US20230420649A1 - Positive Electrode Active Material For Lithium Secondary Battery, Method Of Preparing The Same, And Positive Electrode For Lithium Secondary Battery And Lithium Secondary Battery Which Include The Positive Electrode Active Material - Google Patents
Positive Electrode Active Material For Lithium Secondary Battery, Method Of Preparing The Same, And Positive Electrode For Lithium Secondary Battery And Lithium Secondary Battery Which Include The Positive Electrode Active Material Download PDFInfo
- Publication number
- US20230420649A1 US20230420649A1 US18/243,974 US202318243974A US2023420649A1 US 20230420649 A1 US20230420649 A1 US 20230420649A1 US 202318243974 A US202318243974 A US 202318243974A US 2023420649 A1 US2023420649 A1 US 2023420649A1
- Authority
- US
- United States
- Prior art keywords
- positive electrode
- active material
- electrode active
- transition metal
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 213
- 229910052744 lithium Inorganic materials 0.000 title claims description 76
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 75
- 238000000034 method Methods 0.000 title claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 167
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 84
- 239000010941 cobalt Substances 0.000 claims abstract description 84
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 84
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 79
- 239000011572 manganese Substances 0.000 claims abstract description 78
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 69
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910052723 transition metal Inorganic materials 0.000 claims description 112
- 150000003624 transition metals Chemical class 0.000 claims description 104
- 239000000243 solution Substances 0.000 claims description 90
- 239000002243 precursor Substances 0.000 claims description 58
- 239000002994 raw material Substances 0.000 claims description 51
- 239000000203 mixture Substances 0.000 claims description 35
- 238000002156 mixing Methods 0.000 claims description 33
- 230000003247 decreasing effect Effects 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 88
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 abstract description 42
- 239000011164 primary particle Substances 0.000 abstract description 21
- 238000004458 analytical method Methods 0.000 abstract description 10
- 239000011163 secondary particle Substances 0.000 abstract description 8
- 238000005054 agglomeration Methods 0.000 abstract description 4
- 230000002776 aggregation Effects 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 23
- -1 Lithium transition metal Chemical class 0.000 description 21
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 19
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 19
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 18
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000006258 conductive agent Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 239000007773 negative electrode material Substances 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 12
- 239000013078 crystal Substances 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 239000002184 metal Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 8
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229910021382 natural graphite Inorganic materials 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910052596 spinel Inorganic materials 0.000 description 4
- 239000011029 spinel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229910008094 Li1+aNixCoyMnzM Inorganic materials 0.000 description 2
- 229910052493 LiFePO4 Inorganic materials 0.000 description 2
- 229910002993 LiMnO2 Inorganic materials 0.000 description 2
- 229910003005 LiNiO2 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 2
- 229910016811 Ni0.65CO0.20Mn0.15 Inorganic materials 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003660 carbonate based solvent Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000006233 lamp black Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229920005608 sulfonated EPDM Polymers 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 2
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- OAVRWNUUOUXDFH-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;manganese(2+) Chemical compound [Mn+2].[Mn+2].[Mn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O OAVRWNUUOUXDFH-UHFFFAOYSA-H 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 102100028667 C-type lectin domain family 4 member A Human genes 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910018916 CoOOH Inorganic materials 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101000766908 Homo sapiens C-type lectin domain family 4 member A Proteins 0.000 description 1
- 229910010088 LiAlO4 Inorganic materials 0.000 description 1
- 229910001559 LiC4F9SO3 Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- ZHGDJTMNXSOQDT-UHFFFAOYSA-N NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O Chemical compound NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O ZHGDJTMNXSOQDT-UHFFFAOYSA-N 0.000 description 1
- 229910005581 NiC2 Inorganic materials 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002461 imidazolidines Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 239000011564 manganese citrate Substances 0.000 description 1
- 235000014872 manganese citrate Nutrition 0.000 description 1
- 229940097206 manganese citrate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(II) nitrate Inorganic materials [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(II) nitrate Inorganic materials [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material for a lithium secondary battery, a method of preparing the positive electrode active material, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the positive electrode active material.
- lithium secondary batteries having high energy density, long cycle life, and low self-discharging rate have been commercialized and widely used.
- Lithium transition metal composite oxides have been mainly used as a positive electrode active material of the lithium secondary battery, and, among these oxides, a lithium cobalt oxide (LiCoO 2 ) having a high operating voltage and excellent capacity characteristics has been mainly used.
- a lithium cobalt oxide LiCoO 2
- the lithium cobalt oxide has poor thermal properties due to an unstable crystal structure caused by delithiation and is expensive, there is a limitation in using a large amount of the lithium cobalt oxide as a power source of a medium and large sized device such as an electric vehicle.
- LiNiO 2 LiNiO 2
- LiMnO 2 LiMn 2 O 4
- LiFePO 4 LiFePO 4
- the LiNiO 2 is disadvantageous in that the synthesis thereof is difficult by a simple solid phase reaction, and thermal stability and cycle characteristics are poorer than those of LiCoO 2 .
- LiMnO 2 and LiMn 2 O 4 also have a limitation in that capacities are lower and high-temperature characteristics are poorer than those of LiCoO 2 .
- LiMn 2 O 4 some have been commercialized as low-cost products, but life characteristics were poor due to structural distortion (Jahn-Teller distortion) caused by Mn 3+ .
- Jahn-Teller distortion structural distortion caused by Mn 3+ .
- a significant amount of research has currently been conducted for the application of LiFePO 4 for a hybrid electric vehicle (HEV), but the application to other areas may be difficult due to low ionic conductivity.
- the lithium nickel cobalt manganese oxide has a limitation in that discharge capacity and output characteristics are reduced as the cobalt content is reduced when a nickel content is the same.
- discharge capacity and output characteristics are reduced as the cobalt content is reduced when a nickel content is the same.
- An aspect of the present invention provides a positive electrode active material having excellent output characteristics while having a relatively small cobalt content.
- Another aspect of the present invention provides a cobalt-reduced positive electrode active material with excellent structural stability and improved lithium mobility.
- Another aspect of the present invention provides a method of preparing the positive electrode active material.
- Another aspect of the present invention provides a positive electrode for a lithium secondary battery which includes the positive electrode active material.
- Another aspect of the present invention provides a lithium secondary battery including the positive electrode for a lithium secondary battery.
- a positive electrode active material including a lithium transition metal oxide having an average composition represented by Formula 1 in which a cobalt content in the lithium transition metal oxide is less than a manganese content, wherein at least one of nickel, cobalt, and manganese in the lithium transition metal oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof, the positive electrode active material is in the form of a secondary particle formed by agglomeration of primary particles, and a ratio in which angles between c-axis directions, which are measured at at least 8 points on a surface of the positive electrode active material by TEM analysis, and a growth direction of the particle at the measuring point satisfy 85° to 95° is 60% or more:
- M 1 includes at least one selected from the group consisting of aluminum (Al), zirconium (Zr), magnesium (Mg), zinc (Zn), yttrium (Y), iron (Fe), and titanium (Ti).
- a method of preparing a positive electrode active material which includes: preparing a first transition metal-containing solution including a nickel raw material and a second transition metal-containing solution having a transition metal concentration different from that of the first transition metal-containing solution and including a nickel raw material, a cobalt raw material, and a manganese raw material; preparing a positive electrode active material precursor by mixing the first transition metal-containing solution and the second transition metal-containing solution while gradually changing a mixing ratio of the first transition metal-containing solution to the second transition metal-containing solution; and mixing the positive electrode active material precursor with a lithium-containing raw material and sintering the mixture to synthesize a positive electrode active material, wherein the preparing of the positive electrode active material precursor is controlled such that a pH is gradually decreased as a nickel content in the mixed solution is reduced.
- a positive electrode for a lithium secondary battery which includes the positive electrode active material according to the present invention.
- a lithium secondary battery including the positive electrode according to the present invention.
- a transition metal has a concentration gradient in an active material particle and a ratio in which a particle growth direction and a c-axis direction of a crystal at a surface satisfy a certain angle is high as in a positive electrode active material of the present invention, since degradation of output characteristics due to a reduction in cobalt content may be minimized, excellent output characteristics may be obtained even if a small amount of cobalt is used.
- production costs of a secondary battery including a lithium transition metal oxide may be reduced by maintaining a cobalt content in the lithium transition metal oxide less than a manganese content.
- At least one of transition metals included in the lithium transition metal oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof, structural stability is improved while having high capacity characteristics, and thus, life characteristics of a battery may be improved when the lithium transition metal oxide is used in the battery.
- FIG. 1 is a surface transmission electron microscope (TEM) image of a positive electrode active material prepared in Example 1 and diffraction patterns of crystal structures of a surface of the positive electrode active material which are confirmed by selected area diffraction patterns (SADPs);
- SADPs selected area diffraction patterns
- FIG. 2 is a surface TEM image of a positive electrode active material prepared in Comparative Example 1 and diffraction patterns of crystal structures of a surface of the positive electrode active material which are confirmed by SADPs;
- FIG. 3 is a surface TEM image of a positive electrode active material prepared in Comparative Example 2 and diffraction patterns of crystal structures of a surface of the positive electrode active material which are confirmed by SADPs;
- FIG. 4 is charge and discharge profile graphs of secondary batteries prepared in Example 1 and Comparative Example 1;
- FIG. 5 is a graph illustrating capacity retentions and resistance increase rates during 300 cycles of secondary batteries prepared in Example 1 and Comparative Examples 1 and 2.
- a lithium cobalt-based oxide having a high operating voltage and excellent capacity characteristics has been used as a positive electrode active material of a conventional lithium secondary battery, but, since the lithium cobalt-based oxide has poor thermal properties due to an unstable crystal structure caused by delithiation and is expensive, there is a limitation in using a large amount of the lithium cobalt-based oxide as a power source of a medium and large sized device.
- a lithium nickel cobalt manganese-based oxide has been used to replace the lithium cobalt-based oxide, but the lithium nickel cobalt manganese-based oxide has a limitation in that discharge capacity and output characteristics are reduced as a cobalt content is reduced to reduce manufacturing costs.
- the present inventors have found that, since mobility of lithium ions in a lithium transition metal oxide is improved by controlling such that at least one of metallic elements included in the lithium nickel cobalt manganese-based oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof and a c-axis direction, which is measured by transmission electron microscope (TEM) analysis on a surface of the particle, and a growth direction of the particle at a measuring point form a specific angle, discharge capacity and output characteristics are improved when the lithium nickel cobalt manganese-based oxide is used in a battery even if the cobalt content is reduced, thereby leading to the completion of the present invention.
- TEM transmission electron microscope
- the positive electrode active material according to the present invention is a positive electrode active material which includes a lithium transition metal oxide in which a cobalt content in the lithium transition metal oxide is less than a manganese content, wherein at least one of nickel, cobalt, and manganese in the lithium transition metal oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof, the positive electrode active material is in the form of a secondary particle formed by agglomeration of primary particles, and a ratio in which angles between c-axis directions, which are measured at at least 8 points on a surface of the positive electrode active material by TEM analysis, and a growth direction of the particle at the measuring point satisfy 85° to 95° is 60% or more.
- the positive electrode active material according to the present invention includes a lithium transition metal oxide having an average composition represented by Formula 1 below.
- M 1 includes at least one selected from the group consisting of aluminum (Al), zirconium (Zr), magnesium (Mg), zinc (Zn), yttrium (Y), iron (Fe), and titanium (Ti).
- the lithium transition metal oxide may include nickel in an amount of 60 mol % or more to less than 100 mol % based on the total number of moles of transition metal elements excluding lithium.
- the amount of the nickel in the lithium transition metal oxide is outside the above range, since capacity of the positive electrode active material is decreased, the positive electrode active material may not be applied to an electrochemical device requiring high capacity.
- the greater the amount of the nickel within the above range is, the higher the capacity characteristics of a battery including the lithium transition metal oxide are exhibited.
- the greater the amount of the nickel is, an amount of cobalt and/or manganese is relatively reduced, and, accordingly, charge and discharge efficiency may be reduced.
- the lithium transition metal oxide may preferably include the nickel in an amount of 65 mol % to 75 mol % based on the total number of moles of the transition metal elements excluding lithium.
- the lithium transition metal oxide may include manganese in an amount of greater than 0 mol % to 35 mol % or less, preferably 15 mol % to 35 mol %, and most preferably 20 mol % or more to less than 35 mol % based on the total number of moles of the transition metal elements excluding lithium. In a case in which the amount of the manganese is outside the above range, high capacity may not be achieved.
- the lithium transition metal oxide may include cobalt in an amount of greater than 0 mol % to 35 mol % or less, preferably greater than 0 mol % to 20 mol % or less, and most preferably greater than 0 mol % to 15 mol % or less based on the total number of moles of the transition metal elements excluding lithium.
- the amount of the cobalt is outside the above range and is greater than 35 mol %, overall cost of raw materials may be increased due to the large amount of the cobalt and reversible capacity may be somewhat decreased, and, in a case in which the amount of the cobalt is 0 mol %, sufficient rate capability and output characteristics may not be exhibited.
- the amount of the manganese in the lithium transition metal oxide, may be greater than the amount of the cobalt.
- the amount of the manganese in a case in which the amount of the manganese is less than or equal to the amount of the cobalt, there may be limitations such as increases in manufacturing costs due to the increase in price of a cobalt raw material, a decrease in lifetime, an increase in resistance increase rate, and an increase in gas generation amount.
- a molar ratio of cobalt:manganese may be in a range of greater than 1:1 to 1:10 or less, preferably greater than 1:1 to 1:5 or less, and more preferably greater than 1:1 to 1:3 or less.
- the molar ratio of cobalt:manganese in the lithium transition metal oxide is in a range of greater than 1:1 to 1:10 or less, since the relatively small amount of the cobalt is included, an increase in cost may not only be suppressed, but life characteristics, resistance characteristics, and gas generation amount may also be improved.
- the positive electrode active material may be selectively doped with doping element M 1 , if necessary.
- the doping element M 1 may be used without particular limitation as long as it may contribute to an improvement in structural stability of the positive electrode active material, wherein, for example, the doping element M 1 may include at least one selected from the group consisting of Al, Zr, Mg, Zn, Y, Fe, and Ti.
- the doping element M 1 may be included in an amount of 2 mol % or less, for example, 1 mol % to 2 mol % based on the total number of moles of the transition metal elements excluding lithium.
- the doping element M 1 may be uniformly included on the surface and inside of the positive electrode active material, and, as a result, the structural stability of the positive electrode active material may be improved to improve the output characteristics.
- the positive electrode active material is in the form of a secondary particle formed by agglomeration of primary particles.
- the positive electrode active material may include columnar-structured primary particles, which are grown in a surface direction from a center of the positive electrode active material, in a surface portion.
- the positive electrode active material includes the columnar-structured primary particles, which are grown in the surface direction from the center of the positive electrode active material, in the surface portion, mobility of lithium ions on the surface of the positive electrode active material is improved, and thus, initial capacity characteristics and output characteristics may be improved when the positive electrode active material is used in the battery.
- the columnar-structure may have an aspect ratio of 2 to 5, for example, 3 to 5. In a case in which the aspect ratio of the columnar structure satisfies the above range, capacity, lifetime, and resistance increase rate may be improved.
- the positive electrode active material according to the present invention includes a lithium transition metal oxide having a layered structure.
- a ratio in which angles between c-axis directions, which are measured at at least 8 points on the surface of the positive electrode active material by TEM analysis, and a growth direction of the particle at the measuring point satisfy 85° to 95° may be 60% or more.
- lithium ions move along a plane direction satisfying 85° to 95° to the c-axis direction.
- the ratio in which the angle between the c-axis direction and the growth direction of the lithium transition metal oxide particle satisfies 85° to 95° is less than 60%, because the growth direction of the lithium transition metal oxide particle and the plane direction (lithium path direction) satisfying 85° to 95° to the c-axis direction are misaligned on the surface of the positive electrode active material, since the movement of lithium ions deintercalated from the inside of the positive electrode active material may be blocked on the surface, lithium mobility may be reduced.
- the lithium ions deintercalated from the inside of the positive electrode active material may easily move to the outside of the positive electrode active material, and thus, the lithium mobility is excellent.
- the crystal structure of the positive electrode active material may be observed by cutting the positive electrode active material and using a transmission electron microscope (TEM), and the c-axis direction of the positive electrode active material may be observed by fast Fourier transform (FFT) or a selected area diffraction pattern (SADP).
- FFT fast Fourier transform
- SADP selected area diffraction pattern
- At least one of nickel, cobalt, and manganese included in the positive electrode active material may be increased or decreased while having a concentration gradient that gradually changes from the center of the positive electrode active material particle to the surface of the particle.
- a concentration gradient slope of the transition metal may be constant.
- the nickel, cobalt, and manganese included in the positive electrode active material each independently may have a single concentration gradient slope value.
- the nickel included in the positive electrode active material may have a concentration gradient that gradually decreases from the center of the positive electrode active material particle to the surface of the particle.
- a concentration gradient slope of the nickel may be constant from the center of the positive electrode active material particle to the surface thereof.
- the nickel has a gradient in which a high concentration of the nickel (Ni) is maintained at the center of the positive electrode active material particle and the concentration is gradually decreased toward the surface of the particle
- the center of the particle includes a high content of the nickel
- high capacity characteristics of the positive electrode active material may be maintained, and, since the surface of the particle includes a low content of the nickel to reduce surface reactivity due to catalytic action of the Ni, the structural stability of the positive electrode active material may be improved.
- At least one of the manganese and cobalt included in the positive electrode active material may have a concentration gradient that gradually increases from the center of the positive electrode active material particle to the surface thereof.
- concentration of the manganese and/or the cobalt at the center of the positive electrode active material particle remains low and the concentration of the manganese and/or the cobalt is relatively increased toward the surface of the positive electrode active material particle, excellent rate capability and life characteristics may be achieved.
- discharge capacity may be reduced.
- the positive electrode active material, in which the content of cobalt is less than the content of manganese has a concentration gradient as in the present invention, the reduction in the discharge capacity may be suppressed, and, accordingly, decreases in low-temperature characteristics and high-temperature life characteristics may also be prevented.
- the transition metal has a concentration gradient in which the concentration of the transition metal continuously changes depending on a position in the positive electrode active material as in the present invention, an abrupt phase boundary region is not present from the center of the positive electrode active material particle to the surface thereof, and thus, its crystal structure is stabilized, thermal stability is increased, and high capacity, long lifetime, and good thermal stability may be obtained when the positive electrode active material is used in the secondary battery. Also, capacity and output characteristics may be maintained even if the content of the cobalt is decreased. In a case in which the concentration gradient slope of the transition metal is constant, the effect of improvement in the structural stability may be further improved. Furthermore, since the concentration of each transition metal in the positive electrode active material particle is changed by the concentration gradient, the effect of the positive electrode active material on the improvement of battery performance may be further improved by easily using properties of the corresponding transition metal.
- the expression “the concentration of the transition metal has a gradually changing (increasing or decreasing) gradient” denotes that the transition metal has a concentration distribution in which the concentration of the transition metal is gradually changed across the entire particle.
- the concentration gradient structure and concentration of the metal in the lithium composite metal oxide particle may be identified by using a method such as electron probe microanalysis (EPMA), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), or time of flight secondary ion mass spectrometry (ToF-SIMS), wherein, specifically, etching is performed on the lithium composite metal oxide particle with argon gas for 1,000 seconds, and the concentration gradient structure and concentration of the metal may be measured by analyzing an amount of the element detected according to etching time from the start of the etching using X-ray photoelectron spectroscopy (XPS).
- EPMA electron probe microanalysis
- ICP-AES inductively coupled plasma-atomic emission spectroscopy
- ToF-SIMS time of flight secondary ion mass spectrometry
- the positive electrode active material according to the present invention since 60% or more of crystals of the positive electrode active material have a c-axis direction that forms a specific angle with the surface of the particle and the positive electrode active material has a concentration gradient even if the amount of the cobalt is reduced, a positive electrode active material having excellent electrochemical properties may be provided at a low cost without decreases in capacity characteristics and output characteristics.
- the method includes: preparing a first transition metal-containing solution including a nickel raw material and a second transition metal-containing solution having a transition metal concentration different from that of the first transition metal-containing solution and including a nickel raw material, a cobalt raw material, and a manganese raw material; preparing a positive electrode active material precursor by mixing the first transition metal-containing solution and the second transition metal-containing solution while gradually changing a mixing ratio of the first transition metal-containing solution to the second transition metal-containing solution; and mixing the positive electrode active material precursor with a lithium-containing raw material and sintering the mixture to synthesize a positive electrode active material.
- the preparing of the positive electrode active material precursor is controlled such that a pH is gradually decreased as a nickel content in the mixed solution is reduced.
- a first transition metal-containing solution including a nickel raw material and a second transition metal-containing solution having a transition metal concentration different from that of the first transition metal-containing solution and including a nickel raw material, a cobalt raw material, and a manganese raw material are first prepared.
- the first transition metal-containing solution may further selectively include at least one of a cobalt raw material and a manganese raw material, if necessary.
- the first transition metal-containing solution may be prepared by adding the nickel raw material to a solvent, particularly water or a mixture of water and an organic solvent (alcohol etc.) which may be uniformly mixed with the water, or after an aqueous solution including the nickel raw material is prepared, the aqueous solution may be mixed and used.
- a solvent particularly water or a mixture of water and an organic solvent (alcohol etc.) which may be uniformly mixed with the water
- an aqueous solution including the nickel raw material is prepared, the aqueous solution may be mixed and used.
- each of the metal raw materials are mixed such that a ratio of nickel:cobalt:manganese in the first transition metal-containing solution is in a range of (80 to 100):(0 to 10):(0 to 20), for example, (90 to 100):(0 to 5):(0 to 10).
- the second transition metal-containing solution includes a nickel raw material, a cobalt raw material, and a manganese raw material, and may be prepared in the same manner as the first transition metal-containing solution.
- each of the metal raw materials are mixed such that a ratio of nickel:cobalt:manganese in the second transition metal-containing solution is in a range of (50 to 80):(10 to 30): (10 to 35), for example, (50 to 60): (20 to 30): (15 to 35).
- an amount of the manganese raw material may be greater than an amount of the cobalt raw material. Accordingly, with respect to the prepared positive electrode active material precursor particle, an amount of manganese is greater than an amount of cobalt across the entire particle, and manufacturing costs may be reduced as the positive electrode active material precursor particle contains less cobalt raw material.
- each metallic element-containing sulfate, nitrate, acetic acid salt, halide, hydroxide, or oxyhydroxide may be used as the nickel, cobalt, and manganese raw materials, and the nickel, cobalt, and manganese raw materials may be used without particular limitation as long as these materials may be dissolved in the above-described solvent such as water.
- the nickel raw material may include Ni (OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni(OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni(NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, a fatty acid nickel salt, or a nickel halide, and a mixture of at least one thereof may be used.
- the cobalt raw material may include Co(OH) 2 , CoOOH, CoSO 4 , Co(OCOCH 3 ) 2 ⁇ 4H 2 O, Co(NO 3 ) 2 ⁇ 6H 2 O, or Co(SO 4 ) 2 ⁇ 7H 2 O, and a mixture of at least one thereof may be used.
- the manganese raw material may include a manganese oxide such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 ; a manganese salt such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylate, manganese citrate, and a fatty acid manganese salt; an oxyhydroxide, and manganese chloride, and a mixture of at least one thereof may be used.
- a manganese oxide such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4
- a manganese salt such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylate, manganese citrate, and a fatty acid manganese salt
- an oxyhydroxide, and manganese chloride and a mixture of at least one thereof may be used.
- a positive electrode active material precursor is prepared by mixing the first transition metal-containing solution and the second transition metal-containing solution while gradually changing a mixing ratio of the first transition metal-containing solution to the second transition metal-containing solution.
- the preparing of the positive electrode active material precursor it may be controlled such that a pH is gradually decreased as the nickel content in the mixed solution is reduced.
- the pH may be gradually decreased within a range of 13 to 9, preferably 12.5 to 9, and most preferably 12 to 10 as the nickel content in the mixed solution is reduced.
- the pH is controlled to be gradually decreased as the nickel content is reduced during the preparation of the positive electrode active material precursor as described above, a c-axis direction on the surface of the positive electrode active material particle finally prepared may be effectively controlled.
- the positive electrode active material prepared while controlling the pH as described above may be formed such that a ratio in which angles between c-axis directions, which are measured at at least 8 points on the surface of the positive electrode active material by TEM analysis, and a growth direction at the measuring point satisfy 85° to 95° is 60% or more.
- a reaction is performed at a pH of 11 to 13, preferably 11 to 12 or 11.5 to 12, and most preferably 11.7 to 12 at the beginning of the reaction to form positive electrode active material precursor particle nucleus, and, later in the reaction, the positive electrode active material precursor particle are grown by performing a reaction at a pH of 9 to 11, preferably 10 to 11 or 10.5 to 11, and most preferably 10.8 to 11 by adjusting amounts of an ammonium ionic complexing agent and a basic aqueous solution added.
- the positive electrode active material precursor is not only in the form of a secondary particle in which primary particles are agglomerated, but may also include columnar-structured primary particles, which are grown in a surface direction from the center of the positive electrode active material, in a surface portion.
- the positive electrode active material precursor particle prepared without changing the pH may have a form of a secondary particle in which primary particles are agglomerated without an orientation.
- a particle size distribution may be increased to cause non-uniformity of the primary particles.
- precursor particles initially prepared have a composition of the first transition metal-containing solution and, thereafter, since the first transition metal-containing solution and the second transition metal-containing solution are mixed while a ratio of the first transition metal-containing solution to the second transition metal-containing solution is gradually changed, the composition of the precursor particle is also gradually changed to a composition of the second transition metal-containing solution from the center of the precursor particle to the surface thereof.
- precursor particles may be prepared in which a concentration of the nickel is decreased while the nickel has a continuous concentration gradient from the center of the active material particle in a surface direction of the particle, and concentrations of the manganese and cobalt are each independently increased while the manganese and cobalt have a continuous concentration gradient from the center of the particle in the surface direction of the particle.
- the concentration gradient of the precursor particle may be controlled such that the prepared precursor particle has a desired composition at a desired position by adjusting the compositions of the first transition metal-containing solution and the second transition metal-containing solution, mixing speed, and mixing ratio, and a concentration gradient slope in this case may also be controlled.
- precipitates in which the metal has a continuous concentration gradient from the center of the particle to the surface thereof, may be obtained in a single co-precipitation reaction process by continuously mixing the first transition metal-containing solution and the second transition metal-containing solution, and a concentration gradient of the metal and its slope in the active material precursor formed in this case may be easily adjusted by the compositions and mixed feed ratio of the first transition metal-containing solution and the second transition metal-containing solution.
- the concentration gradient of the transition metal element in the particle may be formed by controlling reaction rate or reaction time. In order to produce a high density state in which the concentration of the specific metal is high, it is desirable to increase the reaction time and decrease the reaction rate, and, in order to produce a low density state in which the concentration of the specific metal is low, it is desirable to decrease the reaction time and increase the reaction rate.
- the positive electrode active material precursor is mixed with a lithium-containing raw material and the mixture is sintered to synthesize a positive electrode active material.
- the lithium-containing raw material is not particularly limited as long as it is a compound including a lithium source, but, preferably, at least one selected from the group consisting of lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), LiNO 3 , CH 3 COOLi, and Li 2 (COO) 2 may be used.
- An amount of the lithium-containing raw material used may be determined according to amounts of the lithium and the transition metal in the finally prepared positive electrode active material, and, specifically, the lithium-containing raw material may be used in an amount such that a molar ratio (molar ratio of lithium/metallic element) of lithium included in the lithium-containing raw material to the transition metal element included in the precursor for a positive electrode active material is in a range of 1.0 to 1.3, for example, 1.0 to 1.2.
- a doping element M 1 raw material (where M 1 includes at least one selected from the group consisting of Al, Zr, Mg, Zn, Y, Fe, and Ti) may be further selectively included, if necessary.
- the doping element M 1 raw material may be included in an amount of 2 mol % or less, for example, 1 mol % to 2 mol % based on the total number of moles of the positive electrode active material precursor.
- a positive electrode active material is prepared by sintering the mixture at 780° C. to 900° C., preferably 800° C. to 880° C., and more preferably 810° C. to 870° C. for 20 hours to 25 hours. Since the sintering is performed within the above temperature range, crystallinity is improved, and thus, a positive electrode active material having improved structural stability may be prepared.
- a positive electrode for a lithium secondary battery which includes the positive electrode active material according to the present invention.
- the positive electrode for a lithium secondary battery which includes a positive electrode collector, and a positive electrode active material layer formed on the positive electrode collector, wherein the positive electrode active material layer includes the positive electrode active material according to the present invention.
- the positive electrode collector is not particularly limited as long as it has conductivity without causing adverse chemical changes in the battery, and, for example, stainless steel, aluminum, nickel, titanium, fired carbon, or aluminum or stainless steel that is surface-treated with one of carbon, nickel, titanium, silver, or the like may be used. Also, the positive electrode collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and microscopic irregularities may be formed on the surface of the collector to improve the adhesion of the positive electrode active material.
- the positive electrode collector for example, may be used in various shapes such as that of a film, a sheet, a foil, a net, a porous body, a foam body, a non-woven fabric body, and the like.
- the positive electrode active material layer may include a conductive agent as well as selectively a binder, if necessary, in addition to the above positive electrode active material.
- the positive electrode active material may be included in an amount of 80 wt % to 99 wt %, for example, 85 wt % to 98.5 wt % based on a total weight of the positive electrode active material layer.
- the positive electrode active material is included in an amount within the above range, excellent capacity characteristics may be obtained.
- the conductive agent is used to provide conductivity to the electrode, wherein any conductive agent may be used without particular limitation as long as it has suitable electron conductivity without causing adverse chemical changes in the battery.
- the conductive agent may be graphite such as natural graphite or artificial graphite; carbon based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fibers; powder or fibers of metal such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide whiskers and potassium titanate whiskers; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and any one thereof or a mixture of two or more thereof may be used.
- the conductive agent may be typically included in an amount of 0.1 wt % to 15 wt % based on the total weight of the positive electrode active material layer.
- the binder improves the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
- the binder may be polyvinylidene fluoride (PVDF), a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, an ethylene-propylene-diene monomer (EPDM), a sulfonated EPDM, a styrene-butadiene rubber (SBR), a fluorine rubber, or various copolymers thereof, and any one thereof or a mixture of two or more thereof may be used.
- the binder may be included in an amount of 0.1 wt % to 15 wt
- the positive electrode may be prepared according to a typical method of preparing a positive electrode except that the above-described positive electrode active material is used. Specifically, a composition for forming a positive electrode active material layer, which is prepared by dissolving or dispersing the positive electrode active material as well as selectively the binder and the conductive agent, if necessary, in a solvent, is coated on the positive electrode collector, and the positive electrode may then be prepared by drying and rolling the coated positive electrode collector.
- the solvent may be a solvent normally used in the art.
- the solvent may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or water, and any one thereof or a mixture of two or more thereof may be used.
- An amount of the solvent used may be sufficient if the solvent may dissolve or disperse the positive electrode active material, the conductive agent, and the binder in consideration of a coating thickness of a slurry and manufacturing yield, and may allow to have a viscosity that may provide excellent thickness uniformity during the subsequent coating for the preparation of the positive electrode.
- the positive electrode may be prepared by casting the composition for forming a positive electrode active material layer on a separate support and then laminating a film separated from the support on the positive electrode collector.
- an electrochemical device including the positive electrode may be prepared.
- the electrochemical device may specifically be a battery or a capacitor, and, for example, may be a lithium secondary battery.
- the lithium secondary battery specifically includes a positive electrode, a negative electrode disposed to face the positive electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein, since the positive electrode is the same as described above, detailed descriptions thereof will be omitted, and the remaining configurations will be only described in detail below.
- the lithium secondary battery may further selectively include a battery container accommodating an electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery container.
- the negative electrode includes a negative electrode collector and a negative electrode active material layer disposed on the negative electrode collector.
- the negative electrode collector is not particularly limited as long as it has high conductivity without causing adverse chemical changes in the battery, and, for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel that is surface-treated with one of carbon, nickel, titanium, silver, or the like, and an aluminum-cadmium alloy may be used.
- the negative electrode collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and, similar to the positive electrode collector, microscopic irregularities may be formed on the surface of the collector to improve the adhesion of a negative electrode active material.
- the negative electrode collector for example, may be used in various shapes such as that of a film, a sheet, a foil, a net, a porous body, a foam body, a non-woven fabric body, and the like.
- the negative electrode active material layer selectively includes a binder and a conductive agent in addition to the negative electrode active material.
- a compound capable of reversibly intercalating and deintercalating lithium may be used as the negative electrode active material.
- the negative electrode active material may be a carbonaceous material such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; a metallic compound alloyable with lithium such as silicon (Si), aluminum (Al), tin (Sn), lead (Pb), zinc (Zn), bismuth (Bi), indium (In), magnesium (Mg), gallium (Ga), cadmium (Cd), a Si alloy, a Sn alloy, or an Al alloy; a metal oxide which may be doped and undoped with lithium such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; or a composite including the metallic compound and the carbonaceous material such as a Si—C composite or a Sn—C composite, and any one thereof or a mixture of two or more thereof may be used.
- a metallic lithium thin film may be used as the negative electrode active material.
- both low crystalline carbon and high crystalline carbon may be used as the carbon material.
- Typical examples of the low crystalline carbon may be soft carbon and hard carbon
- typical examples of the high crystalline carbon may be irregular, planar, flaky, spherical, or fibrous natural graphite or artificial graphite, Kish graphite, pyrolytic carbon, mesophase pitch-based carbon fibers, meso-carbon microbeads, mesophase pitches, and high-temperature sintered carbon such as petroleum or coal tar pitch derived cokes.
- the negative electrode active material may be included in an amount of 80 wt % to 99 wt % based on a total weight of the negative electrode active material layer.
- the binder is a component that assists in the binding between the conductive agent, the active material, and the current collector, wherein the binder is typically added in an amount of 0.1 wt % to 10 wt % based on the total weight of the negative electrode active material layer.
- binder may be polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, an ethylene-propylene-diene polymer (EPDM), a sulfonated-EPDM, a styrene-butadiene rubber, a nitrile-butadiene rubber, a fluoro rubber, and various copolymers thereof.
- PVDF polyvinylidene fluoride
- CMC carboxymethylcellulose
- EPDM ethylene-propylene-diene polymer
- sulfonated-EPDM a styrene-butadiene rubber
- nitrile-butadiene rubber a fluoro rubber
- the conductive agent is a component for further improving conductivity of the negative electrode active material, wherein the conductive agent may be added in an amount of 10 wt % or less, for example, 5 wt % or less based on the total weight of the negative electrode active material layer.
- the conductive agent is not particularly limited as long as it has conductivity without causing adverse chemical changes in the battery, and, for example, a conductive material such as: graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers or metal fibers; metal powder such as fluorocarbon powder, aluminum powder, and nickel powder; conductive whiskers such as zinc oxide whiskers and potassium titanate whiskers; conductive metal oxide such as titanium oxide; or polyphenylene derivatives may be used.
- a conductive material such as: graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers or metal fibers; metal powder such as fluorocarbon powder, aluminum powder, and nickel powder; conductive whiskers such as zinc oxide whiskers and potassium titanate whiskers;
- the negative electrode active material layer may be prepared by coating a composition for forming a negative electrode, which is prepared by dissolving or dispersing selectively the binder and the conductive agent as well as the negative electrode active material in a solvent, on the negative electrode collector and drying the coated negative electrode collector, or may be prepared by casting the composition for forming a negative electrode on a separate support and then laminating a film separated from the support on the negative electrode collector.
- the separator separates the negative electrode and the positive electrode and provides a movement path of lithium ions
- any separator may be used as the separator without particular limitation as long as it is typically used in a lithium secondary battery, and particularly, a separator having high moisture-retention ability for an electrolyte as well as low resistance to the transfer of electrolyte ions may be used.
- a porous polymer film for example, a porous polymer film prepared from a polyolefin-based polymer, such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or a laminated structure having two or more layers thereof may be used.
- a typical porous nonwoven fabric for example, a nonwoven fabric formed of high melting point glass fibers or polyethylene terephthalate fibers may be used.
- a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and the separator having a single layer or multilayer structure may be selectively used.
- the electrolyte used in the present invention may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, or a molten-type inorganic electrolyte which may be used in the preparation of the lithium secondary battery, but the present invention is not limited thereto.
- the electrolyte may include an organic solvent and a lithium salt.
- any organic solvent may be used as the organic solvent without particular limitation so long as it may function as a medium through which ions involved in an electrochemical reaction of the battery may move.
- an ester-based solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone
- an ether-based solvent such as dibutyl ether or tetrahydrofuran
- a ketone-based solvent such as cyclohexanone
- an aromatic hydrocarbon-based solvent such as benzene and fluorobenzene
- a carbonate-based solvent such as dimethyl carbonate (DMC), diethyl carbonate (DEC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC)
- an alcohol-based solvent such as ethyl alcohol and isopropyl alcohol
- nitriles such as R—CN (where R is
- the carbonate-based solvent may be used, and, for example, a mixture of a cyclic carbonate (e.g., ethylene carbonate or propylene carbonate) having high ionic conductivity and high dielectric constant, which may increase charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (e.g., ethylmethyl carbonate, dimethyl carbonate, or diethyl carbonate) may be used.
- a cyclic carbonate e.g., ethylene carbonate or propylene carbonate
- a low-viscosity linear carbonate-based compound e.g., ethylmethyl carbonate, dimethyl carbonate, or diethyl carbonate
- the performance of the electrolyte solution may be excellent when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9.
- the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in the lithium secondary battery. Specifically, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiCl, LiI, or LiB(C 2 O 4 ) 2 may be used as the lithium salt.
- the lithium salt may be used in a concentration range of 0.1 M to 2.0 M. In a case in which the concentration of the lithium salt is included within the above range, since the electrolyte may have appropriate conductivity and viscosity, excellent performance of the electrolyte may be obtained and lithium ions may effectively move.
- At least one additive for example, a halo-alkylene carbonate-based compound such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphorictriamide, a nitrobenzene derivative, sulfur, a quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride, may be further added to the electrolyte in addition to the electrolyte components.
- the additive may be included in an amount of 0.1 wt % to 5 wt % based on a total weight of the electrolyte.
- the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and life characteristics
- the lithium secondary battery is suitable for portable devices, such as mobile phones, notebook computers, and digital cameras, and electric cars such as hybrid electric vehicles (HEVs).
- portable devices such as mobile phones, notebook computers, and digital cameras
- electric cars such as hybrid electric vehicles (HEVs).
- HEVs hybrid electric vehicles
- a battery module including the lithium secondary battery as a unit cell and a battery pack including the battery module are provided.
- the battery module or the battery pack may be used as a power source of at least one medium and large sized device of a power tool; electric cars including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system.
- electric cars including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system.
- EV electric vehicle
- PHEV plug-in hybrid electric vehicle
- a shape of the lithium secondary battery of the present invention is not particularly limited, but a cylindrical type using a can, a prismatic type, a pouch type, or a coin type may be used.
- the lithium secondary battery according to the present invention may not only be used in a battery cell that is used as a power source of a small device, but may also be used as a unit cell in a medium and large sized battery module including a plurality of battery cells.
- a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 and MnSO 4 in water in amounts such that a molar ratio of nickel:manganese was 95:5.
- a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 59:12.5:28.5.
- a container containing the first transition metal-containing solution and a container containing the second transition metal-containing solution were connected to a 250 L reactor set at 53° C.
- a 25% NaOH solution and a 15% NH 4 OH aqueous solution were prepared and connected to the reactor, respectively.
- the first transition metal-containing solution and the second transition metal-containing solution were respectively added to the reactor at a rate of 63 mL/min while changing a ratio of the first transition metal-containing solution to the second transition metal-containing solution from 100 vol %:0 vol % to 0 vol %:100 vol %.
- a co-precipitation reaction was performed for 24 hours to precipitate positive electrode active material precursor particles.
- the precipitated positive electrode active material precursor particles were separated and dried at 110° C. for 12 hours to prepare a positive electrode active material precursor represented by Ni 0.7 Co 0.1 Mn 0.2 (OH) 2 in which nickel, cobalt, and manganese were gradually changed from a center of the particle to a surface thereof.
- the positive electrode active material precursor thus obtained, Li 2 CO 3 , and doping elements Zr and Al were mixed in a molar ratio of 1:1.03:0.01:0.01, and sintering was performed at 830° C. for 10 hours in an oxygen atmosphere to prepare a positive electrode active material doped with 2,000 ppm of Zr and 1,000 ppm of Al and having a concentration gradient in which concentrations of the nickel, cobalt, and manganese were gradually changed from the center of the particle to the surface thereof.
- the above-prepared positive electrode active material, a Denka black conductive agent, and a polyvinylidene fluoride (PVDF) binder were mixed in a weight ratio of 95:2.5:2.5 in an N-methylpyrrolidone(NMP) solvent to prepare a positive electrode slurry.
- An aluminum foil was coated with the above-prepared positive electrode slurry, then roll-pressed, and dried at 120° C. for 12 hours to prepare a positive electrode.
- Natural graphite as a negative electrode active material, a carbon black conductive agent, and a styrene-butadiene rubber (SBR) binder were mixed at a weight ratio of 96:2:2 to prepare a negative electrode slurry. After a copper foil was coated with the negative electrode slurry and vacuum-dried at 110° C. for 2 hours to prepare a negative electrode, roll press was performed.
- SBR styrene-butadiene rubber
- a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 and MnSO 4 in water in amounts such that a molar ratio of nickel:manganese was 95:5, and a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:20.5:24.5.
- a positive electrode active material precursor having an average composition of Ni 0.65 Co 0.15 Mn 0.2 (OH) 2 was prepared by using the first transition metal-containing solution and the second transition metal-containing solution and the positive electrode active material precursor was used.
- a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 and MnSO 4 in water in amounts such that a molar ratio of nickel:manganese was 95:5, and a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:13.5:31.5.
- a positive electrode active material precursor having an average composition of Ni 0.65 Co 0.10 Mn 0.25 (OH) 2 was prepared by using the first transition metal-containing solution and the second transition metal-containing solution and the positive electrode active material precursor was used.
- a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 and MnSO 4 in water in amounts such that a molar ratio of nickel:manganese was 95:5, and a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:17:28.
- a positive electrode active material precursor having an average composition of Ni 0.65 Co 0.125 Mn 0.225 (OH) 2 was prepared by using the first transition metal-containing solution and the second transition metal-containing solution and the positive electrode active material precursor was used.
- a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 70:10:20.
- transition metal-containing solution was added to a 250 L reactor set at 53° C. at a rate of 63 mL/min
- a NaOH aqueous solution and a NH 4 OH aqueous solution were respectively added at rates of 35 mL/min and 50 mL/min
- a co-precipitation reaction was performed at a pH of 11.2 for 24 hours to precipitate positive electrode active material precursor particles.
- a positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that the above precipitated positive electrode active material precursor was used.
- a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:15:20
- a positive electrode active material precursor of Ni 0.65 Co 0.15 Mn 0.20 (OH) 2 was prepared by using the transition metal-containing solution, and the positive electrode active material precursor was used.
- a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:12.5:22.5
- a positive electrode active material precursor of Ni 0.65 Co 0.125 Mn 0.225 (OH) 2 was prepared by using the transition metal-containing solution, and the positive electrode active material
- a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:20:15
- a positive electrode active material precursor of Ni 0.65 Co 0.20 Mn 0.15 (OH) 2 was prepared by using the transition metal-containing solution, and the positive electrode active material precursor was used.
- a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:17.5:17.5
- a positive electrode active material precursor of Ni 0.65 Co 0.175 Mn 0.175 (OH) 2 was prepared by using the transition metal-containing solution, and the
- a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 and MnSO 4 in water in amounts such that a molar ratio of nickel:manganese was 95:5.
- a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:27.5:17.5.
- a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 and MnSO 4 in water in amounts such that a molar ratio of nickel:manganese was 95:5.
- a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO 4 , CoSO 4 , and MnSO 4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:24:21.
- the positive electrode active material particles prepared in Example 1 and Comparative Examples 1 and 2 were cut, cross-sections of the positive electrode active materials were photographed using a transmission electron microscope (TEM), and crystal structures of surfaces of the positive electrode active materials were identified by selected area diffraction patterns (SADPs).
- TEM transmission electron microscope
- SADPs selected area diffraction patterns
- FIGS. 1 , 2 , and 3 are TEM images and SADPs of the positive electrode active materials prepared in Example 1 and Comparative Examples 1 and 2, respectively.
- a surface portion included columnar-structured primary particles which were grown from a center of the positive electrode active material in a surface direction.
- TEM analysis was performed on 8 points on the surface of the positive electrode active material to confirm lithium ion mobility on the surface of the positive electrode active material.
- lithium ions move along a plane direction (yellow arrow in FIG. 1 ) satisfying 85° to ° to a c-axis direction (red arrow in FIG. 1 ), wherein the yellow arrow in FIG. 1 is referred to as a lithium movement direction.
- a ratio of the particles in which an angle between the c-axis direction and the measured growth direction of the particle satisfies 85° to 95°, is high at 60% or more (that is, when the lithium movement direction of FIG. 1 coincides with the growth direction of the particle within ⁇ 5°), it may be confirmed that the lithium ion mobility on the surface of the positive electrode active material is excellent.
- particles marked by solid lines 1 to 8 in the TEM image of FIG. 1 were measured
- particles, in which the angle between the measured c-axis direction (red arrow in FIG. 1 ) and the growth direction of the particle at the measuring point satisfied 85° to 95° were particles 1 , 3 , 4 , 5 , and 6 among the marked points in FIG. 1 .
- particle 2 had a spinel structure, and the particle growth directions of particles 7 and 8 did not form 85° to 95° with the c-axis direction. That is, with respect to the positive electrode active material prepared in Example 1, a ratio in which the angles between the c-axis directions measured at the 8 points on the surface and the particle growth direction at the measuring point satisfied 85° to 95° was 62.5%.
- the positive electrode active material prepared in Comparative Example 2 although it was in the form of a secondary particle in which primary particles were agglomerated, a formation rate of nucleus was increased during the reaction because the pH was not controlled during the preparation of the precursor, and thus, a ratio of the primary particles having a columnar structure, which were grown from a center of the positive electrode active material in a surface direction, in a surface portion of the positive electrode active material was low.
- particles measured at 5 points among the measured points had a spinel structure, and an angle between a growth direction of the particle at the measuring point and a c-axis direction satisfied 85° to 95° for only the particle measured at one of the other three points (particle 6 among the 8 points in the TEM image of FIG. 3 was only matched). That is, with respect to the positive electrode active material prepared in Comparative Example 2, a ratio in which the angles between the c-axis directions measured at the 8 points on the surface and the particle growth direction at the measuring point satisfied ° to 95° was 12.5%.
- each of the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 6 was charged at a constant current of 0.1 C to 4.30 V, was left standing for 20 minutes, and then discharged at a constant current of C to a voltage of 3.0 V to observe charge and discharge characteristics in the first cycle, and the results thereof are presented in the following Table 1 and FIG. 4 .
- Example 1 and Comparative Examples 1 and 2 in Table 1 and FIG. 4 with respect to the positive electrode active materials including the same amount of nickel, it may be confirmed that, with respect to Example 1 having a concentration gradient in which 60% or more of the c-axis directions formed a specific angle with the growth direction of the primary particles present on the surface thereof, efficiency was improved in comparison to that of Comparative Example 1 without a concentration gradient and a specific orientation and that of Comparative Example 2 having a concentration gradient but not having a specific orientation.
- Example 1 0.212 ⁇ 0.003 0.580 ⁇ 0.012 Comparative 0.217 0.002 0.591 ⁇ 0.001
- Example 1 Comparative 0.220 0.005 0.588 ⁇ 0.004
- Example 2 0.210 ⁇ 0.005 0.582 ⁇ 0.01 Comparative 0.22 0.005 0.609 0.017
- Example 3 Comparative 0.251 0.036 0.611 0.019
- Example 4 Comparative 0.215 Ref. 0.592 Ref.
- Example 5 Comparative 0.226 0.011 0.603 0.011
- Example 6 Comparative 0.215 Ref. 0.592 Ref.
- Example 1 and Comparative Examples 1 and 2 of Table 2 with respect to Example 1 having a concentration gradient in which 60% or more of the c-axis directions formed a specific angle with the growth direction of the primary particles present on the surface thereof for the same composition, it may be confirmed that a voltage drop rate was lower than that of the secondary battery including the positive electrode active material of Comparative Example 1 without a concentration gradient and a specific orientation between the c-axis and the growth direction of the particle present on the surface thereof and that of the secondary battery including the positive electrode active material of Comparative Example 2 having a concentration gradient but not having a specific orientation between the c-axis and the growth direction of the primary particle present on the surface thereof.
- Example 2 having a concentration gradient in which the cobalt content in the lithium transition metal oxide was lower than the manganese content, but the growth direction of the particle present on the surface thereof formed a specific angle with the c-axis, it may be confirmed that, even if the cobalt content was reduced, a voltage drop rate was better due to the uniformity of the primary particles than that of Comparative Example 5 including the same amount of nickel and that of Comparative Example 3 having the same composition.
- Life characteristics and resistance characteristics of the secondary batteries including the positive electrodes prepared in Examples 1 to 4 and Comparative Examples 1 to 8 were measured. Specifically, each of the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 8 was charged at a constant current of 1 C to 4.25 V at 45° C. and cut-off charged at 3 C. Thereafter, discharge was performed at a constant current of 1 C to a voltage of 3.0 V. The charging and discharging behaviors were set as one cycle, and, after this cycle was repeated 300 times, capacity retentions and resistance increase rates with cycles of the secondary batteries according to Examples 1 to 4 and Comparative Examples 1 to 8 were measured.
- the life characteristics were inferior to those of the secondary batteries of Comparative Examples 7 and 8 having a concentration gradient in which the cobalt content in the lithium transition metal oxide was greater than or equal to the manganese content, particularly Comparative Example 7 in which the cobalt content was the highest, but it may be confirmed that the resistance characteristics were improved in comparison to those of Comparative Examples 7 and 8 because lithium ion mobility was increased by having the specific orientation.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
A positive electrode active material includes a lithium transition metal oxide, in which a cobalt content in the lithium transition metal oxide is less than a manganese content, wherein at least one of nickel, cobalt, and manganese in the lithium transition metal oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof, the positive electrode active material is in the form of a secondary particle formed by agglomeration of primary particles, and a ratio in which angles between c-axis directions, which are measured at at least 8 points on a surface of the positive electrode active material by TEM analysis, and a growth direction of the particle at the measuring point satisfy 85° to 95° is 60% or more.
Description
- This application is divisional application of U.S. patent application Ser. No. 17/050,553, filed on Oct. 26, 2020, which is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/KR2019/005631, filed May 10, 2019, which claims the benefit of Korean Patent Application No. 10-2018-0054292, filed on May 11, 2018, the disclosure of which are incorporated herein in their entirety by reference.
- The present invention relates to a positive electrode active material for a lithium secondary battery, a method of preparing the positive electrode active material, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the positive electrode active material.
- Demand for secondary batteries as an energy source has been significantly increased as technology development and demand with respect to mobile devices have increased. Among these secondary batteries, lithium secondary batteries having high energy density, long cycle life, and low self-discharging rate have been commercialized and widely used.
- Lithium transition metal composite oxides have been mainly used as a positive electrode active material of the lithium secondary battery, and, among these oxides, a lithium cobalt oxide (LiCoO2) having a high operating voltage and excellent capacity characteristics has been mainly used. However, since the lithium cobalt oxide has poor thermal properties due to an unstable crystal structure caused by delithiation and is expensive, there is a limitation in using a large amount of the lithium cobalt oxide as a power source of a medium and large sized device such as an electric vehicle.
- Recently, various lithium transition metal oxides, such as LiNiO2, LiMnO2, LiMn2O4, and LiFePO4, have been developed as materials for replacing the lithium cobalt oxide and being used in the medium and large sized device such as an electric vehicle. However, the LiNiO2 is disadvantageous in that the synthesis thereof is difficult by a simple solid phase reaction, and thermal stability and cycle characteristics are poorer than those of LiCoO2. LiMnO2 and LiMn2O4 also have a limitation in that capacities are lower and high-temperature characteristics are poorer than those of LiCoO2. Particularly, with respect to LiMn2O4, some have been commercialized as low-cost products, but life characteristics were poor due to structural distortion (Jahn-Teller distortion) caused by Mn3+. A significant amount of research has currently been conducted for the application of LiFePO4 for a hybrid electric vehicle (HEV), but the application to other areas may be difficult due to low ionic conductivity.
- For this reason, a material, which is currently very much in the spotlight as a positive electrode active material for replacing the lithium cobalt oxide, is a lithium nickel cobalt manganese oxide [Li (NioCopMnq)O2, where o, p, and q each independently are an atomic fraction of oxide composition elements, wherein 0<o≤1, 0<p≤1, 0<q≤1, and o+p+q=1].
- Recently, with increasing interest in electric vehicles, the rising price of a cobalt raw material has become an important issue. It is expected that the price of the cobalt raw material will be continuously increased, and, accordingly, there is a need to develop a positive electrode active material having a reduced cobalt content.
- However, the lithium nickel cobalt manganese oxide has a limitation in that discharge capacity and output characteristics are reduced as the cobalt content is reduced when a nickel content is the same. Thus, there is a need to develop a positive electrode material in which capacity reduction is small while maintaining typical output characteristics and the cobalt content is reduced.
- An aspect of the present invention provides a positive electrode active material having excellent output characteristics while having a relatively small cobalt content.
- Another aspect of the present invention provides a cobalt-reduced positive electrode active material with excellent structural stability and improved lithium mobility.
- Another aspect of the present invention provides a method of preparing the positive electrode active material.
- Another aspect of the present invention provides a positive electrode for a lithium secondary battery which includes the positive electrode active material.
- Another aspect of the present invention provides a lithium secondary battery including the positive electrode for a lithium secondary battery.
- According to an aspect of the present invention, there is provided a positive electrode active material including a lithium transition metal oxide having an average composition represented by Formula 1 in which a cobalt content in the lithium transition metal oxide is less than a manganese content, wherein at least one of nickel, cobalt, and manganese in the lithium transition metal oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof, the positive electrode active material is in the form of a secondary particle formed by agglomeration of primary particles, and a ratio in which angles between c-axis directions, which are measured at at least 8 points on a surface of the positive electrode active material by TEM analysis, and a growth direction of the particle at the measuring point satisfy 85° to 95° is 60% or more:
-
Li1+aNixCoyMnzM1 wO2 [Formula 1] - in Formula 1, 0≤a≤0.3, 0.65≤x<1, 0<y≤0.35, 0<z≤0.35, 0≤w≤0.02, and y<z, and M1 includes at least one selected from the group consisting of aluminum (Al), zirconium (Zr), magnesium (Mg), zinc (Zn), yttrium (Y), iron (Fe), and titanium (Ti).
- According to another aspect of the present invention, there is provided a method of preparing a positive electrode active material which includes: preparing a first transition metal-containing solution including a nickel raw material and a second transition metal-containing solution having a transition metal concentration different from that of the first transition metal-containing solution and including a nickel raw material, a cobalt raw material, and a manganese raw material; preparing a positive electrode active material precursor by mixing the first transition metal-containing solution and the second transition metal-containing solution while gradually changing a mixing ratio of the first transition metal-containing solution to the second transition metal-containing solution; and mixing the positive electrode active material precursor with a lithium-containing raw material and sintering the mixture to synthesize a positive electrode active material, wherein the preparing of the positive electrode active material precursor is controlled such that a pH is gradually decreased as a nickel content in the mixed solution is reduced.
- According to another aspect of the present invention, there is provided a positive electrode for a lithium secondary battery which includes the positive electrode active material according to the present invention.
- According to another aspect of the present invention, there is provided a lithium secondary battery including the positive electrode according to the present invention.
- In a case in which a transition metal has a concentration gradient in an active material particle and a ratio in which a particle growth direction and a c-axis direction of a crystal at a surface satisfy a certain angle is high as in a positive electrode active material of the present invention, since degradation of output characteristics due to a reduction in cobalt content may be minimized, excellent output characteristics may be obtained even if a small amount of cobalt is used.
- According to the present invention, production costs of a secondary battery including a lithium transition metal oxide may be reduced by maintaining a cobalt content in the lithium transition metal oxide less than a manganese content.
- Also, since at least one of transition metals included in the lithium transition metal oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof, structural stability is improved while having high capacity characteristics, and thus, life characteristics of a battery may be improved when the lithium transition metal oxide is used in the battery.
- The following drawings attached to the specification illustrate preferred examples of the present invention by example, and serve to enable technical concepts of the present invention to be further understood together with detailed description of the invention given below, and therefore the present invention should not be interpreted only with matters in such drawings.
-
FIG. 1 is a surface transmission electron microscope (TEM) image of a positive electrode active material prepared in Example 1 and diffraction patterns of crystal structures of a surface of the positive electrode active material which are confirmed by selected area diffraction patterns (SADPs); -
FIG. 2 is a surface TEM image of a positive electrode active material prepared in Comparative Example 1 and diffraction patterns of crystal structures of a surface of the positive electrode active material which are confirmed by SADPs; -
FIG. 3 is a surface TEM image of a positive electrode active material prepared in Comparative Example 2 and diffraction patterns of crystal structures of a surface of the positive electrode active material which are confirmed by SADPs; -
FIG. 4 is charge and discharge profile graphs of secondary batteries prepared in Example 1 and Comparative Example 1; and -
FIG. 5 is a graph illustrating capacity retentions and resistance increase rates during 300 cycles of secondary batteries prepared in Example 1 and Comparative Examples 1 and 2. - Hereinafter, the present invention will be described in more detail.
- It will be understood that words or terms used in the specification and claims shall not be interpreted as the meaning defined in commonly used dictionaries, and it will be further understood that the words or terms should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the technical idea of the invention, based on the principle that an inventor may properly define the meaning of the words or terms to best explain the invention.
- Positive Electrode Active Material
- A lithium cobalt-based oxide having a high operating voltage and excellent capacity characteristics has been used as a positive electrode active material of a conventional lithium secondary battery, but, since the lithium cobalt-based oxide has poor thermal properties due to an unstable crystal structure caused by delithiation and is expensive, there is a limitation in using a large amount of the lithium cobalt-based oxide as a power source of a medium and large sized device. A lithium nickel cobalt manganese-based oxide has been used to replace the lithium cobalt-based oxide, but the lithium nickel cobalt manganese-based oxide has a limitation in that discharge capacity and output characteristics are reduced as a cobalt content is reduced to reduce manufacturing costs.
- Thus, the present inventors have found that, since mobility of lithium ions in a lithium transition metal oxide is improved by controlling such that at least one of metallic elements included in the lithium nickel cobalt manganese-based oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof and a c-axis direction, which is measured by transmission electron microscope (TEM) analysis on a surface of the particle, and a growth direction of the particle at a measuring point form a specific angle, discharge capacity and output characteristics are improved when the lithium nickel cobalt manganese-based oxide is used in a battery even if the cobalt content is reduced, thereby leading to the completion of the present invention.
- Hereinafter, a positive electrode active material according to the present invention will be described in detail.
- The positive electrode active material according to the present invention is a positive electrode active material which includes a lithium transition metal oxide in which a cobalt content in the lithium transition metal oxide is less than a manganese content, wherein at least one of nickel, cobalt, and manganese in the lithium transition metal oxide has a concentration gradient that gradually changes from a center of a particle to a surface thereof, the positive electrode active material is in the form of a secondary particle formed by agglomeration of primary particles, and a ratio in which angles between c-axis directions, which are measured at at least 8 points on a surface of the positive electrode active material by TEM analysis, and a growth direction of the particle at the measuring point satisfy 85° to 95° is 60% or more.
- Specifically, the positive electrode active material according to the present invention includes a lithium transition metal oxide having an average composition represented by Formula 1 below.
-
Li1+aNixCoyMnzM1 wO2 [Formula 1] - In Formula 1,
- 0≤a≤0.3, 0.65≤x<1, 0<y≤0.35, 0<z≤0.35, 0≤w≤0.02, and y<z, and M1 includes at least one selected from the group consisting of aluminum (Al), zirconium (Zr), magnesium (Mg), zinc (Zn), yttrium (Y), iron (Fe), and titanium (Ti).
- Specifically, the lithium transition metal oxide may include nickel in an amount of 60 mol % or more to less than 100 mol % based on the total number of moles of transition metal elements excluding lithium. In a case in which the amount of the nickel in the lithium transition metal oxide is outside the above range, since capacity of the positive electrode active material is decreased, the positive electrode active material may not be applied to an electrochemical device requiring high capacity. The greater the amount of the nickel within the above range is, the higher the capacity characteristics of a battery including the lithium transition metal oxide are exhibited. However, the greater the amount of the nickel is, an amount of cobalt and/or manganese is relatively reduced, and, accordingly, charge and discharge efficiency may be reduced. Thus, the lithium transition metal oxide may preferably include the nickel in an amount of 65 mol % to 75 mol % based on the total number of moles of the transition metal elements excluding lithium.
- Also, the lithium transition metal oxide may include manganese in an amount of greater than 0 mol % to 35 mol % or less, preferably 15 mol % to 35 mol %, and most preferably 20 mol % or more to less than 35 mol % based on the total number of moles of the transition metal elements excluding lithium. In a case in which the amount of the manganese is outside the above range, high capacity may not be achieved.
- Furthermore, the lithium transition metal oxide may include cobalt in an amount of greater than 0 mol % to 35 mol % or less, preferably greater than 0 mol % to 20 mol % or less, and most preferably greater than 0 mol % to 15 mol % or less based on the total number of moles of the transition metal elements excluding lithium. In a case in which the amount of the cobalt is outside the above range and is greater than 35 mol %, overall cost of raw materials may be increased due to the large amount of the cobalt and reversible capacity may be somewhat decreased, and, in a case in which the amount of the cobalt is 0 mol %, sufficient rate capability and output characteristics may not be exhibited.
- According to the present invention, in the lithium transition metal oxide, the amount of the manganese may be greater than the amount of the cobalt. For example, in a case in which the amount of the manganese is less than or equal to the amount of the cobalt, there may be limitations such as increases in manufacturing costs due to the increase in price of a cobalt raw material, a decrease in lifetime, an increase in resistance increase rate, and an increase in gas generation amount.
- Specifically, in the lithium transition metal oxide, a molar ratio of cobalt:manganese may be in a range of greater than 1:1 to 1:10 or less, preferably greater than 1:1 to 1:5 or less, and more preferably greater than 1:1 to 1:3 or less. For example, in a case in which the molar ratio of cobalt:manganese in the lithium transition metal oxide is in a range of greater than 1:1 to 1:10 or less, since the relatively small amount of the cobalt is included, an increase in cost may not only be suppressed, but life characteristics, resistance characteristics, and gas generation amount may also be improved.
- The positive electrode active material may be selectively doped with doping element M1, if necessary.
- The doping element M1 may be used without particular limitation as long as it may contribute to an improvement in structural stability of the positive electrode active material, wherein, for example, the doping element M1 may include at least one selected from the group consisting of Al, Zr, Mg, Zn, Y, Fe, and Ti.
- The doping element M1 may be included in an amount of 2 mol % or less, for example, 1 mol % to 2 mol % based on the total number of moles of the transition metal elements excluding lithium. For example, in a case in which the doping element M1 is included within the above amount range, the doping element M1 may be uniformly included on the surface and inside of the positive electrode active material, and, as a result, the structural stability of the positive electrode active material may be improved to improve the output characteristics.
- Also, the positive electrode active material is in the form of a secondary particle formed by agglomeration of primary particles. Specifically, the positive electrode active material may include columnar-structured primary particles, which are grown in a surface direction from a center of the positive electrode active material, in a surface portion.
- Since the positive electrode active material includes the columnar-structured primary particles, which are grown in the surface direction from the center of the positive electrode active material, in the surface portion, mobility of lithium ions on the surface of the positive electrode active material is improved, and thus, initial capacity characteristics and output characteristics may be improved when the positive electrode active material is used in the battery.
- The columnar-structure may have an aspect ratio of 2 to 5, for example, 3 to 5. In a case in which the aspect ratio of the columnar structure satisfies the above range, capacity, lifetime, and resistance increase rate may be improved.
- Furthermore, the positive electrode active material according to the present invention includes a lithium transition metal oxide having a layered structure. For example, a ratio in which angles between c-axis directions, which are measured at at least 8 points on the surface of the positive electrode active material by TEM analysis, and a growth direction of the particle at the measuring point satisfy 85° to 95° may be 60% or more.
- With respect to the lithium transition metal oxide having a layered crystal structure, lithium ions move along a plane direction satisfying 85° to 95° to the c-axis direction.
- Thus, in a case in which the ratio in which the angle between the c-axis direction and the growth direction of the lithium transition metal oxide particle satisfies 85° to 95° is less than 60%, because the growth direction of the lithium transition metal oxide particle and the plane direction (lithium path direction) satisfying 85° to 95° to the c-axis direction are misaligned on the surface of the positive electrode active material, since the movement of lithium ions deintercalated from the inside of the positive electrode active material may be blocked on the surface, lithium mobility may be reduced. However, with respect to the positive electrode active material of the present invention, since the ratio in which the angle between the measured c-axis direction and the growth direction of the particle satisfies 85° to 95° is high at 60% or more, the lithium ions deintercalated from the inside of the positive electrode active material may easily move to the outside of the positive electrode active material, and thus, the lithium mobility is excellent.
- In this case, the crystal structure of the positive electrode active material may be observed by cutting the positive electrode active material and using a transmission electron microscope (TEM), and the c-axis direction of the positive electrode active material may be observed by fast Fourier transform (FFT) or a selected area diffraction pattern (SADP).
- Also, at least one of nickel, cobalt, and manganese included in the positive electrode active material may be increased or decreased while having a concentration gradient that gradually changes from the center of the positive electrode active material particle to the surface of the particle. In this case, a concentration gradient slope of the transition metal may be constant. The nickel, cobalt, and manganese included in the positive electrode active material each independently may have a single concentration gradient slope value.
- Specifically, the nickel included in the positive electrode active material may have a concentration gradient that gradually decreases from the center of the positive electrode active material particle to the surface of the particle. In this case, a concentration gradient slope of the nickel may be constant from the center of the positive electrode active material particle to the surface thereof. As described above, in a case in which the nickel has a gradient in which a high concentration of the nickel (Ni) is maintained at the center of the positive electrode active material particle and the concentration is gradually decreased toward the surface of the particle, since the center of the particle includes a high content of the nickel, high capacity characteristics of the positive electrode active material may be maintained, and, since the surface of the particle includes a low content of the nickel to reduce surface reactivity due to catalytic action of the Ni, the structural stability of the positive electrode active material may be improved.
- Furthermore, at least one of the manganese and cobalt included in the positive electrode active material may have a concentration gradient that gradually increases from the center of the positive electrode active material particle to the surface thereof. In this case, since the concentration of the manganese and/or the cobalt at the center of the positive electrode active material particle remains low and the concentration of the manganese and/or the cobalt is relatively increased toward the surface of the positive electrode active material particle, excellent rate capability and life characteristics may be achieved.
- For example, with respect to a conventional positive electrode active material in which the content of cobalt is less than the content of manganese, discharge capacity may be reduced. However, since the positive electrode active material, in which the content of cobalt is less than the content of manganese, has a concentration gradient as in the present invention, the reduction in the discharge capacity may be suppressed, and, accordingly, decreases in low-temperature characteristics and high-temperature life characteristics may also be prevented.
- Since the transition metal has a concentration gradient in which the concentration of the transition metal continuously changes depending on a position in the positive electrode active material as in the present invention, an abrupt phase boundary region is not present from the center of the positive electrode active material particle to the surface thereof, and thus, its crystal structure is stabilized, thermal stability is increased, and high capacity, long lifetime, and good thermal stability may be obtained when the positive electrode active material is used in the secondary battery. Also, capacity and output characteristics may be maintained even if the content of the cobalt is decreased. In a case in which the concentration gradient slope of the transition metal is constant, the effect of improvement in the structural stability may be further improved. Furthermore, since the concentration of each transition metal in the positive electrode active material particle is changed by the concentration gradient, the effect of the positive electrode active material on the improvement of battery performance may be further improved by easily using properties of the corresponding transition metal.
- In the present invention, the expression “the concentration of the transition metal has a gradually changing (increasing or decreasing) gradient” denotes that the transition metal has a concentration distribution in which the concentration of the transition metal is gradually changed across the entire particle.
- Also, in the present invention, the concentration gradient structure and concentration of the metal in the lithium composite metal oxide particle may be identified by using a method such as electron probe microanalysis (EPMA), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), or time of flight secondary ion mass spectrometry (ToF-SIMS), wherein, specifically, etching is performed on the lithium composite metal oxide particle with argon gas for 1,000 seconds, and the concentration gradient structure and concentration of the metal may be measured by analyzing an amount of the element detected according to etching time from the start of the etching using X-ray photoelectron spectroscopy (XPS).
- As described above, with respect to the positive electrode active material according to the present invention, since 60% or more of crystals of the positive electrode active material have a c-axis direction that forms a specific angle with the surface of the particle and the positive electrode active material has a concentration gradient even if the amount of the cobalt is reduced, a positive electrode active material having excellent electrochemical properties may be provided at a low cost without decreases in capacity characteristics and output characteristics.
- Method of Preparing Positive Electrode Active Material
- Next, a method of preparing the positive electrode active material according to the present invention will be described.
- Specifically, in order to prepare the positive electrode active material according to the present invention, the method includes: preparing a first transition metal-containing solution including a nickel raw material and a second transition metal-containing solution having a transition metal concentration different from that of the first transition metal-containing solution and including a nickel raw material, a cobalt raw material, and a manganese raw material; preparing a positive electrode active material precursor by mixing the first transition metal-containing solution and the second transition metal-containing solution while gradually changing a mixing ratio of the first transition metal-containing solution to the second transition metal-containing solution; and mixing the positive electrode active material precursor with a lithium-containing raw material and sintering the mixture to synthesize a positive electrode active material. In this case, the preparing of the positive electrode active material precursor is controlled such that a pH is gradually decreased as a nickel content in the mixed solution is reduced.
- Specifically, in order to prepare the positive electrode active material according to the present invention, a first transition metal-containing solution including a nickel raw material and a second transition metal-containing solution having a transition metal concentration different from that of the first transition metal-containing solution and including a nickel raw material, a cobalt raw material, and a manganese raw material are first prepared.
- The first transition metal-containing solution may further selectively include at least one of a cobalt raw material and a manganese raw material, if necessary.
- For example, the first transition metal-containing solution may be prepared by adding the nickel raw material to a solvent, particularly water or a mixture of water and an organic solvent (alcohol etc.) which may be uniformly mixed with the water, or after an aqueous solution including the nickel raw material is prepared, the aqueous solution may be mixed and used. In this case, each of the metal raw materials are mixed such that a ratio of nickel:cobalt:manganese in the first transition metal-containing solution is in a range of (80 to 100):(0 to 10):(0 to 20), for example, (90 to 100):(0 to 5):(0 to 10).
- The second transition metal-containing solution includes a nickel raw material, a cobalt raw material, and a manganese raw material, and may be prepared in the same manner as the first transition metal-containing solution. In this case, each of the metal raw materials are mixed such that a ratio of nickel:cobalt:manganese in the second transition metal-containing solution is in a range of (50 to 80):(10 to 30): (10 to 35), for example, (50 to 60): (20 to 30): (15 to 35).
- In this case, in both of the first transition metal-containing solution and the second transition metal-containing solution, an amount of the manganese raw material may be greater than an amount of the cobalt raw material. Accordingly, with respect to the prepared positive electrode active material precursor particle, an amount of manganese is greater than an amount of cobalt across the entire particle, and manufacturing costs may be reduced as the positive electrode active material precursor particle contains less cobalt raw material.
- An each metallic element-containing sulfate, nitrate, acetic acid salt, halide, hydroxide, or oxyhydroxide may be used as the nickel, cobalt, and manganese raw materials, and the nickel, cobalt, and manganese raw materials may be used without particular limitation as long as these materials may be dissolved in the above-described solvent such as water.
- Specifically, the nickel raw material may include Ni (OH)2, NiO, NiOOH, NiCO3·2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, a fatty acid nickel salt, or a nickel halide, and a mixture of at least one thereof may be used.
- Also, the cobalt raw material may include Co(OH)2, CoOOH, CoSO4, Co(OCOCH3)2·4H2O, Co(NO3)2·6H2O, or Co(SO4)2·7H2O, and a mixture of at least one thereof may be used.
- Furthermore, the manganese raw material may include a manganese oxide such as Mn2O3, MnO2, and Mn3O4; a manganese salt such as MnCO3, Mn(NO3)2, MnSO4, manganese acetate, manganese dicarboxylate, manganese citrate, and a fatty acid manganese salt; an oxyhydroxide, and manganese chloride, and a mixture of at least one thereof may be used.
- Subsequently, a positive electrode active material precursor is prepared by mixing the first transition metal-containing solution and the second transition metal-containing solution while gradually changing a mixing ratio of the first transition metal-containing solution to the second transition metal-containing solution.
- In the preparing of the positive electrode active material precursor, it may be controlled such that a pH is gradually decreased as the nickel content in the mixed solution is reduced.
- For example, the pH may be gradually decreased within a range of 13 to 9, preferably 12.5 to 9, and most preferably 12 to 10 as the nickel content in the mixed solution is reduced. In a case in which the pH is controlled to be gradually decreased as the nickel content is reduced during the preparation of the positive electrode active material precursor as described above, a c-axis direction on the surface of the positive electrode active material particle finally prepared may be effectively controlled.
- Specifically, the positive electrode active material prepared while controlling the pH as described above may be formed such that a ratio in which angles between c-axis directions, which are measured at at least 8 points on the surface of the positive electrode active material by TEM analysis, and a growth direction at the measuring point satisfy 85° to 95° is 60% or more.
- More specifically, during the preparation of the positive electrode active material precursor, a reaction is performed at a pH of 11 to 13, preferably 11 to 12 or 11.5 to 12, and most preferably 11.7 to 12 at the beginning of the reaction to form positive electrode active material precursor particle nucleus, and, later in the reaction, the positive electrode active material precursor particle are grown by performing a reaction at a pH of 9 to 11, preferably 10 to 11 or 10.5 to 11, and most preferably 10.8 to 11 by adjusting amounts of an ammonium ionic complexing agent and a basic aqueous solution added. Accordingly, the positive electrode active material precursor is not only in the form of a secondary particle in which primary particles are agglomerated, but may also include columnar-structured primary particles, which are grown in a surface direction from the center of the positive electrode active material, in a surface portion.
- For example, during the preparation of the positive electrode active material precursor, in a case in which the pH is not changed and is the same across the entire particle, nucleus of the lithium transition metal oxide may be continuously formed during a co-precipitation reaction, and, accordingly, the growth of the primary particles may be decreased to reduce a ratio of the primary particles having a columnar structure. Accordingly, the positive electrode active material precursor particle prepared without changing the pH may have a form of a secondary particle in which primary particles are agglomerated without an orientation. Also, in a case in which the nucleus of the particles are grown at a low pH and the particles are then grown at a relatively high pH, a particle size distribution may be increased to cause non-uniformity of the primary particles.
- During the preparation of the positive electrode active material precursor, since the reaction is performed in a state in which the first transition metal-containing solution is only present at the beginning of the reaction, precursor particles initially prepared have a composition of the first transition metal-containing solution and, thereafter, since the first transition metal-containing solution and the second transition metal-containing solution are mixed while a ratio of the first transition metal-containing solution to the second transition metal-containing solution is gradually changed, the composition of the precursor particle is also gradually changed to a composition of the second transition metal-containing solution from the center of the precursor particle to the surface thereof.
- For example, in a case in which the reaction is performed such that the amount of nickel is high and the amount of manganese and/or cobalt is low in the first transition metal-containing solution and, in the second transition metal-containing solution, the amount of the nickel is lower and the amount of the manganese and/or cobalt is higher than that of the first transition metal-containing solution, precursor particles may be prepared in which a concentration of the nickel is decreased while the nickel has a continuous concentration gradient from the center of the active material particle in a surface direction of the particle, and concentrations of the manganese and cobalt are each independently increased while the manganese and cobalt have a continuous concentration gradient from the center of the particle in the surface direction of the particle.
- Thus, the concentration gradient of the precursor particle may be controlled such that the prepared precursor particle has a desired composition at a desired position by adjusting the compositions of the first transition metal-containing solution and the second transition metal-containing solution, mixing speed, and mixing ratio, and a concentration gradient slope in this case may also be controlled.
- Also, precipitates, in which the metal has a continuous concentration gradient from the center of the particle to the surface thereof, may be obtained in a single co-precipitation reaction process by continuously mixing the first transition metal-containing solution and the second transition metal-containing solution, and a concentration gradient of the metal and its slope in the active material precursor formed in this case may be easily adjusted by the compositions and mixed feed ratio of the first transition metal-containing solution and the second transition metal-containing solution.
- Furthermore, the concentration gradient of the transition metal element in the particle may be formed by controlling reaction rate or reaction time. In order to produce a high density state in which the concentration of the specific metal is high, it is desirable to increase the reaction time and decrease the reaction rate, and, in order to produce a low density state in which the concentration of the specific metal is low, it is desirable to decrease the reaction time and increase the reaction rate.
- Subsequently, the positive electrode active material precursor is mixed with a lithium-containing raw material and the mixture is sintered to synthesize a positive electrode active material.
- The lithium-containing raw material is not particularly limited as long as it is a compound including a lithium source, but, preferably, at least one selected from the group consisting of lithium carbonate (Li2CO3), lithium hydroxide (LiOH), LiNO3, CH3COOLi, and Li2(COO)2 may be used.
- An amount of the lithium-containing raw material used may be determined according to amounts of the lithium and the transition metal in the finally prepared positive electrode active material, and, specifically, the lithium-containing raw material may be used in an amount such that a molar ratio (molar ratio of lithium/metallic element) of lithium included in the lithium-containing raw material to the transition metal element included in the precursor for a positive electrode active material is in a range of 1.0 to 1.3, for example, 1.0 to 1.2.
- During the mixing of the positive electrode active material precursor with the lithium-containing raw material, a doping element M1 raw material (where M1 includes at least one selected from the group consisting of Al, Zr, Mg, Zn, Y, Fe, and Ti) may be further selectively included, if necessary.
- In a case in which the doping element M1 raw material is further included as described above, the doping element M1 raw material may be included in an amount of 2 mol % or less, for example, 1 mol % to 2 mol % based on the total number of moles of the positive electrode active material precursor.
- Subsequently, a positive electrode active material is prepared by sintering the mixture at 780° C. to 900° C., preferably 800° C. to 880° C., and more preferably 810° C. to 870° C. for 20 hours to 25 hours. Since the sintering is performed within the above temperature range, crystallinity is improved, and thus, a positive electrode active material having improved structural stability may be prepared.
- Positive Electrode for Secondary Battery
- Next, provided is a positive electrode for a lithium secondary battery which includes the positive electrode active material according to the present invention.
- Specifically, provided is the positive electrode for a lithium secondary battery which includes a positive electrode collector, and a positive electrode active material layer formed on the positive electrode collector, wherein the positive electrode active material layer includes the positive electrode active material according to the present invention.
- In this case, since the positive electrode active material is the same as described above, detailed descriptions thereof will be omitted, and the remaining configurations will be only described in detail below.
- The positive electrode collector is not particularly limited as long as it has conductivity without causing adverse chemical changes in the battery, and, for example, stainless steel, aluminum, nickel, titanium, fired carbon, or aluminum or stainless steel that is surface-treated with one of carbon, nickel, titanium, silver, or the like may be used. Also, the positive electrode collector may typically have a thickness of 3 μm to 500 μm, and microscopic irregularities may be formed on the surface of the collector to improve the adhesion of the positive electrode active material. The positive electrode collector, for example, may be used in various shapes such as that of a film, a sheet, a foil, a net, a porous body, a foam body, a non-woven fabric body, and the like.
- The positive electrode active material layer may include a conductive agent as well as selectively a binder, if necessary, in addition to the above positive electrode active material.
- In this case, the positive electrode active material may be included in an amount of 80 wt % to 99 wt %, for example, 85 wt % to 98.5 wt % based on a total weight of the positive electrode active material layer. When the positive electrode active material is included in an amount within the above range, excellent capacity characteristics may be obtained.
- The conductive agent is used to provide conductivity to the electrode, wherein any conductive agent may be used without particular limitation as long as it has suitable electron conductivity without causing adverse chemical changes in the battery. Specific examples of the conductive agent may be graphite such as natural graphite or artificial graphite; carbon based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fibers; powder or fibers of metal such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide whiskers and potassium titanate whiskers; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and any one thereof or a mixture of two or more thereof may be used. The conductive agent may be typically included in an amount of 0.1 wt % to 15 wt % based on the total weight of the positive electrode active material layer.
- The binder improves the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector. Specific examples of the binder may be polyvinylidene fluoride (PVDF), a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, an ethylene-propylene-diene monomer (EPDM), a sulfonated EPDM, a styrene-butadiene rubber (SBR), a fluorine rubber, or various copolymers thereof, and any one thereof or a mixture of two or more thereof may be used. The binder may be included in an amount of 0.1 wt % to 15 wt % based on the total weight of the positive electrode active material layer.
- The positive electrode may be prepared according to a typical method of preparing a positive electrode except that the above-described positive electrode active material is used. Specifically, a composition for forming a positive electrode active material layer, which is prepared by dissolving or dispersing the positive electrode active material as well as selectively the binder and the conductive agent, if necessary, in a solvent, is coated on the positive electrode collector, and the positive electrode may then be prepared by drying and rolling the coated positive electrode collector.
- The solvent may be a solvent normally used in the art. The solvent may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or water, and any one thereof or a mixture of two or more thereof may be used. An amount of the solvent used may be sufficient if the solvent may dissolve or disperse the positive electrode active material, the conductive agent, and the binder in consideration of a coating thickness of a slurry and manufacturing yield, and may allow to have a viscosity that may provide excellent thickness uniformity during the subsequent coating for the preparation of the positive electrode.
- Also, as another method, the positive electrode may be prepared by casting the composition for forming a positive electrode active material layer on a separate support and then laminating a film separated from the support on the positive electrode collector.
- Secondary Battery
- Furthermore, in the present invention, an electrochemical device including the positive electrode may be prepared. The electrochemical device may specifically be a battery or a capacitor, and, for example, may be a lithium secondary battery.
- The lithium secondary battery specifically includes a positive electrode, a negative electrode disposed to face the positive electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein, since the positive electrode is the same as described above, detailed descriptions thereof will be omitted, and the remaining configurations will be only described in detail below.
- Also, the lithium secondary battery may further selectively include a battery container accommodating an electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery container.
- In the lithium secondary battery, the negative electrode includes a negative electrode collector and a negative electrode active material layer disposed on the negative electrode collector.
- The negative electrode collector is not particularly limited as long as it has high conductivity without causing adverse chemical changes in the battery, and, for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel that is surface-treated with one of carbon, nickel, titanium, silver, or the like, and an aluminum-cadmium alloy may be used. Also, the negative electrode collector may typically have a thickness of 3 μm to 500 μm, and, similar to the positive electrode collector, microscopic irregularities may be formed on the surface of the collector to improve the adhesion of a negative electrode active material. The negative electrode collector, for example, may be used in various shapes such as that of a film, a sheet, a foil, a net, a porous body, a foam body, a non-woven fabric body, and the like.
- The negative electrode active material layer selectively includes a binder and a conductive agent in addition to the negative electrode active material.
- A compound capable of reversibly intercalating and deintercalating lithium may be used as the negative electrode active material. Specific examples of the negative electrode active material may be a carbonaceous material such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; a metallic compound alloyable with lithium such as silicon (Si), aluminum (Al), tin (Sn), lead (Pb), zinc (Zn), bismuth (Bi), indium (In), magnesium (Mg), gallium (Ga), cadmium (Cd), a Si alloy, a Sn alloy, or an Al alloy; a metal oxide which may be doped and undoped with lithium such as SiOβ(0<β<2), SnO2, vanadium oxide, and lithium vanadium oxide; or a composite including the metallic compound and the carbonaceous material such as a Si—C composite or a Sn—C composite, and any one thereof or a mixture of two or more thereof may be used. Also, a metallic lithium thin film may be used as the negative electrode active material. Furthermore, both low crystalline carbon and high crystalline carbon may be used as the carbon material. Typical examples of the low crystalline carbon may be soft carbon and hard carbon, and typical examples of the high crystalline carbon may be irregular, planar, flaky, spherical, or fibrous natural graphite or artificial graphite, Kish graphite, pyrolytic carbon, mesophase pitch-based carbon fibers, meso-carbon microbeads, mesophase pitches, and high-temperature sintered carbon such as petroleum or coal tar pitch derived cokes.
- The negative electrode active material may be included in an amount of 80 wt % to 99 wt % based on a total weight of the negative electrode active material layer.
- The binder is a component that assists in the binding between the conductive agent, the active material, and the current collector, wherein the binder is typically added in an amount of 0.1 wt % to 10 wt % based on the total weight of the negative electrode active material layer. Examples of the binder may be polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, an ethylene-propylene-diene polymer (EPDM), a sulfonated-EPDM, a styrene-butadiene rubber, a nitrile-butadiene rubber, a fluoro rubber, and various copolymers thereof.
- The conductive agent is a component for further improving conductivity of the negative electrode active material, wherein the conductive agent may be added in an amount of 10 wt % or less, for example, 5 wt % or less based on the total weight of the negative electrode active material layer. The conductive agent is not particularly limited as long as it has conductivity without causing adverse chemical changes in the battery, and, for example, a conductive material such as: graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers or metal fibers; metal powder such as fluorocarbon powder, aluminum powder, and nickel powder; conductive whiskers such as zinc oxide whiskers and potassium titanate whiskers; conductive metal oxide such as titanium oxide; or polyphenylene derivatives may be used.
- For example, the negative electrode active material layer may be prepared by coating a composition for forming a negative electrode, which is prepared by dissolving or dispersing selectively the binder and the conductive agent as well as the negative electrode active material in a solvent, on the negative electrode collector and drying the coated negative electrode collector, or may be prepared by casting the composition for forming a negative electrode on a separate support and then laminating a film separated from the support on the negative electrode collector.
- In the lithium secondary battery, the separator separates the negative electrode and the positive electrode and provides a movement path of lithium ions, wherein any separator may be used as the separator without particular limitation as long as it is typically used in a lithium secondary battery, and particularly, a separator having high moisture-retention ability for an electrolyte as well as low resistance to the transfer of electrolyte ions may be used. Specifically, a porous polymer film, for example, a porous polymer film prepared from a polyolefin-based polymer, such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or a laminated structure having two or more layers thereof may be used. Also, a typical porous nonwoven fabric, for example, a nonwoven fabric formed of high melting point glass fibers or polyethylene terephthalate fibers may be used. Furthermore, a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and the separator having a single layer or multilayer structure may be selectively used.
- Also, the electrolyte used in the present invention may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, or a molten-type inorganic electrolyte which may be used in the preparation of the lithium secondary battery, but the present invention is not limited thereto.
- Specifically, the electrolyte may include an organic solvent and a lithium salt.
- Any organic solvent may be used as the organic solvent without particular limitation so long as it may function as a medium through which ions involved in an electrochemical reaction of the battery may move. Specifically, an ester-based solvent such as methyl acetate, ethyl acetate, γ-butyrolactone, and ϵ-caprolactone; an ether-based solvent such as dibutyl ether or tetrahydrofuran; a ketone-based solvent such as cyclohexanone; an aromatic hydrocarbon-based solvent such as benzene and fluorobenzene; or a carbonate-based solvent such as dimethyl carbonate (DMC), diethyl carbonate (DEC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC); an alcohol-based solvent such as ethyl alcohol and isopropyl alcohol; nitriles such as R—CN (where R is a linear, branched, or cyclic C2-C20 hydrocarbon group and may include a double-bond aromatic ring or ether bond); amides such as dimethylformamide; dioxolanes such as 1,3-dioxolane; or sulfolanes may be used as the organic solvent. Among these solvents, the carbonate-based solvent may be used, and, for example, a mixture of a cyclic carbonate (e.g., ethylene carbonate or propylene carbonate) having high ionic conductivity and high dielectric constant, which may increase charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (e.g., ethylmethyl carbonate, dimethyl carbonate, or diethyl carbonate) may be used. In this case, the performance of the electrolyte solution may be excellent when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9.
- The lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in the lithium secondary battery. Specifically, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAlO4, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN (C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, or LiB(C2O4)2 may be used as the lithium salt. The lithium salt may be used in a concentration range of 0.1 M to 2.0 M. In a case in which the concentration of the lithium salt is included within the above range, since the electrolyte may have appropriate conductivity and viscosity, excellent performance of the electrolyte may be obtained and lithium ions may effectively move.
- In order to improve life characteristics of the battery, suppress the reduction in battery capacity, and improve discharge capacity of the battery, at least one additive, for example, a halo-alkylene carbonate-based compound such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphorictriamide, a nitrobenzene derivative, sulfur, a quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride, may be further added to the electrolyte in addition to the electrolyte components. In this case, the additive may be included in an amount of 0.1 wt % to 5 wt % based on a total weight of the electrolyte.
- As described above, since the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and life characteristics, the lithium secondary battery is suitable for portable devices, such as mobile phones, notebook computers, and digital cameras, and electric cars such as hybrid electric vehicles (HEVs).
- Thus, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the battery module are provided.
- The battery module or the battery pack may be used as a power source of at least one medium and large sized device of a power tool; electric cars including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system.
- A shape of the lithium secondary battery of the present invention is not particularly limited, but a cylindrical type using a can, a prismatic type, a pouch type, or a coin type may be used.
- The lithium secondary battery according to the present invention may not only be used in a battery cell that is used as a power source of a small device, but may also be used as a unit cell in a medium and large sized battery module including a plurality of battery cells.
- Hereinafter, the present invention will be described in detail, according to specific examples. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these example embodiments are provided so that this description will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art.
- (Preparation of Positive Electrode Active Material)
- A first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4 and MnSO4 in water in amounts such that a molar ratio of nickel:manganese was 95:5.
- Also, a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 59:12.5:28.5.
- A container containing the first transition metal-containing solution and a container containing the second transition metal-containing solution were connected to a 250 L reactor set at 53° C. In addition, a 25% NaOH solution and a 15% NH4OH aqueous solution were prepared and connected to the reactor, respectively.
- Subsequently, 55 L of deionized water was put in the reactor, and the reactor was then purged with nitrogen gas at a rate of 200 L/min to remove dissolved oxygen in the water and create a non-oxidizing atmosphere in the reactor. Thereafter, 50 mL of 25% NaOH was added to the reactor, and stirring was performed at a speed of 280 rpm and a temperature of 53° C. to maintain a pH at 11.9.
- Thereafter, the first transition metal-containing solution and the second transition metal-containing solution were respectively added to the reactor at a rate of 63 mL/min while changing a ratio of the first transition metal-containing solution to the second transition metal-containing solution from 100 vol %:0 vol % to 0 vol %:100 vol %. Simultaneously, while addition rates of the NaOH aqueous solution and the NH4OH aqueous solution to the reactor were controlled to gradually reduce a pH in the reactor from 11.9 to 10.8, a co-precipitation reaction was performed for 24 hours to precipitate positive electrode active material precursor particles. The precipitated positive electrode active material precursor particles were separated and dried at 110° C. for 12 hours to prepare a positive electrode active material precursor represented by Ni0.7Co0.1Mn0.2(OH)2 in which nickel, cobalt, and manganese were gradually changed from a center of the particle to a surface thereof.
- The positive electrode active material precursor thus obtained, Li2CO3, and doping elements Zr and Al were mixed in a molar ratio of 1:1.03:0.01:0.01, and sintering was performed at 830° C. for 10 hours in an oxygen atmosphere to prepare a positive electrode active material doped with 2,000 ppm of Zr and 1,000 ppm of Al and having a concentration gradient in which concentrations of the nickel, cobalt, and manganese were gradually changed from the center of the particle to the surface thereof.
- (Preparation of Positive Electrode)
- The above-prepared positive electrode active material, a Denka black conductive agent, and a polyvinylidene fluoride (PVDF) binder were mixed in a weight ratio of 95:2.5:2.5 in an N-methylpyrrolidone(NMP) solvent to prepare a positive electrode slurry. An aluminum foil was coated with the above-prepared positive electrode slurry, then roll-pressed, and dried at 120° C. for 12 hours to prepare a positive electrode.
- (Preparation of Negative Electrode)
- Natural graphite as a negative electrode active material, a carbon black conductive agent, and a styrene-butadiene rubber (SBR) binder were mixed at a weight ratio of 96:2:2 to prepare a negative electrode slurry. After a copper foil was coated with the negative electrode slurry and vacuum-dried at 110° C. for 2 hours to prepare a negative electrode, roll press was performed.
- (Preparation of Secondary Battery)
- After the above-prepared positive electrode and negative electrode and a 20 μm thick polyethylene separator (F20BHE, Tonen Chemical Corporation) were used to prepare a coin cell-type battery by a conventional method, an electrolyte solution, in which 1 M LiPF6 was dissolved in a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed in a ratio of 1:1 (vol %), was injected to prepare a coin cell-type lithium secondary battery.
- During the preparation of a positive electrode active material, a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4 and MnSO4 in water in amounts such that a molar ratio of nickel:manganese was 95:5, and a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:20.5:24.5. A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that a positive electrode active material precursor having an average composition of Ni0.65Co0.15Mn0.2(OH)2 was prepared by using the first transition metal-containing solution and the second transition metal-containing solution and the positive electrode active material precursor was used.
- During the preparation of a positive electrode active material, a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4 and MnSO4 in water in amounts such that a molar ratio of nickel:manganese was 95:5, and a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:13.5:31.5. A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that a positive electrode active material precursor having an average composition of Ni0.65Co0.10Mn0.25(OH)2 was prepared by using the first transition metal-containing solution and the second transition metal-containing solution and the positive electrode active material precursor was used.
- During the preparation of a positive electrode active material, a first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4 and MnSO4 in water in amounts such that a molar ratio of nickel:manganese was 95:5, and a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:17:28. A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that a positive electrode active material precursor having an average composition of Ni0.65Co0.125Mn0.225(OH)2 was prepared by using the first transition metal-containing solution and the second transition metal-containing solution and the positive electrode active material precursor was used.
- A transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 70:10:20.
- While the transition metal-containing solution was added to a 250 L reactor set at 53° C. at a rate of 63 mL/min, a NaOH aqueous solution and a NH4OH aqueous solution were respectively added at rates of 35 mL/min and 50 mL/min, and a co-precipitation reaction was performed at a pH of 11.2 for 24 hours to precipitate positive electrode active material precursor particles. A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that the above precipitated positive electrode active material precursor was used.
- A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that the pH in the reactor was maintained at 11.2 throughout the reaction.
- A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Comparative Example 1 except that a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:15:20, a positive electrode active material precursor of Ni0.65Co0.15Mn0.20(OH)2 was prepared by using the transition metal-containing solution, and the positive electrode active material precursor was used.
- A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Comparative Example 1 except that a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:12.5:22.5, a positive electrode active material precursor of Ni0.65Co0.125Mn0.225(OH)2 was prepared by using the transition metal-containing solution, and the positive electrode active material precursor was used.
- A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Comparative Example 1 except that a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:20:15, a positive electrode active material precursor of Ni0.65Co0.20Mn0.15(OH)2 was prepared by using the transition metal-containing solution, and the positive electrode active material precursor was used.
- A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Comparative Example 1 except that a transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 65:17.5:17.5, a positive electrode active material precursor of Ni0.65Co0.175Mn0.175(OH)2 was prepared by using the transition metal-containing solution, and the positive electrode active material precursor was used.
- A first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4 and MnSO4 in water in amounts such that a molar ratio of nickel:manganese was 95:5.
- Also, a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:27.5:17.5.
- A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that a positive electrode active material precursor having an average composition of Ni0.65Co0.20Mn0.15(OH)2 and having a concentration gradient in which Ni, Co, and Mn were gradually changed from a center of a particle to a surface thereof was prepared, and the positive electrode active material precursor was used.
- A first transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4 and MnSO4 in water in amounts such that a molar ratio of nickel:manganese was 95:5.
- Also, a second transition metal-containing solution with a concentration of 2.3 M was prepared by mixing NiSO4, CoSO4, and MnSO4 in water in amounts such that a molar ratio of nickel:cobalt:manganese was 55:24:21.
- A positive electrode active material and a positive electrode and a lithium secondary battery, which include the same, were prepared in the same manner as in Example 1 except that a positive electrode active material precursor having an average composition of Ni0.65Co0.175Mn0.175(OH)2 and having a concentration gradient in which Ni, Co, and Mn were gradually changed from a center of a particle to a surface thereof was prepared, and the positive electrode active material precursor was used.
- The positive electrode active material particles prepared in Example 1 and Comparative Examples 1 and 2 were cut, cross-sections of the positive electrode active materials were photographed using a transmission electron microscope (TEM), and crystal structures of surfaces of the positive electrode active materials were identified by selected area diffraction patterns (SADPs).
-
FIGS. 1, 2, and 3 are TEM images and SADPs of the positive electrode active materials prepared in Example 1 and Comparative Examples 1 and 2, respectively. - As illustrated in
FIG. 1 , with respect to the positive electrode active material prepared in Example 1, it may be confirmed that a surface portion included columnar-structured primary particles which were grown from a center of the positive electrode active material in a surface direction. Also, TEM analysis was performed on 8 points on the surface of the positive electrode active material to confirm lithium ion mobility on the surface of the positive electrode active material. Specifically, with respect to a lithium transition metal oxide having a layered structure, lithium ions move along a plane direction (yellow arrow inFIG. 1 ) satisfying 85° to ° to a c-axis direction (red arrow inFIG. 1 ), wherein the yellow arrow inFIG. 1 is referred to as a lithium movement direction. Thus, in a case in which a ratio of the particles, in which an angle between the c-axis direction and the measured growth direction of the particle satisfies 85° to 95°, is high at 60% or more (that is, when the lithium movement direction ofFIG. 1 coincides with the growth direction of the particle within ±5°), it may be confirmed that the lithium ion mobility on the surface of the positive electrode active material is excellent. - As illustrated in
FIG. 1 , as a result of the TEM analysis on the 8 points on the surface of the positive electrode active material (particles marked bysolid lines 1 to 8 in the TEM image ofFIG. 1 were measured), particles, in which the angle between the measured c-axis direction (red arrow inFIG. 1 ) and the growth direction of the particle at the measuring point satisfied 85° to 95°, wereparticles FIG. 1 . Among the measured particles inFIG. 1 ,particle 2 had a spinel structure, and the particle growth directions ofparticles 7 and 8 did not form 85° to 95° with the c-axis direction. That is, with respect to the positive electrode active material prepared in Example 1, a ratio in which the angles between the c-axis directions measured at the 8 points on the surface and the particle growth direction at the measuring point satisfied 85° to 95° was 62.5%. - In contrast, as illustrated in
FIG. 2 , with respect to the positive electrode active material prepared in Comparative Example 1, although it was in the form of a secondary particle in which primary particles were agglomerated, it may be confirmed that shapes of the primary particles in a surface portion were irregular. Also, as a result of measuring c-axis directions through the TEM analysis of 8 points of the surface of the positive electrode active material, a spinel structure appeared at 6 points among the 8 points measured. It was found that the angle between the particle growth direction and the c-axis direction (red arrow inFIG. 2 ) satisfied 85° to 95° only at one of the two points showing a layered structure (particle 7 among the 8 points in the TEM image ofFIG. 2 was only matched). That is, with respect to the positive electrode active material prepared in Comparative Example 1, a ratio in which the angles between the c-axis directions measured at the 8 points on the surface and the particle growth direction at the measuring point satisfied 85° to 95° was 12.5%. With respect to the spinel structure, since a lithium content was lower than that of the layered crystal structure, capacity and life characteristics were degraded. - Also, as illustrated in
FIG. 3 , with respect to the positive electrode active material prepared in Comparative Example 2, although it was in the form of a secondary particle in which primary particles were agglomerated, a formation rate of nucleus was increased during the reaction because the pH was not controlled during the preparation of the precursor, and thus, a ratio of the primary particles having a columnar structure, which were grown from a center of the positive electrode active material in a surface direction, in a surface portion of the positive electrode active material was low. Furthermore, as a result of TEM analysis on 8 points on the surface of the positive electrode active material, particles measured at 5 points among the measured points had a spinel structure, and an angle between a growth direction of the particle at the measuring point and a c-axis direction satisfied 85° to 95° for only the particle measured at one of the other three points (particle 6 among the 8 points in the TEM image ofFIG. 3 was only matched). That is, with respect to the positive electrode active material prepared in Comparative Example 2, a ratio in which the angles between the c-axis directions measured at the 8 points on the surface and the particle growth direction at the measuring point satisfied ° to 95° was 12.5%. - Charge and discharge efficiency was evaluated for the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 6, and the results thereof are presented in Table 1 below.
- Specifically, each of the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 6 was charged at a constant current of 0.1 C to 4.30 V, was left standing for 20 minutes, and then discharged at a constant current of C to a voltage of 3.0 V to observe charge and discharge characteristics in the first cycle, and the results thereof are presented in the following Table 1 and
FIG. 4 . -
TABLE 1 Charge capacity Discharge capacity Efficiency (mAh/g) (mAh/g) (%) Example 1 215.6 197.7 91.7 Comparative 214.8 196.5 91.5 Example 1 Comparative 215.3 195.5 90.8 Example 2 Example 2 210.0 190.1 90.5 Example 3 209.5 190.4 90.8 Example 4 209.2 190.4 91.0 Comparative 205.1 181.4 88.4 Example 3 Comparative 205.3 177.1 86.2 Example 4 Comparative 204.6 185.3 90.5 Example 5 Comparative 205.4 185.1 90.1 Example 6 - Referring to the results of Example 1 and Comparative Examples 1 and 2 in Table 1 and
FIG. 4 , with respect to the positive electrode active materials including the same amount of nickel, it may be confirmed that, with respect to Example 1 having a concentration gradient in which 60% or more of the c-axis directions formed a specific angle with the growth direction of the primary particles present on the surface thereof, efficiency was improved in comparison to that of Comparative Example 1 without a concentration gradient and a specific orientation and that of Comparative Example 2 having a concentration gradient but not having a specific orientation. - Also, referring to the results of Examples 2 to 4 and Comparative Examples 3 to 6 in Table 1, with respect to the secondary batteries prepared in Comparative Examples 3 and 4 without a concentration gradient in which the cobalt content in the lithium transition metal oxide was lower than the manganese content for the same nickel content, it may be confirmed that capacity decreased with a decrease in the cobalt content. In contrast, it may be confirmed that the secondary batteries, which were prepared by using the positive electrode active materials having a concentration gradient and a specific orientation even if the cobalt content in the lithium transition metal oxide was lower than the manganese content as in Examples 2 to 4, had an efficiency equal to or better than the secondary batteries of Comparative Examples 4 and 5 in which the cobalt content in the lithium transition metal oxide was greater than or equal to the manganese content.
- Low-temperature (−10° C.) output characteristics of the lithium secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 6 were confirmed. Specifically, each of the lithium secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 6 was charged at a constant current of 0.33 C at room temperature (25° C.) and then discharged at a constant current of 0.4 C for 22.5 minutes to measure a voltage drop for 1,350 seconds, and the results thereof are presented in Table 2 below.
-
TABLE 2 0 to 10 seconds 0 to 1,350 seconds Compared to Compared to Comparative Comparative Voltage Example Voltage Example drop 5 (%) drop 5 (%) Example 1 0.212 −0.003 0.580 −0.012 Comparative 0.217 0.002 0.591 −0.001 Example 1 Comparative 0.220 0.005 0.588 −0.004 Example 2 Example 2 0.210 −0.005 0.582 −0.01 Comparative 0.22 0.005 0.609 0.017 Example 3 Comparative 0.251 0.036 0.611 0.019 Example 4 Comparative 0.215 Ref. 0.592 Ref. Example 5 Comparative 0.226 0.011 0.603 0.011 Example 6 - Referring to Example 1 and Comparative Examples 1 and 2 of Table 2, with respect to Example 1 having a concentration gradient in which 60% or more of the c-axis directions formed a specific angle with the growth direction of the primary particles present on the surface thereof for the same composition, it may be confirmed that a voltage drop rate was lower than that of the secondary battery including the positive electrode active material of Comparative Example 1 without a concentration gradient and a specific orientation between the c-axis and the growth direction of the particle present on the surface thereof and that of the secondary battery including the positive electrode active material of Comparative Example 2 having a concentration gradient but not having a specific orientation between the c-axis and the growth direction of the primary particle present on the surface thereof.
- In the positive electrode active materials including the same amount of nickel as in Example 2 and Comparative Examples 3 to 6, it may be confirmed that Comparative Examples 3 and 4 without a concentration gradient, in which the cobalt content in the lithium transition metal oxide was lower than the manganese content, had higher voltage drop rates due to the decrease in the cobalt content than Comparative Example 5 in which the cobalt content in the lithium transition metal oxide was greater than the manganese content.
- In contrast, with respect to Example 2 having a concentration gradient in which the cobalt content in the lithium transition metal oxide was lower than the manganese content, but the growth direction of the particle present on the surface thereof formed a specific angle with the c-axis, it may be confirmed that, even if the cobalt content was reduced, a voltage drop rate was better due to the uniformity of the primary particles than that of Comparative Example 5 including the same amount of nickel and that of Comparative Example 3 having the same composition.
- Life characteristics and resistance characteristics of the secondary batteries including the positive electrodes prepared in Examples 1 to 4 and Comparative Examples 1 to 8 were measured. Specifically, each of the secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 8 was charged at a constant current of 1 C to 4.25 V at 45° C. and cut-off charged at 3 C. Thereafter, discharge was performed at a constant current of 1 C to a voltage of 3.0 V. The charging and discharging behaviors were set as one cycle, and, after this cycle was repeated 300 times, capacity retentions and resistance increase rates with cycles of the secondary batteries according to Examples 1 to 4 and Comparative Examples 1 to 8 were measured. With respect to the life characteristics, capacity in a 300th cycle was divided by initial capacity and then multiplied by 100 to calculate a value, and, with respect to the resistance characteristics, after resistance in the 300th cycle was divided by initial resistance and multiplied by 100 to calculate a value, the results thereof are presented in the following Table 3 and
FIG. 5 . -
TABLE 3 Life characteristics DCIR in the in the 300th 300th cycle at cycle at 45° C. (%) 45° C. (%) Example 1 91.7 137.7 Comparative 83.6 160.2 Example 1 Comparative 88.5 150.4 Example 2 Example 2 91.3 133.5 Example 3 91.8 138.7 Example 4 91.5 137.7 Comparative 90.1 150.9 Example 3 Comparative 89.9 152.1 Example 4 Comparative 89.6 145.5 Example 5 Comparative 90.5 147.8 Example 6 Comparative 92.5 140.2 Example 7 Comparative 91.2 142.5 Example 8 - In the positive electrode active materials including the same amount of nickel as illustrated in the results of Example 1 and Comparative Examples 1 and 2 of Table 3 and
FIG. 5 , it may be confirmed that life characteristics and resistance characteristics of the secondary battery prepared in Example 1 were improved in comparison to those of Comparative Example 1, in which the same nickel content was included, but the lithium transition metal oxide did not have a concentration gradient, and those of Comparative Example 6 which did not have a specific orientation because the pH was not controlled during the preparation of the lithium transition metal oxide. - Also, with respect to the secondary batteries prepared in Examples 2 to 4 and Comparative Examples 3 to 8 which included the same nickel content, it may be confirmed that life characteristics and resistance characteristics were improved in comparison to those of Comparative Examples 3, 4, and 6 without a concentration gradient in which the cobalt content in the lithium transition metal oxide was less than or equal to the manganese content. Furthermore, it may be confirmed that life characteristics and resistance characteristics were improved in comparison to those of Comparative Example 5 in which the cobalt content in the lithium transition metal oxide was greater than the manganese content, but there was no concentration gradient.
- With respect to the secondary batteries prepared in Examples 2 to 4, the life characteristics were inferior to those of the secondary batteries of Comparative Examples 7 and 8 having a concentration gradient in which the cobalt content in the lithium transition metal oxide was greater than or equal to the manganese content, particularly Comparative Example 7 in which the cobalt content was the highest, but it may be confirmed that the resistance characteristics were improved in comparison to those of Comparative Examples 7 and 8 because lithium ion mobility was increased by having the specific orientation.
Claims (5)
1. A method of preparing a positive electrode active material, the method comprising:
preparing a first transition metal-containing solution including a nickel raw material and a second transition metal-containing solution having a transition metal concentration different from that of the first transition metal-containing solution and including the nickel raw material, a cobalt raw material, and a manganese raw material;
preparing a positive electrode active material precursor by mixing the first transition metal-containing solution and the second transition metal-containing solution while gradually changing a mixing ratio of the first transition metal-containing solution to the second transition metal-containing solution; and
mixing the positive electrode active material precursor with a lithium-containing raw material to form a mixture and sintering the mixture to synthesize the positive electrode active material,
wherein the preparing of the positive electrode active material precursor is controlled such that a pH is gradually decreased as a nickel content in the mixed solution is reduced.
2. The method of claim 1 , wherein a molar ratio of nickel:cobalt:manganese in the first transition metal-containing solution is in a range of 80 to 100:0 to 10:0 to 20.
3. The method of claim 1 , wherein a molar ratio of nickel:cobalt:manganese in the second transition metal-containing solution is in a range of 50 to 80:10 to 30:10 to 35.
4. The method of claim 1 , wherein the pH is gradually decreased within a range of 13 to 9.
5. The method of claim 1 , further comprising a doping element M1 raw material, wherein M1 comprises at least one selected from the group consisting of Al, Zr, Mg, Zn, Y, Fe, and Ti, during the mixing of the positive electrode active material precursor with the lithium-containing raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/243,974 US20230420649A1 (en) | 2018-05-11 | 2023-09-08 | Positive Electrode Active Material For Lithium Secondary Battery, Method Of Preparing The Same, And Positive Electrode For Lithium Secondary Battery And Lithium Secondary Battery Which Include The Positive Electrode Active Material |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180054292A KR102302038B1 (en) | 2018-05-11 | 2018-05-11 | Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same |
KR10-2018-0054292 | 2018-05-11 | ||
PCT/KR2019/005631 WO2019216694A1 (en) | 2018-05-11 | 2019-05-10 | Cathode active material for lithium secondary battery, production method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery comprising same |
US202017050553A | 2020-10-26 | 2020-10-26 | |
US18/243,974 US20230420649A1 (en) | 2018-05-11 | 2023-09-08 | Positive Electrode Active Material For Lithium Secondary Battery, Method Of Preparing The Same, And Positive Electrode For Lithium Secondary Battery And Lithium Secondary Battery Which Include The Positive Electrode Active Material |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/005631 Division WO2019216694A1 (en) | 2018-05-11 | 2019-05-10 | Cathode active material for lithium secondary battery, production method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery comprising same |
US17/050,553 Division US11799071B2 (en) | 2018-05-11 | 2019-05-10 | Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230420649A1 true US20230420649A1 (en) | 2023-12-28 |
Family
ID=68468160
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/050,553 Active 2040-06-16 US11799071B2 (en) | 2018-05-11 | 2019-05-10 | Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material |
US18/243,974 Pending US20230420649A1 (en) | 2018-05-11 | 2023-09-08 | Positive Electrode Active Material For Lithium Secondary Battery, Method Of Preparing The Same, And Positive Electrode For Lithium Secondary Battery And Lithium Secondary Battery Which Include The Positive Electrode Active Material |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/050,553 Active 2040-06-16 US11799071B2 (en) | 2018-05-11 | 2019-05-10 | Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material |
Country Status (5)
Country | Link |
---|---|
US (2) | US11799071B2 (en) |
JP (2) | JP7486877B2 (en) |
KR (1) | KR102302038B1 (en) |
CN (1) | CN112005411A (en) |
WO (1) | WO2019216694A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109148894A (en) * | 2018-09-05 | 2019-01-04 | 天津瑞晟晖能科技有限公司 | Lithium ion cell positive, all-solid lithium-ion battery and preparation method thereof and electricity consumption device |
JP2020087814A (en) * | 2018-11-29 | 2020-06-04 | 本田技研工業株式会社 | Cathode active material particle |
CN112886001B (en) * | 2019-11-29 | 2024-07-26 | 艾可普罗Bm有限公司 | Positive electrode active material and lithium secondary battery including the same |
CN111564625A (en) * | 2020-04-07 | 2020-08-21 | 江门市科恒实业股份有限公司 | Single crystal ternary positive electrode material and preparation method thereof |
EP4137460A4 (en) * | 2020-09-24 | 2024-02-28 | Lg Chem, Ltd. | Method for solid-state synthesis of ni-rich lithium composite transition metal oxide cathode active material single particle, ni-rich lithium composite transition metal oxide cathode active material single particle synthesized thereby, and cathode and lithium secondary battery, each containing same |
KR102624905B1 (en) * | 2020-11-25 | 2024-01-12 | (주)포스코퓨처엠 | Oriented cathode active material for lithium secondary battery and method for manufacturing the same |
CN112599761B (en) * | 2020-12-11 | 2022-03-18 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
CN116805711A (en) * | 2021-02-20 | 2023-09-26 | 宁德新能源科技有限公司 | Electrochemical device and electronic device including the same |
DE102021204702A1 (en) | 2021-05-10 | 2022-11-10 | Volkswagen Aktiengesellschaft | Secondary particles for a cathode of a secondary lithium battery cell and method for producing such |
CN114122385B (en) * | 2022-01-26 | 2022-04-26 | 瑞浦能源有限公司 | Low-cobalt ternary cathode material for lithium ion battery, preparation method of low-cobalt ternary cathode material, lithium ion battery cathode piece and lithium ion battery |
CN115196683B (en) * | 2022-07-19 | 2023-10-20 | 欣旺达动力科技股份有限公司 | Positive electrode material, secondary battery and electric equipment |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130138073A (en) * | 2012-06-08 | 2013-12-18 | 한양대학교 산학협력단 | Precursor for cathod active material of lithium secondary battery, cathode active materials made by the same, and lithium secondary battery containing the same |
CN104703921B (en) | 2012-10-17 | 2018-01-12 | 户田工业株式会社 | Li Ni composite oxide particle powders and rechargeable nonaqueous electrolytic battery |
EP2940761B1 (en) | 2012-12-26 | 2019-12-18 | IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) | Cathode active material for lithium secondary batteries |
KR102124052B1 (en) | 2013-10-18 | 2020-06-17 | 삼성전자주식회사 | Positive electrode active material, preparing method thereof, and lithium battery employing positive electrode including the same |
KR101610364B1 (en) | 2014-09-16 | 2016-04-08 | 주식회사 포스코 | Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same |
US10581110B2 (en) | 2015-04-30 | 2020-03-03 | Lg Chem, Ltd. | Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material |
KR101913906B1 (en) * | 2015-06-17 | 2018-10-31 | 주식회사 엘지화학 | Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same |
KR101913897B1 (en) | 2015-09-30 | 2018-12-28 | 주식회사 엘지화학 | Positive electrode active material for secondary battery and secondary battery comprising the same |
WO2017095133A1 (en) * | 2015-11-30 | 2017-06-08 | 주식회사 엘지화학 | Cathode active material for secondary battery, and secondary battery comprising same |
KR101927295B1 (en) * | 2015-11-30 | 2018-12-10 | 주식회사 엘지화학 | Positive electrode active material for secondary battery and secondary battery comprising the same |
KR102521323B1 (en) * | 2015-12-09 | 2023-04-13 | 에스케이온 주식회사 | Lithium secondary battery |
-
2018
- 2018-05-11 KR KR1020180054292A patent/KR102302038B1/en active IP Right Grant
-
2019
- 2019-05-10 US US17/050,553 patent/US11799071B2/en active Active
- 2019-05-10 JP JP2020556267A patent/JP7486877B2/en active Active
- 2019-05-10 CN CN201980027475.0A patent/CN112005411A/en active Pending
- 2019-05-10 WO PCT/KR2019/005631 patent/WO2019216694A1/en active Application Filing
-
2023
- 2023-06-20 JP JP2023101075A patent/JP2023134475A/en active Pending
- 2023-09-08 US US18/243,974 patent/US20230420649A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR102302038B1 (en) | 2021-09-15 |
US20210234155A1 (en) | 2021-07-29 |
KR20190129518A (en) | 2019-11-20 |
US11799071B2 (en) | 2023-10-24 |
CN112005411A (en) | 2020-11-27 |
WO2019216694A1 (en) | 2019-11-14 |
JP7486877B2 (en) | 2024-05-20 |
JP2021520035A (en) | 2021-08-12 |
JP2023134475A (en) | 2023-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11799071B2 (en) | Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material | |
US10581110B2 (en) | Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material | |
US11031595B2 (en) | Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material | |
US11450846B2 (en) | Positive electrode material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which includes the positive electrode material | |
US20220013775A1 (en) | Positive Electrode Active Material, Method of Preparing the Positive Electrode Active Material, and Positive Electrode and Lithium Secondary Battery Which Include the Positive Electrode Active Material | |
US12040484B2 (en) | Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
US20230087740A1 (en) | Positive Electrode Active Material Precursor for Secondary Battery, Positive Electrode Active Material, and Lithium Secondary Battery Including the Positive Electrode Active Material | |
US20230081939A1 (en) | Positive Electrode Active Material Precursor for Secondary Battery, Positive Electrode Active Material, and Lithium Secondary Battery Including the Positive Electrode Active Material | |
US11767230B2 (en) | Positive electrode active material precursor, preparation method thereof, positive electrode active material prepared using same, positive electrode, and secondary battery | |
US20210265615A1 (en) | Method of Preparing Positive Electrode Material for Lithium Secondary Battery and Positive Electrode Material for Lithium Secondary Battery Prepared Thereby | |
US20220048789A1 (en) | Positive Electrode Active Material Precursor for Secondary Battery, Positive Electrode Active Material, Preparation Methods Thereof, and Lithium Secondary Battery Including the Positive Electrode Active Material | |
US20220407063A1 (en) | Method of Preparing Positive Electrode Active Material Precursor for Lithium Secondary Battery, Positive Electrode Active Material Precursor, and Positive Electrode Active Material, Positive Electrode, and Lithium Secondary Battery Which are Prepared by Using the Precursor | |
EP4235861A1 (en) | Positive electrode active material precursor, method for manufacturing same, and positive electrode active material | |
US20230307629A1 (en) | Positive Electrode Active Material Precursor and Method of Preparing the Same | |
US20220238871A1 (en) | Positive Electrode Active Material Precursor for Secondary Battery, Preparation Method Thereof, and Method of Preparing Positive Electrode Active Material | |
EP3892589B1 (en) | Method for preparing positive electrode active material for lithium secondary battery and positive electrode active material prepared by the method | |
US11996538B2 (en) | Method for preparing positive electrode active material precursor for lithium secondary battery | |
US20220411283A1 (en) | Positive Electrode Active Material Precursor For Secondary Battery, Positive Electrode Active Material, Preparation Methods Thereof, And Lithium Secondary Battery Including The Positive Electrode Active Material | |
US12132203B2 (en) | Method of preparing positive electrode active material precursor for lithium secondary battery and positive electrode active material precursor prepared by the method | |
US20240072244A1 (en) | Positive Electrode Active Material, and Positive Electrode and Secondary Battery Which Include the Same | |
US20220190326A1 (en) | Positive Electrode Active Material for Secondary Battery, Method of Preparing the Same, and Lithium Secondary Battery Including the Positive Electrode Active Material | |
US20240270603A1 (en) | Method of Preparing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Active Material Prepared Thereby | |
US20230339772A1 (en) | Positive Electrode Active Material Precursor and Method of Preparing the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JEONG, MYUNG GI;SON, SE HWAN;CHO, SEUNG BEOM;AND OTHERS;REEL/FRAME:064858/0574 Effective date: 20200323 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |