US20230414792A1 - Plastic containers - Google Patents

Plastic containers Download PDF

Info

Publication number
US20230414792A1
US20230414792A1 US18/199,311 US202318199311A US2023414792A1 US 20230414792 A1 US20230414792 A1 US 20230414792A1 US 202318199311 A US202318199311 A US 202318199311A US 2023414792 A1 US2023414792 A1 US 2023414792A1
Authority
US
United States
Prior art keywords
dota
solution
gadolinium
plastic
months
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/199,311
Inventor
Karina Martha Langseth-Manrique
Arne Wang Aabye
Harald Laugen
Eva Krog Tamnes
Borge Mathisen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare AS
Original Assignee
GE Healthcare AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Healthcare AS filed Critical GE Healthcare AS
Priority to US18/199,311 priority Critical patent/US20230414792A1/en
Assigned to GE HEALTHCARE AS reassignment GE HEALTHCARE AS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAUGEN, Harald, Aabye, Arne Wang, LANGSETH-MANRIQUE, KARINA MARTHA, MATHISEN, Borge, TAMNES, EVA KROG
Publication of US20230414792A1 publication Critical patent/US20230414792A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/106Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
    • A61K49/108Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA the metal complex being Gd-DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/1782Devices aiding filling of syringes in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/003Filling medical containers such as ampoules, vials, syringes or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers

Definitions

  • the present invention relates to in vivo medical imaging and especially to magnetic resonance imaging (MRI). More particularly, the present invention relates to a convenient commercial presentation of a solution of an MRI contrast agent.
  • MRI magnetic resonance imaging
  • Metal complexes of lanthanide metals, especially gadolinium, are of interest as MRI contrast agents in the field of in vivo medical imaging.
  • MRI contrast agents based on metal complexes of gadolinium have been reviewed extensively (see e.g. Zhang et al. 2005 Curr Med Chem; 12: 751-778 and Aime et al. 2005 Adv Inorg Chem; 57: 173-237).
  • Gadoteric acid meglumine is a product marketed by Guerbet as Dotarem®.
  • the product is commercially supplied in glass vials and glass pre-filled syringes (https://www.accessdata.fda.gov/drugatfda_docs/label/2017/204781s0011b1.pdf).
  • the prescribing information instructs that when Dotarem® is to be injected using plastic disposable syringes, the contrast medium should be
  • Micard et al. discusses repackaging of Dotarem® into single-use polypropylene syringes and notes that the solution is stable and sterile according to European Pharmacopoeia up to 90 days in the dark at either 4° C. or at room temperature.
  • established guidelines advise that a pharmaceutical product drawn into a single-use syringe should be used within 24 hours (http://www.ema.euphora.eu/docs/en_GB/document_library/Scientific_guideline/2009/15WC500003476.pdf).
  • the present invention provides a method for providing a solution comprising gadolinium-DOTA wherein said method comprises:
  • the present invention provides a magnetic resonance imaging (MRI) method comprising:
  • glass containers have been selected for product presentations of gadolinium-DOTA, perhaps due to their relatively low susceptibility to ingress of oxygen and moisture and to chemical leaching as compared with plastic containers.
  • plastic containers permit long-term storage of gadolinium-DOTA without any detrimental effect on product quality due to oxygen or moisture ingress or chemical leaching.
  • the present invention overcomes problems presented by glass containers including their relative ease of breakage, the need to dispose in special containers, their relatively heavy weight and high eco-impact.
  • FIG. 1 shows a non-limiting example of a syringe suitable for use in the present invention.
  • FIG. 2 shows non-limiting examples of bottles suitable for use in the present invention.
  • FIGS. 3 A and 3 B shows non-limiting examples of bags suitable for use in the present invention (from Sartorius Stedim).
  • a solution comprising gadolinium-DOTA can encompass a solution of gadolinium-DOTA (also can be referred to as “gadoteric acid”) prior to formulation as a contrast agent or to the actual formulated contrast agent ready for use.
  • gadolinium-DOTA also can be referred to as “gadoteric acid”
  • contrast agent has its conventional meaning in the field of in vivo medical imaging, and refers to an agent in a form suitable for mammalian administration, which assists in providing clearer images in the region or organ of interest than could be obtained by imaging a subject to whom no contrast agent has been administered.
  • a contrast agent comprising gadolinium-DOTA is an “MRI contrast agent”, suitable for mammalian administration, which shortens the T1 and/or T2 relaxation time of the relevant nuclei (e.g. 1 H for 1 H NMR) in the region of interest for imaging within a subject.
  • said gadolinium-DOTA is the meglumine salt of gadolinium-DOTA, also commonly referred to as Gd-DOTA meglumine or gadoterate meglumine.
  • the solution comprising gadolinium-DOTA further comprises a mol/mol amount of free DOTA between 0.002% and 0.4%, in another embodiment between 0.02 and 0.3% of free DOTA, in another embodiment between 0.025 and 0.25 mol/mol % of free DOTA.
  • DOTA is commercially available from a range of suppliers and can also be synthesised by the method of Desreux (1980 Inorg Chem; 19: 1319-1324). Further details on macrocyclic chelator syntheses are given by Kotel et al. (Chapter 3 pages 83-155 in “The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; Wiley 2 nd Edition 2013: A. Merbach, L. Helm & E. Toth, Eds).
  • Meglumine N-methylglucamine
  • Pharmaceutical grade material is generally used.
  • the complexation of lanthanides such as gadolinium by macrocyclic chelators is a multistep process that results in a thermodynamically stable metal complex.
  • gadolinium-DOTA solutions as well as methods to prepare gadolinium-DOTA and its meglumine salt are described in WO 2009/103744, WO 2016/083597, WO 2016/083600 and WO 2016/083605, the contents of which are hereby incorporated by reference.
  • US 2012/0082624 A1 discloses a similar process to WO 2009/103744, except that the pharmaceutical formulation is obtained in powder form.
  • compositions which are sterile, pyrogen-free, lacks compounds which produce toxic or adverse effects, and is formulated at a biocompatible pH (approximately pH 4.0 to 10.5) in a biocompatible carrier.
  • a biocompatible pH approximately pH 4.0 to 10.5
  • Such compositions lack particulates which could risk causing emboli in vivo, and are formulated so that precipitation does not occur on contact with biological fluids (e.g. blood).
  • biological fluids e.g. blood
  • Such compositions also contain only biologically compatible excipients, and are preferably isotonic.
  • biocompatible carrier is meant a fluid, especially a liquid, such that the composition is physiologically tolerable, i.e. can be administered to the mammalian body without toxicity or undue discomfort.
  • the biocompatible carrier is suitably an injectable carrier liquid such as sterile, pyrogen-free water for injection; an aqueous solution such as saline (which may advantageously be balanced so that the final product for injection is isotonic); an aqueous buffer solution comprising a biocompatible buffering agent (e.g. phosphate buffer); an aqueous solution of one or more tonicity-adjusting substances (e.g. salts of plasma cations with biocompatible counterions), sugars (e.g.
  • the biocompatible carrier is pyrogen-free water for injection (WFI), isotonic saline or phosphate buffer.
  • Production of the solution comprising gadolinium-DOTA is suitably carried out under aseptic manufacture conditions.
  • aseptic manufacture refers to carrying out the relevant process steps under aseptic manufacture, i.e. apyrogenic conditions, e.g. in a clean-room environment, including terminal sterilisation.
  • sterilisation takes its conventional meaning, and refers to a process of destruction of micro-organisms, to obtain a sterile, pyrogen-free composition.
  • terminal sterilisation has its conventional meaning, and refers to carrying out the preceding steps to GMP (Good Manufacturing Practice), but carrying out the sterilisation step as late as possible in the overall process.
  • the components and reagents can be sterilised by methods known in the art, including: sterile filtration, terminal sterilisation using e.g. gamma-irradiation, autoclaving, dry heat or chemical treatment (e.g. with ethylene oxide) or combinations thereof.
  • autoclaving has its' conventional meaning, and refers to one particular method of sterilisation which uses superheated steam to sterilise. Autoclaving and other sterilisation methods are described in Achieving Sterility in Medical and Pharmaceutical Products , N. Halls (CRC Press, 1994).
  • a commercial batch refers to a relatively large quantity of the solution comprising gadolinium-DOTA to fulfil demand for commercial product offerings comprising said solution.
  • a commercial batch may be regarded as a batch having a volume of around 400 L or greater, up to around 1500 L.
  • said commercial batch has a volume around 600 L or greater, around 700 L or greater, around 800 L or greater, around 900 L or greater, around 1000 L or greater, or between 1000-1500 L, for example 1400 L.
  • plastic containers in the context of the present invention is intended to refer to containers made of pharmaceutical grade plastic suitable for the safe and efficient storage, transport and handling of the gadolinium-DOTA solution. Such containers can be readily obtained commercially.
  • said plastic containers are made from pharmaceutical-grade polypropylene.
  • said plastic containers are made from pharmaceutical-grade cyclic olefin.
  • Examples of particular plastic containers suitable for the present invention include plastic syringes, plastic containers and plastic bags. Where the plastic container is a syringe or a bottle it is suitable for containing one or more imaging effective doses of the solution where the solution is the final formulated solution of gadolinium DOTA suitable for use as an MRI agent.
  • Non-limiting examples of suitable syringes include those having a 10 mL, 15 mL or 20 mL volume.
  • a non-limiting example of a syringe suitable for the present invention is illustrated in FIG. 1 .
  • the following characteristics are present in certain embodiments of plastic syringes suitable for the present invention:
  • said syringe is made from pharmaceutical-grade cyclic olefin.
  • Cyclic olefin has good transparency, which facilitates visually verifying the contents.
  • suitable bottles are those having volumes between 50-500 mL, e.g. 50 mL, 100 mL, 150 mL, 500 mL or 1000 mL.
  • said bottle can be of the type described in WO 00/03920.
  • said bottle may be of a type as described in any of U.S. Pat. No. 6,659,296, WO2013041593, U.S. Pat. No. 9,815,601, EP 2790636 B1, U.S. Pat. No. 9,682,015, WO2014106002 and WO2016014406.
  • said bottle can be the PluspakTM available from GE Healthcare of the type illustrated in FIG. 2 . PluspakTM is a polypropylene based bottle having the following characteristics:
  • plastic container is a bag it is in one embodiment a flexible plastic bag suitable for the transport and storage of the gadolinium-DOTA solution. Suitable plastic bags are commercially available and non-limiting examples of these are illustrated in FIG. 3 . In one embodiment the plastic bag of the invention has a 50-1000 L volume.
  • Particular properties of a suitable bag include:
  • said method further comprises the step (iii) of storing said solution dispensed into said plastic containers.
  • storing takes its conventional meaning of placing or leaving in a suitably secure location for preservation with the intention to use at a later date.
  • said storing is for more than 90 days, for example for up to 36 months.
  • said storing is at temperatures up to The present inventors have demonstrated that storing is possible over a wide range of temperatures and for a long shelf life without any impact on the quality of the gadolinium-DOTA solution.
  • ICH Q1E guideline (which may be viewed at this link: http://www.ich.org/fileadmin/Public_Web_site/1CH_Prodcuts/Guidelines/Quality/Q1E/Step4/Q1E_Guideline.pdf) allows extrapolation up to a 30 months shelf life at the long term storage condition of 25° C./40% RH. Therefore, the results obtained by the present inventors demonstrate that gadoterate meglumine solution can be effectively stored in semi-permeable containers such as polymer PFS and PP bottles during long term storage at 25° C./40% RH up to 30 months. This is despite some of the harsh conditions to which the product was exposed and the fact that these containers permit ingress of oxygen resulting in raised oxygen levels in the containers.
  • said dispensing includes carrying out an overfill to counteract any water loss from plastic containers over time in order to maintain product quality.
  • said overfill is 1-5% of the final desired volume.
  • nitrogen is not used as an excipient in the plastic container headspace.
  • the present inventors have demonstrated that oxygen in the headspace of the plastic containers does not have a material impact on the quality of the product.
  • magnetic resonance imaging herein takes its ordinary meaning in the art, that is a form of medical imaging that measures the response of the atomic nuclei of body tissues to high-frequency radio waves when placed in a strong magnetic field, and that produces images of the internal organs.
  • an imaging effective amount refers to an amount of the gadolinium-DOTA active agent sufficient to produce useful images using MRI following administration to a subject.
  • the recommended dose of the gadolinium-DOTA product Dotarem® is 0.2 mL/kg (0.1 mmol/kg) body weight administered as an intravenous bolus injection, manually or by power injector, at a flow rate of approximately 2 mL/second for adults and 1-2 mL/second for pediatric patients. Additional information can be found at http://www.guerbet-us.com/products/dotarem.html.
  • subject is meant a mammal in vivo, preferably the intact mammalian body in vivo, and more preferably a living human subject.
  • the contrast agent is designed to have minimal pharmacological effect on the mammalian subject to be imaged.
  • the contrast agent can be administered to the mammalian body in a minimally invasive manner, i.e. without a substantial health risk to the subject when carried out under professional medical expertise.
  • Such minimally invasive administration is preferably intravenous administration into a peripheral vein of said subject, without the need for local or general anaesthetic.
  • Example 1 describes preparation and storage of a gadoteric acid solution and measurements of stability over time and under different storage conditions.
  • Example 1 Stability of Solution Comprising Gadolinium-DOTA in Plastic Containers Under Various Storage Conditions
  • a gadoteric acid solution suitable for injection (referred to as Drug Product below) was prepared in three commercial scale 400 L batches. Each batch was filled into glass, PFS and PP bottles and autoclaved prior to storage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention provides a method for the commercial presentation of a solution of gadolinium-DOTA that provides certain advantages over the known methods.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to in vivo medical imaging and especially to magnetic resonance imaging (MRI). More particularly, the present invention relates to a convenient commercial presentation of a solution of an MRI contrast agent.
  • DESCRIPTION OF RELATED ART
  • Metal complexes of lanthanide metals, especially gadolinium, are of interest as MRI contrast agents in the field of in vivo medical imaging. MRI contrast agents based on metal complexes of gadolinium have been reviewed extensively (see e.g. Zhang et al. 2005 Curr Med Chem; 12: 751-778 and Aime et al. 2005 Adv Inorg Chem; 57: 173-237).
  • Gadoteric acid meglumine is a product marketed by Guerbet as Dotarem®. The product is commercially supplied in glass vials and glass pre-filled syringes (https://www.accessdata.fda.gov/drugatfda_docs/label/2017/204781s0011b1.pdf). The prescribing information instructs that when Dotarem® is to be injected using plastic disposable syringes, the contrast medium should be
      • drawn into the syringe and used immediately.
  • Micard et al. (2001 Int J Pharmaceutics; 212: 93-99) discusses repackaging of Dotarem® into single-use polypropylene syringes and notes that the solution is stable and sterile according to European Pharmacopoeia up to 90 days in the dark at either 4° C. or at room temperature. However, established guidelines advise that a pharmaceutical product drawn into a single-use syringe should be used within 24 hours (http://www.ema.euphora.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003476.pdf).
  • SUMMARY OF THE INVENTION
  • In a first aspect the present invention provides a method for providing a solution comprising gadolinium-DOTA wherein said method comprises:
      • (i) manufacturing a commercial batch of said solution; and,
      • (ii) dispensing said solution into plastic containers.
  • In a second aspect the present invention provides a magnetic resonance imaging (MRI) method comprising:
      • (a) providing a plastic container containing a solution comprising gadolinium-DOTA;
      • (b) administering an imaging effective amount of said solution to a subject; and,
      • (c) performing MRI on said subject.
  • Up until the present invention glass containers have been selected for product presentations of gadolinium-DOTA, perhaps due to their relatively low susceptibility to ingress of oxygen and moisture and to chemical leaching as compared with plastic containers. However, it has been demonstrated herein that plastic containers permit long-term storage of gadolinium-DOTA without any detrimental effect on product quality due to oxygen or moisture ingress or chemical leaching. Furthermore, the present invention overcomes problems presented by glass containers including their relative ease of breakage, the need to dispose in special containers, their relatively heavy weight and high eco-impact.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a non-limiting example of a syringe suitable for use in the present invention.
  • FIG. 2 shows non-limiting examples of bottles suitable for use in the present invention.
  • FIGS. 3A and 3B shows non-limiting examples of bags suitable for use in the present invention (from Sartorius Stedim).
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • To more clearly and concisely describe and point out the subject matter of the claimed invention, definitions are provided hereinbelow for specific terms used throughout the present specification and claims. Any exemplification of specific terms herein should be considered as a non-limiting example.
  • The terms “comprising” or “comprises” have their conventional meaning throughout this application and imply that the agent or composition must have the essential features or components listed, but that others may be present in addition. The term ‘comprising’ includes as a preferred subset “consisting essentially of” which means that the composition has the components listed without other features or components being present.
  • The term “a solution comprising gadolinium-DOTA” can encompass a solution of gadolinium-DOTA (also can be referred to as “gadoteric acid”) prior to formulation as a contrast agent or to the actual formulated contrast agent ready for use. The term “contrast agent” has its conventional meaning in the field of in vivo medical imaging, and refers to an agent in a form suitable for mammalian administration, which assists in providing clearer images in the region or organ of interest than could be obtained by imaging a subject to whom no contrast agent has been administered. A contrast agent comprising gadolinium-DOTA is an “MRI contrast agent”, suitable for mammalian administration, which shortens the T1 and/or T2 relaxation time of the relevant nuclei (e.g. 1H for 1H NMR) in the region of interest for imaging within a subject.
  • In one embodiment of the method of the invention said gadolinium-DOTA is the meglumine salt of gadolinium-DOTA, also commonly referred to as Gd-DOTA meglumine or gadoterate meglumine.
  • In one embodiment the solution comprising gadolinium-DOTA further comprises a mol/mol amount of free DOTA between 0.002% and 0.4%, in another embodiment between 0.02 and 0.3% of free DOTA, in another embodiment between 0.025 and 0.25 mol/mol % of free DOTA.
  • The macrocyclic chelator DOTA and its metal complexes in biomedical imaging have been described by Stasiuk and Long (2013 Chem Comm; 49: 2732-2746) and has the following structure:
  • Figure US20230414792A1-20231228-C00001
  • DOTA is commercially available from a range of suppliers and can also be synthesised by the method of Desreux (1980 Inorg Chem; 19: 1319-1324). Further details on macrocyclic chelator syntheses are given by Kotel et al. (Chapter 3 pages 83-155 in “The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; Wiley 2nd Edition 2013: A. Merbach, L. Helm & E. Toth, Eds).
  • Meglumine (N-methylglucamine) is commercially available from a range of suppliers. Pharmaceutical grade material is generally used.
  • The complexation of lanthanides such as gadolinium by macrocyclic chelators is a multistep process that results in a thermodynamically stable metal complex. Non-limiting examples of gadolinium-DOTA solutions as well as methods to prepare gadolinium-DOTA and its meglumine salt are described in WO 2009/103744, WO 2016/083597, WO 2016/083600 and WO 2016/083605, the contents of which are hereby incorporated by reference. US 2012/0082624 A1 discloses a similar process to WO 2009/103744, except that the pharmaceutical formulation is obtained in powder form.
  • By the phrase “in a form suitable for mammalian administration” is meant a composition which is sterile, pyrogen-free, lacks compounds which produce toxic or adverse effects, and is formulated at a biocompatible pH (approximately pH 4.0 to 10.5) in a biocompatible carrier. Such compositions lack particulates which could risk causing emboli in vivo, and are formulated so that precipitation does not occur on contact with biological fluids (e.g. blood). Such compositions also contain only biologically compatible excipients, and are preferably isotonic.
  • By the term “biocompatible carrier” is meant a fluid, especially a liquid, such that the composition is physiologically tolerable, i.e. can be administered to the mammalian body without toxicity or undue discomfort. The biocompatible carrier is suitably an injectable carrier liquid such as sterile, pyrogen-free water for injection; an aqueous solution such as saline (which may advantageously be balanced so that the final product for injection is isotonic); an aqueous buffer solution comprising a biocompatible buffering agent (e.g. phosphate buffer); an aqueous solution of one or more tonicity-adjusting substances (e.g. salts of plasma cations with biocompatible counterions), sugars (e.g. glucose or sucrose), sugar alcohols (e.g. sorbitol or mannitol), glycols (e.g. glycerol), or other non-ionic polyol materials (e.g. polyethyleneglycols, propylene glycols and the like). Preferably the biocompatible carrier is pyrogen-free water for injection (WFI), isotonic saline or phosphate buffer.
  • Production of the solution comprising gadolinium-DOTA is suitably carried out under aseptic manufacture conditions. The phrase “aseptic manufacture” refers to carrying out the relevant process steps under aseptic manufacture, i.e. apyrogenic conditions, e.g. in a clean-room environment, including terminal sterilisation. The term “sterilisation” takes its conventional meaning, and refers to a process of destruction of micro-organisms, to obtain a sterile, pyrogen-free composition. The phrase “terminal sterilisation” has its conventional meaning, and refers to carrying out the preceding steps to GMP (Good Manufacturing Practice), but carrying out the sterilisation step as late as possible in the overall process. The components and reagents can be sterilised by methods known in the art, including: sterile filtration, terminal sterilisation using e.g. gamma-irradiation, autoclaving, dry heat or chemical treatment (e.g. with ethylene oxide) or combinations thereof. The term “autoclaving” has its' conventional meaning, and refers to one particular method of sterilisation which uses superheated steam to sterilise. Autoclaving and other sterilisation methods are described in Achieving Sterility in Medical and Pharmaceutical Products, N. Halls (CRC Press, 1994).
  • The term “commercial batch” refers to a relatively large quantity of the solution comprising gadolinium-DOTA to fulfil demand for commercial product offerings comprising said solution. In one embodiment a commercial batch may be regarded as a batch having a volume of around 400 L or greater, up to around 1500 L. For example, in certain embodiments said commercial batch has a volume around 600 L or greater, around 700 L or greater, around 800 L or greater, around 900 L or greater, around 1000 L or greater, or between 1000-1500 L, for example 1400 L.
  • The term “plastic containers” in the context of the present invention is intended to refer to containers made of pharmaceutical grade plastic suitable for the safe and efficient storage, transport and handling of the gadolinium-DOTA solution. Such containers can be readily obtained commercially. In certain embodiments of the invention said plastic containers are made from pharmaceutical-grade polypropylene. In other embodiments of the invention said plastic containers are made from pharmaceutical-grade cyclic olefin. Examples of particular plastic containers suitable for the present invention include plastic syringes, plastic containers and plastic bags. Where the plastic container is a syringe or a bottle it is suitable for containing one or more imaging effective doses of the solution where the solution is the final formulated solution of gadolinium DOTA suitable for use as an MRI agent.
  • Non-limiting examples of suitable syringes include those having a 10 mL, 15 mL or 20 mL volume. A non-limiting example of a syringe suitable for the present invention is illustrated in FIG. 1 . The following characteristics are present in certain embodiments of plastic syringes suitable for the present invention:
      • Durable, medical-grade pharmaceutical polymer construction
      • Dispose in regular waste disposal
      • Are fully re-cyclable
      • Cost saving
      • Lighter weight
  • In one embodiment said syringe is made from pharmaceutical-grade cyclic olefin. Cyclic olefin has good transparency, which facilitates visually verifying the contents. Non-limiting example of suitable bottles are those having volumes between 50-500 mL, e.g. 50 mL, 100 mL, 150 mL, 500 mL or 1000 mL. In one embodiment said bottle can be of the type described in WO 00/03920. In certain embodiments said bottle may be of a type as described in any of U.S. Pat. No. 6,659,296, WO2013041593, U.S. Pat. No. 9,815,601, EP 2790636 B1, U.S. Pat. No. 9,682,015, WO2014106002 and WO2016014406. In one embodiment said bottle can be the Pluspak™ available from GE Healthcare of the type illustrated in FIG. 2 . Pluspak™ is a polypropylene based bottle having the following characteristics:
      • Durable, medical-grade pharmaceutical polymer construction
      • Easy twist-off cap without metal Latex-free stopper
      • Latex-free stopper
      • Dispose in regular waste disposal
      • Fully re-cyclable
      • Cost saving
      • Compact size, 75% lighter weight (100 ml)
      • Average of 41% lower eco-impact than glass during whole lifecycle (vs. GEHC glass bottles)
  • Where the plastic container is a bag it is in one embodiment a flexible plastic bag suitable for the transport and storage of the gadolinium-DOTA solution. Suitable plastic bags are commercially available and non-limiting examples of these are illustrated in FIG. 3 . In one embodiment the plastic bag of the invention has a 50-1000 L volume.
  • Particular properties of a suitable bag include:
      • Pharmacopoeia compliance.
      • Enables transport and storage of the gadolinium-DOTA solution.
      • Is more Eco-friendly vs. steel drums.
      • The bags are flexible with respect to filling volumes.
  • In certain embodiments of the invention said method further comprises the step (iii) of storing said solution dispensed into said plastic containers. The term “storing” takes its conventional meaning of placing or leaving in a suitably secure location for preservation with the intention to use at a later date. In one embodiment of the method of the invention said storing is for more than 90 days, for example for up to 36 months. In one embodiment of the method of the invention said storing is at temperatures up to The present inventors have demonstrated that storing is possible over a wide range of temperatures and for a long shelf life without any impact on the quality of the gadolinium-DOTA solution.
  • Both oxygen content and free Gd were tested by for up to 24 months for the drug product stored at both 25° C./40% RH (RH=relative humidity) and 30° C./75% RH and up to 6 months at 40° C./75% RH and 40° C./20% RH. Furthermore, the product was tested for oxygen and free Gd after both confirmatory photostability testing according to ICH Q1B (which may be viewed at this link: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelies/Quality/Q1B/Step4/Q1B_Guidelinc.pdf) and temperature cycling from −20° C. to 60° C. All results show that free Gd has not been detected indicating stability of the product under the various storage conditions. ICH Q1E guideline (which may be viewed at this link: http://www.ich.org/fileadmin/Public_Web_site/1CH_Prodcuts/Guidelines/Quality/Q1E/Step4/Q1E_Guideline.pdf) allows extrapolation up to a 30 months shelf life at the long term storage condition of 25° C./40% RH. Therefore, the results obtained by the present inventors demonstrate that gadoterate meglumine solution can be effectively stored in semi-permeable containers such as polymer PFS and PP bottles during long term storage at 25° C./40% RH up to 30 months. This is despite some of the harsh conditions to which the product was exposed and the fact that these containers permit ingress of oxygen resulting in raised oxygen levels in the containers.
  • In certain embodiments of the method of the invention said dispensing includes carrying out an overfill to counteract any water loss from plastic containers over time in order to maintain product quality. In one embodiment said overfill is 1-5% of the final desired volume.
  • In certain embodiments of the method of the invention nitrogen is not used as an excipient in the plastic container headspace. The present inventors have demonstrated that oxygen in the headspace of the plastic containers does not have a material impact on the quality of the product.
  • The term “magnetic resonance imaging” herein takes its ordinary meaning in the art, that is a form of medical imaging that measures the response of the atomic nuclei of body tissues to high-frequency radio waves when placed in a strong magnetic field, and that produces images of the internal organs.
  • The term “an imaging effective amount” refers to an amount of the gadolinium-DOTA active agent sufficient to produce useful images using MRI following administration to a subject. For adult and paediatric patients (2 years and older), the recommended dose of the gadolinium-DOTA product Dotarem® is 0.2 mL/kg (0.1 mmol/kg) body weight administered as an intravenous bolus injection, manually or by power injector, at a flow rate of approximately 2 mL/second for adults and 1-2 mL/second for pediatric patients. Additional information can be found at http://www.guerbet-us.com/products/dotarem.html.
  • By the term “subject” is meant a mammal in vivo, preferably the intact mammalian body in vivo, and more preferably a living human subject.
  • As with other in vivo imaging agents, the contrast agent is designed to have minimal pharmacological effect on the mammalian subject to be imaged. Preferably, the contrast agent can be administered to the mammalian body in a minimally invasive manner, i.e. without a substantial health risk to the subject when carried out under professional medical expertise. Such minimally invasive administration is preferably intravenous administration into a peripheral vein of said subject, without the need for local or general anaesthetic.
  • This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims. All patents and patent applications mentioned in the text are hereby incorporated by reference in their entireties, as if they were individually incorporated.
  • Brief Description of the Examples
  • Example 1 describes preparation and storage of a gadoteric acid solution and measurements of stability over time and under different storage conditions.
  • LIST OF ABBREVIATIONS USED IN THE EXAMPLES
      • GC-TCD gas chromatography—thermal conductivity detector
      • ICH International Conference on Harmonisation
      • ND not detected
      • PFS polymer pre-filled syringes
      • PP polypropylene
      • RH relative humidity
    Example 1: Stability of Solution Comprising Gadolinium-DOTA in Plastic Containers Under Various Storage Conditions
  • A gadoteric acid solution suitable for injection (referred to as Drug Product below) was prepared in three commercial scale 400 L batches. Each batch was filled into glass, PFS and PP bottles and autoclaved prior to storage.
  • In order to cover climatic zone I, II and IV Drug Product samples were stored long term up 24 months at both 25° C./40% RH and 30° C./75% RH and at the accelerated storage conditions of both 40° C./75% RH and 40° C./20% RH up to 6 months. Furthermore, confirmatory photostability testing according to ICH Q1B has been performed and temperature cycling from −20° C. to 60° C. has been performed.
  • PFS data is detailed below to demonstrate both Free Gd and level of oxygen content. Satisfactory results below detection limit for Free Gd (limit of detection=NMT 3 □ L/mL) were also obtained for PP bottles up to 24 months at 25° C./40% RH and and for bags up to 6 months at 25° C./40% RH, 30° C./75% RH and All results for the Drug Product met specification for all containers mentioned above.
  • Measured oxygen content increased up to 20% during storage long term storage at 25° C./40% RH and 30° C./75% RH, the same trend is seen for samples stored at the accelerated storage condition of 40° C./75% RH and 40° C./20% RH up to 6 months. The increase in oxygen content was not shown to impact the stability of the drug product throughout shelf life. No free Gd was detected during stability testing. See Table 1 below for a summary of the various batches of product filled in PFS stored and tested and an index to the results for each batch.
  • TABLE 1
    Index to stability result tables for 20 mL syringes with fill volumes
    10, 15 and 20 mL
    Fill
    1volume Batch Storage condition Results
    (mL) number ° C. % RH Position Light presented in
    10 1 25 40 On-side Dark Table 2
    1 30 75 On-side Dark Table 3
    1 40 20 On-side Dark Table 4
    1 40 75 On-side Dark Table 5
    1 25 Ambient On-side Light Table 6
    15 2 25 40 On-side Dark Table 7
    2 30 75 On-side Dark Table 8
    2 40 20 On-side Dark Table 9
    2 40 75 On-side Dark Table 10
    10 1 −20 to Ambient On-side Dark Table 11
    60
    20 3 25 40 On-side Dark Table 12
    3 30 75 On-side Dark Table 13
    3 40 20 On-side Dark Table 14
    3 40 75 On-side Dark Table 15
  • TABLE 2
    Stability results on batch 1 stored at 25° C./40% RH/On-side/Dark
    (20 mL syringe, 10 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 3 6 9 12 18 24
    Oxygen in Report 16.6, 19.1, 20.0, 19.9, 20.1, 20.1
    headspace value, % 17.5, 18.8, 20.2, 20.0, 20.1, 20.3
    by GC-TCD 16.5  19.1  19.9  20.1  20.2  19.9
    Free Gd by Not detected ND ND ND ND ND ND
    colour limit
    test
    — Testing not required as 30° C./75% RH results cover this sampling point
  • TABLE 3
    Stability results on batch 1 stored at 30° C./75% RH/On-side/Dark (20
    mL syringe, 10 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 3 6 9 12 18 24
    Oxygen in Report 16.6, 18.3, 19.6, 19.7, 19.9, 19.6, 20.1,
    headspace value, % 17.5, 18.0, 19.8, 19.6, 20.3, 19.7, 20.2,
    by GC- 16.5  18.4  19.8  19.7  20.0  19.8  20.1 
    TCD
    Free Gd Not ND ND ND ND ND ND ND
    by colour detected
    limit test
  • TABLE 4
    Stability results on batch 1 stored at 40° C./20% RH/On-side/Dark
    (20 mL syringe, 10 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 1 3 6
    Oxygen in Report value, 16.6, 16.7, 18.7, 19.0,
    headspace by GC- % 17.5, 16.3, 17.8, 19.5,
    TCD 16.5 17.5 18.2 19.4
    Free Gd by Not detected ND ND ND ND
    colour limit test
  • TABLE 5
    Stability results on batch 1 stored at 40° C./75% RH/On-side/Dark
    (20 mL syringe, 10 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 6
    Oxygen in headspace by Report value, % 16.6, 17.5, 19.0, 19.0,
    GC-TCD 16.5 18.7
    Free Gd by Not detected ND ND
    colour limit test
  • TABLE 6
    Stability results on batch 1 stored at 25° C./Ambient/On-side
    (20 mLsyringe, 10 mL fill volume) Photo stability study
    Sampling point (days)
    Acceptance Dark
    Test criteria 01) 32) 73) 234) control
    Oxygen in Report value, 18.3, 18.6, 19.0, 16.0, 19.9,
    headspace by % 18.0, 19.4, 18.9, 15.6, 19.2,
    GC-TCD 18.4 18.7 19.0 15.8 19.8
    Free Gd by Not detected ND ND ND ND ND
    colour limit test
    —means that the test has not been performed at the specified sampling point,
    ND: Not detected,
    LT: Less than,
    NLT: Not less than,
    NMT: Not more than
    1)Zero point photo stability: SN1506.013, data from 3 months sampling point
    2)Lux: 0.358 mill lux h, UVA 30.5 Wh/m2
    3)Lux: 0.832 mill lux h, UVA 71 Wh/m2
    4)Lux: 1.64 mill lux h, UVA 206.1 Wh/m2
    5) Reported according to method at the time of testing
  • TABLE 7
    Stability results on batch 2 stored at 25° C./40% RH/On-side/Dark (20
    mL syringe, 15 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 3 6 9 12 18 24
    Oxygen in Report 15.9, 19.8, 20.1, 20.2, 20.1, 20.6,
    headspace value, % 15.6, 19.0, 20.1, 20.3, 20.2, 20.2,
    by GC-TCD 16.4  19.1  19.8  20.1  20.2  20.1 
    Free Gd by Not detected ND ND ND ND ND ND
    colour limit
    test
    — Testing not required as 30° C./75% RH results cover this sampling point
  • TABLE 8
    Stability results on batch 2 stored at 30° C./75% RH/On-side/Dark (20
    mL syringe, 15 mL fill volume)
    Acceptance
    criteria Sampling point (months)
    Test 0 3 6 9 12 18 24
    Oxygen in Report 15.9, 18.3, 19.6, 19.7, 19.8, 20.2. 19.8
    headspace by value, % 15.6, 18.1, 19.8, 19.6, 19.9, 20.2, 20.3
    GC-TCD 16.4  18.7  19.5  19.8  20.0  19.9  19.7 
    Free Gd by Not ND ND ND ND ND ND ND
    colour limit detected
    test
  • TABLE 9
    Stability results on batch 2 stored at 40° C./20% RH/On-side/Dark
    (20 mL syringe, 15 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 1 3 6
    Oxygen in Report value, 15.9, 16.8, 18.8, 19.5,
    headspace by GC- % 15.6, 17.1, 18.2, 19.4,
    TCD 16.4 17.7 18.2 19.6
    Free Gd by Not detected ND ND ND ND
    colour limit test
  • TABLE 10
    Stability results on batch 2 stored at 40° C./75% RH/On-side/Dark
    (20 mL syringe, 15 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 3 6
    Oxygen in Report value, % 15.9, 15.6, 17.9, 17.8, 19.2, 19.4,
    headspace by 16.4 17.9 19.2
    GC-TCD
    Free Gd by Not detected ND ND ND
    colour limit test
  • TABLE 11
    Stability results on batch 1 stored at −20° C. to 60° C./Ambient/On-
    side/Dark (20 mL syringe, 10 mL fill volume). Temperature cycling study
    Acceptance Sampling point (days)
    Test criteria 01) 12
    Oxygen in headspace by GC- Report value, % 18.3, 18.0, 17.1, 17.0,
    TCD 18.4 17.3
    Free Gd by Not detected ND ND
    colour limit test
  • TABLE 12
    Stability results on batch 12907764 stored at 25° C./40% RH/On-side/
    Dark (20 mL syringe, 20 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 3 6 9 12 18 24
    Oxygen in Report value, 12.7, 19.3, 19.5, 19.9, 20.1, 20.3,
    headspace by % 12.8, 19.3, 19.6, 20.0, 20.3, 20.1,
    GC-TCD 13.5  19.1  19.5  20.0  20.2  20.4 
    Free Gd by Not detected ND ND ND ND ND ND
    colour limit
    test
    — Testing not required as 30° C./75% RH results cover this sampling point
  • TABLE 13
    Stability results on batch 3 stored at 30° C./75% RH/On-side/Dark (20
    mL syringe, 20 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 3 6 9 12 18 24
    Oxygen in Report 12.7, 18.7, 19.5, 19.8, 19.8, 20.0, 21.0,
    headspace value, % 12.8, 18.5, 19.6, 19.7, 20.1, 19.9, 21.0,
    by GC- 13.5  18.2  19.4  19.8  19.7  19.8  21.2 
    TCD
    Free Gd Not ND ND ND ND ND ND ND
    by colour detected
    limit test
  • TABLE 14
    Stability results on batch 3 stored at 40° C./20% RH/On-side/Dark
    (20 mL syringe, 20 mL fill volume)
    Acceptance Sampling point (months)
    Test criteria 0 1 3 6
    Oxygen in Report value, 12.7, 16.6, 18.2, 19.5,
    headspace by GC- % 12.8, 17.1, 18.1, 19.8,
    TCD 13.5 17.0 18.5 19.3
    Free Gd by Not detected ND ND ND ND
    colour limit test
  • TABLE 15
    Stability results on batch 3 stored at 40° C./75% RH/On-side/Dark
    (20 mL syringe, 20 mL volume)
    Acceptance Sampling point (months)
    Test criteria 0 6
    Oxygen in headspace Report value, % 12.7, 12.8, 19.4, 19.6,
    by GC-TCD 13.5 19.5
    Free Gd by Not detected ND ND
    colour limit test

Claims (26)

1. A method for providing a solution comprising gadolinium-DOTA wherein said method comprises:
(i) manufacturing a commercial batch of said solution; and,
(ii) dispensing said solution into plastic containers.
2. The method as defined in claim 1 wherein said gadolinium-DOTA is the meglumine salt of gadolinium-DOTA.
3. The method as defined in claim 1 wherein said solution comprising gadolinium-DOTA further comprises a mol/mol amount of free DOTA between 0.002% and 0.4%.
4. The method as defined in claim 1 wherein said plastic containers are made from pharmaceutical-grade cyclic olefin
5. The method as defined in claim 1 wherein said plastic containers are made from pharmaceutical-grade polypropylene.
6. The method as defined in claim 1 wherein said plastic container is a syringe.
7. (canceled)
8. (canceled)
9. (canceled)
10. The method as defined in claim 1 wherein said plastic container is a bottle.
11. (canceled)
12. (canceled)
13. The method as defined in claim 1 wherein said plastic container is a bag.
14. (canceled)
15. The method as defined in claim 1 wherein said commercial batch is a 400-1400 L batch.
16. The method as defined in claim 1 wherein said method further comprises the step (iii) of storing said solution dispensed into said plastic containers.
17. The method as defined in claim 16 wherein said storing is for more than 90 days.
18. The method as defined in claim 17 wherein said storing is for up to 30 months.
19. The method as defined in claim 17 wherein said storing is for up to 36 months.
20. The method as defined in claim 1 wherein said storing is at temperatures up to 30° C.
21. The method as defined in claim 1 wherein said dispensing includes an overfill.
22. The method as defined in claim 21 wherein said overfill is 1-5% of the final desired volume.
23. The method as defined in claim 1 wherein nitrogen is not used as an excipient in the plastic container headspace.
24. A magnetic resonance imaging (MRI) method comprising:
(a) providing a plastic container containing a solution comprising gadolinium-DOTA wherein said container is as defined claim 1;
(b) administering an imaging effective amount of said solution to a subject; and,
(c) performing MRI on said subject.
25. A solution comprising gadolinium-DOTA obtained according to the method as defined in claim 1.
26. A plastic container comprising a solution comprising gadolinium-DOTA as defined in claim 1.
US18/199,311 2017-01-20 2023-05-18 Plastic containers Pending US20230414792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/199,311 US20230414792A1 (en) 2017-01-20 2023-05-18 Plastic containers

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762448698P 2017-01-20 2017-01-20
GB1703227.7 2017-02-28
GBGB1703227.7A GB201703227D0 (en) 2017-01-20 2017-02-28 Plastic containers
US15/877,095 US10842888B2 (en) 2017-01-20 2018-01-22 Plastic containers
US17/079,724 US11730832B2 (en) 2017-01-20 2020-10-26 Plastic containers
US18/199,311 US20230414792A1 (en) 2017-01-20 2023-05-18 Plastic containers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/079,724 Division US11730832B2 (en) 2017-01-20 2020-10-26 Plastic containers

Publications (1)

Publication Number Publication Date
US20230414792A1 true US20230414792A1 (en) 2023-12-28

Family

ID=58544303

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/877,095 Active US10842888B2 (en) 2017-01-20 2018-01-22 Plastic containers
US17/079,724 Active 2038-09-20 US11730832B2 (en) 2017-01-20 2020-10-26 Plastic containers
US18/199,311 Pending US20230414792A1 (en) 2017-01-20 2023-05-18 Plastic containers

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/877,095 Active US10842888B2 (en) 2017-01-20 2018-01-22 Plastic containers
US17/079,724 Active 2038-09-20 US11730832B2 (en) 2017-01-20 2020-10-26 Plastic containers

Country Status (7)

Country Link
US (3) US10842888B2 (en)
EP (1) EP3570805B1 (en)
JP (2) JP2020505976A (en)
KR (1) KR102585681B1 (en)
GB (1) GB201703227D0 (en)
PL (1) PL3570805T3 (en)
WO (1) WO2018134414A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609435A (en) * 1983-06-28 1985-01-18 村井 邦彦 Conveyor apparatus for hydropontic tank
DE4121568C2 (en) * 1991-04-22 1997-07-03 Schering Ag Method and device for producing a contrast medium from a concentrate
US5450847A (en) 1991-04-22 1995-09-19 Schering Aktiengesellschaft Process for making doses formulation of contrast media from concentrate
JPH06299681A (en) 1993-04-14 1994-10-25 Bridgestone Corp Floor structure
US5620425A (en) 1993-11-03 1997-04-15 Bracco International B.V. Method for the preparation of pre-filled plastic syringes
ITMI940055A1 (en) * 1994-01-18 1995-07-18 Bracco Spa CONTAINER FOR DIAGNOSTIC COUNTERTOGRAPHIC SOLUTIONS
JPH08155007A (en) * 1994-12-02 1996-06-18 Mitsui Petrochem Ind Ltd Medicine packing container pharmaceuticals and container used for the same
DE19652708C2 (en) * 1996-12-18 1999-08-12 Schott Glas Process for producing a filled plastic syringe body for medical purposes
CA2672260A1 (en) 2006-12-18 2008-06-26 Daiichi Sankyo Company, Limited Syringe outer tube for chemical solution filled and sealed syringe formulation and process for producing the same
US20140065076A1 (en) 2012-08-30 2014-03-06 Otsuka Pharmaceutical Co. Ltd. Container with concentrated substance and method of using the same
GB201421163D0 (en) 2014-11-28 2015-01-14 Ge Healthcare As Formulations of metal complexes

Also Published As

Publication number Publication date
PL3570805T3 (en) 2024-08-19
JP2020505976A (en) 2020-02-27
EP3570805A1 (en) 2019-11-27
KR102585681B1 (en) 2023-10-06
GB201703227D0 (en) 2017-04-12
US10842888B2 (en) 2020-11-24
US20210069355A1 (en) 2021-03-11
US20180207297A1 (en) 2018-07-26
WO2018134414A1 (en) 2018-07-26
US11730832B2 (en) 2023-08-22
EP3570805B1 (en) 2024-06-19
JP2023024981A (en) 2023-02-21
KR20190108132A (en) 2019-09-23

Similar Documents

Publication Publication Date Title
US11724022B2 (en) Tailored dose of contrast agent
RU2646826C2 (en) Container with concentrated substance and method of using same
US10967076B2 (en) Use of non-labeled sugars and detection by MRI for assessing tissue perfusion and metabolism
TW200526191A (en) Medicament dispensing and injecting system with radiation-protection
US20070196277A1 (en) Compositions and Methods for the Direct Therapy of Tumors
Fettich et al. Guidelines for direct radionuclide cystography in children
KR960010800B1 (en) Magnetic resonance human medical and veterinary imaging method
US20130143970A1 (en) Medicinal preparation particularly for the treatment of slipped discs hernias
US11730832B2 (en) Plastic containers
CN104415326A (en) Liraglutide-containing pharmaceutical preparation composition and preparation method thereof
JP2008509921A (en) Heat shock proteins as targeting agents for endothelium-specific in vivo transmission
CN103191050A (en) Zanamivir injection and preparation method thereof
US20070009431A1 (en) Solution and method for supporting imaging on a patient
Wilkinson Percutaneous direct radionuclide cystography in children: description of technique and early experience
US11938200B2 (en) Non-nutritive sweeteners and polyols as imaging agents
Vermeulen et al. Microbial safety assessment of a double check-valve patient line in a multiuse contrast delivery system
Sriramvenugopal et al. Noninvasive Tracking of Implanted Cells: Superparamagnetic Iron Oxide Nanoparticles as a Long-Term, Multimodal Imaging Label
Overman Fresenius Kabi Expands Contrast Agent Portfolio with Launch of Gadoterate Meglumine Injection, USP
CN105560195B (en) Injection is freeze-dried Ropivacaine HCL composition
Eisner et al. Attenuation correction for stress and rest PET 82Rb myocardial perfusion images
Allen Jr Ondansetron 2 mg/mL Injection, Unpreserved

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: GE HEALTHCARE AS, NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANGSETH-MANRIQUE, KARINA MARTHA;AABYE, ARNE WANG;LAUGEN, HARALD;AND OTHERS;SIGNING DATES FROM 20170221 TO 20170503;REEL/FRAME:064936/0526