US20230397622A1 - Food products comprising milk proteins and non-animal proteins, and methods of producing the same - Google Patents
Food products comprising milk proteins and non-animal proteins, and methods of producing the same Download PDFInfo
- Publication number
- US20230397622A1 US20230397622A1 US18/456,236 US202318456236A US2023397622A1 US 20230397622 A1 US20230397622 A1 US 20230397622A1 US 202318456236 A US202318456236 A US 202318456236A US 2023397622 A1 US2023397622 A1 US 2023397622A1
- Authority
- US
- United States
- Prior art keywords
- protein
- proteins
- recombinant
- food products
- milk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 250
- 235000021120 animal protein Nutrition 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title claims abstract description 65
- 102000014171 Milk Proteins Human genes 0.000 title abstract description 119
- 108010011756 Milk Proteins Proteins 0.000 title abstract description 119
- 235000021239 milk protein Nutrition 0.000 title abstract description 119
- 238000004519 manufacturing process Methods 0.000 claims abstract description 34
- 108090000623 proteins and genes Proteins 0.000 claims description 146
- 102000004169 proteins and genes Human genes 0.000 claims description 144
- 235000018102 proteins Nutrition 0.000 claims description 142
- 239000000203 mixture Substances 0.000 claims description 82
- 235000013365 dairy product Nutrition 0.000 claims description 58
- 239000012634 fragment Substances 0.000 claims description 40
- 235000013336 milk Nutrition 0.000 claims description 32
- 239000008267 milk Substances 0.000 claims description 32
- 210000004080 milk Anatomy 0.000 claims description 32
- 235000013618 yogurt Nutrition 0.000 claims description 29
- 108010084695 Pea Proteins Proteins 0.000 claims description 22
- 235000013351 cheese Nutrition 0.000 claims description 22
- 235000019702 pea protein Nutrition 0.000 claims description 22
- 230000002538 fungal effect Effects 0.000 claims description 12
- 235000008939 whole milk Nutrition 0.000 claims description 12
- 235000021241 α-lactalbumin Nutrition 0.000 claims description 12
- 102000004407 Lactalbumin Human genes 0.000 claims description 11
- 108090000942 Lactalbumin Proteins 0.000 claims description 11
- 239000012141 concentrate Substances 0.000 claims description 11
- 239000006071 cream Substances 0.000 claims description 9
- 235000016709 nutrition Nutrition 0.000 claims description 8
- 108010064851 Plant Proteins Proteins 0.000 claims description 7
- 235000014121 butter Nutrition 0.000 claims description 7
- 235000021118 plant-derived protein Nutrition 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 230000001580 bacterial effect Effects 0.000 claims description 6
- 235000015872 dietary supplement Nutrition 0.000 claims description 5
- 235000013350 formula milk Nutrition 0.000 claims description 5
- 235000020183 skimmed milk Nutrition 0.000 claims description 5
- 108010073771 Soybean Proteins Proteins 0.000 claims description 4
- 235000013361 beverage Nutrition 0.000 claims description 4
- 244000061456 Solanum tuberosum Species 0.000 claims description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 3
- 235000015155 buttermilk Nutrition 0.000 claims description 3
- 230000003301 hydrolyzing effect Effects 0.000 claims description 3
- 241000283707 Capra Species 0.000 claims description 2
- 241000283073 Equus caballus Species 0.000 claims description 2
- 241000223259 Trichoderma Species 0.000 claims description 2
- 235000009508 confectionery Nutrition 0.000 claims description 2
- 235000011962 puddings Nutrition 0.000 claims description 2
- 235000019710 soybean protein Nutrition 0.000 claims 2
- 241000228212 Aspergillus Species 0.000 claims 1
- 101000946384 Homo sapiens Alpha-lactalbumin Proteins 0.000 claims 1
- 101000946371 Ovis aries Alpha-lactalbumin Proteins 0.000 claims 1
- 239000000693 micelle Substances 0.000 description 111
- 108010076119 Caseins Proteins 0.000 description 72
- 102000011632 Caseins Human genes 0.000 description 72
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 64
- 210000004027 cell Anatomy 0.000 description 62
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 48
- 235000021240 caseins Nutrition 0.000 description 48
- 241001465754 Metazoa Species 0.000 description 47
- 150000002632 lipids Chemical class 0.000 description 44
- 150000007523 nucleic acids Chemical group 0.000 description 42
- 229940021722 caseins Drugs 0.000 description 41
- 102000008192 Lactoglobulins Human genes 0.000 description 40
- 108010060630 Lactoglobulins Proteins 0.000 description 40
- 108020004707 nucleic acids Proteins 0.000 description 40
- 102000039446 nucleic acids Human genes 0.000 description 40
- 239000003921 oil Substances 0.000 description 40
- 235000019198 oils Nutrition 0.000 description 40
- 101710159648 Uncharacterized protein Proteins 0.000 description 38
- 108010046377 Whey Proteins Proteins 0.000 description 36
- 235000021119 whey protein Nutrition 0.000 description 34
- 150000001720 carbohydrates Chemical class 0.000 description 32
- 239000004310 lactic acid Substances 0.000 description 32
- 235000014655 lactic acid Nutrition 0.000 description 32
- 241000196324 Embryophyta Species 0.000 description 31
- 235000014633 carbohydrates Nutrition 0.000 description 30
- 238000006206 glycosylation reaction Methods 0.000 description 30
- 241000894006 Bacteria Species 0.000 description 28
- 230000013595 glycosylation Effects 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- -1 phosphotriesters Chemical class 0.000 description 25
- 235000019640 taste Nutrition 0.000 description 24
- 229910052500 inorganic mineral Inorganic materials 0.000 description 22
- 239000011707 mineral Substances 0.000 description 22
- 238000009928 pasteurization Methods 0.000 description 22
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 21
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 21
- 230000026731 phosphorylation Effects 0.000 description 21
- 238000006366 phosphorylation reaction Methods 0.000 description 21
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 18
- 108010058643 Fungal Proteins Proteins 0.000 description 18
- 240000004713 Pisum sativum Species 0.000 description 18
- 239000011575 calcium Substances 0.000 description 18
- 229910052791 calcium Inorganic materials 0.000 description 18
- 239000002243 precursor Substances 0.000 description 18
- 102000035195 Peptidases Human genes 0.000 description 17
- 108091005804 Peptidases Proteins 0.000 description 17
- 235000010582 Pisum sativum Nutrition 0.000 description 16
- 102000007544 Whey Proteins Human genes 0.000 description 16
- 235000001014 amino acid Nutrition 0.000 description 16
- 150000001413 amino acids Chemical class 0.000 description 16
- 239000004365 Protease Substances 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 241000282414 Homo sapiens Species 0.000 description 14
- 230000006399 behavior Effects 0.000 description 14
- 235000019621 digestibility Nutrition 0.000 description 14
- 235000021049 nutrient content Nutrition 0.000 description 14
- 239000003086 colorant Substances 0.000 description 13
- 229920001542 oligosaccharide Polymers 0.000 description 13
- 150000002482 oligosaccharides Chemical group 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 150000003626 triacylglycerols Chemical class 0.000 description 13
- 235000021246 κ-casein Nutrition 0.000 description 13
- 108010029485 Protein Isoforms Proteins 0.000 description 12
- 102000001708 Protein Isoforms Human genes 0.000 description 12
- 108010076504 Protein Sorting Signals Proteins 0.000 description 12
- 238000000855 fermentation Methods 0.000 description 12
- 125000003729 nucleotide group Chemical group 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- 229940088594 vitamin Drugs 0.000 description 12
- 229930003231 vitamin Natural products 0.000 description 12
- 235000013343 vitamin Nutrition 0.000 description 12
- 239000011782 vitamin Substances 0.000 description 12
- 239000005018 casein Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 230000004151 fermentation Effects 0.000 description 11
- 230000000670 limiting effect Effects 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000003381 stabilizer Substances 0.000 description 11
- 241000233866 Fungi Species 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 10
- 235000008504 concentrate Nutrition 0.000 description 10
- 150000002016 disaccharides Chemical class 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 239000001963 growth medium Substances 0.000 description 10
- 150000002772 monosaccharides Chemical class 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- 235000021247 β-casein Nutrition 0.000 description 10
- 241000283690 Bos taurus Species 0.000 description 9
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 9
- 229930195729 fatty acid Natural products 0.000 description 9
- 239000008101 lactose Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 244000057717 Streptococcus lactis Species 0.000 description 8
- 235000014897 Streptococcus lactis Nutrition 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 8
- 239000000796 flavoring agent Substances 0.000 description 8
- 235000019634 flavors Nutrition 0.000 description 8
- 150000004676 glycans Chemical group 0.000 description 8
- 239000000416 hydrocolloid Substances 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- 108700023372 Glycosyltransferases Proteins 0.000 description 7
- 241000235058 Komagataella pastoris Species 0.000 description 7
- 229930003316 Vitamin D Natural products 0.000 description 7
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000003925 fat Substances 0.000 description 7
- 235000019197 fats Nutrition 0.000 description 7
- 235000021323 fish oil Nutrition 0.000 description 7
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 7
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 7
- 238000000265 homogenisation Methods 0.000 description 7
- 235000003642 hunger Nutrition 0.000 description 7
- 235000014571 nuts Nutrition 0.000 description 7
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 7
- 230000036186 satiety Effects 0.000 description 7
- 235000019627 satiety Nutrition 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 235000019166 vitamin D Nutrition 0.000 description 7
- 239000011710 vitamin D Substances 0.000 description 7
- 150000003710 vitamin D derivatives Chemical class 0.000 description 7
- 229940046008 vitamin d Drugs 0.000 description 7
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 6
- 241000195493 Cryptophyta Species 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 241001138401 Kluyveromyces lactis Species 0.000 description 6
- 241000235403 Rhizomucor miehei Species 0.000 description 6
- 241000235070 Saccharomyces Species 0.000 description 6
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 6
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 6
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 6
- 230000001804 emulsifying effect Effects 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 235000021588 free fatty acids Nutrition 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 239000011785 micronutrient Substances 0.000 description 6
- 235000013369 micronutrients Nutrition 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 108010058314 rennet Proteins 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 241000186660 Lactobacillus Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000002009 allergenic effect Effects 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 235000021466 carotenoid Nutrition 0.000 description 5
- 150000001747 carotenoids Chemical class 0.000 description 5
- 238000010411 cooking Methods 0.000 description 5
- 238000007710 freezing Methods 0.000 description 5
- 230000008014 freezing Effects 0.000 description 5
- 229940039696 lactobacillus Drugs 0.000 description 5
- 239000000787 lecithin Substances 0.000 description 5
- 229940067606 lecithin Drugs 0.000 description 5
- 235000010445 lecithin Nutrition 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 229940108461 rennet Drugs 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 108010065511 Amylases Proteins 0.000 description 4
- 102000013142 Amylases Human genes 0.000 description 4
- 240000002791 Brassica napus Species 0.000 description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 108010059892 Cellulase Proteins 0.000 description 4
- 239000001692 EU approved anti-caking agent Substances 0.000 description 4
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 4
- 244000199885 Lactobacillus bulgaricus Species 0.000 description 4
- 235000013960 Lactobacillus bulgaricus Nutrition 0.000 description 4
- 241000192132 Leuconostoc Species 0.000 description 4
- 241000218922 Magnoliophyta Species 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 241000235648 Pichia Species 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 102100028688 Putative glycosylation-dependent cell adhesion molecule 1 Human genes 0.000 description 4
- 244000253911 Saccharomyces fragilis Species 0.000 description 4
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 235000019486 Sunflower oil Nutrition 0.000 description 4
- 108010093894 Xanthine oxidase Proteins 0.000 description 4
- 240000008042 Zea mays Species 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 235000019418 amylase Nutrition 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 238000009937 brining Methods 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 235000015243 ice cream Nutrition 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- 229940004208 lactobacillus bulgaricus Drugs 0.000 description 4
- 235000021242 lactoferrin Nutrition 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 235000021243 milk fat Nutrition 0.000 description 4
- 230000035764 nutrition Effects 0.000 description 4
- 235000021313 oleic acid Nutrition 0.000 description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 235000019419 proteases Nutrition 0.000 description 4
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 108010012704 sulfated glycoprotein p50 Proteins 0.000 description 4
- 239000002600 sunflower oil Substances 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 244000144725 Amygdalus communis Species 0.000 description 3
- 235000011437 Amygdalus communis Nutrition 0.000 description 3
- 239000004382 Amylase Substances 0.000 description 3
- 241001513093 Aspergillus awamori Species 0.000 description 3
- 241000228245 Aspergillus niger Species 0.000 description 3
- 240000006439 Aspergillus oryzae Species 0.000 description 3
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 3
- 241000193755 Bacillus cereus Species 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 3
- 241001598984 Bromius obscurus Species 0.000 description 3
- 240000007154 Coffea arabica Species 0.000 description 3
- 240000009226 Corylus americana Species 0.000 description 3
- 235000001543 Corylus americana Nutrition 0.000 description 3
- 235000007466 Corylus avellana Nutrition 0.000 description 3
- 241000221756 Cryphonectria parasitica Species 0.000 description 3
- 241000235646 Cyberlindnera jadinii Species 0.000 description 3
- 241001465321 Eremothecium Species 0.000 description 3
- 241000233732 Fusarium verticillioides Species 0.000 description 3
- 241001467355 Gigartina Species 0.000 description 3
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 3
- 102100022624 Glucoamylase Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 244000285963 Kluyveromyces fragilis Species 0.000 description 3
- 102100039648 Lactadherin Human genes 0.000 description 3
- 101710191666 Lactadherin Proteins 0.000 description 3
- 240000001046 Lactobacillus acidophilus Species 0.000 description 3
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 3
- 108010063045 Lactoferrin Proteins 0.000 description 3
- 102000010445 Lactoferrin Human genes 0.000 description 3
- 102100038609 Lactoperoxidase Human genes 0.000 description 3
- 108010023244 Lactoperoxidase Proteins 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 240000003183 Manihot esculenta Species 0.000 description 3
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000235048 Meyerozyma guilliermondii Species 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 240000000064 Penicillium roqueforti Species 0.000 description 3
- 235000002233 Penicillium roqueforti Nutrition 0.000 description 3
- 108010046644 Polymeric Immunoglobulin Receptors Proteins 0.000 description 3
- 102100035187 Polymeric immunoglobulin receptor Human genes 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102100036197 Prosaposin Human genes 0.000 description 3
- 101710152403 Prosaposin Proteins 0.000 description 3
- 241000235525 Rhizomucor pusillus Species 0.000 description 3
- 241000235545 Rhizopus niveus Species 0.000 description 3
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 3
- 244000062793 Sorghum vulgare Species 0.000 description 3
- 241000194020 Streptococcus thermophilus Species 0.000 description 3
- 241000499912 Trichoderma reesei Species 0.000 description 3
- 229930003427 Vitamin E Natural products 0.000 description 3
- 241000235015 Yarrowia lipolytica Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 235000020224 almond Nutrition 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 229940106157 cellulase Drugs 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- FDJOLVPMNUYSCM-WZHZPDAFSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+3].N#[C-].N([C@@H]([C@]1(C)[N-]\C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C(\C)/C1=N/C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C\C1=N\C([C@H](C1(C)C)CCC(N)=O)=C/1C)[C@@H]2CC(N)=O)=C\1[C@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H](N2C3=CC(C)=C(C)C=C3N=C2)O[C@@H]1CO FDJOLVPMNUYSCM-WZHZPDAFSA-L 0.000 description 3
- 235000016213 coffee Nutrition 0.000 description 3
- 235000013353 coffee beverage Nutrition 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 235000012343 cottonseed oil Nutrition 0.000 description 3
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 3
- 102000038379 digestive enzymes Human genes 0.000 description 3
- 108091007734 digestive enzymes Proteins 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000012262 fermentative production Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 3
- 238000012239 gene modification Methods 0.000 description 3
- 230000005017 genetic modification Effects 0.000 description 3
- 235000013617 genetically modified food Nutrition 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 235000015141 kefir Nutrition 0.000 description 3
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 3
- 229940039695 lactobacillus acidophilus Drugs 0.000 description 3
- 229940078795 lactoferrin Drugs 0.000 description 3
- 229940057428 lactoperoxidase Drugs 0.000 description 3
- 235000021374 legumes Nutrition 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000010466 nut oil Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 235000016046 other dairy product Nutrition 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- JZRWCGZRTZMZEH-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 235000019155 vitamin A Nutrition 0.000 description 3
- 239000011719 vitamin A Substances 0.000 description 3
- 235000019165 vitamin E Nutrition 0.000 description 3
- 239000011709 vitamin E Substances 0.000 description 3
- 229940046009 vitamin E Drugs 0.000 description 3
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- RMLYXMMBIZLGAQ-UHFFFAOYSA-N (-)-monatin Natural products C1=CC=C2C(CC(O)(CC(N)C(O)=O)C(O)=O)=CNC2=C1 RMLYXMMBIZLGAQ-UHFFFAOYSA-N 0.000 description 2
- RMLYXMMBIZLGAQ-HZMBPMFUSA-N (2s,4s)-4-amino-2-hydroxy-2-(1h-indol-3-ylmethyl)pentanedioic acid Chemical compound C1=CC=C2C(C[C@](O)(C[C@H](N)C(O)=O)C(O)=O)=CNC2=C1 RMLYXMMBIZLGAQ-HZMBPMFUSA-N 0.000 description 2
- YWWVWXASSLXJHU-AATRIKPKSA-N (9E)-tetradecenoic acid Chemical compound CCCC\C=C\CCCCCCCC(O)=O YWWVWXASSLXJHU-AATRIKPKSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 2
- OIZGSVFYNBZVIK-FHHHURIISA-N 3'-sialyllactose Chemical compound O1[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@@]1(C(O)=O)O[C@@H]1[C@@H](O)[C@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@H](CO)[C@@H]1O OIZGSVFYNBZVIK-FHHHURIISA-N 0.000 description 2
- GHBSPIPJMLAMEP-UHFFFAOYSA-N 6-pentyloxan-2-one Chemical compound CCCCCC1CCCC(=O)O1 GHBSPIPJMLAMEP-UHFFFAOYSA-N 0.000 description 2
- 101710190060 60S acidic ribosomal protein P0-2 Proteins 0.000 description 2
- 244000235858 Acetobacter xylinum Species 0.000 description 2
- 235000002837 Acetobacter xylinum Nutrition 0.000 description 2
- 241001133760 Acoelorraphe Species 0.000 description 2
- 235000009434 Actinidia chinensis Nutrition 0.000 description 2
- 235000009436 Actinidia deliciosa Nutrition 0.000 description 2
- 241000187844 Actinoplanes Species 0.000 description 2
- 229930195730 Aflatoxin Natural products 0.000 description 2
- XWIYFDMXXLINPU-UHFFFAOYSA-N Aflatoxin G Chemical compound O=C1OCCC2=C1C(=O)OC1=C2C(OC)=CC2=C1C1C=COC1O2 XWIYFDMXXLINPU-UHFFFAOYSA-N 0.000 description 2
- 244000291564 Allium cepa Species 0.000 description 2
- 235000019489 Almond oil Nutrition 0.000 description 2
- 102100026277 Alpha-galactosidase A Human genes 0.000 description 2
- 240000007087 Apium graveolens Species 0.000 description 2
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 2
- 102100029470 Apolipoprotein E Human genes 0.000 description 2
- 101710095339 Apolipoprotein E Proteins 0.000 description 2
- 235000010591 Appio Nutrition 0.000 description 2
- 101100416196 Arabidopsis thaliana RPP0B gene Proteins 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- 240000001851 Artemisia dracunculus Species 0.000 description 2
- 235000003261 Artemisia vulgaris Nutrition 0.000 description 2
- 235000016425 Arthrospira platensis Nutrition 0.000 description 2
- 240000002900 Arthrospira platensis Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000007319 Avena orientalis Nutrition 0.000 description 2
- 241000209763 Avena sativa Species 0.000 description 2
- 235000007558 Avena sp Nutrition 0.000 description 2
- 241000193749 Bacillus coagulans Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 235000012284 Bertholletia excelsa Nutrition 0.000 description 2
- 244000205479 Bertholletia excelsa Species 0.000 description 2
- 102100030802 Beta-2-glycoprotein 1 Human genes 0.000 description 2
- 101710180007 Beta-2-glycoprotein 1 Proteins 0.000 description 2
- 101000741065 Bos taurus Beta-casein Proteins 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 2
- 235000006008 Brassica napus var napus Nutrition 0.000 description 2
- 240000000385 Brassica napus var. napus Species 0.000 description 2
- 240000007124 Brassica oleracea Species 0.000 description 2
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 2
- 241000273930 Brevoortia tyrannus Species 0.000 description 2
- 235000004936 Bromus mango Nutrition 0.000 description 2
- 241000589562 Brucella Species 0.000 description 2
- 102100027140 Butyrophilin subfamily 1 member A1 Human genes 0.000 description 2
- 101710165464 Butyrophilin subfamily 1 member A1 Proteins 0.000 description 2
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 2
- 240000001432 Calendula officinalis Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 235000002566 Capsicum Nutrition 0.000 description 2
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 2
- 244000020518 Carthamus tinctorius Species 0.000 description 2
- 108010075016 Ceruloplasmin Proteins 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 2
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 2
- 241000195628 Chlorophyta Species 0.000 description 2
- 241001674013 Chrysosporium lucknowense Species 0.000 description 2
- 235000010523 Cicer arietinum Nutrition 0.000 description 2
- 244000045195 Cicer arietinum Species 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 241001672694 Citrus reticulata Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 244000018436 Coriandrum sativum Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 235000009854 Cucurbita moschata Nutrition 0.000 description 2
- 240000001980 Cucurbita pepo Species 0.000 description 2
- 244000008991 Curcuma longa Species 0.000 description 2
- 241000192700 Cyanobacteria Species 0.000 description 2
- UDIPTWFVPPPURJ-UHFFFAOYSA-M Cyclamate Chemical compound [Na+].[O-]S(=O)(=O)NC1CCCCC1 UDIPTWFVPPPURJ-UHFFFAOYSA-M 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 102100039328 Endoplasmin Human genes 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 102000010451 Folate receptor alpha Human genes 0.000 description 2
- 108050001931 Folate receptor alpha Proteins 0.000 description 2
- 235000016623 Fragaria vesca Nutrition 0.000 description 2
- 240000009088 Fragaria x ananassa Species 0.000 description 2
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 241000276438 Gadus morhua Species 0.000 description 2
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 2
- 241000224466 Giardia Species 0.000 description 2
- 244000194101 Ginkgo biloba Species 0.000 description 2
- 235000008100 Ginkgo biloba Nutrition 0.000 description 2
- 241000589232 Gluconobacter oxydans Species 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 2
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- 235000003222 Helianthus annuus Nutrition 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 102100029571 Immunoglobulin J chain Human genes 0.000 description 2
- 101710132152 Immunoglobulin J chain Proteins 0.000 description 2
- 102100029616 Immunoglobulin lambda-like polypeptide 1 Human genes 0.000 description 2
- 101710107067 Immunoglobulin lambda-like polypeptide 1 Proteins 0.000 description 2
- 240000007049 Juglans regia Species 0.000 description 2
- 235000009496 Juglans regia Nutrition 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 241001112724 Lactobacillales Species 0.000 description 2
- 241000194034 Lactococcus lactis subsp. cremoris Species 0.000 description 2
- 241001466453 Laminaria Species 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 241000192130 Leuconostoc mesenteroides Species 0.000 description 2
- 241001468194 Leuconostoc mesenteroides subsp. dextranicum Species 0.000 description 2
- 241000186781 Listeria Species 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 235000014826 Mangifera indica Nutrition 0.000 description 2
- 240000007228 Mangifera indica Species 0.000 description 2
- 108010038049 Mating Factor Proteins 0.000 description 2
- 244000246386 Mentha pulegium Species 0.000 description 2
- 235000016257 Mentha pulegium Nutrition 0.000 description 2
- 241000191938 Micrococcus luteus Species 0.000 description 2
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 2
- 241000186359 Mycobacterium Species 0.000 description 2
- 235000009421 Myristica fragrans Nutrition 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 102100022737 NPC intracellular cholesterol transporter 2 Human genes 0.000 description 2
- 101710187017 NPC intracellular cholesterol transporter 2 Proteins 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 241001263478 Norovirus Species 0.000 description 2
- 102000004884 Nucleobindin Human genes 0.000 description 2
- 108090001016 Nucleobindin Proteins 0.000 description 2
- 230000004989 O-glycosylation Effects 0.000 description 2
- 235000010676 Ocimum basilicum Nutrition 0.000 description 2
- 240000007926 Ocimum gratissimum Species 0.000 description 2
- 241001489174 Ogataea minuta Species 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 108010061952 Orosomucoid Proteins 0.000 description 2
- 102000012404 Orosomucoid Human genes 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- 241000206754 Palmaria palmata Species 0.000 description 2
- 101710175569 Patellin-2 Proteins 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 2
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 2
- 102000017794 Perilipin-2 Human genes 0.000 description 2
- 108010067163 Perilipin-2 Proteins 0.000 description 2
- 244000025272 Persea americana Species 0.000 description 2
- 235000008673 Persea americana Nutrition 0.000 description 2
- 102000007982 Phosphoproteins Human genes 0.000 description 2
- 108010089430 Phosphoproteins Proteins 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 240000008474 Pimenta dioica Species 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 2
- 241000018646 Pinus brutia Species 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 235000003447 Pistacia vera Nutrition 0.000 description 2
- 240000006711 Pistacia vera Species 0.000 description 2
- 241001494715 Porphyridium purpureum Species 0.000 description 2
- 102000029797 Prion Human genes 0.000 description 2
- 108091000054 Prion Proteins 0.000 description 2
- 101710134436 Putative uncharacterized protein Proteins 0.000 description 2
- 108090000783 Renin Proteins 0.000 description 2
- 102100028255 Renin Human genes 0.000 description 2
- 241000206572 Rhodophyta Species 0.000 description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- 241000607142 Salmonella Species 0.000 description 2
- 241001125048 Sardina Species 0.000 description 2
- 235000003434 Sesamum indicum Nutrition 0.000 description 2
- 244000040738 Sesamum orientale Species 0.000 description 2
- 241000607768 Shigella Species 0.000 description 2
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 2
- 235000009337 Spinacia oleracea Nutrition 0.000 description 2
- 244000300264 Spinacia oleracea Species 0.000 description 2
- 235000009184 Spondias indica Nutrition 0.000 description 2
- 238000010793 Steam injection (oil industry) Methods 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 235000014962 Streptococcus cremoris Nutrition 0.000 description 2
- 241000936794 Streptomyces chattanoogensis Species 0.000 description 2
- 241000187392 Streptomyces griseus Species 0.000 description 2
- 241000970906 Streptomyces natalensis Species 0.000 description 2
- 241000218589 Streptomyces olivaceus Species 0.000 description 2
- 241000187134 Streptomyces olivochromogenes Species 0.000 description 2
- 241000187417 Streptomyces rubiginosus Species 0.000 description 2
- 241000223892 Tetrahymena Species 0.000 description 2
- 241000248392 Tetrahymena hegewischi Species 0.000 description 2
- 241000223891 Tetrahymena hyperangularis Species 0.000 description 2
- 241000248419 Tetrahymena malaccensis Species 0.000 description 2
- 241000248424 Tetrahymena pigmentosa Species 0.000 description 2
- 241000248418 Tetrahymena pyriformis Species 0.000 description 2
- 241000248381 Tetrahymena vorax Species 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 244000078534 Vaccinium myrtillus Species 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 235000009499 Vanilla fragrans Nutrition 0.000 description 2
- 244000263375 Vanilla tahitensis Species 0.000 description 2
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 2
- 229930003779 Vitamin B12 Natural products 0.000 description 2
- 102000050760 Vitamin D-binding protein Human genes 0.000 description 2
- 101710179590 Vitamin D-binding protein Proteins 0.000 description 2
- 229930003448 Vitamin K Natural products 0.000 description 2
- 235000019498 Walnut oil Nutrition 0.000 description 2
- 239000005862 Whey Substances 0.000 description 2
- 102100033220 Xanthine oxidase Human genes 0.000 description 2
- 241000589636 Xanthomonas campestris Species 0.000 description 2
- 241000607734 Yersinia <bacteria> Species 0.000 description 2
- 102100021144 Zinc-alpha-2-glycoprotein Human genes 0.000 description 2
- 101710201241 Zinc-alpha-2-glycoprotein Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000005409 aflatoxin Substances 0.000 description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- 239000008168 almond oil Substances 0.000 description 2
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 2
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 2
- 108010075843 alpha-2-HS-Glycoprotein Proteins 0.000 description 2
- 102000012005 alpha-2-HS-Glycoprotein Human genes 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 108010030291 alpha-Galactosidase Proteins 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 235000021342 arachidonic acid Nutrition 0.000 description 2
- 229940114079 arachidonic acid Drugs 0.000 description 2
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 2
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 2
- 229940054340 bacillus coagulans Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 2
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 108091005948 blue fluorescent proteins Proteins 0.000 description 2
- 235000019519 canola oil Nutrition 0.000 description 2
- 239000000828 canola oil Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229940106189 ceramide Drugs 0.000 description 2
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 108010082025 cyan fluorescent protein Proteins 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 108010022937 endoplasmin Proteins 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229940023064 escherichia coli Drugs 0.000 description 2
- 235000019581 fat taste sensations Nutrition 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 108091006047 fluorescent proteins Proteins 0.000 description 2
- 102000034287 fluorescent proteins Human genes 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 235000021472 generally recognized as safe Nutrition 0.000 description 2
- 235000020251 goat milk Nutrition 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 2
- 229960003512 nicotinic acid Drugs 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 229960002446 octanoic acid Drugs 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- PXBQBGADJRIZRZ-GSFPJELCSA-N patellin 2 Chemical compound C([C@H]1C(=O)N[C@H](C(=O)N[C@H]2CC(C)C)C(C)OC(C)(C)C=C)CCN1C(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)OC(C)(C)C=C)NC(=O)[C@H]1CSC2=N1 PXBQBGADJRIZRZ-GSFPJELCSA-N 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 239000006041 probiotic Substances 0.000 description 2
- 235000018291 probiotics Nutrition 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 108010054624 red fluorescent protein Proteins 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007430 reference method Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 235000020254 sheep milk Nutrition 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229940001941 soy protein Drugs 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 239000002438 stress hormone Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 235000019163 vitamin B12 Nutrition 0.000 description 2
- 239000011715 vitamin B12 Substances 0.000 description 2
- 235000019168 vitamin K Nutrition 0.000 description 2
- 239000011712 vitamin K Substances 0.000 description 2
- 150000003721 vitamin K derivatives Chemical class 0.000 description 2
- 229940045997 vitamin a Drugs 0.000 description 2
- 229940011671 vitamin b6 Drugs 0.000 description 2
- 229940046010 vitamin k Drugs 0.000 description 2
- 239000000341 volatile oil Substances 0.000 description 2
- 235000020234 walnut Nutrition 0.000 description 2
- 239000008170 walnut oil Substances 0.000 description 2
- PHXATPHONSXBIL-UHFFFAOYSA-N xi-gamma-Undecalactone Chemical compound CCCCCCCC1CCC(=O)O1 PHXATPHONSXBIL-UHFFFAOYSA-N 0.000 description 2
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 2
- 235000008924 yoghurt drink Nutrition 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- SBKVPJHMSUXZTA-MEJXFZFPSA-N (2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-5-amino-2-[[2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]acetyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-4-methylsulfanylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoic acid Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 SBKVPJHMSUXZTA-MEJXFZFPSA-N 0.000 description 1
- QZOALWMSYRBZSA-PDSBIMDKSA-N (3r,5r,8r,9r,10r,13s,14r)-3-[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-10,13-dimethyl-17-[(1s)-1-[(2r,5s,6r)-5-methyl-6-[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1C[C@H]2C(=O)C[C@@H]3[C@H]4CCC([C@]4(CC[C@H]3[C@@]2(C)CC1)C)[C@H](C)[C@@H]1O[C@H](O[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)[C@@H](C)CC1)[C@@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O QZOALWMSYRBZSA-PDSBIMDKSA-N 0.000 description 1
- YTKBWWKAVMSYHE-OALUTQOASA-N (3s)-3-[3-(3-hydroxy-4-methoxyphenyl)propylamino]-4-[[(2s)-1-methoxy-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid Chemical compound C([C@@H](C(=O)OC)NC(=O)[C@H](CC(O)=O)NCCCC=1C=C(O)C(OC)=CC=1)C1=CC=CC=C1 YTKBWWKAVMSYHE-OALUTQOASA-N 0.000 description 1
- KVHQNWGLVVERFR-ACMTZBLWSA-N (3s)-3-amino-4-[[(2s)-1-methoxy-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid;6-methyl-2,2-dioxooxathiazin-4-one Chemical compound CC1=CC(=O)[NH2+]S(=O)(=O)O1.[O-]C(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 KVHQNWGLVVERFR-ACMTZBLWSA-N 0.000 description 1
- NUFKRGBSZPCGQB-FLBSXDLDSA-N (3s)-3-amino-4-oxo-4-[[(2r)-1-oxo-1-[(2,2,4,4-tetramethylthietan-3-yl)amino]propan-2-yl]amino]butanoic acid;pentahydrate Chemical compound O.O.O.O.O.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C NUFKRGBSZPCGQB-FLBSXDLDSA-N 0.000 description 1
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical class OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- 101710184886 1,4-beta-D-glucan cellobiohydrolase A Proteins 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- IEMMBWWQXVXBEU-UHFFFAOYSA-N 2-acetylfuran Chemical compound CC(=O)C1=CC=CO1 IEMMBWWQXVXBEU-UHFFFAOYSA-N 0.000 description 1
- HWHQUWQCBPAQQH-BWRPKUOHSA-N 2-fucosyllactose Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O HWHQUWQCBPAQQH-BWRPKUOHSA-N 0.000 description 1
- 101710157142 2-methylene-furan-3-one reductase Proteins 0.000 description 1
- 101710185837 3-hydroxyacyl-thioester dehydratase Z Proteins 0.000 description 1
- AJBZENLMTKDAEK-UHFFFAOYSA-N 3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-4,9-diol Chemical compound CC12CCC(O)C(C)(C)C1CCC(C1(C)CC3O)(C)C2CCC1C1C3(C)CCC1C(=C)C AJBZENLMTKDAEK-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- 102100022530 45 kDa calcium-binding protein Human genes 0.000 description 1
- 101710168918 45 kDa calcium-binding protein Proteins 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- YZRXRLLRSPQHDK-UHFFFAOYSA-N 6-Hexyltetrahydro-2H-pyran-2-one Chemical compound CCCCCCC1CCCC(=O)O1 YZRXRLLRSPQHDK-UHFFFAOYSA-N 0.000 description 1
- YWWVWXASSLXJHU-UHFFFAOYSA-N 9E-tetradecenoic acid Natural products CCCCC=CCCCCCCCC(O)=O YWWVWXASSLXJHU-UHFFFAOYSA-N 0.000 description 1
- 101150061183 AOX1 gene Proteins 0.000 description 1
- 102100028163 ATP-binding cassette sub-family C member 4 Human genes 0.000 description 1
- 101710149917 ATP-binding cassette sub-family C member 4 Proteins 0.000 description 1
- 240000004507 Abelmoschus esculentus Species 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010013043 Acetylesterase Proteins 0.000 description 1
- 241001485333 Acrogymnospermae Species 0.000 description 1
- 102100030374 Actin, cytoplasmic 2 Human genes 0.000 description 1
- 101710119042 Actin, cytoplasmic 2 Proteins 0.000 description 1
- 244000298697 Actinidia deliciosa Species 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 102100022089 Acyl-[acyl-carrier-protein] hydrolase Human genes 0.000 description 1
- 235000003320 Adansonia digitata Nutrition 0.000 description 1
- 244000056971 Adansonia gregorii Species 0.000 description 1
- 235000003319 Adansonia gregorii Nutrition 0.000 description 1
- 239000004394 Advantame Substances 0.000 description 1
- 241000193798 Aerococcus Species 0.000 description 1
- 240000006054 Agastache cana Species 0.000 description 1
- 244000152526 Agathosma crenulata Species 0.000 description 1
- 235000013388 Agathosma crenulata Nutrition 0.000 description 1
- 241000390965 Alaria marginata Species 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 1
- 102100036826 Aldehyde oxidase Human genes 0.000 description 1
- 239000004377 Alitame Substances 0.000 description 1
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 1
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 1
- 101710150034 Allergen Bos d 2 Proteins 0.000 description 1
- 235000010167 Allium cepa var aggregatum Nutrition 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 241001280436 Allium schoenoprasum Species 0.000 description 1
- 235000001270 Allium sibiricum Nutrition 0.000 description 1
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 244000144927 Aloe barbadensis Species 0.000 description 1
- 235000013668 Aloysia triphylla Nutrition 0.000 description 1
- 240000008554 Aloysia triphylla Species 0.000 description 1
- 102100033326 Alpha-1B-glycoprotein Human genes 0.000 description 1
- 101710104910 Alpha-1B-glycoprotein Proteins 0.000 description 1
- 102100033312 Alpha-2-macroglobulin Human genes 0.000 description 1
- 102100031317 Alpha-N-acetylgalactosaminidase Human genes 0.000 description 1
- 102100038910 Alpha-enolase Human genes 0.000 description 1
- 101710099280 Alpha-galactosidase D Proteins 0.000 description 1
- 101710089396 Alpha-glucuronidase A Proteins 0.000 description 1
- 102000009366 Alpha-s1 casein Human genes 0.000 description 1
- 108050000244 Alpha-s1 casein Proteins 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 235000009051 Ambrosia paniculata var. peruviana Nutrition 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 244000226021 Anacardium occidentale Species 0.000 description 1
- 241001442124 Analipus japonicus Species 0.000 description 1
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- 240000000662 Anethum graveolens Species 0.000 description 1
- 244000061520 Angelica archangelica Species 0.000 description 1
- 102000004881 Angiotensinogen Human genes 0.000 description 1
- 108090001067 Angiotensinogen Proteins 0.000 description 1
- 235000007258 Anthriscus cerefolium Nutrition 0.000 description 1
- 240000002022 Anthriscus cerefolium Species 0.000 description 1
- 240000001436 Antirrhinum majus Species 0.000 description 1
- 102100033715 Apolipoprotein A-I Human genes 0.000 description 1
- 108010059886 Apolipoprotein A-I Proteins 0.000 description 1
- 102100037320 Apolipoprotein A-IV Human genes 0.000 description 1
- 241000205585 Aquilegia canadensis Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- 101100275375 Arabidopsis thaliana COR47 gene Proteins 0.000 description 1
- 101100232708 Arabidopsis thaliana ELF5A-2 gene Proteins 0.000 description 1
- 101100011862 Arabidopsis thaliana ERD14 gene Proteins 0.000 description 1
- 101100339417 Arabidopsis thaliana HMGB1 gene Proteins 0.000 description 1
- 101100451506 Arabidopsis thaliana HSP90-2 gene Proteins 0.000 description 1
- 101100333550 Arabidopsis thaliana HSP90-7 gene Proteins 0.000 description 1
- 101100347958 Arabidopsis thaliana NAP1;1 gene Proteins 0.000 description 1
- 101100030928 Arabidopsis thaliana PAF1 gene Proteins 0.000 description 1
- 101100242816 Arabidopsis thaliana PATL2 gene Proteins 0.000 description 1
- 101100411929 Arabidopsis thaliana RBCS-1A gene Proteins 0.000 description 1
- 101100279498 Arabidopsis thaliana TIF3F1 gene Proteins 0.000 description 1
- 101100259972 Arabidopsis thaliana TUBB4 gene Proteins 0.000 description 1
- 101100206110 Arabidopsis thaliana TUBB5 gene Proteins 0.000 description 1
- 101100523748 Arabidopsis thaliana rbcL gene Proteins 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 235000003097 Artemisia absinthium Nutrition 0.000 description 1
- 235000010576 Artemisia cina Nutrition 0.000 description 1
- 235000003092 Artemisia dracunculus Nutrition 0.000 description 1
- 235000017731 Artemisia dracunculus ssp. dracunculus Nutrition 0.000 description 1
- 240000006891 Artemisia vulgaris Species 0.000 description 1
- 241000620196 Arthrospira maxima Species 0.000 description 1
- 235000002672 Artocarpus altilis Nutrition 0.000 description 1
- 240000004161 Artocarpus altilis Species 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 102100034193 Aspartate aminotransferase, mitochondrial Human genes 0.000 description 1
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 1
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 1
- 101710130081 Aspergillopepsin-1 Proteins 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228257 Aspergillus sp. Species 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 240000005343 Azadirachta indica Species 0.000 description 1
- 241001112741 Bacillaceae Species 0.000 description 1
- 241000193833 Bacillales Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241000151861 Barnettozyma salicaria Species 0.000 description 1
- 235000009269 Barosma crenulata Nutrition 0.000 description 1
- 235000019490 Beech nut oil Nutrition 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 102100026349 Beta-1,4-galactosyltransferase 1 Human genes 0.000 description 1
- 101710120061 Beta-1,4-galactosyltransferase 1 Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 102000004954 Biglycan Human genes 0.000 description 1
- 108090001138 Biglycan Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 101000910039 Bos taurus Alpha-S1-casein Proteins 0.000 description 1
- 101000741059 Bos taurus Alpha-S2-casein Proteins 0.000 description 1
- 101000946377 Bos taurus Alpha-lactalbumin Proteins 0.000 description 1
- 101001008231 Bos taurus Beta-lactoglobulin Proteins 0.000 description 1
- 101000761239 Bos taurus Kappa-casein Proteins 0.000 description 1
- 235000003717 Boswellia sacra Nutrition 0.000 description 1
- 235000012035 Boswellia serrata Nutrition 0.000 description 1
- 240000007551 Boswellia serrata Species 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000011297 Brassica napobrassica Nutrition 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 241000219192 Brassica napus subsp. rapifera Species 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 235000012905 Brassica oleracea var viridis Nutrition 0.000 description 1
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 1
- 244000221633 Brassica rapa subsp chinensis Species 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 102000004555 Butyrophilins Human genes 0.000 description 1
- 108010017533 Butyrophilins Proteins 0.000 description 1
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 1
- 101710085504 C-X-C motif chemokine 6 Proteins 0.000 description 1
- 108050009459 C2 domains Proteins 0.000 description 1
- 102000049320 CD36 Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- 102100026862 CD5 antigen-like Human genes 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 241000219357 Cactaceae Species 0.000 description 1
- 235000003880 Calendula Nutrition 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 235000016401 Camelina Nutrition 0.000 description 1
- 244000197813 Camelina sativa Species 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 240000007436 Cananga odorata Species 0.000 description 1
- 240000005209 Canarium indicum Species 0.000 description 1
- 244000045232 Canavalia ensiformis Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 244000206911 Candida holmii Species 0.000 description 1
- 235000002965 Candida holmii Nutrition 0.000 description 1
- 241001123652 Candida versatilis Species 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- 235000005273 Canna coccinea Nutrition 0.000 description 1
- 240000008555 Canna flaccida Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 240000008574 Capsicum frutescens Species 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000206594 Carnobacterium Species 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 235000005747 Carum carvi Nutrition 0.000 description 1
- 240000000467 Carum carvi Species 0.000 description 1
- 235000009025 Carya illinoensis Nutrition 0.000 description 1
- 244000068645 Carya illinoensis Species 0.000 description 1
- 235000019492 Cashew oil Nutrition 0.000 description 1
- 102100027996 Caskin-1 Human genes 0.000 description 1
- 101710008688 Caskin-1 Proteins 0.000 description 1
- 101710115643 Cathelicidin-1 Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 235000009024 Ceanothus sanguineus Nutrition 0.000 description 1
- 102100035366 Centromere protein M Human genes 0.000 description 1
- 101710084074 Centromere protein M Proteins 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- 235000021538 Chard Nutrition 0.000 description 1
- 235000000509 Chenopodium ambrosioides Nutrition 0.000 description 1
- 240000006162 Chenopodium quinoa Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 241000206575 Chondrus crispus Species 0.000 description 1
- 241001147468 Chondrus ocellatus Species 0.000 description 1
- 235000008495 Chrysanthemum leucanthemum Nutrition 0.000 description 1
- 244000035851 Chrysanthemum leucanthemum Species 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 244000037364 Cinnamomum aromaticum Species 0.000 description 1
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 244000241235 Citrullus lanatus Species 0.000 description 1
- 235000012828 Citrullus lanatus var citroides Nutrition 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 244000183685 Citrus aurantium Species 0.000 description 1
- 235000007716 Citrus aurantium Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- 241001454694 Clupeiformes Species 0.000 description 1
- 102100032887 Clusterin Human genes 0.000 description 1
- 108090000197 Clusterin Proteins 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 235000006481 Colocasia esculenta Nutrition 0.000 description 1
- 244000205754 Colocasia esculenta Species 0.000 description 1
- 240000004270 Colocasia esculenta var. antiquorum Species 0.000 description 1
- 240000007311 Commiphora myrrha Species 0.000 description 1
- 235000006965 Commiphora myrrha Nutrition 0.000 description 1
- 108010028780 Complement C3 Proteins 0.000 description 1
- 102000016918 Complement C3 Human genes 0.000 description 1
- 102000008928 Complement component C7 Human genes 0.000 description 1
- 108050000890 Complement component C7 Proteins 0.000 description 1
- 108090000056 Complement factor B Proteins 0.000 description 1
- 102000003712 Complement factor B Human genes 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000002787 Coriandrum sativum Nutrition 0.000 description 1
- 235000015001 Cucumis melo var inodorus Nutrition 0.000 description 1
- 240000002495 Cucumis melo var. inodorus Species 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- 241000219130 Cucurbita pepo subsp. pepo Species 0.000 description 1
- 235000003954 Cucurbita pepo var melopepo Nutrition 0.000 description 1
- 235000007129 Cuminum cyminum Nutrition 0.000 description 1
- 244000304337 Cuminum cyminum Species 0.000 description 1
- 244000301850 Cupressus sempervirens Species 0.000 description 1
- 235000003398 Curcuma aromatica Nutrition 0.000 description 1
- 235000003392 Curcuma domestica Nutrition 0.000 description 1
- 241000592295 Cycadophyta Species 0.000 description 1
- 108010072220 Cyclophilin A Proteins 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 244000166675 Cymbopogon nardus Species 0.000 description 1
- 235000018791 Cymbopogon nardus Nutrition 0.000 description 1
- 241001649011 Cypselea Species 0.000 description 1
- 102000015833 Cystatin Human genes 0.000 description 1
- 101710126127 Cysteine-rich secretory protein 2 Proteins 0.000 description 1
- 102100027350 Cysteine-rich secretory protein 2 Human genes 0.000 description 1
- 102100027367 Cysteine-rich secretory protein 3 Human genes 0.000 description 1
- 101710126281 Cysteine-rich secretory protein 3 Proteins 0.000 description 1
- 102100031635 Cytoplasmic dynein 1 heavy chain 1 Human genes 0.000 description 1
- 101710204897 Cytoplasmic dynein 1 heavy chain 1 Proteins 0.000 description 1
- 102100028717 Cytosolic 5'-nucleotidase 3A Human genes 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- AVVWPBAENSWJCB-RSVSWTKNSA-N D-galactofuranose Chemical compound OC[C@@H](O)[C@@H]1OC(O)[C@H](O)[C@H]1O AVVWPBAENSWJCB-RSVSWTKNSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 241000235036 Debaryomyces hansenii Species 0.000 description 1
- 101710169268 Dehydrin COR47 Proteins 0.000 description 1
- 101710190298 Dehydrin ERD14 Proteins 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- 241000723298 Dicentrarchus labrax Species 0.000 description 1
- 101100166522 Dictyostelium discoideum cycB gene Proteins 0.000 description 1
- 241000289427 Didelphidae Species 0.000 description 1
- 235000002723 Dioscorea alata Nutrition 0.000 description 1
- 235000007056 Dioscorea composita Nutrition 0.000 description 1
- 235000009723 Dioscorea convolvulacea Nutrition 0.000 description 1
- 235000005362 Dioscorea floribunda Nutrition 0.000 description 1
- 235000004868 Dioscorea macrostachya Nutrition 0.000 description 1
- 235000005361 Dioscorea nummularia Nutrition 0.000 description 1
- 235000005360 Dioscorea spiculiflora Nutrition 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- GGLIEWRLXDLBBF-UHFFFAOYSA-N Dulcin Chemical compound CCOC1=CC=C(NC(N)=O)C=C1 GGLIEWRLXDLBBF-UHFFFAOYSA-N 0.000 description 1
- 102100025682 Dystroglycan 1 Human genes 0.000 description 1
- 108010071885 Dystroglycans Proteins 0.000 description 1
- 241001144268 Echidna Species 0.000 description 1
- 241001512723 Ecklonia Species 0.000 description 1
- 102000015824 Ectonucleotide pyrophosphatase/phosphodiesterase family member 6 Human genes 0.000 description 1
- 108050004011 Ectonucleotide pyrophosphatase/phosphodiesterase family member 6 Proteins 0.000 description 1
- 241000243681 Eisenia bicyclis Species 0.000 description 1
- 240000002943 Elettaria cardamomum Species 0.000 description 1
- 101100273894 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) celB gene Proteins 0.000 description 1
- 108010001817 Endo-1,4-beta Xylanases Proteins 0.000 description 1
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 1
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000195955 Equisetum hyemale Species 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 241001428166 Eucheuma Species 0.000 description 1
- 241000940372 Eucheuma denticulatum Species 0.000 description 1
- 239000001653 FEMA 3120 Substances 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 108010039731 Fatty Acid Synthases Proteins 0.000 description 1
- 102100031752 Fibrinogen alpha chain Human genes 0.000 description 1
- 101710137044 Fibrinogen alpha chain Proteins 0.000 description 1
- 102100024783 Fibrinogen gamma chain Human genes 0.000 description 1
- 101710094971 Fibroblast growth factor-binding protein 1 Proteins 0.000 description 1
- 102100023590 Fibroblast growth factor-binding protein 1 Human genes 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 240000006927 Foeniculum vulgare Species 0.000 description 1
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 1
- 239000004863 Frankincense Substances 0.000 description 1
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 1
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 1
- 102000006471 Fucosyltransferases Human genes 0.000 description 1
- 108010019236 Fucosyltransferases Proteins 0.000 description 1
- 241001134786 Furcellaria Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241001149959 Fusarium sp. Species 0.000 description 1
- 241000567178 Fusarium venenatum Species 0.000 description 1
- 101150094690 GAL1 gene Proteins 0.000 description 1
- 108060003306 Galactosyltransferase Proteins 0.000 description 1
- 102000030902 Galactosyltransferase Human genes 0.000 description 1
- 102100028501 Galanin peptides Human genes 0.000 description 1
- 102100028652 Gamma-enolase Human genes 0.000 description 1
- 240000001238 Gaultheria procumbens Species 0.000 description 1
- 235000007297 Gaultheria procumbens Nutrition 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 102000004878 Gelsolin Human genes 0.000 description 1
- 108090001064 Gelsolin Proteins 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- 241001467323 Gigartina pistillata Species 0.000 description 1
- 241001467326 Gigartina radula Species 0.000 description 1
- 241001491613 Gigartina skottsbergii Species 0.000 description 1
- 241001147462 Gigartinaceae Species 0.000 description 1
- 235000011201 Ginkgo Nutrition 0.000 description 1
- 241000203570 Ginkgoidae Species 0.000 description 1
- 241000142861 Gloiopeltis furcata Species 0.000 description 1
- 101710164405 Glucan 1,3-beta-glucosidase A Proteins 0.000 description 1
- 101710130619 Glucan endo-1,3-beta-glucosidase Proteins 0.000 description 1
- 102000000340 Glucosyltransferases Human genes 0.000 description 1
- 108010055629 Glucosyltransferases Proteins 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 240000004670 Glycyrrhiza echinata Species 0.000 description 1
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 1
- 239000004378 Glycyrrhizin Substances 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 241000206581 Gracilaria Species 0.000 description 1
- 241000703932 Gracilaria bursa-pastoris Species 0.000 description 1
- 235000021102 Greek yogurt Nutrition 0.000 description 1
- 102100039939 Growth/differentiation factor 8 Human genes 0.000 description 1
- 108050006583 Growth/differentiation factor 8 Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 235000001287 Guettarda speciosa Nutrition 0.000 description 1
- 108050005077 Haptoglobin Proteins 0.000 description 1
- 102000014702 Haptoglobin Human genes 0.000 description 1
- 235000019487 Hazelnut oil Nutrition 0.000 description 1
- 102100040408 Heat shock 70 kDa protein 1-like Human genes 0.000 description 1
- 102100040352 Heat shock 70 kDa protein 1A Human genes 0.000 description 1
- 102100040407 Heat shock 70 kDa protein 1B Human genes 0.000 description 1
- 102100027421 Heat shock cognate 71 kDa protein Human genes 0.000 description 1
- 101710104933 Heat shock cognate 71 kDa protein Proteins 0.000 description 1
- 101710173427 Heat shock protein 81-2 Proteins 0.000 description 1
- 101710173414 Heat shock protein 81-3 Proteins 0.000 description 1
- 235000008418 Hedeoma Nutrition 0.000 description 1
- 244000308760 Helichrysum petiolatum Species 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 241000258937 Hemiptera Species 0.000 description 1
- 108091005902 Hemoglobin subunit alpha Proteins 0.000 description 1
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 102000013271 Hemopexin Human genes 0.000 description 1
- 108010026027 Hemopexin Proteins 0.000 description 1
- 102100030500 Heparin cofactor 2 Human genes 0.000 description 1
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 1
- 101000928314 Homo sapiens Aldehyde oxidase Proteins 0.000 description 1
- 101000911996 Homo sapiens CD5 antigen-like Proteins 0.000 description 1
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 1
- 101001058231 Homo sapiens Gamma-enolase Proteins 0.000 description 1
- 101001037977 Homo sapiens Heat shock 70 kDa protein 1-like Proteins 0.000 description 1
- 101001037759 Homo sapiens Heat shock 70 kDa protein 1A Proteins 0.000 description 1
- 101001037968 Homo sapiens Heat shock 70 kDa protein 1B Proteins 0.000 description 1
- 101001082432 Homo sapiens Heparin cofactor 2 Proteins 0.000 description 1
- 101000840577 Homo sapiens Insulin-like growth factor-binding protein 7 Proteins 0.000 description 1
- 101000783723 Homo sapiens Leucine-rich alpha-2-glycoprotein Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000623905 Homo sapiens Mucin-15 Proteins 0.000 description 1
- 101001072765 Homo sapiens Neutral alpha-glucosidase AB Proteins 0.000 description 1
- 101000579123 Homo sapiens Phosphoglycerate kinase 1 Proteins 0.000 description 1
- 101000692933 Homo sapiens Ribonuclease 4 Proteins 0.000 description 1
- 101000951145 Homo sapiens Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial Proteins 0.000 description 1
- 101000795074 Homo sapiens Tryptase alpha/beta-1 Proteins 0.000 description 1
- 241000282596 Hylobatidae Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 235000010650 Hyssopus officinalis Nutrition 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108050004689 Inhibitor of carbonic anhydrases Proteins 0.000 description 1
- 102100029228 Insulin-like growth factor-binding protein 7 Human genes 0.000 description 1
- 102100023490 Inter-alpha-trypsin inhibitor heavy chain H1 Human genes 0.000 description 1
- 101710083916 Inter-alpha-trypsin inhibitor heavy chain H1 Proteins 0.000 description 1
- 102100039457 Inter-alpha-trypsin inhibitor heavy chain H4 Human genes 0.000 description 1
- 101710083924 Inter-alpha-trypsin inhibitor heavy chain H4 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 235000006350 Ipomoea batatas var. batatas Nutrition 0.000 description 1
- 240000001549 Ipomoea eriocarpa Species 0.000 description 1
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 1
- 102100039905 Isocitrate dehydrogenase [NADP] cytoplasmic Human genes 0.000 description 1
- 101710102690 Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 1
- 241001125831 Istiophoridae Species 0.000 description 1
- 241000721662 Juniperus Species 0.000 description 1
- 235000013421 Kaempferia galanga Nutrition 0.000 description 1
- 244000062241 Kaempferia galanga Species 0.000 description 1
- 241000512931 Kazachstania humilis Species 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 240000007839 Kleinhovia hospita Species 0.000 description 1
- 241000170280 Kluyveromyces sp. Species 0.000 description 1
- SHZGCJCMOBCMKK-PQMKYFCFSA-N L-Fucose Natural products C[C@H]1O[C@H](O)[C@@H](O)[C@@H](O)[C@@H]1O SHZGCJCMOBCMKK-PQMKYFCFSA-N 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- 241001468155 Lactobacillaceae Species 0.000 description 1
- 240000001929 Lactobacillus brevis Species 0.000 description 1
- 235000013957 Lactobacillus brevis Nutrition 0.000 description 1
- 240000006024 Lactobacillus plantarum Species 0.000 description 1
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 1
- 241000186604 Lactobacillus reuteri Species 0.000 description 1
- 241000186866 Lactobacillus thermophilus Species 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- 108700037001 Lactoperoxidases Proteins 0.000 description 1
- 102000045576 Lactoperoxidases Human genes 0.000 description 1
- 201000010538 Lactose Intolerance Diseases 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 241001598113 Laminaria digitata Species 0.000 description 1
- 235000013628 Lantana involucrata Nutrition 0.000 description 1
- 240000005183 Lantana involucrata Species 0.000 description 1
- 241000219730 Lathyrus aphaca Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 244000147568 Laurus nobilis Species 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000288904 Lemur Species 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 240000003553 Leptospermum scoparium Species 0.000 description 1
- 241000522169 Lespedeza Species 0.000 description 1
- 102100040276 Leucine zipper putative tumor suppressor 2 Human genes 0.000 description 1
- 101710142665 Leucine zipper putative tumor suppressor 2 Proteins 0.000 description 1
- 102100035987 Leucine-rich alpha-2-glycoprotein Human genes 0.000 description 1
- 108010071170 Leucine-tRNA ligase Proteins 0.000 description 1
- 102100023342 Leucine-tRNA ligase, mitochondrial Human genes 0.000 description 1
- DUKURNFHYQXCJG-UHFFFAOYSA-N Lewis A pentasaccharide Natural products OC1C(O)C(O)C(C)OC1OC1C(OC2C(C(O)C(O)C(CO)O2)O)C(NC(C)=O)C(OC2C(C(OC3C(OC(O)C(O)C3O)CO)OC(CO)C2O)O)OC1CO DUKURNFHYQXCJG-UHFFFAOYSA-N 0.000 description 1
- 235000021353 Lignoceric acid Nutrition 0.000 description 1
- CQXMAMUUWHYSIY-UHFFFAOYSA-N Lignoceric acid Natural products CCCCCCCCCCCCCCCCCCCCCCCC(=O)OCCC1=CC=C(O)C=C1 CQXMAMUUWHYSIY-UHFFFAOYSA-N 0.000 description 1
- 235000004520 Lindera benzoin Nutrition 0.000 description 1
- 244000148992 Lindera benzoin Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000052508 Lipopolysaccharide-binding protein Human genes 0.000 description 1
- 108010053632 Lipopolysaccharide-binding protein Proteins 0.000 description 1
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 1
- 102100022119 Lipoprotein lipase Human genes 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 241001480167 Lotus japonicus Species 0.000 description 1
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 235000015459 Lycium barbarum Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241000282553 Macaca Species 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 235000003800 Macadamia tetraphylla Nutrition 0.000 description 1
- 240000000912 Macadamia tetraphylla Species 0.000 description 1
- 241001491705 Macrocystis pyrifera Species 0.000 description 1
- 241000289619 Macropodidae Species 0.000 description 1
- 241001417902 Mallotus villosus Species 0.000 description 1
- 241000220225 Malus Species 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- 241001503471 Mammuthus primigenius Species 0.000 description 1
- 241000282537 Mandrillus sphinx Species 0.000 description 1
- 102100026061 Mannan-binding lectin serine protease 1 Human genes 0.000 description 1
- 101710117390 Mannan-binding lectin serine protease 1 Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000006722 Mannosyltransferases Human genes 0.000 description 1
- 108010087568 Mannosyltransferases Proteins 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 244000304222 Melaleuca cajuputi Species 0.000 description 1
- 235000001167 Melaleuca cajuputi Nutrition 0.000 description 1
- 241000378544 Melaleuca quinquenervia Species 0.000 description 1
- 235000017710 Melaleuca viridiflora Nutrition 0.000 description 1
- 241000997826 Melanocetus johnsonii Species 0.000 description 1
- 235000013500 Melia azadirachta Nutrition 0.000 description 1
- 241001529735 Melissa Species 0.000 description 1
- 235000014749 Mentha crispa Nutrition 0.000 description 1
- 244000078639 Mentha spicata Species 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241001485325 Mesangiospermae Species 0.000 description 1
- 102100022465 Methanethiol oxidase Human genes 0.000 description 1
- 101710134383 Methanethiol oxidase Proteins 0.000 description 1
- 101710084933 Miraculin Proteins 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 102100027869 Moesin Human genes 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 235000006677 Monarda citriodora ssp. austromontana Nutrition 0.000 description 1
- 244000179970 Monarda didyma Species 0.000 description 1
- 235000010672 Monarda didyma Nutrition 0.000 description 1
- 235000019494 Mongongo nut oil Nutrition 0.000 description 1
- 101710095845 Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 235000011347 Moringa oleifera Nutrition 0.000 description 1
- 244000179886 Moringa oleifera Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 102100023128 Mucin-15 Human genes 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000226677 Myceliophthora Species 0.000 description 1
- 231100000678 Mycotoxin Toxicity 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- 108010093901 N-(N-(3-(3-hydroxy-4-methoxyphenyl) propyl)-alpha-aspartyl)-L-phenylalanine 1-methyl ester Proteins 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- 102000002493 N-Acetylglucosaminyltransferases Human genes 0.000 description 1
- 108010093077 N-Acetylglucosaminyltransferases Proteins 0.000 description 1
- BNSTVBLCTRZUDD-CBQIKETKSA-N N-acetyl-D-glucoseamine Chemical compound CC(=O)N[C@@]1(O)O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O BNSTVBLCTRZUDD-CBQIKETKSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 1
- 239000004384 Neotame Substances 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 102100036592 Neutral alpha-glucosidase AB Human genes 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 102000018098 Nucleobindin-2 Human genes 0.000 description 1
- 108050007209 Nucleobindin-2 Proteins 0.000 description 1
- 102100022389 Nucleosome assembly protein 1-like 1 Human genes 0.000 description 1
- 102100027096 Nucleotide exchange factor SIL1 Human genes 0.000 description 1
- 101710153335 Nucleotide exchange factor SIL1 Proteins 0.000 description 1
- 244000227633 Ocotea pretiosa Species 0.000 description 1
- 235000004263 Ocotea pretiosa Nutrition 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 241000202223 Oenococcus Species 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 241001452677 Ogataea methanolica Species 0.000 description 1
- 241000489470 Ogataea trehalophila Species 0.000 description 1
- 241000826199 Ogataea wickerhamii Species 0.000 description 1
- 241001482592 Oreamnos americanus Species 0.000 description 1
- 235000011203 Origanum Nutrition 0.000 description 1
- 240000000783 Origanum majorana Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101100043636 Oryza sativa subsp. japonica SSIIIA gene Proteins 0.000 description 1
- 241000192494 Oscillatoriales Species 0.000 description 1
- QZOALWMSYRBZSA-UHFFFAOYSA-N Osladin Natural products C1CC(C)C(OC2C(C(O)C(O)C(C)O2)O)OC1C(C)C(C1(CCC2C3(C)CC4)C)CCC1C2CC(=O)C3CC4OC1OC(CO)C(O)C(O)C1OC1OC(C)C(O)C(O)C1O QZOALWMSYRBZSA-UHFFFAOYSA-N 0.000 description 1
- 102000004264 Osteopontin Human genes 0.000 description 1
- 108010081689 Osteopontin Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000008124 P-4000 Substances 0.000 description 1
- 208000025174 PANDAS Diseases 0.000 description 1
- KJWZYMMLVHIVSU-IYCNHOCDSA-N PGK1 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](CCCCCCC(O)=O)C(=O)CC1=O KJWZYMMLVHIVSU-IYCNHOCDSA-N 0.000 description 1
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 102100024019 Pancreatic secretory granule membrane major glycoprotein GP2 Human genes 0.000 description 1
- 101710132576 Pancreatic secretory granule membrane major glycoprotein GP2 Proteins 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 241000282376 Panthera tigris Species 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 102100037499 Parkinson disease protein 7 Human genes 0.000 description 1
- 101710097645 Parkinson disease protein 7 homolog Proteins 0.000 description 1
- 235000019495 Pecan oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000192001 Pediococcus Species 0.000 description 1
- 101710202686 Penicillin-sensitive transpeptidase Proteins 0.000 description 1
- 101000865553 Pentadiplandra brazzeana Defensin-like protein Proteins 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 102100032393 Peptidoglycan recognition protein 1 Human genes 0.000 description 1
- 101710113134 Peptidoglycan recognition protein 1 Proteins 0.000 description 1
- 102100034539 Peptidyl-prolyl cis-trans isomerase A Human genes 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000199902 Petalonia fascia Species 0.000 description 1
- 244000062780 Petroselinum sativum Species 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- 241000530350 Phaffomyces opuntiae Species 0.000 description 1
- 241000529953 Phaffomyces thermotolerans Species 0.000 description 1
- 235000010617 Phaseolus lunatus Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 102100028489 Phosphatidylethanolamine-binding protein 1 Human genes 0.000 description 1
- 101710204191 Phosphatidylethanolamine-binding protein 1 Proteins 0.000 description 1
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 101000662819 Physarum polycephalum Terpene synthase 1 Proteins 0.000 description 1
- 241000195887 Physcomitrella patens Species 0.000 description 1
- 241000235062 Pichia membranifaciens Species 0.000 description 1
- 241000235061 Pichia sp. Species 0.000 description 1
- 102100035846 Pigment epithelium-derived factor Human genes 0.000 description 1
- 235000006990 Pimenta dioica Nutrition 0.000 description 1
- 235000019496 Pine nut oil Nutrition 0.000 description 1
- 241000218633 Pinidae Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 235000016816 Pisum sativum subsp sativum Nutrition 0.000 description 1
- 235000015622 Pisum sativum var macrocarpon Nutrition 0.000 description 1
- 244000134552 Plantago ovata Species 0.000 description 1
- 235000003421 Plantago ovata Nutrition 0.000 description 1
- 102100038124 Plasminogen Human genes 0.000 description 1
- 108010051456 Plasminogen Proteins 0.000 description 1
- 102100031574 Platelet glycoprotein 4 Human genes 0.000 description 1
- 101710202087 Platelet glycoprotein 4 Proteins 0.000 description 1
- 241000269980 Pleuronectidae Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 235000011751 Pogostemon cablin Nutrition 0.000 description 1
- 240000002505 Pogostemon cablin Species 0.000 description 1
- 235000016067 Polianthes tuberosa Nutrition 0.000 description 1
- 244000014047 Polianthes tuberosa Species 0.000 description 1
- 241000282405 Pongo abelii Species 0.000 description 1
- 241000912545 Porphyra crispata Species 0.000 description 1
- 241000206617 Porphyridium aerugineum Species 0.000 description 1
- 108010015078 Pregnancy-Associated alpha 2-Macroglobulins Proteins 0.000 description 1
- 101000618510 Prevotella ruminicola (strain ATCC 19189 / JCM 8958 / 23) Xylan 1,4-beta-xylosidase Proteins 0.000 description 1
- 101710114018 Primary amine oxidase, liver isozyme Proteins 0.000 description 1
- 235000000497 Primula Nutrition 0.000 description 1
- 241000208476 Primulaceae Species 0.000 description 1
- 101710101148 Probable 6-oxopurine nucleoside phosphorylase Proteins 0.000 description 1
- 241001494501 Prosopis <angiosperm> Species 0.000 description 1
- 235000001560 Prosopis chilensis Nutrition 0.000 description 1
- 235000014460 Prosopis juliflora var juliflora Nutrition 0.000 description 1
- 108030003866 Prostaglandin-D synthases Proteins 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 102100032859 Protein AMBP Human genes 0.000 description 1
- 108050003874 Protein AMBP Proteins 0.000 description 1
- 101710098553 Protein CREG1 Proteins 0.000 description 1
- 102100027796 Protein CREG1 Human genes 0.000 description 1
- 101710082522 Protein HP-20 homolog Proteins 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 102100031492 Protein OS-9 Human genes 0.000 description 1
- 101710139597 Protein OS-9 Proteins 0.000 description 1
- 102100020876 Protein SCAF11 Human genes 0.000 description 1
- 101710141618 Protein SCAF11 Proteins 0.000 description 1
- 102100036352 Protein disulfide-isomerase Human genes 0.000 description 1
- 102100024147 Protein phosphatase 1 regulatory subunit 14A Human genes 0.000 description 1
- 101710081981 Protein phosphatase 1 regulatory subunit 14A Proteins 0.000 description 1
- 102100027378 Prothrombin Human genes 0.000 description 1
- 108010094028 Prothrombin Proteins 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 244000141353 Prunus domestica Species 0.000 description 1
- 235000006029 Prunus persica var nucipersica Nutrition 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 244000017714 Prunus persica var. nucipersica Species 0.000 description 1
- 244000179750 Psoralea glandulosa Species 0.000 description 1
- 239000009223 Psyllium Substances 0.000 description 1
- 244000294611 Punica granatum Species 0.000 description 1
- 235000014360 Punica granatum Nutrition 0.000 description 1
- 102000030764 Purine-nucleoside phosphorylase Human genes 0.000 description 1
- 241001349638 Pyropia columbina Species 0.000 description 1
- 241000206608 Pyropia tenera Species 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 101710189291 Quinone oxidoreductase Proteins 0.000 description 1
- 102100034576 Quinone oxidoreductase Human genes 0.000 description 1
- 101710102264 Rab GDP dissociation inhibitor alpha Proteins 0.000 description 1
- 102100034335 Rab GDP dissociation inhibitor alpha Human genes 0.000 description 1
- 102100034328 Rab GDP dissociation inhibitor beta Human genes 0.000 description 1
- 101710193720 Rab GDP dissociation inhibitor beta Proteins 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 102100030706 Ras-related protein Rap-1A Human genes 0.000 description 1
- 101710116841 Ras-related protein Rap-1A Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101001091368 Rattus norvegicus Glandular kallikrein-7, submandibular/renal Proteins 0.000 description 1
- 101001039269 Rattus norvegicus Glycine N-methyltransferase Proteins 0.000 description 1
- 244000299790 Rheum rhabarbarum Species 0.000 description 1
- 235000009411 Rheum rhabarbarum Nutrition 0.000 description 1
- 241000589194 Rhizobium leguminosarum Species 0.000 description 1
- 102100021708 Rho guanine nucleotide exchange factor 1 Human genes 0.000 description 1
- 101710128389 Rho guanine nucleotide exchange factor 1 Proteins 0.000 description 1
- 241000206643 Rhodella Species 0.000 description 1
- 241000293712 Rhodella reticulata Species 0.000 description 1
- 241000206642 Rhodella violacea Species 0.000 description 1
- 241001030146 Rhodotorula sp. Species 0.000 description 1
- 102100026411 Ribonuclease 4 Human genes 0.000 description 1
- 102100039832 Ribonuclease pancreatic Human genes 0.000 description 1
- 101710123428 Ribonuclease pancreatic Proteins 0.000 description 1
- 101710097247 Ribulose bisphosphate carboxylase large chain Proteins 0.000 description 1
- 101710104360 Ribulose bisphosphate carboxylase large chain, chromosomal Proteins 0.000 description 1
- 235000019774 Rice Bran oil Nutrition 0.000 description 1
- 235000016510 Ricinodendron rautanenii Nutrition 0.000 description 1
- 244000210236 Ricinodendron rautanenii Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 235000017848 Rubus fruticosus Nutrition 0.000 description 1
- 240000007651 Rubus glaucus Species 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 108091006649 SLC9A3 Proteins 0.000 description 1
- 101150014136 SUC2 gene Proteins 0.000 description 1
- 108091077843 SUN family Proteins 0.000 description 1
- 241000015203 Saccharina angustata Species 0.000 description 1
- 241000983755 Saccharina gyrata Species 0.000 description 1
- 241000015177 Saccharina japonica Species 0.000 description 1
- 241000983746 Saccharina latissima Species 0.000 description 1
- 241001017595 Saccharina longissima Species 0.000 description 1
- 241001017597 Saccharina ochotensis Species 0.000 description 1
- 101100010928 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) tuf gene Proteins 0.000 description 1
- 241000235072 Saccharomyces bayanus Species 0.000 description 1
- 101100439280 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CLB1 gene Proteins 0.000 description 1
- 101100066911 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FLO5 gene Proteins 0.000 description 1
- 101100507956 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HXT7 gene Proteins 0.000 description 1
- 101000898773 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharopepsin Proteins 0.000 description 1
- 235000001006 Saccharomyces cerevisiae var diastaticus Nutrition 0.000 description 1
- 244000206963 Saccharomyces cerevisiae var. diastaticus Species 0.000 description 1
- 241000877399 Saccharomyces chevalieri Species 0.000 description 1
- 241000877401 Saccharomyces ellipsoideus Species 0.000 description 1
- 241001123227 Saccharomyces pastorianus Species 0.000 description 1
- 241000235088 Saccharomyces sp. Species 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 241000277331 Salmonidae Species 0.000 description 1
- 235000017276 Salvia Nutrition 0.000 description 1
- 241001072909 Salvia Species 0.000 description 1
- 240000000513 Santalum album Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- 235000008406 SarachaNachtschatten Nutrition 0.000 description 1
- 241000269851 Sarda sarda Species 0.000 description 1
- 241000264279 Sargassum fusiforme Species 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- 241000736062 Scomber scombrus Species 0.000 description 1
- 241001126858 Scytosiphon Species 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 101710172670 Secretoglobin family 1D member Proteins 0.000 description 1
- 101710132826 Selenium-binding protein 1 Proteins 0.000 description 1
- 241000238371 Sepiidae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 101710083920 Serpin A3-1 Proteins 0.000 description 1
- 101710083922 Serpin A3-2 Proteins 0.000 description 1
- 101710083897 Serpin A3-6 Proteins 0.000 description 1
- 101710083933 Serpin A3-8 Proteins 0.000 description 1
- 102000054727 Serum Amyloid A Human genes 0.000 description 1
- 101710190759 Serum amyloid A protein Proteins 0.000 description 1
- 102000003838 Sialyltransferases Human genes 0.000 description 1
- 108090000141 Sialyltransferases Proteins 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 102100030375 Sodium/hydrogen exchanger 3 Human genes 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 235000004790 Solanum aculeatissimum Nutrition 0.000 description 1
- 235000008424 Solanum demissum Nutrition 0.000 description 1
- 235000018253 Solanum ferox Nutrition 0.000 description 1
- 235000000208 Solanum incanum Nutrition 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 235000013131 Solanum macrocarpon Nutrition 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000009869 Solanum phureja Nutrition 0.000 description 1
- 235000000341 Solanum ptychanthum Nutrition 0.000 description 1
- 235000017622 Solanum xanthocarpum Nutrition 0.000 description 1
- 241000592344 Spermatophyta Species 0.000 description 1
- 241001223864 Sphyraena barracuda Species 0.000 description 1
- 241000228393 Sporidiobolus salmonicolor Species 0.000 description 1
- 241000228390 Sporobolomyces johnsonii Species 0.000 description 1
- 241000123675 Sporobolomyces roseus Species 0.000 description 1
- 241000204117 Sporolactobacillus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 244000228451 Stevia rebaudiana Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000271567 Struthioniformes Species 0.000 description 1
- 102100038014 Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial Human genes 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000004896 Sulfotransferases Human genes 0.000 description 1
- 108090001033 Sulfotransferases Proteins 0.000 description 1
- 102100038836 Superoxide dismutase [Cu-Zn] Human genes 0.000 description 1
- 101710139715 Superoxide dismutase [Cu-Zn] Proteins 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 235000004338 Syringa vulgaris Nutrition 0.000 description 1
- 244000297179 Syringa vulgaris Species 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- 101150001810 TEAD1 gene Proteins 0.000 description 1
- 101150074253 TEF1 gene Proteins 0.000 description 1
- 241000736851 Tagetes Species 0.000 description 1
- 235000012308 Tagetes Nutrition 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 241000500334 Tetragenococcus Species 0.000 description 1
- 102100024554 Tetranectin Human genes 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- 102100036034 Thrombospondin-1 Human genes 0.000 description 1
- 241000218636 Thuja Species 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 102100029898 Transcriptional enhancer factor TEF-1 Human genes 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102000002070 Transferrins Human genes 0.000 description 1
- 108010015865 Transferrins Proteins 0.000 description 1
- 102000014701 Transketolase Human genes 0.000 description 1
- 108010043652 Transketolase Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 102100029639 Tryptase alpha/beta-1 Human genes 0.000 description 1
- 101710201428 Tubulin beta chain Proteins 0.000 description 1
- 102100024717 Tubulin beta chain Human genes 0.000 description 1
- 101710202239 Tubulin beta-3 chain Proteins 0.000 description 1
- 101710195636 Tubulin beta-4 chain Proteins 0.000 description 1
- 102100036788 Tubulin beta-4A chain Human genes 0.000 description 1
- 101710153628 Tubulin beta-4A chain Proteins 0.000 description 1
- 101710120473 Tubulin beta-5 chain Proteins 0.000 description 1
- AXQLFFDZXPOFPO-UHFFFAOYSA-N UNPD216 Natural products O1C(CO)C(O)C(OC2C(C(O)C(O)C(CO)O2)O)C(NC(=O)C)C1OC(C1O)C(O)C(CO)OC1OC1C(O)C(O)C(O)OC1CO AXQLFFDZXPOFPO-UHFFFAOYSA-N 0.000 description 1
- 102100023341 Ubiquitin-40S ribosomal protein S27a Human genes 0.000 description 1
- 101710087921 Ubiquitin-40S ribosomal protein S27a Proteins 0.000 description 1
- 102100028462 Ubiquitin-60S ribosomal protein L40 Human genes 0.000 description 1
- 101710200656 Ubiquitin-60S ribosomal protein L40 Proteins 0.000 description 1
- 241000282458 Ursus sp. Species 0.000 description 1
- 102100037930 Usherin Human genes 0.000 description 1
- 101710138401 Usherin Proteins 0.000 description 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 1
- 235000021322 Vaccenic acid Nutrition 0.000 description 1
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 241000207194 Vagococcus Species 0.000 description 1
- 235000007769 Vetiveria zizanioides Nutrition 0.000 description 1
- 244000284012 Vetiveria zizanioides Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 229930003451 Vitamin B1 Natural products 0.000 description 1
- 229930003537 Vitamin B3 Natural products 0.000 description 1
- 229930003571 Vitamin B5 Natural products 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- 241000202221 Weissella Species 0.000 description 1
- 101710087237 Whey acidic protein Proteins 0.000 description 1
- 241000370136 Wickerhamomyces pijperi Species 0.000 description 1
- 241000219995 Wisteria Species 0.000 description 1
- 102000005773 Xanthine dehydrogenase Human genes 0.000 description 1
- 108010091383 Xanthine dehydrogenase Proteins 0.000 description 1
- 241000222057 Xanthophyllomyces dendrorhous Species 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 102000010199 Xylosyltransferases Human genes 0.000 description 1
- 108050001741 Xylosyltransferases Proteins 0.000 description 1
- 235000004552 Yucca aloifolia Nutrition 0.000 description 1
- 235000012044 Yucca brevifolia Nutrition 0.000 description 1
- 235000017049 Yucca glauca Nutrition 0.000 description 1
- 240000005780 Yucca gloriosa Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000006886 Zingiber officinale Nutrition 0.000 description 1
- 244000273928 Zingiber officinale Species 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 241000192393 [Candida] etchellsii Species 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 229960004998 acesulfame potassium Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 235000019453 advantame Nutrition 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000019409 alitame Nutrition 0.000 description 1
- 108010009985 alitame Proteins 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 1
- 235000020194 almond milk Nutrition 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- FZIVHOUANIQOMU-YIHIYSSUSA-N alpha-L-Fucp-(1->2)-beta-D-Galp-(1->3)-beta-D-GlcpNAc-(1->3)-beta-D-Galp-(1->4)-D-Glcp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@@H]2[C@H]([C@H](O[C@@H]3[C@H]([C@H](O[C@@H]4[C@H](OC(O)[C@H](O)[C@H]4O)CO)O[C@H](CO)[C@@H]3O)O)O[C@H](CO)[C@H]2O)NC(C)=O)O[C@H](CO)[C@H](O)[C@@H]1O FZIVHOUANIQOMU-YIHIYSSUSA-N 0.000 description 1
- CMQZRJBJDCVIEY-JEOLMMCMSA-N alpha-L-Fucp-(1->3)-[beta-D-Galp-(1->4)]-beta-D-GlcpNAc-(1->3)-beta-D-Galp-(1->4)-D-Glcp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](CO)O[C@@H](O[C@@H]2[C@H]([C@H](O[C@@H]3[C@H](OC(O)[C@H](O)[C@H]3O)CO)O[C@H](CO)[C@@H]2O)O)[C@@H]1NC(C)=O CMQZRJBJDCVIEY-JEOLMMCMSA-N 0.000 description 1
- DUKURNFHYQXCJG-JEOLMMCMSA-N alpha-L-Fucp-(1->4)-[beta-D-Galp-(1->3)]-beta-D-GlcpNAc-(1->3)-beta-D-Galp-(1->4)-D-Glcp Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](NC(C)=O)[C@H](O[C@@H]2[C@H]([C@H](O[C@@H]3[C@H](OC(O)[C@H](O)[C@H]3O)CO)O[C@H](CO)[C@@H]2O)O)O[C@@H]1CO DUKURNFHYQXCJG-JEOLMMCMSA-N 0.000 description 1
- 108010015684 alpha-N-Acetylgalactosaminidase Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 235000019513 anchovy Nutrition 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000000433 anti-nutritional effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 108010073614 apolipoprotein A-IV Proteins 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 235000019568 aromas Nutrition 0.000 description 1
- 239000001138 artemisia absinthium Substances 0.000 description 1
- 229940011019 arthrospira platensis Drugs 0.000 description 1
- 239000007961 artificial flavoring substance Substances 0.000 description 1
- 239000008122 artificial sweetener Substances 0.000 description 1
- 235000021311 artificial sweeteners Nutrition 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 229960001504 aspartame acesulfame Drugs 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- 239000010480 babassu oil Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- AXQLFFDZXPOFPO-UNTPKZLMSA-N beta-D-Galp-(1->3)-beta-D-GlcpNAc-(1->3)-beta-D-Galp-(1->4)-beta-D-Glcp Chemical compound O([C@@H]1O[C@H](CO)[C@H](O)[C@@H]([C@H]1O)O[C@H]1[C@@H]([C@H]([C@H](O)[C@@H](CO)O1)O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)NC(=O)C)[C@H]1[C@H](O)[C@@H](O)[C@H](O)O[C@@H]1CO AXQLFFDZXPOFPO-UNTPKZLMSA-N 0.000 description 1
- AVVWPBAENSWJCB-DGPNFKTASA-N beta-D-galactofuranose Chemical group OC[C@@H](O)[C@@H]1O[C@@H](O)[C@H](O)[C@H]1O AVVWPBAENSWJCB-DGPNFKTASA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- 235000021029 blackberry Nutrition 0.000 description 1
- 235000021014 blueberries Nutrition 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 229940062650 buchu Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000001511 capsicum annuum Substances 0.000 description 1
- 239000001390 capsicum minimum Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 235000005300 cardamomo Nutrition 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 108010067454 caseinomacropeptide Proteins 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 239000010467 cashew oil Substances 0.000 description 1
- 229940059459 cashew oil Drugs 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 150000001765 catechin Chemical class 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 235000020235 chia seed Nutrition 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 235000020197 coconut milk Nutrition 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 235000014156 coffee whiteners Nutrition 0.000 description 1
- 230000005495 cold plasma Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 235000020186 condensed milk Nutrition 0.000 description 1
- 235000021431 conventionally produced milk Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 235000015142 cultured sour cream Nutrition 0.000 description 1
- 108010010165 curculin Proteins 0.000 description 1
- 235000003373 curcuma longa Nutrition 0.000 description 1
- 229940109275 cyclamate Drugs 0.000 description 1
- 239000000625 cyclamic acid and its Na and Ca salt Substances 0.000 description 1
- 108050004038 cystatin Proteins 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000004879 dioscorea Nutrition 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 235000021038 drupes Nutrition 0.000 description 1
- 239000008126 dulcin Substances 0.000 description 1
- NWNUTSZTAUGIGA-UHFFFAOYSA-N dulcin Natural products C12CC(C)(C)CCC2(C(=O)OC2C(C(O)C(O)C(COC3C(C(O)C(O)CO3)O)O2)O)C(O)CC(C2(CCC3C4(C)C)C)(C)C1=CCC2C3(C)CCC4OC1OCC(O)C(O)C1OC1OC(CO)C(O)C(O)C1O NWNUTSZTAUGIGA-UHFFFAOYSA-N 0.000 description 1
- 101150100810 eglC gene Proteins 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000004862 elemi Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- YERABYSOHUZTPQ-UHFFFAOYSA-P endo-1,4-beta-Xylanase Chemical compound C=1C=CC=CC=1C[N+](CC)(CC)CCCNC(C(C=1)=O)=CC(=O)C=1NCCC[N+](CC)(CC)CC1=CC=CC=C1 YERABYSOHUZTPQ-UHFFFAOYSA-P 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000021321 essential mineral Nutrition 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FARYTWBWLZAXNK-WAYWQWQTSA-N ethyl (z)-3-(methylamino)but-2-enoate Chemical compound CCOC(=O)\C=C(\C)NC FARYTWBWLZAXNK-WAYWQWQTSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- TVQGDYNRXLTQAP-UHFFFAOYSA-N ethyl heptanoate Chemical compound CCCCCCC(=O)OCC TVQGDYNRXLTQAP-UHFFFAOYSA-N 0.000 description 1
- 235000020187 evaporated milk Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 108010068213 factor XIIa inhibitor Proteins 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 108091022862 fatty acid binding Proteins 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019541 flavored milk drink Nutrition 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PHXATPHONSXBIL-JTQLQIEISA-N gamma-Undecalactone Natural products CCCCCCC[C@H]1CCC(=O)O1 PHXATPHONSXBIL-JTQLQIEISA-N 0.000 description 1
- 229940020436 gamma-undecalactone Drugs 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 235000008397 ginger Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008125 glucin Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 230000002641 glycemic effect Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 230000001279 glycosylating effect Effects 0.000 description 1
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 description 1
- 229960004949 glycyrrhizic acid Drugs 0.000 description 1
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 description 1
- 235000019410 glycyrrhizin Nutrition 0.000 description 1
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 1
- 230000006095 glypiation Effects 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000011617 hard cheese Nutrition 0.000 description 1
- 239000010468 hazelnut oil Substances 0.000 description 1
- 230000007407 health benefit Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000000530 impalefection Methods 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- BJHIKXHVCXFQLS-PQLUHFTBSA-N keto-D-tagatose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-PQLUHFTBSA-N 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- 229940106134 krill oil Drugs 0.000 description 1
- 235000015138 kumis Nutrition 0.000 description 1
- 229930193965 lacto-N-fucopentaose Natural products 0.000 description 1
- FZIVHOUANIQOMU-UHFFFAOYSA-N lacto-N-fucopentaose I Natural products OC1C(O)C(O)C(C)OC1OC1C(OC2C(C(OC3C(C(OC4C(OC(O)C(O)C4O)CO)OC(CO)C3O)O)OC(CO)C2O)NC(C)=O)OC(CO)C(O)C1O FZIVHOUANIQOMU-UHFFFAOYSA-N 0.000 description 1
- FKADDOYBRRMBPP-UHFFFAOYSA-N lacto-N-fucopentaose II Natural products OC1C(O)C(O)C(C)OC1OC1C(OC2C(C(O)C(O)C(CO)O2)O)C(NC(C)=O)C(OC2C(C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C2O)O)OC1CO FKADDOYBRRMBPP-UHFFFAOYSA-N 0.000 description 1
- CMQZRJBJDCVIEY-UHFFFAOYSA-N lacto-N-fucopentaose III Natural products OC1C(O)C(O)C(C)OC1OC1C(OC2C(C(O)C(O)C(CO)O2)O)C(CO)OC(OC2C(C(OC3C(OC(O)C(O)C3O)CO)OC(CO)C2O)O)C1NC(C)=O CMQZRJBJDCVIEY-UHFFFAOYSA-N 0.000 description 1
- IEQCXFNWPAHHQR-UHFFFAOYSA-N lacto-N-neotetraose Natural products OCC1OC(OC2C(C(OC3C(OC(O)C(O)C3O)CO)OC(CO)C2O)O)C(NC(=O)C)C(O)C1OC1OC(CO)C(O)C(O)C1O IEQCXFNWPAHHQR-UHFFFAOYSA-N 0.000 description 1
- USIPEGYTBGEPJN-UHFFFAOYSA-N lacto-N-tetraose Natural products O1C(CO)C(O)C(OC2C(C(O)C(O)C(CO)O2)O)C(NC(=O)C)C1OC1C(O)C(CO)OC(OC(C(O)CO)C(O)C(O)C=O)C1O USIPEGYTBGEPJN-UHFFFAOYSA-N 0.000 description 1
- 229940062780 lacto-n-neotetraose Drugs 0.000 description 1
- 229940072205 lactobacillus plantarum Drugs 0.000 description 1
- 229940001882 lactobacillus reuteri Drugs 0.000 description 1
- 235000020129 lassi Nutrition 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 229940010454 licorice Drugs 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- OYHQOLUKZRVURQ-AVQMFFATSA-N linoelaidic acid Chemical compound CCCCC\C=C\C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-AVQMFFATSA-N 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 235000020121 low-fat milk Nutrition 0.000 description 1
- 239000001115 mace Substances 0.000 description 1
- 235000021073 macronutrients Nutrition 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- SKEFKEOTNIPLCQ-LWIQTABASA-N mating hormone Chemical compound C([C@@H](C(=O)NC(CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCS(C)=O)C(=O)NC(CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CN=CN1 SKEFKEOTNIPLCQ-LWIQTABASA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000004667 medium chain fatty acids Chemical class 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 235000020166 milkshake Nutrition 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 108010071525 moesin Proteins 0.000 description 1
- 229930189775 mogroside Natural products 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 239000006012 monoammonium phosphate Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 239000008164 mustard oil Substances 0.000 description 1
- 239000002636 mycotoxin Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- BNSTVBLCTRZUDD-XLSKCSLXSA-N n-[(3r,4s,5r,6r)-2,3,4,5-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]acetamide Chemical compound CC(=O)NC1(O)O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BNSTVBLCTRZUDD-XLSKCSLXSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 230000012666 negative regulation of transcription by glucose Effects 0.000 description 1
- ARGKVCXINMKCAZ-UZRWAPQLSA-N neohesperidin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UZRWAPQLSA-N 0.000 description 1
- ARGKVCXINMKCAZ-UHFFFAOYSA-N neohesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(CO)O3)OC3C(C(O)C(O)C(C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UHFFFAOYSA-N 0.000 description 1
- RBMYDHMFFAVMMM-PLQWBNBWSA-N neolactotetraose Chemical compound O([C@H]1[C@H](O)[C@H]([C@@H](O[C@@H]1CO)O[C@@H]1[C@H]([C@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@H](CO)[C@@H]1O)O)NC(=O)C)[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O RBMYDHMFFAVMMM-PLQWBNBWSA-N 0.000 description 1
- 235000019412 neotame Nutrition 0.000 description 1
- HLIAVLHNDJUHFG-HOTGVXAUSA-N neotame Chemical compound CC(C)(C)CCN[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 HLIAVLHNDJUHFG-HOTGVXAUSA-N 0.000 description 1
- 108010070257 neotame Proteins 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N nicotinic acid amide Natural products NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- 150000002889 oleic acids Chemical class 0.000 description 1
- 235000021354 omega 7 monounsaturated fatty acids Nutrition 0.000 description 1
- 235000021315 omega 9 monounsaturated fatty acids Nutrition 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 229940012843 omega-3 fatty acid Drugs 0.000 description 1
- 239000006014 omega-3 oil Substances 0.000 description 1
- 235000020665 omega-6 fatty acid Nutrition 0.000 description 1
- 229940033080 omega-6 fatty acid Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 244000138993 panchioli Species 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 235000021116 parmesan Nutrition 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 235000015927 pasta Nutrition 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000020266 pea milk Nutrition 0.000 description 1
- 239000010470 pecan oil Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 235000011197 perejil Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000000447 pesticide residue Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 108090000102 pigment epithelium-derived factor Proteins 0.000 description 1
- 239000010490 pine nut oil Substances 0.000 description 1
- 235000020233 pistachio Nutrition 0.000 description 1
- 235000013550 pizza Nutrition 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 235000021018 plums Nutrition 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 235000013406 prebiotics Nutrition 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000529 probiotic effect Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 108020003519 protein disulfide isomerase Proteins 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 230000030634 protein phosphate-linked glycosylation Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 229940039716 prothrombin Drugs 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 229940070687 psyllium Drugs 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- RADKZDMFGJYCBB-UHFFFAOYSA-N pyridoxal hydrochloride Natural products CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229940092258 rosemary extract Drugs 0.000 description 1
- 235000020748 rosemary extract Nutrition 0.000 description 1
- 239000001233 rosmarinus officinalis l. extract Substances 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- NNNVXFKZMRGJPM-KHPPLWFESA-N sapienic acid Chemical compound CCCCCCCCC\C=C/CCCCC(O)=O NNNVXFKZMRGJPM-KHPPLWFESA-N 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 235000021003 saturated fats Nutrition 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000021317 sensory perception Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229940057910 shea butter Drugs 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 125000005630 sialyl group Chemical group 0.000 description 1
- 235000013570 smoothie Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229960001462 sodium cyclamate Drugs 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 235000013322 soy milk Nutrition 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 229940043517 specific immunoglobulins Drugs 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229940082787 spirulina Drugs 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 229940005741 sunflower lecithin Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 235000010491 tara gum Nutrition 0.000 description 1
- 239000000213 tara gum Substances 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 108010013645 tetranectin Proteins 0.000 description 1
- 239000000892 thaumatin Substances 0.000 description 1
- 235000010436 thaumatin Nutrition 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 235000013976 turmeric Nutrition 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 235000010374 vitamin B1 Nutrition 0.000 description 1
- 239000011691 vitamin B1 Substances 0.000 description 1
- 235000019160 vitamin B3 Nutrition 0.000 description 1
- 239000011708 vitamin B3 Substances 0.000 description 1
- 235000009492 vitamin B5 Nutrition 0.000 description 1
- 239000011675 vitamin B5 Substances 0.000 description 1
- 235000019158 vitamin B6 Nutrition 0.000 description 1
- 239000011726 vitamin B6 Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 108010078692 yeast proteinase B Proteins 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- 235000021250 α-S2-casein Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/15—Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C11/00—Milk substitutes, e.g. coffee whitener compositions
- A23C11/02—Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
- A23C11/06—Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing non-milk proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C19/00—Cheese; Cheese preparations; Making thereof
- A23C19/06—Treating cheese curd after whey separation; Products obtained thereby
- A23C19/09—Other cheese preparations; Mixtures of cheese with other foodstuffs
- A23C19/093—Addition of non-milk fats or non-milk proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C20/00—Cheese substitutes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C21/00—Whey; Whey preparations
- A23C21/08—Whey; Whey preparations containing other organic additives, e.g. vegetable or animal products
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/13—Fermented milk preparations; Treatment using microorganisms or enzymes using additives
- A23C9/1315—Non-milk proteins or fats; Seeds, pulses, cereals or soja; Fatty acids, phospholipids, mono- or diglycerides or derivatives therefrom; Egg products
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/152—Milk preparations; Milk powder or milk powder preparations containing additives
- A23C9/1526—Amino acids; Peptides; Protein hydrolysates; Nucleic acids; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/04—Animal proteins
- A23J3/08—Dairy proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/14—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Definitions
- food products comprising milk proteins and non-animal proteins, and methods of manufacturing the same.
- Milk is a popular source of nutrition. It comprises high-quality protein, essential minerals (e.g., calcium, phosphorus, zinc, magnesium), and vitamins (e.g., riboflavin, vitamin A, vitamin B12).
- essential minerals e.g., calcium, phosphorus, zinc, magnesium
- vitamins e.g., riboflavin, vitamin A, vitamin B12
- milk components possess advantageous functional characteristics that permit production of a wide variety of derivative dairy products, including yogurt, cheese, cream, ice cream, and butter, which further contribute to the industrial and cultural significance of milk.
- Global yearly sales of dairy products are over $500 billion, and projected to grow.
- Advantageous functional characteristics of milk components include denaturation, aggregation, and interactions of milk proteins, the type and extent of which can be influenced through processing conditions such as time, temperature, pH, protein content, ionic strength, lipid content, carbohydrate content, shear, and enzyme and starter culture action, and are largely responsible for the unique functional and sensory properties of milk and its derivative dairy products.
- milk and its derivative dairy products also harbor attributes that are suboptimal for human consumption, such as, for example, comprising components that cause unhealthy reactions in humans (e.g., allergies, lactose intolerance).
- Such suboptimal attributes are not easily correctable as milk is a complex mixture of several thousand components, the types and amounts of which are defined by the function of the mammary gland of the animal that produced the milk, which in turn evolved over millions of years to serve the particular needs of the animal's offspring and cannot easily be altered.
- lactose-free dairy products and plant- or nut-based dairy-like products (e.g., soy milk, almond milk, coconut milk, pea milk).
- U.S. sales of lactose-free dairy products in 2015 were $6.7 billion, and U.S. sales of plant- or nut-based dairy-like products in 2015 were $13.7 billion.
- the currently available alternatives to milk fall short on matching the flavor and nutritional profiles of conventionally produced milk, and are limited in their utility for producing alternative derivative dairy products.
- the food products comprise one or more native and/or recombinant milk proteins and one or more native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins and that has desirable attributes.
- the food products are dairy products.
- the food products comprise native and/or recombinant milk proteins with non-native glycosylation and/or phosphorylation patterns.
- the food products are essentially free of animal lipids, animal carbohydrates, animal proteins other than the one or more milk proteins, allergenic epitopes, and/or lactose.
- yoghurt-like food products that comprise one or more native and/or recombinant milk proteins and one or more native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins.
- the yoghurt-like food products comprise milk proteins with non-native glycosylation and/or phosphorylation patterns.
- the yoghurt-like food products comprise a single milk protein, wherein the single milk protein is ⁇ -lactoglobulin.
- FIG. 1 shows a perspective view of a yoghurt-like food product, in accordance with a representative embodiment of the present invention.
- FIG. 2 shows pH profiles of whole milk yoghurt and yoghurt-like food products as a function of composition and duration of fermentation of milk-type cultures, in accordance with representative embodiments of the present invention.
- FIG. 3 shows viscosity profiles of whole milk yoghurt and yoghurt-like food products as a function of composition and shear rate, in accordance with representative embodiments of the present invention.
- dairy product refers to milk (e.g., whole milk [at least 3.25% milk fat], partly skimmed milk [from 1% to 2% milk fat], skim milk [less than 0.2% milk fat], cooking milk, condensed milk, flavored milk, goat milk, sheep milk, dried milk, evaporated milk, milk foam), and products derived from milk, including but not limited to yogurt (e.g., whole milk yogurt [at least 6 grams of fat per cup], low-fat yogurt [between 2 and 5 grams of fat per cup], nonfat yogurt [less than 0.5 percent milk fat by weight], greek yogurt [strained yogurt with whey removed], whipped yogurt, goat milk yogurt, Labneh [labne], sheep milk yogurt, yogurt drinks [e.g., whole milk Kefir, low-fat milk Kefir], Lassi), cheese (e.g., whey cheese such as ricotta and mozzarella, semi-soft cheese such as Havarti and Munster, medium-hard cheese such as Swiss and Jarlsberg, hard cheese such
- the term “essentially free of” as used herein refers to the indicated component being either not detectable in the indicated composition by common analytical methods, or being present in such trace amounts as to not be functional.
- the term “functional” as used in this context refers to not contributing to properties of the composition comprising the trace amounts of the indicated component, or to not having health-adverse effects upon consumption of the composition comprising the trace amounts of the indicated component.
- the term “food product” as used herein refers to a composition that can be ingested by humans or animals, including domesticated animals (e.g., dogs, cats), farm animals (e.g., cows, pigs, horses), and wild animals (e.g., non-domesticated predatory animals).
- the food products provided herein meet standards for food safety required by the U.S. Food and Drug Administration (FDA), the U.S. Department of Agriculture, the European Food Safety Authority, and/or other state or region food regulatory agencies.
- FDA U.S. Food and Drug Administration
- the term includes compositions that can be combined with or added to other ingredients to make compositions that can be ingested by humans or animals.
- glycosylation and “glycosylated” as used herein refer to the attachment to proteins of glycan groups (i.e., monosaccharides, disaccharides, polysaccharides, linear glycans, branched glycans, glycans with galf residues, glycans with sulfate and/or phosphate residues; see, for example, Deshpande et al. 2008 Glycobiology 18(8):626-37) via C-linkage, N-linkage, or O-linkage, or via glypiation or phosphoglycosylation.
- glycan groups i.e., monosaccharides, disaccharides, polysaccharides, linear glycans, branched glycans, glycans with galf residues, glycans with sulfate and/or phosphate residues; see, for example, Deshpande et al. 2008 Glycobiology
- Non-limiting examples of such glycan groups include D-glucose, D-galactose, D-mannose, L-fucose, N-acetyl-D-galactose amine, N-acetyl-D-glucose amine, N-acetyl-D-neuraminic acid, galactofuranose, phosphodiesters, acetylglucosamine, acetylgalactosamine, and sialic acid.
- glycosylation pattern refers to the number and/or distribution and/or types of glycan groups on a protein.
- host cell refers to a cell into which a recombinant nucleotide sequence has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein.
- nucleic acid or protein sequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence.
- the length of sequence identity comparison may be over a stretch of at least 9 nucleotides, at least 20 nucleotides, at least 24 nucleotides, at least 28 nucleotides, at least 32 nucleotides, or at least 36 or more nucleotides.
- polynucleotide sequences can be compared using FASTA, Gap, or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wis.
- FASTA provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (see, for example, Pearson, Methods Enzymol. 183:63-98, 1990, which is hereby incorporated by reference in its entirety).
- percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference.
- sequences can be compared using the computer program, BLAST, especially blastp or tblastn (Altschul et al., J. Mol. Biol. 215:403-410, 1990; Gish and States, Nature Genet. 3:266-272, 1993; Madden et al., Meth. Enzymol. 266:131-141, 1996; Altschul et al., Nucleic Acids Res. 25:3389-3402, 1997; Zhang and Madden, Genome Res. 7:649-656, 1997).
- isolated refers to the component being substantially separated from cellular components (e.g., membrane lipids, chromosomes, proteins) of the source from which the component originated.
- isolated with respect to protein indicates that the preparation of protein is at least 60% pure, e.g., greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% pure. The term does not require that the biomolecule has been separated from all other chemicals, although certain isolated biomolecules may be purified to near homogeneity.
- milk protein refers to a protein that is found in a mammal-produced milk, or a protein that has a sequence that is at least 80% identical (e.g., at least 85%, at least 90%, at least 95% identical) to the sequence of a protein that is found in a mammal-produced milk, as well as to fragments of such proteins, as well as to polypeptides that comprise milk protein repeats.
- fragment refers to a polypeptide that is shorter in length than a native milk protein (e.g., less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, less than 50%, less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% of the length of the native milk protein).
- a native milk protein e.g., less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, less than 50%, less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% of the length of the native milk protein).
- milk protein repeat refers to an amino acid sub-sequence of a native milk protein that is present more than once in a polypeptide (e.g., a concatenated sequence), wherein the repeated amino acid sub-sequences can be consecutive (i.e., have no intervening amino acid sequences) or non-consecutive (i.e., have intervening amino acid sequences).
- microbe as used herein is an abbreviation for microorganism, and refers to a unicellular organism. As used herein, the term includes all bacteria, all archaea, unicellular protista, unicellular animals, unicellular plants, unicellular fungi, unicellular algae, all protozoa, and all chromista.
- non-animal refers to a component (e.g., protein, lipid, carbohydrate) that is not native to an animal cell.
- non-native glycosylation pattern refers to a difference in one or more location(s) of glycosylation in a protein, and/or a difference in the amount of and/or type of glycosylation at one or more location(s) in a protein compared to the native protein.
- non-purified protein refers to a protein preparation in which no protein is more concentrated relative to other proteins in the protein preparation than is the case in the natural source from which the protein preparation is derived.
- nucleic acids disclosed herein may include both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. They may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases.
- Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates), charged linkages (e.g., phosphorothioates, phosphorodithioates), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids) Examples of modified nucleotides are described in Malyshev et al., Nature 509:385-388, 2014; and Li et al., J.
- partially purified protein refers to a protein preparation in which one or more proteins are between 2-fold and 10-fold more abundant relative to other proteins in the protein preparation than they are present in the natural source from which the protein preparation is derived.
- phosphorylation and “phosphorylated” as used herein refer to the attachment to proteins of phosphate groups.
- phosphorylation pattern refers to the number and/or distribution of phosphate groups on a protein.
- protein refers to a polymeric form of amino acids of any length, which can include coded and non-coded amino acids, chemically or biochemically modified or derivatized amino acids, and polypeptides having modified peptide backbones.
- protein concentrate refers to a protein material that is obtained from a natural source and/or modified natural source upon removal of at least a portion of (or a substantial portion of) one or more of carbohydrates, lipids, ash, and other minor constituents. It typically comprises at least about 30%, 40%, 50%, 60%, 70%, or 80% by weight of protein.
- protein isolate refers to a protein material that is obtained from a natural source and/or modified natural source upon removal of at least a portion of (or a substantial portion of) one or more of polysaccharides, soluble carbohydrates, ash, and other minor constituents. It typically has at least about 40%, 50% 60%, 70%, 80%, or 90% by weight of protein.
- purified protein refers to a protein preparation in which one or more proteins are at least 10-fold more abundant relative to other proteins present in the protein preparation than they are present in the natural source from which the protein preparation is derived.
- nucleic acid e.g., a gene
- the term can be used, for example, to describe a nucleic acid that has been removed from its naturally occurring environment, a nucleic acid that is not associated with all or a portion of a nucleic acid abutting or proximal to the nucleic acid when it is found in nature, a nucleic acid that is operatively linked to a nucleic acid that it is not linked to in nature, or a nucleic acid that does not occur in nature.
- nucleic acid can be used, e.g., to describe cloned DNA isolates, or a nucleic acid including a chemically-synthesized nucleotide analog.
- a nucleic acid is also considered “recombinant” if it contains any modifications that do not naturally occur to the corresponding nucleic acid in a genome.
- an endogenous coding sequence is considered “recombinant” if it contains an insertion, deletion, or a point mutation introduced artificially, e.g., by human intervention.
- a “recombinant nucleic acid” also includes a nucleic acid integrated into a host cell chromosome at a heterologous site and a nucleic acid construct present as an episome.
- recombinant when “recombinant” is used to describe a protein, it can refer to, for example, a protein that is produced in a cell of a different species or type as compared to the species or type of cell that produces the protein in nature.
- the term “recombinant host cell” as used herein refers to a cell into which a recombinant nucleic acid has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein.
- secreted fungal protein refers to a protein that is native to a fungus and that is natively secreted by the fungus, or to a protein that is at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to such a protein.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid generally refers to a circular double stranded DNA loop into which additional DNA segments may be ligated, but also includes linear double-stranded molecules such as those resulting from amplification by the polymerase chain reaction (PCR) or from treatment of a circular plasmid with a restriction enzyme.
- Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC).
- BAC bacterial artificial chromosome
- YAC yeast artificial chromosome
- Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome (discussed in more detail below).
- vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., vectors having an origin of replication which functions in the host cell).
- Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and are thereby replicated along with the host genome.
- provided herein are food products that comprise one or more native and/or recombinant milk proteins and one or more native and/or recombinant non-animal proteins and that have desirable attributes.
- the invention is based on the discovery that milk proteins can be combined with non-animal proteins to produce compositions that have desirable attributes.
- the invention is further based on the discovery that milk proteins can be produced recombinantly.
- the invention is further based on the discovery that recombinant milk proteins can be engineered to have specific functional properties, and that combining the engineered recombinant milk proteins with non-animal proteins can produce compositions that have desirable attributes.
- Additional advantages of the food products provided herein include, for example, advantages in production, including but not limited to smaller negative impacts on the environment (e.g., less carbon dioxide production than the estimated 600 billion kg of carbon dioxide that are produced per year during conventional milk production); no negative impact on animal welfare (e.g., no animal confinement, force feeding, premature weaning, or hormone treatment); smaller resource requirements (e.g., less water used than the estimated 1,000 L/L of water that are used during conventional milk production, less land use, less energy use, less feed, no animals, less shipment due to local production); mitigation of supply chain and production risk (e.g., use of non-animal proteins derived from a greater variety of natural sources providing supply chain variations and increased flexibility in production methods); and reduced production costs.
- advantages in production including but not limited to smaller negative impacts on the environment (e.g., less carbon dioxide production than the estimated 600 billion kg of carbon dioxide that are produced per year during conventional milk production); no negative impact on animal welfare (e.g., no animal confinement, force feeding, premature weaning, or
- the food products comprise only non-purified milk protein and/or non-animal protein. In other embodiments, the food products comprise at least some partially purified milk protein and/or non-animal protein. In yet other embodiments, the food products comprise at least some purified milk protein and/or non-animal protein. In some embodiments, the food products comprise more than 100, more than 50, more than 40, more than 30, more than more than 15, more than 10, more than 5, or more than 2; or no more than 10, no more than no more than 4, no more than 3, or no more than 2 different types of proteins. In some embodiments, the food products comprise more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, or more than 95% by weight of a single type of protein. In some embodiments, the food products comprise less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5% by weight of a single type of protein.
- the food products comprise one or more milk proteins and one or more non-animal proteins at weight ratios of total milk protein to total non-animal protein of about 100 to 1, about 50 to 1, about 40 to 1, about 30 to 1, about 20 to 1, about 10 to 1, about 9 to 1, about 8 to 1, about 7 to 1, about 6 to 1, about 5 to 1, about 4 to 1, about 3 to 1, about 2 to 1, about 1 to 1, about 1 to 2, about 1 to 3, about 1 to 4, about 1 to 5, about 1 to 6, about 1 to 7, about 1 to 8, about 1 to 9, about 1 to 10, about 1 to 20, about 1 to 30, about 1 to 40, about 1 to or about 1 to 100.
- the food products further comprise lipids. In some embodiments, the food products further comprise carbohydrates. In some embodiments, the food products further comprise micelles. In some embodiments, the food products further comprise other components disclosed herein.
- the food products resemble dairy products.
- the food products resemble milk, yogurt (i.e., the food products are “yoghurt-like”), cheese (i.e., the food products are “cheese-like”; e.g., Parmesan cheese-like, mozzarella cheese-like, pasta filata cheese-like, processed cheese-like), cream, ice cream, butter, infant formula, milk protein concentrate, whey protein concentrate, whey protein isolate, casein concentrate, casein isolate, skim milk powder, whole milk powder, infant formula, nutritional supplements, texturizing blends, flavoring blends, or coloring blends.
- the food products are vegan. In some embodiments, the food products are kosher. In some embodiments, the food products are halal. In some embodiments, the food products are essentially free of components derived from nuts. In some embodiments, the food products are essentially free of gluten. In some embodiments, the food products are essentially free of allergenic epitopes (e.g., see, for example, Simonetta et al. 2012 Allergenicity of Milk Proteins, Milk Protein, Dr. Walter Hurley (ed.), InTech.). In some embodiments, the food products are essentially free of soy protein. In some embodiments, the compositions are essentially free of saturated lipids. In some embodiments, the food products are essentially free of animal lipids.
- the food products are essentially free of cholesterol. In some embodiments, the food products are essentially free of animal carbohydrates. In some embodiments, the food products are essentially free of lactose. In some embodiments, the food products are essentially free of animal proteins other than the one or more native and/or recombinant milk proteins. In some embodiments, the food products are essentially free of serum proteins (e.g., enzymes, growth factors, nutrient transporters, or disease resistance factors found in serum). In some embodiments, the food products are essentially free of whey proteins. In some embodiments, the food products are essentially free of immunoglobulins. In some embodiments, the food products are essentially free of lactoferrin.
- serum proteins e.g., enzymes, growth factors, nutrient transporters, or disease resistance factors found in serum.
- the food products are essentially free of whey proteins.
- the food products are essentially free of immunoglobulins. In some embodiments, the food products are essentially free of lactoferrin.
- the food products are essentially free of caseins. In some embodiments, the food products are essentially free of lactoperoxidase. In some embodiments, the food products are essentially free of lipase. In some embodiments, the food products are essentially free of leukocytes. In some embodiments, the food products are essentially free of infectious agents transmitted by breastfeeding. In some embodiments, the food products are essentially free of antibiotics. In some embodiments, the food products are essentially free of hormones (e.g., stress hormones, growth hormones). In some embodiments, the food products are essentially free of heavy metals. In some embodiments, the food products are essentially free of bacteria (e.g., E.
- the food products are essentially free of yeast. In some embodiments, the food products are essentially free of viruses (e.g., noroviruses). In some embodiments, the food products are essentially free of prions. In some embodiments, the food products are essentially free of pesticides. In some embodiments, the food products are essentially free of mycotoxins (e.g., aflatoxin).
- the compositions are principally or entirely composed of components derived from non-animal sources. In alternative embodiments, the compositions are composed of components partially derived from animal sources but supplemented with components derived from non-animal sources. In some such embodiments, the compositions comprise 2% or less by weight of components derived from animal.
- the food products provided herein comprise one or more native and/or recombinant milk proteins.
- the milk proteins can be derived from any mammalian species, including but not limited to cow, human, sheep, goat, buffalo, camel, horse, donkey, lemur, panda, guinea pig, squirrel, bear, macaque, gorilla, chimpanzee, mountain goat, monkey, ape, cat, dog, wallaby, rat, mouse, elephant, opossum, rabbit, whale, baboons, gibbons, orangutan, mandrill, pig, wolf, fox, lion, tiger, echidna, and woolly mammoth.
- mammalian species including but not limited to cow, human, sheep, goat, buffalo, camel, horse, donkey, lemur, panda, guinea pig, squirrel, bear, macaque, gorilla, chimpanzee, mountain goat, monkey, ape, cat, dog, wallaby, rat, mouse, elephant, opossum, rabbit, whale, baboons, gib
- the food products comprise between 0.1% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, or 0.3%; between 0.3% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%
- the milk proteins can be a single type of milk protein (e.g., only ⁇ -lactoglobulin) or two or more different types of milk protein (e.g., ⁇ -lactoglobulin and ⁇ -casein and ⁇ -lactoalbumin).
- the milk proteins are caseins.
- the caseins can be native or recombinant caseins, or combinations thereof.
- Non-limiting examples of caseins include Bos taurus ⁇ -casein, Bos taurus ⁇ -caseins, Bos taurus ⁇ -caseins, Bos taurus ⁇ -S1-caseins, Bos taurus ⁇ -S2-caseins, and mixtures thereof.
- Food products comprising ⁇ -caseins are desirable as ⁇ -caseins aide in emulsification of other ingredients (e.g., other proteins) in food products.
- Food products comprising ⁇ -caseins are desirable as ⁇ -casein comprises sites for enzyme rennet activity, which is key to making cheese.
- the caseins are less than 5 different types of caseins, less than 4 different types of caseins, less than 3 different types of caseins (e.g., 2 types of caseins, such as ⁇ -casein and ⁇ -casein), or less than 2 different types of caseins (i.e., a single type of casein; e.g., only ⁇ -casein).
- the milk proteins are whey proteins.
- the whey proteins can be native or recombinant whey proteins, or combinations thereof.
- Non-limiting examples of whey proteins include ⁇ -lactalbumins, ⁇ -lactoglobulins, lactoferrins, transferrins, serum albumins, lactoperoxidases, glycomacropeptides, and mixtures thereof.
- Food products comprising ⁇ -lactoglobulin and/or ⁇ -lactoalbumin are desirable, particularly for athletes, as ⁇ -lactoglobulin and ⁇ -lactoalbumin have high contents of branched amino acids, which are thought to aide production of muscle tissue.
- ⁇ -lactoglobulin is desirable as a food additive as it has good water binding ability, which property makes ⁇ -lactoglobulin suitable for managing water activity of food products (see, for example, Gustavo et al. Water Activity in Foods: Fundamentals and Applications, October 2007, Wiley-Blackwell, ISBN: 978-0-8138-2408-6) and as an anti-microbial agent that can extend the shelf life of food products.
- Another property that makes ⁇ -lactoglobulin a desirable food additive is that ⁇ -lactoglobulin can readily absorb at interfaces and produce highly stable dispersions.
- Food products comprising lactoferrin are desirable as lactoferrin binds free iron and depletes microorganisms from essential substances needed for their growth, making it suitable for use as an anti-bacterial and anti-viral agent in food products such as infant formula, functional dairy products, and dietary supplements.
- Food products comprising lactoperoxidase are desirable as lactoperoxidase is suitable for use as a preservative.
- the whey protein is a single type of whey protein.
- the single type of whey protein is ⁇ -lactoglobulin.
- the single type of whey protein is ⁇ -lactalbumin.
- the food products comprise caseins and whey proteins.
- the food products comprise total caseins and total whey proteins at ratios of about 10 to 1, about 9 to 1, about 8 to 1, about 7 to 1, about 6 to 1, about 5 to 1, about 4 to 1, about 3 to 1, about 2 to 1, about 1 to 1, about 1 to 2, about 1 to 3, about 1 to 4, about 1 to 5, about 1 to 6, about 1 to 7, about 1 to 8, about 1 to 9, or about 1 to 10.
- Non-limiting examples of caseins and whey proteins, and nucleic acid sequences encoding caseins and whey proteins, are disclosed in PCT filing PCT/US2015/046428 filed Aug. 21, 2015, which is hereby incorporated herein in its entirety, and Table 1.
- Caseins and whey proteins can also be proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native caseins and native whey proteins, respectively, and nucleic acids encoding caseins and whey proteins can also be nucleic acids that encode proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native caseins and native whey proteins, respectively.
- nucleic acids encoding caseins and whey proteins can also be nucleic acids that encode proteins that are at
- the milk proteins are glycosylated. In some such embodiments, the milk proteins have native glycosylation. In other such embodiments, the milk proteins have non-native glycosylation. In some such embodiments, the non-native glycosylation is non-mammalian glycosylation (i.e., glycosylation not found in a mammal).
- the food products provided herein comprise one or more milk proteins with native glycosylation, or one or more proteins with non-native glycosylation, or mixtures thereof.
- the milk proteins have a native number and/or distribution of consensus sequences for N-glycosylation (e.g., amino acid sequence Asn-X-See/Thr, wherein X is any amino acid residue), O-glycosylation, and/or C-glycosylation.
- the food products provided herein comprise one or more milk proteins with native glycosylation, or one or more proteins with non-native glycosylation, or mixtures thereof.
- the milk proteins have a non-native number and/or distribution of consensus sequences for N-glycosylation, O-glycosylation, and/or C-glycosylation (see, for example, Tatsumi et al. 2012 Biosci. Biotechnol. Biochem. 76(3):478; Kalidas et al. 2001 Protein Eng. 14(3):201).
- the milk proteins are phosphorylated.
- the milk proteins have native phosphorylation.
- the milk proteins have non-native phosphorylation. Altered phosphorylation can influence properties of milk proteins (e.g., increase solubility, hydrophilicity, heat stability), which in some embodiments can make such milk proteins more suitable for use in the food products provided herein (for example, proteins with better solubility are more suitable for production of beverages).
- the food products provided herein comprise one or more milk proteins with native phosphorylation, or one or more proteins with non-native phosphorylation, or mixtures thereof.
- the milk proteins have a non-native number and/or distribution of amino acid residues capable of being phosphorylated (e.g., tyrosine, threonine, serine).
- the recombinant milk proteins lack epitopes that can elicit immune responses in human or animals.
- the recombinant milk proteins can have one or more identical or similar properties as equivalent native milk proteins. In other embodiments in which the food products comprise recombinant milk proteins, the recombinant milk proteins can have one or more different properties than equivalent native milk proteins.
- Non-limiting examples of such properties include solubility, turbidity, effect on viscosity, ability to withstand heat (i.e., aggregation or precipitation upon heating), ability to bind specific types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids), digestibility (i.e., rate at which a composition is degraded in a human or animal intestinal tract), ability to form micelles, ability to form micelles that encapsulate specific types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids), ability to form micelles of specific sizes, ability to form micelles of specific digestibility, ability to form micelles with specific stabilities at specific temperatures (e.g., refrigeration, ambient temperature, heat), ability to form micelles that have similar or superior emulsifying qualities as micelles comprise
- the ability to from micelles can be determined experimentally, for example, by combining the micelle forming proteins in water or oil, homogenizing the mixture, and analyzing the types and amounts of micelles formed.
- the ability of compounds to be encapsulated by micelles can be determined experimentally by combining the compounds with micelle forming proteins, homogenizing the mixture, extracting the micelles (e.g., via centrifugation at 14,000 g), and determining the concentration of the compounds left in the liquid phase.
- the emulsifying quality of micelles can be measured using a rheometer.
- the food products provided herein comprise one or more native and/or recombinant non-animal proteins.
- the non-animal proteins can be derived from any one or more non-animal sources.
- Non-animal sources may be obtained from a variety of sources including but not limited to nature (e.g., lakes, oceans, soils, rocks, gardens, forests, plants, animals), brewery stores, and commercial cell banks (e.g., ATCC, collaborative sources).
- Suitable non-animal sources include naturally occurring plants, algae, fungi, or microbes.
- spermatophytes spermatophyta
- acrogymnospermae angiosperms (magnoliophyta)
- ginkgoidae pinidae
- mesangiospermae cycads
- Ginkgo conifers, gnetophytes, Ginkgo biloba
- cypress junipers, thuja , cedarwood, pines, angelica , caraway, coriander, cumin, fennel, parsley, dill, dandelion, helichrysum, marigold, mugwort, safflower, camomile, lettuce, wormwood, calendula, citronella, sages, thyme, chia seed, mustard, olive, coffee, capsicum , eggplant, paprika, cranberry, kiwi, vegetable plants (e.g., carrot, celery), tagetes
- suitable algae include but are not limited to green algae (e.g., Chlorella ), brown algae (e.g., Alaria marginata, Analipus japonicus, Ascophyllum nodosum, Ecklonia sp, Eisenia bicyclis, Hizikia fusiforme, Kjellmaniella gyrata, Laminaria angustata, Laminaria longirruris, Laminaria Longissima, Laminaria ochotensis, Laminaria claustonia, Laminaria saccharina, Laminaria digitata, Laminaria japonica, Macrocystis pyrifera, Petalonia fascia, Scytosiphon lome ), red algae (e.g., Gigartinaceae, Soliericeae, Chondrus crispus, Chondrus ocellatus, Eucheuma cottonii, Eucheuma spinosum, Furcellaria fastigiata, Gracilaria bursa -
- fungi include but are not limited to Aspergillus sp., Aspergillus nidulans, Aspergillus niger, Aspergillus niger var. awamori, Aspergillus oryzae, Candida albicans, Candida etchellsii, Candida guilliermondii, Candida humilis, Candida hpolytica, Candida pseudotropicalis, Candida utilis, Candida versatilis, Chrysosporium lucknowense, Debaryomyces hansenii, Endothia parasitica, Eremothecium ashbyii, Fusarium sp., Fusarium gramineum, Fusarium moniliforme, Fusarium venenatum, Hansenula polymorpha, Kluyveromyces sp., Kluyveromyces lactis, Kluyveromyces marxianus, Kluyveromyces marxianus var.
- suitable microbes include but are not limited to firmicutes, cyanobacteria (blue-green algae), oscillatoriophcideae, bacillales, lactobacillales, oscillatoriales, bacillaceae, lactobacillaceae, Acetobacter suboxydans, Acetobacter xylinum, Actinoplane missouriensis, Arthrospira platensis, Arthrospira maxima, Bacillus cereus, Bacillus coagulans, Bacillus subtilus, Bacillus cerus, Bacillus licheniformis, Bacillus stearothermophilus, Bacillus subtilis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactococcus lactis, Lactococcus lactis Lancefield Group N, Lactobacillus reuteri, Leuconostoc citrovorum, Leuconostoc dextranicum, Leuconostoc
- the food products comprise between 0.01% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0.05%; between 0.05% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 90%, 85%, 80%, 75%, 70%, 65%,
- the non-animal proteins can be native or recombinant non-animal proteins, or combinations thereof.
- the non-animal proteins are hydrolyzed native or recombinant non-animal proteins.
- the hydrolyzed non-animal proteins do not comprise terminal leucine and/or valine amino acids as terminal leucine and valine amino acid residues can impart a bitter taste on proteins.
- the non-animal protein is derived from pea (i.e., pea proteins).
- the pea proteins may be derived from whole pea, or from a component of pea in accordance with methods generally known in the art.
- the pea may be standard pea (i.e., non-genetically modified pea), commoditized pea, genetically modified pea, or combinations thereof.
- the pea proteins are Pisum sativum proteins.
- the non-animal protein is derived from fungi (i.e., fungal proteins).
- the fungal proteins are native to one of the fungi disclosed herein (e.g., Aspergillus niger, Aspergillus niger var. awamori, Aspergillus oryzae, Candida guilliermondii, Candida lipolytica, Candida pseudotropicalis, Candida utilis, Chrysosporium lucknowense, Endothia parasitica, Eremothecium ashbyii, Fusarium moniliforme, Kluyveromyces lactis, Kluyveromyces marxianus var.
- the fungal proteins have a similar charge (isoelectric point, pI) and/or size (molecular weight) as the milk proteins comprised in the food products.
- Non-limiting examples of fungal proteins include glucoamylase, xylanases, amylases, glucanases, members of the SUN family (Sim 1p, Uth1p, Nca3p, Sun4p), elongation factor 1-alpha, and mitochondrial leucyl-tRNA synthetase.
- the fungal proteins are secreted fungal proteins.
- Non-limiting examples of secreted fungal proteins include alpha-amylase, alpha-galactosidase, cellulase, endo-1,4-beta-xylanase, endoglucanase, exo-1,4-beta-xylosidase, glucoamylase, peptidase, aspergillopepsin-1, 1,4-beta-D-glucan cellobiohydrolase A, alpha-galactosidase A, alpha-galactosidase B, alpha-galactosidase D, alpha-glucuronidase A, beta-galactosidase C, glucan 1,3-beta-glucosidase A, and glucan endo-1,3-beta-glucosidase eglC.
- Non-animal proteins can also be proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native non-animal proteins, respectively, and nucleic acids encoding non-animal proteins can also be nucleic acids that encode proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native non-animal proteins, respectively.
- nucleic acids encoding non-animal proteins can also be nucleic acids that encode proteins that are at least 80% (e.g., at least 80%, at least
- the non-animal proteins have identical or similar properties as milk proteins. In some embodiments, the non-animal proteins have different properties than milk proteins. Examples of such properties include but are not limited to solubility, turbidity, effect on viscosity, heat stability (i.e., aggregation or precipitation behavior upon heating), ability to bind specific types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids), cellular localization (e.g., entirely extracellular, partially extracellular), glycosylation pattern, phosphorylation pattern, amphiphilicity, emulsifying ability, foam forming ability, [i.e., ability to form stable foams], flavor binding ability, water binding ability, ability to form heat- or pressure-induced gels, spectral absorption pattern, rennet cleavage sites, syneresis properties of rennet gels produced, digestibility, ability to form micelles
- the non-animal proteins comprise phosphate groups.
- plant phosphoproteins include, but are not limited to, the proteins listed in Table 2.
- Non-Animal Phosphoproteins AGI code Protein name At1g22530 PAtellin-2 (PAtL-2) At4g24190 Endoplasmin homologue (SHD) At5g56030 HeAt shock protein 81-2 At5g11170 DEAD-box AtP-dependent RNA helicase 15 At5g22650 Histone deacetylase HDT2 At1g09640 Probable elongAtion factor 1- ⁇ 1 At1g76180 Dehydrin ERD14 At5g60640 Protein disulphide isomerase-like protein AtCg00120 AtP synthase subunit ⁇ , chloroplastic AtCg00490 Rubisco large chain At1g67090 Rubisco small chain 1A, chloroplastic At2g39990 eIF2 (eukaryotic translAtion initiAtion factor) At5g14740 ⁇ -Carbonic anhydrase 2 At5g43830 GAtase-like protein At5g56030 HeAt shock
- the non-animal proteins have similar or similarly distributed phosphorylation patterns as milk proteins.
- the non-animal proteins comprise carbohydrate groups (e.g., glycosylated groups).
- the non-animal proteins have similar or similarly distributed glycosylation patterns as milk proteins.
- the non-animal proteins have even distributions of hydrophobic and hydrophilic residues.
- the non-animal proteins have similar or similarly distributed hydrophobic sites as milk proteins.
- the non-animal proteins have similar or similarly distributed hydrophilic sites as milk proteins.
- the non-animal proteins have even distributions of basic and acidic residues (i.e., are amphipathic in unfolded conformation). In some embodiments, the non-animal proteins have similar or similarly distributed acidic sites as milk proteins. In some embodiments, the non-animal proteins have similar or similarly distributed basic sites as milk proteins. In some embodiments, the non-animal proteins are lipid soluble. In some embodiments, the non-animal proteins are water soluble.
- the non-animal proteins have similar or superior abilities to form micelles as caseins. In some embodiments, the non-animal proteins can form micelles without caseins. In some embodiments, the non-animal proteins can form micelles with one or more caseins that mimic a similar or superior emulsion quality as micelles formed only by caseins. In some embodiments, the non-animal proteins can form micelles without caseins that mimic a similar or superior emulsion quality as micelles formed only by caseins.
- the non-animal proteins can form micelles with one or more caseins that encapsulate different types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids) than are encapsulated by micelles formed by caseins alone.
- the non-animal proteins can form micelles without caseins that encapsulate different types or amounts of compounds than are encapsulated by micelles formed by caseins alone.
- Suitable non-animal proteins can be identified by obtaining secretomes (i.e., secreted proteins, obtained by, for example, culturing the non-animal sources in liquid culture, removing cells from the cell culture [e.g., via centrifugation], and optionally concentrating the remaining culture medium; or by sequencing genomes and in silico identifying secreted proteins, as described, for example, by Mattanovich et al.
- secretomes i.e., secreted proteins, obtained by, for example, culturing the non-animal sources in liquid culture, removing cells from the cell culture [e.g., via centrifugation], and optionally concentrating the remaining culture medium; or by sequencing genomes and in silico identifying secreted proteins, as described, for example, by Mattanovich et al.
- non-animal proteins are identified by screening a calcium-enriched fraction of soy proteins for proteins that have similar, identical, or different properties compared to milk proteins.
- a suitable assay for identifying the ability of proteins to form micelles is by combining the constituent proteins (e.g., caseins, non-animal proteins), homogenizing the mixture, isolating micelles (e.g., by centrifugation), and quantitating the micelles.
- a suitable assay for identifying the encapsulation ability of micelles is by combining the constituent proteins (e.g., caseins, non-animal proteins) with the compounds to be encapsulated, homogenizing the mixture, isolating micelles (e.g., by centrifugation), and quantitating the amount of the compounds to be encapsulated in the remaining solution.
- the non-animal proteins readily associate with other proteins.
- the non-animal proteins can bind calcium.
- non-animal proteins are secreted proteins.
- the non-animal proteins are resistant to degradation by proteases.
- the non-animal proteins comprise extracellular domains of fungal floculation proteins (i.e., flocculins; e.g., flocculin FLO5 of Saccharomyces cerevisiae ).
- the non-animal proteins comprise domains of legume nodulation proteins (e.g., NodO of Rhizobium leguminosarum and its homologs in Lotus japonicus ).
- the non-animal proteins are C2-domain ABA proteins of Arabidopsis thaliana (CARS).
- the non-animal proteins are heat shock proteins (e.g., Uniprot ID C4QZS3).
- the non-animal proteins are proteases (e.g., vacuolar aspartyl protease (Proteinase A) of Komagataella pastoris , vacuolar proteinase B (YscB) of Komagataella pastoris ).
- the non-animal proteins are peptidases.
- the food products provided herein further comprise lipids.
- Lipids are present in, for example, dairy products, and are critical for sensory characteristics such as mouthfeel and consistency.
- lipids provide nutrition and health benefits.
- lipids can influence the flavors and/or aroma of food products.
- the food products provided herein comprise one or more lipids selected from the group consisting of fats, oils, monoglycerides, diglycerides, triglycerides, phospholipids, and free fatty acids.
- the food products comprise essentially no animal lipids.
- the food products comprise only saturated lipids.
- the food products comprise only unsaturated lipids.
- the food products comprise saturated lipids and unsaturated lipids.
- oils include plant oils (e.g., sunflower oil, coconut oil, mustard oil, peanut oil, canola oil, corn oil, cottonseed oil, flax seed oil, olive oil, palm oil, rapeseed oil, safflower oil, sesame oil, soybean oil, almond oil, beech nut oil, brazil nut oil, cashew oil, hazelnut oil, macadamia nut oil, mongongo nut oil, pecan oil, pine nut oil, pistachio nut oil, walnut oil, avocado oil, grape oil), microbe-derived oils, algae-derived oils, fungus-derived oils, marine animal oils (e.g., Atlantic fish oil, Pacific fish oil, Mediterranean fish oil, light pressed fish oil, alkaline treated fish oil, heat treated fish oil, light and heavy brown fish oil, bonito oil, pilchard oil, tuna oil, sea bass oil, halibut oil, spearfish oil, barracuda oil, cod oil, menhaden oil, sardine oil
- plant oils
- longer chain oils e.g., sunflower oil, corn oil, olive oil, soy oil, peanut oil, walnut oil, almond oil, sesame oil, cottonseed oil, canola oil, safflower oil, flax seed oil, palm oil, palm kernel oil, palm fruit oil, coconut oil, babassu oil, shea butter, mango butter, cocoa butter, wheat germ oil, rice bran oil, engineered sunflower oil that overexpresses oleic acid by 400
- sunflower oil corn oil
- sunflower oil e.g., sunflower oil, corn oil, olive oil, soy oil, peanut oil, walnut oil, almond oil,
- Non-limiting examples of monoglycerides and diglycerides include plant-derived monoglycerides and diglycerides, (e.g., monoglycerides and diglycerides derived from sunflower, coconut, peanut, cottonseed, olive, palm, rapeseed, safflower, sesame seed, soybean, almond, beech nut, Brazil nut, cashew, hazelnut, macadameia nut, mongongo nut, pecan, pine nut, pistachio, walnut, and avocado).
- the monoglycerides and diglycerides can include the acyl chain of any of the free fatty acids listed herein. Additional examples of monoglycerides and diglycerides are known in the art.
- Non-limiting examples of free fatty acids include butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, myristoleic acid, pamitoleic acid, sapienic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linoelaidic acid, ⁇ -linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, omega-fatty acids (e.g., arachidonic acid, omega-3-fatty acids, omega-6-fatty acids, omega-7-fatty acids, omega-9-fatty acids), fatty acids with even number of carbons of 4-16 carbons in length, monosaturated acids [particularly with 18 carbons], fatty acids with low interfacial tension (
- Non-limiting examples of phospholipids include lecithin phospholipids (e.g., soy lecithin phospholipids, sunflower lecithin phospholipids, cotton lecithin phospholipids, rapeseed lecithin phospholipids. rice bran lecithin phospholipids, and corn lecithin phospholipids), cardiolipin, ceramide phosphocholines, ceramide phosphoethanolamines, glycerophospholipids, phasphatidicacid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphospingolipids, and phsophatidylserine.
- the phospholipids are not derived from or produced by a mammal. Additional aspects of phospholipids are known in the art.
- Non-limiting examples of triglycerides include tributyrin, short-chain triglycerides, short-chain triglycerides comprising three oleic acids; short-chain triglycerides comprising hexanoic acid; short-chain triglycerides comprising hexanoic acid and butyric acid; short-chain triglycerides comprising hexanoic acid and decanoic acid; and short-chain triglycerides comprising one butyric, one hexanoic, and one octanoic acid.
- the flavor profiles of the compositions provided herein are modulated by incorporating synthetic short-chain triglycerides combined with plant-based oils (e.g., sunflower oil) in desired combinations.
- plant-based oils e.g., sunflower oil
- a mixture of [C18 C18 C6] and [C18 C6 C18] provides a different flavor profile than a mixture of [C18 C4 C4] and [C18 C10 C10].
- the food products provided herein comprise between 0% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or 0.3%; between 0.3% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or
- the food products provided herein comprise between 0% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or 0.3%; between 0.3% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or 0.3%; between 0.3% and 50%, 40%, 3
- the food products provided herein further comprise carbohydrates.
- Carbohydrates are present in, for example, dairy products, and provide sweetness to the taste profiles and/or serve as fast-acting energy and nutrition sources.
- the food products provided herein comprise one or more saccharides (e.g., monosaccharides, disaccharides, polysaccharides).
- saccharides include glucose, mannose, maltose, fructose, galactose, lactose, sucrose, monatin, and tagatose.
- the food products comprise between 0.001% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.01%; between 0.001% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%; between 0.1% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%
- the food products comprise carbohydrates derived from plants (e.g., beet, celery, basil, honey, cherries, corn, spinach, plums, kiwis, peas).
- carbohydrates derived from plants e.g., beet, celery, basil, honey, cherries, corn, spinach, plums, kiwis, peas.
- the food products comprise less than 4.5%, less than 4.25%, less than 4%, less than 3.75%, less than 3.5%, less than 3.25%, less than 3%, less than 2.75%, or less than 2.5% by weight of monosaccharides and/or disaccharides.
- the food products comprise lactic acid bacteria (i.e., members of the order Lactobacillales that produce lactic acid during fermentation).
- Lactic acid bacteria are used in the fermentative production of a large number of dairy and non-dairy food products, including yoghurt, cheese, butter, buttermilk, kefir, koumiss, sourdough bread, sorghum beer, cassava, and pickled vegetables.
- the lactic acid produced by lactic acid bacteria contributes to required low pH conditions.
- lactic acid bacteria can contribute taste agents and probiotics to food products.
- Non-limiting examples of suitable lactic acid bacteria include Lactobacillus acidophilus, Lactobacillus klebsiella, Lactobacillus leuconostoc, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus plantarum, Lactobacillus caret, Lactobacillus pentoaceticus, Lactobacillus brevis, Lactobacillus thermophilus , and other members of the genera Lactobacillus, Leuconostoc, Pediococcus, Lactococcus , and Streptococcus , as well as the more peripheral Aerococcus, Carnobacterium, Enterococcus, Oenococcus, Sporolactobacillus, Tetragenococcus, Vagococcus , and Weissella that are classified as safe for consumption by humans and/or other animals by a federal or local regulatory agency (e.g., the Federal Food and Drug Agency [FDA]).
- FDA Federal Food
- the food products are derived by fermentative production of lactic acid by lactic acid bacteria comprised in the food products. In some such embodiments, the food products comprise lactic acid. In some such embodiments, the food products comprise at least 0.5% by weight of lactic acid.
- the food products have a pH of less than 7.5, less than 7, less than 6.5, less than 6, less than 5.5, less than 5, less than 4.9, less than 4.8, less than 4.7, less than 4.6, or less than 4.5; between 3.8 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4, or 3.9; between 3.9 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4; between 4 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9
- the food products provided herein further comprise micelles.
- Micelles are generally (or roughly) spherical supramolecular structures that exist as dispersions within a composition and that can encapsulate components such as water, minerals (mainly calcium and phosphorous), and vitamins. Micelles can be obtained by combining micelle forming proteins (e.g., caseins, whey proteins, or non-animal proteins with certain desirable attributes), homogenizing the mixture, and isolating micelles (e.g., by centrifugation).
- micelle forming proteins e.g., caseins, whey proteins, or non-animal proteins with certain desirable attributes
- the food products provided herein comprise between 0.1% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%; between 1% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%,
- the food products comprise micelles that comprise recombinant and/or native casein. In some embodiments, the food products comprise micelles that comprise recombinant and/or native whey protein. In other embodiments, the food products comprise micelles that comprise recombinant and/or native casein and non-animal proteins. In other embodiments, the food products comprise micelles that comprise recombinant and/or native whey protein and non-animal proteins. In other embodiments, the food products comprise micelles formed only of non-animal proteins.
- the micelles comprise ⁇ -caseins (e.g., any of the ⁇ -caseins described herein). In some embodiments, the micelles comprise ⁇ -caseins (e.g., any of the ⁇ -caseins described herein) and ⁇ -caseins (e.g., any of the ⁇ -caseins described herein).
- the ratios of ⁇ -caseins to ⁇ -caseins in the micelles are 2:1 to 5.5:1, 2:1 to 5:1, 2:1 to 4.5:1, 2:1 to 4:1, 2:1 to 3.5:1, 2:1 to 3:1, 2:1 to 2.5:1, 2.5:1 to 5:1, 2.5:1 to 4.5:1, 2.5:1 to 4:1, 2.5:1 to 3.5:1, 2.5:1 to 3:1, 3:1 to 5:1, 3:1 to 4.5:1, 3:1 to 4:1, 3:1 to 3.5:1, 3.5:1 to 5:1, 3.5:1 to 4.5:1, 3.5:1 to 4:1, 4:1 to 5:1, 4:1 to 4.5:1, or 4.5:1 to 5:1.
- the micelles comprise ⁇ -lactoglobulin.
- the micelles have diameters (or populations of micelles have average diameters) of 20 nm to 350 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, 140 nm, 120 nm, 100 nm, 80 nm, 60 nm, or 40 nm; 40 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, 140 nm, 120 nm, 100 nm, 80 nm, or 60 nm; 60 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200
- the food products provided herein comprise micelles comprising recombinant ⁇ -casein and/or recombinant ⁇ -casein and/or ⁇ -lactoglobulin, wherein the micelles have any of the subranges of the diameter of micelles described herein, and wherein the recombinant ⁇ -casein and/or the recombinant ⁇ -casein and/or ⁇ -lactoglobulins are unglycosylated and/or unphosphorylated, or have a non-native glycosylation and/or phosphorylation patterns.
- Micelle properties can be major determinants of the desirable attributes of the compositions provided herein.
- Examples of micelle properties include but are not limited to micelle composition (e.g., types and/or amounts of proteins that form the micelles, types and/or amounts of compounds encapsulated by the micelles), micelle size, and micelle density.
- the size of micelles can be determined by methods known in the art including but not limited to light scattering, microscopy, and spectroscopy.
- the density of micelles can be determined by methods known in the art including but not limited to microscopy and evaporative mass measurements.
- the food products provided herein comprise micelles of such properties (e.g., composition, size, density) that the compositions have similar or identical attributes as dairy products.
- similar or identical attributes include but are not limited to colors of dairy products (e.g., due to micelles that comprise coloring agents, color enhancers, or color stabilizer; due to the effect of micelle sizes and/or densities on light scattering), aromas of dairy products (e.g., due to micelles that comprise aroma agents, aroma enhancers, or aroma stabilizers), tastes of dairy products (e.g., due to micelles that comprise taste agents, taste enhancers, or taste stabilizer), textures of dairy products (including but not limited to mouthfeel, fattiness, creaminess, viscosity, homogenization, G′ storage modules value, melting behavior, stretching behavior, gratability, dicability, browning behavior, etc.), digestibilities of dairy products (e.g., due to micelles that comprise proteins that harbor or lack target sites for digestive enzymes), nutrient contents of dairy products (
- the food products provided herein comprise micelles of such properties (e.g., composition, size, density) that the food products have different attributes as dairy products.
- different attributes include but are not limited to nutrient contents that are different to nutrient contents of dairy products (e.g., protein and/or amino acid content [e.g., due to micelles that comprise microbial or plant proteins], mineral content [e.g., due to micelles that encapsulate more calcium and/or other metal ions such as, for example, potassium, sodium, magnesium, zinc, iron]), not comprising one or more of undesirable components of dairy products (e.g., allergenic epitopes [e.g., due to micelles that comprise recombinant ⁇ -s1-caseins, ⁇ -caseins, or ⁇ -lactoglobulins that lack allergenic epitopes or micelles that comprise microbial and/or plant proteins]), and longer shelf-lives than dairy products (e.g., due to micelles that comprise microbial or
- the food products provided herein may comprise one or more other components.
- Non-limiting examples of such other components include minerals (e.g., fat soluble minerals, water soluble minerals, calcium, phosphorous, potassium, sodium, citrate, chloride, phosphate, magnesium, potassium, zinc, iron, molybdenum, manganese, copper).
- Minerals can contribute to the structure and stability of the food products provided herein by interacting with fat globules and micelles to maintain an emulsified mixture. Minerals can also affect sensory characteristics such as mouthfeel, consistency, and to a certain extent, flavor of the food products. Minerals can also improve the nutritional profile of the food products.
- vitamins e.g., lipid soluble vitamins, water soluble vitamins, thiamin [vitamin B1], riboflavin [vitamin B2], niacin [vitamin B3], pantothenic acid [vitamin B5], vitamin B6 [pyridoxine], vitamin B12 [cobalamin], vitamin C, folate, vitamins A, vitamin D, vitamin E, vitamin K).
- vitamins e.g., lipid soluble vitamins, water soluble vitamins, thiamin [vitamin B1], riboflavin [vitamin B2], niacin [vitamin B3], pantothenic acid [vitamin B5], vitamin B6 [pyridoxine], vitamin B12 [cobalamin], vitamin C, folate, vitamins A, vitamin D, vitamin E, vitamin K).
- coloring agents include coloring agents, color enhancers, and color stabilizers (e.g., titanium oxide).
- Such other components include taste agents, taste enhancers, and taste stabilizers (e.g., ⁇ -decalactone, ethyl butyrate, 2-furyl methyl ketone, 2,3-pentanedione, ⁇ -undecalactone, ⁇ -undecalactone, natural favors, artificial flavors [e.g., chocolate, coffee, strawberry, almond, hazelnut, vanilla, green tea, Irish cream, coconut flavoring], triglycerides, hydrolyzed casein or whey protein).
- taste agents e.g., ⁇ -decalactone, ethyl butyrate, 2-furyl methyl ketone, 2,3-pentanedione, ⁇ -undecalactone, ⁇ -undecalactone, natural favors, artificial flavors [e.g., chocolate, coffee, strawberry, almond, hazelnut, vanilla, green tea, Irish cream, coconut flavoring], triglycerides, hydrolyzed casein or whey protein
- sweetening agents e.g., stevia , aspartame, cyclamate, saccharin, sucralose, mogrosides, brazzein, curculin, erythritol, glycyrrhizin, inulin, isomalt, lacititol, mabinlin, malititol, mannitol, miraculin, monatin, monelin, osladin, pentadin, sorbitol, thaumatin, xylitol, acesulfame potassium, advantame, alitame, aspartame-acesulfame, sodium cyclamate, dulcin, glucin, neohesperidin dihyrdochalcone, neotame, and P-4000).
- the sweetening agents do not comprise carbohydrates.
- aroma agents include aroma agents, aroma stabilizers, and aroma enhancers (e.g., propylene glycol, glycerol, ethyl alcohol, salt, sugars).
- aroma enhancers e.g., propylene glycol, glycerol, ethyl alcohol, salt, sugars.
- shelf life extending agents e.g., carbon monoxide, nitrites, sodium metabisulfite, Bombal, vitamin E, rosemary extract, greet tea extract, catechins, antioxidants.
- Such other components include fungal contaminants.
- fungal contaminants may derive from the recombinant host cells used in embodiments in which the milk protein and/or non-animal proteins are produced recombinantly.
- the fungal contaminants are secreted fungal proteins as disclosed herein.
- the fungal contaminants have a similar charge (isoelectric point, pI) and/or size (molecular weight) as the milk proteins comprised in the food products.
- pI charge
- pI size
- Non-limiting examples of fungal contaminants are disclosed herein as fungal proteins and secreted fungal proteins.
- Such other components include anti-caking agents, anti-foaming agents, anti-inflammatory agents, anti-microbial agents, anti-oxidants, buffering agents, clotting agents, coenzymes, enzymes, essential nutrients, essential amino acids, neuroactive compounds, neutraceuticals, nutritional supplements, pH and/or ionic strength adjusting agents (i.e., agents that raise or lower the pH and/or the ionic strength of a solution), prebiotics, fibers, probiotic cultures, salts, emulsifiers, stabilizers, and mixtures of any of the other components disclosed herein.
- anti-caking agents i.e., anti-foaming agents, anti-inflammatory agents, anti-microbial agents, anti-oxidants, buffering agents, clotting agents, coenzymes, enzymes, essential nutrients, essential amino acids, neuroactive compounds, neutraceuticals, nutritional supplements, pH and/or ionic strength adjusting agents (i.e., agents that raise or lower the pH and/or the ionic strength of a solution
- Such other components include supramolecules (i.e., complexes of linked molecules [e.g., linked proteins]) other than micelles.
- the food products comprise between 0.001% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, or 0.005%; between 0.005% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01%; between 0.01% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05%; between 0.05% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05%; between 0.05% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%,
- the food products comprise between 0.001% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, or 0.005%; between 0.005% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01%; between 0.01% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05%; between 0.05% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%; between 0.1% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%; between 0.1% and 10%, 9%, 8%, 7%, 6%, 5%,
- the food products further comprise water.
- the food products comprise between 2% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, 15%, 10%, or 5%; between 5% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, 15%, or 10%; between 10% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, or 15%; between 15% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, or 25%; between 25% and 95%, 85%, 75%, 65%, 55%, 45%, or 35%; between 35% and 95%, 85%, 75%, 65%, 55%, or 45%; between 45% and 95%, 85%, 75%, 65%, or 55%; between 55% and 95%, 85%, 75%, 65%, or 55%; between 55% and 95%, 85%, 75%, or 65%; between 65% and 95%, 85%, or 75%
- one or more of such other components are not derived from or produced by mammals or mammalian cells.
- the food products provided herein have desirable attributes.
- the desirable attributes are attributes that are similar or identical to attributes of dairy products. In some embodiments, the desirable attributes are attributes that are different to attributes of dairy products.
- the desirable attributes are desirable colors.
- the desirable colors are colors of dairy products.
- the desirable colors are colors that are different from the colors of dairy products.
- the desirable colors are fluorescent colors.
- the color of a composition can be evaluated by a panel of expert human subjects. Alternatively, the color of a composition can be described, for example, by measuring its spectral absorption pattern using a spectrophotometer or colorimeter (e.g., a Microcolor tristimulus colorimeter [Dr. Bruno Lange GmbH, Berlin, Germany]) and the L*a*b color space according to CIE-LAB (Commission Internationale de l'Éclairage, 1971).
- Variables that can be titrated to modulate the color of the food products provided herein include but are not limited to amounts and/or types of coloring agents, amounts and/or types of color stabilizers, amounts and/or types of color modifiers, and micelle characteristics (e.g., compositions, sizes, densities).
- the food products have a L* color value of between 80 and 95, an a* color value of between ⁇ 5 and 0.5, and a b* color value of between 4 and 10.
- the food products comprise fluorescent proteins selected from the group consisting of green fluorescent protein (GFP), blue fluorescent protein (BFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), orange fluorescent protein (OFP), red fluorescent protein (RFP), and derivatives thereof.
- the desirable attributes are desirable tastes.
- the desirable tastes are tastes of dairy products.
- the desirable tastes are tastes that are different from the tastes of dairy products.
- the taste of a composition can be evaluated by a panel of expert human subjects. Alternatively, the taste of a composition can be described using automated devices (e.g., iNSENT TS-5000Z Taste Testing System [Higuchi USA Inc., Japan], Astree tongue system [Alpha MOS America, Hanover, MD]).
- Variables that can be titrated to modulate the taste of the food products provided herein include but are not limited to amounts and/or types taste agents, amounts and/or types taste stabilizers, amounts and/or types taste modifiers, and amounts and/or types of taste blockers.
- the desirable attributes are desirable textures (i.e., mechanical characteristics that are correlated with sensory perceptions; non-limiting examples are mouthfeel, fattiness, creaminess, viscosity, homogenization, richness, thickness, G′ storage modules value).
- the desirable textures are textures of dairy products.
- the desirable textures are textures that are different from the textures of dairy products.
- the texture of a composition can be evaluated by a panel of expert human subjects. Alternatively, the texture of a composition can be described by dynamic oscillation rheology, viscosity analysis, flow analysis, melt analysis, sheer stress analysis, storage modulus analysis, and texture profile analysis using a texture analyzer.
- compositions e.g., types and/or amounts of milk proteins, types and/or amounts of non-animal proteins, ratios of milk proteins to non-animal proteins, types and/or amounts of lipids, types and/or amounts of carbohydrates, types and/or amounts of micelles, types and/or amounts of hydrocolloids, types and/or amounts of stabilizers, types and/or amounts of emulsifiers), micelle characteristics (e.g., composition, size, density), pH, water activity, and production process conditions (e.g., temperature, hold time at temperature, pH, amount of shear applied, types of starter cultures, post fermentation treatments, and ion strengths).
- composition e.g., types and/or amounts of milk proteins, types and/or amounts of non-animal proteins, ratios of milk proteins to non-animal proteins, types and/or amounts of lipids, types and/or amounts of carbohydrates, types and/or amounts of micelles, types and/or amounts of hydrocolloids, types and/or amounts of stabilizers, types and
- the desirable attributes are desirable digestibilities.
- the desirable digestibilities are digestibilities of dairy products.
- the desirable digestibilities are digestibilities that are different from the digestibilities of dairy products.
- the digestibility of a composition can be described by incubating the composition in the presence of digestive enzymes (e.g., porcine pepsin) and under conditions that prevail in the digestive tract (e.g., in presence of simulated gastric fluid with acidic pH).
- Variables that can be titrated to modulate the digestibility of the food products provided herein include but are not limited to the content of proteins comprising target sites for digestive enzymes, thermal treatment, and content of anti-nutritional factors.
- the desirable attributes are desirable nutrient contents.
- the desirable nutrient contents are nutrient contents of dairy products.
- the desirable nutrient contents are nutrient contents that are different from the nutrient contents of dairy products (e.g., better amino acid content, better mineral balance).
- Nutrient content can be defined by protein content, types and/or amounts of amino acids, types and/or amounts of lipids, types and/or amounts of carbohydrates, types and/or amounts of minerals, types and/or amounts of vitamins, types and/or amounts of bioactive compounds, types and/or amounts of micronutrients, types and/or amounts of macronutrients, types and/or amounts of lactic acid bacteria, PDCAAS score, etc.
- the nutrient content of a composition can be determined by analytical methods (e.g., AOAC International reference methods AOAC 990.03 and AOAC 992.15, electrophoresis (e.g., SDS-PAGE), liquid column chromatography, immunochemical tests, or on-chip electrophoresis (e.g., using the Agilent Protein 80 kit and the Agilent 2100 Bioanalyzer) for determination of type and/or content of proteins and amino acids; AOAC International reference method AOAC 954.02 for determination of type and/or content of lipids), or it can be derived from the nutrient contents of the ingredients of a food product.
- analytical methods e.g., AOAC International reference methods AOAC 990.03 and AOAC 992.15, electrophoresis (e.g., SDS-PAGE), liquid column chromatography, immunochemical tests, or on-chip electrophoresis (e.g., using the Agilent Protein 80 kit and the Agilent 2100 Bioana
- the food products provided herein comprise at least 0.5%, 0.6%, 0.7%, or 0.8%; between 0.5% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, 0.8%, 0.7%, or 0.6%; between 0.6% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, 0.8%, or 0.7%; between 0.7% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, or 0.8%; between 0.8% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, or 0.9%; between 0.9% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, or 0.9%; between 0.9% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, or 1.0%; between 1.0% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%,
- the food products have PDCAAS scores of at least 80; at least 85; at least 90; at least 100; at least 105; at least 110; at least 115; at least 120; at least 125; between 80 and 150, 140, 130, 120, 110, 100, or 90; between 90 and 150, 140, 130, 120, 110, or 100; between 100 and 150, 140, 130, 120, or 110; between 110 and 150, 140, 130, or 120; between 120 and 150, 140, or 130; between 130 and 150, or 140; or between 140 and 150.
- the food products comprise less than 4% by weight of lactose. In some embodiments, the food products comprise less than 2% by weight of monosaccharides.
- the food products comprise less than 2% by weight of disaccharides.
- the food products compared to dairy products have a higher content of at least one component selected from the group consisting of calcium, phosphate, B complex vitamins, vitamin A, vitamin D, vitamin E, and vitamin K.
- the desirable attributes are desirable shelf-lives.
- the desirable shelf-lives are shelf-lives of dairy products.
- the desirable shelf-lives are shelf-lives that are different from the shelf-lives of dairy products.
- the shelf life of a composition can be described by repeatedly measuring key attributes of the composition over the course of storage. Variables that can be titrated to modulate the shelf life of a composition include but are not limited to types and/or amounts of proteases, microbial load, solid concentration, water activity, redox potential, salt concentration, pH, natural preservative content, and humidity.
- the food products provided herein are stable at temperatures of 4 C or below for at least 4 days, at least 5 days, at least 6 days, at least 7 days, at least 10 days, at least 15 days, at least 20 days, at least 30 days, at least 40 days at least 50 days, at least 60 days, at least 70 days, at least 80 days, at least 90 days, between 4 days and 25 days, between 8 days and 20 days, between 15 days and 30 days, or between 40 days and 90 days.
- the food products are stable at ambient temperature for at least 2 months; at least 3 months; at least 4 months; at least 5 months; at least 6 months; between 2 months and 12 months, 10 months, 8 months, 6 months, or 4 months; between 4 months and 12 months, 10 months, 8 months, or 6 months; between 6 months and 12 months, 10 months, or 8 months; between 8 months and 12 months, or 10 months; or between 10 months and 12 months.
- the desirable attributes are desirable hunger and/or satiety regulation.
- the desirable hunger and/or satiety regulation are hunger and/or satiety regulation of dairy products.
- the desirable hunger and/or satiety regulation are different from the hunger and/or satiety regulation of dairy products.
- the hunger and/or satiety regulation of a composition can be evaluated by a panel of expert human subjects.
- Variables that can be titrated to modulate the hunger and/or satiety regulation of the food products provided herein include but are not limited to nutrient content (e.g., types and/or amounts of protein, types and/or amounts of lipid, types and/or amounts of carbohydrate), digestibility, fiber content, and glycemic response.
- nutrient content e.g., types and/or amounts of protein, types and/or amounts of lipid, types and/or amounts of carbohydrate
- digestibility e.g., fiber content, and glycemic response.
- the desirable attributes are desirable use versatility (i.e., ability to use the food products in a variety of manners and/or to derive a diversity of other compositions from the food product).
- the use versatility of dairy milk includes but is not limited to the ability to use it to produce other dairy products (e.g., yogurt, cheese, cream, butter).
- the desirable use versatility is use versatility of dairy products.
- the desirable use versatility is use versatility that is different from the use versatility of dairy products.
- Variables that can be titrated to modulate the use versatilities of a composition provided herein include but are not limited to types and/or amounts of milk proteins, types and/or amounts of non-animal proteins, types and/or amounts of proteins with rennet cleavage sites, types and/or amounts of carbohydrates, types and/or amounts of lipids, hydrocolloid contents, process conditions (e.g., temperature, hold time, pH, shear amount), membrane processing, types and/or amounts of starter cultures, post-fermentation treatments, and ion strengths.
- the desirable attributes are melting behaviors of cheese.
- the melting behavior of a composition can be evaluated using, for example, the Schreiber melt test (Kosikowski, 1977, Pages 331-376 in Cheese Rheology and Texture, CRC Press, Boca Raton, FL), which involves placing a 0.5-cm- ( 3/16-in.-) high plug of cheese in a glass petri dish, heating it in an oven at 232° C. (450° F.) for 5 minutes, then cooling it for 30 minutes, and assigning a score of 0.0 to over 5.5 on the Schreiber scale.
- compositions provided herein have a Schreiber score of between 0.0 and 5.5, 4.5, 3.5, 2.5, 1.5, or 0.5; between 0.5 and 5.5, 4.5, 3.5, 2.5, or 1.5; between 1.5 and 5.5, 4.5, 3.5, or 2.5; between 2.5 and 5.5, 4.5, or 3.5; between 3.5 and 5.5, or 4.5; between 4.5 and 5.5; or greater than 5.5.
- Variables that can be titrated to modulate the melting behavior of the food products provided herein include but are not limited to amounts and/or types of lipids, moisture content, hydrocolloid content, emulsifying salt content, pH, and production process conditions (e.g., shear).
- the desirable attributes are stretching behaviors of cheese.
- the stretching behavior of a composition can be evaluated using, for example, the pizza cheese fork test.
- Variables that can be titrated to modulate the stretching behavior of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipid, moisture content, calcium content, mineral salt content, pH, amounts and/or types of starter culture, hydrocolloid content, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), and storage condition.
- the desirable attributes are gratabilities of cheese.
- the gratability of a composition can be evaluated using, for example, particle size analysis, sieve grading, or by measuring hardness, stickiness, and/or gumminess.
- Variables that can be titrated to modulate the gratability of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipid, moisture content, pH, calcium content, mineral salt content, amounts and/or types of starter culture, hydrocolloid content, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), storage condition, and amounts and/or types of anti-caking agents.
- the desirable attributes are diceabilities of cheese.
- Variables that can be titrated to modulate the diceability of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipids, moisture content, pH, calcium content, mineral salt content, amounts and/or types of starter cultures, hydrocolloid contents, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), storage conditions, and amounts and/or types of anti-caking agents.
- the desirable attributes are browning behaviors of cheese.
- the browning behavior of a composition can be evaluated by visual inspection.
- Variables that can be titrated to modulate the browning behavior of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipids, moisture content, pH, calcium content, mineral salt content, amounts and/or types of starter cultures, hydrocolloid contents, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), storage conditions, amounts and/or types of anti-caking agents, and amounts and/or types of reducing sugars.
- the desirable attributes are textures of cream or ice cream (e.g., creaminess, richness, thickness, smoothness, hardness, crystallization, shape retention).
- the texture of a composition can be evaluated by panels of expert human subjects, melt tests, shape retention tests, ice crystal counting, altitude stability testing, and overrun capacity analysis.
- Variables that can be titrated to modulate the texture of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipids, amounts and/or types of carbohydrates, moisture content, pH, amounts and/or types of high and low molecular weight components that can affect freezing points, hydrocolloid contents, emulsified contents, method of manufacture (e.g., temperature of pasteurization, hold time, homogenization conditions, cooling/aging rate, conditions and/or methods of freezing, hardening), and storage conditions.
- methods of manufacture e.g., temperature of pasteurization, hold time, homogenization conditions, cooling/aging rate, conditions and/or methods of freezing, hardening
- the desirable attributes are not comprising or comprising lower amounts of at least one component found in dairy products.
- Non-limiting examples of such components include animal lipids (e.g., saturated fat, cholesterol), animal carbohydrates, milk proteins that have mammalian glycosylation and/or phosphorylation patterns, proteins with allergenic epitopes (e.g., specific epitopes of ⁇ -s1-casein, specific epitopes of ⁇ -casein, specific epitopes of ⁇ -lactoglobulin, specific immunoglobulins, lactose), antibiotics, hormones (e.g., stress hormones, growth hormones), heavy metals, bacteria (e.g., E.
- the food products comprise less than 0.05%, less than 0.04%, less than 0.03%, less than 0.02%, less than 0.01% by weight of cholesterol.
- the food products do not comprise ⁇ -lactoglobulin with mammalian glycosylation pattern and/or mammalian phosphorylation pattern.
- the food products comprise only a single type of milk protein (e.g., comprise only ⁇ -lactoglobulin and no other milk protein).
- the food products comprise at least one component other than the non-animal protein that is not present in dairy products.
- Non-limiting examples of such components include artificial sweeteners, non-animal lipids, non-animal carbohydrates, and milk proteins that have non-native glycosylation and/or phosphorylation patterns.
- the desirable attributes are not requiring pasteurization or cold shipping (e.g., due to possibility of sterilizing components individually prior to combining).
- Variables that can be titrated to modulate the pasteurization or cold shipping requirement of food products provided herein include but are not limited to amounts and/or types of bacteria in the composition.
- the desirable attributes persist over storing the food products provided herein at suitable storage conditions.
- the suitable storage conditions include storage at temperatures of less than 15° C.
- the desirable attributes persist over one or more cycles of freezing and thawing.
- the one or more cycles of freezing and thawing are 1 cycle, 2 cycles, 3 cycles, 4 cycles, 5 cycles, or more than 5 cycles of freezing and thawing.
- the present invention provides supplemented food products that are produced by supplementing animal-derived food products (i.e., food products that comprise components derived from animals) with the food products provided herein.
- animal-derived food products i.e., food products that comprise components derived from animals
- the supplemented food product comprise between 10% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, or 15%; between 15% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, or 20%; between 20% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, or 25%; between 25% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, or 30%; between 30% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, or 35%; between 35% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, or 40%; between 40% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, or 40%; between 40% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, or 40%; between 40% and 75%, 70%, 65%, 60%, 55%, 50%,
- the present invention provides yoghurt-like food products that comprise one or more milk proteins disclosed herein, and one or more non-animal proteins or hydrolyzed non-animal protein disclosed herein, and that have attributes of dairy yoghurts, as shown in FIG. 1 .
- the yoghurt-like food products comprise between 0.5% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 14%, 12%, 10%, 9%, 8%, 7%, or 6%; between 6% and 14%, 12%, 10%, 9%, 8%, 7%, or 6%; between 6% and 14%, 12%, 10%, 9%, 8%, 7%, or 6%
- the yoghurt-like food products comprise between 0.1% and 14%, 13%, 12%, 11%, 10%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, or 0.5%; between 0.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.
- the milk proteins can be native and/or recombinant caseins, native and/or recombinant whey proteins, or combinations thereof.
- the milk proteins are recombinant caseins and/or recombinant whey proteins
- the recombinant caseins and/or recombinant whey proteins lack epitopes that can elicit immune responses in human or animals.
- the yoghurt-like food products comprise a single milk protein.
- the single milk protein is ⁇ -lactoglobulin.
- the ⁇ -lactoglobulin has a native glycosylation and/or phosphorylation pattern as provided herein.
- the ⁇ -lactoglobulin has a non-native glycosylation and/or phosphorylation pattern as provided herein.
- the ⁇ -lactoglobulin consists of a mixture of ⁇ -lactoglobulin having a native glycosylation and/or phosphorylation pattern and ⁇ -lactoglobulin having a non-native glycosylation and/or phosphorylation pattern.
- the yoghurt-like food products comprise between 0.1% and 14%, 13%, 12%, 11%, 10%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, or 0.5%; between 0.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.
- the non-animal proteins can be native or recombinant non-animal protein, or hydrolyzed native or recombinant non-animal protein, or combinations thereof.
- the yoghurt-like food products comprise at least 5 different types of non-animal proteins.
- the non-animal proteins are pea proteins.
- the pea proteins are Pisum sativum proteins.
- the non-animal proteins are fungal proteins as provided herein.
- the non-animal proteins are secreted fungal proteins as provided herein.
- the yoghurt-like food products comprise ⁇ -lactoglobulin and non-animal proteins (e.g., pea proteins, hydrolyzed pea proteins, secreted fungal proteins, hydrolyzed secreted fungal proteins, or combinations thereof) at weight ratios of ⁇ -lactoglobulin to non-animal proteins of about 100 to 1, about 50 to 1, about 40 to 1, about 30 to 1, about 20 to 1, about 10 to 1, about 9 to 1, about 8 to 1, about 7 to 1, about 6 to 1, about 5 to 1, about 4 to 1, about 3 to 1, about 2 to 1, about 1 to 1, about 1 to 2, about 1 to 3, about 1 to 4, about 1 to 5, about 1 to 6, about 1 to 7, about 1 to 8, about 1 to 9, about 1 to 10, about 1 to 20, about 1 to 30, about 1 to 40, about 1 to 50, or about 1 to 100.
- non-animal proteins e.g., pea proteins, hydrolyzed pea proteins, secreted fungal proteins, hydrolyzed secreted fungal proteins, or combinations thereof
- the yoghurt-like food products further comprise between 0.2% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or 0.3%; between 0.3% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.4%; between 0.4% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 8%, 7%, 6%,
- the yoghurt-like food products further comprise between 2.5%, and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, or 3%; between 3%, and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, or 3.5%; between 3.5% and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, or 4%; between 4% and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, or 4.5%; between 4.5% and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, or 5%; between 5% and 8%, 7.5%, 7%, 6.5%, 6%, or 5.5%; between 5.5% and 8%, 7.5%, 7%, 6.5%, 6%, or 5.5%; between 5.5% and 8%, 7.5%, 7%, 6.5%, 6%, or 5.5%; between 5.5% and 8%, 7.5%, 7%
- the yoghurt-like food products comprise less than 3%, less than 2.75%, or less than 2.5% by weight of monosaccharides and disaccharides.
- the yoghurt-like food products further comprise at least 0.5% by weight of lactic acid.
- the yoghurt-like food products further comprise between 0.115% and 0.23% by weight of calcium.
- the yoghurt-like food products are essentially free of whey protein. In some embodiments, the yoghurt-like food products are essentially free of casein. In some embodiments, the yoghurt-like food products are essentially free of other animal proteins than whey protein or casein.
- Non-limiting examples of such other animal proteins include glycosylation-dependent cell adhesion molecule 1 precursor, beta-2-microglobulin, epididymal secretory protein E1 isoform X1, immunoglobulin lambda-like polypeptide 1 isoform X1, zinc-alpha-2-glycoprotein precursor, immunoglobulin lambda-like polypeptide 1 precursor, folate receptor alpha precursor, immunoglobulin J chain precursor, protein phosphatase 1 regulatory subunit 14A, prostaglandin-H2 D-isomerase precursor, ribonuclease pancreatic precursor, centromere protein M, nucleobindin-1 precursor, allergen Bos d 2 precursor, apolipoprotein E precursor, pancreatic secretory granule membrane major glycoprotein GP2 isoform X1, keratin type II cytoskeletal 1, ectonucleotide pyrophosphatase/phosphodiesterase family member 6 isoform X7, alpha-1-acid glyco
- the yoghurt-like food products are essentially free of lactose.
- the yoghurt-like food products are essentially free of animal lipid.
- the yoghurt-like food products are essentially free of animal proteins other than the one or more milk proteins.
- the yoghurt-like food products are essentially free of casein. In some embodiments, the yoghurt-like food products are essentially free of whey proteins other than ⁇ -lactoglobulin and/or ⁇ -lactoalbumin.
- the yoghurt-like food products are essentially free of stabilizers (e.g., pectin, locust bean gum, gellan gum, gelatin, xanthan gum, native or modified food starches and flours, carrageenan, guar gum, tara gum).
- stabilizers e.g., pectin, locust bean gum, gellan gum, gelatin, xanthan gum, native or modified food starches and flours, carrageenan, guar gum, tara gum.
- yogurt-like food products are set style yogurts. In some embodiments, the yoghurt-like food products are drinkable yogurts.
- the yoghurt-like food products comprise at least 0.5%, at least 1%, at least 1.5%, at least 2%, or at least 2.5% by weight of branched amino acids.
- the yoghurt-like food product have a pH of less than 5.5, less than 5.3, less than 5.1, less than 5, less than 4.9, less than 4.8, less than 4.7, less than 4.6, or less than 4.5; between 3.8 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4, or 3.9; between 3.9 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4; between 4 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2; between 4.2 and 5.5, 5, 4.9, 4.8, 4.7,
- the yoghurt-like food products have a viscosity of between 4E+05 and 1E+03 Pa-s at shear rates of between 0.01/s and 0.1/s. In some embodiments, the yoghurt-like food products have a viscosity of between 1E+04 and 100 Pa-s at shear rates of between 0.1/s and 1/s. In some embodiments, the yoghurt-like food products have a viscosity of between 1000 Pa-s and 0.1 Pa-s at shear rates of between 1/s and 100/s.
- the yoghurt-like food products have a viscosity of between 4E+05 and 1E+03 Pa-s at shear rates of between 0.01/s and 0.1/s, a viscosity of between 1E+04 and 100 Pa-s at shear rates of between 0.1/s and 1/s, and a viscosity of between 1000 Pa-s and 0.1 Pa-s at shear rates of between 1/s and 100/s.
- kits for producing the food products comprise the steps of: a) obtaining one or more milk proteins; b) obtaining one or more non-animal proteins; c) optionally hydrolyzing the one or more non-animal proteins; and d) combining the one or more milk proteins and the one or more non-animal proteins or one or more hydrolyzed non-animal protein under conditions that provide food products with desirable attributes.
- the methods for producing the food products provided herein further comprise the step of adding, at any step during the preparation of the food products, one or more other components (e.g., any of the minerals, lipids, carbohydrates, taste agents, coloring agents, or other components described herein).
- one or more other components e.g., any of the minerals, lipids, carbohydrates, taste agents, coloring agents, or other components described herein.
- the amount of each components used in these methods can be calculated to produce any of the food products described herein.
- the milk proteins are/or non-animal proteins are obtained from natural sources (e.g., milk, plants, microbes).
- natural sources e.g., milk, plants, microbes.
- Methods for isolating proteins from natural sources are known in the art. Suitable methods include but are not limited to methods that provide protein isolates, protein concentrates, protein flours, and partially purified or purified proteins from natural sources.
- the milk proteins and/or non-animal proteins are obtained as recombinant proteins according to methods known in the art (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates, 1992, and Supplements to 2002); Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1990; Taylor and Drickamer, Introduction to Glycobiology, Oxford Univ.
- the non-animal proteins are hydrolyzed prior to use. Hydrolyzing native or recombinant non-animal proteins can be accomplished chemically or enzymatically (e.g., using proteases such as trypsin, pepsin, or chymotrypsin). Alternatively, hydrolyzed recombinant non-animal proteins can be obtained by producing recombinant fragments of non-animal proteins (i.e., by fermenting recombinant host cells that comprise nuclei acids encoding fragments of non-animal proteins). In some embodiments, hydrolyzed recombinant non-animal proteins are produced in recombinant host cells that also produce recombinant proteases that can provide specific mixtures of hydrolyzed recombinant non-animal proteins.
- the methods comprise the steps of: a) obtaining a nucleic acid (e.g., vectors) encoding the recombinant protein; b) introducing the nucleic acid into host cells to obtain recombinant host cells; c) culturing the recombinant host cells in culture media under conditions suitable for production and/or secretion of the recombinant protein; and d) optionally isolating the recombinant protein.
- a nucleic acid e.g., vectors
- the nucleic acid typically includes: a promoter (e.g., yeast promoter, bacterial promoter, mammalian promoter); optionally a sequence encoding a signal sequence; a sequence encoding a protein; and a termination sequence, wherein the promoter is operably linked to the optional signal sequence, the optional signal sequence is operably linked to the sequence encoding the protein, and the termination sequence is operably linked to the sequence encoding the protein.
- a promoter e.g., yeast promoter, bacterial promoter, mammalian promoter
- optionally a sequence encoding a signal sequence e.g., a sequence encoding a signal sequence
- a sequence encoding a protein e.g., a sequence encoding a protein
- the promoter may be any suitable promoter that is functional in the host cells.
- the promoter is a constitutive promoter.
- the promoter is an inducible promoter. Induction may, for example, occur via glucose repression, galactose induction, sucrose induction, or phosphate repression.
- Non-limiting examples of suitable promoters include P LAC4-PBI , T7 promoter, TAC promoter, GAL1 promoter, ⁇ PL promoter, ⁇ PR promoter, bet ⁇ -lactamase promoter, spa promoter, CYC1 promoter, TDH3 promoter, GPD promoter, TEF1 promoter, ENO2 promoter, PGL1 promoter, GAP promoter, SUC2 promoter, ADH1 promoter, ADH2 promoter, HXT7 promoter, PHOS promoter, CLB1 promoter, AOX1 promoter, cellulase promoter, amylase promoters, protease promoters, and xylanase promoters.
- the promoters are promoters of stress (e.g., heat shock) response genes. Additional promoters that can be used in the present vectors are known in the art.
- the signal sequence can be a signal sequence from the encoded protein or from a different protein, or a signal sequence from a yeast mating factor (e.g., any alpha mating factor), a cellulose, an amylase, a protease, or a xylanase. Additional signal sequences that can be used in the present vectors are known in the art.
- the encoded protein can be any of the recombinant milk proteins or non-animal proteins described herein.
- the termination sequence may be any suitable termination sequence that is functional in the host cells.
- suitable termination sequences include but are not limited to the PGK1 and TPS1 termination sequences. Additional termination sequences are known in the art.
- the nucleic acids can further include a bacterial origin of replication and/or a selection marker (e.g., an antibiotic resistance gene or an auxotrophic marker).
- Bacterial origins of replication and selection markers are known in the art.
- the selection markers comprise alterations that decrease the production of the selective marker, thus increasing the number of copies needed to permit host cells comprising the nucleic acids to survive under selection.
- the nucleic acid further comprises: an additional promoter (e.g., any of the exemplary promoters described herein); optionally an additional sequence encoding a signal sequence (e.g., any of the exemplary signal sequences described herein); an additional sequence encoding a protein (e.g., any of the exemplary proteins described herein); and an additional termination sequence (e.g., any of the exemplary termination sequences described herein), wherein the additional promoter is operably linked to the optional additional signal sequence, the optional additional sequence encoding is operably linked to the additional sequence encoding the protein, and the additional sequence encoding the protein is operably linked to the additional terminal sequence.
- the promoter and the additional promoter can be the same or different.
- the termination sequence and the additional termination sequence can be the same or different.
- the signal sequence and the additional signal sequence can be the same or different.
- nucleic acids e.g., any of the nucleic acids described herein
- methods for introducing nucleic acids include but are not limited to calcium phosphate transfection, dendrimer transfection, liposome transfection (e.g., cationic liposome transfection), cationic polymer transfection, electroporation, cell squeezing, sonoporation, optical transfection, protoplast fusion, impalefection, hyrodynamic delivery, gene gun, magnetofection, and viral transduction.
- nucleic acids into a cell One skilled in the art would be able to select one or more suitable methods for introducing the nucleic acids into a cell based on the knowledge in the art that certain techniques for introducing a nucleic acid into a cell work better for different types of host cells. Exemplary methods for introducing a nucleic acid into a yeast cell are described in Kawai et al., Bioeng. Bugs 1:395-403, 2010.
- the nucleic acids are stably integrated within the genome (e.g., a chromosome) of host cells. In other embodiments, the nucleic acids are not stably integrated within the genome of host cells. Suitable sites of genomic integration include but are not limited to the Ty1 loci is Saccharomyces cervisea , the rDNA locus in Pichia pastoris , other transposable elements that have copies scattered throughout the genome of the host cells, sequences containing tandem repeats, intergenic sequences, coding sequences (e.g., the AOX1 gene in Pichia pastoris ), glucoamylase loci, cellulase loci, amylase loci, xylanase loci, secondary metabolite loci, protease loci, high transcribed loci, GLA loci, telomeric regions, and rRNA loci. In some embodiments, the nucleic acids are randomly integrated within the genome of the recombinant host cell.
- the host cells can be fungal cells or bacterial cells or protozoa cells. In some embodiments, the host cells are generally recognized as safe (GRAS) industrial stains.
- GRAS safe
- suitable fungal cells include but are not limited to Aspergillus niger, Aspergillus niger var. awamori, Aspergillus oryzae, Candida guilliermondii, Candida lipolytica, Candida pseudotropicalis, Candida utilis, Endothia parasitica, Eremothecium ashbyii, Fusarium moniliforme, Kluyveromyces lactis, Kluyveromyces marxianus var. lactis, Morteirella vinaceae var. raffinoseutilizer, Mucor miehei, Mucor miehei var.
- suitable bacterial cells include but are not limited to Acetobacter suboxydans, Acetobacter xylinum, Actinoplane missouriensis, Bacillus cereus, Bacillus coagulans, Bacillus licheniformis, Bacillus stearothermophilus, Bacillus subtilis, Escherichia coli, Lactobacillus bulgaricus, Lactococcus lactis, Lactococcus lactis Lancefield Group N, Leuconostoc citrovorum, Leuconostoc dextranicum, Leuconostoc mesenteroides strain NRRL B-512(F), Micrococcus lysodeikticus, Streptococcus cremoris, Streptococcus lactis, Streptococcus lactis subspecies diacetylactis, Streptococcus thermophilus, Streptomyces chattanoogensis, Streptomyces griseus, Streptomyces
- Suitable protozoa cells include but are not limited to Tetrahymena thermophile, Tetrahymena hegewischi, Tetrahymena hyperangularis, Tetrahymena malaccensis, Tetrahymena pigmentosa, Tetrahymena pyriformis , and Tetrahymena vorax . Additional strains that can be used as host cells are known in the art.
- the recombinant host cells further comprise genetic modifications that improve production of the recombinant proteins.
- genetic modifications include altered promoters, altered kinase activities, altered protein folding activities, altered protein secretion activities, and altered gene expression induction pathways.
- the recombinant host cells comprise genetic modifications that reduce the activity of one or more proteases produced by the host cells.
- the recombinant host cells further comprise endogenous glycosyltransferases that can produce endogenous oligosaccharides and recombinant proteins bearing those endogenous oligosaccharides.
- the recombinant host cells comprise heterologous glycosyltransferases that can produce heterologous oligosaccharides and recombinant proteins bearing those heterologous oligosaccharides.
- the recombinant proteins bearing endogenous oligosaccharides or heterologous oligosaccharides have native glycosylation patterns.
- the recombinant proteins bearing endogenous oligosaccharides or heterologous oligosaccharides have non-native glycosylation patterns.
- Non-limiting examples of such endogenous or heterologous glycosyltransferases include fucosyltransferases, galactosyltransferases, glucosyltransferases, xylosyltransferases, acetylases, glucoronyltransferases, glucoronylepimerases, sialyltransferases, mannosyltransferases, sulfotransferases, .beta.-acetylgalactosaminyltransferases, and N-acetylglucosaminyltransferases.
- Non-limiting examples of such endogenous or heterologous oligosaccharides include lactose, 2-fucosyl-lactose, lacto-N-tetraose, lacto-N-neotetraose, lacto-N-fucopentaose I, lacto-N-fucopentaose II, lacto-N-fucopentaose III, lacto-N-difucopentaose I, sialyllactose, 3-sialyllactose, sialyltetrasaccharide a, sialyltetrasaccharide b, sialyltetrasaccharide c, disialyltetrasaccharide and sialyl lacto-N-fucopentaose.
- the heterologous glycosyltransferases are human glycosyltransferases that produce human oligosaccharides and recombinant proteins bearing such human oligosaccharides. In some embodiments, the heterologous glycosyltransferases are Bos taurus glycosyltransferases that produce Bos taurus oligosaccharides and recombinant proteins bearing such Bos taurus oligosaccharides.
- the recombinant host cells further comprise endogenous or heterologous phosphatases. In some such embodiments, the recombinant host cells produce recombinant proteins that have native phosphorylation patterns. In other such embodiments, the recombinant produce recombinant proteins that have non-native phosphorylation patterns.
- the culturing of the recombinant host cells can be performed in any suitable fermentation vessel, including but not limited to a culture plate, a flask, or a fermentor (e.g., stirred tank fermentor, an airlift fermentor, a bubble column fermentor, a fixed bed bioreactor, or any combination thereof), and at any scale known in the art.
- suitable culture media include any culture medium in which the recombinant host cells provided herein can grow and/or remain viable.
- the culture media are aqueous media comprising carbon, nitrogen (e.g., anhydrous ammonia, ammonium sulfate, ammonium nitrate, diammonium phosphate, monoammonium phosphate, ammonium polyphosphate, sodium nitrate, urea, peptone, protein hydrolysates, yeast extract), and phosphate sources.
- the culture media can further comprise salts, minerals, metals, other nutrients, emulsifying oils, and surfactants.
- suitable carbon sources include monosaccharides, disaccharides, polysaccharides, acetate, ethanol, methanol, methane, or one or more combinations thereof.
- Non-limiting examples of monosaccharides include dextrose (glucose), fructose, galactose, xylose, arabinose, and combinations thereof.
- Non-limiting examples of disaccharides include sucrose, lactose, maltose, trehalose, cellobiose, and combinations thereof.
- Non-limiting examples of polysaccharides include starch, glycogen, cellulose, amylose, hemicellulose, and combinations thereof.
- Suitable conditions for production of the recombinant proteins are those under which the recombinant host cells provided herein can grow and/or remain viable. Non-limiting examples of such conditions include suitable pH, suitable temperature, and suitable oxygenation.
- the culture media further comprise proteases (e.g., plant-based proteases) that can prevent degradation of the recombinant proteins, protease inhibitors that reduce the activity of proteases that can degrade the recombinant proteins, and/or sacrificial proteins that siphon away protease activity.
- proteases e.g., plant-based proteases
- the identities of the recombinant milk or non-animal proteins produced by the recombinant hosts cells can be confirmed by HPLC quantification, Western blot analysis, polyacrylamide gel electrophoresis, and 2-dimensional mass spectroscopy (2D-MS/MS) sequence identification.
- Proteins can be separated on the basis of their molecular weight, for example, by size exclusion/exchange chromatography, ultrafiltration through membranes, gel permeation chromatography, or density centrifugation. In some embodiments, the proteins can be separated based on their surface charge or hydrophobicity/hydrophilicity, for example, by isoelectric precipitation, anion exchange chromatography, cation exchange chromatography, or reverse phase chromatography. Proteins also can be separated on the basis of their solubility, for example, by ammonium sulfate precipitation, isoelectric precipitation, surfactants, detergents, or solvent extraction.
- Proteins also can be separated by their affinity to another molecule, using, for example, hydrophobic interaction chromatography, reactive dyes, or hydroxyapatite.
- Affinity chromatography also can include using antibodies having specific binding affinity for the protein, nickel NTA for His-tagged recombinant proteins, lectins to bind to sugar moieties on a glycoprotein, or other molecules which specifically binds the protein. Generally, centrifugation at an optimum pH yields purification efficiency >95%.
- Isoelectric points (pI) of native caseins and whey proteins are known, and are, for example, 4.91 for Bos taurus ⁇ -s1-casein, 4.1 for Bos taurus ⁇ -s2-casein, 4.5 for Bos taurus ⁇ -casein, pH 4.1 for Bos taurus ⁇ -casein, 4.2 for Bos taurus ⁇ -lactalbumin, and 5.2 for Bos taurus ⁇ -lactoglobulin.
- Other methods for protein purification include membrane filtration to remove any potential bacteria or contaminants, followed by lyophilization for protein isolation.
- the methods and compositions provide for a production cost that is competitive at or below $1,000/kg, $500/kg, $10/kg, $1.0/kg, $0.10/kg, $0.010/kg or $0.0010/kg of recombinant protein. In some embodiments, the cost is below $0.009, $0.007, $0.006, $0.005/kg of recombinant protein.
- the methods further comprise the step of producing micelles.
- the micelles produced can be any of the micelles described herein (and can have any of the physical characteristics of micelles described herein).
- the micelles are produced by homogenizing one or more milk proteins, or one or more non-animal proteins, or mixtures thereof. In some embodiments, the micelles are produced by culturing the recombinant host cells in a culture medium under conditions that permit release of micelles. Suitable culture media for use in these methods are known in the art. Micelle formation can be monitored by microscopy, light scattering, or refractometry.
- the degree of micelle formation achieved and the type of micelles formed, and hence the final textures of the compositions comprising such micelles can be controlled to a certain degree by varying parameters during micelle formation.
- micelle sizes can be adjusting by titrating types and amounts of milk proteins and/or non-animal proteins and/or other components (e.g., lipids, carbohydrates), or by titrating the amount of mechanical energy used during homogenization (e.g., extent of vortex int, agitating, sonicating).
- Micelle densities can be adjusted by centrifugation or filtration techniques. Micelle formation can further be affected by pH, temperature, and presence of salts.
- Some of these methods further include isolating (e.g., purifying) micelles.
- isolating e.g., purifying
- Methods of isolating (e.g., purifying) a micelle from a liquid are well-known in the art (e.g., ultra-centrifigation).
- the methods for producing the food products provided herein further comprise the step of dehydrating (e.g., to obtain powders).
- dehydrating e.g., to obtain powders.
- Methods for dehydrating include, but are not limited to, spray drying, roller drying, fluid bed drying, freeze drying, drying with ethanol, and evaporating (see, for example, Handbook for Drying for Dairy Products, C. Anandharamakrishnan (ed.) ISBN:978-1-118-93049-6, Wiley-Blackwell).
- Additional post-processing methods include but are not limited to membrane processing, extrusion, microwave processing, radio frequency processing, non-thermal processing (e.g., using high pressure, ionizing radiation [e.g., electron beam, gamma irradiation, UV], ultra-sonication, gas treatment (e.g., with ozone, chlorine dioxide, cold plasma), pulsed electric field treatment, and oscillating magnetic field treatment.
- non-thermal processing e.g., using high pressure, ionizing radiation [e.g., electron beam, gamma irradiation, UV], ultra-sonication, gas treatment (e.g., with ozone, chlorine dioxide, cold plasma), pulsed electric field treatment, and oscillating magnetic field treatment.
- the invention is based on the identification of process parameters and conditions that provide similar pH profiles for fermentations of lactic acid bacteria in the presence of the milk proteins and non-animal proteins provided herein as is obtained with the same lactic acid bacteria in traditional yoghurt fermentation from dairy milk.
- pH profiles require rapid production of lactic acid by the lactic acid bacteria, leading to a drop in pH of the fermentation to between 3.8 and 5 in a time frame that permits commercial batch runs (currently about 6 hours).
- the invention is further based on the discovery that the composition derived from such fermentation of lactic acid bacteria in the presence of the milk proteins and plant proteins provided herein has similar attributes (e.g., viscosity) as dairy yoghurt.
- the methods for producing the yoghurt-like food products comprise the steps of: a) obtaining one or more milk proteins and one or more non-animal proteins; b) combining the one or more milk proteins, the one or more non-animal proteins, and lactic acid bacteria to obtain a milk-type culture; and c) fermenting the milk-type culture for less than 6 hours to a pH of between 3.8 and 4.8 to obtain the yoghurt-like food product.
- the milk proteins and non-animal proteins can be native or recombinant milk proteins and non-animal proteins or hydrolyzed non-animal proteins, and can be obtained as described herein. They can be obtained in either solid or solubilized forms.
- the inventors have made the surprising discovery that the type of milk protein used can have a significant impact on the attributes (e.g., viscosity) of the yoghurt-like food products obtained. Therefore, in some embodiments, only one milk protein is used, wherein the one milk protein is ⁇ -lactoglobulin.
- the homogenous milk-type mixture comprises between 0.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, or 1.5%; between 1.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, or 2%; between 2% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, or 2%; between 2% and 10%, 9.5%, 9%, 8.5%,
- the inventors have made the surprising discovery that in the absence of non-animal protein (e.g., when using only milk protein) the fermenting of the milk-type culture does not produce a pH of less than 4.8 in less than 6 hours. Without wishing to be bound by theory, it is believed that milk protein does not comprise the nutrients needed for suitable lactic acid fermentation. Therefore, the milk-type culture comprises such amounts of non-animal protein that fermenting the milk-type culture for less than 6 hours provides a pH of between 3.8 and 4.8.
- the homogenous milk-type mixture comprises between 0.2% and 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, or 0.5%; between 0.5% and 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 4%, 3.5%, 3%, 2.5%, 2%, or 1.5%; between 1.5% and 4%, 3.5%, 3%, 2.5%, or 2%; between 2% and 4%, 3.5%, 3%, or 2.5%; between 2.5% and 4%, 3.5%, or 3%; between 3% and 4%, or 3.5%; or between 3.5% and 4% by weight of non-animal protein.
- the non-animal protein is pea protein.
- the non-animal protein is fungal protein.
- the homogenous milk-type mixture comprises between 0.01% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0.05%; between 0.05% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, or 0.3%; between 0.3% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, or 0.4%; between 0.4% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, or 0.4%; between 0.4% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, or 0.5%; between 0.5% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, or
- the hydrolyzed non-animal protein is hydrolyzed pea protein. In other such embodiments, the hydrolyzed non-animal protein is hydrolyzed fungal protein. In some embodiments, the homogenous mixture comprises ⁇ -lactoglobulin and pea protein or fungal protein at a ratio of between 19:1 and 1:3.
- the lactic acid bacteria can be in freeze-dried solid or solubilized bulk culture form.
- lactic acid bacteria suitable for use include all lactic acid bacteria used for conventional fermentative production of food products, including but not limited to the lactic acid bacteria disclosed herein.
- the methods further comprise the step of including one or more lipids (e.g., non-animal lipids), one or more carbohydrates (e.g., non-animal carbohydrates), micelles, or other components provided herein (e.g., minerals).
- lipids and water are added in the form of lipid-in-water or water-in-lipid emulsions.
- the one or more carbohydrates are mono- and/or disaccharides. Is some such embodiments, no more than 2.6% by weight of mono- and/or disaccharides are added.
- the one or more milk proteins, one or more non-animal proteins, lactic acid bacteria, and optional lipids, carbohydrates, micelles, and/or other components can be combined by any method known in the art, including methods that use mechanical energy (e.g., vortexing, agitating [e.g., in a conventional mixer under moderate agitation of between 100 rpm and 1,000 rpm], shearing [e.g., shearing in a conventional blender at medium speed], sonication, high pressure), heating (e.g., to a temperature greater than ambient temperature, greater than 30° C., 40° C., 50° C., 60° C., between 30° C. and 60° C., or between 40° C.
- mechanical energy e.g., vortexing, agitating [e.g., in a conventional mixer under moderate agitation of between 100 rpm and 1,000 rpm], shearing [e.g., shearing in a conventional blender at medium speed], sonication, high pressure
- the one or more milk proteins or one or more non-animal proteins or lactic acid bacteria or optional other ingredients are included in a stepwise manner to protect them from exposure to mechanical energy or heating or homogenization methods that could render them inactive (e.g., lactic acid bacteria can be added after all other components are combined to protect them from being rendered inactive during blending and/or heating).
- the methods further comprise a pasteurization step.
- Pasteurization is typically used to destroy pathogenic microorganisms in food products. It can furthermore unfold quarternary and tertiary protein structures to expose buried amino acid residues and permit formation of new intermolecular bonds via van-der-Waals, electrostatic, covalent, hydrophobic, and/or H-bonding forces. Such new intermolecular bonds can lead to formation of gels that define textural properties of food products such as yoghurt.
- pasteurization can occur at pasteurization temperatures of between 60 C and 100 C and over pasteurization times of between 10 second and 30 minutes, by any means known in the art (e.g., batch, vat; continuous, high temperature short time [HTST]; continuous, higher heat shorter time [HEST]; continuous, ultra-pasteurization; aseptic, ultra-high temperature [UHT]; sterilization [e.g., retort, direct steam injection, indirect steam injection]).
- the higher the pasteurization temperatures the lower the required pasteurization times.
- the pasteurization temperatures are between 78 C and 85 C and the pasteurization times are between 30 seconds and 5 minutes.
- the pasteurization temperatures are between 90 C and 95 C and the pasteurization times are between 10 seconds and 30 seconds. In yet other embodiments, the pasteurization temperatures are between 65 C and 75 C and the pasteurization times are between 1 minute and 30 minutes.
- Pasteurization is typically followed by cooling to a suitable temperature (e.g., less than 45 C, less than 40 C, less than 37 C, less than 35 C, less than 30 C, ambient temperature; particularly before lactic acid bacteria are added). In some embodiments, pasteurization occurs through non-thermal means.
- the milk-type culture is fermented for less than 6 hours to a pH of between 3.8 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4, or 3.9; between 3.9 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4; between 4 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2; between 4.2 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3; between 4.3 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3; between 4.3 and 4.8, 4.7, 4.6, 4.5, 4.4; between 4.4 and 4.8, 4.7, 4.6, 4.5; 4.4; between 4.4 and 4.8, 4.7, 4.6, 4.5; between 4.5 and 4.8, 4.7, 4.6, 4.5, 4.4; between 4.4
- the methods further comprise the step of cooling the yoghurt-like food products to end the fermenting. Cooling can be done in a cooler or refrigerator.
- the enriched protein isolate comprised 90% by weight of protein (65% enriched beta-lactoglobulin and 25% other enriched whey protein fractions), 5% by weight of water, and 5% by weight of ash.
- Pea protein in yoghurt-like food products was added as commercial pea protein concentrate, which comprised 80% by weight of pea protein, 6% by weight of fat, 4% by weight of carbohydrate, 5% by weight of ash, and 5% by weight of water.
- the total carbohydrates included carbohydrates originating from the LGB protein isolate, the pea protein concentrate, and about 2.6% of added mono- and disaccharides (e.g., glucose, sucrose).
- the mixture was then heated to 45-55 C to aid with blending, and finally homogenized at 170-175 bar (2,465 to 2,538 psi) in stage 1 and 34.5 bar (500 psi) in stage 2.
- the mixture was pasteurized in a stainless steel bowl at 85 C for 10 minutes, and then cooled to 43 C. 2 g of a standard lactic acid bacteria ( Streptococcus thermophilus and Lactobacillus bulgaricus ) culture was dissolved in 18 g of pasteurized (and subsequently cooled to ambient temperature) pea protein milk, and 1.5 mL of this culture was added to 500 mL of the mixture to obtain a milk-type culture.
- a standard lactic acid bacteria Streptococcus thermophilus and Lactobacillus bulgaricus
- the milk type culture was fermented at 43 C until a pH of between 4.3 and 4.5 ( ⁇ 0.9% titratable acidity measured as % lactic acid) was reached and the yoghurt-like food product was obtained.
- the milk-type cultures that comprised both ⁇ -lactoglobulin and pea protein produced pH profiles during fermentation that were more alike that of whole milk cultures whereas cultures comprising only ⁇ -lactoglobulin or only pea protein did not reach a sufficiently acidic pH within a suitable fermentation time.
- Yogurt can be classified as a viscoelastic material, having some of the elastic properties of an ideal solid and some of the flow properties of an ideal (viscous) liquid. It also exhibits time-dependent and shear rate-dependent shear thinning behavior.
- the yoghurt-like food products of Example 1 were tested for flow viscosity on a rheometer to determine their flow properties under specific shear rate and shear stress conditions, wherein the flow properties were expressed as the viscosity of the yogurt gel.
- yoghurt-like food products that comprised only ⁇ -lactoglobulin and only pea protein were too firm at all shear rates.
- the yoghurt-like food product that comprised ⁇ -lactoglobulin and pea protein at a weight ratio of 1:1 had reduced viscosity at higher shear rates.
- the yoghurt-like food product that comprised ⁇ -lactoglobulin and pea protein at a weight ratio of 1:2 exhibited a similar viscosity profile as a function of shear rate as whole milk yoghurt and thus most closely resembled whole milk yoghurt.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Nutrition Science (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dairy Products (AREA)
- Peptides Or Proteins (AREA)
- Confectionery (AREA)
- Grain Derivatives (AREA)
- Edible Oils And Fats (AREA)
Abstract
Provided are food products comprising milk proteins and non-animal proteins, and methods of manufacturing the same.
Description
- Provided are food products comprising milk proteins and non-animal proteins, and methods of manufacturing the same.
- Milk is a popular source of nutrition. It comprises high-quality protein, essential minerals (e.g., calcium, phosphorus, zinc, magnesium), and vitamins (e.g., riboflavin, vitamin A, vitamin B12). In addition, milk components possess advantageous functional characteristics that permit production of a wide variety of derivative dairy products, including yogurt, cheese, cream, ice cream, and butter, which further contribute to the industrial and cultural significance of milk. Global yearly sales of dairy products are over $500 billion, and projected to grow.
- Advantageous functional characteristics of milk components include denaturation, aggregation, and interactions of milk proteins, the type and extent of which can be influenced through processing conditions such as time, temperature, pH, protein content, ionic strength, lipid content, carbohydrate content, shear, and enzyme and starter culture action, and are largely responsible for the unique functional and sensory properties of milk and its derivative dairy products.
- But milk and its derivative dairy products also harbor attributes that are suboptimal for human consumption, such as, for example, comprising components that cause unhealthy reactions in humans (e.g., allergies, lactose intolerance). Such suboptimal attributes are not easily correctable as milk is a complex mixture of several thousand components, the types and amounts of which are defined by the function of the mammary gland of the animal that produced the milk, which in turn evolved over millions of years to serve the particular needs of the animal's offspring and cannot easily be altered.
- There is also widespread concern over the impact of conventional milk production via animal husbandry on animal welfare and the environment, and the potential danger of contaminating products derived from animal husbandry with pathogens, pesticide residues, heavy metals, and aflatoxin Ml.
- These concerns have fueled development of alternatives to milk and its derivative dairy products, such as lactose-free dairy products and plant- or nut-based dairy-like products (e.g., soy milk, almond milk, coconut milk, pea milk). U.S. sales of lactose-free dairy products in 2015 were $6.7 billion, and U.S. sales of plant- or nut-based dairy-like products in 2015 were $13.7 billion. However, the currently available alternatives to milk fall short on matching the flavor and nutritional profiles of conventionally produced milk, and are limited in their utility for producing alternative derivative dairy products.
- Therefore, there exists a need for food products that have identical or superior attributes as milk and/or its derivative dairy products, and for methods for producing such food products.
- Provided herein are food products that comprise one or more native and/or recombinant milk proteins and one or more native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins and that has desirable attributes. In some embodiments, the food products are dairy products. In some embodiments, the food products comprise native and/or recombinant milk proteins with non-native glycosylation and/or phosphorylation patterns. In some embodiments, the food products are essentially free of animal lipids, animal carbohydrates, animal proteins other than the one or more milk proteins, allergenic epitopes, and/or lactose.
- Also provided herein are yoghurt-like food products that comprise one or more native and/or recombinant milk proteins and one or more native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins. In some embodiments, the yoghurt-like food products comprise milk proteins with non-native glycosylation and/or phosphorylation patterns. In some embodiments, the yoghurt-like food products comprise a single milk protein, wherein the single milk protein is β-lactoglobulin.
- Also provided herein are methods for producing the food products provided herein.
-
FIG. 1 shows a perspective view of a yoghurt-like food product, in accordance with a representative embodiment of the present invention. -
FIG. 2 shows pH profiles of whole milk yoghurt and yoghurt-like food products as a function of composition and duration of fermentation of milk-type cultures, in accordance with representative embodiments of the present invention. -
FIG. 3 shows viscosity profiles of whole milk yoghurt and yoghurt-like food products as a function of composition and shear rate, in accordance with representative embodiments of the present invention. - Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure pertains. Further, unless otherwise required by context, singular terms shall include the plural, and plural terms shall include the singular.
- The terms “a” and “an” and “the” and similar references as used herein refer to both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.
- The terms “about” and “similar to” as used to herein refer to being within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which can depend in part on how the value is measured or determined, or on the limitations of the measurement system.
- The term “dairy product” as used herein refers to milk (e.g., whole milk [at least 3.25% milk fat], partly skimmed milk [from 1% to 2% milk fat], skim milk [less than 0.2% milk fat], cooking milk, condensed milk, flavored milk, goat milk, sheep milk, dried milk, evaporated milk, milk foam), and products derived from milk, including but not limited to yogurt (e.g., whole milk yogurt [at least 6 grams of fat per cup], low-fat yogurt [between 2 and 5 grams of fat per cup], nonfat yogurt [less than 0.5 percent milk fat by weight], greek yogurt [strained yogurt with whey removed], whipped yogurt, goat milk yogurt, Labneh [labne], sheep milk yogurt, yogurt drinks [e.g., whole milk Kefir, low-fat milk Kefir], Lassi), cheese (e.g., whey cheese such as ricotta and mozzarella, semi-soft cheese such as Havarti and Munster, medium-hard cheese such as Swiss and Jarlsberg, hard cheese such as Cheddar, soft ripened cheese such as Brie and Camembert, cottage cheese, cream cheese, curd), cream (e.g., whipping cream, coffee whitener, coffee creamer, sour cream, crème fraiche), frozen confections (e.g., ice cream, smoothie, milk shake, frozen yogurt, sundae), butter, infant formula, weight loss beverages, nutritional beverages, pudding, buttermilk, milk protein concentrate, whey protein concentrate, whey protein isolate, casein concentrate, casein isolate, skim milk powder, whole milk powder, nutritional supplements, texturizing blends, flavoring blends, or coloring blends.
- The term “essentially free of” as used herein refers to the indicated component being either not detectable in the indicated composition by common analytical methods, or being present in such trace amounts as to not be functional. The term “functional” as used in this context refers to not contributing to properties of the composition comprising the trace amounts of the indicated component, or to not having health-adverse effects upon consumption of the composition comprising the trace amounts of the indicated component.
- The term “food product” as used herein refers to a composition that can be ingested by humans or animals, including domesticated animals (e.g., dogs, cats), farm animals (e.g., cows, pigs, horses), and wild animals (e.g., non-domesticated predatory animals). In various embodiments, the food products provided herein meet standards for food safety required by the U.S. Food and Drug Administration (FDA), the U.S. Department of Agriculture, the European Food Safety Authority, and/or other state or region food regulatory agencies. The term includes compositions that can be combined with or added to other ingredients to make compositions that can be ingested by humans or animals.
- The terms “glycosylation” and “glycosylated” as used herein refer to the attachment to proteins of glycan groups (i.e., monosaccharides, disaccharides, polysaccharides, linear glycans, branched glycans, glycans with galf residues, glycans with sulfate and/or phosphate residues; see, for example, Deshpande et al. 2008 Glycobiology 18(8):626-37) via C-linkage, N-linkage, or O-linkage, or via glypiation or phosphoglycosylation. Non-limiting examples of such glycan groups include D-glucose, D-galactose, D-mannose, L-fucose, N-acetyl-D-galactose amine, N-acetyl-D-glucose amine, N-acetyl-D-neuraminic acid, galactofuranose, phosphodiesters, acetylglucosamine, acetylgalactosamine, and sialic acid.
- The term “glycosylation pattern” as used herein refers to the number and/or distribution and/or types of glycan groups on a protein.
- The term “host cell” as used herein refers to a cell into which a recombinant nucleotide sequence has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein.
- The term “identical” as used herein in the context of nucleic acid or protein sequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least 9 nucleotides, at least 20 nucleotides, at least 24 nucleotides, at least 28 nucleotides, at least 32 nucleotides, or at least 36 or more nucleotides. There are a number of different algorithms known in the art that can be used to measure nucleotide sequence or protein sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap, or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wis. FASTA provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (see, for example, Pearson, Methods Enzymol. 183:63-98, 1990, which is hereby incorporated by reference in its entirety). For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference. Alternatively, sequences can be compared using the computer program, BLAST, especially blastp or tblastn (Altschul et al., J. Mol. Biol. 215:403-410, 1990; Gish and States, Nature Genet. 3:266-272, 1993; Madden et al., Meth. Enzymol. 266:131-141, 1996; Altschul et al., Nucleic Acids Res. 25:3389-3402, 1997; Zhang and Madden, Genome Res. 7:649-656, 1997).
- The terms “including,” “includes,” “having,” “has,” “with,” or variants thereof as used herein are intended to be inclusive in a manner similar to the term “comprising”.
- The term “isolated” as used herein refers to the component being substantially separated from cellular components (e.g., membrane lipids, chromosomes, proteins) of the source from which the component originated. As used herein, the term “isolated” with respect to protein indicates that the preparation of protein is at least 60% pure, e.g., greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% pure. The term does not require that the biomolecule has been separated from all other chemicals, although certain isolated biomolecules may be purified to near homogeneity.
- The term “milk protein” as used herein refers to a protein that is found in a mammal-produced milk, or a protein that has a sequence that is at least 80% identical (e.g., at least 85%, at least 90%, at least 95% identical) to the sequence of a protein that is found in a mammal-produced milk, as well as to fragments of such proteins, as well as to polypeptides that comprise milk protein repeats. The term “fragment” as used in this context refers to a polypeptide that is shorter in length than a native milk protein (e.g., less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, less than 50%, less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% of the length of the native milk protein). The term “milk protein repeat” as used in this context refers to an amino acid sub-sequence of a native milk protein that is present more than once in a polypeptide (e.g., a concatenated sequence), wherein the repeated amino acid sub-sequences can be consecutive (i.e., have no intervening amino acid sequences) or non-consecutive (i.e., have intervening amino acid sequences).
- The term “microbe” as used herein is an abbreviation for microorganism, and refers to a unicellular organism. As used herein, the term includes all bacteria, all archaea, unicellular protista, unicellular animals, unicellular plants, unicellular fungi, unicellular algae, all protozoa, and all chromista.
- The term “native” as used herein refers to what is natural.
- The term “natural” or “naturally occurring” as used herein refers to what is found in nature.
- The term “non-animal” as used herein refers to a component (e.g., protein, lipid, carbohydrate) that is not native to an animal cell.
- The term “non-native glycosylation pattern” as used herein refers to a difference in one or more location(s) of glycosylation in a protein, and/or a difference in the amount of and/or type of glycosylation at one or more location(s) in a protein compared to the native protein.
- The term “non-purified protein” as used herein refers to a protein preparation in which no protein is more concentrated relative to other proteins in the protein preparation than is the case in the natural source from which the protein preparation is derived.
- The nucleic acids disclosed herein may include both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. They may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates), charged linkages (e.g., phosphorothioates, phosphorodithioates), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids) Examples of modified nucleotides are described in Malyshev et al., Nature 509:385-388, 2014; and Li et al., J. Am. Chem. Soc. 136:826-829, 2014. Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule. Other modifications can include, for example, analogs in which the ribose ring contains a bridging moiety or other structure such as the modifications found in “locked” nucleic acids.
- The terms “optional” or “optionally” as used herein refer to a feature or structure being present or not, or an event or circumstance occurring or not, and that the description includes instances in which a particular feature or structure is present and instances in which the feature or structure is absent, or instances in which the event or circumstance occurs and instances in which the event or circumstance does not occur.
- The term “partially purified protein” as used herein refers to a protein preparation in which one or more proteins are between 2-fold and 10-fold more abundant relative to other proteins in the protein preparation than they are present in the natural source from which the protein preparation is derived.
- The terms “phosphorylation” and “phosphorylated” as used herein refer to the attachment to proteins of phosphate groups.
- The term “phosphorylation pattern” as used herein refers to the number and/or distribution of phosphate groups on a protein.
- The term “protein” as used herein refers to a polymeric form of amino acids of any length, which can include coded and non-coded amino acids, chemically or biochemically modified or derivatized amino acids, and polypeptides having modified peptide backbones.
- The term “protein concentrate” as used herein refers to a protein material that is obtained from a natural source and/or modified natural source upon removal of at least a portion of (or a substantial portion of) one or more of carbohydrates, lipids, ash, and other minor constituents. It typically comprises at least about 30%, 40%, 50%, 60%, 70%, or 80% by weight of protein.
- The term “protein isolate” as used herein refers to a protein material that is obtained from a natural source and/or modified natural source upon removal of at least a portion of (or a substantial portion of) one or more of polysaccharides, soluble carbohydrates, ash, and other minor constituents. It typically has at least about 40%, 50% 60%, 70%, 80%, or 90% by weight of protein.
- The term “purified protein” as used herein refers to a protein preparation in which one or more proteins are at least 10-fold more abundant relative to other proteins present in the protein preparation than they are present in the natural source from which the protein preparation is derived.
- The term “recombinant” is an art known-term. When referring to a nucleic acid (e.g., a gene), the term can be used, for example, to describe a nucleic acid that has been removed from its naturally occurring environment, a nucleic acid that is not associated with all or a portion of a nucleic acid abutting or proximal to the nucleic acid when it is found in nature, a nucleic acid that is operatively linked to a nucleic acid that it is not linked to in nature, or a nucleic acid that does not occur in nature. The term “recombinant” can be used, e.g., to describe cloned DNA isolates, or a nucleic acid including a chemically-synthesized nucleotide analog. A nucleic acid is also considered “recombinant” if it contains any modifications that do not naturally occur to the corresponding nucleic acid in a genome. For instance, an endogenous coding sequence is considered “recombinant” if it contains an insertion, deletion, or a point mutation introduced artificially, e.g., by human intervention. A “recombinant nucleic acid” also includes a nucleic acid integrated into a host cell chromosome at a heterologous site and a nucleic acid construct present as an episome. When “recombinant” is used to describe a protein, it can refer to, for example, a protein that is produced in a cell of a different species or type as compared to the species or type of cell that produces the protein in nature. The term “recombinant host cell” as used herein refers to a cell into which a recombinant nucleic acid has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein.
- The term “secreted fungal protein” as used herein refers to a protein that is native to a fungus and that is natively secreted by the fungus, or to a protein that is at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to such a protein.
- The term “vector” as used herein refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid,” which generally refers to a circular double stranded DNA loop into which additional DNA segments may be ligated, but also includes linear double-stranded molecules such as those resulting from amplification by the polymerase chain reaction (PCR) or from treatment of a circular plasmid with a restriction enzyme. Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC). Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome (discussed in more detail below). Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., vectors having an origin of replication which functions in the host cell). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and are thereby replicated along with the host genome.
- Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value inclusively falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. It should be understood that all ranges and quantities described below are approximations and are not intended to limit the invention. Where ranges and numbers are used these can be approximate to include statistical ranges or measurement errors or variation. In some embodiments, for instance, measurements could be plus or minus 10%.
- In one aspect, provided herein are food products that comprise one or more native and/or recombinant milk proteins and one or more native and/or recombinant non-animal proteins and that have desirable attributes.
- The invention is based on the discovery that milk proteins can be combined with non-animal proteins to produce compositions that have desirable attributes. The invention is further based on the discovery that milk proteins can be produced recombinantly. The invention is further based on the discovery that recombinant milk proteins can be engineered to have specific functional properties, and that combining the engineered recombinant milk proteins with non-animal proteins can produce compositions that have desirable attributes.
- These discoveries enable production of food products that are devoid of components that cause unhealthy reactions in humans (e.g., allergens, lactose), that have high nutrient contents (e.g., favorable amino acid profiles, low sugar), and that are optimized for production of milk derivative products (e.g., yoghurt). Additional advantages of the food products provided herein include, for example, advantages in production, including but not limited to smaller negative impacts on the environment (e.g., less carbon dioxide production than the estimated 600 billion kg of carbon dioxide that are produced per year during conventional milk production); no negative impact on animal welfare (e.g., no animal confinement, force feeding, premature weaning, or hormone treatment); smaller resource requirements (e.g., less water used than the estimated 1,000 L/L of water that are used during conventional milk production, less land use, less energy use, less feed, no animals, less shipment due to local production); mitigation of supply chain and production risk (e.g., use of non-animal proteins derived from a greater variety of natural sources providing supply chain variations and increased flexibility in production methods); and reduced production costs.
- In some embodiments, the food products comprise only non-purified milk protein and/or non-animal protein. In other embodiments, the food products comprise at least some partially purified milk protein and/or non-animal protein. In yet other embodiments, the food products comprise at least some purified milk protein and/or non-animal protein. In some embodiments, the food products comprise more than 100, more than 50, more than 40, more than 30, more than more than 15, more than 10, more than 5, or more than 2; or no more than 10, no more than no more than 4, no more than 3, or no more than 2 different types of proteins. In some embodiments, the food products comprise more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, or more than 95% by weight of a single type of protein. In some embodiments, the food products comprise less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, or less than 5% by weight of a single type of protein.
- In some embodiments, the food products comprise one or more milk proteins and one or more non-animal proteins at weight ratios of total milk protein to total non-animal protein of about 100 to 1, about 50 to 1, about 40 to 1, about 30 to 1, about 20 to 1, about 10 to 1, about 9 to 1, about 8 to 1, about 7 to 1, about 6 to 1, about 5 to 1, about 4 to 1, about 3 to 1, about 2 to 1, about 1 to 1, about 1 to 2, about 1 to 3, about 1 to 4, about 1 to 5, about 1 to 6, about 1 to 7, about 1 to 8, about 1 to 9, about 1 to 10, about 1 to 20, about 1 to 30, about 1 to 40, about 1 to or about 1 to 100.
- In some embodiments, the food products further comprise lipids. In some embodiments, the food products further comprise carbohydrates. In some embodiments, the food products further comprise micelles. In some embodiments, the food products further comprise other components disclosed herein.
- In some embodiments, the food products resemble dairy products. In some such embodiments, the food products resemble milk, yogurt (i.e., the food products are “yoghurt-like”), cheese (i.e., the food products are “cheese-like”; e.g., Parmesan cheese-like, mozzarella cheese-like, pasta filata cheese-like, processed cheese-like), cream, ice cream, butter, infant formula, milk protein concentrate, whey protein concentrate, whey protein isolate, casein concentrate, casein isolate, skim milk powder, whole milk powder, infant formula, nutritional supplements, texturizing blends, flavoring blends, or coloring blends.
- In some embodiments, the food products are vegan. In some embodiments, the food products are kosher. In some embodiments, the food products are halal. In some embodiments, the food products are essentially free of components derived from nuts. In some embodiments, the food products are essentially free of gluten. In some embodiments, the food products are essentially free of allergenic epitopes (e.g., see, for example, Simonetta et al. 2012 Allergenicity of Milk Proteins, Milk Protein, Dr. Walter Hurley (ed.), InTech.). In some embodiments, the food products are essentially free of soy protein. In some embodiments, the compositions are essentially free of saturated lipids. In some embodiments, the food products are essentially free of animal lipids. In some embodiments, the food products are essentially free of cholesterol. In some embodiments, the food products are essentially free of animal carbohydrates. In some embodiments, the food products are essentially free of lactose. In some embodiments, the food products are essentially free of animal proteins other than the one or more native and/or recombinant milk proteins. In some embodiments, the food products are essentially free of serum proteins (e.g., enzymes, growth factors, nutrient transporters, or disease resistance factors found in serum). In some embodiments, the food products are essentially free of whey proteins. In some embodiments, the food products are essentially free of immunoglobulins. In some embodiments, the food products are essentially free of lactoferrin. In some embodiments, the food products are essentially free of caseins. In some embodiments, the food products are essentially free of lactoperoxidase. In some embodiments, the food products are essentially free of lipase. In some embodiments, the food products are essentially free of leukocytes. In some embodiments, the food products are essentially free of infectious agents transmitted by breastfeeding. In some embodiments, the food products are essentially free of antibiotics. In some embodiments, the food products are essentially free of hormones (e.g., stress hormones, growth hormones). In some embodiments, the food products are essentially free of heavy metals. In some embodiments, the food products are essentially free of bacteria (e.g., E. coli, Brucella, Camplyobacter, Listeria, Mycobacterium, Salmonella, Shigella, Yersinia, Giardia). In some embodiments, the food products are essentially free of yeast. In some embodiments, the food products are essentially free of viruses (e.g., noroviruses). In some embodiments, the food products are essentially free of prions. In some embodiments, the food products are essentially free of pesticides. In some embodiments, the food products are essentially free of mycotoxins (e.g., aflatoxin).
- In some embodiments, the compositions are principally or entirely composed of components derived from non-animal sources. In alternative embodiments, the compositions are composed of components partially derived from animal sources but supplemented with components derived from non-animal sources. In some such embodiments, the compositions comprise 2% or less by weight of components derived from animal.
- The food products provided herein comprise one or more native and/or recombinant milk proteins.
- The milk proteins can be derived from any mammalian species, including but not limited to cow, human, sheep, goat, buffalo, camel, horse, donkey, lemur, panda, guinea pig, squirrel, bear, macaque, gorilla, chimpanzee, mountain goat, monkey, ape, cat, dog, wallaby, rat, mouse, elephant, opossum, rabbit, whale, baboons, gibbons, orangutan, mandrill, pig, wolf, fox, lion, tiger, echidna, and woolly mammoth.
- In some embodiments, the food products comprise between 0.1% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, or 0.3%; between 0.3% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, or 0.4%; between 0.4% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, or 0.5%; between 0.5% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, or 0.6%; between 0.6% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, or 0.7%; between 0.7% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, or 0.8%; between 0.8% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.9%; between 0.9% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, or 6%; between 6% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, or 7%; between 7% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, or 8%; between 8% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, or 9%; between 9% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, or 10%; between 10% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, or 11%; between 11% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, or 12%; between 12% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, or 13%; between 13% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, or 14%; between 14% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, or 15%; between 15% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, or 20%; between 20% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, or 25%; between 25% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, or 30%; between 30% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, or 35%; between 35% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, or 40%; between 40% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, or 45%; between 44% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, or 50%; between 50% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, or 55%; between 55% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, or 60%; between 60% and 95%, 90%, 85%, 80%, 75%, 70%, or 65%; between 65% and 95%, 90%, 85%, 80%, 75%, or 70%; between 70% and 95%, 90%, 85%, 80%, or 75%; between 75% and 95%, 90%, 85%, or 80%; between 80% and 95%, 90%, or 85%; or between 85% and 95%, 90%; or between 90% and 95% by weight of milk proteins.
- The milk proteins can be a single type of milk protein (e.g., only β-lactoglobulin) or two or more different types of milk protein (e.g., β-lactoglobulin and κ-casein and α-lactoalbumin).
- In some embodiments, the milk proteins are caseins. The caseins can be native or recombinant caseins, or combinations thereof. Non-limiting examples of caseins include Bos taurus β-casein, Bos taurus γ-caseins, Bos taurus κ-caseins, Bos taurus α-S1-caseins, Bos taurus α-S2-caseins, and mixtures thereof. Food products comprising β-caseins are desirable as β-caseins aide in emulsification of other ingredients (e.g., other proteins) in food products. Food products comprising κ-caseins are desirable as κ-casein comprises sites for enzyme rennet activity, which is key to making cheese. Food products comprising α-S1-caseins are desirable as α-S1-caseins are essential to flavor development and ripening of aged cheese varieties. In some embodiments, the caseins are less than 5 different types of caseins, less than 4 different types of caseins, less than 3 different types of caseins (e.g., 2 types of caseins, such as κ-casein and β-casein), or less than 2 different types of caseins (i.e., a single type of casein; e.g., only κ-casein).
- In some embodiments, the milk proteins are whey proteins. The whey proteins can be native or recombinant whey proteins, or combinations thereof. Non-limiting examples of whey proteins include α-lactalbumins, β-lactoglobulins, lactoferrins, transferrins, serum albumins, lactoperoxidases, glycomacropeptides, and mixtures thereof. Food products comprising β-lactoglobulin and/or α-lactoalbumin are desirable, particularly for athletes, as β-lactoglobulin and α-lactoalbumin have high contents of branched amino acids, which are thought to aide production of muscle tissue. Moreover, β-lactoglobulin is desirable as a food additive as it has good water binding ability, which property makes β-lactoglobulin suitable for managing water activity of food products (see, for example, Gustavo et al. Water Activity in Foods: Fundamentals and Applications, October 2007, Wiley-Blackwell, ISBN: 978-0-8138-2408-6) and as an anti-microbial agent that can extend the shelf life of food products. Another property that makes β-lactoglobulin a desirable food additive is that β-lactoglobulin can readily absorb at interfaces and produce highly stable dispersions. Food products comprising lactoferrin are desirable as lactoferrin binds free iron and depletes microorganisms from essential substances needed for their growth, making it suitable for use as an anti-bacterial and anti-viral agent in food products such as infant formula, functional dairy products, and dietary supplements. Food products comprising lactoperoxidase are desirable as lactoperoxidase is suitable for use as a preservative. In some embodiments, the whey protein is a single type of whey protein. In some such embodiments, the single type of whey protein is β-lactoglobulin. In other such embodiments, the single type of whey protein is α-lactalbumin.
- In some embodiments, the food products comprise caseins and whey proteins. In some such embodiments, the food products comprise total caseins and total whey proteins at ratios of about 10 to 1, about 9 to 1, about 8 to 1, about 7 to 1, about 6 to 1, about 5 to 1, about 4 to 1, about 3 to 1, about 2 to 1, about 1 to 1, about 1 to 2, about 1 to 3, about 1 to 4, about 1 to 5, about 1 to 6, about 1 to 7, about 1 to 8, about 1 to 9, or about 1 to 10.
- Non-limiting examples of caseins and whey proteins, and nucleic acid sequences encoding caseins and whey proteins, are disclosed in PCT filing PCT/US2015/046428 filed Aug. 21, 2015, which is hereby incorporated herein in its entirety, and Table 1.
-
TABLE 1 Non-Limiting Examples of Whey Proteins Uniprote Protein ID Description A0JNP2 Secretoglobin family 1D member A1YZ34 Xanthine oxidoreductase A2I7M9 Serpin A3-2 A2I7N2 Serpin A3-6 A2SY11 Lipoprotein lipase A5D7Q2 PutAtive uncharacterized protein A5JSS7 GlycosylAtion-dependent cell adhesion molecule-1 A5JST2 Serum amyloid A protein A5YVD9 45 kDa calcium-binding protein A6H7J6 Protein disulfide-isomerase A6QLY8 IGFBP7 protein A6QM09 PutAtive uncharacterized protein A6QNJ8 GANAB protein (Fragment) A6QNW7 CD5L protein A6QPP2 SERPIND1 protein A6QPQ2 Serpin A3-8 A7E340 Mucin 15, cell surface associAted A7E350 Plasminogen A7E3W4 Transketolase A8DR93 HeAt shock protein alpha B0JYP6 IGK protein B5TBC9 CD14 (Fragment) B8XH67 Solute carrier family 9 member 3 regulAtor 1 D2U6Q1 Haptoglobin (Fragment) D4QBF4 Hemoglobin beta D6PX62 Cysteine-rich secretory protein 3 E1B6Z6 Uncharacterized protein (Fragment) E1B8H1 Uncharacterized protein E1BA17 Uncharacterized protein E1BI82 Uncharacterized protein E1BJL8 Uncharacterized protein E1BMJ0 Uncharacterized protein E3VVJ1 Prosaposin variant 1 E3VVJ2 Prosaposin variant 2 F1MAV0 Uncharacterized protein F1MFI4 Uncharacterized protein (Fragment) F1MK50 Uncharacterized protein (Fragment) F1MLW7 Uncharacterized protein F1MLW8 Uncharacterized protein F1MNV5 Uncharacterized protein F1MR22 Uncharacterized protein F1MSZ6 Uncharacterized protein F1MUT3 Uncharacterized protein F1MWU9 Uncharacterized protein F1MZA0 Uncharacterized protein (Fragment) F1MZN6 Uncharacterized protein (Fragment) F1N2D9 Uncharacterized protein F1N5M2 Uncharacterized protein F1N726 Uncharacterized protein F1RQU2 Uncharacterized protein F1RQW8 Uncharacterized protein F1RRP2 Uncharacterized protein F1RXG3 Uncharacterized protein (Fragment) F1S3Y7 Uncharacterized protein (Fragment) F1S9A4 Uncharacterized protein F5BZ34 Milk fAt globule EGF factor 8 (Fragment) F8U3U7 CD36 G0Z2N2 L-lactAte dehydrogenase G3EHG6 Adipose differentiAtion-related protein G3N0S9 Uncharacterized protein G3N0V0 Uncharacterized protein (Fragment) G3N1U4 Uncharacterized protein G3N2D7 Uncharacterized protein (Fragment) G3N2D8 Uncharacterized protein G3N342 Uncharacterized protein (Fragment) G5CC03 Milk fAt globule EGF factor 8 protein (Fragment) G5E513 Uncharacterized protein (Fragment) G5EST5 Uncharacterized protein (Fragment) G5E604 Uncharacterized protein (Fragment) G8JKW7 Uncharacterized protein O18738 Dystroglycan O18836 Growth/differentiAtion factor 8 O97896 Xanthine:oxygen oxidoreductase (Fragment) P00442 Superoxide dismutase [Cu—Zn] P00735 Prothrombin P00978 Protein AMBP P01888 Beta-2-microglobulin P01966 Hemoglobin subunit alpha P02672 Fibrinogen alpha chain P02702 FolAte receptor alpha P08037 Beta-1,4-galactosyltransferase 1 P09837 Whey acidic protein P0CB32 HeAt shock 70 kDa protein 1-like P10790 FAtty acid-binding protein P12763 Alpha-2-HS-glycoprotein P13696 PhosphAtidylethanolamine-binding protein 1 P15497 Apolipoprotein A-I P15522 GlycosylAtion-dependent cell adhesion molecule 1 P17690 Beta-2-glycoprotein 1 P17697 Clusterin P18892 Butyrophilin subfamily 1 member A1 P19120 HeAt shock cognAte 71 kDa protein P20757 Angiotensinogen P21809 Biglycan P21856 Rab GDP dissociAtion inhibitor alpha P22226 CAthelicidin-1 P26201 PlAtelet glycoprotein 4 P26779 ProactivAtor polypeptide P28801 GlutAthione S-transferase P P31096 Osteopontin P34955 Alpha-1-antiproteinase P50397 Rab GDP dissociAtion inhibitor beta P50448 Factor XIIa inhibitor P55859 Purine nucleoside phosphorylase P60712 Actin, cytoplasmic 1 P62833 Ras-relAted protein Rap-1A P62935 Peptidyl-prolyl cis-trans isomerase A P62992 Ubiquitin-40S ribosomal protein S27a P63048 Ubiquitin-60S ribosomal protein L40 P63258 Actin, cytoplasmic 2 P79345 Epididymal secretory protein E1 P80195 GlycosylAtion-dependent cell adhesion molecule 1 P80221 C-X-C motif chemokine 6 P80457 Xanthine dehydrogenase/oxidase P81187 Complement factor B P81265 Polymeric immunoglobulin receptor Q03247 Apolipoprotein E Q06B57 FAtty acid synthase Q08DW4 Mannan-binding lectin serine peptidase 1 Q0IIH5 Nucleobindin 2 Q0P569 Nucleobindin-1 Q0VCM5 Inter-alpha-trypsin inhibitor heavy chain H1 Q0VCX2 78 kDa glucose-regulAted protein Q148D9 Cellular repressor of E1A-stimulAted genes 1 Q27965 HeAt shock 70 kDa protein 1B Q27975 HeAt shock 70 kDa protein 1A Q28178 Thrombospondin-1 Q28452 Quinone oxidoreductase Q29437 Primary amine oxidase, liver isozyme Q29545 Inhibitor of carbonic anhydrase Q29RQ1 Complement component C7 Q2HJ49 Moesin Q2KIF2 Leucine-rich alpha-2-glycoprotein 1 Q2KIS7 Tetranectin Q2KIT0 Protein HP-20 homolog Q2KJ32 Selenium-binding protein 1 Q2KJF1 Alpha-1B-glycoprotein Q2TBI0 Lipopolysaccharide-binding protein Q2UVX4 Complement C3 Q307G4 Cytosolic NADP-isocitrAte dehydrongenase (Fragment) Q32KV6 Nucleotide exchange factor SIL1 Q32PJ2 Apolipoprotein A-IV Q3MHN5 Vitamin D-binding protein Q3MHX6 Protein OS-9 Q3SX14 Gelsolin Q3SYR8 Immunoglobulin J chain Q3SZR3 Alpha-1-acid glycoprotein Q3SZV7 Hemopexin Q3SZZ9 FGG protein Q3T052 Inter-alpha-trypsin inhibitor heavy chain H4 Q3T0Z0 Uncharacterized protein Q3T101 IGL@ protein Q3ZBY4 Fructose-bisphosphAte aldolase Q3ZCH5 Zinc-alpha-2-glycoprotein Q3ZCL0 Cysteine-rich secretory protein 2 Q58DP6 Ribonuclease, RNase A family, 4 Q5DPW9 CystAtin E/M Q5E946 Protein DJ-1 Q5J801 Endopin 2B Q7SIH1 Alpha-2-macroglobulin Q8SQ82 Polymeric immunoglobulin receptor (Fragment) Q95114 Lactadherin Q95121 Pigment epithelium-derived factor Q95122 Monocyte differentiAtion antigen CD14 Q95M18 Endoplasmin Q9GJW6 Peroxidase Q9GK12 Peptidoglycan recognition protein 1 Q9MZ06 Fibroblast growth factor-binding protein 1 Q9TRB9 Enterotoxin-binding glycoprotein PP20K (Fragment) Q9TSF1 Butyrophilin (Fragment) Q9TTE1 Serpin A3-1 Q9TUM6 Perilipin-2 Q9XSG3 IsocitrAte dehydrogenase [NADP] cytoplasmic Q9XSH0 Secreted folAte binding protein Q9XSJ4 Alpha-enolase Q9XT27 Ceruloplasmin - Caseins and whey proteins can also be proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native caseins and native whey proteins, respectively, and nucleic acids encoding caseins and whey proteins can also be nucleic acids that encode proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native caseins and native whey proteins, respectively.
- In some embodiments, the milk proteins are glycosylated. In some such embodiments, the milk proteins have native glycosylation. In other such embodiments, the milk proteins have non-native glycosylation. In some such embodiments, the non-native glycosylation is non-mammalian glycosylation (i.e., glycosylation not found in a mammal). In various embodiments, the food products provided herein comprise one or more milk proteins with native glycosylation, or one or more proteins with non-native glycosylation, or mixtures thereof. In some embodiments, the milk proteins have a native number and/or distribution of consensus sequences for N-glycosylation (e.g., amino acid sequence Asn-X-See/Thr, wherein X is any amino acid residue), O-glycosylation, and/or C-glycosylation. In various embodiments, the food products provided herein comprise one or more milk proteins with native glycosylation, or one or more proteins with non-native glycosylation, or mixtures thereof. In some embodiments, the milk proteins have a non-native number and/or distribution of consensus sequences for N-glycosylation, O-glycosylation, and/or C-glycosylation (see, for example, Tatsumi et al. 2012 Biosci. Biotechnol. Biochem. 76(3):478; Kalidas et al. 2001 Protein Eng. 14(3):201).
- In some embodiments, the milk proteins are phosphorylated. In some such embodiments, the milk proteins have native phosphorylation. In other such embodiments, the milk proteins have non-native phosphorylation. Altered phosphorylation can influence properties of milk proteins (e.g., increase solubility, hydrophilicity, heat stability), which in some embodiments can make such milk proteins more suitable for use in the food products provided herein (for example, proteins with better solubility are more suitable for production of beverages). In various embodiments, the food products provided herein comprise one or more milk proteins with native phosphorylation, or one or more proteins with non-native phosphorylation, or mixtures thereof. In some embodiments, the milk proteins have a non-native number and/or distribution of amino acid residues capable of being phosphorylated (e.g., tyrosine, threonine, serine).
- In some embodiments in which the food products comprise recombinant milk proteins, the recombinant milk proteins lack epitopes that can elicit immune responses in human or animals.
- In some embodiments in which the food products comprise recombinant milk proteins, the recombinant milk proteins can have one or more identical or similar properties as equivalent native milk proteins. In other embodiments in which the food products comprise recombinant milk proteins, the recombinant milk proteins can have one or more different properties than equivalent native milk proteins. Non-limiting examples of such properties include solubility, turbidity, effect on viscosity, ability to withstand heat (i.e., aggregation or precipitation upon heating), ability to bind specific types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids), digestibility (i.e., rate at which a composition is degraded in a human or animal intestinal tract), ability to form micelles, ability to form micelles that encapsulate specific types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids), ability to form micelles of specific sizes, ability to form micelles of specific digestibility, ability to form micelles with specific stabilities at specific temperatures (e.g., refrigeration, ambient temperature, heat), ability to form micelles that have similar or superior emulsifying qualities as micelles comprised in milk or other dairy products, ability to form micelle aggregates (e.g., in response to changes in pH, salt concentration, enzymes [e.g., renin; “rennet coagulability”]), and ability to be encapsulated by micelles. The ability to from micelles can be determined experimentally, for example, by combining the micelle forming proteins in water or oil, homogenizing the mixture, and analyzing the types and amounts of micelles formed. The ability of compounds to be encapsulated by micelles can be determined experimentally by combining the compounds with micelle forming proteins, homogenizing the mixture, extracting the micelles (e.g., via centrifugation at 14,000 g), and determining the concentration of the compounds left in the liquid phase. The emulsifying quality of micelles can be measured using a rheometer.
- The food products provided herein comprise one or more native and/or recombinant non-animal proteins.
- The non-animal proteins can be derived from any one or more non-animal sources. Non-animal sources may be obtained from a variety of sources including but not limited to nature (e.g., lakes, oceans, soils, rocks, gardens, forests, plants, animals), brewery stores, and commercial cell banks (e.g., ATCC, collaborative sources).
- Suitable non-animal sources include naturally occurring plants, algae, fungi, or microbes.
- Examples of suitable plants include but are not limited to spermatophytes (spermatophyta), acrogymnospermae, angiosperms (magnoliophyta), ginkgoidae, pinidae, mesangiospermae, cycads, Ginkgo, conifers, gnetophytes, Ginkgo biloba, cypress, junipers, thuja, cedarwood, pines, angelica, caraway, coriander, cumin, fennel, parsley, dill, dandelion, helichrysum, marigold, mugwort, safflower, camomile, lettuce, wormwood, calendula, citronella, sages, thyme, chia seed, mustard, olive, coffee, capsicum, eggplant, paprika, cranberry, kiwi, vegetable plants (e.g., carrot, celery), tagetes, tansy, tarragon, sunflower, wintergreen, basil, hyssop, lavender, lemon verbena, marjoram, melissa, patchouli, pennyroyal, peppermint, rosemary, sesame, spearmint, primroses, samara, pepper, pimento, potato, sweet potato, tomato, blueberry, nightshades, petunia, morning glory, lilac, j asmin, honeysuckle, snapdragon, psyllium, wormseed, buckwheat, amaranth, chard, quinoa, spinach, rhubarb, jojoba, cypselea, chlorella, manila, hazelnut, canola, kale, bok choy, rutabaga, frankincense, myrrh, elemi, hemp, pumpkin, squash, curcurbit, manioc, dalbergia, legume plants (e.g., alfalfa, lentils, beans, clovers, peas, fava coceira, frijole bola roja, frijole negro, lespedeza, licorice, lupin, mesquite, carob, soybean, peanut, tamarind, wisteria, cassia, chickpea, garbanzo, fenugreek, green pea, yellow pea, snow pea, lima bean, fava bean), geranium, flax, pomegranate, cotton, okra, neem, fig, mulberry, clove, eucalyptus, tea tree, niaouli, fruiting plants (e.g., apple, apricot, peach, plum, pear, nectarine), strawberry, blackberry, raspberry, cherry, prune, rose, tangerine, citrus (e.g., grapefruit, lemon, lime, orange, bitter orange, mandarin), mango, citrus bergamot, buchu, grape, broccoli, brussels, sprout, camelina, cauliflower, rape, rapeseed (canola), turnip, cabbage, cucumber, watermelon, honeydew melon, zucchini, birch, walnut, cassava, baobab, allspice, almond, breadfruit, sandalwood, macadamia, taro, tuberose, aloe vera, garlic, onion, shallot, vanilla, yucca, vetiver, galangal, barley, corn, curcuma aromatica, ginger, lemon grass, oat, palm, pineapple, rice, rye, sorghum, triticale, turmeric, yam, bamboo, barley, cajuput, canna, cardamom, maize, oat, wheat, cinnamon, sassafras, lindera benzoin, bay laurel, avocado, ylang-ylang, mace, nutmeg, moringa, horsetail, oregano, cilantro, chervil, chive, aggregate fruits, grain plants, herbal plants, leafy vegetables, non-grain legume plants, nut plants, succulent plants, land plants, water plants, delbergia, millets, drupes, schizocarps, flowering plants, non-flowering plants, cultured plants, wild plants, trees, shrubs, flowers, grasses, herbaceous plants, brushes, lianas, cacti, green algae, tropical plants, subtropical plants, temperate plants, and derivatives and crosses thereof.
- Examples of suitable algae include but are not limited to green algae (e.g., Chlorella), brown algae (e.g., Alaria marginata, Analipus japonicus, Ascophyllum nodosum, Ecklonia sp, Eisenia bicyclis, Hizikia fusiforme, Kjellmaniella gyrata, Laminaria angustata, Laminaria longirruris, Laminaria Longissima, Laminaria ochotensis, Laminaria claustonia, Laminaria saccharina, Laminaria digitata, Laminaria japonica, Macrocystis pyrifera, Petalonia fascia, Scytosiphon lome), red algae (e.g., Gigartinaceae, Soliericeae, Chondrus crispus, Chondrus ocellatus, Eucheuma cottonii, Eucheuma spinosum, Furcellaria fastigiata, Gracilaria bursa-pastoris, Gracilaria lichenoides, Gloiopeltis furcata, Gigartina acicularis, Gigartina bursa-pastoris, Gigartina pistillata, Gigartina radula, Gigartina skottsbergii, Gigartina stellata, Palmaria palmata, Porphyra columbina, Porphyra crispata, Porhyra deutata, Porhyra perforata, Porhyra suborbiculata, Porphyra tenera, Porphyridium cruentum, Porphyridium purpureum, Porphyridium aerugineum, Rhodella maculate, Rhodella reticulata, Rhodella violacea, Rhodophyceae, Rhodymenia palmata), and derivatives and crosses thereof.
- Examples of suitable fungi include but are not limited to Aspergillus sp., Aspergillus nidulans, Aspergillus niger, Aspergillus niger var. awamori, Aspergillus oryzae, Candida albicans, Candida etchellsii, Candida guilliermondii, Candida humilis, Candida hpolytica, Candida pseudotropicalis, Candida utilis, Candida versatilis, Chrysosporium lucknowense, Debaryomyces hansenii, Endothia parasitica, Eremothecium ashbyii, Fusarium sp., Fusarium gramineum, Fusarium moniliforme, Fusarium venenatum, Hansenula polymorpha, Kluyveromyces sp., Kluyveromyces lactis, Kluyveromyces marxianus, Kluyveromyces marxianus var. lactis, Kluyveromyces thermotolerans, Morteirella vinaceae var. raffinoseutilizer, Mucor miehei, Mucor miehei var. Cooney et Emerson, Mucor pusillus Lindt, Myceliophihora thertnophile, Neurospora crassa, Penicillium roquefortii, Physcomitrella patens, Pichia sp., Pichia pastoris, Pichia finlandica, Pichia trehalophila, Pichia koclamae, Pichia membranaefaciens, Pichia minuta (Ogataea minuta, Pichia lindneri), Pichia opuntiae, Pichia thermotolerans, Pichia salictaria, Pichia guercuum, Pichia pijperi, Pichia stiptis, Pichia methanolica, Rhizopus niveus, Rhodotorula sp., Saccharomyces sp., Saccharomyces bayanus, Saccharomyces beticus, Saccharomyces cerevisiae, Saccharomyces chevalieri, Saccharomyces diastaticus, Saccharomyces ellipsoideus, Saccharomyces exiguus, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces pastorianus, Saccharomyces pombe, Saccharomyces sake, Saccharomyces uvarum, Sporidiobolus johnsonii, Sporidiobolus salmonicolor, Sporobolomyces roseus, Trichoderma, Trichoderma reesei, Xanthophyllomyces dendrorhous, Yarrowia lipolytica, Zygosaccharomyces rouxii, and derivatives and crosses thereof.
- Examples of suitable microbes include but are not limited to firmicutes, cyanobacteria (blue-green algae), oscillatoriophcideae, bacillales, lactobacillales, oscillatoriales, bacillaceae, lactobacillaceae, Acetobacter suboxydans, Acetobacter xylinum, Actinoplane missouriensis, Arthrospira platensis, Arthrospira maxima, Bacillus cereus, Bacillus coagulans, Bacillus subtilus, Bacillus cerus, Bacillus licheniformis, Bacillus stearothermophilus, Bacillus subtilis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactococcus lactis, Lactococcus lactis Lancefield Group N, Lactobacillus reuteri, Leuconostoc citrovorum, Leuconostoc dextranicum, Leuconostoc mesenteroides strain NRRL B-512(F), Micrococcus lysodeikticus, Spirulina, Streptococcus cremoris, Streptococcus lactis, Streptococcus lactis subspecies diacetylactis, Streptococcus thermophilus, Streptomyces chattanoogensis, Streptomyces griseus, Streptomyces natalensis, Streptomyces olivaceus, Streptomyces olivochromogenes, Streptomyces rubiginosus, Tetrahymena thermophile, Tetrahymena hegewischi, Tetrahymena hyperangularis, Tetrahymena malaccensis, Tetrahymena pigmentosa, Tetrahymena pyriformis, and Tetrahymena vorax, and Xanthomonas campestris, and derivatives and crosses thereof.
- In some embodiments, the food products comprise between 0.01% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0.05%; between 0.05% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, or 0.3%; between 0.3% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, or 0.4%; between 0.4% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, 0.6%, or 0.5%; between 0.5% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, 0.7%, or 0.6%; between 0.6% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, 0.8%, or 0.7%; between 0.7%, and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.9%, or 0.8%; between 0.8% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.9%; between 0.9% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, or 6%; between 6% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, or 7%; between 7% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, or 8%; between 8% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, or 9%; between 9% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, or 10%; between 10% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, or 11%; between 11% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, or 12%; between 12% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, or 13%; between 13% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, or 14%; between 14% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, or 15%; between 15% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, or 20%; between 20% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, or 25%; between 25% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, or 30%; between 30% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, or 35%; between 35% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, or 40%; between 40% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, or 45%; between 44% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, or 50%; between 50% and 90%, 85%, 80%, 75%, 70%, 65%, 60%, or 55%; between 55% and 90%, 85%, 80%, 75%, 70%, 65%, or 60%; between 60% and 90%, 85%, 80%, 75%, 70%, or 65%; between 65% and 90%, 85%, 80%, 75%, or 70%; between 70% and 90%, 85%, 80%, or 75%; between 75% and 90%, 85%, or 80%; between 80% and 90%, or 85%; or between 85% and 90% by weight of non-animal protein.
- The non-animal proteins can be native or recombinant non-animal proteins, or combinations thereof. In some embodiments, the non-animal proteins are hydrolyzed native or recombinant non-animal proteins. In some such embodiments, the hydrolyzed non-animal proteins do not comprise terminal leucine and/or valine amino acids as terminal leucine and valine amino acid residues can impart a bitter taste on proteins.
- In some embodiments, at least some of the non-animal protein is derived from pea (i.e., pea proteins). The pea proteins may be derived from whole pea, or from a component of pea in accordance with methods generally known in the art. The pea may be standard pea (i.e., non-genetically modified pea), commoditized pea, genetically modified pea, or combinations thereof. In some such embodiments, the pea proteins are Pisum sativum proteins.
- In some embodiments, at least some of the non-animal protein is derived from fungi (i.e., fungal proteins). In some embodiments, the fungal proteins are native to one of the fungi disclosed herein (e.g., Aspergillus niger, Aspergillus niger var. awamori, Aspergillus oryzae, Candida guilliermondii, Candida lipolytica, Candida pseudotropicalis, Candida utilis, Chrysosporium lucknowense, Endothia parasitica, Eremothecium ashbyii, Fusarium moniliforme, Kluyveromyces lactis, Kluyveromyces marxianus var. lactis, Morteirella vinaceae var. raffinoseutilizer, Mucor miehei, Mucor miehei var. Cooney et Emerson, Mucor pusillus Lindt, Myceliophthora thermophile, Penicillium roquefortii, Pichia pastoris, Rhizopus niveus, Saccharomyces cerevisiae, Saccharomyces fragilis, and Trichoderma reesei). In some embodiments, the fungal proteins have a similar charge (isoelectric point, pI) and/or size (molecular weight) as the milk proteins comprised in the food products. Non-limiting examples of fungal proteins include glucoamylase, xylanases, amylases, glucanases, members of the SUN family (Sim 1p, Uth1p, Nca3p, Sun4p), elongation factor 1-alpha, and mitochondrial leucyl-tRNA synthetase. In some embodiments, the fungal proteins are secreted fungal proteins. Non-limiting examples of secreted fungal proteins include alpha-amylase, alpha-galactosidase, cellulase, endo-1,4-beta-xylanase, endoglucanase, exo-1,4-beta-xylosidase, glucoamylase, peptidase, aspergillopepsin-1, 1,4-beta-D-glucan cellobiohydrolase A, alpha-galactosidase A, alpha-galactosidase B, alpha-galactosidase D, alpha-glucuronidase A, beta-galactosidase C,
glucan 1,3-beta-glucosidase A, and glucan endo-1,3-beta-glucosidase eglC. - Non-animal proteins can also be proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native non-animal proteins, respectively, and nucleic acids encoding non-animal proteins can also be nucleic acids that encode proteins that are at least 80% (e.g., at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%) identical to native non-animal proteins, respectively.
- In some embodiments, the non-animal proteins have identical or similar properties as milk proteins. In some embodiments, the non-animal proteins have different properties than milk proteins. Examples of such properties include but are not limited to solubility, turbidity, effect on viscosity, heat stability (i.e., aggregation or precipitation behavior upon heating), ability to bind specific types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids), cellular localization (e.g., entirely extracellular, partially extracellular), glycosylation pattern, phosphorylation pattern, amphiphilicity, emulsifying ability, foam forming ability, [i.e., ability to form stable foams], flavor binding ability, water binding ability, ability to form heat- or pressure-induced gels, spectral absorption pattern, rennet cleavage sites, syneresis properties of rennet gels produced, digestibility, ability to form micelles, ability to form micelles that encapsulate specific types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids), ability to form micelles of specific sizes, ability to form micelles of specific digestibility, ability to form micelles with specific stabilities at specific temperatures (e.g., refrigeration, ambient temperature, heat), ability to form micelles that have similar or superior emulsifying qualities as micelles comprised in milk and other dairy products, ability to form micelle aggregates (e.g., in response to changes in pH, salt concentration, enzymes [e.g., renin; “rennet coagulability”]), and ability to be encapsulated by micelles.
- In some embodiments, the non-animal proteins comprise phosphate groups. Examples of plant phosphoproteins include, but are not limited to, the proteins listed in Table 2.
-
TABLE 2 Non-Limiting Examples of Non-Animal Phosphoproteins AGI code Protein name At1g22530 PAtellin-2 (PAtL-2) At4g24190 Endoplasmin homologue (SHD) At5g56030 HeAt shock protein 81-2 At5g11170 DEAD-box AtP-dependent RNA helicase 15 At5g22650 Histone deacetylase HDT2 At1g09640 Probable elongAtion factor 1-γ 1 At1g76180 Dehydrin ERD14 At5g60640 Protein disulphide isomerase-like protein AtCg00120 AtP synthase subunit α, chloroplastic AtCg00490 Rubisco large chain At1g67090 Rubisco small chain 1A, chloroplastic At2g39990 eIF2 (eukaryotic translAtion initiAtion factor) At5g14740 β-Carbonic anhydrase 2 At5g43830 GAtase-like protein At5g56030 HeAt shock protein 81-2 At5g56030 HeAt shock protein 81-2/3/4 At3g16420 PBP1 At5g42790 Proteasome subunit a type-1-A At3g51880 HMGB1 At3g09200 60S Acidic ribosomal protein P0-2 At1g20440 Dehydrin COR47 At4g26110 NAP1 AtCg00490 Rubisco large subunit AtCg00490 Rubisco large subunit At1g76180 Dehydrin ERD14 At1g26630 eIF5A-2 (eukaryotic translAtion initiAtion factor) At1g20010 Tubulin β-5 chain At5g44340 Tubulin β-4 chain At3g09200 60S Acidic ribosomal protein P0-2 At1g01540.1 At1g01540.1 At1g07985.1 At1g07985.1 At1g08680.1 At1g08680.1 At1g20440.1 At1g20440.1 At1g26540.1 At1g26540.1 At1g27500.1 At1g27500.1 At1g29220.1 At1g29220.1 At1g29350.1 At1g29350.1 At1g35580.1 At1g35580.1 At1g35580.1 At1g35580.1 At1g45688.1 At1g45688.1 At1g55310.1 At1g55310.1 At1g59710.1 At1g59710.1 At1g59870.1 At1g59870.1 At1g62830.1 At1g62830.1 At1g66680.1 At1g66680.1 At1g73200.1 At1g73200.1 At1g76920.1 At1g76920.1 At1g80530.1 At1g80530.1 At2g01190.1 At2g01190.1 At2g23350.1 At2g23350.1 At2g26730.1 At2g26730.1 At2g29210.1 At2g29210.1 At2g31650.1 At2g31650.1 At2g35030.1 At2g35030.1 At2g35350.1 At2g35350.1 At2g35880.1 At2g35880.1 At2g37340.1 At2g37340.1 At2g41705.1 At2g41705.1 At2g41720.1 At2g41720.1 At2g41740.1 At2g41740.1 At2g43680.1 At2g43680.1 At2g45540.1 At2g45540.1 At2g46170.1 At2g46170.1 At2g46495.1 At2g46495.1 At3g05090.1 At3g05090.1 At3g07790.1 At3g07790.1 At3g13570.1 At3g13570.1 At3g13990.1 At3g13990.1 At3g17420.1 At3g17420.1 At3g23100.1 At3g23100.1 At3g27960.1 At3g27960.1 At3g29310.1 At3g29310.1 At3g29390.1 At3g29390.1 At3g48530.1 At3g48530.1 At3g52400.1 At3g52400.1 At3g52930.1 At3g52930.1 At3g53500.1 At3g53500.1 At3g55460.1 At3g55460.1 At3g55460.1 At3g55460.1 At3g55460.1 At3g55460.1 At3g56510.1 At3g56510.1 At3g58940.1 At3g58940.1 At3g61860.1 At3g61860.1 At3g62280.1 At3g62280.1 At4g05150.1 At4g05150.1 At4g07523.1 At4g07523.1 At4g11740.1 At4g11740.1 At4g13510.1 At4g13510.1 At4g25160.1 At4g25160.1 At4g25580.1 At4g25580.1 At4g31580.1 At4g31580.1 At4g31700.1 At4g31700.1 At4g32250.1 At4g32250.1 At4g35785.1 At4g35785.1 At4g38600.1 At4g38600.1 At4g39680.1 At4g39680.1 At5g02240.1 At5g02240.1 At5g04930.1 At5g04930.1 At5g06210.1 At5g06210.1 At5g18660.1 At5g18660.1 At5g21160.1 At5g21160.1 At5g41600.1 At5g41600.1 At5g47690.1 At5g47690.1 At5g52040.1 At5g52040.1 At5g52040.1 At5g52040.1 At5g57110.1 At5g57110.1 At5g62820.1 At5g62820.1 At5g64200.1 At5g64200.1 - In some embodiments, the non-animal proteins have similar or similarly distributed phosphorylation patterns as milk proteins. In some embodiments, the non-animal proteins comprise carbohydrate groups (e.g., glycosylated groups). In some embodiments, the non-animal proteins have similar or similarly distributed glycosylation patterns as milk proteins. In some embodiments, the non-animal proteins have even distributions of hydrophobic and hydrophilic residues. In some embodiments, the non-animal proteins have similar or similarly distributed hydrophobic sites as milk proteins. In some embodiments, the non-animal proteins have similar or similarly distributed hydrophilic sites as milk proteins. In some embodiments, the non-animal proteins have even distributions of basic and acidic residues (i.e., are amphipathic in unfolded conformation). In some embodiments, the non-animal proteins have similar or similarly distributed acidic sites as milk proteins. In some embodiments, the non-animal proteins have similar or similarly distributed basic sites as milk proteins. In some embodiments, the non-animal proteins are lipid soluble. In some embodiments, the non-animal proteins are water soluble.
- In some embodiments, the non-animal proteins have similar or superior abilities to form micelles as caseins. In some embodiments, the non-animal proteins can form micelles without caseins. In some embodiments, the non-animal proteins can form micelles with one or more caseins that mimic a similar or superior emulsion quality as micelles formed only by caseins. In some embodiments, the non-animal proteins can form micelles without caseins that mimic a similar or superior emulsion quality as micelles formed only by caseins. In some embodiments, the non-animal proteins can form micelles with one or more caseins that encapsulate different types or amounts of compounds (e.g., water, minerals [e.g., calcium, phosphate, zinc], vitamins [e.g., vitamin D], micronutrients, carotenoids) than are encapsulated by micelles formed by caseins alone. In some embodiments, the non-animal proteins can form micelles without caseins that encapsulate different types or amounts of compounds than are encapsulated by micelles formed by caseins alone.
- Suitable non-animal proteins can be identified by obtaining secretomes (i.e., secreted proteins, obtained by, for example, culturing the non-animal sources in liquid culture, removing cells from the cell culture [e.g., via centrifugation], and optionally concentrating the remaining culture medium; or by sequencing genomes and in silico identifying secreted proteins, as described, for example, by Mattanovich et al. [Microbial Cell Factories 2009, 8:29]), whole cell extracts, or fractionated whole cell extracts of non-animal sources; optionally partially digesting, glycosylating, phosphorylating, or otherwise enzymatically treating the proteins; and then screening them in assays (e.g., high-throughput assays) for proteins that have similar, identical, or different properties compared to milk proteins. In some embodiments, the non-animal proteins are identified by screening a calcium-enriched fraction of soy proteins for proteins that have similar, identical, or different properties compared to milk proteins.
- A suitable assay for identifying the ability of proteins to form micelles is by combining the constituent proteins (e.g., caseins, non-animal proteins), homogenizing the mixture, isolating micelles (e.g., by centrifugation), and quantitating the micelles. A suitable assay for identifying the encapsulation ability of micelles is by combining the constituent proteins (e.g., caseins, non-animal proteins) with the compounds to be encapsulated, homogenizing the mixture, isolating micelles (e.g., by centrifugation), and quantitating the amount of the compounds to be encapsulated in the remaining solution.
- In some embodiments, the non-animal proteins readily associate with other proteins. In some embodiments, the non-animal proteins can bind calcium. In some embodiments, non-animal proteins are secreted proteins. In some embodiments, the non-animal proteins are resistant to degradation by proteases. In some embodiments, the non-animal proteins comprise extracellular domains of fungal floculation proteins (i.e., flocculins; e.g., flocculin FLO5 of Saccharomyces cerevisiae).
- In some embodiments, the non-animal proteins comprise domains of legume nodulation proteins (e.g., NodO of Rhizobium leguminosarum and its homologs in Lotus japonicus). In some embodiments, the non-animal proteins are C2-domain ABA proteins of Arabidopsis thaliana (CARS). In some embodiments, the non-animal proteins are heat shock proteins (e.g., Uniprot ID C4QZS3). In some embodiments, the non-animal proteins are proteases (e.g., vacuolar aspartyl protease (Proteinase A) of Komagataella pastoris, vacuolar proteinase B (YscB) of Komagataella pastoris). In some embodiments, the non-animal proteins are peptidases.
- In some embodiments, the food products provided herein further comprise lipids. Lipids are present in, for example, dairy products, and are critical for sensory characteristics such as mouthfeel and consistency. In addition, lipids provide nutrition and health benefits. Furthermore, lipids can influence the flavors and/or aroma of food products.
- In some embodiments, the food products provided herein comprise one or more lipids selected from the group consisting of fats, oils, monoglycerides, diglycerides, triglycerides, phospholipids, and free fatty acids. In some embodiments, the food products comprise essentially no animal lipids. In some embodiments, the food products comprise only saturated lipids. In some embodiments, the food products comprise only unsaturated lipids. In some embodiments, the food products comprise saturated lipids and unsaturated lipids.
- Non-limiting examples of oils include plant oils (e.g., sunflower oil, coconut oil, mustard oil, peanut oil, canola oil, corn oil, cottonseed oil, flax seed oil, olive oil, palm oil, rapeseed oil, safflower oil, sesame oil, soybean oil, almond oil, beech nut oil, brazil nut oil, cashew oil, hazelnut oil, macadamia nut oil, mongongo nut oil, pecan oil, pine nut oil, pistachio nut oil, walnut oil, avocado oil, grape oil), microbe-derived oils, algae-derived oils, fungus-derived oils, marine animal oils (e.g., Atlantic fish oil, Pacific fish oil, Mediterranean fish oil, light pressed fish oil, alkaline treated fish oil, heat treated fish oil, light and heavy brown fish oil, bonito oil, pilchard oil, tuna oil, sea bass oil, halibut oil, spearfish oil, barracuda oil, cod oil, menhaden oil, sardine oil, anchovy oil, capelin oil, Atlantic cod oil, Atlantic herring oil, Atlantic mackerel oil, Atlantic menhaden oil, salmonid oil, and shark oil, squid oil, cuttlefish oil, octopus oil, krill oil, seal oil, whale oil), non-essential oils, essential oils, natural oils, non-hydrogenated oils, partially hydrogenated oils, hydrogenated oils (e.g., hydrogenated coconut oil), crude oils, semi-refined (also called alkaline refined) oils, and refined oils. In some embodiments, longer chain oils (e.g., sunflower oil, corn oil, olive oil, soy oil, peanut oil, walnut oil, almond oil, sesame oil, cottonseed oil, canola oil, safflower oil, flax seed oil, palm oil, palm kernel oil, palm fruit oil, coconut oil, babassu oil, shea butter, mango butter, cocoa butter, wheat germ oil, rice bran oil, engineered sunflower oil that overexpresses oleic acid by 400%) are combined with short-chain triglycerides to produce transesterified fatty acid esters. Various combinations of triglycerides and longer chain oils can be incorporated to create a number of different flavor profiles.
- Non-limiting examples of monoglycerides and diglycerides include plant-derived monoglycerides and diglycerides, (e.g., monoglycerides and diglycerides derived from sunflower, coconut, peanut, cottonseed, olive, palm, rapeseed, safflower, sesame seed, soybean, almond, beech nut, Brazil nut, cashew, hazelnut, macadameia nut, mongongo nut, pecan, pine nut, pistachio, walnut, and avocado). The monoglycerides and diglycerides can include the acyl chain of any of the free fatty acids listed herein. Additional examples of monoglycerides and diglycerides are known in the art.
- Non-limiting examples of free fatty acids include butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, myristoleic acid, pamitoleic acid, sapienic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linoelaidic acid, α-linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, docosahexaenoic acid, omega-fatty acids (e.g., arachidonic acid, omega-3-fatty acids, omega-6-fatty acids, omega-7-fatty acids, omega-9-fatty acids), fatty acids with even number of carbons of 4-16 carbons in length, monosaturated acids [particularly with 18 carbons], fatty acids with low interfacial tension (e.g., less than 20, less than 15, less than 11, less than 9, less than 7, less than 5, less than 3, less than 2, less than 1, or less than 0.5 dynes/cm, from 0.1 to 20, from 1 to 15, from 2 to 9, from 3 to 9, from 4 to 9, from 5 to 9, from 2 to 7, from 0.1 to 5, from 0.3 to 2, or from 0.5 to 1 dynes/cm, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, or 20.0), butyric (4:0) acid or caproic (6:0) acid that is esterified at sn-3, medium-chain fatty acids (8:0-14:0) as well as 16:0 that are esterified at positions sn-1 and sn-2, fatty acids in which stearic acid (18:0) is placed at position sn-1, fatty acids in which oleic acid (18:1) is placed at positions sn-1 and sn-3, fatty acids that have a range of carbon atoms (e.g., from 8 to 40, from 10 to 38, from 12 to 36, from 14 to 34, from 16 to 32, from 18 to 30, or from 20 to 28 carbon atoms), fatty acids that comprise at least one unsaturated bond (i.e., a carbon-carbon double or triple bond; e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 carbon-carbon double bonds and/or triple bonds), fatty acids with conjugated unsaturated bonds (i.e., at least one pair of carbon-carbon double and/or triple bonds are bonded together, without a methylene (CH2) group between them [e.g., 4CH:CHi CH:CHi]), and derivatives of the above named fatty acids (e.g., esters [e.g., methyl and ethyl esters], salts [e.g., sodium and potassium salts], triglyceride derivatives, diglycerides derivatives, monoglyceride derivatives). The free fatty acids can be saturated on unsaturated. In some embodiments, the free fatty acids are not derived from or produced by a mammal. Additional examples of free fatty acids are known in the art.
- Non-limiting examples of phospholipids include lecithin phospholipids (e.g., soy lecithin phospholipids, sunflower lecithin phospholipids, cotton lecithin phospholipids, rapeseed lecithin phospholipids. rice bran lecithin phospholipids, and corn lecithin phospholipids), cardiolipin, ceramide phosphocholines, ceramide phosphoethanolamines, glycerophospholipids, phasphatidicacid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphospingolipids, and phsophatidylserine. In some embodiments, the phospholipids are not derived from or produced by a mammal. Additional aspects of phospholipids are known in the art.
- Non-limiting examples of triglycerides include tributyrin, short-chain triglycerides, short-chain triglycerides comprising three oleic acids; short-chain triglycerides comprising hexanoic acid; short-chain triglycerides comprising hexanoic acid and butyric acid; short-chain triglycerides comprising hexanoic acid and decanoic acid; and short-chain triglycerides comprising one butyric, one hexanoic, and one octanoic acid. In some embodiments, the flavor profiles of the compositions provided herein are modulated by incorporating synthetic short-chain triglycerides combined with plant-based oils (e.g., sunflower oil) in desired combinations. For example, a mixture of [C18 C18 C6] and [C18 C6 C18] provides a different flavor profile than a mixture of [C18 C4 C4] and [C18 C10 C10].
- In some embodiments, the food products provided herein comprise between 0% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or 0.3%; between 0.3% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.4%; between 0.4% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, or 6%; between 6% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, or 7%; between 7% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, or 8%; between 8% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 9%; between 9% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, or 10%; between 10% and 50%, 45%, 40%, 35%, 30%, 25%, 20%, or 15%; between 15% and 50%, 45%, 40%, 35%, 30%, 25%, or 20%; between 20% and 50%, 45%, 40%, 35%, 30%, or 25%; between 25% and 50%, 45%, 40%, 35%, or 30%; between 30% and 50%, 45%, 40%, or 35%; between 35% and 50%, 45%, or 40%; between 40% and 50%, or 45%; or between 45% and 50% by weight of lipid.
- In some embodiments, the food products provided herein comprise between 0% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or 0.3%; between 0.3% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.4%; between 0.4% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, or 6%; between 6% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, or 7%; between 7% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 9%, or 8%; between 8% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 9%; between 9% and 50%, 40%, 35%, 30%, 25%, 20%, 15%, or 10%; between 10% and 50%, 40%, 35%, 30%, 25%, 20%, or 15%; between 15% and 50%, 40%, 35%, 30%, 25%, or 20%; between 20% and 50%, 40%, 35%, 30%, or 25%; between 25% and 50%, 40%, 35%, or 30%; between 30% and 50%, 40%, or 35%; between 35% and 50%, or 40%; or between 40% and 50% by weight of lipid derived from plant.
- In some embodiments, the food products provided herein further comprise carbohydrates. Carbohydrates are present in, for example, dairy products, and provide sweetness to the taste profiles and/or serve as fast-acting energy and nutrition sources.
- In some embodiments, the food products provided herein comprise one or more saccharides (e.g., monosaccharides, disaccharides, polysaccharides). Non-limiting examples of saccharides include glucose, mannose, maltose, fructose, galactose, lactose, sucrose, monatin, and tagatose.
- In some embodiments, the food products comprise between 0.001% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.01%; between 0.001% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%; between 0.1% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 25%, 20%, 15%, 10%, 9%, 8%, 7%, or 6%; between 6% and 25%, 20%, 15%, 10%, 9%, 8%, or 7%; between 7% and 25%, 20%, 15%, 10%, 9%, or 8%; between 8% and 25%, 20%, 15%, 10%, or 9%; between 9% and 25%, 20%, 15%, or 10%; between 10% and 25%, 20%, or 15%; between 15% and 25%, or 20%; or between 20% and 25% by weight of carbohydrate.
- In some embodiments, the food products comprise carbohydrates derived from plants (e.g., beet, celery, basil, honey, cherries, corn, spinach, plums, kiwis, peas).
- In some embodiments, the food products comprise less than 4.5%, less than 4.25%, less than 4%, less than 3.75%, less than 3.5%, less than 3.25%, less than 3%, less than 2.75%, or less than 2.5% by weight of monosaccharides and/or disaccharides.
- In some embodiments, the food products comprise lactic acid bacteria (i.e., members of the order Lactobacillales that produce lactic acid during fermentation). Lactic acid bacteria are used in the fermentative production of a large number of dairy and non-dairy food products, including yoghurt, cheese, butter, buttermilk, kefir, koumiss, sourdough bread, sorghum beer, cassava, and pickled vegetables. The lactic acid produced by lactic acid bacteria contributes to required low pH conditions. In addition, lactic acid bacteria can contribute taste agents and probiotics to food products.
- Non-limiting examples of suitable lactic acid bacteria include Lactobacillus acidophilus, Lactobacillus klebsiella, Lactobacillus leuconostoc, Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus plantarum, Lactobacillus caret, Lactobacillus pentoaceticus, Lactobacillus brevis, Lactobacillus thermophilus, and other members of the genera Lactobacillus, Leuconostoc, Pediococcus, Lactococcus, and Streptococcus, as well as the more peripheral Aerococcus, Carnobacterium, Enterococcus, Oenococcus, Sporolactobacillus, Tetragenococcus, Vagococcus, and Weissella that are classified as safe for consumption by humans and/or other animals by a federal or local regulatory agency (e.g., the Federal Food and Drug Agency [FDA]).
- In some embodiments, the food products are derived by fermentative production of lactic acid by lactic acid bacteria comprised in the food products. In some such embodiments, the food products comprise lactic acid. In some such embodiments, the food products comprise at least 0.5% by weight of lactic acid. In some such embodiments, the food products have a pH of less than 7.5, less than 7, less than 6.5, less than 6, less than 5.5, less than 5, less than 4.9, less than 4.8, less than 4.7, less than 4.6, or less than 4.5; between 3.8 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4, or 3.9; between 3.9 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4; between 4 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2; between 4.2 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3; between 4.3 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4; between 4.4 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5; between 4.5 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7, 4.6; between 4.6 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, 4.8, 4.7; between 4.7 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, or 4.8; between 4.8 and 7.5, 7, 6.5, 6, 5.5, 5, 4.9, or 4.8; between 4.9 and 7.5, 7, 6.5, 6, 5.5, or 5; between 5 and 7.5, 7, 6.5, 6, or 5.5; between 5.5 and 7.5, 7, 6.5, or 6; between 6 and 7.5, 7, or 6.5; between 6.5 and 7.5, or 7; or between 7 and 7.5.
- In some embodiments, the food products provided herein further comprise micelles.
- Micelles are generally (or roughly) spherical supramolecular structures that exist as dispersions within a composition and that can encapsulate components such as water, minerals (mainly calcium and phosphorous), and vitamins. Micelles can be obtained by combining micelle forming proteins (e.g., caseins, whey proteins, or non-animal proteins with certain desirable attributes), homogenizing the mixture, and isolating micelles (e.g., by centrifugation).
- In some embodiments, the food products provided herein comprise between 0.1% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%; between 1% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, or 6%; between 6% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, or 7%; between 7% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, or 8%; between 8% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, 10%, or 9%; between 9% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, 11%, or 10%; between 10% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, 12%, or 11%; between 11% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, 13%, or 12%; between 12% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 14%, or 13%; between 13% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, or 14%; between 14% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, or 15%; between 15% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, or 20%; between 20% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, or 25%; between 25% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, or 30%; between 30% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, or 35%; between 35% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, or 40%; between 40% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, or 45%; between 44% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, or 50%; between 50% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, or 55%; between 55% and 95%, 90%, 85%, 80%, 75%, 70%, 65%, or 60%; between 60% and 95%, 90%, 85%, 80%, 75%, 70%, or 65%; between 65% and 95%, 90%, 85%, 80%, 75%, or 70%; between 70% and 95%, 90%, 85%, 80%, or 75%; between 75% and 95%, 90%, 85%, or 80%; between 80% and 95%, 90%, or 85%; or between 85% and 95%, 90%; or between 90% and 95% by weight of micelles.
- In some embodiments, the food products comprise micelles that comprise recombinant and/or native casein. In some embodiments, the food products comprise micelles that comprise recombinant and/or native whey protein. In other embodiments, the food products comprise micelles that comprise recombinant and/or native casein and non-animal proteins. In other embodiments, the food products comprise micelles that comprise recombinant and/or native whey protein and non-animal proteins. In other embodiments, the food products comprise micelles formed only of non-animal proteins.
- In some embodiments, the micelles comprise κ-caseins (e.g., any of the κ-caseins described herein). In some embodiments, the micelles comprise κ-caseins (e.g., any of the κ-caseins described herein) and β-caseins (e.g., any of the β-caseins described herein). In some such embodiments, the ratios of β-caseins to κ-caseins in the micelles are 2:1 to 5.5:1, 2:1 to 5:1, 2:1 to 4.5:1, 2:1 to 4:1, 2:1 to 3.5:1, 2:1 to 3:1, 2:1 to 2.5:1, 2.5:1 to 5:1, 2.5:1 to 4.5:1, 2.5:1 to 4:1, 2.5:1 to 3.5:1, 2.5:1 to 3:1, 3:1 to 5:1, 3:1 to 4.5:1, 3:1 to 4:1, 3:1 to 3.5:1, 3.5:1 to 5:1, 3.5:1 to 4.5:1, 3.5:1 to 4:1, 4:1 to 5:1, 4:1 to 4.5:1, or 4.5:1 to 5:1. In some embodiments, the micelles comprise β-lactoglobulin.
- In some embodiments, the micelles have diameters (or populations of micelles have average diameters) of 20 nm to 350 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, 140 nm, 120 nm, 100 nm, 80 nm, 60 nm, or 40 nm; 40 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, 140 nm, 120 nm, 100 nm, 80 nm, or 60 nm; 60 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, 140 nm, 120 nm, or 100 nm; 80 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, 140 nm, 120 nm, or 100 nm; 100 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, 140 nm, or 120 nm; 120 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, 160 nm, or 140 nm; 140 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, 180 nm, or 160 nm; 160 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, 200 nm, or 180 nm; 180 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, 220 nm, or 200 nm; 200 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, 240 nm, or 220 nm; 220 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, 260 nm, or 240 nm; 240 nm to 350 nm, 340 nm, 320 nm, 300 nm, 280 nm, or 260 nm; 260 nm to 350 nm, 340 nm, 320 nm, 300 nm, or 280 nm; 280 nm to 350 nm, 340 nm, 320 nm, or 300 nm; 300 nm to 350 nm or 325 nm; or 325 nm to 350 nm.
- In some embodiments, the food products provided herein comprise micelles comprising recombinant κ-casein and/or recombinant β-casein and/or β-lactoglobulin, wherein the micelles have any of the subranges of the diameter of micelles described herein, and wherein the recombinant κ-casein and/or the recombinant β-casein and/or β-lactoglobulins are unglycosylated and/or unphosphorylated, or have a non-native glycosylation and/or phosphorylation patterns.
- Micelle properties can be major determinants of the desirable attributes of the compositions provided herein. Examples of micelle properties include but are not limited to micelle composition (e.g., types and/or amounts of proteins that form the micelles, types and/or amounts of compounds encapsulated by the micelles), micelle size, and micelle density. The size of micelles can be determined by methods known in the art including but not limited to light scattering, microscopy, and spectroscopy. The density of micelles can be determined by methods known in the art including but not limited to microscopy and evaporative mass measurements.
- In some embodiments, the food products provided herein comprise micelles of such properties (e.g., composition, size, density) that the compositions have similar or identical attributes as dairy products. Such similar or identical attributes include but are not limited to colors of dairy products (e.g., due to micelles that comprise coloring agents, color enhancers, or color stabilizer; due to the effect of micelle sizes and/or densities on light scattering), aromas of dairy products (e.g., due to micelles that comprise aroma agents, aroma enhancers, or aroma stabilizers), tastes of dairy products (e.g., due to micelles that comprise taste agents, taste enhancers, or taste stabilizer), textures of dairy products (including but not limited to mouthfeel, fattiness, creaminess, viscosity, homogenization, G′ storage modules value, melting behavior, stretching behavior, gratability, dicability, browning behavior, etc.), digestibilities of dairy products (e.g., due to micelles that comprise proteins that harbor or lack target sites for digestive enzymes), nutrient contents of dairy products (e.g., due to micelles that encapsulate specific compounds), shelf lives of dairy products (e.g., due to micelles that comprise microbial or plant proteases), and use versatilities of milk (e.g., due to micelles that comprise caseins).
- In some embodiments, the food products provided herein comprise micelles of such properties (e.g., composition, size, density) that the food products have different attributes as dairy products. Such different attributes include but are not limited to nutrient contents that are different to nutrient contents of dairy products (e.g., protein and/or amino acid content [e.g., due to micelles that comprise microbial or plant proteins], mineral content [e.g., due to micelles that encapsulate more calcium and/or other metal ions such as, for example, potassium, sodium, magnesium, zinc, iron]), not comprising one or more of undesirable components of dairy products (e.g., allergenic epitopes [e.g., due to micelles that comprise recombinant α-s1-caseins, β-caseins, or β-lactoglobulins that lack allergenic epitopes or micelles that comprise microbial and/or plant proteins]), and longer shelf-lives than dairy products (e.g., due to micelles that comprise microbial or plant proteases).
- The food products provided herein may comprise one or more other components.
- Non-limiting examples of such other components include minerals (e.g., fat soluble minerals, water soluble minerals, calcium, phosphorous, potassium, sodium, citrate, chloride, phosphate, magnesium, potassium, zinc, iron, molybdenum, manganese, copper). Minerals can contribute to the structure and stability of the food products provided herein by interacting with fat globules and micelles to maintain an emulsified mixture. Minerals can also affect sensory characteristics such as mouthfeel, consistency, and to a certain extent, flavor of the food products. Minerals can also improve the nutritional profile of the food products.
- Further non-limiting examples of such other components include vitamins (e.g., lipid soluble vitamins, water soluble vitamins, thiamin [vitamin B1], riboflavin [vitamin B2], niacin [vitamin B3], pantothenic acid [vitamin B5], vitamin B6 [pyridoxine], vitamin B12 [cobalamin], vitamin C, folate, vitamins A, vitamin D, vitamin E, vitamin K).
- Further non-limiting examples of such other components include coloring agents, color enhancers, and color stabilizers (e.g., titanium oxide).
- Further non-limiting examples of such other components include taste agents, taste enhancers, and taste stabilizers (e.g., δ-decalactone, ethyl butyrate, 2-furyl methyl ketone, 2,3-pentanedione, γ-undecalactone, δ-undecalactone, natural favors, artificial flavors [e.g., chocolate, coffee, strawberry, almond, hazelnut, vanilla, green tea, Irish cream, coconut flavoring], triglycerides, hydrolyzed casein or whey protein).
- Further non-limiting examples of such other components include sweetening agents (e.g., stevia, aspartame, cyclamate, saccharin, sucralose, mogrosides, brazzein, curculin, erythritol, glycyrrhizin, inulin, isomalt, lacititol, mabinlin, malititol, mannitol, miraculin, monatin, monelin, osladin, pentadin, sorbitol, thaumatin, xylitol, acesulfame potassium, advantame, alitame, aspartame-acesulfame, sodium cyclamate, dulcin, glucin, neohesperidin dihyrdochalcone, neotame, and P-4000). In some embodiments, the sweetening agents do not comprise carbohydrates.
- Further non-limiting examples of such other components include aroma agents, aroma stabilizers, and aroma enhancers (e.g., propylene glycol, glycerol, ethyl alcohol, salt, sugars).
- Further non-limiting examples of such other components include shelf life extending agents (e.g., carbon monoxide, nitrites, sodium metabisulfite, Bombal, vitamin E, rosemary extract, greet tea extract, catechins, antioxidants).
- Further non-limiting examples of such other components include fungal contaminants. Such fungal contaminants may derive from the recombinant host cells used in embodiments in which the milk protein and/or non-animal proteins are produced recombinantly. In some embodiments, the fungal contaminants are secreted fungal proteins as disclosed herein. In some embodiments, the fungal contaminants have a similar charge (isoelectric point, pI) and/or size (molecular weight) as the milk proteins comprised in the food products. Non-limiting examples of fungal contaminants are disclosed herein as fungal proteins and secreted fungal proteins.
- Further non-limiting examples of such other components include anti-caking agents, anti-foaming agents, anti-inflammatory agents, anti-microbial agents, anti-oxidants, buffering agents, clotting agents, coenzymes, enzymes, essential nutrients, essential amino acids, neuroactive compounds, neutraceuticals, nutritional supplements, pH and/or ionic strength adjusting agents (i.e., agents that raise or lower the pH and/or the ionic strength of a solution), prebiotics, fibers, probiotic cultures, salts, emulsifiers, stabilizers, and mixtures of any of the other components disclosed herein.
- Further non-limiting examples of such other components include supramolecules (i.e., complexes of linked molecules [e.g., linked proteins]) other than micelles.
- In most embodiments, the food products comprise between 0.001% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, or 0.005%; between 0.005% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01%; between 0.01% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05%; between 0.05% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%; between 0.1% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%, between 0.5% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 12%, 11%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 12%, 11%, 10%, 9%, 8%, 7%, or 6%; between 6% and 12%, 11%, 10%, 9%, 8%, or 7%; between 7% and 12%, 11%, 10%, 9%, or 8%; between 8% and 12%, 11%, 10%, or 9%; between 9% and 12%, 11%, or 10%; between 10% and 12%, or 11%; or between 11% and 12% by weight of any one of such other components.
- In some embodiments, the food products comprise between 0.001% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, 0.01%, or 0.005%; between 0.005% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01%; between 0.01% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05%; between 0.05% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1%; between 0.1% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 10%, 9%, 8%, 7%, or 6%; between 6% and 10%, 9%, 8%, or 7%; between 7% and 10%, 9%, or 8%; between 8% and 10%, or 9%; or between 9% and 10% by weight of all other components.
- In most embodiments, the food products further comprise water. In some such embodiments, the food products comprise between 2% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, 15%, 10%, or 5%; between 5% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, 15%, or 10%; between 10% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, 25%, or 15%; between 15% and 95%, 85%, 75%, 65%, 55%, 45%, 35%, or 25%; between 25% and 95%, 85%, 75%, 65%, 55%, 45%, or 35%; between 35% and 95%, 85%, 75%, 65%, 55%, or 45%; between 45% and 95%, 85%, 75%, 65%, or 55%; between 55% and 95%, 85%, 75%, or 65%; between 65% and 95%, 85%, or 75%; between 75% and 95%, or 85%; or between 85% and 95% by weight of water.
- In some embodiments, one or more of such other components are not derived from or produced by mammals or mammalian cells.
- The food products provided herein have desirable attributes.
- In some embodiments, the desirable attributes are attributes that are similar or identical to attributes of dairy products. In some embodiments, the desirable attributes are attributes that are different to attributes of dairy products.
- In some embodiments, the desirable attributes are desirable colors. In some such embodiments, the desirable colors are colors of dairy products. In other such embodiments, the desirable colors are colors that are different from the colors of dairy products. In some such embodiments, the desirable colors are fluorescent colors. The color of a composition can be evaluated by a panel of expert human subjects. Alternatively, the color of a composition can be described, for example, by measuring its spectral absorption pattern using a spectrophotometer or colorimeter (e.g., a Microcolor tristimulus colorimeter [Dr. Bruno Lange GmbH, Berlin, Germany]) and the L*a*b color space according to CIE-LAB (Commission Internationale de l'Éclairage, 1971). Variables that can be titrated to modulate the color of the food products provided herein include but are not limited to amounts and/or types of coloring agents, amounts and/or types of color stabilizers, amounts and/or types of color modifiers, and micelle characteristics (e.g., compositions, sizes, densities). In some embodiments, the food products have a L* color value of between 80 and 95, an a* color value of between −5 and 0.5, and a b* color value of between 4 and 10. In some embodiments, the food products comprise fluorescent proteins selected from the group consisting of green fluorescent protein (GFP), blue fluorescent protein (BFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), orange fluorescent protein (OFP), red fluorescent protein (RFP), and derivatives thereof.
- In some embodiments, the desirable attributes are desirable tastes. In some such embodiments, the desirable tastes are tastes of dairy products. In other such embodiments, the desirable tastes are tastes that are different from the tastes of dairy products. The taste of a composition can be evaluated by a panel of expert human subjects. Alternatively, the taste of a composition can be described using automated devices (e.g., iNSENT TS-5000Z Taste Testing System [Higuchi USA Inc., Japan], Astree tongue system [Alpha MOS America, Hanover, MD]). Variables that can be titrated to modulate the taste of the food products provided herein include but are not limited to amounts and/or types taste agents, amounts and/or types taste stabilizers, amounts and/or types taste modifiers, and amounts and/or types of taste blockers.
- In some embodiments, the desirable attributes are desirable textures (i.e., mechanical characteristics that are correlated with sensory perceptions; non-limiting examples are mouthfeel, fattiness, creaminess, viscosity, homogenization, richness, thickness, G′ storage modules value). In some such embodiments, the desirable textures are textures of dairy products. In other such embodiments, the desirable textures are textures that are different from the textures of dairy products. The texture of a composition can be evaluated by a panel of expert human subjects. Alternatively, the texture of a composition can be described by dynamic oscillation rheology, viscosity analysis, flow analysis, melt analysis, sheer stress analysis, storage modulus analysis, and texture profile analysis using a texture analyzer. Variables that can be titrated to modulate the texture of the food products provided herein include but are not limited to composition (e.g., types and/or amounts of milk proteins, types and/or amounts of non-animal proteins, ratios of milk proteins to non-animal proteins, types and/or amounts of lipids, types and/or amounts of carbohydrates, types and/or amounts of micelles, types and/or amounts of hydrocolloids, types and/or amounts of stabilizers, types and/or amounts of emulsifiers), micelle characteristics (e.g., composition, size, density), pH, water activity, and production process conditions (e.g., temperature, hold time at temperature, pH, amount of shear applied, types of starter cultures, post fermentation treatments, and ion strengths).
- In some embodiments, the desirable attributes are desirable digestibilities. In some such embodiments, the desirable digestibilities are digestibilities of dairy products. In other such embodiments, the desirable digestibilities are digestibilities that are different from the digestibilities of dairy products. The digestibility of a composition can be described by incubating the composition in the presence of digestive enzymes (e.g., porcine pepsin) and under conditions that prevail in the digestive tract (e.g., in presence of simulated gastric fluid with acidic pH). Variables that can be titrated to modulate the digestibility of the food products provided herein include but are not limited to the content of proteins comprising target sites for digestive enzymes, thermal treatment, and content of anti-nutritional factors.
- In some embodiments, the desirable attributes are desirable nutrient contents. In some such embodiments, the desirable nutrient contents are nutrient contents of dairy products. In other such embodiments, the desirable nutrient contents are nutrient contents that are different from the nutrient contents of dairy products (e.g., better amino acid content, better mineral balance). Nutrient content can be defined by protein content, types and/or amounts of amino acids, types and/or amounts of lipids, types and/or amounts of carbohydrates, types and/or amounts of minerals, types and/or amounts of vitamins, types and/or amounts of bioactive compounds, types and/or amounts of micronutrients, types and/or amounts of macronutrients, types and/or amounts of lactic acid bacteria, PDCAAS score, etc. The nutrient content of a composition can be determined by analytical methods (e.g., AOAC International reference methods AOAC 990.03 and AOAC 992.15, electrophoresis (e.g., SDS-PAGE), liquid column chromatography, immunochemical tests, or on-chip electrophoresis (e.g., using the Agilent Protein 80 kit and the Agilent 2100 Bioanalyzer) for determination of type and/or content of proteins and amino acids; AOAC International reference method AOAC 954.02 for determination of type and/or content of lipids), or it can be derived from the nutrient contents of the ingredients of a food product. In some embodiments, the food products provided herein comprise at least 0.5%, 0.6%, 0.7%, or 0.8%; between 0.5% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, 0.8%, 0.7%, or 0.6%; between 0.6% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, 0.8%, or 0.7%; between 0.7% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, 0.9%, or 0.8%; between 0.8% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, 1.0%, or 0.9%; between 0.9% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, 1.1%, or 1.0%; between 1.0% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, 1.2%, or 1.1%; between 1.1% and 2.5%, 2%, 1.5%, 1.4%, 1.3%, or 1.2%; between 1.2% and 2.5%, 2%, 1.5%, 1.4%, or 1.3%; between 1.3% and 2.5%, 2%, 1.5%, or 1.4%; between 1.4% and 2.5%, 2%, or 1.5%; between 1.5% and 2.5%, or 2%; or between 2% and 2.5% by weight of branched amino acids. In some embodiments, the food products have PDCAAS scores of at least 80; at least 85; at least 90; at least 100; at least 105; at least 110; at least 115; at least 120; at least 125; between 80 and 150, 140, 130, 120, 110, 100, or 90; between 90 and 150, 140, 130, 120, 110, or 100; between 100 and 150, 140, 130, 120, or 110; between 110 and 150, 140, 130, or 120; between 120 and 150, 140, or 130; between 130 and 150, or 140; or between 140 and 150. In some embodiments, the food products comprise less than 4% by weight of lactose. In some embodiments, the food products comprise less than 2% by weight of monosaccharides. In some embodiments, the food products comprise less than 2% by weight of disaccharides. In some embodiments, the food products compared to dairy products have a higher content of at least one component selected from the group consisting of calcium, phosphate, B complex vitamins, vitamin A, vitamin D, vitamin E, and vitamin K.
- In some embodiments, the desirable attributes are desirable shelf-lives. In some such embodiments, the desirable shelf-lives are shelf-lives of dairy products. In other such embodiments, the desirable shelf-lives are shelf-lives that are different from the shelf-lives of dairy products. The shelf life of a composition can be described by repeatedly measuring key attributes of the composition over the course of storage. Variables that can be titrated to modulate the shelf life of a composition include but are not limited to types and/or amounts of proteases, microbial load, solid concentration, water activity, redox potential, salt concentration, pH, natural preservative content, and humidity. In some embodiments, the food products provided herein are stable at temperatures of 4 C or below for at least 4 days, at least 5 days, at least 6 days, at least 7 days, at least 10 days, at least 15 days, at least 20 days, at least 30 days, at least 40 days at least 50 days, at least 60 days, at least 70 days, at least 80 days, at least 90 days, between 4 days and 25 days, between 8 days and 20 days, between 15 days and 30 days, or between 40 days and 90 days. In some embodiments, the food products are stable at ambient temperature for at least 2 months; at least 3 months; at least 4 months; at least 5 months; at least 6 months; between 2 months and 12 months, 10 months, 8 months, 6 months, or 4 months; between 4 months and 12 months, 10 months, 8 months, or 6 months; between 6 months and 12 months, 10 months, or 8 months; between 8 months and 12 months, or 10 months; or between 10 months and 12 months.
- In some embodiments, the desirable attributes are desirable hunger and/or satiety regulation. In some such embodiments, the desirable hunger and/or satiety regulation are hunger and/or satiety regulation of dairy products. In other such embodiments, the desirable hunger and/or satiety regulation are different from the hunger and/or satiety regulation of dairy products. The hunger and/or satiety regulation of a composition can be evaluated by a panel of expert human subjects. Variables that can be titrated to modulate the hunger and/or satiety regulation of the food products provided herein include but are not limited to nutrient content (e.g., types and/or amounts of protein, types and/or amounts of lipid, types and/or amounts of carbohydrate), digestibility, fiber content, and glycemic response.
- In some embodiments, the desirable attributes are desirable use versatility (i.e., ability to use the food products in a variety of manners and/or to derive a diversity of other compositions from the food product). The use versatility of dairy milk includes but is not limited to the ability to use it to produce other dairy products (e.g., yogurt, cheese, cream, butter). In some such embodiments, the desirable use versatility is use versatility of dairy products. In other such embodiments, the desirable use versatility is use versatility that is different from the use versatility of dairy products. Variables that can be titrated to modulate the use versatilities of a composition provided herein include but are not limited to types and/or amounts of milk proteins, types and/or amounts of non-animal proteins, types and/or amounts of proteins with rennet cleavage sites, types and/or amounts of carbohydrates, types and/or amounts of lipids, hydrocolloid contents, process conditions (e.g., temperature, hold time, pH, shear amount), membrane processing, types and/or amounts of starter cultures, post-fermentation treatments, and ion strengths.
- In some embodiments, the desirable attributes are melting behaviors of cheese. The melting behavior of a composition can be evaluated using, for example, the Schreiber melt test (Kosikowski, 1977, Pages 331-376 in Cheese Rheology and Texture, CRC Press, Boca Raton, FL), which involves placing a 0.5-cm- ( 3/16-in.-) high plug of cheese in a glass petri dish, heating it in an oven at 232° C. (450° F.) for 5 minutes, then cooling it for 30 minutes, and assigning a score of 0.0 to over 5.5 on the Schreiber scale. In various embodiments, the compositions provided herein have a Schreiber score of between 0.0 and 5.5, 4.5, 3.5, 2.5, 1.5, or 0.5; between 0.5 and 5.5, 4.5, 3.5, 2.5, or 1.5; between 1.5 and 5.5, 4.5, 3.5, or 2.5; between 2.5 and 5.5, 4.5, or 3.5; between 3.5 and 5.5, or 4.5; between 4.5 and 5.5; or greater than 5.5. Variables that can be titrated to modulate the melting behavior of the food products provided herein include but are not limited to amounts and/or types of lipids, moisture content, hydrocolloid content, emulsifying salt content, pH, and production process conditions (e.g., shear).
- In some embodiments, the desirable attributes are stretching behaviors of cheese. The stretching behavior of a composition can be evaluated using, for example, the pizza cheese fork test. Variables that can be titrated to modulate the stretching behavior of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipid, moisture content, calcium content, mineral salt content, pH, amounts and/or types of starter culture, hydrocolloid content, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), and storage condition.
- In some embodiments, the desirable attributes are gratabilities of cheese. The gratability of a composition can be evaluated using, for example, particle size analysis, sieve grading, or by measuring hardness, stickiness, and/or gumminess. Variables that can be titrated to modulate the gratability of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipid, moisture content, pH, calcium content, mineral salt content, amounts and/or types of starter culture, hydrocolloid content, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), storage condition, and amounts and/or types of anti-caking agents.
- In some embodiments, the desirable attributes are diceabilities of cheese. Variables that can be titrated to modulate the diceability of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipids, moisture content, pH, calcium content, mineral salt content, amounts and/or types of starter cultures, hydrocolloid contents, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), storage conditions, and amounts and/or types of anti-caking agents.
- In some embodiments, the desirable attributes are browning behaviors of cheese. The browning behavior of a composition can be evaluated by visual inspection. Variables that can be titrated to modulate the browning behavior of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipids, moisture content, pH, calcium content, mineral salt content, amounts and/or types of starter cultures, hydrocolloid contents, method of manufacture (e.g., dosing, cutting, cooking, holding, plasticization, brining, cooling), storage conditions, amounts and/or types of anti-caking agents, and amounts and/or types of reducing sugars.
- In some embodiments, the desirable attributes are textures of cream or ice cream (e.g., creaminess, richness, thickness, smoothness, hardness, crystallization, shape retention). The texture of a composition can be evaluated by panels of expert human subjects, melt tests, shape retention tests, ice crystal counting, altitude stability testing, and overrun capacity analysis. Variables that can be titrated to modulate the texture of the food products provided herein include but are not limited to amounts and/or types of protein, amounts and/or types of lipids, amounts and/or types of carbohydrates, moisture content, pH, amounts and/or types of high and low molecular weight components that can affect freezing points, hydrocolloid contents, emulsified contents, method of manufacture (e.g., temperature of pasteurization, hold time, homogenization conditions, cooling/aging rate, conditions and/or methods of freezing, hardening), and storage conditions.
- In some embodiments, the desirable attributes are not comprising or comprising lower amounts of at least one component found in dairy products. Non-limiting examples of such components include animal lipids (e.g., saturated fat, cholesterol), animal carbohydrates, milk proteins that have mammalian glycosylation and/or phosphorylation patterns, proteins with allergenic epitopes (e.g., specific epitopes of α-s1-casein, specific epitopes of β-casein, specific epitopes of β-lactoglobulin, specific immunoglobulins, lactose), antibiotics, hormones (e.g., stress hormones, growth hormones), heavy metals, bacteria (e.g., E. coli, Brucella, Camplyobacter, Listeria, Mycobacterium, Salmonella, Shigella, Yersinia, Giardia), viruses (e.g., noroviruses), and prions. In some embodiments, the food products comprise less than 0.05%, less than 0.04%, less than 0.03%, less than 0.02%, less than 0.01% by weight of cholesterol. In some embodiments, the food products do not comprise β-lactoglobulin with mammalian glycosylation pattern and/or mammalian phosphorylation pattern. In some such embodiments, the food products comprise only a single type of milk protein (e.g., comprise only β-lactoglobulin and no other milk protein). In some embodiments, the food products comprise at least one component other than the non-animal protein that is not present in dairy products. Non-limiting examples of such components include artificial sweeteners, non-animal lipids, non-animal carbohydrates, and milk proteins that have non-native glycosylation and/or phosphorylation patterns.
- In some such embodiments, the desirable attributes are not requiring pasteurization or cold shipping (e.g., due to possibility of sterilizing components individually prior to combining). Variables that can be titrated to modulate the pasteurization or cold shipping requirement of food products provided herein include but are not limited to amounts and/or types of bacteria in the composition.
- In some embodiments, the desirable attributes persist over storing the food products provided herein at suitable storage conditions. In some such embodiments, the suitable storage conditions include storage at temperatures of less than 15° C. In some embodiments, the desirable attributes persist over one or more cycles of freezing and thawing. In some such embodiments, the one or more cycles of freezing and thawing are 1 cycle, 2 cycles, 3 cycles, 4 cycles, 5 cycles, or more than 5 cycles of freezing and thawing.
- In a further aspect, the present invention provides supplemented food products that are produced by supplementing animal-derived food products (i.e., food products that comprise components derived from animals) with the food products provided herein.
- The amount of food products provided herein in relation to the amount of animal-derived food products during blending can vary. In some embodiments, the supplemented food product comprise between 10% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, or 15%; between 15% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, or 20%; between 20% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, or 25%; between 25% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, or 30%; between 30% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, or 35%; between 35% and 75%, 70%, 65%, 60%, 55%, 50%, 45%, or 40%; between 40% and 75%, 70%, 65%, 60%, 55%, 50%, or 45%; between 45% and 75%, 70%, 65%, 60%, 55%, or 50%; between 50% and 75%, 70%, 65%, 60%, or 55%; between 55% and 75%, 70%, 65%, or 60%; between 60% and 75%, 70%, or 65%; between 65% and 75%, or 70%; or between 70% and 75% by weight of animal-derived food products, and between 1% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 7%, 5%, 3%, or 2%; between 2% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 7%, 5%, or 3%; between 3% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 7%, or 5%; between 5% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, or 7%; between 7% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10%; between 10% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, or 20%; between 20% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, or 30%; between 30% and 99%, 95%, 90%, 80%, 70%, 60%, 50%, or 40%; between 40% and 99%, 95%, 90%, 80%, 70%, 60%, or 50%; between 50% and 99%, 95%, 90%, 80%, 70%, or 60%; between 60% and 99%, 95%, 90%, 80%, or 70%; between 70% and 99%, 95%, 90%, or 80%; between 80% and 99%, 95%, or 90%; between 90% and 99%, or 95%; or between 95% and 99% by weight of the food products provided herein.
- In a further aspect, the present invention provides yoghurt-like food products that comprise one or more milk proteins disclosed herein, and one or more non-animal proteins or hydrolyzed non-animal protein disclosed herein, and that have attributes of dairy yoghurts, as shown in
FIG. 1 . - In some embodiments, the yoghurt-like food products comprise between 0.5% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, 5%, or 4%; between 4% and 14%, 12%, 10%, 9%, 8%, 7%, 6%, or 5%; between 5% and 14%, 12%, 10%, 9%, 8%, 7%, or 6%; between 6% and 14%, 12%, 10%, 9%, 8%, or 7%; between 7% and 14%, 12%, 10%, 9%, or 8%; between 8% and 14%, 12%, 10%, or 9%; between 9% and 14%, 12%, or 10%; between 10% and 14%, or 12%; or between 12% and 14% by weight of total protein (i.e., milk protein and non-animal protein).
- In some embodiments, the yoghurt-like food products comprise between 0.1% and 14%, 13%, 12%, 11%, 10%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, or 0.5%; between 0.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, or 1.5%; between 1.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, or 2%; between 2% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, or 2.5%; between 2.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, or 3%; between 3% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, or 3.5%; between 3.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, or 4%; between 4% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, or 4.5%; between 4.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, or 5%; between 5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, or 5.5%; between 5.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, or 6%; between 6% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, or 6.5%; between 6.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, or 7%; between 7% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, or 7.5%; between 7.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, or 8%; between 8% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, or 8.5%; between 8.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, or 9%; between 9% and 14%, 13%, 12%, 11%, 10%, or 9.5%; between 9.5% and 14%, 13%, 12%, 11%, or 10%; between 10% and 14%, 13%, 12%, or 11%; between 11% and 14%, 13%, or 12%; between 12% and 14%, or 13%; or between 13% and 14% by weight of milk proteins.
- The milk proteins can be native and/or recombinant caseins, native and/or recombinant whey proteins, or combinations thereof. In some embodiments in which the milk proteins are recombinant caseins and/or recombinant whey proteins, the recombinant caseins and/or recombinant whey proteins lack epitopes that can elicit immune responses in human or animals. In some embodiments, the yoghurt-like food products comprise a single milk protein. In some such embodiments, the single milk protein is β-lactoglobulin. In some such embodiments, the β-lactoglobulin has a native glycosylation and/or phosphorylation pattern as provided herein. In other such embodiments, the β-lactoglobulin has a non-native glycosylation and/or phosphorylation pattern as provided herein. In some embodiments, the β-lactoglobulin consists of a mixture of β-lactoglobulin having a native glycosylation and/or phosphorylation pattern and β-lactoglobulin having a non-native glycosylation and/or phosphorylation pattern.
- In some embodiments, the yoghurt-like food products comprise between 0.1% and 14%, 13%, 12%, 11%, 10%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, or 0.5%; between 0.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, or 1.5%; between 1.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, or 2%; between 2% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, or 2.5%; between 2.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, or 3%; between 3% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, or 3.5%; between 3.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, or 4%; between 4% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, or 4.5%; between 4.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, or 5%; between 5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, or 5.5%; between 5.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, or 6%; between 6% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, or 6.5%; between 6.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, or 7%; between 7% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, 8%, or 7.5%; between 7.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, 8.5%, or 8%; between 8% and 14%, 13%, 12%, 11%, 10%, 9.5%, 9%, or 8.5%; between 8.5% and 14%, 13%, 12%, 11%, 10%, 9.5%, or 9%; between 9% and 14%, 13%, 12%, 11%, 10%, or 9.5%; between 9.5% and 14%, 13%, 12%, 11%, or 10%; between 10% and 14%, 13%, 12%, or 11%; between 11% and 14%, 13%, or 12%; between 12% and 14%, or 13%; or between 13% and 14% by weight of non-animal proteins.
- The non-animal proteins can be native or recombinant non-animal protein, or hydrolyzed native or recombinant non-animal protein, or combinations thereof. In some embodiments, the yoghurt-like food products comprise at least 5 different types of non-animal proteins. In some such embodiments, the non-animal proteins are pea proteins. In some such embodiments, the pea proteins are Pisum sativum proteins. In some embodiments, the non-animal proteins are fungal proteins as provided herein. In some embodiments, the non-animal proteins are secreted fungal proteins as provided herein. In some embodiments, the yoghurt-like food products comprise β-lactoglobulin and non-animal proteins (e.g., pea proteins, hydrolyzed pea proteins, secreted fungal proteins, hydrolyzed secreted fungal proteins, or combinations thereof) at weight ratios of β-lactoglobulin to non-animal proteins of about 100 to 1, about 50 to 1, about 40 to 1, about 30 to 1, about 20 to 1, about 10 to 1, about 9 to 1, about 8 to 1, about 7 to 1, about 6 to 1, about 5 to 1, about 4 to 1, about 3 to 1, about 2 to 1, about 1 to 1, about 1 to 2, about 1 to 3, about 1 to 4, about 1 to 5, about 1 to 6, about 1 to 7, about 1 to 8, about 1 to 9, about 1 to 10, about 1 to 20, about 1 to 30, about 1 to 40, about 1 to 50, or about 1 to 100.
- In some embodiments, the yoghurt-like food products further comprise between 0.2% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, or 0.3%; between 0.3% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.4%; between 0.4% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0.5%; between 0.5% and 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1%; between 1% and 8%, 7%, 6%, 5%, 4%, 3%, or 2%; between 2% and 8%, 7%, 6%, 5%, 4%, or 3%; between 3% and 8%, 7%, 6%, 5%, or 4%; between 4% and 8%, 7%, 6%, or 5%; between 5% and 8%, 7%, or 6%; between 6% and 8%, or 7%; or between 7% and 8% by weight of lipid derived from non-animal sources (e.g., plant, fungi, microbes, algae).
- In some embodiments, the yoghurt-like food products further comprise between 2.5%, and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, or 3%; between 3%, and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, or 3.5%; between 3.5% and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, or 4%; between 4% and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, or 4.5%; between 4.5% and 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, or 5%; between 5% and 8%, 7.5%, 7%, 6.5%, 6%, or 5.5%; between 5.5% and 8%, 7.5%, 7%, 6.5%, or 6%; between 6% and 8%, 7.5%, 7%, or 6.5%; between 6.5% and 8%, 7.5%, or 7%; between 7% and 8%, or 7.5%; or between 7.5% and 8% by weight of carbohydrate derived from non-animal sources (e.g., plant, fungi, microbes, algae).
- In some embodiments, the yoghurt-like food products comprise less than 3%, less than 2.75%, or less than 2.5% by weight of monosaccharides and disaccharides.
- In some embodiments, the yoghurt-like food products further comprise at least 0.5% by weight of lactic acid.
- In some embodiments, the yoghurt-like food products further comprise between 0.115% and 0.23% by weight of calcium.
- In some embodiments, the yoghurt-like food products are essentially free of whey protein. In some embodiments, the yoghurt-like food products are essentially free of casein. In some embodiments, the yoghurt-like food products are essentially free of other animal proteins than whey protein or casein. Non-limiting examples of such other animal proteins include glycosylation-dependent
cell adhesion molecule 1 precursor, beta-2-microglobulin, epididymal secretory protein E1 isoform X1, immunoglobulin lambda-like polypeptide 1 isoform X1, zinc-alpha-2-glycoprotein precursor, immunoglobulin lambda-like polypeptide 1 precursor, folate receptor alpha precursor, immunoglobulin J chain precursor,protein phosphatase 1 regulatory subunit 14A, prostaglandin-H2 D-isomerase precursor, ribonuclease pancreatic precursor, centromere protein M, nucleobindin-1 precursor,allergen Bos d 2 precursor, apolipoprotein E precursor, pancreatic secretory granule membrane major glycoprotein GP2 isoform X1, keratintype II cytoskeletal 1, ectonucleotide pyrophosphatase/phosphodiesterase family member 6 isoform X7, alpha-1-acid glycoprotein precursor,butyrophilin subfamily 1 member A1 precursor, polymeric immunoglobulin receptor precursor, alpha-2-HS-glycoprotein precursor, xanthine dehydrogenase/oxidase, alpha-1-antiproteinase isoform X1, beta-2-glycoprotein 1 precursor, leucine zipperputative tumor suppressor 2 isoform X1, vitamin D-binding protein precursor, ceruloplasmin precursor, multidrug resistance-associatedprotein 4 isoform X4, caskin-1 isoform X5, serotransferrin precursor, protein SCAF11 isoform X1,cytoplasmic dynein 1heavy chain 1 isoform X1, rho guaninenucleotide exchange factor 1 isoform X6, and usherin isoform X1. - In some embodiments, the yoghurt-like food products are essentially free of lactose.
- In some embodiments, the yoghurt-like food products are essentially free of animal lipid.
- In some embodiments, the yoghurt-like food products are essentially free of animal proteins other than the one or more milk proteins.
- In some embodiments, the yoghurt-like food products are essentially free of casein. In some embodiments, the yoghurt-like food products are essentially free of whey proteins other than β-lactoglobulin and/or α-lactoalbumin.
- In some embodiments, the yoghurt-like food products are essentially free of stabilizers (e.g., pectin, locust bean gum, gellan gum, gelatin, xanthan gum, native or modified food starches and flours, carrageenan, guar gum, tara gum).
- In some embodiments the yogurt-like food products are set style yogurts. In some embodiments, the yoghurt-like food products are drinkable yogurts.
- In some embodiments, the yoghurt-like food products comprise at least 0.5%, at least 1%, at least 1.5%, at least 2%, or at least 2.5% by weight of branched amino acids.
- In some embodiments, the yoghurt-like food product have a pH of less than 5.5, less than 5.3, less than 5.1, less than 5, less than 4.9, less than 4.8, less than 4.7, less than 4.6, or less than 4.5; between 3.8 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4, or 3.9; between 3.9 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4; between 4 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2; between 4.2 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4, 4.3; between 4.3 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5, 4.4; between 4.4 and 5.5, 5, 4.9, 4.8, 4.7, 4.6, 4.5; between 4.5 and 5.5, 5, 4.9, 4.8, 4.7, 4.6; between 4.6 and 5.5, 5, 4.9, 4.8, 4.7; between 4.7 and 5.5, 5, 4.9, or 4.8; between 4.8 and 5.5, 5, 4.9, or 4.8; between 4.9 and 5.5, or 5; or between 5 and 5.5.
- In some embodiments, the yoghurt-like food products have a viscosity of between 4E+05 and 1E+03 Pa-s at shear rates of between 0.01/s and 0.1/s. In some embodiments, the yoghurt-like food products have a viscosity of between 1E+04 and 100 Pa-s at shear rates of between 0.1/s and 1/s. In some embodiments, the yoghurt-like food products have a viscosity of between 1000 Pa-s and 0.1 Pa-s at shear rates of between 1/s and 100/s. In some embodiments, the yoghurt-like food products have a viscosity of between 4E+05 and 1E+03 Pa-s at shear rates of between 0.01/s and 0.1/s, a viscosity of between 1E+04 and 100 Pa-s at shear rates of between 0.1/s and 1/s, and a viscosity of between 1000 Pa-s and 0.1 Pa-s at shear rates of between 1/s and 100/s.
- In another aspect, provided herein are methods for producing the food products provided herein. The methods comprise the steps of: a) obtaining one or more milk proteins; b) obtaining one or more non-animal proteins; c) optionally hydrolyzing the one or more non-animal proteins; and d) combining the one or more milk proteins and the one or more non-animal proteins or one or more hydrolyzed non-animal protein under conditions that provide food products with desirable attributes.
- In some embodiments, the methods for producing the food products provided herein further comprise the step of adding, at any step during the preparation of the food products, one or more other components (e.g., any of the minerals, lipids, carbohydrates, taste agents, coloring agents, or other components described herein). As one of skill in the art can appreciate, the amount of each components used in these methods can be calculated to produce any of the food products described herein.
- In some embodiments, the milk proteins are/or non-animal proteins are obtained from natural sources (e.g., milk, plants, microbes). Methods for isolating proteins from natural sources are known in the art. Suitable methods include but are not limited to methods that provide protein isolates, protein concentrates, protein flours, and partially purified or purified proteins from natural sources.
- In other embodiments, the milk proteins and/or non-animal proteins are obtained as recombinant proteins according to methods known in the art (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates, 1992, and Supplements to 2002); Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1990; Taylor and Drickamer, Introduction to Glycobiology, Oxford Univ. Press, 2003; Worthington Enzyme Manual, Worthington Biochemical Corp., Freehold, N.J.; Handbook of Biochemistry: Section A Proteins, Vol I, CRC Press, 1976; Handbook of Biochemistry: Section A Proteins, Vol II, CRC Press, 1976; Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, 1999). Methods for producing recombinant recombinant milk proteins and recombinant non-animal proteins are known in the art (see, for example, Batt et al. 1990 Agric. Biol. Chem. 54(4):949; Saito et al. 2002 J. Biochemie 132:77; Tatsumi et al. 2012 Biosci. Biotechnol. Biochem. 76(3):478; Katakura et al. 1997 Cytotechnology 23(1-3):133; Choi et al. 2008 Glyconj. J. 25(6):581).
- In some embodiments, the non-animal proteins are hydrolyzed prior to use. Hydrolyzing native or recombinant non-animal proteins can be accomplished chemically or enzymatically (e.g., using proteases such as trypsin, pepsin, or chymotrypsin). Alternatively, hydrolyzed recombinant non-animal proteins can be obtained by producing recombinant fragments of non-animal proteins (i.e., by fermenting recombinant host cells that comprise nuclei acids encoding fragments of non-animal proteins). In some embodiments, hydrolyzed recombinant non-animal proteins are produced in recombinant host cells that also produce recombinant proteases that can provide specific mixtures of hydrolyzed recombinant non-animal proteins.
- In some embodiments in which the milk proteins and/or non-animal proteins are obtained as recombinant proteins, the methods comprise the steps of: a) obtaining a nucleic acid (e.g., vectors) encoding the recombinant protein; b) introducing the nucleic acid into host cells to obtain recombinant host cells; c) culturing the recombinant host cells in culture media under conditions suitable for production and/or secretion of the recombinant protein; and d) optionally isolating the recombinant protein.
- The nucleic acid typically includes: a promoter (e.g., yeast promoter, bacterial promoter, mammalian promoter); optionally a sequence encoding a signal sequence; a sequence encoding a protein; and a termination sequence, wherein the promoter is operably linked to the optional signal sequence, the optional signal sequence is operably linked to the sequence encoding the protein, and the termination sequence is operably linked to the sequence encoding the protein.
- The promoter may be any suitable promoter that is functional in the host cells. In some embodiments, the promoter is a constitutive promoter. In other embodiments, the promoter is an inducible promoter. Induction may, for example, occur via glucose repression, galactose induction, sucrose induction, or phosphate repression. Non-limiting examples of suitable promoters include PLAC4-PBI, T7 promoter, TAC promoter, GAL1 promoter, λPL promoter, λPR promoter, betα-lactamase promoter, spa promoter, CYC1 promoter, TDH3 promoter, GPD promoter, TEF1 promoter, ENO2 promoter, PGL1 promoter, GAP promoter, SUC2 promoter, ADH1 promoter, ADH2 promoter, HXT7 promoter, PHOS promoter, CLB1 promoter, AOX1 promoter, cellulase promoter, amylase promoters, protease promoters, and xylanase promoters. In some embodiments, the promoters are promoters of stress (e.g., heat shock) response genes. Additional promoters that can be used in the present vectors are known in the art.
- The signal sequence can be a signal sequence from the encoded protein or from a different protein, or a signal sequence from a yeast mating factor (e.g., any alpha mating factor), a cellulose, an amylase, a protease, or a xylanase. Additional signal sequences that can be used in the present vectors are known in the art.
- The encoded protein can be any of the recombinant milk proteins or non-animal proteins described herein.
- The termination sequence may be any suitable termination sequence that is functional in the host cells. Non-limiting examples of suitable termination sequences include but are not limited to the PGK1 and TPS1 termination sequences. Additional termination sequences are known in the art.
- The nucleic acids can further include a bacterial origin of replication and/or a selection marker (e.g., an antibiotic resistance gene or an auxotrophic marker). Bacterial origins of replication and selection markers are known in the art. In some embodiments, the selection markers comprise alterations that decrease the production of the selective marker, thus increasing the number of copies needed to permit host cells comprising the nucleic acids to survive under selection.
- In some embodiments, the nucleic acid further comprises: an additional promoter (e.g., any of the exemplary promoters described herein); optionally an additional sequence encoding a signal sequence (e.g., any of the exemplary signal sequences described herein); an additional sequence encoding a protein (e.g., any of the exemplary proteins described herein); and an additional termination sequence (e.g., any of the exemplary termination sequences described herein), wherein the additional promoter is operably linked to the optional additional signal sequence, the optional additional sequence encoding is operably linked to the additional sequence encoding the protein, and the additional sequence encoding the protein is operably linked to the additional terminal sequence. The promoter and the additional promoter can be the same or different. The termination sequence and the additional termination sequence can be the same or different. The signal sequence and the additional signal sequence can be the same or different.
- Methods for introducing nucleic acids (e.g., any of the nucleic acids described herein) into host cells are well-known in the art. Non-limiting examples of such methods include but are not limited to calcium phosphate transfection, dendrimer transfection, liposome transfection (e.g., cationic liposome transfection), cationic polymer transfection, electroporation, cell squeezing, sonoporation, optical transfection, protoplast fusion, impalefection, hyrodynamic delivery, gene gun, magnetofection, and viral transduction. One skilled in the art would be able to select one or more suitable methods for introducing the nucleic acids into a cell based on the knowledge in the art that certain techniques for introducing a nucleic acid into a cell work better for different types of host cells. Exemplary methods for introducing a nucleic acid into a yeast cell are described in Kawai et al., Bioeng. Bugs 1:395-403, 2010.
- In some embodiments, the nucleic acids are stably integrated within the genome (e.g., a chromosome) of host cells. In other embodiments, the nucleic acids are not stably integrated within the genome of host cells. Suitable sites of genomic integration include but are not limited to the Ty1 loci is Saccharomyces cervisea, the rDNA locus in Pichia pastoris, other transposable elements that have copies scattered throughout the genome of the host cells, sequences containing tandem repeats, intergenic sequences, coding sequences (e.g., the AOX1 gene in Pichia pastoris), glucoamylase loci, cellulase loci, amylase loci, xylanase loci, secondary metabolite loci, protease loci, high transcribed loci, GLA loci, telomeric regions, and rRNA loci. In some embodiments, the nucleic acids are randomly integrated within the genome of the recombinant host cell.
- The host cells can be fungal cells or bacterial cells or protozoa cells. In some embodiments, the host cells are generally recognized as safe (GRAS) industrial stains.
- Examples of suitable fungal cells include but are not limited to Aspergillus niger, Aspergillus niger var. awamori, Aspergillus oryzae, Candida guilliermondii, Candida lipolytica, Candida pseudotropicalis, Candida utilis, Endothia parasitica, Eremothecium ashbyii, Fusarium moniliforme, Kluyveromyces lactis, Kluyveromyces marxianus var. lactis, Morteirella vinaceae var. raffinoseutilizer, Mucor miehei, Mucor miehei var. Cooney et Emerson, Mucor pusillus Lindt, Penicillium roquefortii, Pichia pastoris, Rhizopus niveus, Saccharomyces cervisea, Saccharomyces fragilis, and Trichoderma reesei.
- Examples of suitable bacterial cells include but are not limited to Acetobacter suboxydans, Acetobacter xylinum, Actinoplane missouriensis, Bacillus cereus, Bacillus coagulans, Bacillus licheniformis, Bacillus stearothermophilus, Bacillus subtilis, Escherichia coli, Lactobacillus bulgaricus, Lactococcus lactis, Lactococcus lactis Lancefield Group N, Leuconostoc citrovorum, Leuconostoc dextranicum, Leuconostoc mesenteroides strain NRRL B-512(F), Micrococcus lysodeikticus, Streptococcus cremoris, Streptococcus lactis, Streptococcus lactis subspecies diacetylactis, Streptococcus thermophilus, Streptomyces chattanoogensis, Streptomyces griseus, Streptomyces natalensis, Streptomyces olivaceus, Streptomyces olivochromogenes, Streptomyces rubiginosus, and Xanthomonas campestris.
- Examples of suitable protozoa cells include but are not limited to Tetrahymena thermophile, Tetrahymena hegewischi, Tetrahymena hyperangularis, Tetrahymena malaccensis, Tetrahymena pigmentosa, Tetrahymena pyriformis, and Tetrahymena vorax. Additional strains that can be used as host cells are known in the art.
- In some embodiments, the recombinant host cells further comprise genetic modifications that improve production of the recombinant proteins. Non-limiting examples of such genetic modifications include altered promoters, altered kinase activities, altered protein folding activities, altered protein secretion activities, and altered gene expression induction pathways. In some such embodiments, the recombinant host cells comprise genetic modifications that reduce the activity of one or more proteases produced by the host cells.
- In some embodiments, the recombinant host cells further comprise endogenous glycosyltransferases that can produce endogenous oligosaccharides and recombinant proteins bearing those endogenous oligosaccharides. In some embodiments, the recombinant host cells comprise heterologous glycosyltransferases that can produce heterologous oligosaccharides and recombinant proteins bearing those heterologous oligosaccharides. In some embodiments, the recombinant proteins bearing endogenous oligosaccharides or heterologous oligosaccharides have native glycosylation patterns. In other embodiments, the recombinant proteins bearing endogenous oligosaccharides or heterologous oligosaccharides have non-native glycosylation patterns. Non-limiting examples of such endogenous or heterologous glycosyltransferases include fucosyltransferases, galactosyltransferases, glucosyltransferases, xylosyltransferases, acetylases, glucoronyltransferases, glucoronylepimerases, sialyltransferases, mannosyltransferases, sulfotransferases, .beta.-acetylgalactosaminyltransferases, and N-acetylglucosaminyltransferases. Non-limiting examples of such endogenous or heterologous oligosaccharides include lactose, 2-fucosyl-lactose, lacto-N-tetraose, lacto-N-neotetraose, lacto-N-fucopentaose I, lacto-N-fucopentaose II, lacto-N-fucopentaose III, lacto-N-difucopentaose I, sialyllactose, 3-sialyllactose, sialyltetrasaccharide a, sialyltetrasaccharide b, sialyltetrasaccharide c, disialyltetrasaccharide and sialyl lacto-N-fucopentaose. In some embodiments, the heterologous glycosyltransferases are human glycosyltransferases that produce human oligosaccharides and recombinant proteins bearing such human oligosaccharides. In some embodiments, the heterologous glycosyltransferases are Bos taurus glycosyltransferases that produce Bos taurus oligosaccharides and recombinant proteins bearing such Bos taurus oligosaccharides.
- In some embodiments, the recombinant host cells further comprise endogenous or heterologous phosphatases. In some such embodiments, the recombinant host cells produce recombinant proteins that have native phosphorylation patterns. In other such embodiments, the recombinant produce recombinant proteins that have non-native phosphorylation patterns.
- The culturing of the recombinant host cells can be performed in any suitable fermentation vessel, including but not limited to a culture plate, a flask, or a fermentor (e.g., stirred tank fermentor, an airlift fermentor, a bubble column fermentor, a fixed bed bioreactor, or any combination thereof), and at any scale known in the art. Suitable culture media include any culture medium in which the recombinant host cells provided herein can grow and/or remain viable. In some embodiments, the culture media are aqueous media comprising carbon, nitrogen (e.g., anhydrous ammonia, ammonium sulfate, ammonium nitrate, diammonium phosphate, monoammonium phosphate, ammonium polyphosphate, sodium nitrate, urea, peptone, protein hydrolysates, yeast extract), and phosphate sources. The culture media can further comprise salts, minerals, metals, other nutrients, emulsifying oils, and surfactants. Non-limiting examples of suitable carbon sources include monosaccharides, disaccharides, polysaccharides, acetate, ethanol, methanol, methane, or one or more combinations thereof. Non-limiting examples of monosaccharides include dextrose (glucose), fructose, galactose, xylose, arabinose, and combinations thereof. Non-limiting examples of disaccharides include sucrose, lactose, maltose, trehalose, cellobiose, and combinations thereof. Non-limiting examples of polysaccharides include starch, glycogen, cellulose, amylose, hemicellulose, and combinations thereof. Suitable conditions for production of the recombinant proteins are those under which the recombinant host cells provided herein can grow and/or remain viable. Non-limiting examples of such conditions include suitable pH, suitable temperature, and suitable oxygenation. In some embodiments, the culture media further comprise proteases (e.g., plant-based proteases) that can prevent degradation of the recombinant proteins, protease inhibitors that reduce the activity of proteases that can degrade the recombinant proteins, and/or sacrificial proteins that siphon away protease activity.
- The identities of the recombinant milk or non-animal proteins produced by the recombinant hosts cells can be confirmed by HPLC quantification, Western blot analysis, polyacrylamide gel electrophoresis, and 2-dimensional mass spectroscopy (2D-MS/MS) sequence identification.
- Methods for isolating (e.g., purifying) a recombinant protein from culture media are well-known in the art. Exemplary methods for isolating (e.g., purifying) recombinant milk proteins are described in Imafidon et al., Crit. Rev. Food Sci. Nutrition 37:663-669, 1997; Simons, et al., Protein Eng. 6: 763-770 (1993); Hansson, et al., Protein Express. Purif. 4:373-381, 1993; U.S. Pat. No. 6,121,421; Choi et al., J. Agric. Food Chem. 49(4):1761-1766, 2001). Proteins can be separated on the basis of their molecular weight, for example, by size exclusion/exchange chromatography, ultrafiltration through membranes, gel permeation chromatography, or density centrifugation. In some embodiments, the proteins can be separated based on their surface charge or hydrophobicity/hydrophilicity, for example, by isoelectric precipitation, anion exchange chromatography, cation exchange chromatography, or reverse phase chromatography. Proteins also can be separated on the basis of their solubility, for example, by ammonium sulfate precipitation, isoelectric precipitation, surfactants, detergents, or solvent extraction. Proteins also can be separated by their affinity to another molecule, using, for example, hydrophobic interaction chromatography, reactive dyes, or hydroxyapatite. Affinity chromatography also can include using antibodies having specific binding affinity for the protein, nickel NTA for His-tagged recombinant proteins, lectins to bind to sugar moieties on a glycoprotein, or other molecules which specifically binds the protein. Generally, centrifugation at an optimum pH yields purification efficiency >95%. Isoelectric points (pI) of native caseins and whey proteins are known, and are, for example, 4.91 for Bos taurus α-s1-casein, 4.1 for Bos taurus α-s2-casein, 4.5 for Bos taurus β-casein, pH 4.1 for Bos taurus κ-casein, 4.2 for Bos taurus α-lactalbumin, and 5.2 for Bos taurus β-lactoglobulin. Other methods for protein purification include membrane filtration to remove any potential bacteria or contaminants, followed by lyophilization for protein isolation.
- In some embodiments, the methods and compositions provide for a production cost that is competitive at or below $1,000/kg, $500/kg, $10/kg, $1.0/kg, $0.10/kg, $0.010/kg or $0.0010/kg of recombinant protein. In some embodiments, the cost is below $0.009, $0.007, $0.006, $0.005/kg of recombinant protein.
- In some embodiments, the methods further comprise the step of producing micelles. The micelles produced can be any of the micelles described herein (and can have any of the physical characteristics of micelles described herein).
- In some embodiments, the micelles are produced by homogenizing one or more milk proteins, or one or more non-animal proteins, or mixtures thereof. In some embodiments, the micelles are produced by culturing the recombinant host cells in a culture medium under conditions that permit release of micelles. Suitable culture media for use in these methods are known in the art. Micelle formation can be monitored by microscopy, light scattering, or refractometry.
- The degree of micelle formation achieved and the type of micelles formed, and hence the final textures of the compositions comprising such micelles can be controlled to a certain degree by varying parameters during micelle formation. For example, micelle sizes can be adjusting by titrating types and amounts of milk proteins and/or non-animal proteins and/or other components (e.g., lipids, carbohydrates), or by titrating the amount of mechanical energy used during homogenization (e.g., extent of vortex int, agitating, sonicating). Micelle densities can be adjusted by centrifugation or filtration techniques. Micelle formation can further be affected by pH, temperature, and presence of salts.
- Some of these methods further include isolating (e.g., purifying) micelles. Methods of isolating (e.g., purifying) a micelle from a liquid are well-known in the art (e.g., ultra-centrifigation).
- In some embodiments, the methods for producing the food products provided herein further comprise the step of dehydrating (e.g., to obtain powders). Methods for dehydrating are known in the art and include, but are not limited to, spray drying, roller drying, fluid bed drying, freeze drying, drying with ethanol, and evaporating (see, for example, Handbook for Drying for Dairy Products, C. Anandharamakrishnan (ed.) ISBN:978-1-118-93049-6, Wiley-Blackwell).
- Additional post-processing methods include but are not limited to membrane processing, extrusion, microwave processing, radio frequency processing, non-thermal processing (e.g., using high pressure, ionizing radiation [e.g., electron beam, gamma irradiation, UV], ultra-sonication, gas treatment (e.g., with ozone, chlorine dioxide, cold plasma), pulsed electric field treatment, and oscillating magnetic field treatment.
- Also provided herein are methods for producing the yoghurt-like food products provided herein.
- The invention is based on the identification of process parameters and conditions that provide similar pH profiles for fermentations of lactic acid bacteria in the presence of the milk proteins and non-animal proteins provided herein as is obtained with the same lactic acid bacteria in traditional yoghurt fermentation from dairy milk. Such pH profiles require rapid production of lactic acid by the lactic acid bacteria, leading to a drop in pH of the fermentation to between 3.8 and 5 in a time frame that permits commercial batch runs (currently about 6 hours). The invention is further based on the discovery that the composition derived from such fermentation of lactic acid bacteria in the presence of the milk proteins and plant proteins provided herein has similar attributes (e.g., viscosity) as dairy yoghurt.
- These discoveries enable the production of the yoghurt-like food products provided herein using similar processes and process parameters (e.g., homogenization, pasteurization temperature, pasteurization time, use of lactic acid bacteria) as are currently used in the commercial production of dairy yoghurt, obviating a need for significant modifications of commercial yoghurt production processes.
- In some embodiments, the methods for producing the yoghurt-like food products provided herein comprise the steps of: a) obtaining one or more milk proteins and one or more non-animal proteins; b) combining the one or more milk proteins, the one or more non-animal proteins, and lactic acid bacteria to obtain a milk-type culture; and c) fermenting the milk-type culture for less than 6 hours to a pH of between 3.8 and 4.8 to obtain the yoghurt-like food product.
- The milk proteins and non-animal proteins can be native or recombinant milk proteins and non-animal proteins or hydrolyzed non-animal proteins, and can be obtained as described herein. They can be obtained in either solid or solubilized forms.
- The inventors have made the surprising discovery that the type of milk protein used can have a significant impact on the attributes (e.g., viscosity) of the yoghurt-like food products obtained. Therefore, in some embodiments, only one milk protein is used, wherein the one milk protein is β-lactoglobulin. In some such embodiments, the homogenous milk-type mixture comprises between 0.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, 2%, or 1.5%; between 1.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, 2.5%, or 2%; between 2% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, 3%, or 2.5%; between 2.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, 3.5%, or 3%; between 3% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, 4%, or 3.5%; between 3.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, 4.5%, or 4%; between 4% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, 5%, or 4.5%; between 4.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, 5.5%, or 5%; between 5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, 6%, or 5.5%; between 5.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, 6.5%, or 6%; between 6% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, 7%, or 6.5%; between 6.5% and 10%, 9.5%, 9%, 8.5%, 8%, 7.5%, or 7%; between 7% and 10%, 9.5%, 9%, 8.5%, 8%, or 7.5%; between 7.5% and 10%, 9.5%, 9%, 8.5%, or 8%; between 8% and 10%, 9.5%, 9%, or 8.5%; between 8.5% and 10%, 9.5%, or 9%; between 9% and 10%, or 9.5%; or between 9.5% and 10% by weight of β-lactoglobulin.
- The inventors have made the surprising discovery that in the absence of non-animal protein (e.g., when using only milk protein) the fermenting of the milk-type culture does not produce a pH of less than 4.8 in less than 6 hours. Without wishing to be bound by theory, it is believed that milk protein does not comprise the nutrients needed for suitable lactic acid fermentation. Therefore, the milk-type culture comprises such amounts of non-animal protein that fermenting the milk-type culture for less than 6 hours provides a pH of between 3.8 and 4.8. In some embodiments, the homogenous milk-type mixture comprises between 0.2% and 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, 1%, or 0.5%; between 0.5% and 4%, 3.5%, 3%, 2.5%, 2%, 1.5%, or 1%; between 1% and 4%, 3.5%, 3%, 2.5%, 2%, or 1.5%; between 1.5% and 4%, 3.5%, 3%, 2.5%, or 2%; between 2% and 4%, 3.5%, 3%, or 2.5%; between 2.5% and 4%, 3.5%, or 3%; between 3% and 4%, or 3.5%; or between 3.5% and 4% by weight of non-animal protein. In some such embodiments, the non-animal protein is pea protein. In other such embodiments, the non-animal protein is fungal protein. In some embodiments, the homogenous milk-type mixture comprises between 0.01% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, or 0.05%; between 0.05% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, or 0.1%; between 0.1% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, or 0.2%; between 0.2% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, or 0.3%; between 0.3% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, or 0.4%; between 0.4% and 1%, 0.9%, 0.8%, 0.7%, 0.6%, or 0.5%; between 0.5% and 1%, 0.9%, 0.8%, 0.7%, or 0.6%; between 0.6% and 1%, 0.9%, 0.8%, or 0.7%; between 0.7% and 1%, 0.9%, or 0.8%; between 0.8% and 1%, or 0.9%; or between 0.9% and 1% by weight of hydrolyzed non-animal protein. In some such embodiments, the hydrolyzed non-animal protein is hydrolyzed pea protein. In other such embodiments, the hydrolyzed non-animal protein is hydrolyzed fungal protein. In some embodiments, the homogenous mixture comprises β-lactoglobulin and pea protein or fungal protein at a ratio of between 19:1 and 1:3.
- The lactic acid bacteria can be in freeze-dried solid or solubilized bulk culture form. Non-limiting examples of lactic acid bacteria suitable for use include all lactic acid bacteria used for conventional fermentative production of food products, including but not limited to the lactic acid bacteria disclosed herein.
- In some embodiments, the methods further comprise the step of including one or more lipids (e.g., non-animal lipids), one or more carbohydrates (e.g., non-animal carbohydrates), micelles, or other components provided herein (e.g., minerals). In some such embodiments, lipids and water are added in the form of lipid-in-water or water-in-lipid emulsions. In some embodiments, the one or more carbohydrates are mono- and/or disaccharides. Is some such embodiments, no more than 2.6% by weight of mono- and/or disaccharides are added.
- The one or more milk proteins, one or more non-animal proteins, lactic acid bacteria, and optional lipids, carbohydrates, micelles, and/or other components can be combined by any method known in the art, including methods that use mechanical energy (e.g., vortexing, agitating [e.g., in a conventional mixer under moderate agitation of between 100 rpm and 1,000 rpm], shearing [e.g., shearing in a conventional blender at medium speed], sonication, high pressure), heating (e.g., to a temperature greater than ambient temperature, greater than 30° C., 40° C., 50° C., 60° C., between 30° C. and 60° C., or between 40° C. and 50° C.), and/or homogenization (e.g., in a high-pressure [e.g., between 35 bar and 250 bar]). In some embodiments, the one or more milk proteins or one or more non-animal proteins or lactic acid bacteria or optional other ingredients are included in a stepwise manner to protect them from exposure to mechanical energy or heating or homogenization methods that could render them inactive (e.g., lactic acid bacteria can be added after all other components are combined to protect them from being rendered inactive during blending and/or heating).
- In some embodiments, the methods further comprise a pasteurization step. Pasteurization is typically used to destroy pathogenic microorganisms in food products. It can furthermore unfold quarternary and tertiary protein structures to expose buried amino acid residues and permit formation of new intermolecular bonds via van-der-Waals, electrostatic, covalent, hydrophobic, and/or H-bonding forces. Such new intermolecular bonds can lead to formation of gels that define textural properties of food products such as yoghurt. In the methods provided herein, pasteurization can occur at pasteurization temperatures of between 60 C and 100 C and over pasteurization times of between 10 second and 30 minutes, by any means known in the art (e.g., batch, vat; continuous, high temperature short time [HTST]; continuous, higher heat shorter time [HEST]; continuous, ultra-pasteurization; aseptic, ultra-high temperature [UHT]; sterilization [e.g., retort, direct steam injection, indirect steam injection]). Typically, the higher the pasteurization temperatures the lower the required pasteurization times. In some embodiments, the pasteurization temperatures are between 78 C and 85 C and the pasteurization times are between 30 seconds and 5 minutes. In other embodiments, the pasteurization temperatures are between 90 C and 95 C and the pasteurization times are between 10 seconds and 30 seconds. In yet other embodiments, the pasteurization temperatures are between 65 C and 75 C and the pasteurization times are between 1 minute and 30 minutes. Pasteurization is typically followed by cooling to a suitable temperature (e.g., less than 45 C, less than 40 C, less than 37 C, less than 35 C, less than 30 C, ambient temperature; particularly before lactic acid bacteria are added). In some embodiments, pasteurization occurs through non-thermal means.
- In some embodiments, the milk-type culture is fermented for less than 6 hours to a pH of between 3.8 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4, or 3.9; between 3.9 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4; between 4 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1; between 4.1 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2; between 4.2 and 4.8, 4.7, 4.6, 4.5, 4.4, 4.3; between 4.3 and 4.8, 4.7, 4.6, 4.5, 4.4; between 4.4 and 4.8, 4.7, 4.6, 4.5; between 4.5 and 4.8, 4.7, 4.6; between 4.6 and 4.8, 4.7; or between 4.7 and 4.8. In some embodiments, the milk-type culture is fermented for less than 6 hours to a pH lower than the pI of the one or more milk proteins comprised in the milk-type culture.
- In some embodiments, the methods further comprise the step of cooling the yoghurt-like food products to end the fermenting. Cooling can be done in a cooler or refrigerator.
- The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventors to function well in the practice of the invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention, therefore all matter set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
- Coconut oil was melted (at around 50-55 C) and blended with water in a Ninja blender to obtain an emulsion. Dry ingredients selected from Table 3 where added to the emulsion under medium shear speed.
-
TABLE 3 Dry Ingredient Compositions Yogurt-like Yogurt-like Whole Milk Yogurt-like (2% LGB + (2% LGB − Yogurt-like Sample Yogurt (4% LGB) 2% Pea) 1% Pea) (4% Pea) Pasteurization 85 C. for 85 C. for 85 C. for 10 85 C. for 10 85 C. for 10 mins 10 mins mins mins 10 mins Total Solid (%) 12.100 12.39 10.951 9.880 12.075 Total Fat (%) 3.250 3.544 3.522 3.283 3.500 Total Carb (%) 4.660 4.022 2.722 2.663 4.000 Total Protein (%) 3.470 3.972 3.866 3.085 3.763 Protein from LGB (%) N/A 3.910 2.118 2.134 N/A Protein from Pea (%) N/A N/A 1.761 0.940 3.706 Sodium (mg/100 g) 46.000 42.322 40.000 47.500 45.143 Phosphorus (mg/100 g) 95.000 79.931 94.768 85.000 117.150 Calcium (mg/100 g) 121.000 109.989 110.022 105.921 110.000 Potassium (mg/100 g) 155.000 158.407 141.145 144.298 150.000 β-lactoglobulin (LGB) was supplied as enriched protein isolate that was made using enrichment protocol highlighted in International Dairy Journal 14(5): 411-419, May 2004. The enriched protein isolate comprised 90% by weight of protein (65% enriched beta-lactoglobulin and 25% other enriched whey protein fractions), 5% by weight of water, and 5% by weight of ash. Pea protein in yoghurt-like food products was added as commercial pea protein concentrate, which comprised 80% by weight of pea protein, 6% by weight of fat, 4% by weight of carbohydrate, 5% by weight of ash, and 5% by weight of water. The total carbohydrates included carbohydrates originating from the LGB protein isolate, the pea protein concentrate, and about 2.6% of added mono- and disaccharides (e.g., glucose, sucrose). - The mixture was then heated to 45-55 C to aid with blending, and finally homogenized at 170-175 bar (2,465 to 2,538 psi) in
stage 1 and 34.5 bar (500 psi) instage 2. The mixture was pasteurized in a stainless steel bowl at 85 C for 10 minutes, and then cooled to 43 C. 2 g of a standard lactic acid bacteria (Streptococcus thermophilus and Lactobacillus bulgaricus) culture was dissolved in 18 g of pasteurized (and subsequently cooled to ambient temperature) pea protein milk, and 1.5 mL of this culture was added to 500 mL of the mixture to obtain a milk-type culture. The milk type culture was fermented at 43 C until a pH of between 4.3 and 4.5 (˜0.9% titratable acidity measured as % lactic acid) was reached and the yoghurt-like food product was obtained. As shown inFIG. 3 , the milk-type cultures that comprised both β-lactoglobulin and pea protein produced pH profiles during fermentation that were more alike that of whole milk cultures whereas cultures comprising only β-lactoglobulin or only pea protein did not reach a sufficiently acidic pH within a suitable fermentation time. - Yogurt can be classified as a viscoelastic material, having some of the elastic properties of an ideal solid and some of the flow properties of an ideal (viscous) liquid. It also exhibits time-dependent and shear rate-dependent shear thinning behavior.
- The yoghurt-like food products of Example 1 were tested for flow viscosity on a rheometer to determine their flow properties under specific shear rate and shear stress conditions, wherein the flow properties were expressed as the viscosity of the yogurt gel.
- As shown in
FIG. 2 , yoghurt-like food products that comprised only β-lactoglobulin and only pea protein were too firm at all shear rates. The yoghurt-like food product that comprised β-lactoglobulin and pea protein at a weight ratio of 1:1 had reduced viscosity at higher shear rates. The yoghurt-like food product that comprised β-lactoglobulin and pea protein at a weight ratio of 1:2 exhibited a similar viscosity profile as a function of shear rate as whole milk yoghurt and thus most closely resembled whole milk yoghurt. - All publications, patents, patent applications, sequences, database entries, and other references mentioned herein are incorporated by reference to the same extent as if each individual publication, patent, patent application, sequence, database entry, or other reference was specifically and individually indicated to be incorporated by reference. In case of conflict, the present specification, including definitions, will control. The terminology and description used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention.
Claims (12)
1-143. (canceled)
144. A food product comprising (a) a recombinant α-lactalbumin or fragment thereof, and (b) one or more native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins; wherein the recombinant α-lactalbumin or fragment thereof imparts on the food product an attribute of a dairy product.
145. The food product of claim 144 , wherein the food product comprises the recombinant α-lactalbumin or fragment thereof and the one or more native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins at a weight ratio of total recombinant α-lactalbumin or fragment thereof to total native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins of between 100 to 1 to 1 to 100.
146. The food product of claim 144 , wherein the food product is selected from the group consisting of milk, yoghurt, cheese, butter, cream, buttermilk, pudding, nutritional beverages, frozen confections, protein concentrate, protein isolate, whole milk powder, skim milk powder, nutritional supplements, and infant formula.
147. The food product of claim 144 , wherein the recombinant α-lactalbumin or fragment thereof is at least 80% identical to cow α-lactalbumin or fragment thereof, sheep α-lactalbumin or fragment thereof, horse α-lactalbumin or fragment thereof, goat α-lactalbumin or fragment thereof, or human α-lactalbumin or fragment thereof.
148. The food product of claim 144 , wherein the recombinant cx-lactalbumin or fragment thereof is produced by a fungal cell or a bacterial cell.
149. The food product of claim 148 , wherein the fungal cell is a filamentous fungal cell.
150. The food product of claim 149 , wherein the filamentous fungal cell is Aspergillus or Trichoderma.
151. The food product of claim 144 , wherein the one or more native and/or recombinant non-animal proteins and/or hydrolyzed non-animal proteins are one or more hydrolyzed non-animal proteins.
152. The food product of claim 144 , wherein at least one of the one or more native and/or recombinant non-animal proteins or hydrolyzed non-animal proteins is a plant protein or hydrolyzed plant protein.
153. The food product of claim 144 , wherein the plant protein or hydrolyzed plant protein is selected from the group consisting of pea protein, soybean protein, potato protein, oat protein, hydrolyzed pea protein, hydrolyzed soybean protein, hydrolyzed oat protein, hydrolyzed potato protein, and mixtures thereof.
154. A method for producing the food product of claim 144 , wherein the method comprises:
(a) obtaining a recombinant α-lactalbumin or fragment thereof;
(b) obtaining one or more native and/or recombinant non-animal proteins;
(c) optionally hydrolyzing the one or more native and/or recombinant non-animal proteins; and
(d) combining the recombinant α-lactalbumin or fragment thereof and the one or more native and/or recombinant non-animal proteins (or one or more hydrolyzed native and/or recombinant non-animal proteins) under conditions that provide the food product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/456,236 US20230397622A1 (en) | 2016-08-25 | 2023-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662379647P | 2016-08-25 | 2016-08-25 | |
PCT/US2017/048730 WO2018039632A1 (en) | 2016-08-25 | 2017-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
US201916328268A | 2019-02-25 | 2019-02-25 | |
US18/456,236 US20230397622A1 (en) | 2016-08-25 | 2023-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/048730 Continuation WO2018039632A1 (en) | 2016-08-25 | 2017-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
US16/328,268 Continuation US11771104B2 (en) | 2016-08-25 | 2017-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230397622A1 true US20230397622A1 (en) | 2023-12-14 |
Family
ID=61246371
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/328,268 Active 2038-04-10 US11771104B2 (en) | 2016-08-25 | 2017-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
US18/456,236 Pending US20230397622A1 (en) | 2016-08-25 | 2023-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/328,268 Active 2038-04-10 US11771104B2 (en) | 2016-08-25 | 2017-08-25 | Food products comprising milk proteins and non-animal proteins, and methods of producing the same |
Country Status (9)
Country | Link |
---|---|
US (2) | US11771104B2 (en) |
EP (1) | EP3503735A4 (en) |
JP (2) | JP2019526254A (en) |
CN (1) | CN109922662A (en) |
AU (3) | AU2017314853A1 (en) |
BR (1) | BR112019003798A2 (en) |
CA (1) | CA3034678A1 (en) |
MX (1) | MX2019002109A (en) |
WO (1) | WO2018039632A1 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019180037A1 (en) * | 2018-03-19 | 2019-09-26 | Cosucra Groupe Warcoing S.A. | Non-dairy vegetable-based soluble yogurt powder |
WO2020023557A1 (en) * | 2018-07-23 | 2020-01-30 | Advance International Inc. | Protein-based therapeutic nutritional products |
JP7294779B2 (en) * | 2018-07-31 | 2023-06-20 | 株式会社明治 | How cheese is made |
CN113301812A (en) * | 2018-10-17 | 2021-08-24 | 完美日股份有限公司 | Recombinant components and compositions for food products |
WO2020130803A1 (en) * | 2018-12-21 | 2020-06-25 | N.V. Nutricia | Protein compositions with high isoelectric proteins |
JP2022530422A (en) * | 2019-04-22 | 2022-06-29 | パーフェクト・デイ・インコーポレイテッド | Egg substitutes and compositions containing egg substitutes, and methods for producing them. |
JP2022531390A (en) * | 2019-05-02 | 2022-07-06 | ニュー カルチャー インコーポレイテッド | Cheese and yogurt-like compositions and related methods |
US11326176B2 (en) | 2019-11-22 | 2022-05-10 | Mozza Foods, Inc. | Recombinant micelle and method of in vivo assembly |
KR20220167268A (en) * | 2019-12-11 | 2022-12-20 | 글란비아 뉴트리셔널 리미티드 | Storage Stable High Protein Yogurt Products |
EP4106534A4 (en) * | 2020-02-19 | 2024-03-27 | Perfect Day, Inc. | Hypoallergenic recombinant milk proteins and compositions comprising the same |
WO2021191914A1 (en) * | 2020-03-23 | 2021-09-30 | Dr. Eyal Bressler Ltd. | Dairy substitutes produced in plant-based systems and method thereof |
AU2021270442A1 (en) * | 2020-05-13 | 2022-12-15 | Icelandic Provisions, Inc. | Methods for producing a fermented plant-based food product |
US12035723B1 (en) | 2020-07-22 | 2024-07-16 | Chobani Llc | Oat flour based food composition and method of manufacture |
IL276823A (en) | 2020-08-19 | 2022-03-01 | Re Milk Ltd | Casein formulations and use of same |
EP3970501A1 (en) | 2020-09-18 | 2022-03-23 | Baio | Method for producing cheese substitutes |
JP2023543743A (en) * | 2020-09-18 | 2023-10-18 | スタンディング、オバスィオン | Method for producing cheese substitutes |
US10894812B1 (en) | 2020-09-30 | 2021-01-19 | Alpine Roads, Inc. | Recombinant milk proteins |
US10947552B1 (en) | 2020-09-30 | 2021-03-16 | Alpine Roads, Inc. | Recombinant fusion proteins for producing milk proteins in plants |
CA3191387A1 (en) | 2020-09-30 | 2022-04-07 | Nobell Foods, Inc. | Recombinant milk proteins and food compositions comprising the same |
WO2022098835A1 (en) * | 2020-11-04 | 2022-05-12 | New Culture, Inc. | Dairy-like compositions and related methods |
EP4240859A1 (en) * | 2020-11-04 | 2023-09-13 | New Culture Inc. | Micelle and micelle-like compositions and related methods |
WO2022253816A1 (en) | 2021-06-01 | 2022-12-08 | Standing Ovation | Method for producing casein and uses thereof |
EP4098128A1 (en) | 2021-06-01 | 2022-12-07 | Baio | Method for producing casein and uses thereof |
US11771105B2 (en) | 2021-08-17 | 2023-10-03 | New Culture Inc. | Dairy-like compositions and related methods |
US12004539B2 (en) | 2022-01-31 | 2024-06-11 | The Livekindly Company Switzerland GmbH | Methods for creating of high fibrousness, high moisture extrudates |
DE102022113445A1 (en) * | 2022-05-27 | 2023-11-30 | Nosh.Bio Gmbh | Development of technofunctional ingredients and alternative proteins from biomass fermentation |
WO2024015365A1 (en) * | 2022-07-11 | 2024-01-18 | Kiverdi, Inc. | Recombinantly expressed proteins in chemoautotrophic microorganisms for use as food ingredients |
WO2024025958A1 (en) * | 2022-07-27 | 2024-02-01 | Terraferma Foods, Inc. | Compositions and methods for producing protein |
US11832614B1 (en) | 2023-04-28 | 2023-12-05 | King Faisal University | Method of inhibiting mycotoxin growth using Arthrospira platensis nanoparticles |
CN117624297A (en) * | 2023-10-31 | 2024-03-01 | 陕西科技大学 | Seafood mushroom flavor peptide and extraction method and application thereof |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873751A (en) | 1967-06-01 | 1975-03-25 | Ralston Purina Co | Preparation of a simulated milk product |
FR2092782A1 (en) * | 1970-06-18 | 1972-01-28 | Maillols Michel | Reconstituted milk type product - contg degraded proteins |
IE44072B1 (en) * | 1976-02-18 | 1981-08-12 | Pfizer | Novel food compositions containing microbial proteins |
JPS597412B2 (en) * | 1980-10-16 | 1984-02-18 | 協同乳業株式会社 | ice cream |
US4378376A (en) | 1981-01-09 | 1983-03-29 | Ralston Purina Company | Simulated milk protein replacer of improved suspension characteristics |
JPH0616676B2 (en) * | 1985-06-20 | 1994-03-09 | 新田ゼラチン株式会社 | Multicellular frozen dessert material |
CH676920A5 (en) | 1988-08-09 | 1991-03-28 | Sulzer Ag | |
US6020015A (en) | 1988-09-22 | 2000-02-01 | Gaull; Gerald E. | Infant formula compositions and nutrition containing genetically engineered human milk proteins |
US4954361A (en) | 1989-01-13 | 1990-09-04 | Immunopath Profile, Inc. | Hypoallergenic milk products and process of making |
US5795611A (en) | 1989-12-20 | 1998-08-18 | Slattery; Charles W. | Human infant formulas containing recombinant human alpha-lactalbumin and beta-casein |
US5068118A (en) * | 1990-07-25 | 1991-11-26 | Kraft General Foods, Inc. | Method of making simulated cheese containing casein materials |
DK8892D0 (en) | 1992-01-23 | 1992-01-23 | Symbicom Ab | HUMANT PROTEING |
US5514655A (en) | 1993-05-28 | 1996-05-07 | Abbott Laboratories | Enteral nutritional with protein system containing soy protein hydrolysate and intact protein |
JP2683492B2 (en) | 1993-09-07 | 1997-11-26 | 雪印乳業株式会社 | Micellar whey protein, solution thereof, powder thereof, and method for producing micellar whey protein |
US6290974B1 (en) | 1998-01-20 | 2001-09-18 | North Carolina State University | Protein ingredient for carrying lipophilic nutrients |
WO2001052670A1 (en) | 2000-01-20 | 2001-07-26 | New Zealand Institute For Crop & Food Research Limited | Novel food products and processes of making same |
US20080050503A1 (en) | 2000-05-02 | 2008-02-28 | Ning Huang | Expression of human milk proteins in transgenic plants |
US6893674B2 (en) * | 2002-07-29 | 2005-05-17 | Kraft Foods Holdings, Inc. | Processed cheese made with soy |
DE20300380U1 (en) | 2003-01-11 | 2003-03-13 | Thiemann, Roland, 53721 Siegburg | Low-fat ice-cream useful for promoting health and enhancing performance includes isoflavone-containing soya protein and animal protein |
GB0319503D0 (en) * | 2003-08-19 | 2003-09-17 | Danisco | Process |
WO2005041677A1 (en) | 2003-10-30 | 2005-05-12 | Arla Foods Amba | Stabilisers useful in low fat spread production |
US20050204454A1 (en) | 2004-03-18 | 2005-09-22 | Wu Chin W | Wetsuit and wetsuit fabric |
US7585537B2 (en) | 2004-05-03 | 2009-09-08 | Leprino Foods Company | Cheese and methods of making such cheese |
FR2889416B1 (en) | 2005-08-05 | 2007-10-26 | Roquette Freres | COMPOSITION OF PEAS PROTEINS |
ES2584191T3 (en) | 2005-11-30 | 2016-09-26 | Vegenat, S.A. | Mixture of proteins and their use to prepare a product intended for oral or enteral feeding |
NO323912B1 (en) * | 2005-12-01 | 2007-07-16 | Tine Sa | Composition, method of preparation thereof, and use thereof. |
US20080102180A1 (en) | 2006-10-24 | 2008-05-01 | Solae, Llc | Cheese Granules Composition and Cheese Containing Granules Composition |
ES2640728T3 (en) * | 2007-12-05 | 2017-11-06 | N.V. Nutricia | Liquid enteral nutritional composition based on protein-dense micellar casein |
US20100223682A1 (en) | 2008-12-30 | 2010-09-02 | Yitzhak Katz | Casein and methods of use thereof |
WO2010126353A1 (en) | 2009-04-27 | 2010-11-04 | N.V. Nutricia | Pea-based protein mixture and use thereof in a liquid nutritional composition suitable for enteral feeding |
US8728270B2 (en) | 2009-07-13 | 2014-05-20 | E-Cooler, L.L.C. | Water-resistant corrugated paperboard and method of preparing the same |
EP2547412B1 (en) | 2010-03-15 | 2017-03-01 | Rutgers, The State University of New Jersey | Methods of obtaining natural products from comestible fluids and methods of use |
US20130189330A1 (en) | 2010-09-30 | 2013-07-25 | Terumo Kabushiki Kaisha | Enteral Nutrient |
UA112303C2 (en) * | 2010-11-23 | 2016-08-25 | Кр. Хансен А/С | METHOD OF OBTAINING DAIRY PRODUCT USING N-linked glycosidase |
US20140234487A1 (en) | 2011-07-13 | 2014-08-21 | Friesland Brands B.V. | Dairy based compositions with low lps |
US20150126441A1 (en) | 2012-03-26 | 2015-05-07 | Pronutria, Inc. | Nutritive Fragments and Proteins with Low or No Phenylalanine and Methods |
EP3715365A1 (en) | 2012-03-26 | 2020-09-30 | Axcella Health Inc. | Nutritive fragments, proteins and methods |
US9605040B2 (en) | 2012-03-26 | 2017-03-28 | Axcella Health Inc. | Nutritive proteins and methods |
WO2013148685A1 (en) | 2012-03-26 | 2013-10-03 | Abbott Laboratories | Pea protein containing nutritional compositions |
SG10201604464SA (en) | 2012-03-26 | 2016-07-28 | Axcella Health Inc | Charged nutritive proteins and methods |
WO2013148688A1 (en) | 2012-03-26 | 2013-10-03 | Abbott Laboratories | Pea protein containing nutritional compositions |
WO2013163744A1 (en) | 2012-05-04 | 2013-11-07 | Do Paul Phuong | Nutrition formulation and product produced therefrom comprising whey protein. |
FR2995763B1 (en) * | 2012-09-21 | 2016-09-02 | Roquette Freres | ASSEMBLING AT LEAST ONE PLANT PROTEIN AND AT LEAST ONE MILK PROTEIN |
JP2016527888A (en) * | 2013-07-31 | 2016-09-15 | デュポン ニュートリション バイオサイエンシーズ エーピーエス | Acid food composition |
WO2015054507A1 (en) | 2013-10-10 | 2015-04-16 | Pronutria, Inc. | Nutritive polypeptide production systems, and methods of manufacture and use thereof |
FR3019005B1 (en) * | 2014-03-26 | 2021-03-26 | Roquette Freres | ASSEMBLY OF AT LEAST ONE VEGETABLE PROTEIN AND AT LEAST ONE DAIRY PROTEIN, ITS PREPARATION AND USES |
EP3182842A1 (en) | 2014-08-21 | 2017-06-28 | Perfect Day, Inc. | Compositions comprising a casein and methods of producing the same |
EP2997827B1 (en) * | 2014-09-12 | 2019-02-27 | Generale Biscuit | Healthy biscuit |
WO2016049198A1 (en) | 2014-09-24 | 2016-03-31 | Abbott Laboratories | Nutritional compositions containing dairy proteins in combination with alternative protein sources |
EP3042565A1 (en) * | 2014-12-19 | 2016-07-13 | Tine SA | Yoghurt with native whey proteins and processes for production thereof |
EP3256002B1 (en) * | 2015-02-09 | 2020-09-23 | FrieslandCampina Nederland B.V. | Method for preparing an aqueous dispersion of a poorly dispersible plant protein |
US11889849B2 (en) | 2016-01-07 | 2024-02-06 | Ripple Foods, Pbc | Product analogs or components of such analogs and processes for making same |
-
2017
- 2017-08-25 MX MX2019002109A patent/MX2019002109A/en unknown
- 2017-08-25 JP JP2019511343A patent/JP2019526254A/en active Pending
- 2017-08-25 AU AU2017314853A patent/AU2017314853A1/en not_active Abandoned
- 2017-08-25 CA CA3034678A patent/CA3034678A1/en active Pending
- 2017-08-25 EP EP17844534.2A patent/EP3503735A4/en active Pending
- 2017-08-25 US US16/328,268 patent/US11771104B2/en active Active
- 2017-08-25 CN CN201780060389.0A patent/CN109922662A/en active Pending
- 2017-08-25 WO PCT/US2017/048730 patent/WO2018039632A1/en active Search and Examination
- 2017-08-25 BR BR112019003798A patent/BR112019003798A2/en not_active Application Discontinuation
-
2022
- 2022-03-29 AU AU2022202112A patent/AU2022202112A1/en not_active Abandoned
-
2023
- 2023-07-07 JP JP2023112131A patent/JP2023153780A/en active Pending
- 2023-08-25 US US18/456,236 patent/US20230397622A1/en active Pending
-
2024
- 2024-04-24 AU AU2024202679A patent/AU2024202679A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20190216106A1 (en) | 2019-07-18 |
AU2017314853A1 (en) | 2019-03-14 |
EP3503735A4 (en) | 2019-10-02 |
WO2018039632A1 (en) | 2018-03-01 |
JP2019526254A (en) | 2019-09-19 |
AU2024202679A1 (en) | 2024-05-09 |
JP2023153780A (en) | 2023-10-18 |
MX2019002109A (en) | 2019-12-05 |
CN109922662A (en) | 2019-06-21 |
CA3034678A1 (en) | 2018-03-01 |
AU2022202112A1 (en) | 2022-04-14 |
BR112019003798A2 (en) | 2019-05-21 |
US11771104B2 (en) | 2023-10-03 |
EP3503735A1 (en) | 2019-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230397622A1 (en) | Food products comprising milk proteins and non-animal proteins, and methods of producing the same | |
US20230371547A1 (en) | Compositions comprising a casein and methods of producing the same | |
US11980207B2 (en) | Recombinant components and compositions for use in food products | |
JP2023515120A (en) | HYPOALLERGENIC RECOMBINANT MILK PROTEINS AND COMPOSITIONS CONTAINING THE SAME | |
JP2017528162A5 (en) | ||
BR122024006484A2 (en) | RECOMBINANT MICROBIAL HOST CELL | |
WO2024134646A1 (en) | Alternative dairy food products comprising recombinant dairy ingredient(s) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PERFECT DAY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GEISTLINGER, TIMOTHY;JHALA, RAVIRAJSINH;KRUEGER, KATHRYN PATRICIA;AND OTHERS;SIGNING DATES FROM 20190408 TO 20190505;REEL/FRAME:064738/0941 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |