyl)amino)pyrimidin-4-yl)amino)-2,2-dimethyl-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one), piceatannol (3-Hydroxyresveratol), YM193306 (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 3614-3643), 7-azaindole, piceatannol, ER-27319 (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), Compound D (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), PRT060318 (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), luteolin (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), apigenin (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), quercetin (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), fisetin (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), myricetin (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), morin (Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein).
- In one embodiment, the therapeutic agent is a MEK inhibitor. MEK inhibitors for use in the present invention are well known, and include, for example, trametinib/GSK1120212 (N-(3-{3-Cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyri do [4,3-d]pyrimidin-1(2H-yl}phenyl)acetamide), selumetinib (6-(4-bromo-2-chl oroanilino)-7-fluoro-N-(2-hy droxy ethoxy)-3-methylbenzimidazole-5-carboxamide), pimasertib/AS703026NISC 1935369 ((S)-N-(2,3-dihydroxypropyl)-3-((2-fluoro-4-iodophenyl)amino)isonicotinamide), XL-518/GDC-0973 (1-({3,4-difluoro-2-[(2- fluoro-4-iodophenyl)amino]phenyl}carbonyl)-3-[(2S)-piperidin-2-yl]azetidin-3-ol), refametinib/BAY869766/RDEAI 19 (N-(3,4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2,3-dihydroxypropyl)cyclopropane-1-sulfonamide), PD-0325901 (N-[(2R) -2,3-Dihydroxypropoxy]-3,4-difluoro-2-[(2-fluoro-4-odophenyl)amino]-benzamide), TAK733 ((R)-3-(2,3-Dihydroxypropyl)-6-fluoro-5-(2-fluoro-4-odophenyl amino)-8-methylpyrido[2,3-d]pyrimidine-4,7(3H, 8H)-dione), MEK162/ARRY438162 (5-[(4-Bromo-2-fluorophenyl)amino]-4-fluoro-N-(2-hydroxyethoxy)-1-methyl-1H-benzimidazole-6-carboxamide), R05126766 (3-[[3-Fluoro-2-(methylsulfamoylamino)-4-pyridyl]methyl]-4-methyl-7-pyrimidin-2-yloxychromen-2-one), WX-554, R04987655/CH4987655 (3,4-difluoro-2-((2-fluoro-4-odophenyl)amino)-N-(2-hy droxy ethoxy)-5-((3-oxo-1,2-oxazinan-2y1)methyl)benzamide), or AZD8330 (2-((2-fluoro-4-iodophenyl)amino)-N-(2 hydroxyethoxy)-1,5-dimethyl-6-oxo-1,6- dihydropyridine-3-carboxamide), U0126-EtOH, PD184352 (CI-1040), GDC-0623, BI-847325, cobimetinib, PD98059, BIX 02189, BIX 02188, binimetinib, SL-327, TAK-733, PD318088, and additional MEK inhibitors as described below.
- In one embodiment, the therapeutic agent is a Raf inhibitor. Raf inhibitors for use in the present invention are well known, and include, for example, Vemurafinib (N-[3-[[5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl] carbonyl]-2,4-difluorophenyl]-1-propanesulfonamide), sorafenib tosylate (4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methylpyridine-2-carboxamide;4-methylbenzenesulfonate), AZ628 (3-(2-cyanoprop an-2-yl)-N-(4-methyl-3-(3-methyl-4-oxo-3,4-dihydroquinazolin-6-ylamino)phenyl)benzamide), NVP-BHG712 (4-methyl-3-(1-methyl-6-(pyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-ylamino)-N-(3-(trifluoromethyl)phenyl)benzamide), RAF-265 (1-methyl-5-[2-[5-(trifluoromethyl)-1H-imidazol-2-yl]pyridin-4-yl]oxy-N-[4-(trifluoromethyl)phenyl]benzimidazol-2-amine), 2-Bromoaldisine (2-Bromo-6,7-dihydro-1H,5H-pyrrolo[2,3-c]azepine-4,8-dione), Raf Kinase Inhibitor IV (2-chloro-5-(2-phenyl-5-(pyridin-4-yl)-1H-imidazol-4-yl)phenol), Sorafenib N-Oxide (4-[4-[[[[4-Chloro-3 (trifluoroMethyl)phenyl]aMino]carb onyl]aMino]phenoxy]-N-Methyl-2pyridinecarboxaMide 1-Oxide), PLX-4720, dabrafenib (GSK2118436), GDC-0879, RAF265, AZ 628, SB590885, ZM336372, GW5074, TAK-632, CEP-32496, LY3009120, and GX818 (Encorafenib).
- In one embodiment, the therapeutic agent is a programmed death protein 1 (PD-1) inhibitor, a programmed death protein ligand 1 (PDL1) inhibitor, or a programmed death protein ligand 2 (PDL2) inhibitor. PD-1, PDL1, and PDL2 inhibitors are known in the art, and include, for example, nivolumab (BMS), pembrolizumab (Merck), pidilizumab (CureTech/Teva), AMP-244 (Amplimmune/GSK), BMS-936559 (BMS), and MEDI4736 (Roche/Genentech), and MPDL3280A (Genentech).
- In one embodiment, a therapeutic agent can be administered in a sustained fashion.
- In one embodiment, the therapeutic agent is a monoclonal antibody (MAb). Some MAbs stimulate an immune response that destroys cancer cells. Similar to the antibodies produced naturally by B cells, these MAbs “coat” the cancer cell surface, triggering its destruction by the immune system. For example, bevacizumab targets vascular endothelial growth factor(VEGF), a protein secreted by tumor cells and other cells in the tumor's microenvironment that promotes the development of tumor blood vessels. When bound to bevacizumab, VEGF cannot interact with its cellular receptor, preventing the signaling that leads to the growth of new blood vessels. Similarly, cetuximab and panitumumab target the epidermal growth factor receptor (EGFR), and trastuzumab targets the human epidermal growth factor receptor 2 (HER-2). MAbs that bind to cell surface growth factor receptors prevent the targeted receptors from sending their normal growth-promoting signals. They may also trigger apoptosis and activate the immune system to destroy tumor cells.
- Other agents may include, but are not limited to, at least one of tamoxifen, midazolam, letrozole, bortezomib, anastrozole, goserelin, an mTOR inhibitor, a PI3 kinase inhibitor as described above, a dual mTOR-PI3K inhibitor, a MEK inhibitor, a RAS inhibitor, ALK inhibitor, an HSP inhibitor (for example, HSP70 and
HSP 90 inhibitor, or a combination thereof), a BCL-2 inhibitor as described above, apopototic inducing compounds, an AKT inhibitor, including but not limited to, MK-2206, GSK690693, Perifosine, (KRX-0401), GDC-0068, Triciribine, AZD5363, Honokiol, PF-04691502, and Miltefosine, a PD-1 inhibitor as described above including but not limited to, Nivolumab, CT-011, MK-3475, BMS936558, and AMP-514 or a FLT-3 inhibitor, including but not limited to, P406, Dovitinib, Quizartinib (AC220), Amuvatinib (MP-470), Tandutinib (MLN518), ENMD-2076, and KW-2449, or a combination thereof. Examples of mTOR inhibitors include but are not limited to rapamycin and its analogs, everolimus (Afinitor), temsirolimus, ridaforolimus, sirolimus, and deforolimus. Examples of MEK inhibitors include but are not limited to tametinib/GSK1120212 (N-(3-{3-Cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyrido[4,3-d]pyrimidin-1(2H-yl}phenyl)acetamide), selumetinob (6-(4-bromo-2-chloroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-methylbenzimidazole-5-carboxamide), pimasertib/AS703026NISC1935369 ((S)-N-(2,3-dihydroxypropyl)-3-((2-fluoro-4-iodophenyl)amino)isonicotinamide), XL-518/GDC-0973 (1-({3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]phenyl}carbonyl)-3-[(2S)-piperidin-2-yl]azetidin-3-ol) (cobimetinib), refametinib/BAY869766/RDEAl19 (N-(3,4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2,3-dihydroxypropyl)cyclopropane-l-sulfonamide), PD-0325901 (N-[(2R)-2,3-Dihydroxypropoxy]-3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]-benzamide), TAK733 ((R)-3-(2,3-Dihydroxypropyl)-6-fluoro-5-(2-fluoro-4-iodophenylamino)-8-methylpyrido[2,3d]pyrimidine-4,7(3H,8H)-dione), MEK162/ARRY438162 (5-[(4-Bromo-2-fluorophenyl)amino]-4-fluoro-N-(2-hydroxyethoxy)-1-methyl-1H-benzimidazole-6 carboxamide), R05126766 (3-[[3-Fluoro-2-(methyl sulfamoylamino)-4-pyridyl]methyl]-4-methyl-7-pyrimidin-2-yloxychromen-2-one), WX-554, R04987655/CH4987655 (3,4-difluoro-2-((2-fluoro-4-iodophenyl)amino)-N-(2-hydroxyethoxy)-5-((3-oxo-1,2-oxazinan-2 yl)methyl)benzamide), or AZD8330 (2-((2-fluoro-4-iodophenyl)amino)-N-(2-hydroxyethoxy)-1,5-dimethyl-6-oxo-1,6-dihydropyridine-3-carboxamide). Examples of RAS inhibitors include but are not limited to Reolysin and siG12D LODER. Examples of ALK inhibitors include but are not limited to Crizotinib, Ceritinib (Zykadia), AP26113, and LDK378. HSP inhibitors include but are not limited to Geldanamycin or 17-N-Allylamino-17-demethoxygeldanamycin (17AAG), and Radicicol. - In certain aspects, the therapeutic agent is an anti-inflammatory agent, a chemotherapeutic agent, a radiotherapeutic, an additional therapeutic agent, or an immunosuppressive agent.
- In one embodiment, a chemotherapeutic is selected from, but not limited to, imatinib mesylate (Gleevac®), dasatinib (Sprycel®), nilotinib (Tasigna®), bosutinib (Bosulif®), trastuzumab (Herceptin®), trastuzumab-DM1, pertuzumab (Perjeta™), lapatinib (Tykerb®), gefitinib (Iressa®), erlotinib (Tarceva®), cetuximab (Erbitux®), panitumumab (Vectibix®), vandetanib (Caprelsa®), vemurafenib (Zelboraf®), vorinostat (Zolinza®), romidepsin (Istodax®), bexarotene (Tagretin®), alitretinoin (Panretin®), tretinoin (Vesanoid®), carfilizomib (Kyprolis™), pralatrexate (Folotyn®), bevacizumab (Avastin®), ziv-aflibercept (Zaltrap®), sorafenib (Nexavar®), sunitinib (Sutent®), pazopanib (Votrient®), regorafenib (Stivarga®), and cabozantinib (Cometriq™).
- Additional chemotherapeutic agents include, but are not limited to, a radioactive molecule, a toxin, also referred to as cytotoxin or cytotoxic agent, which includes any agent that is detrimental to the viability of cells, and liposomes or other vesicles containing chemotherapeutic compounds. General anticancer pharmaceutical agents include: vincristine (Oncovin®) or liposomal vincristine (Marqibog®), daunorubicin (daunomycin or Cerubidine®) or doxorubicin (Adriamycin®), cytarabine (cytosine arabinoside, ara-C, or Cytosar®), L-asparaginase (Elspar®) or PEG-L-asparaginase (pegaspargase or Oncaspar®), etoposide (VP-16), teniposide (Vumon®), 6-mercaptopurine (6-MP or Purinethol®), Methotrexate, cyclophosphamide (Cytoxan®), Prednisone, dexamethasone (Decadron), imatinib (Gleevec®), dasatinib (Sprycel®), nilotinib (Tasigna®), bosutinib (Bosulif®), and ponatinib (Iclusig™). Examples of additional suitable chemotherapeutic agents include but are not limited to 1-dehydrotestosterone, 5-fluorouracil decarbazine, 6-mercaptopurine, 6-thioguanine, actinomycin D, adriamycin, aldesleukin, an alkylating agent, allopurinol sodium, altretamine, amifostine, anastrozole, anthramycin (AMC)), an anti-mitotic agent, ci s-dichl orodi amine platinum (II) (DDP) cisplatin), di amino di chl oro platinum, anthracycline, an antibiotic, an antimetabolite, asparaginase, BCG live (intravesical), betamethasone sodium phosphate and betamethasone acetate, bicalutamide, bleomycin sulfate, busulfan, calcium leucouorin, calicheamicin, capecitabine, carboplatin, lomustine (CCNU), carmustine (BSNU), chlorambucil, cisplatin, cladribine, colchicin, conjugated estrogens, cyclophosphamide, cyclothosphamide, cytarabine, cytarabine, cytochalasin B, cytoxan, dacarbazine, dactinomycin, dactinomycin (formerly actinomycin), daunirubicin HCL, daunorucbicin citrate, denileukin diftitox, Dexrazoxane, Dibromomannitol, dihydroxy anthracin dione, docetaxel, dolasetron mesylate, doxorubicin HCL, dronabinol, E. coli L-asparaginase, emetine, epoetin-α, Envinia L-asparaginase, esterified estrogens, estradiol, estramustine phosphate sodium, ethidium bromide, ethinyl estradiol, etidronate, etoposide citrororum factor, etoposide phosphate, filgrastim, floxuridine, fluconazole, fludarabine phosphate, fluorouracil, flutamide, folinic acid, gemcitabine HCL, glucocorticoids, goserelin acetate, gramicidin D, granisetron HCL, hydroxyurea, idarubicin HCL, ifosfamide, interferon α-2b, irinotecan HCL, letrozole, leucovorin calcium, leuprolide acetate, levamisole HCL, lidocaine, lomustine, maytansinoid, mechlorethamine HCL, medroxyprogesterone acetate, megestrol acetate, melphalan HCL, mercaptipurine, mesna, methotrexate, methyltestosterone, mithramycin, mitomycin C, mitotane, mitoxantrone, nilutamide, octreotide acetate, ondansetron HCL, paclitaxel, pamidronate disodium, pentostatin, pilocarpine HCL, plimycin, polifeprosan 20 with carmustine implant, porfimer sodium, procaine, procarbazine HCL, propranolol, rituximab, sargramostim, streptozotocin, tamoxifen, taxol, teniposide, tenoposide, testolactone, tetracaine, thioepa chlorambucil, thioguanine, thiotepa, topotecan HCL, toremifene citrate, trastuzumab, tretinoin, valrubicin, vinblastine sulfate, vincristine sulfate, and vinorelbine tartrate.
- Additional therapeutic agents can include bevacizumab, sutinib, sorafenib, 2-methoxyestradiol or 2ME2, finasunate, vatalanib, vandetanib, aflibercept, volociximab, etaracizumab (MEDI-522), cilengitide, erlotinib, cetuximab, panitumumab, gefitinib, trastuzumab, dovitinib, figitumumab, atacicept, rituximab, alemtuzumab, aldesleukine, atlizumab, tocilizumab, temsirolimus, everolimus, lucatumumab, dacetuzumab, HLL1, huN901-DM1, atiprimod, natalizumab, bortezomib, carfilzomib, marizomib, tanespimycin, saquinavir mesylate, ritonavir, nelfinavir mesylate, indinavir sulfate, belinostat, panobinostat, mapatumumab, lexatumumab, dulanermin, ABT-737, oblimersen, plitidepsin, talmapimod, P276-00, enzastaurin, tipifarnib, perifosine, imatinib, dasatinib, lenalidomide, thalidomide, simvastatin, celecoxib, bazedoxifene, AZD4547, rilotumumab, oxaliplatin (Eloxatin), PD0332991 (palbociclib), ribociclib (LEE011), amebaciclib (LY2835219), HDM201, fulvestrant (Faslodex), exemestane (Aromasin), PIM447, ruxolitinib (INC424), BGJ398, necitumumab, pemetrexed (Alimta), and ramucirumab (IMC-1121B).
- In one aspect of the present invention, an immunosuppressive agent is used, preferably selected from the group consisting of a calcineurin inhibitor, e.g. a cyclosporin or an ascomycin, e.g. Cyclosporin A (NEORAL®), FK506 (tacrolimus), pimecrolimus, a mTOR inhibitor, e.g. rapamycin or a derivative thereof, e.g. Sirolimus (RAPAMUNE®), Everolimus (Certican®), temsirolimus, zotarolimus, biolimus-7, biolimus-9, a rapalog, e.g. ridaforolimus, azathioprine, campath 1H, a S1P receptor modulator, e.g. fingolimod or an analogue thereof, an anti-IL-8 antibody, mycophenolic acid or a salt thereof, e.g. sodium salt, or a prodrug thereof, e.g. Mycophenolate Mofetil (CELLCEPT®), OKT3 (ORTHOCLONE OKT3®), Prednisone, ATGAM®, THYMOGLOBULIN®, Brequinar Sodium, OKT4, T10B9.A-3A, 33B3.1, 15-deoxyspergualin, tresperimus, Leflunomide ARAVA®, CTLAI-Ig, anti-CD25, anti-IL2R, Basiliximab (SEVIULECT®), Daclizumab (ZENAPAX®), mizorbine, methotrexate, dexamethasone, ISAtx-247, SDZ ASM 981 (pimecrolimus, Elidel®), CTLA4lg (Abatacept), belatacept, LFA3lg, etanercept (sold as Enbrel® by Immunex), adalimumab (Humira®), infliximab (Remicade®), an anti-LFA-1 antibody, natalizumab (Antegren®), Enlimomab, gavilimomab, antithymocyte immunoglobulin, siplizumab, Alefacept efalizumab, pentasa, mesalazine, asacol, codeine phosphate, benorylate, fenbufen, naprosyn, diclofenac, etodolac and indomethacin, aspirin and ibuprofen.
- Examples of types of therapeutic agents that can be include anti-inflammatory drugs, antimicrobial agents, anti-angiogenesis agents, immunosuppressants, antibodies, steroids, ocular antihypertensive drugs and combinations thereof. Examples of therapeutic agents include amikacin, anecortane acetate, anthracenedione, anthracycline, an azole, amphotericin B, bevacizumab, camptothecin, cefuroxime, chloramphenicol, chlorhexidine, chlorhexidine digluconate, clortrimazole, a clotrimazole cephalosporin, corticosteroids, dexamethasone, desamethazone, econazole, eftazidime, epipodophyllotoxin, fluconazole, flucytosine, fluoropyrimidines, fluoroquinolines, gatifloxacin, glycopeptides, imidazoles, itraconazole, ivermectin, ketoconazole, levofloxacin, macrolides, miconazole, miconazole nitrate, moxifloxacin, natamycin, neomycin, nystatin, ofloxacin, polyhexamethylene biguanide, prednisolone, prednisolone acetate, pegaptanib, platinum analogues, polymicin B, propamidine isethionate, pyrimidine nucleoside, ranibizumab, squalamine lactate, sulfonamides, triamcinolone, triamcinolone acetonide, triazoles, vancomycin, anti-vascular endothelial growth factor (VEGF) agents, VEGF antibodies, VEGF antibody fragments, vinca alkaloid, timolol, betaxolol, travoprost, latanoprost, bimatoprost, brimonidine, dorzolamide, acetazolamide, pilocarpine, ciprofloxacin, azithromycin, gentamycin, tobramycin, cefazolin, voriconazole, gancyclovir, cidofovir, foscarnet, diclofenac, nepafenac, ketorolac, ibuprofen, indomethacin, fluoromethalone, rimexolone, anecortave, cyclosporine, methotrexate, tacrolimus and combinations thereof.
- Examples of immunosuppressive agents are calcineurin inhibitor, e.g., a cyclosporin or an ascomycin, e.g., Cyclosporin A (NEORAL®), FK506 (tacrolimus), pimecrolimus, a mTOR inhibitor, e.g., rapamycin or a derivative thereof, e.g., Sirolimus (RAPAMUNE®), Everolimus (Certican®), temsirolimus, zotarolimus, biolimus-7, biolimus-9, a rapalog, e.g., ridaforolimus, azathioprine, campath 1H, a S11 3 receptor modulator, e.g., fingolimod or an analogue thereof, an anti IL-8 antibody, mycophenolic acid or a salt thereof, e.g., sodium salt, or a prodrug thereof, e.g., Mycophenolate Mofetil (CELLCEPT®), OKT3 (ORTHOCLONE OKT3®), Prednisone, ATGAM®, THYMOGLOBULIN®, Brequinar Sodium, OKT4, T10B9.A-3A, 33B3.1, 15-deoxyspergualin, tresperimus, Leflunomide ARAVA®, CTLAI-Ig, anti-CD25, anti-IL2R, Basiliximab (SIIVIULECT®), Daclizumab (ZENAPAX®), mizorbine, methotrexate, dexamethasone, ISAtx-247, SDZ ASM 981 (pimecrolimus, Elidel®), CTLA4lg (Abatacept), belatacept, LFA3lg, etanercept (sold as Enbrel® by Immunex), adalimumab (Humira®), infliximab (Remicade®), an anti-LFA-1 antibody, natalizumab (Antegren®), Enlimomab, gavilimomab, antithymocyte immunoglobulin, siplizumab, Alefacept efalizumab, pentasa, mesalazine, asacol, codeine phosphate, benorylate, fenbufen, naprosyn, diclofenac, etodolac and indomethacin, aspirin and ibuprofen.
- An aspect of the invention is a method for the treatment of a disorder, comprising administering to a host in need thereof surface-modified solid aggregating microparticles comprising an effective amount of a therapeutic agent, wherein the therapeutic agent containing surface-modified solid aggregating microparticles are injected into the body and aggregate in vivo to form at least one pellet of at least 500 μm that provides sustained drug delivery for at least one month.
- Any suitable pharmaceutically acceptable carrier, for example, ophthalmically acceptable viscous carrier, may be employed in accordance with the invention. The carrier is present in an amount effective in providing the desired viscosity to the drug delivery system. Advantageously, the viscous carrier is present in an amount in a range of from about 0.5 wt percent to about 95 wt percent of the drug delivery particles. The specific amount of the viscous carrier used depends upon a number of factors including, for example and without limitation, the specific viscous carrier used, the molecular weight of the viscous carrier used, the viscosity desired for the present drug delivery system being produced and/or used and like factors. Examples of useful viscous carriers include, but are not limited to, hyaluronic acid, sodium hyaluronate, carbomers, polyacrylic acid, cellulosic derivatives, polycarbophil, polyvinylpyrrolidone, gelatin, dextrin, polysaccharides, polyacrylamide, polyvinyl alcohol (which can be partially hydrolyzed polyvinyl acetate), polyvinyl acetate, derivatives thereof and mixtures thereof.
- The carrier can also be an aqueous carrier. Example of aqueous carriers include, but are not limited to, an aqueous solution or suspension, such as saline, plasma, bone marrow aspirate, buffers, such as Hank's Buffered Salt Solution (HBSS), HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), Ringers buffer, ProVisc®, diluted ProVisc®, ProVisc® diluted with PBS, Krebs buffer, Dulbecco's PBS, normal PBS; sodium hyaluronate solution (HA, 5 mg/mL in PBS), simulated body fluids, plasma platelet concentrate and tissue culture medium or an aqueous solution or suspension comprising an organic solvent.
- In one embodiment, the carrier is PBS.
- In one embodiment, the carrier is HA, 5 mg/mL in PBS.
- In one embodiment, the carrier is ProVisc® diluted with water.
- In one embodiment, the carrier is ProVisc® dilution in PBS.
- In one embodiment, the carrier is ProVisc® 5-fold diluted with water.
- In one embodiment, the carrier is ProVisc® 5-fold dilution in PBS.
- In one embodiment, the carrier is ProVisc® 10-fold diluted with water.
- In one embodiment, the carrier is ProVisc® 10-fold dilution in PBS.
- In one embodiment, the carrier is ProVisc® 20-fold dilution with water.
- In one embodiment, the carrier is ProVisc® 20-fold dilution in PBS.
- In one embodiment, the carrier is HA, 1.25 mg/mL in an isotonic buffer solution with neutral pH.
- The carrier may, optionally, contain one or more suspending agent. The suspending agent may be selected from carboxy methylcellulose (CMC), mannitol, polysorbate, poly propylene glycol, poly ethylene glycol, gelatin, albumin, alginate, hydroxyl propyl methyl cellulose (HPMC), hydroxyl ethyl methyl cellulose (HEMC), bentonite, tragacanth, dextrin, sesame oil, almond oil, sucrose, acacia gum and xanthan gum and combinations thereof.
- The carrier may, optionally, contain one or more plasticizers. Thus the carrier may also include a plasticizer. The plasticizer may, for example, be polyethylene glycol (PEG), polypropylene glycol, poly (lactic acid) or poly (glycolic acid) or a copolymer thereof, polycaprolactone, and low molecule weight oligomers of these polymers, or conventional plasticizers, such as, adipates, phosphates, phthalates, sabacates, azelates and citrates. The carrier can also include other known pharmaceutical excipients in order to improve the stability of the agent.
- In one embodiment, one or more additional excipients or delivery enhancing agents may also be included e.g., surfactants and/or hydrogels, in order to further influence release rate.
- The rate of release of the pharmaceutically active compound can be related to the concentration of pharmaceutically active compound dissolved in the surface treated microparticle. In some embodiments, the polymeric composition of the surface treated microparticle includes non-therapeutic agents that are selected to provide a desired solubility of the pharmaceutically active compound. The selection of the polymeric composition can be made to provide the desired solubility of the pharmaceutically active compound in the surface treated microparticle, for example, a hydrogel may promote solubility of a hydrophilic material. In some embodiments, functional groups can be added to the polymer to increase the desired solubility of the pharmaceutically active compound in the surface treated microparticle. In some embodiments, additives may be used to control the release kinetics of the pharmaceutically active compound, for example, the additives may be used to control the concentration of the pharmaceutically active compound by increasing or decreasing the solubility of the pharmaceutically active compound in the polymer so as to control the release kinetics of the pharmaceutically active compound. The solubility may be controlled by including appropriate molecules and/or substances that increase and/or decrease the solubility of the dissolved form of the pharmaceutically active compound in the surface treated microparticle. The solubility of the pharmaceutically active compound may be related to the hydrophobic and/or hydrophilic properties of the surface treated microparticle and the pharmaceutically active compound. Oils and hydrophobic molecules can be added to the polymer(s) to increase the solubility of a pharmaceutically active compound in the surface treated microparticle.
- Instead of, or in addition to, controlling the rate of migration based on the concentration of the pharmaceutically active compound dissolved in the surface treated microparticle, the surface area of the polymeric composition can be controlled to attain the desired rate of drug migration out of the surface treated microparticle comprising a pharmaceutically active compound. For example, a larger exposed surface area will increase the rate of migration of the pharmaceutically active compound to the surface, and a smaller exposed surface area will decrease the rate of migration of the pharmaceutically active compound to the surface. The exposed surface area can be increased in any number of ways, for example, by any of castellation of the exposed surface, a porous surface having exposed channels connected with the tear or tear film, indentation of the exposed surface, or protrusion of the exposed surface. The exposed surface can be made porous by the addition of salts that dissolve and leave a porous cavity once the salt dissolves. In the present invention, these trends can be used to decrease the release rate of the active material from the polymeric composition by avoiding these paths to quicker release. For example, the surface area can be minimized, or channels can be avoided.
- Where more than one type of polymer is used, each surface treated microparticle may have a different solidifying or setting property. For example, the surface treated microparticles may be made from similar polymers but may have different gelling pHs or different melting temperatures or glass transition points.
- In order for the surface treated microparticles to form a consolidated aggregate, the temperature around the particles, for example in the human or non-human animal where the composition is administered, is approximately equal to, or greater than, the glass transition temperature (Tg) of the polymer particles. At such temperatures the polymer particles will cross-link to one or more other polymer particles to form a consolidated aggregate. By cross-link it is meant that adjacent polymer particles become joined together. For example, the particles may cross-link due to entanglement of the polymer chains at the surface of one particle with polymer chains at the surface of another particle. There may be adhesion, cohesion or fusion between adjacent particles.
- Typically, the injectable surface treated microparticles which are formed of a polymer or a polymer blend have a glass transition temperature (Tg) either close to or just above body temperature (such as from about 30° C. to 45° C., e.g., from about 35° C. to 40° C., for example, from about 37° C. to 40° C.). Accordingly, at room temperature the surface treated microparticles are below their Tg and behave as discrete particles, but in the body the surface treated microparticles soften and interact/stick to themselves. Typically, agglomeration begins within 20 seconds to about 15 minutes of the raise in temperature from room to body temperature.
- The surface treated microparticles may be formed from a polymer which has a Tg from about 35° C. to 40° C., for example from about 37° C. to 40° C., wherein the polymer is a poly(α-hydroxyacid) (such as PLA, PGA, PLGA, or PDLLA or a combination thereof), or a blend thereof with PLGA-PEG. Typically, these particles will agglomerate at body temperature. The injectable surface treated microparticles may comprise only poly(α-hydroxyacid) particles or other particle types may be included. The microparticles can be formed from a blend of poly(D,L-lactide-co-glycolide)(PLGA), PLGA-PEG and PVA which has a Tg at or above body temperature. In one embodiment, at body temperature the surface treated microparticles will interact to form a consolidated aggregate. The injectable microparticle may comprise only PLGA/PLGA-PEG/PVA surface treated microparticles or other particle types may be included.
- The composition may comprise a mixture of temperature sensitive surface treated microparticles and non-temperature sensitive surface treated microparticles. Non-temperature sensitive surface treated microparticles are particles with a glass transition temperature which is above the temperature at which the composition is intended to be used. Typically, in a composition comprising a mixture of temperature sensitive surface treated microparticles and non-temperature sensitive particles the ratio of temperature sensitive to non-temperature sensitive surface treated microparticles is about 3:1, or lower, for example, 4:3. The temperature sensitive surface treated microparticles are advantageously capable of crosslinking to each other when the temperature of the composition is raised to or above the glass transition of these microparticles. By controlling the ratio of temperature sensitive surface treated microparticles to non-temperature sensitive surface treated microparticles it may be possible to manipulate the porosity of the resulting consolidated aggregate. The surface treated microparticles may be solid, that is with a solid outer surface, or they may be porous. The particles may be irregular or substantially spherical in shape.
- The surface treated microparticles can have a size in their longest dimension, or their diameter if they are substantially spherical, of less than about 100 μm and more than about 1 μm. The surface treated microparticles can have a size in their longest dimension, or their diameter, of less than about 100 μm. The surface treated microparticles can have a size in their longest dimension, or their diameter, of between about 1 μm and about 40 μm, more typically, between about 20 μm and about 40 μm. Polymer particles of the desired size will pass through a sieve or filter with a pore size of about 40 μm.
- Formation of the consolidated aggregate from the composition, once administered to a human or non-human animal, typically takes from about 20 seconds to about 24 hours, for example, between about 1 minute and about 5 hours, between about 1 minute and about 1 hour, less than about 30 minutes, less than about 20 minutes. Typically, the solidification occurs in between about 1 minute and about 20 minutes from administration.
- Typically, the composition comprises from about 20 percent to about 80 percent injectable surface treated microparticle material and from about 20 percent to about 80 percent carrier; from about 30 percent to about 70 percent injectable surface treated microparticle material and from about 30 percent to about 70 percent carrier; e.g., the composition may comprise from about 40 percent to about 60 percent injectable surface treated microparticle material and from about 40 percent to about 60 percent carrier; the composition may comprise about 50 percent injectable surface treated microparticle material and about 50 percent carrier. The aforementioned percentages all refer to percentage by weight.
- The surface treated microparticles are loaded, for example, in the surface treated microparticle or as a coating on the surface treated microparticle, with a pharmaceutically active compound.
- The system of the invention can allow for the pharmaceutically active compound release to be sustained for some time, for example, release can be sustained for at least about 2 hours, at least about 4 hours, at least about 6 hours, at least about 10 hours, at least about 12 hours, at least about 24 hours, at least 48 hours, at least a week, more than one week, at least a month, at least two months, at least three months, at least four months, at least five months, at least six months, or at least seven months.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 1 percent to about 5 percent of total payload over a 24 hour period.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 10 percent of total payload over a 24 hour period.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 15 percent of total payload over a 24 hour period.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 20 percent of total payload over a 24 hour period.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 1 percent to about 5 percent of total payload over a 12 hour period.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 10 percent of total payload over a 12 hour period.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 15 percent of total payload over a 12 hour period.
- In one embodiment, the surface-modified solid aggregating microparticles that produce a pellet in vivo release the therapeutic agent without a burst of more than about 15 percent of total payload over a 12 hour period.
- In one embodiment, the pharmaceutically active compound is released in an amount effective to have a desired local or systemic physiological or pharmacologically effect.
- In one embodiment, delivery of a pharmaceutically active compound means that the pharmaceutically active compound is released from the consolidated aggregate into the environment around the consolidated aggregate, for example, the vitreal fluid.
- In one embodiment, a surface treated microparticle comprising a pharmaceutically active compound of the invention allows a substantially zero or first order release rate of the pharmaceutically active compound from the consolidated aggregate once the consolidated aggregate has formed. A zero order release rate is a constant release of the pharmaceutically active compound over a defined time; such release is difficult to achieve using known delivery methods.
- Microparticles can be formed using any suitable method for the formation of polymer microparticles known in the art. The method employed for particle formation will depend on a variety of factors, including the characteristics of the polymers present in the drug or polymer matrix, as well as the desired particle size and size distribution. The type of drug(s) being incorporated in the microparticles may also be a factor as some drugs are unstable in the presence of certain solvents, in certain temperature ranges, and/or in certain pH ranges.
- Particles having an average particle size of between 1 micron and 100 microns are useful in the compositions described herein. In typical embodiments, the particles have an average particle size of between 1 micron and 40 microns, more typically between about 10 micron and about 40 microns, more typically between about 20 micron and about 40 microns. The particles can have any shape but are generally spherical in shape.
- In circumstances where a monodisperse population of particles is desired, the particles may be formed using a method which produces a monodisperse population of microparticles. Alternatively, methods producing polydispersed microparticle distributions can be used, and the particles can be separated using methods known in the art, such as sieving, following particle formation to provide a population of particles having the desired average particle size and particle size distribution.
- Common techniques for preparing microparticles include, but are not limited to, solvent evaporation, hot melt particle formation, solvent removal, spray drying, phase inversion, coacervation, and low temperature casting. Suitable methods of particle formulation are briefly described below. Pharmaceutically acceptable excipients, including pH modifying agents, disintegrants, preservatives, and antioxidants, can optionally be incorporated into the particles during particle formation.
- In one embodiment, surface treated microparticles are prepared using continuous chemistry manufacturing processes. In one embodiment, surface treated microparticles are prepared using step-wise manufacturing processes.
- In one embodiment, microparticles containing a therapeutic agent can be prepared as described in PCT/US2015/065894. In one embodiment, the microparticles are prepared by:
-
- (i) dissolving or dispersing the therapeutic agent or its salt in an organic solvent optionally with an alkaline agent;
- (ii) mixing the solution/dispersion of step (i) with a polymer solution that has a viscosity of at least about 300 cPs (or perhaps at least about 350, 400, 500, 600, 700 or 800 or more cPs);
- (iii) mixing the therapeutic agent polymer solution/dispersion of step (ii) with an aqueous non-acidic or alkaline solution (for example at least approximately a pH of 7, 8, or 9 and typically not higher than about 10) optionally with a surfactant or emulsifier, to form a solvent-laden therapeutic agent encapsulated microparticle,
- (iv) isolating the microparticles.
In one embodiment, the therapeutic agent is sunitinib.
- It has been found that it may be useful to include the alkaline agent in the organic solvent. However, as described in PCT/US2015/065894, it has been found that adding an acid to the organic solvent can improve drug loading of the microparticle. Examples demonstrate that polyesters such as PLGA, PEG-PLGA(PLA) and PEG-PLGA/PLGA blend microparticles display sustained release of the therapeutic agent or its pharmaceutically acceptable salt. Polymer microparticles composed of PLGA and PEG covalently conjugated to PLGA (
M w 45 kDa) (PLGA45k-PEG5k) loaded with the therapeutic agent were prepared using a single emulsion solvent evaporation method. Loading improvement was achieved by increasing the alkalinity of the therapeutic agent in solution, up to 16.1% with PEG-PLGA, which could be further increased by adding DMF, compared to only 1% with no alkaline added. The therapeutic agent loading was further increased by increasing the pH of the aqueous solution as well as the polymer solution. Still further significant increases in therapeutic agent loading in the microparticles was achieved by increasing polymer concentration or viscosity. In one embodiment, the therapeutic agent is sunitinib. - In this method, the drug (or polymer matrix and drug) is dissolved in a volatile organic solvent, such as methylene chloride, acetone, acetonitrile, 2-butanol, 2-butanone, t-butyl alcohol, benzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof. The organic solution containing the drug is then suspended in an aqueous solution that contains a surface active agent such as poly(vinyl alcohol). The resulting emulsion is stirred until most of the organic solvent is evaporated, leaving solid microparticles. The resulting microparticles are washed with water and dried overnight in a lyophilizer. Microparticles with different sizes and morphologies can be obtained by this method.
- Microparticles which contain labile polymers, such as certain polyanhydrides, may degrade during the fabrication process due to the presence of water. For these polymers, the following two methods, which are performed in completely anhydrous organic solvents, can be used.
- Solvent removal can also be used to prepare particles from drugs that are hydrolytically unstable. In this method, the drug (or polymer matrix and drug) is dispersed or dissolved in a volatile organic solvent such as methylene chloride, acetone, acetonitrile, benzene, 2-butanol, 2-butanone, t-butyl alcohol, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof. This mixture is then suspended by stirring in an organic oil (such as silicon oil, castor oil, paraffin oil, or mineral oil) to form an emulsion. Solid particles form from the emulsion, which can subsequently be isolated from the supernatant. The external morphology of spheres produced with this technique is highly dependent on the identity of the drug.
- In this method, the drug (or polymer matrix and drug) is dispersed or dissolved in a volatile organic solvent such as methylene chloride, acetone, acetonitrile, benzene, 2-butanol, 2-butanone, t-butyl alcohol, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof. This mixture is then suspended by stirring in an aqueous solution of surface active agent, such as poly(vinyl alcohol), to form an emulsion. Solid particles form from the emulsion, which can subsequently be isolated from the supernatant. The external morphology of spheres produced with this technique is highly dependent on the identity of the drug.
- As described in PCT/US2015/065894, microparticles with a therapeutic agent can be prepared using the oil-in-water emulsion method. In one example, sunitinib microparticles were prepared by dissolving 100 mg PEG-PLGA (5K, 45) in 1 mL methylene chloride, and dissolving 20 mg sunitinib malate in 0.5 mL DMSO and triethylamine. The solutions were then mixed together, homogenized at 5000 rpm, 1 minute into an aqueous solution containing 1% polyvinyl alcohol (PVA) and stirred for 2 hours. The particles were collected, washed with double distilled water, and freeze dried. In another example, sunitinib microparticles were also prepared according to PCT/US2015/065894 by dissolving 200 mg PLGA (2A, Alkermers) in 3 mL methylene chloride, and 40 mg sunitinib malate in 0.5 mL DMSO and triethylamine. The solutions were then mixed together and homogenized at 5000 rpm, 1 minute in 1% PVA and stirred for 2 hours. The particles were collected, washed with double distilled water, and freeze dried.
- In this method, the drug (or polymer matrix and drug) is dissolved in an organic solvent such as methylene chloride, acetone, acetonitrile, 2-butanol, 2-butanone, t-butyl alcohol, benzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, ethanol, ethyl acetate, heptane, hexane, methanol, methyl tent-butyl ether, pentane, petroleum ether, iso-propanol, n-propanol, tetrahydrofuran, or mixtures thereof. The solution is pumped through a micronizing nozzle driven by a flow of compressed gas, and the resulting aerosol is suspended in a heated cyclone of air, allowing the solvent to evaporate from the microdroplets, forming particles. Particles ranging between 0.1-10 microns can be obtained using this method.
- Particles can be formed from drugs using a phase inversion method. In this method, the drug (or polymer matrix and drug) is dissolved in a solvent, and the solution is poured into a strong non solvent for the drug to spontaneously produce, under favorable conditions, microparticles or nanoparticles. The method can be used to produce nanoparticles in a wide range of sizes, including, for example, about 100 nanometers to about 10 microns, typically possessing a narrow particle size distribution.
- Techniques for particle formation using coacervation are known in the art, for example, in GB-B-929 406; GB-B-929 40 1; and U.S. Pat. Nos. 3,266,987, 4,794,000, and 4,460,563.
- Coacervation involves the separation of a drug (or polymer matrix and drug) solution into two immiscible liquid phases. One phase is a dense coacervate phase, which contains a high concentration of the drug, while the second phase contains a low concentration of the drug. Within the dense coacervate phase, the drug forms nanoscale or microscale droplets, which harden into particles. Coacervation may be induced by a temperature change, addition of a non-solvent or addition of a micro-salt (simple coacervation), or by the addition of another polymer thereby forming an interpolymer complex (complex coacervation).
- Methods for very low temperature casting of controlled release microspheres are described in U.S. Pat. No. 5,019,400 to Gombotz et al. In this method, the drug (or polymer matrix and sunitinib) is dissolved in a solvent. The mixture is then atomized into a vessel containing a liquid non-solvent at a temperature below the freezing point of the drug solution which freezes the drug droplets. As the droplets and non-solvent for the drug are warmed, the solvent in the droplets thaws and is extracted into the non-solvent, hardening the microspheres.
- The processes for producing microparticles described in the Examples are amenable to scale up by methods known in the art. Examples of such methods include U.S. Pat. Nos. 4,822,534 5,271,961; 5,945,126; 6,270,802; 6,361,798; 8,708,159; and U.S. publication 2010/0143479. U.S. Pat. No. 4,822,534 describes a method of manufacture to provide solid microspheres that involves the use of dispersions. These dispersions could be produced industrially and allowed for scale up. U.S. Pat. No. 5,271,961 disclosed the production of protein microspheres which involved the use of low temperatures, usually less than 45° C. U.S. Pat. No. 5,945,126 describes the method of manufacture to produce microparticles on full production scale while maintaining size uniformity observed in laboratory scale. U.S. Pat. No. 6,270,802 and U.S. Pat. No. 6,361,798 describe the large scale method of manufacture of polymeric microparticles whilst maintaining a sterile field. U.S. Pat. No. 8,708,159 describes the processing of microparticles on scale using a hydrocyclone apparatus. U.S. publication 2010/0143479 describes the method of manufacture of microparticles on large scale specifically for slow release microparticles.
- XSpray has disclosed a device and the use of supercritical fluids to produce particles of a size below 10 μM (U.S. Pat. No. 8,167,279). Additional patents to XSpray include U.S. Pat. No. 8,585,942 and U.S. Pat. No. 8,585,943. Sun Pharmaceuticals has disclosed a process for the manufacture of microspheres or microcapsules, WO 2006/123359, herein incorporated by reference. As an example, Process A involves five steps that include 1) the preparation of a first dispersed phase comprising a therapeutically active ingredient, a biodegradable polymer and an organic solvent 2) mixing the first dispersed phase with an aqueous phase to form an emulsion 3) spraying the emulsion into a vessel equipped to remove an organic solvent and 4) passing the resulting microspheres or microcapsules through a first and second screen thereby collecting a fractionated size of the microspheres or microcapsules and 5) drying the microspheres or microcapsules.
- Xu, Q. et al. have disclosed the preparation of monodispersed biodegradable polymer microparticles using a microfluidic flow-focusing device (Xu, Q., et al “Preparation of Monodispersed Biodegradable Polymer Microparticles Using a Microfluidic Flow-Focusing Device for Controlled Drug Delivery”, Small, Vol 5(13): 1575-1581, 2009).
- Duncanson, W. J. et al. have disclosed the use of microfluidic devices to generate microspheres (Duncanson, W. J. et al. “Microfluidic Synthesis of Monodisperse Porous Microspheres with Size-tunable Pores”, Soft Matter,
Vol 8, 10636-10640, 2012). - U.S. Pat. No. 8,916,196 to Evonik describes an apparatus and method for the production of emulsion based microparticles that can be used in connection with the present invention.
-
-
- DCM, CH2Cl2 Dichloromethane
- DL Drug loading
- DMSO Dimethyl sulfoxide
- EtOH Ethanol
- HA Sodium hyaluronate
- hr, h Hour
- min Minute
- NaOH Sodium hydroxide
- NS TMP Non-surface treated microparticles
- PBS Dulbecco's phosphate-buffered saline
- PCL Polycaprolactone
- PEG Polyethylene glycol
- PLA Poly(lactic acid)
- PLGA Poly(lactic-co-glycolic acid)
- PVA Polyvinyl alcohol
- Rpm Revolutions per minute
- RT, r.t. Room temperature
- SD Standard deviation
- STMP Surface treated microparticles
- UV Ultraviolet
- All non-aqueous reactions were performed under an atmosphere of dry argon or nitrogen gas using anhydrous solvents. The structure of starting materials, intermediates, and final products was confirmed by standard analytical techniques, including NMR spectroscopy and mass spectrometry.
- Sodium hydroxide (NaOH, catalog #: S318-1, Fisher Chemical), ethanol (EtOH, catalog #: A405-20, Fisher Chemical), Dulbecco's phosphate-buffered saline (PBS, catalog #: SH3085003, GE Healthcare HyClone™), sodium hyaluronate (HA, catalog #: AC251770010, Acros Organics) and Tween 20 (catalog #: BP337-100, Fisher BioReagents) were purchased from Fisher Scientific.
- Polyvinyl alcohol (PVA) (88 percent hydrolyzed, MW approximately 25 kD) (catalog#: 02975) was purchased from Polysciences, Inc. Sunitinib malate was purchased from LC Laboratories (catalog #: S-8803). ProVisc® (10 mg/mL, 0.85 mL, catalog#: 21989, Alcon) was purchased from Besse Medical. Poly(lactic-co-glycolic acid) (PLGA) polymer, poly(lactic-acid) (PLA) polymer, and diblock co-polymers of PLGA and polyethylene glycol (PLGA-PEG) were purchased from the Evonik Corporation (RESOMER Select 5050 DLG mPEG 5000 (10 wt percent PEG)). A FreeZone 4.5 liter benchtop freeze dry system was used for lyophilization.
- ProVisc® OVD (Ophthalmic Viscosurgical Device) is a sterile, non-pyrogenic, high molecular weight, non-inflammatory highly purified fraction of sodium hyaluronate dissolved in physiological sodium chloride phosphate buffer. It is FDA approved and indicated for use as an ophthalmic surgical aid. Sodium hyaluronate is a derivative of hyaluronan for clinical use. Hyaluronan, also known as hyaluronic acid, is a naturally occurring glycosaminoglycan found throughout the body including in the aqueous and vitreous humors of the eye.
- Polymer microparticles comprising PLGA and diblock copolymer of PLGA and PEG with or without sunitinib malate were prepared using a single emulsion solvent evaporation method. Briefly, PLGA (560 mg) and PLGA-PEG (5.6 mg) were co-dissolved in dichloromethane (DCM) (4 mL). Sunitinib malate (90 mg) was dissolved in dimethyl sulfoxide (DMSO) (2 mL). The polymer solution and the drug solution were mixed to form a homogeneous solution (organic phase). For empty NSTMP, DMSO (2 mL) without drug was used. For drug-loaded NSTMP, the organic phase was added to an aqueous 1% PVA solution in PBS (200 mL) and homogenized at 5,00 rpm for 1 minute using an L5M-A laboratory mixer (Silverson Machines Inc., East Longmeadow, MA) to obtain an emulsion. For empty NSTMP, 1 percent PVA solution in water (200 mL) was used.
- The emulsion (solvent-laden microparticles) was then hardened by stirring at room temperature for more than 2 hours to allow the DCM to evaporate. The microparticles were collected by sedimentation and centrifugation, washed three times in water, and filtered through a 40-μm sterile Falcon ® cell strainer (Corning Inc., Corning, NY). The non-surface treated microparticles (NSTMP) were either used directly in the surface treatment process or dried by lyophilization and stored as a dry powder at −20° C. until used.
- A pre-chilled solution containing 0.25 M NaOH (aq) and ethanol at a predetermined ratio was added to microparticles in a glass vial under stirring in an ice bath at approximately 4° C. to form a suspension at 100 mg/mL. The suspension was then stirred for a predetermined time (e.g., 3, 6 or 10 minutes) on ice and poured into a pre-chilled filtration apparatus to remove the NaOH (aq)/EtOH solution. The microparticles were further rinsed with pre-chilled water and transferred to a 50-mL centrifuge tube. The particles were then suspended in pre-chilled water and kept in a refrigerator for 30 minutes to allow the particles to settle. Following removal of the supernatant, the particles were resuspended and filtered through a 40-μm cell strainer to remove large aggregates. Subsequently, the particles were washed twice with water at room temperature and freeze-dried overnight. Detailed formulation information and conditions of NaOH(aq)/EtOH surface treatment experiments are listed in Table 1.
-
TABLE 1 Detailed batch information on NaOH(aq)/EtOH surface treated microparticles Microparticles Batch Ratio of 0.25M Treatment before surface size NaOH (aq) Time STMP treatment (mg) to EtOH (v/v) (min) ID S-1 (99% PLGA 7525 200 30/70 3 S-2 4A, 1% PLGA-PEG) 200 6 S-3 DL = 18.0% 200 10 S-4 S-5 (90% PLGA 7525 200 50/50 3 S-6 4A, 10% PLGA-PEG) 200 6 S-7 DL = 18.9% 200 30/70 6 S-8 S-9 (99% PLGA 7525 1000 30/70 3 S-10 4A, 1% PLGA-PEG) DL = 18.3% S-11 (99% PLGA 7525 2300 30/70 3 S-12 4A, 1% PLGA-PEG) DL = 11.1% S-13 (99% PLGA 7525 3600 30/70 3 S-14 4A, 1% PLGA-PEG) DL = 11.9% S-15 (99% PLGA 7525 2000 30/70 3 S-16 4A, 1% PLGA-PEG) DL = 2.15% S-17 (99% PLGA 7525 2000 30/70 3 S-18 4A, 1% PLGA-PEG) DL = 2.21% DL = Drug loading. - Surface treated microparticles (STMP) were suspended in phosphate buffered saline (PBS) at a concentration of 200 mg/mL. Thirty or fifty microliters of the suspension were injected into 1.5-2.0 mL of PBS or sodium hyaluronate solution (HA, 5 mg/mL in PBS) pre-warmed at 37° C. in a 2 mL microcentrifuge tube using a 0.5 mL insulin syringe with a permanent 27-gauge needle (Terumo or Easy Touch brand). The microcentrifuge tube was then incubated in a water bath at 37° C. for 2 hours. The aggregability of the microparticles was assessed by visual observation and/or imaging under gentle agitation by inverting and/or tapping and flicking the tubes containing the microparticles. Non-surface treated microparticles (NSTMP) were used as a control.
- A successful surface treatment process is expected to result in STMP that maintain good suspendability, syringeability and injectability. Most importantly, after the injection into PBS or sodium hyaluronate and the 2 hour incubation at 37° C., the STMP are expected to form consolidated aggregate(s) that do not break into smaller aggregates or free floating particles under gentle agitation, a key feature that differentiates STMP from NSTMP and STMP with low aggregability.
- The effect of temperature on surface treatment was studied by comparing particles treated at room temperature vs. treated at 4° C. The procedure for surface treatment at room temperature was identical to the procedure described in Example 2 except that it was conducted at room temperature instead of at 4° C.
- When the surface treatment process was carried out at room temperature in a mixture of 0.25 M NaOH and EtOH (v/v: 30/70 or 70/30), the particles aggregated quickly and irreversibly during surface treatment. In contrast, particles treated at 4° C. in a mixture of NaOH/EtOH at the same volume ratio did not aggregate during the surface treatment process and maintained good suspendability and inj ectability upon reconstitution. For surface treatment at room temperature in 0.25 M NaOH without EtOH, the particles did not aggregate during the 1 hour surface treatment. In addition, STMP treated in NaOH failed to aggregate following incubation at 37° C. In contrast, STMP treated around 4° C. did not aggregate during surface treatment, but aggregated following incubation at 37° C. After lyophilization and reconstitution in a particle diluent, the STMP were easily loaded into syringes through a 27 gauge needle and injected without needle blockage.
-
-
TABLE 2 NSTMP and STMP containing different percentages of PLGA:PLGA-PEG Formulation PLGA PLGA-PEG Surface Treatment # (wt %) (wt %) Condition S-1 99% 1% None S-3 99% 1% 0.25M NaOH/EtOH (30/70, v/v), 6 min S-5 90% 10% None S-8 90% 10% 0.25M NaOH/EtOH (30/70, v/v), 6 min - Two batches of NSTMP (S-1 and S-5) and two batches of STMP (S-3 and S-8) containing different weight percentages of PLGA/PLGA-PEG were surface treated following the procedure described below and their aggregability in both PBS and HA gel were evaluated.
- As listed in Table 2 above, formulation S-3 contained 1% PLGA-PEG and S-8 contained 10% of PLGA-PEG. Samples S-3 and S-8 were individually treated in a mixture of 0.25M NaOH and EtOH at a volume ratio of 30/70 at 4° C. for 6 minutes. Following injection in PBS and incubation at 37° C. for 2 hours, the microcentrifuge tubes were inverted and the aggregability of the particles was assessed by visual inspection. As illustrated in
FIG. 1 , the NSTMP S-1 and S-5 started to disperse immediately after the tubes were inverted, while the STMP, S-3 and S-8, remained aggregated at the bottom of the tubes without dispersion throughout the entire period of observation (about 10 minutes). - A similar second experiment was conducted by injecting the same particle suspensions into HA solutions and incubating the samples at 37° C. for 2 hours. Immediately after the tubes were inverted, none of the particles became dispersed, including NSTMP; refer to
FIG. 2 . This is likely due to the higher viscosity of HA that prevents particles from diffusing rapidly in the gel solution. Different from S-1 which remained aggregated throughout the experiment, S-5 started to become dispersed inHA 2 minutes after the tube was inverted. Without wishing to be bound to any one theory, this may be related to the higher PEG content in S-1 that affects the interaction between particles and between the particle surfaces and HA, and thus the diffusion of S-5 in HA was less hindered than that of S-1. Though S-8 remained aggregated after injection and incubation in PBS, it appeared more dispersive in HA solution. In contrast, S-3, which contains less PEG than S-8, was able to aggregate in both PBS and HA solution. These data indicate that the aggregation and dispersion of STMP can be affected by both the particle composition and properties of the medium where the STMP are injected. - In a third experiment, samples containing S-1, S-2, S-3, S-4, S-5, S-6, S-7 and S-8 were incubated in PBS at 37° C. for 2 hours. After assessing the aggregability by inverting the tubes, stronger agitation was applied by tapping the tubes on the bench, which caused the particle aggregates to detach from the bottom of the tubes. The integrity of the aggregates was then examined and compared among different formulations. As shown in
FIG. 3 , S-3 (1 percent PLGA-PEG) remained as an integrated single aggregate after detachment from the bottom of the tube. In comparison, though most particles in S-8 (10% PLGA-PEG) remained as one large aggregate, many dispersed small aggregates or particles were visible in the tube. The assay with stronger agitation allowed further differentiation of the aggregability of different particle formulations. Overall, the data suggest that STMP with lower PEG content generally form stronger and more consolidated aggregates than STMP with higher PEG content. - Since NaOH is a strong base that may cause partial degradation of polymers and lead to rapid modification of the surface properties of particles, a neutral phosphate buffered saline (PBS) solution at pH 7.4 was evaluated as an alternative to NaOH and the effect of surface treatment using PBS/EtOH on microparticles was studied. The surface treatment procedure was identical to that described in Example 2, except that the NaOH solution was replaced with PBS (pH 7.4). The experiment was performed in an ice bath at approximately 4° C. Detailed formulation composition and surface treatment conditions are listed in Table 3. The aggregability of the surface treated microparticles (STMP) was tested following the procedure described in Example 3.
-
TABLE 3 Formulation composition and conditions of surface treatment with PBS/EtOH Particle Batch PBS/ Treatment ID before Drug size EtOH Time STMP treatment Composition Loading (mg) (v/v) (min) ID S-11 99% PLGA 11.1% 200 30/70 3 S-21 S-19 7525 4A, 1% 11.8% 500 S-22 PLGA-PEG 500 S-23 500 6 S-24 S-20 0% 200 6 S-25 200 12 S-26 - The results of the aggregability test demonstrated that similar to surface treatment with NaOH/EtOH, all of the STMP treated with PBS/EtOH were able to form an aggregate after injection into PBS and incubation for 2 hours at 37° C. The aggregates appeared stable and resistant to gentle agitation; refer to
FIG. 4 , a photo of S-21. There was no apparent difference in particle aggregability under in vitro aggregation assay (procedure was conducted as described in Example 3) between these STMP and the STMP generated by treatment in NaOH/EtOH. Both drug-loaded STMP and empty STMP were able to aggregate in PBS, suggesting the surface treatment process likely has good compatibility with various particle formulations with or without drug. - To further optimize the surface treatment conditions with NaOH(aq)/EtOH, the impact of various parameters, such as NaOH concentration, aqueous/EtOH ratio, and treatment time, on surface treatment were studied (Table 4). It is worth noting that in this Example, the overall molar concentration of NaOH in the entire aqueous/EtOH mixture was used as a variable independent of the ratio of aqueous solution to EtOH instead of using the molarity of NaOH in the aqueous phase only as in Example 2. For example, 0.25M NaOH(aq)/EtOH (v/v: 30/70) in Example 2 is equivalent to 0.075 M of NaOH in an aqueous/EtOH (v/v: 30/70) mixture. Thus the volume ratio of aqueous to EtOH was modified from 30/70 to 50/50 and 70/30 with the same total amount of NaOH in the mixture. In addition, the amount of NaOH was decreased by 10- or 100-fold without changing the ratio of aqueous solution to EtOH. The different treatment time was chosen to achieve comparable effectiveness of surface treatment. The procedure for surface treatment on microparticles was the same as Example 2.
-
TABLE 4 Detailed batch information on modified NaOH(aq)/EtOH STMP NaOH Microparticles Batch concentration Treatment before surface size in H2O/EtOH H2O/EtOH Time STMP treatment (mg) mixture (M) ratio (v/v) (min) ID S-27 (99% PLGA 7525 200 0.075 50/50 10 S-28 4A, 1% PLGA-PEG) 200 50/50 20 S-29 DL = 11.3% 200 70/30 15 S-30 200 70/30 30 S-31 200 0.0075 30/70 3 S-32 200 30/70 10 S-33 200 0.00075 30/70 3 S-34 200 30/70 10 S-35 - As surface treatment using an aqueous solution of basic pH (Example 2 and Example 7) or neutral pH (Example 6) had been tested previously, the effect of aqueous solution of acidic pH was evaluated in Example 8. HCl was selected as a representative acid. As shown in Table 5, microparticles were treated for 3 minutes in 0.075 M or 0.0075 M of HCl in H2O/EtOH (v/v: 30/70) mixture, respectively. The procedure for HCl/EtOH surface treatment was the same as in Example 2 except that HCl (aq) was used to replace NaOH (aq).
-
TABLE 5 Detailed batch information of HCl/EtOH treated STMP HCl Microparticles Batch concentration Treatment Final surface before surface size in H2O/EtOH H2O/EtOH Time treated treatment (mg) mixture (M) ratio (v/v) (min) particles S-27 (99% PLGA 7525 200 0.075 30/70 3 S-36 4A, 1% PLGA-PEG) 200 0.0075 30/70 3 S-37 DL = 11.3% - In addition to conducting surface treatment on NSTMP by first re-suspending NSTMP dry powder in an aqueous solution as illustrated in the previous examples, the feasibility of surface treatment on NSTMP prior to drying (i.e., “wet” microparticles) was also evaluated. It is expected to be easier to integrate a surface treatment step using “wet” NSTMP into the entire process of scale-up production of STMP than a step using dry powder of NSTMP. After obtaining “wet” NSTMP prior to lyophilization as shown in Example 1, an aliquot of the suspension was lyophilized to determine the particle mass per volume. The particle suspension was then concentrated or diluted accordingly to reach desired concentration and cooled down to desired temperature. Other reagents needed for surface treatment were then added to the suspension to reach desired conditions (e.g., concentration of each chemical reagent) as described in Table 6 to start the surface treatment process. The rest of the surface treatment process is the same as described on dry particles in Example 2. The detailed batch information and experimental conditions are listed in Table 6.
-
TABLE 6 Detailed batch information and experimental conditions of surface treatment on “wet” microparticles Final surface treatment solvent Solute Solute Microparticles Batch (base, concentration Treatment before surface size acid or in H2O/EtOH H2O/EtOH Time STMP treatment (mg) salt) mixture (M) ratio (v/v) (min) ID S-38 (99% PLGA 450 NaOH 0.075 30/70 3 S-39 7525 4A, 1% 450 0.0075 30/70 10 S-40 PLGA-PEG) 450 0.075 70/30 15 S-41 DL = 11.6% 450 0.00075 70/30 30 S-42 450 HCl 0.0075 30/70 3 S-43 450 KCl 0.075 30/70 20 S-44 450 0.35 30/70 20 S-45 - To improve the method for assessing particle aggregability in vitro, an orbital shaker was used to replace the manual agitation used in Example 3.
- Fifty microliters of STMP suspension in PBS at 200 mg/mL was injected in 2 mL of PBS pre-warmed at 37° C. in a 16-mm round-bottom glass test tube using a 1 mL insulin syringe with a permanent 27-gauge needle (Terumo or Easy Touch brand). The test tube was then incubated in a water bath at 37° C. for 2 hours. The aggregability of the microparticles was assessed by visual inspection and/or imaging after shaking for 30 seconds at 400 rpm on an orbital shaker (Thermo Scientific™ Multi-Platform Shakers: Catalog No. 13-687-700). The test tube containing particles/aggregates was then turned horizontally for visual assessment of the particle aggregability. NSTMP were used as a control.
- As shown in
FIG. 17 , all the STMP in Examples 7 and 8 formed an aggregate after the 2-hour incubation and the aggregates remained mostly intact following 30-second shaking on an orbital shaker. In contrast, NSTMP in S-27 became fully dispersed following the same agitation. S-12 described in Example 2 was also included in this assessment to compare the aggregability of microparticles treated under different conditions. The results suggest all the modified surface treatment conditions in Examples 7 and 8 resulted in STMP with aggregability similar to that of S-12. - As shown in
FIG. 18 , all the STMP (S-39, S-40, S-41, S-42, S-43, S-44, S-45) in Example 9 formed an aggregate after the 2-hour incubation and the aggregates remained mostly intact following 30-second shaking on an orbital shaker, while NSTMP (S-38) became fully dispersed following the same agitation. S-42, S-4-and S-45 appeared to aggregate better than other STMP samples inFIG. 18 and as well as surface treatment on dry particle inFIG. 17 . The results demonstrate the success and feasibility of surface treatment on wet microparticles. - Drug loading was determined by UV-Vis spectrophotometry. Microparticles containing sunitinib (10 mg total weight) were dissolved in anhydrous DMSO (1 mL) and further diluted until the concentration of drug was in the linear range of the standard curve of UV absorbance of the drug. The concentration of the drug was determined by comparing the UV absorbance to a standard curve. Drug loading is defined as the weight ratio of drug to microparticles.
- Microparticles containing sunitinib (10 mg total weight) were suspended in PBS (4 mL) containing 1
% Tween 20 in a 6-mL glass vial and incubated at 37° C. under shaking at 150 rpm. At predetermined time points, 3 mL of the supernatant was withdrawn after particles settled to the bottom of the vial and replaced with 3 mL of fresh release medium. The drug content in the supernatant was determined by UV-Vis spectrophotometry or HPLC. Alternatively, the above procedure can be run at 50° C. to determine an accelerated in vitro drug release rate as shown inFIG. 5 . - Besides aggregability, the effect of surface treatment on other properties of microparticles was also studied to fully evaluate the feasibility of surface treatment. As shown in Table 7, in general, the yield and drug loading of STMP (in Example 2) treated for longer periods of time were slightly lower than those treated for shorter period of time, suggesting that at 0.25M NaOH/EtOH (v/v: 3:7), the time window for producing STMP with high yield and loading is narrow (on the order of minutes). However, under the modified conditions presented in Example 7, the treatment time can be further extended to tens of minutes without reducing DL and yield (Table 7) as well as aggregability (Example 10). STMP treated with HCl(aq)/EtOH in Example 8 maintained the DL prior to surface treatment with relatively high yield (S-36 and S-37). In addition, STMP (S-42, S-4-and S-45) produced by surface treatment on wet microparticles in Example 9 also maintained the DL prior to surface treatment with comparable yield as STMP produced by surface treatment on dry particles in Example 7 and 8.
-
TABLE 7 Yield and drug loading of STMP Drug loading Drug loading (DL) prior to after surface Sample Yield surface treatment treatment S-2 51% 18.0% 14.2% S-3 50% 18.0% 15.3% S-4 36% 18.0% 6.3% S-6 30% 18.9% 15.0% S-7 35% 18.9% 14.7% S-8 28% 18.9% 11.6% S-10 67% 18.3% 18.6% S-12 68% 11.1% 11.6% S-14 70% 11.9% 12.0% S-16 56% 2.15% 2.11% S-28 43% 11.3% 11.8% S-29 49% 11.3% 11.0% S-30 60% 11.3% 10.1% S-31 61% 11.3% 10.6% S-32 44% 11.3% 12.0% S-33 48% 11.3% 11.5% S-34 49% 11.3% 11.5% S-35 58% 11.3% 12.0% S-36 61% 11.3% 10.3% S-37 69% 11.3% 11.6% S-42 44% 11.6% 11.2% S-44 50% 11.6% 12.0% S-45 43% 11.6% 12.1% -
FIG. 6 illustrates representative in vitro drug release profiles of NSTMP (S-1) and the corresponding STMP (S-2 and S-3) generated from the same batch of NSTMP. Overall, the release profiles are similar for microparticles before and after surface treatment except that the initial release rate of STMP was lower than that of NSTMP. This suggests that under the surface treatment conditions drug molecules that are bound to or near the microparticle surface may have been removed during the surface treatment process. - The wettability of representative batches of STMP and NSTMP was characterized using the Washburn method. Briefly, two glass capillary tubes with filter bases were separately filled with equivalent masses of STMP and NSTMP dry powder. The bottom of the capillary tubes were then inserted into a beaker with water and water was drawn into the tubes over time due to capillary action. The increase in mass of the tube and the height of water in the tubes were determined as a function of time. The rate of water absorption was relatively rapid in the tube containing NSTMP, but relatively slow for STMP. Similarly, at the end of the test, the mass increase of the tubes was much higher for NSTMP than for STMP, indicating that the surface modification leads to reduction of wettability of the microparticles likely due to removal of surfactant or both surfactant and polymer from particle surface.
- Samples S-10 to S-16 and S-18 were prepared at a larger scale of 1 to 3.6 grams. The yield and drug loading of these batches are shown in Table 6 above. It is worth noting that the drug loading was not significantly changed by surface treatment. The average particle size of these STMP samples was similar to that of the corresponding NSTMP prior to surface treatment (data not shown). As shown in
FIG. 7 , the release profiles of the STMP prepared at a larger scale (S-14 and S-16) were similar to the corresponding NSTMP as well, indicating that the surface treatment process had minimal effect on the overall drug release. - A suspension of STMP (ST-1-5, approximately 10 percent drug loading) at approximately 200 mg/mL was prepared by suspending the microparticles in 5-fold diluted ProVisc® solution containing 2 mg/mL of HA. After an incubation period of 2 hours at room temperature, 10 μL of the STMP suspension was loaded into a 50 μL Hamilton syringe with an attached 27-gauge needle. Following brief vortexing to fully suspend the STMP, the syringe was held horizontally for 2 minutes and vertically for 2 minutes prior to injection into a microcentrifuge tube. The injection was repeated using 3 different syringes and each syringe was tested 3 times. The STMP in each tube was then dissolved in DMSO and the dose of drug was determined by UV-Vis spectrophotometry. As shown in Table 8, excellent dosing consistency between injections using the same syringe and between different syringes was observed, suggesting that the STMP suspension in diluted ProVisc® remained stable at room temperature for a sufficient amount of time to allow consistent dosing of the relatively small volume of injection (e.g., 10 μL).
-
TABLE 8 Injectability and dosing consistency of STMP Average dose Standard Standard Standard Standard Sample UV Dose per syringe deviation deviation Average dose deviation deviation Name Reading (mg) n = 3 (mg) (mg) (%) n = 9 (mg) (mg) (%) Syringe 1.019 .1966 .1974 .0140 7.0942 1-a Syringe .953 .1838 1-b Syringe 1.098 .2118 1-c Syringe 1.136 .2191 .2058 .0122 5.9332 .2031 .0129 6.3345 2-a Syringe 1.052 .2029 2-b Syringe 1.012 .1952 2-c Syringe 1.052 .2029 .2062 .0156 7.5633 3-a Syringe 1.157 .2232 3-b Syringe .998 .1925 3-c - To investigate the effect of particle concentration and diluent on the aggregation of STMP, STMP suspensions (50 μL) in 5-fold diluted ProVisc® at 2 different microparticle concentrations (100 mg/mL and 200 mg/mL) were injected into 4 mL of PBS or HA solution and incubated at 37° C. for 2 hours.
- As illustrated in the top panel of
FIG. 8C andFIG. 3D , the STMP at 200 mg/mL in diluted ProVisc® were able to form a consolidated aggregate in both PBS and HA following a 2 hour incubation at 37° C. Compared to 200 mg/mL STMP suspended in PBS, the aggregation of 200 mg/mL STMP in diluted ProVisc® appeared slower, but the aggregate became more consolidated over time, suggesting the HA molecules in the particle diluent may hinder the contact between STMP and slow down the aggregation process. On the other hand, due to its viscoelastic properties, HA may help keep particles localized and allow sufficient time for STMP to form an aggregate. The particle aggregates formed in HA also appeared to have a more spherical morphology than those formed in PBS, suggesting that if a viscoelastic solution is used as the particle diluent, an optimal range of diluent concentration needs to be identified to improve the overall performance of STMP aggregation. - After the 2 hour incubation, the strength of the aggregates was tested by shaking the test tubes at 250 rpm on an orbital shaker. As illustrated in the bottom panel of
FIG. 8C andFIG. 8D , the aggregates were able to endure the shear stress generated by shaking with no or limited dispersion of microparticles. - In comparison, even though the STMP of 100 mg/mL appeared to form an aggregate in PBS (top panel,
FIG. 8A ), the aggregate appeared less dense than that of the 200 mg/mL STMP in PBS (top panel,FIG. 8C ) and tended to disaggregate into individual microparticles under agitation (bottom panel,FIG. 8A ). In addition, the STMP of 100 mg/mL was not able to form one consolidated aggregate in HA at the end of the 2 hour incubation period (top panel,FIG. 8B ) and many STMP became dispersed in HA upon shaking at 250 rpm (bottom panel,FIG. 8B ). Similar to HA molecules in particle diluent, the HA molecules in the test medium may further decrease particle-particle contact and reduce the chance of forming a consolidated aggregate. The results suggest that the aggregability of STMP decreases at lower microparticle concentration, possibly due to increased average particle-particle distance and decreased chance of direct contact between particles. The aggregation may also be further hindered by other molecules, such as HA, in the test medium. - In summary, the aggregation of STMP can be affected by particle concentration, particle diluent and the environment into which the particles are delivered. Overall the data demonstrate that under appropriate conditions, the STMP have good aggregability in different particle diluents and test media.
- To evaluate the aggregability of STMP following intravitreal injection ex vivo, enucleated cow eyes (J.W. Treuth & Sons, Catonsville, MD) were utilized. The eyes were kept on ice prior to use. Briefly, 30 μL of 200 mg/mL STMP, S-10, suspended in 5-fold diluted ProVisc® was injected into the central vitreous of cow eyes using a 0.5 mL insulin syringe (Terumo) with a 27-gauge needle and three injections were performed in each cow eye at different locations. After a 2 hour incubation at 37° C., the eyes were cut open and the aggregates of STMP were examined using a dissecting microscope. As shown in
FIG. 9 , the injected STMP formed consolidated aggregates in cow vitreous and no apparent particle dispersion was observed. - To study the aggregation of surface treated microparticles in rabbit eyes in vivo, 50 μL of 200 mg/mL STMP, S-10, suspended in PBS (
FIG. 10A ) or 5-fold diluted ProVisc® (FIG. 10B ) were injected to the central vitreous of Dutch Belted rabbit eyes using a 0.5 mL insulin syringe (Terumo) with a 27 gauge needle. Four days after the dosing, the rabbits were sacrificed and the eyes were nucleated and frozen immediately. The frozen eyes were cut into halves and the posterior half of the eye was thawed at room temperature for 3 minutes to allow isolation of the vitreous from the eye cup, as shown in the left photo ofFIG. 10A andFIG. 10B . The frozen vitreous containing particles was placed in a cassette to allow the vitreous to thoroughly thaw. The aggregates of STMP in the vitreous could be easily separated from vitreous using forceps, proving the formation of consolidated STMP aggregates in rabbit eyes. - The distribution and tolerability of STMP and NSTMP were studied in pigmented New Zealand rabbits (F1) following an intravitreal injection of the microparticles. ProVisc® was diluted in PBS and used as a diluent to prepare particle suspensions of about 200 mg/mL for injection. Detailed study groups and conditions are presented in Table 9.
- Complete ocular examinations were performed for up to 7 months after the dosing, using a slit lamp biomicroscope and an indirect ophthalmoscope, to evaluate ocular surface morphology, anterior segment and posterior segment inflammation, cataract formation, and retinal changes. A retinal lens was used to examine the location, morphology and distribution of the microspheres in vitreous. Histological analysis was also performed on enucleated and fixed eyes for up to 7 months. At pre-determined time points for up to 7 months, the drug levels of sunitinib (ng/g) in various ocular tissues (e.g. vitreous, retina, and RPE/choroid) and plasma were also analyzed.
FIG. 11A illustrates a representative 1-month histology image following injection with surface treated microparticles (STMP) andFIG. 11B illustrates a representative 1-month histology images following injection with non-surface treated microparticles (NSTMP). -
TABLE 9 Detailed information on rabbit study groups and dosing conditions Microsphere *SM Microsphere Microsphere Type Group # Mass Dose Drug Loading Injection Volume With Drug- #1 2 mg 0.2 mg 10% 10 uL surface loaded #2 10 mg 1.0 mg 10% 50 uL treatment # 3 10 mg 0.2 mg 2% 50 uL Empty #7 2 and 10 mg None None 10 uL (Left eye) 50 uL (Right eye) Without Drug- #4 2 mg 0.2 mg 10% 10 uL surface loaded #5 10 mg 1.0 mg 10% 50 uL treatment # 6 10 mg 0.2 mg 2% 50 uL Empty # 8 2 and 10 mg None None 10 uL (Left eye) 50 uL (Right eye) *SM = Sunitinib Malate Dose - Immediately following dosing, the microspheres remained localized at the site of injection in the vitreous as a depot for all the injections. At 1 and 2 months, fundus examination using a retina lens showed that in the eyes injected with STMP, most particle injections remained consolidated in the vitreous without dispersion and no vision impairment or disturbance was observed. In contrast, particle dispersion was more commonly observed in the eyes injected with NSTMP.
- Histological analysis for up to 7 months showed that overall the injections were well tolerated with minimal evidence of ocular inflammation or toxicity. No evidence of retinal toxicity (thinning and degeneration, etc.) was observed with any treatment. With STMP, the only eyes with observed inflammation were those with injection-related lens trauma/cataract and associated secondary lens-induced uveitis, which is believed to be associated with the injection procedure and not the STMP; no other evidence of inflammation in eyes dosed with surface treated microspheres was observed (
FIG. 11 , left). In some of the eyes dosed with NSTMP, very mild, but present, inflammation in the vitreous that may be associated with the NSTMP was observed (FIG. 11 , right). The results suggest that surface treatment not only reduces the chance of particle dispersion in the vitreous that can cause visual impairment or disturbance, but it may also reduce potential intraocular inflammation associated with microspheres and improve the overall safety of the treatment. - As shown in
FIGS. 14, 15, and 16 , the sunitinib levels in the retina or RPE/choroid of rabbits receiving STMP containing 1 or 0.2 mg of sunitinib malate were above the Ki for sunitinib against VEGFR and PDGFR at 1, 2, and 4 months, respectively. Low levels of sunitinib were detected in plasma only at 1 and 2 months. - Sample S-12 (10.5 mg) was measured into an amber vial. N,N-dimethylacetamide (0.3 mL) and acetonitrile (0.6 mL) were added to dissolve the particles. Water (2.1 mL) was added and the mixture was thoroughly mixed. The final concentration of particles in N,N-dimethylacetamide/acetonitrile/water (v/v 1:2:7) mixture was 3.5 mg/mL. The purity of active compound in STMP S-12 was determined by HPLC and is reported in Table 10. The results suggest that the surface treatment did not affect the purity of encapsulated drug.
-
TABLE 10 HPLC analysis of drug purity in STMP Peak Number Retention time Area (%) 1 0.24 0.157 2 0.78 0.283 3 0.82 0.044 4 1.00 99.39 5 1.12 0.046 6 1.41 0.084 - Several milligrams of S-12 were suspended in water. The mean particle size and distributions were determined using a Coulter Multisizer IV (Beckman Coulter, Inc., Brea, CA). The distribution shown in
FIG. 12 has the following statistics: D10 of 20.98 μm, D50 of 32.32 μm, D90 of 41.50 μm, mean of 31.84 μm, and standard deviation of 8.07 μm. - Microparticles (5-10 mg, S-12) were added to a sterile vial in a biosafety cabinet. The particles were suspended in endotoxin-free PBS. Using a ToxinSensor™ chromogenic LAL endotoxin assay kit (GenScript USA Inc., Piscataway, NJ) and the instructions provided by the manufacture, the sample's total level of endotoxin was measured. S-12 had a low endotoxin level of less than 10 μEU/mg.
- An acute, non-GLP IVT study was conducted to evaluate the ocular tolerability and toxicity of sunitinib malate (free drug) for up to 7 days following a single IVT injection. Sunitinib malate was formulated in phosphate buffered saline and injected bilaterally (0.1 mL) at 0.125 or 1.25 mg per eye. At the 1.25 mg/eye dose, histologically significant findings related to sunitinib included residual test article, lenticular vacuoles/degeneration, mild to minimal inflammatory cell infiltration in vitreous, retinal degeneration, detachment, and necrosis. No toxicologically significant findings were observed at the 0.125 mg/eye dose, which is considered the no-observed-adverse-effect-level (NOAEL) dose.
-
FIG. 13A ,FIG. 13B , andFIG. 13C illustrate select PK profiles for sunitinib malate in the retina, vitreous, and plasma, respectively, from pigmented rabbits. - PLGA (555 mg) and PLGA-PEGSK (5.6 mg) were dissolved in DCM (4 mL). Sunitinib malate (90 mg) was dissolved in DMSO (2 mL). The polymer and drug solutions were then mixed. The resulting reaction mixture was filtered through a 0.22 μm PTFE syringe filter. The resulting reaction mixture was diluted with 1% PVA in PBS (200 mL) in a 250 mL beaker and then homogenized at 5,000 rpm for 1 minute. (The polymer/drug solution was poured into the aqueous phase using homogenization conditions and homogenized at 5,000 rpm for 1 minute) The reaction was next stirred at 800 rpm at room temperature for 3 hours in a biosafety cabinet. The particles were allowed to settle in the beaker for 30 minutes and approximately 150 mL of the supernatant was decanted off. The microparticle suspension underwent centrifugation at 56× g for 4.5 minutes, the solvent was removed, and the microparticles were then washed three times with water. The microparticle size and size distribution was determined using a Coulter Multisizer IV prior to lyophilization. The microparticles were lyophilized using a FreeZone 4.5 liter benchtop lyophilizer. Light exposure was avoided throughout the entire process.
- Microparticle dry powder was weighed and placed in a small beaker and a stirring bar was added. The beaker was placed in an ice bath and cooled to about 4° C. A NaOH/EtOH solution was prepared by mixing NaOH in water (0.25M) with EtOH at 3:7 (v/v) and cooling to about 4° C. The cold NaOH/EtOH solution was added with stirring to the beaker containing the microparticles to afford a particle suspension of 100 mg/mL. The suspension was stirred for 3 minutes at about 4° C. and poured into a filtration apparatus to quickly remove the NaOH/EtOH solution. (The filtration apparatus needed to be pre-chilled in a −20° C. freezer prior to use.)
- Following filtration, the microparticles were rinsed in the filtration apparatus with ice cold deionized water and transferred to 50 mL centrifuge tubes. Each 50 mL centrifuge tube with filled with cold water to afford a 40 mL particle suspension at a concentration of 5-10 mg/mL. The centrifuge tubes were placed in a regenerator and the particles were allowed to settle for 30 minutes. The supernatant was then decanted. The particles were resuspended in cold water and filtered through a 40 μm cell strainer to remove any large aggregates. The particles were collected by centrifugation (56× g for 4.5 minutes) and washed twice with water. The product was lyophilized using a FreeZone 4.5 liter benchtop lyophilizer. The surface treatment process was conducted at approximately 4° C. and light exposure was avoided throughout the entire process.
- Microparticles (10 mg) were added to glass scintillation vials. Four milliliters of the release medium (1
% Tween 20 in 1× PBS at pH 7.4) was added into the vials and the mixtures were vortexed. The vials were shaken on an orbital shaker at 150 rpm in a Fisher general-purpose incubator at 50° C. At pre-determined time points, the appropriate vial was cooled and the particles were allowed to settle for 10 minutes. Release medium (3 mL) was then carefully removed from the top of the vial and replaced with fresh release medium (3 mL). The vial was then returned to the orbital shaker and the amount of drug in the release medium was measured by UV spectroscopy. The concentration of drug was determined by comparing to a standard curve for the drug. - NSTMP were first produced similarly as described in Example 1. Briefly, PLA and PLGA-PEG were co-dissolved in dichloromethane (DCM) and sunitinib malate was dissolved in dimethyl sulfoxide (DMSO). The polymer solution and the drug solution were mixed to form a homogeneous solution (organic phase). For empty microparticles, DMSO without drug was used. The organic phase was added to an aqueous 1% PVA solution and homogenized at 5,000 rpm for 1 minute using an L5M-A laboratory mixer (Silverson Machines Inc., East Longmeadow, MA) to obtain an emulsion. The emulsion (solvent-laden microparticles) was then hardened by stirring at room temperature for more than 2 hours to allow the DCM to evaporate. The microparticles were collected by sedimentation and centrifugation, washed three times in water, and filtered through a 40-μm sterile Falcon ® cell strainer (Corning Inc., Corning, NY). The non-surface-treated microparticles (NSTMP) were either used directly in the surface treatment process or dried by lyophilization and stored as a dry powder at −20° C. until used.
- A pre-chilled solution containing NaOH and ethanol was added to microparticles in a glass vial under stirring in an ice bath at approximately 4° C. to form a suspension. The suspension was then stirred for a predetermined time on ice and poured into a pre-chilled filtration apparatus to remove the NaOH (aq)/EtOH solution. The microparticles were further rinsed with pre-chilled water and transferred to a 50-mL centrifuge tube. The STMP were then suspended in pre-chilled water and kept in a refrigerator for 30 minutes to allow the particles to settle. Following removal of the supernatant, the particles were resuspended and filtered through a 40-μm cell strainer to remove large aggregates. Subsequently, the particles were washed twice with water at room temperature and freeze-dried overnight.
-
TABLE 11 Detailed formulation information of STMP comprising PLA NSTMP Surface Treatment STMP Aqueous Particle Treatment ID Polymer Drug Phase Mixing Solution Conc. Time S-46 800 mg PLA 100100 mg 200 mL of 5000 0.075M 200 3 min 4A and 8 mg sunitinib malate 1% PVA in rpm 1NaOH and mg/mL PLGA-PEG in 4 in 1 mL DMSO PBS min 50% EtOH mL DCM S-47 800 mg PLA 1001 mL DMSO 200 mL of 5000 0.075M 200 3 min 4A and 8 mg 1% PVA in rpm 1NaOH and mg/mL PLGA-PEG in 4 water min 50% EtOH mL DCM S-48 640 mg PLA 1002 mL DMSO 200 mL of 5000 0.075M 200 3 min 4A and 6.4 mg 1% PVA in rpm 1NaOH and mg/mL PLGA-PEG in 4 water min 50% EtOH mL DCM - The in vitro aggregability of the STMP was characterized similarly as described in Example 3. Briefly, STMP were suspended in PBS at 200 mg/mL and 30-50 uL of the suspension was injected into 1.5-2.0 mL of PBS pre-warmed at 37° C. After incubation at 37° C. for 2 hours, the aggregability of the microparticles was assessed by visual observation and/or imaging following gentle mechanical agitation. Overall all STMP described in Table 11 were able to aggregate upon incubation at 37° C. for 2 hours.
- Sunitinib-encapsulated STMP comprising PLA were suspended in ProVisc® diluted 5-fold in PBS to achieve a target dose of 1 mg sunitinib malate in a 50 uL particle suspension. The tolerability and pharmacokinetics were studied in pigmented New Zealand rabbits (F1) following an intravitreal injection of the STMP suspension. At pre-determined time points after the dosing, complete ocular examinations were performed and the drug levels of sunitinib (ng/g) in various ocular tissues (e.g. vitreous, retina, and RPE/choroid) were also analyzed (
FIG. 19 ). - Ocular examinations for up to 6 months showed that the STMP were well tolerated in rabbit eyes and remained consolidated in the vitreous without dispersion and no vision impairment or disturbance was observed. As shown in
FIGS. 19 , the sunitinib levels in retina or RPE/choroid of rabbits receiving STMP containing 1 mg of sunitinib malate were above the Ki for sunitinib against VEGFR and PDGFR at 10 days and 3 months. - NSTMP were produced using a continuous flow, oil-in-water emulsification method. The scale of the pilot batches was 100-200 g. A dispersed phase (DP) and a continuous phase (CP) were first prepared. For placebo microparticles, the DP was prepared by co-dissolving PLGA and PLGA-PEG polymers in DCM. The CP was a 0.25% PVA solution in water. For drug-loaded microparticles, the DP was prepared by dissolving sunitinib malate in DMSO and mixing with the polymer solution in DCM. The CP was a 0.25% PVA solution in PBS (pH approximately7). Detailed formulation parameters are listed in Table 12. An emulsion was produced by mixing the DP and the CP using a high shear inline mixer. The solvents in the DP were diluted by the CP, causing the emulsion droplets to solidify and become polymer microparticles. The microparticles were then washed with water using the volume exchange principle with the addition of fresh water and removal of solvent-containing water with a hollow fiber filter. The washed microparticles were subsequently suspended in a solution containing NaOH and ethanol for surface modification of the NSTMP. This step was performed in a jacketed vessel and the temperature of the suspension was maintained around 8° C. Several surface treatment conditions have been tested as shown in Table 12. Following additional washing in water and analysis of the microparticle and drug concentration of in-process samples, the STMP suspension was adjusted to target concentration prior to filling of glass vials. In some batches, mannitol was added to the final suspension. The vials were then lyophilized and sealed. The manufacturing process can be completed aseptically and the final product in vials may also be terminally sterilized by E-Beam or gamma irradiation.
-
TABLE 12 Formulation and process parameters of STMP produced on larger scale NSTMP DP Mixing Surface Treatment PLGA PLGA- Sunitinib DMSO speed Time NaOH 7525 4A (g) PEG5k (g) DCM (g) Malate (g) (g) (rpm) (min) EtOH (mM) Excipient 86 0.86 640 16.5 260 4000 30 30% 0.53 86 0.86 640 16.5 260 4000 60 30% 75 86 0.86 640 15.3 260 4000 30 40% 0.075 86 0.86 640 15.3 260 4000 30 40% 0.75 86 0.86 640 15.3 260 4000 30 40% 0.75 86 0.86 640 15.3 260 4000 30 40% 0.75 86 0.86 640 3600 30 50% 0.75 86 0.86 640 3600 30 40% 0.75 86 0.86 640 260 3300 30 50% 0.75 86 0.86 640 15.3 260 4000 30 40% 0.75 86 0.86 640 3600 30 60% 0.75 86 0.86 640 15.3 260 4000 30 40% 0.75 86 0.86 640 3600 30 70% 0.75 86 0.86 640 15.3 260 4000 30 50% 0.75 Mannitol 86 0.86 640 15.3 260 4000 30 60% 0.75 Mannitol 86 0.86 640 15.3 260 4000 30 70% 0.75 Mannitol 172 1.72 1280 30.6 520 4000 30 70% 0.75 Mannitol 172 1.72 1280 3600 30 70% 0.75 172 1.72 1280 3600 25 70% 0.75 172 1.72 1280 30.6 520 4000 30 60% 0.75 Mannitol 172 1.72 1280 30.6 520 4000 30 60% 0.75 Mannitol 172 1.72 1280 3600 25 70% 0.75 Mannitol 172 1.72 1280 30.6 520 3800 30 60% 0.75 Mannitol 172 1.72 1280 30.6 520 4000 30 60% 0.75 172 1.72 1280 30.6 520 4000 30 60% 0.75 - The in vitro aggregability of the STMP was characterized by a similar method to that in Example 3. Briefly, STMP was suspended in PBS at 200 mg/mL and 30-50 uL of the suspension was injected into 1.5-2.0 mL of PBS pre-warmed to 37° C. After incubation at 37° C. for 2 hours, the aggregability of the microparticles was assessed by visual observation and/or imaging following gentle mechanical agitation. In general, all STMP treated with a solution containing 0.75 mM NaOH and EtOH of 40% or higher were able to aggregate upon incubation at 37° C. Following suspension in hyaluronate solution and injection in PBS, STMP treated with a higher concentration of EtOH showed a higher tendency of floatation in PBS, suggesting reduced wettability and increased surface hydrophobicity as a result of the surface treatment.
- This specification has been described with reference to embodiments of the invention. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth herein. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of invention.
Claims (20)
1. Surface-modified solid aggregating microparticles comprising at least one biodegradable polymer that:
(i) have a solid core;
(ii) include a therapeutic agent;
(iii) have a modified surface which has been treated under mild conditions at a temperature less than about 18° C. to remove surface surfactant or both surface surfactant and surface polymer;
(iv) are sufficiently small to be injected in vivo;
(v) aggregate in vivo to form at least one pellet of at least 500 μm in vivo which provides sustained drug delivery in vivo for at least one month.
2. The surface modified solid aggregating microparticles of claim 1 suitable for injection.
3. The surface modified solid aggregating microparticles of claim 1 suitable for a delivery route selected from the group consisting of intravitreal, intrastromal, intracameral, subtenon, sub-retinal, retrobulbar, peribulbar, suprachoroidal, conjunctival, subconjunctival, episcleral, posterior juxtascleral, circumcorneal, and tear duct inj ections.
4. The surface modified solid aggregating microparticles of claim 1 suitable for non-ocular delivery.
5. The surface-modified solid aggregating microparticles of claim 1 , wherein at least one pellet is capable of sustained drug delivery for at least two months.
6. The surface-modified solid aggregating microparticles of claim 1 , wherein at least one pellet is capable of sustained drug delivery for at least three months.
7. The surface-modified solid aggregating microparticles of claim 1 , wherein at least one pellet is capable of sustained drug delivery for at least four months.
8. The surface-modified solid aggregating microparticles of claim 1 , wherein at least one pellet is capable of sustained drug delivery for at least five months.
9. The surface-modified solid aggregating microparticles of claim 1 , wherein at least one pellet is capable of sustained drug delivery for at least six months.
10. The surface-modified solid aggregating microparticles of claim 1 , wherein the resulting aggregated pellet provides sustained drug delivery for at least seven months.
11. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a pH between about 14 and about 12.
12. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a pH between about 12 and about 10.
13. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a pH between about 10 and about 8.
14. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a pH between about 6 and about 8.
15. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a pH between about 6.5 and about 7.5.
16. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a pH between about 1 and about 6.
17. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a temperature of less than 16° C.
18. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a temperature of less than 10° C.
19. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a temperature of less than 8° C.
20. The surface-modified solid aggregating microparticles of claim 1 , wherein the surface modification is carried out at a temperature of less than 5° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/102,541 US20240041783A1 (en) | 2015-11-12 | 2023-01-27 | Aggregating microparticles for medical therapy |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562254707P | 2015-11-12 | 2015-11-12 | |
US201562257608P | 2015-11-19 | 2015-11-19 | |
US201662276530P | 2016-01-08 | 2016-01-08 | |
US15/349,985 US10441548B2 (en) | 2015-11-12 | 2016-11-11 | Aggregating microparticles for medical therapy |
US16/566,724 US11564890B2 (en) | 2015-11-12 | 2019-09-10 | Aggregating microparticles for medical therapy |
US18/102,541 US20240041783A1 (en) | 2015-11-12 | 2023-01-27 | Aggregating microparticles for medical therapy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/566,724 Continuation US11564890B2 (en) | 2015-11-12 | 2019-09-10 | Aggregating microparticles for medical therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240041783A1 true US20240041783A1 (en) | 2024-02-08 |
Family
ID=58690442
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/349,985 Active US10441548B2 (en) | 2015-11-12 | 2016-11-11 | Aggregating microparticles for medical therapy |
US16/566,721 Active 2037-01-30 US11331276B2 (en) | 2015-11-12 | 2019-09-10 | Aggregating microparticles for medical therapy |
US16/566,724 Active 2037-01-15 US11564890B2 (en) | 2015-11-12 | 2019-09-10 | Aggregating microparticles for medical therapy |
US18/102,541 Pending US20240041783A1 (en) | 2015-11-12 | 2023-01-27 | Aggregating microparticles for medical therapy |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/349,985 Active US10441548B2 (en) | 2015-11-12 | 2016-11-11 | Aggregating microparticles for medical therapy |
US16/566,721 Active 2037-01-30 US11331276B2 (en) | 2015-11-12 | 2019-09-10 | Aggregating microparticles for medical therapy |
US16/566,724 Active 2037-01-15 US11564890B2 (en) | 2015-11-12 | 2019-09-10 | Aggregating microparticles for medical therapy |
Country Status (15)
Country | Link |
---|---|
US (4) | US10441548B2 (en) |
EP (1) | EP3373978A4 (en) |
JP (2) | JP2018533596A (en) |
KR (1) | KR20180102069A (en) |
CN (2) | CN114469872A (en) |
AU (1) | AU2016353355B9 (en) |
BR (1) | BR112018009644A2 (en) |
CA (1) | CA3004886A1 (en) |
EA (1) | EA038755B1 (en) |
HK (1) | HK1257499A1 (en) |
IL (1) | IL259167A (en) |
MX (1) | MX2018005932A (en) |
PH (1) | PH12018500905A1 (en) |
SG (1) | SG11201803663XA (en) |
WO (1) | WO2017083779A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018128876A1 (en) * | 2017-01-03 | 2018-07-12 | Vitrean, Inc. | Methods and devices for treating a retinal detachment |
MX2019013363A (en) * | 2017-05-10 | 2020-01-13 | Graybug Vision Inc | Extended release microparticles and suspensions thereof for medical therapy. |
JP2021522224A (en) * | 2018-04-23 | 2021-08-30 | グレイバグ ビジョン インコーポレイテッド | Manufacture of improved continuous microparticles |
WO2020102758A1 (en) * | 2018-11-15 | 2020-05-22 | Graybug Vision, Inc. | Improved aggregated microparticles |
KR102039582B1 (en) * | 2018-12-12 | 2019-11-01 | 주식회사 라파스 | Method for testing compatibility of microneedle material and manufacturing method of microneedle comprising the same |
WO2021224999A1 (en) * | 2020-05-08 | 2021-11-11 | エム・テクニック株式会社 | Microspheres in which bioactive substance is uniformly dispersed, and sustained-release preparation containing same |
ES2967667T3 (en) | 2020-06-11 | 2024-05-03 | Univ Internacional De Catalunya Fundacio Privada | Composition comprising nanoparticles, method for the preparation of a composition comprising nanoparticles and uses of the composition for dental treatment |
US20240197635A1 (en) * | 2021-03-03 | 2024-06-20 | Veramorph Llc | Dissociating polymer matrix compositions of fulvestrant and methods of their making and use |
US20240189277A1 (en) * | 2021-04-16 | 2024-06-13 | The Johns Hopkins University | Ophthalmic formulations for sustained neuroprotection |
CN113350268B (en) * | 2021-06-17 | 2023-09-05 | 复旦大学附属眼耳鼻喉科医院 | Drug sustained-release gel for subconjunctival implantation and preparation method thereof |
CN113577083B (en) * | 2021-08-13 | 2022-07-05 | 中山大学中山眼科中心 | Application of small molecule compound combination in preparation of medicine for preventing and treating retina injury diseases |
CN114773220B (en) * | 2021-12-21 | 2024-01-26 | 西安阿伯塔资环分析测试技术有限公司 | Rigid double-tail surfactant, preparation method thereof and clean fracturing fluid |
WO2024037982A1 (en) | 2022-08-16 | 2024-02-22 | Boehringer Ingelheim International Gmbh | Pharmaceutical formulations of nintedanib for intraocular use |
WO2024074585A2 (en) | 2022-10-05 | 2024-04-11 | Mireca Medicines Gmbh | MICROPARTICLE AND IMPLANT FORMULATIONS FOR cGMP ANALOG THERAPY |
WO2024148131A1 (en) * | 2023-01-06 | 2024-07-11 | The Johns Hopkins University | Organic solvent free drug microcrystals |
WO2024151628A1 (en) * | 2023-01-09 | 2024-07-18 | The General Hospital Corporation | Polymeric microparticles encapsulated with active pharmaceutical ingredients and related methods of use and manufacture |
CN116637069B (en) * | 2023-07-19 | 2023-09-19 | 成都金瑞基业生物科技有限公司 | Honokiol liposome transdermal gel and preparation method and application thereof |
Family Cites Families (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB929405A (en) | 1958-12-22 | 1963-06-19 | Upjohn Co | Processes for the encapsulation of particles |
GB929401A (en) | 1958-12-22 | 1963-06-19 | Upjohn Co | Encapsulated emulsions and processes for their preparation |
IT1148784B (en) | 1980-04-09 | 1986-12-03 | Eurand Spa | PROCEDURE FOR THE PREPARATION OF MICRO CAPSULES IN A LIQUID VEHICLE |
US4760057A (en) | 1983-06-23 | 1988-07-26 | Merck & Co., Inc. | (Acyloxyalkoxy)carbonyl derivatives as bioreversible prodrug moieties for primary and secondary amine functions in drugs |
US4794000A (en) | 1987-01-08 | 1988-12-27 | Synthetic Blood Corporation | Coacervate-based oral delivery system for medically useful compositions |
US4911920A (en) | 1986-07-30 | 1990-03-27 | Alcon Laboratories, Inc. | Sustained release, comfort formulation for glaucoma therapy |
US4997443A (en) | 1985-08-26 | 1991-03-05 | Hana Biologics, Inc. | Transplantable artificial tissue and process |
US4997652A (en) | 1987-12-22 | 1991-03-05 | Visionex | Biodegradable ocular implants |
US5843156A (en) | 1988-08-24 | 1998-12-01 | Endoluminal Therapeutics, Inc. | Local polymeric gel cellular therapy |
US5019400A (en) | 1989-05-01 | 1991-05-28 | Enzytech, Inc. | Very low temperature casting of controlled release microspheres |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5286495A (en) | 1992-05-11 | 1994-02-15 | University Of Florida | Process for microencapsulating cells |
US5344701A (en) | 1992-06-09 | 1994-09-06 | Minnesota Mining And Manufacturing Company | Porous supports having azlactone-functional surfaces |
US5565215A (en) | 1993-07-23 | 1996-10-15 | Massachusettes Institute Of Technology | Biodegradable injectable particles for imaging |
US5502092A (en) | 1994-02-18 | 1996-03-26 | Minnesota Mining And Manufacturing Company | Biocompatible porous matrix of bioabsorbable material |
US5441722A (en) | 1994-02-18 | 1995-08-15 | Merck & Co., Inc. | Short synthesis of 5,6-dihydro-(S)-4-(ethylamino)-(S)-6-[C3 H3 ]-4[2,3-b]thiopyran-2-sulfonamide 7,7-dioxide and related non radioactive compounds |
GB9412273D0 (en) | 1994-06-18 | 1994-08-10 | Univ Nottingham | Administration means |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
EP0805678B1 (en) | 1995-01-05 | 2003-10-29 | THE BOARD OF REGENTS acting for and on behalf of THE UNIVERSITY OF MICHIGAN | Surface-modified nanoparticles and method of making and using same |
US5612053A (en) | 1995-04-07 | 1997-03-18 | Edward Mendell Co., Inc. | Controlled release insufflation carrier for medicaments |
US5612052A (en) | 1995-04-13 | 1997-03-18 | Poly-Med, Inc. | Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof |
US6413539B1 (en) | 1996-10-31 | 2002-07-02 | Poly-Med, Inc. | Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof |
US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
US5624677A (en) | 1995-06-13 | 1997-04-29 | Pentech Pharmaceuticals, Inc. | Controlled release of drugs delivered by sublingual or buccal administration |
US5916586A (en) | 1995-08-24 | 1999-06-29 | Lever Brothers Company, Inc. | Personal cleansing system comprising polymeric diamond-mesh bath sponge and liquid cleanser with deodorant composition |
US5855615A (en) | 1996-06-07 | 1999-01-05 | Menlo Care, Inc. | Controller expansion sphincter augmentation media |
US6566406B1 (en) | 1998-12-04 | 2003-05-20 | Incept, Llc | Biocompatible crosslinked polymers |
US5866155A (en) | 1996-11-20 | 1999-02-02 | Allegheny Health, Education And Research Foundation | Methods for using microsphere polymers in bone replacement matrices and composition produced thereby |
US5945126A (en) | 1997-02-13 | 1999-08-31 | Oakwood Laboratories L.L.C. | Continuous microsphere process |
GB9704749D0 (en) | 1997-03-07 | 1997-04-23 | Univ London | Tissue Implant |
GB9713980D0 (en) | 1997-07-03 | 1997-09-10 | Danbiosyst Uk | New conjugates |
US6201072B1 (en) | 1997-10-03 | 2001-03-13 | Macromed, Inc. | Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
CA2221195A1 (en) | 1997-11-14 | 1999-05-14 | Chantal E. Holy | Biodegradable polymer matrix |
US6841617B2 (en) | 2000-09-28 | 2005-01-11 | Battelle Memorial Institute | Thermogelling biodegradable aqueous polymer solution |
US6632457B1 (en) | 1998-08-14 | 2003-10-14 | Incept Llc | Composite hydrogel drug delivery systems |
US6703047B2 (en) | 2001-02-02 | 2004-03-09 | Incept Llc | Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use |
US6818018B1 (en) | 1998-08-14 | 2004-11-16 | Incept Llc | In situ polymerizable hydrogels |
US6270802B1 (en) | 1998-10-28 | 2001-08-07 | Oakwood Laboratories L.L.C. | Method and apparatus for formulating microspheres and microcapsules |
US20040258763A1 (en) | 1999-02-03 | 2004-12-23 | Bell Steve J.D. | Methods of manufacture and use of calcium phosphate particles containing allergens |
IN192012B (en) | 1999-03-19 | 2004-02-07 | Vinod Chintamani Malshe | |
US6217895B1 (en) | 1999-03-22 | 2001-04-17 | Control Delivery Systems | Method for treating and/or preventing retinal diseases with sustained release corticosteroids |
EP1173517A4 (en) | 1999-04-26 | 2006-06-28 | California Inst Of Techn | In situ forming hydrogels |
US6287588B1 (en) | 1999-04-29 | 2001-09-11 | Macromed, Inc. | Agent delivering system comprised of microparticle and biodegradable gel with an improved releasing profile and methods of use thereof |
US6333029B1 (en) | 1999-06-30 | 2001-12-25 | Ethicon, Inc. | Porous tissue scaffoldings for the repair of regeneration of tissue |
SE9904344D0 (en) | 1999-12-01 | 1999-12-01 | Ralf Goeran Andersson | Method of producing porous spherical particles |
DE122010000004I1 (en) | 2000-02-15 | 2010-04-15 | Sugen Inc | PYRROL SUBSTITUTED INDOLIN-2-ON PROTEIN KINASE INHIBITORS |
US6375972B1 (en) | 2000-04-26 | 2002-04-23 | Control Delivery Systems, Inc. | Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof |
US6589549B2 (en) | 2000-04-27 | 2003-07-08 | Macromed, Incorporated | Bioactive agent delivering system comprised of microparticles within a biodegradable to improve release profiles |
US6495164B1 (en) | 2000-05-25 | 2002-12-17 | Alkermes Controlled Therapeutics, Inc. I | Preparation of injectable suspensions having improved injectability |
ATE537845T1 (en) | 2000-10-31 | 2012-01-15 | Pr Pharmaceuticals Inc | METHOD FOR PRODUCING FORMULATIONS FOR IMPROVED DELIVERY OF BIOACTIVE MOLECULES |
GB0027357D0 (en) | 2000-11-09 | 2000-12-27 | Bradford Particle Design Plc | Particle formation methods and their products |
GB2370839A (en) | 2001-01-06 | 2002-07-10 | Benedikt Timmerman | Immunogenic complex useful for disease control |
BR0102252B1 (en) | 2001-04-10 | 2013-10-22 | Angiotensin II AT1 Receptor Antagonist Controlled Release System, Pharmaceutical Composition and Use | |
US20020183858A1 (en) | 2001-06-05 | 2002-12-05 | Contiliano Joseph H. | Attachment of absorbable tissue scaffolds to scaffold fixation devices |
JP4758607B2 (en) | 2001-06-22 | 2011-08-31 | ジョンズ ホプキンズ ユニヴァーシティー スクール オブ メディシン | Biodegradable polymer composition and method of use thereof |
GB0122318D0 (en) | 2001-09-14 | 2001-11-07 | Novartis Ag | Organic compounds |
US8871241B2 (en) | 2002-05-07 | 2014-10-28 | Psivida Us, Inc. | Injectable sustained release delivery devices |
MXPA05002669A (en) | 2002-09-13 | 2005-08-19 | Ocular Sciences Inc | Devices and methods for improving vision. |
MXPA05003183A (en) * | 2002-09-26 | 2005-06-08 | Angiotech Int Ag | Perivascular wraps. |
US20040086532A1 (en) | 2002-11-05 | 2004-05-06 | Allergan, Inc., | Botulinum toxin formulations for oral administration |
AU2003299722A1 (en) | 2002-12-17 | 2004-07-14 | Mdrna, Inc. | Compositions and methods for enhanced mucosal delivery of y2 receptor-binding peptides and methods for treating and preventing obesity |
US7060299B2 (en) | 2002-12-31 | 2006-06-13 | Battelle Memorial Institute | Biodegradable microparticles that stabilize and control the release of proteins |
GB0307011D0 (en) | 2003-03-27 | 2003-04-30 | Regentec Ltd | Porous matrix |
TWI377958B (en) | 2003-06-26 | 2012-12-01 | Control Delivery Sys Inc | In-situ gelling drug delivery system |
JP5628467B2 (en) | 2003-06-26 | 2014-11-19 | シヴィダ・ユーエス・インコーポレイテッドPsivida Us, Inc. | Biodegradable sustained release drug delivery system |
JP2008518881A (en) | 2003-07-18 | 2008-06-05 | オークウッド ラボラトリーズ,エル.エル.シー. | Prevention of molecular weight reduction, impurity formation and gelation of polymer in polymer composition |
WO2005014524A2 (en) | 2003-08-07 | 2005-02-17 | Wisconsin Alumni Research Foundation | Amino thiol compounds and compositions for use in conjunction with cancer therapy |
US20090148527A1 (en) | 2007-12-07 | 2009-06-11 | Robinson Michael R | Intraocular formulation |
US20050175709A1 (en) | 2003-12-11 | 2005-08-11 | Baty Ace M.Iii | Therapeutic microparticles |
WO2005072125A2 (en) | 2004-01-16 | 2005-08-11 | Massachusetts Institute Of Technology | Composite materials for controlled release of water soluble products |
US8957034B2 (en) | 2004-01-28 | 2015-02-17 | Johns Hopkins University | Drugs and gene carrier particles that rapidly move through mucous barriers |
ES2246694B1 (en) | 2004-04-29 | 2007-05-01 | Instituto Cientifico Y Tecnologico De Navarra, S.A. | PEGILATED NANOPARTICLES. |
US8722097B2 (en) | 2004-04-30 | 2014-05-13 | Allergan, Inc. | Oil-in-water method for making polymeric implants containing a hypotensive lipid |
US20050244463A1 (en) | 2004-04-30 | 2005-11-03 | Allergan, Inc. | Sustained release intraocular implants and methods for treating ocular vasculopathies |
US9498457B2 (en) | 2004-04-30 | 2016-11-22 | Allergan, Inc. | Hypotensive prostamide-containing biodegradable intraocular implants and related implants |
US7771742B2 (en) | 2004-04-30 | 2010-08-10 | Allergan, Inc. | Sustained release intraocular implants containing tyrosine kinase inhibitors and related methods |
US7799336B2 (en) * | 2004-04-30 | 2010-09-21 | Allergan, Inc. | Hypotensive lipid-containing biodegradable intraocular implants and related methods |
US8685435B2 (en) | 2004-04-30 | 2014-04-01 | Allergan, Inc. | Extended release biodegradable ocular implants |
US8163030B2 (en) | 2004-05-06 | 2012-04-24 | Degradable Solutions Ag | Biocompatible bone implant compositions and methods for repairing a bone defect |
WO2005116729A2 (en) | 2004-05-20 | 2005-12-08 | Coopervision, Inc., | Corneal onlays and wavefront aberration correction to enhance vision |
WO2006044660A2 (en) | 2004-10-14 | 2006-04-27 | Vanderbilt University | Functionalized solid lipid nanoparticles and methods of making and using same |
WO2006060723A2 (en) | 2004-12-03 | 2006-06-08 | Vical Incorporated | Methods for producing block copolymer/amphiphilic particles |
CA2605560A1 (en) | 2005-04-22 | 2006-11-02 | Kristen Hjortsvang | Immunoliposome composition for targeting to a her2 cell receptor |
MX2007013356A (en) | 2005-04-27 | 2008-03-26 | Baxter Int | Surface-modified microparticles and methods of forming and using the same. |
MX2007016050A (en) | 2005-06-17 | 2008-03-10 | Australian Nuclear Science Tec | Particles comprising a releasable dopant therein. |
EP1959966B1 (en) | 2005-11-28 | 2020-06-03 | Marinus Pharmaceuticals, Inc. | Ganaxolone formulations and methods for the making and use thereof |
DE102005058979A1 (en) | 2005-12-09 | 2007-06-21 | Qiagen Gmbh | Magnetic polymer particles |
WO2007068489A2 (en) | 2005-12-14 | 2007-06-21 | Scil Technology Gmbh | A moldable biomaterial for bone regeneration |
US7501179B2 (en) | 2005-12-21 | 2009-03-10 | Boston Scientific Scimed, Inc. | Block copolymer particles |
WO2007076358A1 (en) | 2005-12-23 | 2007-07-05 | Alcon, Inc. | PHARMACEUTICAL FORMULATION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE |
CA2636716C (en) | 2006-01-13 | 2014-12-23 | Surmodics, Inc. | Microparticle containing matrices for drug delivery |
US20070231360A1 (en) | 2006-03-28 | 2007-10-04 | Minu, L.L.C. | Neural conduit agent dissemination |
US20080166411A1 (en) | 2006-04-10 | 2008-07-10 | Pfizer Inc | Injectable Depot Formulations And Methods For Providing Sustained Release Of Poorly Soluble Drugs Comprising Nanoparticles |
US7883520B2 (en) | 2006-04-10 | 2011-02-08 | Forsight Labs, Llc | Corneal epithelial pocket formation systems, components and methods |
CN101081296B (en) | 2006-05-29 | 2010-08-04 | 北京民海生物科技有限公司 | Method for preparing b type haemophilus influenzae capsular polysaccharide and united vaccines thereof |
EP1891941A1 (en) | 2006-08-11 | 2008-02-27 | OctoPlus Technologies B.V. | Aqueous gels comprising microspheres |
DE602007012559D1 (en) | 2006-09-08 | 2011-03-31 | Univ Johns Hopkins | H THE TINY |
US7998108B2 (en) | 2006-09-12 | 2011-08-16 | Psivida Us, Inc. | Injector apparatus and method of use |
GB0619869D0 (en) | 2006-10-07 | 2006-11-15 | Regentec Ltd | Porous particles |
EP2409687B1 (en) | 2006-11-09 | 2014-06-11 | Alcon Research, Ltd. | Water insoluble polymer matrix for drug delivery |
GB0701896D0 (en) | 2007-02-01 | 2007-03-14 | Regentec Ltd | Composition |
JP2010519183A (en) | 2007-02-06 | 2010-06-03 | インセプト エルエルシー | Polymerization using protein precipitation for elution of physiological solutions |
WO2008112287A1 (en) | 2007-03-12 | 2008-09-18 | Nektar Therapeutics | Oligomer-beta blocker conjugates |
US8492334B2 (en) | 2007-06-21 | 2013-07-23 | Yale University | Sustained intraocular delivery of drugs from biodegradable polymeric microparticles |
CN101081206A (en) | 2007-06-29 | 2007-12-05 | 济南康泉医药科技有限公司 | Anti-cancer medicine composition containing tyrosine kinase restraining agent |
US9125807B2 (en) | 2007-07-09 | 2015-09-08 | Incept Llc | Adhesive hydrogels for ophthalmic drug delivery |
WO2009035565A1 (en) | 2007-09-07 | 2009-03-19 | Qlt Plug Delivery, Inc | Prostaglandin analogues for implant devices and methods |
CN101873869A (en) * | 2007-10-26 | 2010-10-27 | 国家免疫学研究所 | Biodegradable polymer support and preparation method thereof |
US8414646B2 (en) | 2007-12-27 | 2013-04-09 | Forsight Labs, Llc | Intraocular, accommodating lens and methods of use |
EP2237744B1 (en) | 2008-01-03 | 2018-04-04 | Forsight Labs, Llc | Intraocular accommodating lens. |
WO2009089070A2 (en) | 2008-01-10 | 2009-07-16 | The Johns Hopkins University | Compositions and methods for reducing particle penetration through mucus |
US20090203709A1 (en) | 2008-02-07 | 2009-08-13 | Abbott Laboratories | Pharmaceutical Dosage Form For Oral Administration Of Tyrosine Kinase Inhibitor |
CA2717133C (en) | 2008-02-29 | 2016-04-26 | Nagoya Industrial Science Research Institute | Liposome for delivery to posterior segment of eye and pharmaceutical composition for disease in posterior segment of eye |
US9125735B2 (en) | 2008-04-04 | 2015-09-08 | Forsight Labs, Llc | Method of correcting vision using corneal onlays |
WO2009132265A2 (en) | 2008-04-25 | 2009-10-29 | The University Of North Carolina At Chapel Hill | Degradable compounds and methods of use thereof, particularly with particle replication in non-wetting templates |
US20110206773A1 (en) | 2008-05-20 | 2011-08-25 | Yale University | Sustained delivery of drugs from biodegradable polymeric microparticles |
US8993615B2 (en) | 2008-08-08 | 2015-03-31 | The Johns Hopkins University | Compositions and methods for treatment of neurodegenerative disease |
TW201019963A (en) | 2008-09-10 | 2010-06-01 | Abbott Lab | Polyethylene glycol lipid conjugates and uses thereof |
US9161903B2 (en) | 2008-10-31 | 2015-10-20 | Warsaw Orthopedic, Inc. | Flowable composition that hardens on delivery to a target tissue site beneath the skin |
US9095506B2 (en) | 2008-11-17 | 2015-08-04 | Allergan, Inc. | Biodegradable alpha-2 agonist polymeric implants and therapeutic uses thereof |
US20100143479A1 (en) | 2008-12-04 | 2010-06-10 | Oakwood Laboratories, Llc | Method of making sustained release microparticles |
WO2010079496A2 (en) | 2009-01-12 | 2010-07-15 | Hadasit Medical Research Services & Development Limited | Tissue regeneration membrane |
US8623395B2 (en) | 2010-01-29 | 2014-01-07 | Forsight Vision4, Inc. | Implantable therapeutic device |
CN104887389B (en) | 2009-01-29 | 2017-06-23 | 弗赛特影像4股份有限公司 | Posterior segment drug delivery |
WO2010091187A2 (en) | 2009-02-04 | 2010-08-12 | The Brigham And Women's Hospital, Inc. | Polymeric nanoparticles with enhanced drug-loading and methods of use thereof |
US8192408B2 (en) | 2009-02-10 | 2012-06-05 | Psivida Us, Inc. | Ocular trocar assembly |
CA2750242C (en) | 2009-02-12 | 2018-05-22 | Incept, Llc | Drug delivery through hydrogel plugs |
ES2508290T3 (en) | 2009-03-03 | 2014-10-16 | Alcon Research, Ltd. | Pharmaceutical composition for the administration of tyrosine kinase receptor inhibition compounds (RTKI) to the eye |
GB0903810D0 (en) | 2009-03-05 | 2009-04-22 | Regentec Ltd | Delivery system |
AU2009342893B2 (en) | 2009-03-27 | 2014-03-06 | Australian Nuclear Science And Technology Organisation | Triggered release |
WO2010114770A1 (en) | 2009-03-30 | 2010-10-07 | Cerulean Pharma Inc. | Polymer-agent conjugates, particles, compositions, and related methods of use |
WO2010129545A2 (en) | 2009-05-04 | 2010-11-11 | Psivida Us, Inc. | Porous silicon drug-eluting particles |
CA3149284A1 (en) | 2009-12-15 | 2011-07-14 | Incept, Llc | Implants and biodegradable fiducial markers |
EP2538929A4 (en) | 2010-02-25 | 2014-07-09 | Univ Johns Hopkins | Sustained delivery of therapeutic agents to an eye compartment |
US20130071349A1 (en) | 2010-03-02 | 2013-03-21 | Allergan, Inc. | Biodegradable polymers for lowering intraocular pressure |
US9162981B2 (en) | 2010-03-23 | 2015-10-20 | The Johns Hopkins University | Compositions and methods for treatment of neurodegenerative disease |
CA2802733C (en) | 2010-06-24 | 2017-11-21 | Alkermes Pharma Ireland Limited | Prodrugs of nh-acidic compounds: ester, carbonate, carbamate and phosphonate derivatives |
SI2600930T1 (en) | 2010-08-05 | 2021-08-31 | Forsight Vision4, Inc. | Injector apparatus for drug delivery |
WO2012039979A2 (en) | 2010-09-10 | 2012-03-29 | The Johns Hopkins University | Rapid diffusion of large polymeric nanoparticles in the mammalian brain |
US8961501B2 (en) | 2010-09-17 | 2015-02-24 | Incept, Llc | Method for applying flowable hydrogels to a cornea |
EP2629760A4 (en) | 2010-10-22 | 2014-04-02 | Bind Therapeutics Inc | Therapeutic nanoparticles with high molecular weight copolymers |
AU2011323250B2 (en) | 2010-11-05 | 2015-11-19 | The Johns Hopkins University | Compositions and methods relating to reduced mucoadhesion |
US9327037B2 (en) | 2011-02-08 | 2016-05-03 | The Johns Hopkins University | Mucus penetrating gene carriers |
US9382229B2 (en) | 2011-02-15 | 2016-07-05 | The Johns Hopkins University | Compounds and methods of use thereof for treating neurodegenerative disorders |
RU2653439C9 (en) | 2011-05-11 | 2018-10-16 | Апеллис Фармасьютикалс, Инк. | Cell-reactive compstatin analogs, long-acting compstatin analogs, or targeted compstatin analogs and uses thereof |
CN106073986B (en) | 2011-09-14 | 2019-01-11 | 弗赛特影像5股份有限公司 | The device for treating the eyes of patient |
US10226417B2 (en) | 2011-09-16 | 2019-03-12 | Peter Jarrett | Drug delivery systems and applications |
EP3613413A1 (en) | 2011-12-05 | 2020-02-26 | Incept, LLC | Medical organogel processes and compositions |
JP6308679B2 (en) | 2011-12-14 | 2018-04-11 | ザ・ジョンズ・ホプキンス・ユニバーシティー | Nanoparticles with enhanced mucosal penetration or reduced inflammation |
WO2013110028A1 (en) | 2012-01-19 | 2013-07-25 | The Johns Hopkins University | Nanoparticle formulations with enhanced mucosal penetration |
HUE050904T2 (en) | 2012-01-23 | 2021-01-28 | Allergan Inc | Time released biodegradable or bioerodible microspheres or microparticles suspended in a solidifying depot-forming injectable drug formulation |
CA2867381C (en) | 2012-03-16 | 2016-09-20 | The Johns Hopkins University | Controlled release formulations for the delivery of hif-1 inhibitors |
CN104394891B (en) * | 2012-03-16 | 2019-04-16 | 约翰霍普金斯大学 | For delivering non-linear segmented copolymer-drug conjugates of activating agent |
US20140107025A1 (en) | 2012-04-16 | 2014-04-17 | Jade Therapeutics, Llc | Ocular drug delivery system |
NZ742005A (en) | 2012-05-03 | 2019-04-26 | Kala Pharmaceuticals Inc | Pharmaceutical nanoparticles showing improved mucosal transport |
JP6360039B2 (en) | 2012-05-03 | 2018-07-18 | カラ ファーマシューティカルズ インコーポレイテッド | Composition comprising a plurality of coated particles, pharmaceutical composition, pharmaceutical formulation and method of forming the particles |
CA2872519C (en) | 2012-05-04 | 2017-09-05 | The Johns Hopkins University | Lipid-based drug carriers for rapid penetration through mucus linings |
US9533068B2 (en) | 2012-05-04 | 2017-01-03 | The Johns Hopkins University | Drug loaded microfiber sutures for ophthalmic application |
WO2013177367A2 (en) | 2012-05-23 | 2013-11-28 | The Johns Hopkins University | Compounds and methods of use thereof for treating neurodegenerative disorders |
CN104582685A (en) | 2012-06-25 | 2015-04-29 | 拜尔健康护理有限责任公司 | Topical ophthalmological pharmaceutical composition containing sunitinib |
EA201590586A1 (en) | 2012-09-17 | 2015-08-31 | Бинд Терапьютикс, Инк. | THERAPEUTIC NANOPARTICLES, INCLUDING THE THERAPEUTIC AGENT, METHODS OF THEIR RECEIVING AND USE |
US9044319B2 (en) | 2013-03-01 | 2015-06-02 | Cormatrix Cardiovascular, Inc. | Anchored cardiovascular valve |
WO2014152959A1 (en) | 2013-03-14 | 2014-09-25 | Forsight Vision4, Inc. | Systems for sustained intraocular delivery of low solubility compounds from a port delivery system implant |
US9504653B2 (en) | 2013-04-01 | 2016-11-29 | Allergan, Inc. | Microsphere drug delivery system for sustained intraocular release |
CN104208715B (en) | 2013-05-31 | 2016-12-28 | 天津键凯科技有限公司 | There is the medicine bioactive low molecular poly drug conjugates of raising |
DK2848262T3 (en) | 2013-09-12 | 2021-02-08 | Smartdyelivery Gmbh | Cell-specific targeting using nanostructured support systems |
US9655862B2 (en) * | 2013-10-29 | 2017-05-23 | Shaker A. Mousa | Ocular nanoformulation and method of use in angiogenesis-mediated disorders |
ES2826392T3 (en) | 2013-11-19 | 2021-05-18 | Univ Cornell | Tissue framework materials for tissue regeneration and manufacturing methods |
CA2933900A1 (en) | 2013-12-20 | 2015-06-25 | Georgia Tech Research Corporation | Formulations and methods for targeted ocular delivery of therapeutic agents |
KR101564401B1 (en) | 2014-04-10 | 2015-11-02 | 한국화학연구원 | Process for the preparation of brinzolamide |
ES2964536T3 (en) | 2014-05-09 | 2024-04-08 | Univ Yale | Particles coated with hyperbranched polyglycerol and methods for their preparation |
EP3193827A1 (en) | 2014-08-13 | 2017-07-26 | The Johns Hopkins University | Glucocorticoid-loaded nanoparticles for prevention of corneal allograft rejection and neovascularization |
US20160106587A1 (en) | 2014-10-16 | 2016-04-21 | Incept, Llc | Ocular gels or hydrogels and microinjectors |
US10550187B2 (en) | 2014-10-24 | 2020-02-04 | Incept, Llc | Extra luminal scaffold |
AU2015360469B2 (en) | 2014-12-10 | 2021-03-25 | Incept, Llc | Hydrogel drug delivery implants |
EP4445952A2 (en) * | 2014-12-15 | 2024-10-16 | The Johns Hopkins University | Sunitinib formulations and methods for use thereof in treatment of glaucoma |
JP6479485B2 (en) | 2015-01-15 | 2019-03-06 | 大内新興化学工業株式会社 | Nanoparticle preparation for treatment of eye diseases |
WO2016118506A1 (en) | 2015-01-20 | 2016-07-28 | The Johns Hopkins University | Compositions for the sustained release of anti-glaucoma agents to control intraocular pressure |
US20160317438A1 (en) | 2015-04-29 | 2016-11-03 | Psivida Us, Inc. | Injectable sustained release intraocular device |
CN107530334A (en) | 2015-05-05 | 2018-01-02 | 普西维达公司 | Injectable depot formulations |
EP4279064A3 (en) | 2015-05-12 | 2024-02-28 | Incept, LLC | Drug delivery from hydrogels |
JP2018525078A (en) | 2015-07-22 | 2018-09-06 | インセプト・リミテッド・ライアビリティ・カンパニーIncept,Llc | Coated punctum plug |
EP3352749A4 (en) | 2015-09-22 | 2019-09-04 | Graybug Vision, Inc. | Compounds and compositions for the treatment of ocular disorders |
JP2018536484A (en) | 2015-11-25 | 2018-12-13 | インセプト・リミテッド・ライアビリティ・カンパニーIncept,Llc | Shape-changing drug delivery device and method |
RU2019133337A (en) | 2017-03-23 | 2021-04-23 | Грейбуг Вижн, Инк. | DRUGS AND COMPOSITIONS FOR THE TREATMENT OF EYE DISORDERS |
CA3083805A1 (en) | 2017-12-14 | 2019-06-20 | Graybug Vision, Inc. | Drugs and compositions for ocular delivery |
JP2021522224A (en) | 2018-04-23 | 2021-08-30 | グレイバグ ビジョン インコーポレイテッド | Manufacture of improved continuous microparticles |
WO2019210215A1 (en) | 2018-04-26 | 2019-10-31 | Graybug Vision, Inc. | Drugs to treat ocular disorders |
TW202035364A (en) | 2018-09-27 | 2020-10-01 | 美商灰色視覺公司 | Compounds and compositions for ocular delivery |
WO2020102758A1 (en) | 2018-11-15 | 2020-05-22 | Graybug Vision, Inc. | Improved aggregated microparticles |
-
2016
- 2016-11-11 AU AU2016353355A patent/AU2016353355B9/en not_active Expired - Fee Related
- 2016-11-11 CA CA3004886A patent/CA3004886A1/en active Pending
- 2016-11-11 EP EP16865170.1A patent/EP3373978A4/en not_active Withdrawn
- 2016-11-11 WO PCT/US2016/061706 patent/WO2017083779A1/en active Application Filing
- 2016-11-11 CN CN202111616687.8A patent/CN114469872A/en active Pending
- 2016-11-11 EA EA201891147A patent/EA038755B1/en unknown
- 2016-11-11 KR KR1020187016638A patent/KR20180102069A/en unknown
- 2016-11-11 US US15/349,985 patent/US10441548B2/en active Active
- 2016-11-11 SG SG11201803663XA patent/SG11201803663XA/en unknown
- 2016-11-11 CN CN201680066275.2A patent/CN108367079B/en active Active
- 2016-11-11 BR BR112018009644A patent/BR112018009644A2/en not_active IP Right Cessation
- 2016-11-11 JP JP2018523814A patent/JP2018533596A/en active Pending
- 2016-11-11 MX MX2018005932A patent/MX2018005932A/en unknown
-
2018
- 2018-04-27 PH PH12018500905A patent/PH12018500905A1/en unknown
- 2018-05-06 IL IL259167A patent/IL259167A/en unknown
- 2018-12-19 HK HK18116289.6A patent/HK1257499A1/en unknown
-
2019
- 2019-09-10 US US16/566,721 patent/US11331276B2/en active Active
- 2019-09-10 US US16/566,724 patent/US11564890B2/en active Active
-
2023
- 2023-01-19 JP JP2023006261A patent/JP2023052493A/en active Pending
- 2023-01-27 US US18/102,541 patent/US20240041783A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US10441548B2 (en) | 2019-10-15 |
CN114469872A (en) | 2022-05-13 |
KR20180102069A (en) | 2018-09-14 |
CN108367079A (en) | 2018-08-03 |
AU2016353355A1 (en) | 2018-05-17 |
IL259167A (en) | 2018-06-28 |
EA038755B1 (en) | 2021-10-14 |
HK1257499A1 (en) | 2019-10-25 |
WO2017083779A1 (en) | 2017-05-18 |
US20200000734A1 (en) | 2020-01-02 |
CN108367079B (en) | 2022-11-22 |
AU2016353355B2 (en) | 2022-09-15 |
US11564890B2 (en) | 2023-01-31 |
CA3004886A1 (en) | 2017-05-18 |
MX2018005932A (en) | 2019-05-20 |
JP2023052493A (en) | 2023-04-11 |
EP3373978A4 (en) | 2019-06-26 |
AU2016353355B9 (en) | 2022-09-29 |
EA201891147A1 (en) | 2018-10-31 |
US20170135960A1 (en) | 2017-05-18 |
US20200000735A1 (en) | 2020-01-02 |
EP3373978A1 (en) | 2018-09-19 |
BR112018009644A2 (en) | 2018-11-06 |
SG11201803663XA (en) | 2018-05-30 |
PH12018500905A1 (en) | 2018-11-05 |
JP2018533596A (en) | 2018-11-15 |
US11331276B2 (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11564890B2 (en) | Aggregating microparticles for medical therapy | |
US20230058971A1 (en) | Extended release microparticles and suspensions thereof for medical therapy | |
US20210275456A1 (en) | Aggregated microparticles | |
RU2729731C2 (en) | Sunitinib-based compositions and methods for using them for treating eye diseases | |
US20210085607A1 (en) | Continuous microparticle manufacture | |
JP2019038825A (en) | Crystalline forms of therapeutic compounds and uses thereof | |
CN114010787A (en) | Compositions and methods for treating pterygium | |
JP2019038824A (en) | Crystalline forms of therapeutic compounds and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CALCIMEDICA, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:GRAYBUG VISION, INC.;REEL/FRAME:065537/0884 Effective date: 20230320 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |