US20230393743A1 - Predictive data pre-fetching in a data storage device - Google Patents

Predictive data pre-fetching in a data storage device Download PDF

Info

Publication number
US20230393743A1
US20230393743A1 US18/454,743 US202318454743A US2023393743A1 US 20230393743 A1 US20230393743 A1 US 20230393743A1 US 202318454743 A US202318454743 A US 202318454743A US 2023393743 A1 US2023393743 A1 US 2023393743A1
Authority
US
United States
Prior art keywords
command
commands
execution
data storage
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/454,743
Inventor
Alex Frolikov
Zachary Andrew Pete Vogel
Joe Gil Mendes
Chandra Mouli Guda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US18/454,743 priority Critical patent/US20230393743A1/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FROLIKOV, ALEX, GUDA, CHANDRA MOULI, MENDES, JOE GIL, VOGEL, ZACHARY ANDREW PETE
Publication of US20230393743A1 publication Critical patent/US20230393743A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0862Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with prefetch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0866Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches for peripheral storage systems, e.g. disk cache
    • G06F12/0868Data transfer between cache memory and other subsystems, e.g. storage devices or host systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0656Data buffering arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1016Performance improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/21Employing a record carrier using a specific recording technology
    • G06F2212/214Solid state disk
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/31Providing disk cache in a specific location of a storage system
    • G06F2212/312In storage controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/60Details of cache memory
    • G06F2212/6022Using a prefetch buffer or dedicated prefetch cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/60Details of cache memory
    • G06F2212/6028Prefetching based on hints or prefetch instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7203Temporary buffering, e.g. using volatile buffer or dedicated buffer blocks

Definitions

  • At least some embodiments disclosed herein relate to memory systems in general, and more particularly, but not limited to predictive data pre-fetching in data storage devices.
  • a memory sub-system can include one or more memory components that store data.
  • a memory sub-system can be a data storage system, such as a solid-state drive (SSD), or a hard disk drive (HDD).
  • a memory sub-system can be a memory module, such as a dual in-line memory module (DIMM), a small outline DIMM (SO-DIMM), or a non-volatile dual in-line memory module (NVDIMM).
  • the memory components can be, for example, non-volatile memory components and volatile memory components. Examples of memory components include memory integrated circuits. Some memory integrated circuits are volatile and require power to maintain stored data. Some memory integrated circuits are non-volatile and can retain stored data even when not powered.
  • non-volatile memory examples include flash memory, Read-Only Memory (ROM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM) and Electronically Erasable Programmable Read-Only Memory (EEPROM) memory, etc.
  • volatile memory examples include Dynamic Random-Access Memory (DRAM) and Static Random-Access Memory (SRAM).
  • DRAM Dynamic Random-Access Memory
  • SRAM Static Random-Access Memory
  • a host system can utilize a memory sub-system to store data at the memory components and to retrieve data from the memory components.
  • a computer can include a host system and one or more memory sub-systems attached to the host system.
  • the host system can have a central processing unit (CPU) in communication with the one or more memory sub-systems to store and/or retrieve data and instructions.
  • Instructions for a computer can include operating systems, device drivers, and application programs.
  • An operating system manages resources in the computer and provides common services for application programs, such as memory allocation and time sharing of the resources.
  • a device driver operates or controls a particular type of devices in the computer; and the operating system uses the device driver to offer resources and/or services provided by the type of devices.
  • a central processing unit (CPU) of a computer system can run an operating system and device drivers to provide the services and/or resources to application programs.
  • the central processing unit (CPU) can run an application program that uses the services and/or resources.
  • an application program implementing a type of applications of computer systems can instruct the central processing unit (CPU) to store data in the memory components of a memory sub-system and retrieve data from the memory components.
  • a host system can communicate with a memory sub-system in accordance with a pre-defined communication protocol, such as Non-Volatile Memory Host Controller Interface Specification (NVMHCI), also known as NVM Express (NVMe), which specifies the logical device interface protocol for accessing non-volatile storage devices via a Peripheral Component Interconnect Express (PCI Express or PCIe) bus.
  • NVMHCI Non-Volatile Memory Host Controller Interface Specification
  • NVMe NVM Express
  • PCI Express Peripheral Component Interconnect Express
  • Some commands manage the infrastructure in the memory sub-system and/or administrative tasks such as commands to manage namespaces, commands to attach namespaces, commands to create input/output submission or completion queues, commands to delete input/output submission or completion queues, commands for firmware management, etc.
  • FIG. 1 illustrates an example computing system having a memory sub-system in accordance with some embodiments of the present disclosure.
  • FIG. 2 illustrates a system configured to train a predictive model to identify commands that can cause increased latency in the execution of other commands.
  • FIG. 3 illustrates a system having a predictive model to pre-fetch data of commands from non-volatile media to buffer memory.
  • FIG. 4 shows a method to train a predictive model to identify high impact commands.
  • FIG. 5 shows a method to pre-fetch data for high impact commands based on the predictions of a predictive model.
  • FIG. 6 is a block diagram of an example computer system in which embodiments of the present disclosure can operate.
  • At least some aspects of the present disclosure are directed to predictive pre-fetching data for commands that can increase execution latency of other commands executed concurrently in a data storage device.
  • a predictive model is configured in a data storage device to identify such commands that can cause significant delays in the execution of other commands.
  • the data used by the identified commands can be pre-fetched from non-volatile storage media of the data storage device to buffer memory of the storage device. Pre-fetching the data to the buffer memory can reduce, minimize and/or eliminate the delays caused by the identified commands in the execution of other commands.
  • the predictive model can be established by applying machine learning techniques on a training set of commands, using the execution latency data of the commands in the training set.
  • infrastructure commands can be used to manage, configure, administrate, or report on the status of, the infrastructure in a data storage system.
  • Certain infrastructure command can often cause unexpected increases in latency in the execution of other commands that not related to such commands.
  • Such infrastructure commands can have high latency.
  • the resources in the data storage system are used for the execution of the high latency infrastructure commands, the resources become unavailable for the execution of other commands, causing apparently random delays in the execution of other commands that may use the resources.
  • a predictive model is configured to predict infrastructure commands that are most likely to increase latency of other commands.
  • the prediction is based on some characteristics of commands that are currently queued for processing in the data storage system.
  • the prediction allows the data storage system to pre-fetch data from non-volatile storage media to buffer memory for the predicted infrastructure commands. After the pre-fetching of the data for the predicted commands, the likelihood of the predicted infrastructure commands using resources during their execution to access the non-volatile storage media and make them unavailable for execution of other commands is reduced. Therefore, the impact of the execution of the infrastructure commands on other commands can be reduced, minimized, and/or eliminated.
  • a supervised machine learning technique can be applied to a group of commands in a training data set.
  • the training data set can have a mixed set of infrastructure commands of different types and other commands of different types.
  • the training set of commands can represent an example of workload for a data storage device/system, or a real workload during a period of service.
  • Some parameters of the commands in the training set can be used as input parameters to the predictive model, such as the types of commands, the regions in the storage system being accessed by the commands, etc.
  • the measured latency in the execution of the commands in the training set can be used to identify infrastructure commands that have high impact on the execution of other commands and infrastructure commands that do not have high impact on the execution of other commands.
  • high impact commands cause more than a threshold amount of increased latency in the execution of other commands; and low impact commands cause no more than the threshold amount of increase in latency of other commands.
  • the supervised machine learning technique can be used to train the predictive model by adjusting the parameters in the predictive model to minimize the differences between the classification/prediction of the infrastructure commands identified by the predictive model and the classification/prediction of infrastructure commands identified from the latency data in the training data set.
  • the predictive model can be trained to classify a sequence of commands.
  • Each infrastructure commands in the sequence can be classified as either having potential for high impact or not having the potential for the commands in the sequence.
  • the predictive model can be trained to predict, for a sequence of commands, latency increases caused by an infrastructure command in the sequence in the execution of other commands in the sequence.
  • the predicted increases in execution latency can be compared with a threshold to classify the infrastructure command as either a high impact command, or a low impact command.
  • the predictive model can be trained to predict, for a sequence of commands, an infrastructure command that will enter the data storage device/system to cause more than a threshold amount of increase in the execution latency of some of the commands in the sequence.
  • the prediction can be made based on the pattern of infrastructure commands and other commands.
  • the predictive model can be based on statistical correlation using logistic regression and/or an artificial neural network.
  • different sets of training sets can be used for data storage systems having different structures and different configurations.
  • a data storage system of a particular design can be initially configured with a predictive model trained according to a typical workload of commands for the design. Subsequently, the predictive model can be further trained and/or updated for the typical workload of the data storage system in a computer system and/or based on a recent real-time workload of the data storage system.
  • the data storage system can be further configured to monitor differences between the real-time predictions made using the predictive model and subsequent measurement of increased latency in command executions to further train the predictive model periodically to adapt its predictive capability in accordance with the real-time workload.
  • the incoming commands to be executed by the data storage system can be provided as input to the predictive model to identify a table of commands scheduled/suggested for pre-fetching.
  • the predictive model can be used to process a predetermined number of commands pending in one or more queues for execution (e.g., 1000 commands) or once every predetermined time period (e.g., 10 ms).
  • the commands pending for execution by the data storage system can be fed into the predictive model to identify a table of high impact commands for pre-fetching.
  • the data storage system is configured to pre-fetch the data that is likely to be used by the high impact commands in the table before the actual execution of the high impact commands, such that impact of the execution of the high impact commands is distributed to a large number of other commands.
  • the pre-fetching can be configured to use spare resources that are not used/required for the execution of the other commands, which are executed before the high impact commands; and such an arrangement can reduce the overall impact of the high impact commands on other commands.
  • the predictive model can predict an infrastructure command before the host system sends the infrastructure command to the data storage system and/or before the infrastructure command is retrieved from a queue for execution.
  • the data storage system can use a flag to indicate whether or not the pre-fetched data for the predicted infrastructure command is valid.
  • a memory sub-system can also be referred to as a “memory device”.
  • An example of a memory sub-system is a memory module that is connected to a central processing unit (CPU) via a memory bus.
  • Examples of memory modules include a dual in-line memory module (DIMM), a small outline DIMM (SO-DIMM), a non-volatile dual in-line memory module (NVDIMM), etc.
  • a memory sub-system is a data storage device/system that is connected to the central processing unit (CPU) via a peripheral interconnect (e.g., an input/output bus, a storage area network).
  • peripheral interconnect e.g., an input/output bus, a storage area network.
  • storage devices include a solid-state drive (SSD), a flash drive, a universal serial bus (USB) flash drive, and a hard disk drive (HDD).
  • SSD solid-state drive
  • USB universal serial bus
  • HDD hard disk drive
  • the memory sub-system is a hybrid memory/storage sub-system that provides both memory functions and storage functions.
  • a host system can utilize a memory sub-system that includes one or more memory components. The host system can provide data to be stored at the memory sub-system and can request data to be retrieved from the memory sub-system.
  • FIG. 1 illustrates an example computing system having a memory sub-system ( 110 ) in accordance with some embodiments of the present disclosure.
  • the memory sub-system ( 110 ) can include non-volatile media ( 109 ) that includes memory components.
  • memory components can be volatile memory components, non-volatile memory components, or a combination of such.
  • the memory sub-system ( 110 ) is a data storage system.
  • An example of a data storage system is an SSD.
  • the memory sub-system ( 110 ) is a memory module. Examples of a memory module includes a DIMM, NVDIMM, and NVDIMM-P.
  • the memory sub-system ( 110 ) is a hybrid memory/storage sub-system.
  • the computing environment can include a host system ( 120 ) that uses the memory sub-system ( 110 ).
  • the host system ( 120 ) can write data to the memory sub-system ( 110 ) and read data from the memory sub-system ( 110 ).
  • the host system ( 120 ) can be part of a computing device, such as a desktop computer, laptop computer, network server, mobile device, or such computing device that includes a memory and a processing device.
  • the host system ( 120 ) can include or be coupled to the memory sub-system ( 110 ) so that the host system ( 120 ) can read data from or write data to the memory sub-system ( 110 ).
  • the host system ( 120 ) can be coupled to the memory sub-system ( 110 ) via a physical host interface.
  • “coupled to” generally refers to a connection between components, which can be an indirect communicative connection or direct communicative connection (e.g., without intervening components), whether wired or wireless, including connections such as electrical, optical, magnetic, etc.
  • Examples of a physical host interface include, but are not limited to, a serial advanced technology attachment (SATA) interface, a peripheral component interconnect express (PCIe) interface, universal serial bus (USB) interface, Fibre Channel, Serial Attached SCSI (SAS), a double data rate (DDR) memory bus, etc.
  • the physical host interface can be used to transmit data and/or commands between the host system ( 120 ) and the memory sub-system ( 110 ).
  • the host system ( 120 ) can further utilize an NVM Express (NVMe) interface to access the non-volatile media ( 109 ) when the memory sub-system ( 110 ) is coupled with the host system ( 120 ) by the PCIe interface.
  • NVMe NVM Express
  • the physical host interface can provide an interface for passing control, address, data, and other signals between the memory sub-system ( 110 ) and the host system ( 120 ).
  • FIG. 1 illustrates a memory sub-system ( 110 ) as an example.
  • the host system ( 120 ) can access multiple memory sub-systems via a same communication connection, multiple separate communication connections, and/or a combination of communication connections.
  • the host system ( 120 ) includes a processing device ( 118 ) and a controller ( 116 ).
  • the processing device ( 118 ) of the host system ( 120 ) can be, for example, a microprocessor, a central processing unit (CPU), a processing core of a processor, an execution unit, etc.
  • the controller ( 116 ) can be referred to as a memory controller, a memory management unit, and/or an initiator.
  • the controller ( 116 ) controls the communications over a bus coupled between the host system ( 120 ) and the memory sub-system ( 110 ).
  • the controller ( 116 ) can send commands or requests to the memory sub-system ( 110 ) for desired access to non-volatile media ( 109 ).
  • the controller ( 116 ) can further include interface circuitry to communicate with the memory sub-system ( 110 ).
  • the interface circuitry can convert responses received from memory sub-system ( 110 ) into information for the host system ( 120 ).
  • the controller ( 116 ) of the host system ( 120 ) can communicate with controller ( 115 ) of the memory sub-system ( 110 ) to perform operations such as reading data, writing data, or erasing data in the non-volatile media ( 109 ) and other such operations.
  • the controller ( 116 ) is integrated within the same package of the processing device ( 118 ). In other instances, the controller ( 116 ) is separate from the package of the processing device ( 118 ).
  • the controller ( 116 ) and/or the processing device ( 118 ) can include hardware such as one or more integrated circuits and/or discrete components, a buffer memory, a cache memory, or a combination thereof.
  • the controller ( 116 ) and/or the processing device ( 118 ) can be a microcontroller, special purpose logic circuitry (e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), or another suitable processor.
  • special purpose logic circuitry e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the non-volatile media ( 109 ) can include any combination of the different types of non-volatile memory components. In some instances, volatile memory components can also be used. An example of non-volatile memory components includes a negative-and (NAND) type flash memory.
  • a memory component in the media ( 109 ) can include one or more arrays of memory cells such as single level cells (SLCs) or multi-level cells (MLCs) (e.g., triple level cells (TLCs) or quad-level cells (QLCs)).
  • a particular memory component can include both an SLC portion and an MLC portion of memory cells. Each of the memory cells can store one or more bits of data (e.g., data blocks) used by the host system ( 120 ).
  • non-volatile memory components such as NAND type flash memory
  • the memory components used in the non-volatile media ( 109 ) can be based on any other type of memory. Further, a volatile memory can be used.
  • the memory components in the media ( 109 ) can include, but are not limited to, random access memory (RAM), read-only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), phase change memory (PCM), magneto random access memory (MRAM), Spin Transfer Torque (STT)-MRAM, ferroelectric random-access memory (FeTRAM), ferroelectric RAM (FeRAM), conductive bridging RAM (CBRAM), resistive random access memory (RRAM), oxide based RRAM (OxRAM), negative-or (NOR) flash memory, electrically erasable programmable read-only memory (EEPROM), nanowire-based non-volatile memory, memory that incorporates memristor technology, or a cross-point array of non-volatile memory cells,
  • RAM random
  • a cross-point array of non-volatile memory can perform bit storage based on a change of bulk resistance, in conjunction with a stackable cross-gridded data access array. Additionally, in contrast to many flash-based memories, cross-point non-volatile memory can perform a write in-place operation, where a non-volatile memory cell can be programmed without the non-volatile memory cell being previously erased. Furthermore, the memory cells of the memory components in the media ( 109 ) can be grouped as memory pages or data blocks that can refer to a unit of the memory component used to store data.
  • the controller ( 115 ) of the memory sub-system ( 110 ) can communicate with the memory components in the media ( 109 ) to perform operations such as reading data, writing data, or erasing data at the memory components and other such operations (e.g., in response to commands scheduled on a command bus by controller ( 116 )).
  • the controller ( 115 ) can include hardware such as one or more integrated circuits and/or discrete components, a buffer memory, or a combination thereof.
  • the controller ( 115 ) can be a microcontroller, special purpose logic circuitry (e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), or another suitable processor.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the controller ( 115 ) can include a processing device ( 117 ) (e.g., processor) configured to execute instructions stored in local memory ( 119 ).
  • the buffer memory ( 119 ) of the controller ( 115 ) includes an embedded memory configured to store instructions for performing various processes, operations, logic flows, and routines that control operation of the memory sub-system ( 110 ), including handling communications between the memory sub-system ( 110 ) and the host system ( 120 ).
  • the controller ( 115 ) can include memory registers storing memory pointers, fetched data, etc.
  • the controller ( 115 ) can also include read-only memory (ROM) for storing micro-code. While the example memory sub-system ( 110 ) in FIG.
  • a memory sub-system ( 110 ) may not include a controller ( 115 ), and can instead rely upon external control (e.g., provided by an external host, or by a processor or controller separate from the memory sub-system).
  • external control e.g., provided by an external host, or by a processor or controller separate from the memory sub-system.
  • the controller ( 115 ) can receive commands or operations from the host system ( 120 ) and can convert the commands or operations into instructions or appropriate commands to achieve the desired access to the memory components in the media ( 109 ).
  • the controller ( 115 ) can be responsible for other operations such as wear leveling operations, garbage collection operations, error detection and error-correcting code (ECC) operations, encryption operations, caching operations, and address translations between a logical block address and a physical block address that are associated with the memory components in the media ( 109 ).
  • the controller ( 115 ) can further include host interface circuitry to communicate with the host system ( 120 ) via the physical host interface.
  • the host interface circuitry can convert the commands received from the host system into command instructions to access the memory components in the media ( 109 ) as well as convert responses associated with the memory components into information for the host system ( 120 ).
  • the memory sub-system ( 110 ) can also include additional circuitry or components that are not illustrated.
  • the memory sub-system ( 110 ) can include a cache or buffer (e.g., DRAM) and address circuitry (e.g., a row decoder and a column decoder) that can receive an address from the controller ( 115 ) and decode the address to access the memory components of the media ( 109 ).
  • a cache or buffer e.g., DRAM
  • address circuitry e.g., a row decoder and a column decoder
  • the computing system includes a data pre-fetcher ( 113 ) in the memory sub-system ( 110 ) that can retrieve data from the non-volatile media ( 109 ) to the buffer memory ( 119 ) for predicted high impact commands.
  • the predicted high impact commands can cause more than a threshold amount of increase in execution latency of other commands when the data is not pre-fetched to the buffer memory ( 119 ) before the execution of the high impact commands.
  • the controller ( 115 ) in the memory sub-system ( 110 ) includes at least a portion of the data pre-fetcher ( 113 ).
  • the controller ( 116 ) and/or the processing device ( 118 ) in the host system ( 120 ) includes at least a portion of the data pre-fetcher ( 113 ).
  • the controller ( 115 ), the controller ( 116 ), and/or the processing device ( 118 ) can include logic circuitry implementing the data pre-fetcher ( 113 ).
  • the controller ( 115 ), or the processing device ( 118 ) (processor) of the host system ( 120 ), can be configured to execute instructions stored in memory for performing the operations of the data pre-fetcher ( 113 ) described herein.
  • the data pre-fetcher ( 113 ) is implemented in an integrated circuit chip disposed in the memory sub-system ( 110 ).
  • the data pre-fetcher ( 113 ) is part of an operating system of the host system ( 120 ), a device driver, or an application.
  • the memory sub-system ( 110 ) can have a queue ( 123 ) for commands of one category, and another queue ( 125 ) for commands of another category.
  • the queue ( 123 ) can be configured for typical input/output commands, such as read commands and write commands.
  • the queue ( 125 ) can be configured for infrastructure commands that are not typical input/output commands. Some of the infrastructure commands can be high impact commands that cause more than a threshold amount of latency increase in the execution of certain commands in the queue ( 123 ).
  • the memory sub-system ( 110 ) can include one or more completion queue ( 121 ) for the reporting, to the host system ( 120 ), the results of the executions of commands in the command queues ( 123 and 125 ). In some implementations, one or more queues can be created in response to commands from the host system ( 120 ).
  • the memory sub-system ( 110 ) in general is not limited to a particular number of queues illustrated in FIG. 1 .
  • the data pre-fetcher ( 113 ) is configured to predict/classify some of the commands of the category in the queue ( 125 ) as high impact commands. Before a high impact command is retrieved from the command queue ( 125 ) for execution, the data pre-fetcher ( 113 ) is configured to load data that may be used by the high impact command from the non-volatile media ( 109 ) to the buffer memory ( 119 ). The loading of the data in preparation of the execution of the high impact command can be performed to use resources that are not used in the execution of commands from the queue ( 123 ) to improve resource utilization and reduce the overall impact of the high impact command.
  • the loading of the data in preparation of the execution of the high impact command can be performed to spread its impact among the execution of more commands from the queue ( 123 ) such that its impact is not concentrated on one or more commands that are executed concurrently with the execution of the high impact command.
  • FIG. 1 illustrates an example where high impact commands are known to be in a specific queue (e.g., 125 ).
  • a specific queue e.g., 125
  • different categories of commands can be mixed in a same queue.
  • an infrastructure command can be placed in a same queue of non-infrastructure commands in some systems; and the techniques of the present disclosure can also be used to predict the high impact commands and pre-fetch data to the buffer memory for the high impact commands.
  • the application of the techniques of the present disclosure is not limited to a specific command queue structure.
  • FIG. 2 illustrates a system configured to train a predictive model ( 131 ) to identify commands that can cause increased latency in the execution of other commands.
  • the predictive model ( 131 ) of FIG. 2 can be configured in the data pre-fetcher ( 113 ) in a memory sub-system ( 110 ) of FIG. 1 .
  • a training set of commands ( 137 ) is used capture the patterns of latency impacts of different types of commands on each other.
  • the training set of commands ( 137 ) can be an example of commands representing a typical workload for a memory sub-system ( 110 ), or the actual workload of a memory sub-system ( 110 ) during a particular period of usage in a computer system of FIG. 1 .
  • the execution latency data ( 139 ) of the commands in the training set is measured.
  • the execution latency data ( 139 ) can be used to identify high impact commands ( 135 ) that cause increased latency.
  • the average execution latency of commands of a specific type can be computed from the execution latency data ( 139 ).
  • the increased latency for the execution of the respective command can be computed from the difference between the actual execution latency of the command and the average execution latency of commands that are of the same type as the command.
  • the latency increase is above a threshold, the command is considered to have received high impact.
  • other commands being executed in the time window and/or concurrently with the execution of the command can be examined to identify a high impact command that causes the high impact.
  • an infrastructure command executed in the time window can be identified as the source of the high impact; and thus, the infrastructure command can be identified as a high impact command.
  • a command of a particular category and executed in the time window can be identified as the source of the high impact; and thus, the command can be identified as a high impact command.
  • a command of a type with an average execution latency above a threshold and executed in the time window can be identified as the source of the high impact; and thus, the command can be identified as a high impact command.
  • the predictive model ( 131 ) is configured to identify high impact commands (e.g., commands 141 ) that are predicted to cause increased latency from the training set of commands.
  • the predictive model ( 131 ) computes the predictions based on parameters of the commands in the training set and/or the order in which the commands appear in the training set.
  • the parameters can include the types of the commands in the training set and/or the address areas/regions accessed by the commands.
  • Supervised machine learning ( 133 ) is applied to the predictive model ( 131 ) to reduce or minimize the differences between the high impact commands ( 135 ) identified from the execution latency data ( 139 ) and the high impact commands (e.g., commands 141 ) predicted by the predictive model ( 131 ).
  • the predictive model ( 131 ) can be used in a data pre-fetcher ( 113 ) of a memory sub-system ( 110 ) of FIG. 1 and/or a system as illustrated in FIG. 3 .
  • FIG. 3 illustrates a system having a predictive model ( 131 ) to pre-fetch data of commands from non-volatile media ( 109 ) to buffer memory ( 119 ).
  • the system of FIG. 3 can be the memory sub-system ( 110 ) of FIG. 1 .
  • commands in one or more queues are provided as inputs to the predictive model ( 131 ) to generate predictions of high impact commands ( 141 ) that can cause increased latency.
  • a data pre-fetcher ( 113 ) is configured to retrieve data from non-volatile media ( 109 ) to buffer memory ( 119 ) prior to the actual execution of the high impact commands ( 141 ) predicted by the predictive model ( 131 ).
  • accessing the non-volatile media ( 109 ) for an amount of data takes a longer time period than accessing the buffer memory ( 119 ). Further, the system can have less resources for accessing the non-volatile media ( 109 ) for concurrently executing multiple commands than for accessing the buffer memory ( 119 ). Thus, when the data to be used by a high impact command is pre-fetched into the buffer memory ( 119 ), its impact on the concurrent execution of other commands can be reduced.
  • FIG. 4 shows a method to train a predictive model to identify commands that have a high probability of causing significant delay in the execution of other commands.
  • the method of FIG. 4 can be implemented in a computer system of FIG. 1 using the technique discussed in connection with FIG. 2 .
  • first commands e.g., 137
  • first commands are executed in a data storage system.
  • the first commands can be a sample of commands that are typical in data storage systems having the same or similar structure as the data storage system.
  • the first commands can be the real-life workload of the data storage system in a period of time.
  • the data storage system (or a host connected to the data storage system) measures the execution latency of the first commands.
  • the execution latency of a command can be measured as the time duration between the command being retrieved from a queue for execution and the completion of execution of the command in the data storage system.
  • a typical command retrieves data from an address specified in the command, or writes data at an address specified in the command.
  • a computing device is used to identify second commands (e.g., 135 ) that cause more than a threshold amount increase in execution latency in some of the first commands.
  • the computing device can be a computer that is separate from the data storage system and/or the host system of the data storage system, or the host system of the data storage system, or the controller of the data storage system.
  • the second commands can be identified by computing the average latency for different command types, identifying impacted commands that have execution latency exceeding the averages of their respective command types by more than a threshold amount, and identifying the second commands that have been executed concurrently with the impacted commands and that have a predetermined characteristic.
  • the predetermined characteristic can be a pre-defined command category (e.g., infrastructure commands), commands of a type having an average latency that is above a threshold, and/or other attributes.
  • the computing device identifies third commands (e.g., 141 ) using a predictive model ( 131 ) based on the first commands.
  • the computing device applies supervised machine learning ( 133 ) to the predictive model ( 131 ) to reduce differences between the second commands (e.g., 135 ) and the third commands ( 141 ).
  • FIG. 5 shows a method to pre-fetch data for high impact commands based on the predictions of a predictive model (e.g., 131 ), which can be trained using the method of FIG. 4 .
  • a predictive model e.g., 131
  • the method of FIG. 5 can be implemented in a computer system of FIG. 1 using the technique discussed in connection with FIG. 3 .
  • a data pre-fetcher ( 113 ) of a data storage system receives identification of commands that are queued for execution in the data storage system.
  • the data pre-fetcher ( 113 ) provides the commands as input to the predictive model ( 131 ).
  • the data pre-fetcher ( 113 ) identifies, using the predictive model ( 131 ) and based on the commands as input, at least one command for pre-fetching.
  • the data pre-fetcher ( 113 ) Prior to the command being retrieved from a queue for execution in the data storage system, the data pre-fetcher ( 113 ) retrieves at least a portion of data to be used in execution of the command at block 177 and store the retrieved portion of data in a buffer memory ( 119 ) of the data storage system at block 179 .
  • a controller ( 115 ) of the data storage system retrieves some of the queued commands at block 181 and executes the retrieved commands at block 183 .
  • the retrieving ( 177 ) and storing ( 179 ) of the portion of data for the pre-fetched command are performed using resources that are not required/used in the concurrently execution ( 183 ) of the commands. such an arrangement reduces the overall impact of the command on other commands as a whole.
  • the impact of the retrieving ( 177 ) and storing ( 179 ) of the portion of data for the pre-fetched command is distributed among the execution ( 183 ) of many commands such that the impact on each individual command is reduced and small.
  • the controller ( 115 ) of the data storage system retrieves the command from a queue at block 185 and executes the command using at least the portion of data in the buffer memory at block 187 .
  • the execution of the command has less impact on the execution latency of other commands that are executed concurrently with the execution of the command.
  • the data pre-fetcher ( 113 ) can include the supervised machine learning ( 133 ) functionality illustrated in FIG. 2 and/or discussed in FIG. 4 .
  • the data pre-fetcher ( 113 ) can measure the execution latency ( 139 ) of commands, identify commands ( 135 ) causing increased latency, and use the supervised machine learning ( 133 ) to minimize the number of commands that are predicted to not cause increased latency (e.g., commands 141 ) but are found to have caused increased latency (e.g., commands 135 ) based the measured execution latency data ( 139 ).
  • a communication channel between the processing device ( 118 ) and a memory sub-system includes a computer network, such as a local area network, a wireless local area network, a wireless personal area network, a cellular communications network, a broadband high-speed always-connected wireless communication connection (e.g., a current or future generation of mobile network link); and the processing device ( 118 ) and the memory sub-system can be configured to communicate with each other using data storage management and usage commands similar to those in NVMe protocol.
  • a memory sub-system in general can have non-volatile storage media.
  • non-volatile storage media include memory cells formed in an integrated circuit and magnetic material coated on rigid disks.
  • Non-volatile storage media can maintain the data/information stored therein without consuming power.
  • Memory cells can be implemented using various memory/storage technologies, such as NAND logic gate, NOR logic gate, phase-change memory (PCM), magnetic memory (MRAM), resistive random-access memory, cross point storage and memory devices (e.g., 3 D XPoint memory).
  • a cross point memory device uses transistor-less memory elements, each of which has a memory cell and a selector that are stacked together as a column.
  • Memory element columns are connected via two perpendicular lays of wires, where one lay is above the memory element columns and the other lay below the memory element columns.
  • Each memory element can be individually selected at a cross point of one wire on each of the two layers.
  • Cross point memory devices are fast and non-volatile and can be used as a unified memory pool for processing and storage.
  • the controller (e.g., 115 ) of a memory sub-system can run firmware to perform operations responsive to the communications from the processing device ( 118 ).
  • Firmware in general is a type of computer program that provides control, monitoring and data manipulation of engineered computing devices.
  • Some embodiments involving the operation of the controller ( 115 ) and/or the data pre-fetcher ( 113 ) can be implemented using computer instructions executed by the controller ( 115 ), such as the firmware of the controller ( 115 ).
  • hardware circuits can be used to implement at least some of the functions.
  • the firmware can be initially stored in the non-volatile storage media, or another non-volatile device, and loaded into the volatile DRAM and/or the in-processor cache memory for execution by the controller ( 115 ).
  • a non-transitory computer storage medium can be used to store instructions of the firmware of a memory sub-system (e.g., 110 ).
  • the instructions When the instructions are executed by the controller ( 115 ) and/or the processing device ( 117 ), the instructions cause the controller ( 115 ) and/or the processing device ( 117 ) to perform a method discussed above.
  • FIG. 6 illustrates an example machine of a computer system ( 200 ) within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.
  • the computer system ( 200 ) can correspond to a host system (e.g., the host system ( 120 ) of FIG. 1 ) that includes, is coupled to, or utilizes a memory sub-system (e.g., the memory sub-system ( 110 ) of FIG. 1 ) or can be used to perform the operations of a data pre-fetcher ( 113 ) (e.g., to execute instructions to perform operations corresponding to the data pre-fetcher ( 113 ) described with reference to FIGS. 1 - 5 ).
  • a host system e.g., the host system ( 120 ) of FIG. 1
  • a memory sub-system e.g., the memory sub-system ( 110 ) of FIG. 1
  • a data pre-fetcher ( 113 ) e.g., to execute
  • the machine can be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, and/or the Internet.
  • the machine can operate in the capacity of a server or a client machine in client-server network environment, as a peer machine in a peer-to-peer (or distributed) network environment, or as a server or a client machine in a cloud computing infrastructure or environment.
  • the machine can be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • PC personal computer
  • PDA Personal Digital Assistant
  • STB set-top box
  • STB set-top box
  • a cellular telephone a web appliance
  • server a server
  • network router a network router
  • switch or bridge or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • machine shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • the example computer system ( 200 ) includes a processing device ( 202 ), a main memory ( 204 ) (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), static random access memory (SRAM), etc.), and a data storage system ( 218 ), which communicate with each other via a bus ( 230 ) (which can include multiple buses).
  • main memory 204
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • RDRAM Rambus DRAM
  • SRAM static random access memory
  • Processing device ( 202 ) represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device can be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processing device ( 202 ) can also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device ( 202 ) is configured to execute instructions ( 226 ) for performing the operations and steps discussed herein.
  • the computer system ( 200 ) can further include a network interface device ( 208 ) to communicate over the network ( 220 ).
  • the data storage system ( 218 ) can include a machine-readable storage medium ( 224 ) (also known as a computer-readable medium) on which is stored one or more sets of instructions ( 226 ) or software embodying any one or more of the methodologies or functions described herein.
  • the instructions ( 226 ) can also reside, completely or at least partially, within the main memory ( 204 ) and/or within the processing device ( 202 ) during execution thereof by the computer system ( 200 ), the main memory ( 204 ) and the processing device ( 202 ) also constituting machine-readable storage media.
  • the machine-readable storage medium ( 224 ), data storage system ( 218 ), and/or main memory ( 204 ) can correspond to the memory sub-system ( 110 ) of FIG. 1 .
  • the instructions ( 226 ) include instructions to implement functionality corresponding to a data pre-fetcher ( 113 ) (e.g., the data pre-fetcher ( 113 ) described with reference to FIGS. 1 - 5 ).
  • a data pre-fetcher e.g., the data pre-fetcher ( 113 ) described with reference to FIGS. 1 - 5 .
  • the machine-readable storage medium ( 224 ) is shown in an example embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media that store the one or more sets of instructions.
  • the term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.
  • the term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
  • the present disclosure also relates to an apparatus for performing the operations herein.
  • This apparatus can be specially constructed for the intended purposes, or it can include a general purpose computer selectively activated or reconfigured by a computer program stored in the computer.
  • a computer program can be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.
  • the present disclosure can be provided as a computer program product, or software, that can include a machine-readable medium having stored thereon instructions, which can be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure.
  • a machine-readable medium includes any mechanism for storing information in a form readable by a machine (e.g., a computer).
  • a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium such as a read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory components, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Memory System Of A Hierarchy Structure (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A data storage system having non-volatile media, a buffer memory, a processing device, and a data pre-fetcher. The data pre-fetcher receives commands to be executed in the data storage system, provides the commands as input to a predictive model, obtains at least one command identified for pre-fetching, as output from the predictive model having the commands as input. Prior to the command being executed in the data storage device, the data pre-fetcher retrieves, from the non-volatile memory, at least a portion of data to be used in execution of the command; and stores the portion of data in the buffer memory. The retrieving and storing the portion of the data can be performed concurrently with the execution of many commands before the execution of the command, to reduce the latency impact of the command on other commands that are executed concurrently with the execution of the command.

Description

    RELATED APPLICATIONS
  • The present application is a continuation application of U.S. patent application Ser. No. 17/088,360, filed Nov. 3, 2020, issued as U.S. Pat. No. 11,740,793 on Aug. 29, 2023, which is a continuation application of U.S. patent application Ser. No. 16/384,618, filed Apr. 15, 2019, issued as U.S. Pat. No. 10,852,949 on Dec. 1, 2020, and entitled “Predictive Data Pre-Fetching in a Data Storage Device”, the entire disclosures of which applications are hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • At least some embodiments disclosed herein relate to memory systems in general, and more particularly, but not limited to predictive data pre-fetching in data storage devices.
  • BACKGROUND
  • A memory sub-system can include one or more memory components that store data. A memory sub-system can be a data storage system, such as a solid-state drive (SSD), or a hard disk drive (HDD). A memory sub-system can be a memory module, such as a dual in-line memory module (DIMM), a small outline DIMM (SO-DIMM), or a non-volatile dual in-line memory module (NVDIMM). The memory components can be, for example, non-volatile memory components and volatile memory components. Examples of memory components include memory integrated circuits. Some memory integrated circuits are volatile and require power to maintain stored data. Some memory integrated circuits are non-volatile and can retain stored data even when not powered. Examples of non-volatile memory include flash memory, Read-Only Memory (ROM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM) and Electronically Erasable Programmable Read-Only Memory (EEPROM) memory, etc. Examples of volatile memory include Dynamic Random-Access Memory (DRAM) and Static Random-Access Memory (SRAM). In general, a host system can utilize a memory sub-system to store data at the memory components and to retrieve data from the memory components.
  • A computer can include a host system and one or more memory sub-systems attached to the host system. The host system can have a central processing unit (CPU) in communication with the one or more memory sub-systems to store and/or retrieve data and instructions. Instructions for a computer can include operating systems, device drivers, and application programs. An operating system manages resources in the computer and provides common services for application programs, such as memory allocation and time sharing of the resources. A device driver operates or controls a particular type of devices in the computer; and the operating system uses the device driver to offer resources and/or services provided by the type of devices. A central processing unit (CPU) of a computer system can run an operating system and device drivers to provide the services and/or resources to application programs. The central processing unit (CPU) can run an application program that uses the services and/or resources. For example, an application program implementing a type of applications of computer systems can instruct the central processing unit (CPU) to store data in the memory components of a memory sub-system and retrieve data from the memory components.
  • A host system can communicate with a memory sub-system in accordance with a pre-defined communication protocol, such as Non-Volatile Memory Host Controller Interface Specification (NVMHCI), also known as NVM Express (NVMe), which specifies the logical device interface protocol for accessing non-volatile storage devices via a Peripheral Component Interconnect Express (PCI Express or PCIe) bus. In accordance with the communication protocol, the host system can send commands of different types to the memory sub-system; and the memory sub-system can execute the commands and provide responses to the commands. Some commands instruct the memory sub-system to store data items at addresses specified in the commands, or to retrieve data items from addresses specified in the commands, such as read commands and write commands. Some commands manage the infrastructure in the memory sub-system and/or administrative tasks, such as commands to manage namespaces, commands to attach namespaces, commands to create input/output submission or completion queues, commands to delete input/output submission or completion queues, commands for firmware management, etc.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
  • FIG. 1 illustrates an example computing system having a memory sub-system in accordance with some embodiments of the present disclosure.
  • FIG. 2 illustrates a system configured to train a predictive model to identify commands that can cause increased latency in the execution of other commands.
  • FIG. 3 illustrates a system having a predictive model to pre-fetch data of commands from non-volatile media to buffer memory.
  • FIG. 4 shows a method to train a predictive model to identify high impact commands.
  • FIG. 5 shows a method to pre-fetch data for high impact commands based on the predictions of a predictive model.
  • FIG. 6 is a block diagram of an example computer system in which embodiments of the present disclosure can operate.
  • DETAILED DESCRIPTION
  • At least some aspects of the present disclosure are directed to predictive pre-fetching data for commands that can increase execution latency of other commands executed concurrently in a data storage device. For example, a predictive model is configured in a data storage device to identify such commands that can cause significant delays in the execution of other commands. The data used by the identified commands can be pre-fetched from non-volatile storage media of the data storage device to buffer memory of the storage device. Pre-fetching the data to the buffer memory can reduce, minimize and/or eliminate the delays caused by the identified commands in the execution of other commands. The predictive model can be established by applying machine learning techniques on a training set of commands, using the execution latency data of the commands in the training set.
  • In general, infrastructure commands can be used to manage, configure, administrate, or report on the status of, the infrastructure in a data storage system. Certain infrastructure command can often cause unexpected increases in latency in the execution of other commands that not related to such commands. Such infrastructure commands can have high latency. When certain resources in the data storage system are used for the execution of the high latency infrastructure commands, the resources become unavailable for the execution of other commands, causing apparently random delays in the execution of other commands that may use the resources.
  • In at least some embodiments disclosed herein, a predictive model is configured to predict infrastructure commands that are most likely to increase latency of other commands. The prediction is based on some characteristics of commands that are currently queued for processing in the data storage system. The prediction allows the data storage system to pre-fetch data from non-volatile storage media to buffer memory for the predicted infrastructure commands. After the pre-fetching of the data for the predicted commands, the likelihood of the predicted infrastructure commands using resources during their execution to access the non-volatile storage media and make them unavailable for execution of other commands is reduced. Therefore, the impact of the execution of the infrastructure commands on other commands can be reduced, minimized, and/or eliminated.
  • For example, a supervised machine learning technique can be applied to a group of commands in a training data set. The training data set can have a mixed set of infrastructure commands of different types and other commands of different types. The training set of commands can represent an example of workload for a data storage device/system, or a real workload during a period of service. Some parameters of the commands in the training set can be used as input parameters to the predictive model, such as the types of commands, the regions in the storage system being accessed by the commands, etc. The measured latency in the execution of the commands in the training set can be used to identify infrastructure commands that have high impact on the execution of other commands and infrastructure commands that do not have high impact on the execution of other commands. For example, high impact commands cause more than a threshold amount of increased latency in the execution of other commands; and low impact commands cause no more than the threshold amount of increase in latency of other commands. The supervised machine learning technique can be used to train the predictive model by adjusting the parameters in the predictive model to minimize the differences between the classification/prediction of the infrastructure commands identified by the predictive model and the classification/prediction of infrastructure commands identified from the latency data in the training data set.
  • For example, the predictive model can be trained to classify a sequence of commands. Each infrastructure commands in the sequence can be classified as either having potential for high impact or not having the potential for the commands in the sequence.
  • For example, the predictive model can be trained to predict, for a sequence of commands, latency increases caused by an infrastructure command in the sequence in the execution of other commands in the sequence. The predicted increases in execution latency can be compared with a threshold to classify the infrastructure command as either a high impact command, or a low impact command.
  • For example, the predictive model can be trained to predict, for a sequence of commands, an infrastructure command that will enter the data storage device/system to cause more than a threshold amount of increase in the execution latency of some of the commands in the sequence. The prediction can be made based on the pattern of infrastructure commands and other commands.
  • For example, the predictive model can be based on statistical correlation using logistic regression and/or an artificial neural network.
  • For example, different sets of training sets can be used for data storage systems having different structures and different configurations.
  • A data storage system of a particular design can be initially configured with a predictive model trained according to a typical workload of commands for the design. Subsequently, the predictive model can be further trained and/or updated for the typical workload of the data storage system in a computer system and/or based on a recent real-time workload of the data storage system.
  • Optionally, the data storage system can be further configured to monitor differences between the real-time predictions made using the predictive model and subsequent measurement of increased latency in command executions to further train the predictive model periodically to adapt its predictive capability in accordance with the real-time workload.
  • During the usage of the data storage system that has a predictive model, the incoming commands to be executed by the data storage system can be provided as input to the predictive model to identify a table of commands scheduled/suggested for pre-fetching.
  • For example, the predictive model can be used to process a predetermined number of commands pending in one or more queues for execution (e.g., 1000 commands) or once every predetermined time period (e.g., 10 ms). During the use of the predictive model, the commands pending for execution by the data storage system can be fed into the predictive model to identify a table of high impact commands for pre-fetching. The data storage system is configured to pre-fetch the data that is likely to be used by the high impact commands in the table before the actual execution of the high impact commands, such that impact of the execution of the high impact commands is distributed to a large number of other commands. Further, the pre-fetching can be configured to use spare resources that are not used/required for the execution of the other commands, which are executed before the high impact commands; and such an arrangement can reduce the overall impact of the high impact commands on other commands.
  • In some instances, the predictive model can predict an infrastructure command before the host system sends the infrastructure command to the data storage system and/or before the infrastructure command is retrieved from a queue for execution. The data storage system can use a flag to indicate whether or not the pre-fetched data for the predicted infrastructure command is valid.
  • In general, a memory sub-system can also be referred to as a “memory device”. An example of a memory sub-system is a memory module that is connected to a central processing unit (CPU) via a memory bus. Examples of memory modules include a dual in-line memory module (DIMM), a small outline DIMM (SO-DIMM), a non-volatile dual in-line memory module (NVDIMM), etc.
  • Another example of a memory sub-system is a data storage device/system that is connected to the central processing unit (CPU) via a peripheral interconnect (e.g., an input/output bus, a storage area network). Examples of storage devices include a solid-state drive (SSD), a flash drive, a universal serial bus (USB) flash drive, and a hard disk drive (HDD).
  • In some embodiments, the memory sub-system is a hybrid memory/storage sub-system that provides both memory functions and storage functions. In general, a host system can utilize a memory sub-system that includes one or more memory components. The host system can provide data to be stored at the memory sub-system and can request data to be retrieved from the memory sub-system.
  • FIG. 1 illustrates an example computing system having a memory sub-system (110) in accordance with some embodiments of the present disclosure.
  • The memory sub-system (110) can include non-volatile media (109) that includes memory components. In general, memory components can be volatile memory components, non-volatile memory components, or a combination of such. In some embodiments, the memory sub-system (110) is a data storage system. An example of a data storage system is an SSD. In other embodiments, the memory sub-system (110) is a memory module. Examples of a memory module includes a DIMM, NVDIMM, and NVDIMM-P. In some embodiments, the memory sub-system (110) is a hybrid memory/storage sub-system.
  • In general, the computing environment can include a host system (120) that uses the memory sub-system (110). For example, the host system (120) can write data to the memory sub-system (110) and read data from the memory sub-system (110).
  • The host system (120) can be part of a computing device, such as a desktop computer, laptop computer, network server, mobile device, or such computing device that includes a memory and a processing device. The host system (120) can include or be coupled to the memory sub-system (110) so that the host system (120) can read data from or write data to the memory sub-system (110). The host system (120) can be coupled to the memory sub-system (110) via a physical host interface. As used herein, “coupled to” generally refers to a connection between components, which can be an indirect communicative connection or direct communicative connection (e.g., without intervening components), whether wired or wireless, including connections such as electrical, optical, magnetic, etc. Examples of a physical host interface include, but are not limited to, a serial advanced technology attachment (SATA) interface, a peripheral component interconnect express (PCIe) interface, universal serial bus (USB) interface, Fibre Channel, Serial Attached SCSI (SAS), a double data rate (DDR) memory bus, etc. The physical host interface can be used to transmit data and/or commands between the host system (120) and the memory sub-system (110). The host system (120) can further utilize an NVM Express (NVMe) interface to access the non-volatile media (109) when the memory sub-system (110) is coupled with the host system (120) by the PCIe interface. The physical host interface can provide an interface for passing control, address, data, and other signals between the memory sub-system (110) and the host system (120). FIG. 1 illustrates a memory sub-system (110) as an example. In general, the host system (120) can access multiple memory sub-systems via a same communication connection, multiple separate communication connections, and/or a combination of communication connections.
  • The host system (120) includes a processing device (118) and a controller (116). The processing device (118) of the host system (120) can be, for example, a microprocessor, a central processing unit (CPU), a processing core of a processor, an execution unit, etc. In some instances, the controller (116) can be referred to as a memory controller, a memory management unit, and/or an initiator. In one example, the controller (116) controls the communications over a bus coupled between the host system (120) and the memory sub-system (110).
  • In general, the controller (116) can send commands or requests to the memory sub-system (110) for desired access to non-volatile media (109). The controller (116) can further include interface circuitry to communicate with the memory sub-system (110). The interface circuitry can convert responses received from memory sub-system (110) into information for the host system (120).
  • The controller (116) of the host system (120) can communicate with controller (115) of the memory sub-system (110) to perform operations such as reading data, writing data, or erasing data in the non-volatile media (109) and other such operations. In some instances, the controller (116) is integrated within the same package of the processing device (118). In other instances, the controller (116) is separate from the package of the processing device (118). The controller (116) and/or the processing device (118) can include hardware such as one or more integrated circuits and/or discrete components, a buffer memory, a cache memory, or a combination thereof. The controller (116) and/or the processing device (118) can be a microcontroller, special purpose logic circuitry (e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), or another suitable processor.
  • The non-volatile media (109) can include any combination of the different types of non-volatile memory components. In some instances, volatile memory components can also be used. An example of non-volatile memory components includes a negative-and (NAND) type flash memory. A memory component in the media (109) can include one or more arrays of memory cells such as single level cells (SLCs) or multi-level cells (MLCs) (e.g., triple level cells (TLCs) or quad-level cells (QLCs)). In some embodiments, a particular memory component can include both an SLC portion and an MLC portion of memory cells. Each of the memory cells can store one or more bits of data (e.g., data blocks) used by the host system (120). Although non-volatile memory components such as NAND type flash memory are described, the memory components used in the non-volatile media (109) can be based on any other type of memory. Further, a volatile memory can be used. In some embodiments, the memory components in the media (109) can include, but are not limited to, random access memory (RAM), read-only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), phase change memory (PCM), magneto random access memory (MRAM), Spin Transfer Torque (STT)-MRAM, ferroelectric random-access memory (FeTRAM), ferroelectric RAM (FeRAM), conductive bridging RAM (CBRAM), resistive random access memory (RRAM), oxide based RRAM (OxRAM), negative-or (NOR) flash memory, electrically erasable programmable read-only memory (EEPROM), nanowire-based non-volatile memory, memory that incorporates memristor technology, or a cross-point array of non-volatile memory cells, or any combinations thereof. A cross-point array of non-volatile memory can perform bit storage based on a change of bulk resistance, in conjunction with a stackable cross-gridded data access array. Additionally, in contrast to many flash-based memories, cross-point non-volatile memory can perform a write in-place operation, where a non-volatile memory cell can be programmed without the non-volatile memory cell being previously erased. Furthermore, the memory cells of the memory components in the media (109) can be grouped as memory pages or data blocks that can refer to a unit of the memory component used to store data.
  • The controller (115) of the memory sub-system (110) can communicate with the memory components in the media (109) to perform operations such as reading data, writing data, or erasing data at the memory components and other such operations (e.g., in response to commands scheduled on a command bus by controller (116)). The controller (115) can include hardware such as one or more integrated circuits and/or discrete components, a buffer memory, or a combination thereof. The controller (115) can be a microcontroller, special purpose logic circuitry (e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), or another suitable processor. The controller (115) can include a processing device (117) (e.g., processor) configured to execute instructions stored in local memory (119). In the illustrated example, the buffer memory (119) of the controller (115) includes an embedded memory configured to store instructions for performing various processes, operations, logic flows, and routines that control operation of the memory sub-system (110), including handling communications between the memory sub-system (110) and the host system (120). In some embodiments, the controller (115) can include memory registers storing memory pointers, fetched data, etc. The controller (115) can also include read-only memory (ROM) for storing micro-code. While the example memory sub-system (110) in FIG. 1 has been illustrated as including the controller (115), in another embodiment of the present disclosure, a memory sub-system (110) may not include a controller (115), and can instead rely upon external control (e.g., provided by an external host, or by a processor or controller separate from the memory sub-system).
  • In general, the controller (115) can receive commands or operations from the host system (120) and can convert the commands or operations into instructions or appropriate commands to achieve the desired access to the memory components in the media (109). The controller (115) can be responsible for other operations such as wear leveling operations, garbage collection operations, error detection and error-correcting code (ECC) operations, encryption operations, caching operations, and address translations between a logical block address and a physical block address that are associated with the memory components in the media (109). The controller (115) can further include host interface circuitry to communicate with the host system (120) via the physical host interface. The host interface circuitry can convert the commands received from the host system into command instructions to access the memory components in the media (109) as well as convert responses associated with the memory components into information for the host system (120).
  • The memory sub-system (110) can also include additional circuitry or components that are not illustrated. In some embodiments, the memory sub-system (110) can include a cache or buffer (e.g., DRAM) and address circuitry (e.g., a row decoder and a column decoder) that can receive an address from the controller (115) and decode the address to access the memory components of the media (109).
  • The computing system includes a data pre-fetcher (113) in the memory sub-system (110) that can retrieve data from the non-volatile media (109) to the buffer memory (119) for predicted high impact commands. The predicted high impact commands can cause more than a threshold amount of increase in execution latency of other commands when the data is not pre-fetched to the buffer memory (119) before the execution of the high impact commands.
  • In some embodiments, the controller (115) in the memory sub-system (110) includes at least a portion of the data pre-fetcher (113). In other embodiments, or in combination, the controller (116) and/or the processing device (118) in the host system (120) includes at least a portion of the data pre-fetcher (113). For example, the controller (115), the controller (116), and/or the processing device (118) can include logic circuitry implementing the data pre-fetcher (113). For example, the controller (115), or the processing device (118) (processor) of the host system (120), can be configured to execute instructions stored in memory for performing the operations of the data pre-fetcher (113) described herein. In some embodiments, the data pre-fetcher (113) is implemented in an integrated circuit chip disposed in the memory sub-system (110). In other embodiments, the data pre-fetcher (113) is part of an operating system of the host system (120), a device driver, or an application.
  • The memory sub-system (110) can have a queue (123) for commands of one category, and another queue (125) for commands of another category. For example, the queue (123) can be configured for typical input/output commands, such as read commands and write commands. The queue (125) can be configured for infrastructure commands that are not typical input/output commands. Some of the infrastructure commands can be high impact commands that cause more than a threshold amount of latency increase in the execution of certain commands in the queue (123). The memory sub-system (110) can include one or more completion queue (121) for the reporting, to the host system (120), the results of the executions of commands in the command queues (123 and 125). In some implementations, one or more queues can be created in response to commands from the host system (120). Thus, the memory sub-system (110) in general is not limited to a particular number of queues illustrated in FIG. 1 .
  • The data pre-fetcher (113) is configured to predict/classify some of the commands of the category in the queue (125) as high impact commands. Before a high impact command is retrieved from the command queue (125) for execution, the data pre-fetcher (113) is configured to load data that may be used by the high impact command from the non-volatile media (109) to the buffer memory (119). The loading of the data in preparation of the execution of the high impact command can be performed to use resources that are not used in the execution of commands from the queue (123) to improve resource utilization and reduce the overall impact of the high impact command. Alternatively, or in combination, the loading of the data in preparation of the execution of the high impact command can be performed to spread its impact among the execution of more commands from the queue (123) such that its impact is not concentrated on one or more commands that are executed concurrently with the execution of the high impact command.
  • FIG. 1 illustrates an example where high impact commands are known to be in a specific queue (e.g., 125). In other implementations, different categories of commands can be mixed in a same queue. For example, an infrastructure command can be placed in a same queue of non-infrastructure commands in some systems; and the techniques of the present disclosure can also be used to predict the high impact commands and pre-fetch data to the buffer memory for the high impact commands. Thus, the application of the techniques of the present disclosure is not limited to a specific command queue structure.
  • FIG. 2 illustrates a system configured to train a predictive model (131) to identify commands that can cause increased latency in the execution of other commands.
  • For example, the predictive model (131) of FIG. 2 can be configured in the data pre-fetcher (113) in a memory sub-system (110) of FIG. 1 .
  • In FIG. 2 , a training set of commands (137) is used capture the patterns of latency impacts of different types of commands on each other. The training set of commands (137) can be an example of commands representing a typical workload for a memory sub-system (110), or the actual workload of a memory sub-system (110) during a particular period of usage in a computer system of FIG. 1 .
  • During the execution of the commands in the training set in the memory sub-system (110) (e.g., without using the data pre-fetcher (113)), the execution latency data (139) of the commands in the training set is measured. The execution latency data (139) can be used to identify high impact commands (135) that cause increased latency.
  • For example, the average execution latency of commands of a specific type can be computed from the execution latency data (139). For each respective command in the training set, the increased latency for the execution of the respective command can be computed from the difference between the actual execution latency of the command and the average execution latency of commands that are of the same type as the command. When the latency increase is above a threshold, the command is considered to have received high impact. In a time window of the execution of the command that has received high impact in latency, other commands being executed in the time window and/or concurrently with the execution of the command can be examined to identify a high impact command that causes the high impact. For example, an infrastructure command executed in the time window can be identified as the source of the high impact; and thus, the infrastructure command can be identified as a high impact command. For example, a command of a particular category and executed in the time window can be identified as the source of the high impact; and thus, the command can be identified as a high impact command. For example, a command of a type with an average execution latency above a threshold and executed in the time window can be identified as the source of the high impact; and thus, the command can be identified as a high impact command.
  • In FIG. 2 , the predictive model (131) is configured to identify high impact commands (e.g., commands 141) that are predicted to cause increased latency from the training set of commands. The predictive model (131) computes the predictions based on parameters of the commands in the training set and/or the order in which the commands appear in the training set. The parameters can include the types of the commands in the training set and/or the address areas/regions accessed by the commands. Supervised machine learning (133) is applied to the predictive model (131) to reduce or minimize the differences between the high impact commands (135) identified from the execution latency data (139) and the high impact commands (e.g., commands 141) predicted by the predictive model (131).
  • After the training of the predictive model (131) using a technique of supervised machine learning (133), the predictive model (131) can be used in a data pre-fetcher (113) of a memory sub-system (110) of FIG. 1 and/or a system as illustrated in FIG. 3 .
  • FIG. 3 illustrates a system having a predictive model (131) to pre-fetch data of commands from non-volatile media (109) to buffer memory (119). For example, the system of FIG. 3 can be the memory sub-system (110) of FIG. 1 .
  • In FIG. 3 , commands in one or more queues (e.g., 123 and/or 125) are provided as inputs to the predictive model (131) to generate predictions of high impact commands (141) that can cause increased latency. A data pre-fetcher (113) is configured to retrieve data from non-volatile media (109) to buffer memory (119) prior to the actual execution of the high impact commands (141) predicted by the predictive model (131).
  • Typically, accessing the non-volatile media (109) for an amount of data takes a longer time period than accessing the buffer memory (119). Further, the system can have less resources for accessing the non-volatile media (109) for concurrently executing multiple commands than for accessing the buffer memory (119). Thus, when the data to be used by a high impact command is pre-fetched into the buffer memory (119), its impact on the concurrent execution of other commands can be reduced.
  • FIG. 4 shows a method to train a predictive model to identify commands that have a high probability of causing significant delay in the execution of other commands. For example, the method of FIG. 4 can be implemented in a computer system of FIG. 1 using the technique discussed in connection with FIG. 2 .
  • At block 151, first commands (e.g., 137) are executed in a data storage system.
  • The first commands can be a sample of commands that are typical in data storage systems having the same or similar structure as the data storage system. Optionally, the first commands can be the real-life workload of the data storage system in a period of time.
  • At block 153, the data storage system (or a host connected to the data storage system) measures the execution latency of the first commands. For example, the execution latency of a command can be measured as the time duration between the command being retrieved from a queue for execution and the completion of execution of the command in the data storage system. A typical command retrieves data from an address specified in the command, or writes data at an address specified in the command.
  • At block 155, a computing device is used to identify second commands (e.g., 135) that cause more than a threshold amount increase in execution latency in some of the first commands. The computing device can be a computer that is separate from the data storage system and/or the host system of the data storage system, or the host system of the data storage system, or the controller of the data storage system.
  • For example, the second commands can be identified by computing the average latency for different command types, identifying impacted commands that have execution latency exceeding the averages of their respective command types by more than a threshold amount, and identifying the second commands that have been executed concurrently with the impacted commands and that have a predetermined characteristic. For example, the predetermined characteristic can be a pre-defined command category (e.g., infrastructure commands), commands of a type having an average latency that is above a threshold, and/or other attributes.
  • At block 157, the computing device identifies third commands (e.g., 141) using a predictive model (131) based on the first commands.
  • At block 159, the computing device applies supervised machine learning (133) to the predictive model (131) to reduce differences between the second commands (e.g., 135) and the third commands (141).
  • FIG. 5 shows a method to pre-fetch data for high impact commands based on the predictions of a predictive model (e.g., 131), which can be trained using the method of FIG. 4 .
  • For example, the method of FIG. 5 can be implemented in a computer system of FIG. 1 using the technique discussed in connection with FIG. 3 .
  • At block 171, a data pre-fetcher (113) of a data storage system (e.g., 110) receives identification of commands that are queued for execution in the data storage system.
  • At block 173, the data pre-fetcher (113) provides the commands as input to the predictive model (131).
  • At block 175, the data pre-fetcher (113) identifies, using the predictive model (131) and based on the commands as input, at least one command for pre-fetching.
  • Prior to the command being retrieved from a queue for execution in the data storage system, the data pre-fetcher (113) retrieves at least a portion of data to be used in execution of the command at block 177 and store the retrieved portion of data in a buffer memory (119) of the data storage system at block 179.
  • Concurrently, a controller (115) of the data storage system retrieves some of the queued commands at block 181 and executes the retrieved commands at block 183.
  • Preferably, the retrieving (177) and storing (179) of the portion of data for the pre-fetched command are performed using resources that are not required/used in the concurrently execution (183) of the commands. such an arrangement reduces the overall impact of the command on other commands as a whole. Alternatively, or in combination, the impact of the retrieving (177) and storing (179) of the portion of data for the pre-fetched command is distributed among the execution (183) of many commands such that the impact on each individual command is reduced and small.
  • Subsequently, the controller (115) of the data storage system retrieves the command from a queue at block 185 and executes the command using at least the portion of data in the buffer memory at block 187.
  • Since at least the portion of data is in the buffer memory, the execution of the command has less impact on the execution latency of other commands that are executed concurrently with the execution of the command.
  • Optionally, the data pre-fetcher (113) can include the supervised machine learning (133) functionality illustrated in FIG. 2 and/or discussed in FIG. 4 . For example, the data pre-fetcher (113) can measure the execution latency (139) of commands, identify commands (135) causing increased latency, and use the supervised machine learning (133) to minimize the number of commands that are predicted to not cause increased latency (e.g., commands 141) but are found to have caused increased latency (e.g., commands 135) based the measured execution latency data (139).
  • In some implementations, a communication channel between the processing device (118) and a memory sub-system includes a computer network, such as a local area network, a wireless local area network, a wireless personal area network, a cellular communications network, a broadband high-speed always-connected wireless communication connection (e.g., a current or future generation of mobile network link); and the processing device (118) and the memory sub-system can be configured to communicate with each other using data storage management and usage commands similar to those in NVMe protocol.
  • A memory sub-system in general can have non-volatile storage media. Examples of non-volatile storage media include memory cells formed in an integrated circuit and magnetic material coated on rigid disks. Non-volatile storage media can maintain the data/information stored therein without consuming power. Memory cells can be implemented using various memory/storage technologies, such as NAND logic gate, NOR logic gate, phase-change memory (PCM), magnetic memory (MRAM), resistive random-access memory, cross point storage and memory devices (e.g., 3D XPoint memory). A cross point memory device uses transistor-less memory elements, each of which has a memory cell and a selector that are stacked together as a column. Memory element columns are connected via two perpendicular lays of wires, where one lay is above the memory element columns and the other lay below the memory element columns. Each memory element can be individually selected at a cross point of one wire on each of the two layers. Cross point memory devices are fast and non-volatile and can be used as a unified memory pool for processing and storage.
  • The controller (e.g., 115) of a memory sub-system (e.g., 110) can run firmware to perform operations responsive to the communications from the processing device (118). Firmware in general is a type of computer program that provides control, monitoring and data manipulation of engineered computing devices.
  • Some embodiments involving the operation of the controller (115) and/or the data pre-fetcher (113) can be implemented using computer instructions executed by the controller (115), such as the firmware of the controller (115). In some instances, hardware circuits can be used to implement at least some of the functions. The firmware can be initially stored in the non-volatile storage media, or another non-volatile device, and loaded into the volatile DRAM and/or the in-processor cache memory for execution by the controller (115).
  • A non-transitory computer storage medium can be used to store instructions of the firmware of a memory sub-system (e.g., 110). When the instructions are executed by the controller (115) and/or the processing device (117), the instructions cause the controller (115) and/or the processing device (117) to perform a method discussed above.
  • FIG. 6 illustrates an example machine of a computer system (200) within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed. In some embodiments, the computer system (200) can correspond to a host system (e.g., the host system (120) of FIG. 1 ) that includes, is coupled to, or utilizes a memory sub-system (e.g., the memory sub-system (110) of FIG. 1 ) or can be used to perform the operations of a data pre-fetcher (113) (e.g., to execute instructions to perform operations corresponding to the data pre-fetcher (113) described with reference to FIGS. 1-5 ). In alternative embodiments, the machine can be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, and/or the Internet. The machine can operate in the capacity of a server or a client machine in client-server network environment, as a peer machine in a peer-to-peer (or distributed) network environment, or as a server or a client machine in a cloud computing infrastructure or environment.
  • The machine can be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • The example computer system (200) includes a processing device (202), a main memory (204) (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), static random access memory (SRAM), etc.), and a data storage system (218), which communicate with each other via a bus (230) (which can include multiple buses).
  • Processing device (202) represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device can be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processing device (202) can also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device (202) is configured to execute instructions (226) for performing the operations and steps discussed herein. The computer system (200) can further include a network interface device (208) to communicate over the network (220).
  • The data storage system (218) can include a machine-readable storage medium (224) (also known as a computer-readable medium) on which is stored one or more sets of instructions (226) or software embodying any one or more of the methodologies or functions described herein. The instructions (226) can also reside, completely or at least partially, within the main memory (204) and/or within the processing device (202) during execution thereof by the computer system (200), the main memory (204) and the processing device (202) also constituting machine-readable storage media. The machine-readable storage medium (224), data storage system (218), and/or main memory (204) can correspond to the memory sub-system (110) of FIG. 1 .
  • In one embodiment, the instructions (226) include instructions to implement functionality corresponding to a data pre-fetcher (113) (e.g., the data pre-fetcher (113) described with reference to FIGS. 1-5 ). While the machine-readable storage medium (224) is shown in an example embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
  • Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
  • It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. The present disclosure can refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage systems.
  • The present disclosure also relates to an apparatus for performing the operations herein. This apparatus can be specially constructed for the intended purposes, or it can include a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program can be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.
  • The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems can be used with programs in accordance with the teachings herein, or it can prove convenient to construct a more specialized apparatus to perform the method. The structure for a variety of these systems will appear as set forth in the description below. In addition, the present disclosure is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages can be used to implement the teachings of the disclosure as described herein.
  • The present disclosure can be provided as a computer program product, or software, that can include a machine-readable medium having stored thereon instructions, which can be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A machine-readable medium includes any mechanism for storing information in a form readable by a machine (e.g., a computer). In some embodiments, a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium such as a read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory components, etc.
  • In this description, various functions and operations are described as being performed by or caused by computer instructions to simplify description. However, those skilled in the art will recognize what is meant by such expressions is that the functions result from execution of the computer instructions by one or more controllers or processors, such as a microprocessor. Alternatively, or in combination, the functions and operations can be implemented using special purpose circuitry, with or without software instructions, such as using Application-Specific Integrated Circuit (ASIC) or Field-Programmable Gate Array (FPGA). Embodiments can be implemented using hardwired circuitry without software instructions, or in combination with software instructions. Thus, the techniques are limited neither to any specific combination of hardware circuitry and software, nor to any particular source for the instructions executed by the data processing system.
  • In the foregoing specification, embodiments of the disclosure have been described with reference to specific example embodiments thereof. It will be evident that various modifications can be made thereto without departing from the broader spirit and scope of embodiments of the disclosure as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

Claims (20)

What is claimed is:
1. A data storage device, comprising:
a non-volatile memory; and
a processing device communicatively linked to the non-volatile memory, and configured to:
execute at least one first command in the data storage device;
measure an execution latency of the at least one first command;
identify at least one second command that causes greater than a threshold amount of increase in the execution latency in the at least one first command;
determine, by utilizing a predictive model, at least one third command based on the at least one first command; and
apply supervised machine learning to the predictive model to reduce a difference between the at least one second command and the at least one third command.
2. The data storage device of claim 1, wherein the processing device is further configured to:
identify the at least one second command by computing an average latency for different command types.
3. The data storage device of claim 1, wherein the processing device is further configured to:
identify the at least one second command based on the at least one second command having a predetermined characteristic associated with a predefined command category.
4. The data storage device of claim 1, wherein the processing device is further configured to:
train the predictive model to identify the at least one second command that causes the greater than the threshold amount of increase in the execution latency in the at least on first command.
5. The data storage device of claim 1, wherein the processing device is further configured to:
measure the execution latency of the at least one first command based on a time duration between the at least one first command being retrieved from a queue for execution and completion of execution of the at least one first command in a data storage system associated with the data storage device.
6. The data storage device of claim 1, wherein the processing device is further configured to:
retrieve data from an address specified in the at least one first command based on execution of the at least one first command.
7. The data storage device of claim 1, wherein the processing device is further configured to:
train the predictive model by adjusting at least one parameter in the predictive model to reduce a difference between a first prediction associated with identifying the at least one second command and a second prediction associated with the at least one third command identified from latency data in a training data set.
8. The data storage device of claim 1, wherein the processing device is further configured to:
classify the at least one second command as a high impact command or a low impact command after identifying the at least one second command that causes greater than the threshold amount of increase in the execution latency.
9. The data storage device of claim 1, wherein the processing device is further configured to:
capture at least one pattern of latency impacts of different types of commands on other commands by utilizing a training set of commands that represent a workload of a data storage system associated with the data storage device.
10. The data storage device of claim 1, wherein the processing device is further configured to:
load data in preparation for execution of the at least one first command in a manner to spread latency impact of the at least one first command among one or more other commands.
11. The data storage device of claim 1, wherein the processing device is further configured to:
identify the at least one second command based on a determination that that the at least one second command has been executed concurrently with the at least one the first command.
12. The data storage device of claim 1, wherein the processing device is further configured to:
provide the at least one first command as an input to the predictive model to facilitate generation of a prediction associated with the at least one third command.
13. A method, comprising:
receiving, by a processing device of a data storage device, an identification of a plurality of commands in a queue for execution in a data storage system;
providing, by the processing device of the data storage device, the plurality of commands as inputs to a predictive model;
identifying, by the processing device and the predictive model, at least one command of the plurality of commands for pre-fetching based on using the inputs;
retrieving, by the processing device, data to be used in execution of the at least one command; and
executing, by the processing device, the at least one command by utilizing the data.
14. The method of claim 13, further comprising generating, by utilizing the predictive model, a prediction associate with the at least one command for pre-fetching.
15. The method of claim 13, further comprising computing an average execution latency of different types of commands of the plurality of commands.
16. The method of claim 13, further comprising storing the data to be used in execution of the at least one command in a buffer memory of the data storage device.
17. The method of claim 13, further comprising measuring an execution latency of the at least one command based on a time duration between the at least first command being retrieved from the queue for execution and completion of execution of the at least one command.
18. The method of claim 13, further comprising training the predictive model using the inputs.
19. The method of claim 13, further comprising retrieving the at least one command from the queue for execution after retrieving the data.
20. A system, comprising:
a data storage device comprising;
a memory; and
a processing device communicatively linked to the memory, and configured to:
identify at least one first command queued for execution in a data storage device of the system;
determine an execution latency of the at least one first command associated with execution of the at least one first command;
determine at least one second command that having an impact on the execution latency associated with the at least one first command;
determine, by utilizing a predictive model, at least one third command based on the at least one first command;
reducing a difference between the at least one second command and the at least one third command; and
train the predictive model based on determining the at least one third command.
US18/454,743 2019-04-15 2023-08-23 Predictive data pre-fetching in a data storage device Pending US20230393743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/454,743 US20230393743A1 (en) 2019-04-15 2023-08-23 Predictive data pre-fetching in a data storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/384,618 US10852949B2 (en) 2019-04-15 2019-04-15 Predictive data pre-fetching in a data storage device
US17/088,360 US11740793B2 (en) 2019-04-15 2020-11-03 Predictive data pre-fetching in a data storage device
US18/454,743 US20230393743A1 (en) 2019-04-15 2023-08-23 Predictive data pre-fetching in a data storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/088,360 Continuation US11740793B2 (en) 2019-04-15 2020-11-03 Predictive data pre-fetching in a data storage device

Publications (1)

Publication Number Publication Date
US20230393743A1 true US20230393743A1 (en) 2023-12-07

Family

ID=72749059

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/384,618 Active 2039-05-13 US10852949B2 (en) 2019-04-15 2019-04-15 Predictive data pre-fetching in a data storage device
US17/088,360 Active US11740793B2 (en) 2019-04-15 2020-11-03 Predictive data pre-fetching in a data storage device
US18/454,743 Pending US20230393743A1 (en) 2019-04-15 2023-08-23 Predictive data pre-fetching in a data storage device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/384,618 Active 2039-05-13 US10852949B2 (en) 2019-04-15 2019-04-15 Predictive data pre-fetching in a data storage device
US17/088,360 Active US11740793B2 (en) 2019-04-15 2020-11-03 Predictive data pre-fetching in a data storage device

Country Status (4)

Country Link
US (3) US10852949B2 (en)
CN (1) CN113692579B (en)
DE (1) DE112020001937T5 (en)
WO (1) WO2020214276A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12135876B2 (en) 2018-10-17 2024-11-05 Micron Technology, Inc. Memory systems having controllers embedded in packages of integrated circuit memory

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11099789B2 (en) 2018-02-05 2021-08-24 Micron Technology, Inc. Remote direct memory access in multi-tier memory systems
US10782908B2 (en) 2018-02-05 2020-09-22 Micron Technology, Inc. Predictive data orchestration in multi-tier memory systems
US11416395B2 (en) 2018-02-05 2022-08-16 Micron Technology, Inc. Memory virtualization for accessing heterogeneous memory components
US10880401B2 (en) 2018-02-12 2020-12-29 Micron Technology, Inc. Optimization of data access and communication in memory systems
US10877892B2 (en) 2018-07-11 2020-12-29 Micron Technology, Inc. Predictive paging to accelerate memory access
US10852949B2 (en) 2019-04-15 2020-12-01 Micron Technology, Inc. Predictive data pre-fetching in a data storage device
US12112040B2 (en) * 2021-08-16 2024-10-08 International Business Machines Corporation Data movement intimation using input/output (I/O) queue management
US20230057633A1 (en) * 2021-08-20 2023-02-23 Samsung Electronics Co., Ltd. Systems, methods, and apparatus for transferring data between interconnected devices
CN114518849B (en) * 2022-02-18 2023-01-10 深圳大学 Data storage method and device and electronic equipment

Family Cites Families (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230508A (en) 1990-10-29 1992-08-19 Internatl Business Mach Corp <Ibm> Apparatus and method for controlling electric power with page arrangment control
EP0769171A1 (en) 1995-05-05 1997-04-23 Silicon Graphics, Inc. Page migration in a non-uniform memory access (numa) system
US6148377A (en) 1996-11-22 2000-11-14 Mangosoft Corporation Shared memory computer networks
US5909540A (en) 1996-11-22 1999-06-01 Mangosoft Corporation System and method for providing highly available data storage using globally addressable memory
US6026475A (en) 1997-11-26 2000-02-15 Digital Equipment Corporation Method for dynamically remapping a virtual address to a physical address to maintain an even distribution of cache page addresses in a virtual address space
US6279138B1 (en) 1998-08-04 2001-08-21 International Business Machines Corporation System for changing the parity structure of a raid array
US6230260B1 (en) 1998-09-01 2001-05-08 International Business Machines Corporation Circuit arrangement and method of speculative instruction execution utilizing instruction history caching
US6247097B1 (en) 1999-01-22 2001-06-12 International Business Machines Corporation Aligned instruction cache handling of instruction fetches across multiple predicted branch instructions
US6473845B1 (en) 2000-09-28 2002-10-29 Hewlett-Packard Company System and method for dynamically updating memory address mappings
US6515917B2 (en) 2001-04-10 2003-02-04 International Business Machines Corporation Digital-to-analog converter (dac) for dynamic adjustment of off-chip driver pull-up and pull down impedance by providing a variable reference voltage to high frequency receiver and driver circuits for commercial memory
US6646912B2 (en) 2001-06-05 2003-11-11 Hewlett-Packard Development Company, Lp. Non-volatile memory
US7437438B2 (en) 2001-12-27 2008-10-14 Hewlett-Packard Development Company, L.P. System and method for energy efficient data prefetching
WO2004017220A1 (en) 2002-08-19 2004-02-26 Broadcom Corporation One-shot rdma
US20040186960A1 (en) 2003-03-20 2004-09-23 Sun Microsystems, Inc. Computer processor data prefetch unit
CN100465955C (en) 2004-10-12 2009-03-04 国际商业机器公司 Method, system, and computer program product for caching web content
JP4956922B2 (en) 2004-10-27 2012-06-20 ソニー株式会社 Storage device
US20060095679A1 (en) 2004-10-28 2006-05-04 Edirisooriya Samantha J Method and apparatus for pushing data into a processor cache
US7376681B1 (en) 2004-12-23 2008-05-20 Emc Corporation Methods and apparatus for accessing information in a hierarchical file system
US7334076B2 (en) 2005-03-08 2008-02-19 Microsoft Corporation Method and system for a guest physical address virtualization in a virtual machine environment
US7571295B2 (en) 2005-08-04 2009-08-04 Intel Corporation Memory manager for heterogeneous memory control
US7631245B2 (en) 2005-09-26 2009-12-08 Sandisk Il Ltd. NAND flash memory controller exporting a NAND interface
US8291295B2 (en) 2005-09-26 2012-10-16 Sandisk Il Ltd. NAND flash memory controller exporting a NAND interface
US7933923B2 (en) 2005-11-04 2011-04-26 International Business Machines Corporation Tracking and reconciling database commands
JP4863749B2 (en) 2006-03-29 2012-01-25 株式会社日立製作所 Storage device using flash memory, erase number leveling method thereof, and erase number level program
US7849302B2 (en) * 2006-04-10 2010-12-07 Apple Inc. Direct boot arrangement using a NAND flash memory
US7496711B2 (en) 2006-07-13 2009-02-24 International Business Machines Corporation Multi-level memory architecture with data prioritization
US8352709B1 (en) 2006-09-19 2013-01-08 Nvidia Corporation Direct memory access techniques that include caching segmentation data
WO2008086488A2 (en) 2007-01-10 2008-07-17 Mobile Semiconductor Corporation Adaptive memory system for enhancing the performance of an external computing device
US8996834B2 (en) 2007-05-21 2015-03-31 International Business Machines Corporation Memory class based heap partitioning
US8281303B2 (en) 2007-10-31 2012-10-02 Hewlett-Packard Development Company, L.P. Dynamic ejection of virtual devices on ejection request from virtual device resource object within the virtual firmware to virtual resource driver executing in virtual machine
JP5238235B2 (en) 2007-12-07 2013-07-17 株式会社日立製作所 Management apparatus and management method
US8375190B2 (en) 2007-12-11 2013-02-12 Microsoft Corporation Dynamtic storage hierarachy management
US8255631B2 (en) * 2008-02-01 2012-08-28 International Business Machines Corporation Priority-based prefetch requests scheduling and throttling
US8082400B1 (en) 2008-02-26 2011-12-20 Hewlett-Packard Development Company, L.P. Partitioning a memory pool among plural computing nodes
US8560761B2 (en) 2008-03-31 2013-10-15 Spansion Llc Memory resource management for a flash aware kernel
US8289760B2 (en) 2008-07-02 2012-10-16 Micron Technology, Inc. Multi-mode memory device and method having stacked memory dice, a logic die and a command processing circuit and operating in direct and indirect modes
US8316187B2 (en) 2008-07-08 2012-11-20 International Business Machines Corporation Cache memory including a predict buffer
US8131814B1 (en) 2008-07-11 2012-03-06 Hewlett-Packard Development Company, L.P. Dynamic pinning remote direct memory access
US20100017650A1 (en) 2008-07-19 2010-01-21 Nanostar Corporation, U.S.A Non-volatile memory data storage system with reliability management
JP2010086049A (en) 2008-09-29 2010-04-15 Hitachi Ltd Management computer and operation method thereof
US8429665B2 (en) 2010-03-19 2013-04-23 Vmware, Inc. Cache performance prediction, partitioning and scheduling based on cache pressure of threads
JP5221332B2 (en) 2008-12-27 2013-06-26 株式会社東芝 Memory system
US8412880B2 (en) 2009-01-08 2013-04-02 Micron Technology, Inc. Memory system controller to manage wear leveling across a plurality of storage nodes
US8321645B2 (en) 2009-04-29 2012-11-27 Netapp, Inc. Mechanisms for moving data in a hybrid aggregate
US8117373B2 (en) 2009-04-30 2012-02-14 Kimon Berlin VM host responding to initiation of a page swap by transferring pages from host-but-non-guest-addressable RAM to host-and-guest-addressable RAM
JP4990322B2 (en) 2009-05-13 2012-08-01 株式会社日立製作所 Data movement management device and information processing system
US8719547B2 (en) 2009-09-18 2014-05-06 Intel Corporation Providing hardware support for shared virtual memory between local and remote physical memory
US8595411B2 (en) 2009-12-30 2013-11-26 Sandisk Technologies Inc. Method and controller for performing a sequence of commands
US8850151B2 (en) 2010-03-24 2014-09-30 Apple Inc. Hybrid-device storage based on environmental state
US8965819B2 (en) 2010-08-16 2015-02-24 Oracle International Corporation System and method for effective caching using neural networks
US9009384B2 (en) 2010-08-17 2015-04-14 Microsoft Technology Licensing, Llc Virtual machine memory management in systems with asymmetric memory
CN101930404B (en) 2010-08-27 2012-11-21 威盛电子股份有限公司 Memory device and operation method thereof
US8533422B2 (en) 2010-09-30 2013-09-10 Intel Corporation Instruction prefetching using cache line history
US8799554B1 (en) 2010-10-27 2014-08-05 Amazon Technologies, Inc. Methods and system for swapping memory in a virtual machine environment
US8990538B2 (en) 2010-11-05 2015-03-24 Microsoft Corporation Managing memory with limited write cycles in heterogeneous memory systems
US8561065B2 (en) 2010-11-15 2013-10-15 International Business Machines Corporation Virtualization of vendor specific network interfaces of self-virtualizing input/output device virtual functions
KR20140041408A (en) 2011-01-04 2014-04-04 콘두시브 테크놀로지스 코포레이션 Selecting storage locations for storing data based on storage location attributes and data usage statistics
US9141527B2 (en) 2011-02-25 2015-09-22 Intelligent Intellectual Property Holdings 2 Llc Managing cache pools
JP5664347B2 (en) 2011-03-04 2015-02-04 ソニー株式会社 Virtual memory system, virtual memory control method, and program
US8775731B2 (en) 2011-03-25 2014-07-08 Dell Products, L.P. Write spike performance enhancement in hybrid storage systems
US8930647B1 (en) 2011-04-06 2015-01-06 P4tents1, LLC Multiple class memory systems
US9176864B2 (en) 2011-05-17 2015-11-03 SanDisk Technologies, Inc. Non-volatile memory and method having block management with hot/cold data sorting
US9141528B2 (en) 2011-05-17 2015-09-22 Sandisk Technologies Inc. Tracking and handling of super-hot data in non-volatile memory systems
US20120297121A1 (en) 2011-05-17 2012-11-22 Sergey Anatolievich Gorobets Non-Volatile Memory and Method with Small Logical Groups Distributed Among Active SLC and MLC Memory Partitions
US9047017B1 (en) 2011-12-20 2015-06-02 Emc Corporation Techniques for automated evaluation and movement of data between storage tiers
US10380022B2 (en) 2011-07-28 2019-08-13 Netlist, Inc. Hybrid memory module and system and method of operating the same
WO2013048493A1 (en) 2011-09-30 2013-04-04 Intel Corporation Memory channel that supports near memory and far memory access
US20130145095A1 (en) 2011-12-06 2013-06-06 Lsi Corporation Melthod and system for integrating the functions of a cache system with a storage tiering system
KR20130064521A (en) 2011-12-08 2013-06-18 삼성전자주식회사 Data storage device and data management method thereof
KR101850318B1 (en) 2011-12-09 2018-04-20 삼성전자주식회사 Apparatus and method of managing memory
US9817761B2 (en) * 2012-01-06 2017-11-14 Sandisk Technologies Llc Methods, systems, and computer readable media for optimization of host sequential reads or writes based on volume of data transfer
JP5844473B2 (en) 2012-02-08 2016-01-20 株式会社日立製作所 Storage device having a plurality of nonvolatile semiconductor storage media, placing hot data in long-life storage medium, and placing cold data in short-life storage medium, and storage control method
US8849731B2 (en) 2012-02-23 2014-09-30 Microsoft Corporation Content pre-fetching for computing devices
CN102662690B (en) 2012-03-14 2014-06-11 腾讯科技(深圳)有限公司 Method and apparatus for starting application program
US8838887B1 (en) 2012-03-30 2014-09-16 Emc Corporation Drive partitioning for automated storage tiering
US9043530B1 (en) 2012-04-09 2015-05-26 Netapp, Inc. Data storage within hybrid storage aggregate
US9996370B1 (en) 2012-04-18 2018-06-12 Open Invention Network Llc Page swapping in virtual machine environment
US9201779B2 (en) 2012-06-27 2015-12-01 Hitachi, Ltd. Management system and management method
US10339056B2 (en) 2012-07-03 2019-07-02 Sandisk Technologies Llc Systems, methods and apparatus for cache transfers
US9128845B2 (en) 2012-07-30 2015-09-08 Hewlett-Packard Development Company, L.P. Dynamically partition a volatile memory for a cache and a memory partition
US10303618B2 (en) 2012-09-25 2019-05-28 International Business Machines Corporation Power savings via dynamic page type selection
US9817739B1 (en) 2012-10-31 2017-11-14 Veritas Technologies Llc Method to restore a virtual environment based on a state of applications/tiers
US9069658B2 (en) 2012-12-10 2015-06-30 Google Inc. Using a virtual to physical map for direct user space communication with a data storage device
US9164888B2 (en) 2012-12-10 2015-10-20 Google Inc. Using a logical to physical map for direct user space communication with a data storage device
CN104704569B (en) 2012-12-19 2017-11-14 慧与发展有限责任合伙企业 NVRAM Path selections
US9552288B2 (en) 2013-02-08 2017-01-24 Seagate Technology Llc Multi-tiered memory with different metadata levels
US9672230B1 (en) 2013-04-03 2017-06-06 Ca, Inc. Optimized placement of data
JP5577430B1 (en) 2013-06-11 2014-08-20 株式会社ブリヂストン Pneumatic tire
US9984089B2 (en) 2013-06-28 2018-05-29 Vmware, Inc. Techniques for implementing hybrid flash/HDD-based virtual disk files
US20150016046A1 (en) 2013-07-10 2015-01-15 Samsung Electronics Co., Ltd. Ina cabled memory appliance
US20150026509A1 (en) 2013-07-22 2015-01-22 Kabushiki Kaisha Toshiba Storage device having a data stream converter
WO2015017147A1 (en) 2013-07-29 2015-02-05 Silicon Graphics International Corp. I/o acceleration in hybrid storage
GB2517493A (en) 2013-08-23 2015-02-25 Advanced Risc Mach Ltd Handling access attributes for data accesses
WO2015029102A1 (en) 2013-08-26 2015-03-05 株式会社日立製作所 Storage device and hierarchical control method
US9037753B2 (en) 2013-08-29 2015-05-19 International Business Machines Corporation Automatic pinning and unpinning of virtual pages for remote direct memory access
US9122503B1 (en) * 2013-09-05 2015-09-01 Symantec Corporation Systems and methods for adaptive throttling of input/output requests in a virtual environment
US9513692B2 (en) 2013-09-18 2016-12-06 Intel Corporation Heterogenous memory access
WO2015042684A1 (en) 2013-09-24 2015-04-02 University Of Ottawa Virtualization of hardware accelerator
US10032246B2 (en) 2013-10-09 2018-07-24 Nvidia Corporation Approach to caching decoded texture data with variable dimensions
US9280456B2 (en) 2013-11-12 2016-03-08 Micron Technology, Inc. Mapping between program states and data patterns
US20150199276A1 (en) 2014-01-13 2015-07-16 Samsung Electronics Co., Ltd. Pre-fetch confirmation queue
KR20150089538A (en) 2014-01-28 2015-08-05 한국전자통신연구원 Apparatus for in-memory data management and method for in-memory data management
JP6203937B2 (en) 2014-03-04 2017-09-27 株式会社日立製作所 Computer and memory control method
US10445025B2 (en) 2014-03-18 2019-10-15 Micron Technology, Inc. Apparatuses and methods having memory tier structure and recursively searching between tiers for address in a translation table where information is only directly transferred between controllers
US9472248B2 (en) 2014-03-28 2016-10-18 Intel Corporation Method and apparatus for implementing a heterogeneous memory subsystem
US10628245B2 (en) 2014-04-02 2020-04-21 Pure Storage, Inc. Monitoring of storage units in a dispersed storage network
CA2947158A1 (en) 2014-05-01 2015-11-05 Coho Data, Inc. Systems, devices and methods for generating locality-indicative data representations of data streams, and compressions thereof
CN106462501B (en) 2014-05-08 2019-07-09 美光科技公司 Cache coherence method based on mixing memory cube system interconnection catalogue
US20150356125A1 (en) 2014-06-06 2015-12-10 Plexistor Ltd. Method for data placement based on a file level operation
US9697130B2 (en) 2014-06-25 2017-07-04 Sandisk Technologies Llc Systems and methods for storage service automation
US10282100B2 (en) 2014-08-19 2019-05-07 Samsung Electronics Co., Ltd. Data management scheme in virtualized hyperscale environments
US9390028B2 (en) 2014-10-19 2016-07-12 Strato Scale Ltd. Coordination between memory-saving mechanisms in computers that run virtual machines
CN105574067B (en) 2014-10-31 2020-01-21 株式会社东芝 Item recommendation device and item recommendation method
US10223371B2 (en) 2014-11-21 2019-03-05 Vmware, Inc. Host-based deduplication using array generated data tags
US9727427B2 (en) 2014-12-31 2017-08-08 International Business Machines Corporation Synchronizing storage of data copies in a dispersed storage network
US20160212214A1 (en) 2015-01-16 2016-07-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Tunneled remote direct memory access (rdma) communication
US20180024853A1 (en) 2015-02-17 2018-01-25 Coho Data, Inc. Methods, systems, devices and appliances relating to virtualized application-layer space for data processing in data storage systems
KR20160116533A (en) 2015-03-30 2016-10-10 삼성전자주식회사 Memory controller and memory system managing refresh operation and operating method thereof
US10645013B2 (en) 2015-04-02 2020-05-05 Nicira, Inc Data flow identifiers
US10025747B2 (en) 2015-05-07 2018-07-17 Samsung Electronics Co., Ltd. I/O channel scrambling/ECC disassociated communication protocol
US9720846B2 (en) 2015-05-28 2017-08-01 Red Hat Israel, Ltd. Memory swap for direct memory access by a device assigned to a guest operating system
US10042782B2 (en) 2015-06-02 2018-08-07 ALTR Solutions, Inc. Immutable datastore for low-latency reading and writing of large data sets
US9639280B2 (en) * 2015-06-18 2017-05-02 Advanced Micro Devices, Inc. Ordering memory commands in a computer system
US10019409B2 (en) 2015-08-03 2018-07-10 International Business Machines Corporation Extending remote direct memory access operations for storage class memory access
US11169925B2 (en) 2015-08-25 2021-11-09 Samsung Electronics Co., Ltd. Capturing temporal store streams into CPU caches by dynamically varying store streaming thresholds
US9535740B1 (en) 2015-08-26 2017-01-03 International Business Machines Corporation Implementing dynamic adjustment of resources allocated to SRIOV remote direct memory access adapter (RDMA) virtual functions based on usage patterns
US10430723B1 (en) 2015-09-29 2019-10-01 EMC IP Holding Company LLC Storage system with machine learning based skew prediction
US20170123796A1 (en) 2015-10-29 2017-05-04 Intel Corporation Instruction and logic to prefetch information from a persistent memory
US20170147427A1 (en) 2015-11-23 2017-05-25 Honeywell International, Inc. System and method for software simulation for testing a safety manager platform
US10394789B1 (en) 2015-12-07 2019-08-27 Amazon Technologies, Inc. Techniques and systems for scalable request handling in data processing systems
US10019372B2 (en) 2015-12-16 2018-07-10 Western Digital Technologies, Inc. Caching sensing device data in data storage device
US10019279B2 (en) 2015-12-17 2018-07-10 International Business Machines Corporation Transparent secure interception handling
US10148570B2 (en) 2015-12-29 2018-12-04 Amazon Technologies, Inc. Connectionless reliable transport
US10719237B2 (en) 2016-01-11 2020-07-21 Micron Technology, Inc. Apparatuses and methods for concurrently accessing multiple partitions of a non-volatile memory
US10592114B2 (en) 2016-03-03 2020-03-17 Samsung Electronics Co., Ltd. Coordinated in-module RAS features for synchronous DDR compatible memory
US10216536B2 (en) 2016-03-11 2019-02-26 Vmware, Inc. Swap file defragmentation in a hypervisor
US20170285967A1 (en) 2016-03-29 2017-10-05 Samsung Electronics Co., Ltd. Multi-ware smart ssd
US20170285992A1 (en) 2016-04-01 2017-10-05 Intel Corporation Memory subsystem with narrow bandwidth repeater channel
US10778762B2 (en) 2016-04-18 2020-09-15 Rancher Labs, Inc. Cloud computing service architecture
EP3449205B1 (en) 2016-04-29 2021-06-02 Cisco Technology, Inc. Predictive rollup and caching for application performance data
US10282261B2 (en) 2016-06-20 2019-05-07 Vmware, Inc. Pooled memory heartbeat in shared memory architecture
JP2018005446A (en) 2016-06-30 2018-01-11 富士通株式会社 Information processing apparatus, storage control program, and storage control method
US10176099B2 (en) 2016-07-11 2019-01-08 Intel Corporation Using data pattern to mark cache lines as invalid
US11138160B2 (en) 2016-07-13 2021-10-05 International Business Machines Corporation Application performance using multidimensional predictive algorithm for automated tiering mechanisms
US10083123B2 (en) 2016-08-10 2018-09-25 Vmware, Inc. Page-fault latency directed virtual machine performance monitoring
US20180059976A1 (en) * 2016-08-26 2018-03-01 Sandisk Technologies Llc Storage System with Integrated Components and Method for Use Therewith
US10866897B2 (en) 2016-09-26 2020-12-15 Samsung Electronics Co., Ltd. Byte-addressable flash-based memory module with prefetch mode that is adjusted based on feedback from prefetch accuracy that is calculated by comparing first decoded address and second decoded address, where the first decoded address is sent to memory controller, and the second decoded address is sent to prefetch buffer
US10120797B1 (en) 2016-09-30 2018-11-06 EMC IP Holding Company LLC Managing mapping metadata in storage systems
CN108008911A (en) 2016-11-01 2018-05-08 阿里巴巴集团控股有限公司 Read-write requests processing method and processing device
CN106506275B (en) * 2016-11-09 2019-08-20 中国科学院计算技术研究所 A kind of method and device for predicting switching node destination port propagation delay time
TWI596541B (en) 2016-11-30 2017-08-21 財團法人工業技術研究院 Data accessing system, data accessing appraratus and method for accessing data
US10866912B2 (en) 2017-03-10 2020-12-15 Toshiba Memory Corporation Integrated heterogeneous solid state storage drive
US11392488B2 (en) 2017-04-07 2022-07-19 Keysight Technologies Singapore (Sales) Pte. Ltd. Optimizing storage of application data in memory
US9910618B1 (en) 2017-04-10 2018-03-06 Pure Storage, Inc. Migrating applications executing on a storage system
US10812560B2 (en) 2017-05-09 2020-10-20 EMC IP Holding Company LLC System and method for packet transmission using segment routing
US20190004841A1 (en) 2017-06-30 2019-01-03 Microsoft Technology Licensing, Llc Memory Sharing For Virtual Machines
US20190034284A1 (en) 2017-07-25 2019-01-31 Hewlett Packard Enterprise Development Lp Sequencing host i/o requests and i/o snapshots
US10289566B1 (en) 2017-07-28 2019-05-14 EMC IP Holding Company LLC Handling data that has become inactive within stream aware data storage equipment
US10671303B2 (en) 2017-09-13 2020-06-02 International Business Machines Corporation Controlling a storage system
US10298496B1 (en) 2017-09-26 2019-05-21 Amazon Technologies, Inc. Packet processing cache
KR102414047B1 (en) 2017-10-30 2022-06-29 에스케이하이닉스 주식회사 Convergence memory device and method thereof
US10394706B2 (en) * 2017-11-02 2019-08-27 Western Digital Technologies, Inc. Non-volatile storage with adaptive command prediction
US10572389B2 (en) 2017-12-12 2020-02-25 Advanced Micro Devices, Inc. Cache control aware memory controller
US20190196996A1 (en) 2017-12-21 2019-06-27 Advanced Micro Devices, Inc. Dynamically determining memory access burst length
US11099789B2 (en) 2018-02-05 2021-08-24 Micron Technology, Inc. Remote direct memory access in multi-tier memory systems
US20190243771A1 (en) 2018-02-05 2019-08-08 Micron Technology, Inc. Accelerate Data Access in Memory Systems via Data Stream Segregation
US11416395B2 (en) 2018-02-05 2022-08-16 Micron Technology, Inc. Memory virtualization for accessing heterogeneous memory components
US10782908B2 (en) 2018-02-05 2020-09-22 Micron Technology, Inc. Predictive data orchestration in multi-tier memory systems
US10880401B2 (en) 2018-02-12 2020-12-29 Micron Technology, Inc. Optimization of data access and communication in memory systems
US10922221B2 (en) 2018-03-28 2021-02-16 Micron Technology, Inc. Memory management
US10540100B2 (en) 2018-04-10 2020-01-21 Western Digital Technologies, Inc. Mapping-based wear leveling for non-volatile memory
US20190370043A1 (en) 2018-04-30 2019-12-05 Nutanix, Inc. Cooperative memory management
US10877892B2 (en) 2018-07-11 2020-12-29 Micron Technology, Inc. Predictive paging to accelerate memory access
US11182507B2 (en) 2018-08-30 2021-11-23 Micron Technology, Inc. Domain crossing in executing instructions in computer processors
US10915465B2 (en) 2018-08-30 2021-02-09 Micron Technology, Inc. Memory configured to store predefined set of domain registers for instructions being executed in computer processors
US10852949B2 (en) 2019-04-15 2020-12-01 Micron Technology, Inc. Predictive data pre-fetching in a data storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12135876B2 (en) 2018-10-17 2024-11-05 Micron Technology, Inc. Memory systems having controllers embedded in packages of integrated circuit memory

Also Published As

Publication number Publication date
US20200326851A1 (en) 2020-10-15
US11740793B2 (en) 2023-08-29
DE112020001937T5 (en) 2022-01-13
US10852949B2 (en) 2020-12-01
WO2020214276A1 (en) 2020-10-22
CN113692579A (en) 2021-11-23
CN113692579B (en) 2024-06-04
US20210048947A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US11740793B2 (en) Predictive data pre-fetching in a data storage device
US20220326868A1 (en) Predictive Data Orchestration in Multi-Tier Memory Systems
US11983435B2 (en) Optimize information requests to a memory system
US11650755B2 (en) Proactive return of write credits in a memory system
US11740833B2 (en) Throttle response signals from a memory system
US20210357153A1 (en) Controller Command Scheduling in a Memory System to Increase Command Bus Utilization
US12039192B2 (en) Efficient buffer management for media management commands in memory devices
US11687363B2 (en) Internal management traffic regulation for memory sub-systems
US11681909B2 (en) Memory component with a bus to transmit data for a machine learning operation and another bus to transmit host data
US11769076B2 (en) Memory sub-system with a virtualized bus and internal logic to perform a machine learning operation
US11263156B2 (en) Memory component with a virtualized bus and internal logic to perform a machine learning operation
US11694076B2 (en) Memory sub-system with internal logic to perform a machine learning operation
US20210110249A1 (en) Memory component with internal logic to perform a machine learning operation
US11676010B2 (en) Memory sub-system with a bus to transmit data for a machine learning operation and another bus to transmit host data

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FROLIKOV, ALEX;VOGEL, ZACHARY ANDREW PETE;MENDES, JOE GIL;AND OTHERS;REEL/FRAME:064686/0539

Effective date: 20190415

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION