US20230364300A1 - Transglutaminase treated products - Google Patents
Transglutaminase treated products Download PDFInfo
- Publication number
- US20230364300A1 US20230364300A1 US18/357,299 US202318357299A US2023364300A1 US 20230364300 A1 US20230364300 A1 US 20230364300A1 US 202318357299 A US202318357299 A US 202318357299A US 2023364300 A1 US2023364300 A1 US 2023364300A1
- Authority
- US
- United States
- Prior art keywords
- tissue
- medical device
- tissue matrix
- collagen
- transglutaminase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108060008539 Transglutaminase Proteins 0.000 title claims abstract description 37
- 102000003601 transglutaminase Human genes 0.000 title claims abstract description 37
- 239000011159 matrix material Substances 0.000 claims description 41
- 108010035532 Collagen Proteins 0.000 claims description 25
- 102000008186 Collagen Human genes 0.000 claims description 25
- 229920001436 collagen Polymers 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 20
- -1 polypropylene Polymers 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 230000002500 effect on skin Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 23
- 238000005299 abrasion Methods 0.000 abstract description 8
- 210000001519 tissue Anatomy 0.000 description 114
- 102000004190 Enzymes Human genes 0.000 description 16
- 108090000790 Enzymes Proteins 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 230000006378 damage Effects 0.000 description 9
- 230000002255 enzymatic effect Effects 0.000 description 7
- 210000003491 skin Anatomy 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000007943 implant Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 210000003815 abdominal wall Anatomy 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 210000002808 connective tissue Anatomy 0.000 description 3
- 210000003195 fascia Anatomy 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 210000003041 ligament Anatomy 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000004633 polyglycolic acid Substances 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 230000017423 tissue regeneration Effects 0.000 description 3
- 241001269524 Dura Species 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 210000004207 dermis Anatomy 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 108010023728 Alloderm Proteins 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 206010016717 Fistula Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 235000013527 bean curd Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000003890 fistula Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 210000005059 placental tissue Anatomy 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002791 poly-4-hydroxybutyrate Polymers 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 235000021134 protein-rich food Nutrition 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0063—Implantable repair or support meshes, e.g. hernia meshes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/362—Skin, e.g. dermal papillae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3625—Vascular tissue, e.g. heart valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3683—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
- A61L27/3687—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/252—Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
- A61L2300/254—Enzymes, proenzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/02—Methods for coating medical devices
Definitions
- tissue products including tissue matrices that are treated with or incorporate a transglutaminase coating.
- tissue-derived products are used to regenerate, repair, or otherwise treat diseased or damaged tissues and organs.
- Such products can include intact tissue grafts or acellular or reconstituted acellular tissues (e.g., acellular tissue matrices from skin, intestine, or other tissues, with or without cell seeding).
- Such products can also include hybrid or composite materials, e.g., materials including a synthetic component such as a polymeric mesh substrate with a coating or covering that includes materials derived from tissue.
- Tissue products including acellular tissue matrices
- the tissue matrices are subject to mechanical forces including bending, stretching, compression, or shear stress. These forces can lead to damage or degradation to the tissue products or to surrounding tissues that may rub against the implanted products.
- the present application provides devices and methods that provide modified tissue products with transglutaminase coatings.
- the devices and methods can provide one or more of improved resistance to surface damage, improved resistance to wear, resistance to formation of adhesions with surrounding tissues, or reduced friction when in contact with other materials.
- a medical device in one embodiment, can include an implant main body portion comprising a collagen-containing tissue matrix; and a transglutaminase coating disposed on at least a portion of the outer surface, wherein the coating provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- a method of producing a tissue product can include selecting a collagen-containing tissue matrix; applying a composition comprising a transglutaminase enzyme to the collagen-containing tissue matrix; and allowing the transglutaminase to perform an enzymatic activity on the collagen-containing tissue matrix to produce a region of the collagen-containing tissue matrix having at least one of an anti-adhesion or anti-abrasion property.
- a medical device in one embodiment, can include an implant main body portion comprising a collagen-containing tissue matrix; and a surface region comprising a portion that has been treated with a transglutaminase coating, wherein the surface region provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- FIG. 1 provides a perspective view of a tissue product including a transglutaminase coating, according to various embodiments.
- FIG. 2 provides a side end view of a tissue product including a transglutaminase coating, according to various embodiments.
- FIG. 3 provides a side end view of a tissue product including a transglutaminase coating and a supportive substrate material, according to various embodiments.
- FIG. 4 is a cross-sectional view of an abdominal wall treated using tissue products of the present disclosure.
- tissue products for treating patients can be used to produce products for treating patients.
- tissue products for regeneration, repair, augmentation, reinforcement, and/or treatment of human tissues that have been damaged or lost due to various diseases and/or structural damage have been produced.
- Such products can include, for example, acellular tissue matrices, tissue allografts or xenografts, and/or reconstituted tissues (i.e., at least partially decellularized tissues that have been seeded with cells to produce viable materials).
- ALLODERM® and STRATTICETM are two dermal acellular tissue matrices made from human and porcine dermis, respectively.
- tissue matrices or other tissue products are very useful for treating certain types of conditions, it may be desirable to modify the tissue matrices or other tissue products to alter the surface mechanical properties, to improve resistance to wear or damage, to prevent development of adhesions with surrounding tissues, or to reduce friction when the tissue products are in contact with other materials such as body tissue.
- a medical device can include an implant main body portion comprising a collagen-containing tissue matrix; and a transglutaminase coating disposed on at least a portion of the outer surface, wherein the coating provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- a method of producing a tissue product can include selecting a collagen-containing tissue matrix; applying a composition comprising a transglutaminase enzyme to the collagen-containing tissue matrix; and allowing the transglutaminase to perform an enzymatic activity on the collagen-containing tissue matrix to produce a region of the collagen-containing tissue matrix having at least one of an anti-adhesion or anti-abrasion property.
- a medical device in one embodiment, can include an implant main body portion comprising a collagen-containing tissue matrix; and a surface region comprising a portion that has been treated with a transglutaminase coating, wherein the surface provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- Transglutaminases are enzymes expressed in bacteria, plants, and animals that catalyze the binding of gamma-carboxyamide groups of glutamine residues with amino groups of lysine residues or other primary amino groups. Transglutaminases are used in the food industry for binding and improving the physical properties of protein rich foods such as meat, yogurt, and tofu. Transglutaminases are also currently being explored for use in the medical device industry as hydrogels and sealants. See Aberle, T. et al., “Cell-type Specific Four Component Hydrogel,” PLoS ONE 9(1): e86740 (January 2004).
- FIG. 1 provides a perspective view of a tissue product including a transglutaminase coating, according to various embodiments.
- FIG. 2 provides a side end view of a tissue product including a transglutaminase coating, according to various embodiments.
- FIG. 3 provides a side end view of a tissue product including a transglutaminase coating and a supportive substrate material, according to various embodiments.
- the tissue products 10 , 10 ′ can include a sheet of material, but the tissue products can include any shape, size, or configuration selected based on a desired use or clinical indication.
- the sheets 10 , 10 ′ can be useful for surgical treatment of a variety of conditions such as abdominal wall treatment, breast augmentation or reconstruction, skin treatment (e.g., for burn or ulcer treatment), urologic treatment, orthopedic treatment (e.g., tendon, ligament, bone, cartilage, or connective tissue treatment), neurological treatment (e.g., as dura replacement), thoracic wall treatment, or other soft tissue treatment.
- other shapes such as irregular or bulk-like masses (e.g., for soft tissue regeneration, fistula treatment, or bone defect filling) can be used.
- the tissue product will include a main body portion 12 , 12 ′ including a collagen-containing tissue product (discussed below) with one or more surfaces 14 , 16 (i.e., a top surface 14 or bottom surface 16 if in a sheet like configuration) that can be treated to include a region 18 , 18 ′, 20 , 20 ′ having a transglutaminase coating or section of matrix that has been treated to enzymatically alter the tissue matrix.
- a collagen-containing tissue product discussed below
- surfaces 14 , 16 i.e., a top surface 14 or bottom surface 16 if in a sheet like configuration
- the transglutaminase coating region or region that has been treated can be formed in a variety of suitable ways.
- the transglutaminase can be provided in a solution or formed into a solution from a stored form (e.g., a dry powder or other suitable storage form).
- the solution can include any suitable buffer such as phosphate buffered saline or other biologically compatible buffer material that will maintain or support enzymatic activity and will not damage the enzyme or tissue product.
- transglutaminases can be used including any that are biologically compatible, can be implanted in a patient, and have sufficient activity to provide desired catalytic results within a desired time frame.
- Transglutaminases are known and can include microbial, plant, animal, or recombinantly produced enzymes. Depending on the specific enzyme used, modifications such as addition of cofactors, control of pH, or control of temperature or other environmental conditions may be needed to allow appropriate enzymatic activity.
- Microbial transglutaminases can be effective because they may not require the presence of metal ions, but any suitable transglutaminase may be used.
- the enzymatic solution can be applied to the surface of the tissue products 10 , 10 ′ using any suitable mechanical means.
- the enzyme can be applied by simple brushing, spraying, dipping, rolling, syringe spackling, or any other suitable process.
- the enzyme can be applied to one or more than one surface.
- the enzyme can be applied to one side of the tissue product, allowed to dry, and then applied to the other side.
- the enzyme can be applied to more than one side (e.g., by dipping), and the product can be allowed to dry by hanging or any other suitable process.
- the enzyme may be allowed to cause enzymatic changes for a desired period of time.
- the specific time during which the enzyme is applied and allowed to cause enzymatic changes will depend on the concentration and amount of enzyme, the specific tissue, and/or other factors such as temperature and pH that may affect the enzymatic reaction.
- the tissue product may be treated to inactivate and/or dry the composition.
- the transglutaminase can be inactivated, for example, by heating.
- the heat can be selected to deactivate the enzymes without causing undesired alteration in the tissue underlying the coating.
- the tissue can be heated to about 80° C. or other temperatures depending on the specific enzyme being used.
- the tissue can be dried, e.g., by freeze drying or air drying.
- the enzymes may be washed from the tissue product after causing changes in the tissue composition.
- the enzymes can be washed using aqueous solutions such as saline (e.g., phosphate buffered saline) or other solutions that do not damage the product.
- tissue product used to produce the devices described herein can include a variety of materials.
- the tissue products 10 , 10 ′ will include a collagen-containing tissue matrix having amino acid residues that can be acted on by the transglutaminase coating, and which can form a suitable material for tissue treatment, e.g., for tissue repair or regeneration.
- the tissue product 10 , 10 ′ can include a tissue matrix, such as a decellularized or partially decellularized tissue matrix.
- tissue matrix such as a decellularized or partially decellularized tissue matrix.
- tissues can include, but are not limited to, skin, parts of skin (e.g., dermis), fascia, muscle (striated, smooth, or cardiac), pericardial tissue, dura, umbilical cord tissue, placental tissue, cardiac valve tissue, ligament tissue, tendon tissue, blood vessel tissue (such as arterial and venous tissue), cartilage, bone, neural connective tissue, urinary bladder tissue, ureter tissue, and intestinal tissue.
- the tissue product in addition or alternatively to using an intact acellular tissue matrix sheet or other form, can include a tissue matrix that is processed and reformed into a sponge or similar material incorporating particulate or reconstituted tissue matrix.
- a tissue matrix sponge can be formed by cutting, grinding, or chopping tissue matrix to produce particles or fragments. The particles or fragments can then be formed into a slurry by addition of water and cast in a container (e.g., as a sheet or other shape) or applied to a substrate before drying (e.g., by air or freeze drying).
- Optionally stabilization steps can be performed to cross-link or otherwise stabilize the particle or fragment material.
- Exemplary tissue products including a sponge or coating for use with or without a polymeric substrate are disclosed in U.S. Pat. No. 9,382,422, which issued on Jul. 5, 2016 to LifeCell Corporation.
- the tissue product can include a substrate material that is coated with or encased with a tissue matrix.
- An exemplary product including a substrate layer 22 is illustrated in FIG. 3 .
- the product 10 ′ is similar to those discussed above, including the tissue product 12 ′ and surfaces 14 ′, 16 ′ but further including a synthetic or biologic supporting substrate 22 .
- the substrate 22 can include suitable polymeric materials including, for example, a mesh 24 formed of filaments, such as polypropylene.
- the substrate can be substantially non-absorbable or non-biodegradable.
- the substrate can be absorbable.
- the absorbable mesh can be a polymer selected from the group consisting of polyhydroxyalkanoate, polyglycolic acid, poly-1-lactic acid, polylactic/polyglycolic acid (PLGA), polygalactin 910 , and carboxymethyl cellulose.
- the polymer can include poly-4-hydroxybutyrate.
- the substrate can be a synthetic substrate; the synthetic substrate can include polypropylene.
- a tissue matrix sponge is formed from adipose tissue.
- Suitable adipose tissues are described generally in US Patent Publication Number 2012/0310367 A1 (U.S. patent application Ser. No. 13/483,674, filed May 30, 2012, to Connor).
- Such adipose materials can be formed generally by mechanical homogenization, washing, resuspension, and stabilization of the material. The material may be dried (e.g. by freeze drying before or after stabilization), and stabilization can further be used to bond or attach the sponge to the other material.
- the sponge may be sterilized before or after joining to the intact tissue matrix. Sterilization may be performed after the components of the devices described herein are joined. Further, the sponge may be formed while in contact with the intact acellular tissue matrix components or may be formed separately prior to joining.
- FIG. 4 is a cross-sectional view of an abdominal wall 150 treated using tissue products 10 of the present disclosure.
- the tissue product 10 can be used to reinforce abdominal fascia but could also be used for other aspects such as closure of a skin incision 151 , closure of other fascia layers, and use for other non-abdominal indications.
- the tissue products discussed here can be useful for treatment of any tissue site where it may be desirable to provide a tissue product with increased resistance to abrasion or adhesion.
- Such tissues can include connective tissue (e.g., tendon, ligaments, or other tissues within or near joints, surrounding muscles, or connecting tissues).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Zoology (AREA)
- Urology & Nephrology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Biophysics (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
The present application relates to use of transglutaminases to treat various products, including medical devices such as tissue grafts, tissue matrices or other tissue-derived materials, and synthetics. The transglutaminases can be applied to the medical devices to provide advantages such as adhesion resistance or abrasion resistance.
Description
- This application is a divisional of U.S. application Ser. No. 17/063,863, filed Oct. 6, 2020, which is a continuation of U.S. application Ser. No. 16/546,608, filed Aug. 21, 2019, now U.S. Pat. No. 10,814,033, which is a continuation of U.S. application Ser. No. 15/882,400, filed Jan. 29, 2018, now U.S. Pat. No. 10,413,634, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 62/452,000, filed Jan. 30, 2017, the entire contents of which are incorporated herein by reference.
- The present disclosure relates to tissue products, including tissue matrices that are treated with or incorporate a transglutaminase coating.
- Various tissue-derived products are used to regenerate, repair, or otherwise treat diseased or damaged tissues and organs. Such products can include intact tissue grafts or acellular or reconstituted acellular tissues (e.g., acellular tissue matrices from skin, intestine, or other tissues, with or without cell seeding). Such products can also include hybrid or composite materials, e.g., materials including a synthetic component such as a polymeric mesh substrate with a coating or covering that includes materials derived from tissue.
- Tissue products, including acellular tissue matrices, can be used for a variety of load bearing or regenerative applications. In many situations, the tissue matrices are subject to mechanical forces including bending, stretching, compression, or shear stress. These forces can lead to damage or degradation to the tissue products or to surrounding tissues that may rub against the implanted products. To prevent or reduce wear and damage to the implanted tissue products or surrounding tissues, it may be desirable to produce tissue products that have improved resistance to wear or damage (e.g., flaking or other damage), especially at the tissue surfaces.
- Accordingly, the present application provides devices and methods that provide modified tissue products with transglutaminase coatings. The devices and methods can provide one or more of improved resistance to surface damage, improved resistance to wear, resistance to formation of adhesions with surrounding tissues, or reduced friction when in contact with other materials.
- In one embodiment, a medical device is provided. The device can include an implant main body portion comprising a collagen-containing tissue matrix; and a transglutaminase coating disposed on at least a portion of the outer surface, wherein the coating provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- In another embodiment, a method of producing a tissue product is provided. The method can include selecting a collagen-containing tissue matrix; applying a composition comprising a transglutaminase enzyme to the collagen-containing tissue matrix; and allowing the transglutaminase to perform an enzymatic activity on the collagen-containing tissue matrix to produce a region of the collagen-containing tissue matrix having at least one of an anti-adhesion or anti-abrasion property.
- In one embodiment, a medical device is provided. The device can include an implant main body portion comprising a collagen-containing tissue matrix; and a surface region comprising a portion that has been treated with a transglutaminase coating, wherein the surface region provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- Also provided are methods of treatment using the presently disclosed devices as well as tissue products produced according to the disclosed methods.
-
FIG. 1 provides a perspective view of a tissue product including a transglutaminase coating, according to various embodiments. -
FIG. 2 provides a side end view of a tissue product including a transglutaminase coating, according to various embodiments. -
FIG. 3 provides a side end view of a tissue product including a transglutaminase coating and a supportive substrate material, according to various embodiments. -
FIG. 4 is a cross-sectional view of an abdominal wall treated using tissue products of the present disclosure. - Reference will now be made in detail to certain exemplary embodiments according to the present disclosure, certain examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
- In this application, the use of the singular includes the plural unless specifically stated otherwise. In this application, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms, such as “includes” and “included”, is not limiting. Any range described herein will be understood to include the endpoints and all values between the endpoints.
- The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including but not limited to patents, patent applications, articles, books, and treatises, are hereby expressly incorporated by reference in their entirety for any purpose.
- Various human and animal tissues can be used to produce products for treating patients. For example, various tissue products for regeneration, repair, augmentation, reinforcement, and/or treatment of human tissues that have been damaged or lost due to various diseases and/or structural damage (e.g., from trauma, surgery, atrophy, and/or long-term wear and degeneration) have been produced. Such products can include, for example, acellular tissue matrices, tissue allografts or xenografts, and/or reconstituted tissues (i.e., at least partially decellularized tissues that have been seeded with cells to produce viable materials).
- A variety of tissue products have been produced for treating soft and hard tissues. For example, ALLODERM® and STRATTICE™ (LIFECELL CORPORATION, Branchburg, NJ) are two dermal acellular tissue matrices made from human and porcine dermis, respectively. Although such materials are very useful for treating certain types of conditions, it may be desirable to modify the tissue matrices or other tissue products to alter the surface mechanical properties, to improve resistance to wear or damage, to prevent development of adhesions with surrounding tissues, or to reduce friction when the tissue products are in contact with other materials such as body tissue.
- Accordingly, in one embodiment, a medical device is provided. The device can include an implant main body portion comprising a collagen-containing tissue matrix; and a transglutaminase coating disposed on at least a portion of the outer surface, wherein the coating provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- In another embodiment, a method of producing a tissue product is provided. The method can include selecting a collagen-containing tissue matrix; applying a composition comprising a transglutaminase enzyme to the collagen-containing tissue matrix; and allowing the transglutaminase to perform an enzymatic activity on the collagen-containing tissue matrix to produce a region of the collagen-containing tissue matrix having at least one of an anti-adhesion or anti-abrasion property.
- In one embodiment, a medical device is provided. The device can include an implant main body portion comprising a collagen-containing tissue matrix; and a surface region comprising a portion that has been treated with a transglutaminase coating, wherein the surface provides at least one of an anti-adhesion or anti-abrasion property to the outer surface.
- Also provided are methods of treatment using the presently disclosed devices as well as tissue products produced according to the disclosed methods.
- Transglutaminases are enzymes expressed in bacteria, plants, and animals that catalyze the binding of gamma-carboxyamide groups of glutamine residues with amino groups of lysine residues or other primary amino groups. Transglutaminases are used in the food industry for binding and improving the physical properties of protein rich foods such as meat, yogurt, and tofu. Transglutaminases are also currently being explored for use in the medical device industry as hydrogels and sealants. See Aberle, T. et al., “Cell-type Specific Four Component Hydrogel,” PLoS ONE 9(1): e86740 (January 2004).
-
FIG. 1 provides a perspective view of a tissue product including a transglutaminase coating, according to various embodiments.FIG. 2 provides a side end view of a tissue product including a transglutaminase coating, according to various embodiments.FIG. 3 provides a side end view of a tissue product including a transglutaminase coating and a supportive substrate material, according to various embodiments. - As shown, the
tissue products sheets main body portion more surfaces 14, 16 (i.e., atop surface 14 orbottom surface 16 if in a sheet like configuration) that can be treated to include aregion - The transglutaminase coating region or region that has been treated (
regions - A variety of transglutaminases can be used including any that are biologically compatible, can be implanted in a patient, and have sufficient activity to provide desired catalytic results within a desired time frame. Transglutaminases are known and can include microbial, plant, animal, or recombinantly produced enzymes. Depending on the specific enzyme used, modifications such as addition of cofactors, control of pH, or control of temperature or other environmental conditions may be needed to allow appropriate enzymatic activity. Microbial transglutaminases can be effective because they may not require the presence of metal ions, but any suitable transglutaminase may be used.
- The enzymatic solution can be applied to the surface of the
tissue products - After application of the transglutaminase to the tissue product, the enzyme may be allowed to cause enzymatic changes for a desired period of time. The specific time during which the enzyme is applied and allowed to cause enzymatic changes will depend on the concentration and amount of enzyme, the specific tissue, and/or other factors such as temperature and pH that may affect the enzymatic reaction.
- Next, the tissue product may be treated to inactivate and/or dry the composition. The transglutaminase can be inactivated, for example, by heating. The heat can be selected to deactivate the enzymes without causing undesired alteration in the tissue underlying the coating. For example, to deactivate the enzyme, the tissue can be heated to about 80° C. or other temperatures depending on the specific enzyme being used. After deactivation, the tissue can be dried, e.g., by freeze drying or air drying.
- Alternatively or in addition to deactivation, the enzymes may be washed from the tissue product after causing changes in the tissue composition. For example, the enzymes can be washed using aqueous solutions such as saline (e.g., phosphate buffered saline) or other solutions that do not damage the product.
- The tissue product used to produce the devices described herein can include a variety of materials. Generally, the
tissue products - The
tissue product - The tissue product, in addition or alternatively to using an intact acellular tissue matrix sheet or other form, can include a tissue matrix that is processed and reformed into a sponge or similar material incorporating particulate or reconstituted tissue matrix. For example, a tissue matrix sponge can be formed by cutting, grinding, or chopping tissue matrix to produce particles or fragments. The particles or fragments can then be formed into a slurry by addition of water and cast in a container (e.g., as a sheet or other shape) or applied to a substrate before drying (e.g., by air or freeze drying).Optionally stabilization steps can be performed to cross-link or otherwise stabilize the particle or fragment material. Exemplary tissue products including a sponge or coating for use with or without a polymeric substrate are disclosed in U.S. Pat. No. 9,382,422, which issued on Jul. 5, 2016 to LifeCell Corporation.
- As noted, the tissue product can include a substrate material that is coated with or encased with a tissue matrix. An exemplary product including a
substrate layer 22 is illustrated inFIG. 3 . Theproduct 10′ is similar to those discussed above, including thetissue product 12′ and surfaces 14′, 16′ but further including a synthetic or biologic supportingsubstrate 22. Thesubstrate 22 can include suitable polymeric materials including, for example, amesh 24 formed of filaments, such as polypropylene. In one aspect, the substrate can be substantially non-absorbable or non-biodegradable. In another aspect, the substrate can be absorbable. The absorbable mesh can be a polymer selected from the group consisting of polyhydroxyalkanoate, polyglycolic acid, poly-1-lactic acid, polylactic/polyglycolic acid (PLGA), polygalactin 910, and carboxymethyl cellulose. The polymer can include poly-4-hydroxybutyrate. The substrate can be a synthetic substrate; the synthetic substrate can include polypropylene. - In some embodiments, a tissue matrix sponge is formed from adipose tissue. Suitable adipose tissues are described generally in US Patent Publication Number 2012/0310367 A1 (U.S. patent application Ser. No. 13/483,674, filed May 30, 2012, to Connor). Such adipose materials can be formed generally by mechanical homogenization, washing, resuspension, and stabilization of the material. The material may be dried (e.g. by freeze drying before or after stabilization), and stabilization can further be used to bond or attach the sponge to the other material. In addition, the sponge may be sterilized before or after joining to the intact tissue matrix. Sterilization may be performed after the components of the devices described herein are joined. Further, the sponge may be formed while in contact with the intact acellular tissue matrix components or may be formed separately prior to joining.
- The tissue products and their methods of production can be used for the treatment of a variety of conditions. For example,
FIG. 4 is a cross-sectional view of anabdominal wall 150 treated usingtissue products 10 of the present disclosure. As shown, thetissue product 10 can be used to reinforce abdominal fascia but could also be used for other aspects such as closure of askin incision 151, closure of other fascia layers, and use for other non-abdominal indications. The tissue products discussed here can be useful for treatment of any tissue site where it may be desirable to provide a tissue product with increased resistance to abrasion or adhesion. Such tissues can include connective tissue (e.g., tendon, ligaments, or other tissues within or near joints, surrounding muscles, or connecting tissues).
Claims (15)
1. A medical device, comprising:
a collagen-containing tissue matrix;
a synthetic substrate, wherein the collagen-containing tissue matrix is in contact with the synthetic substrate; and
a region of a surface of the collagen-containing tissue matrix comprising a portion that has been treated with transglutaminase.
2. The medical device of claim 1 , wherein the collagen-containing tissue matrix comprises an acellular tissue matrix.
3. The medical device of claim 1 , wherein the collagen-containing tissue matrix is produced from tissue derived from skin.
4. The medical device of claim 1 , wherein the collagen-containing tissue matrix comprises a dermal tissue matrix.
5. The medical device of claim 1 , wherein the device is dry.
6. The medical device of claim 11 , wherein the synthetic substrate comprises a synthetic mesh.
7. The medical device of claim 1 , wherein the synthetic substrate comprises polypropylene filaments.
8. The medical device of claim 1 , wherein the collagen-containing tissue matrix comprises a particulate acellular tissue matrix.
9. The medical device of claim 8 , wherein the particulate acellular tissue matrix has been suspended and stabilized to produce a stable three-dimensional shape coating the synthetic substrate.
10. The medical device of claim 1 , wherein the collagen-containing tissue matrix coats or encases the synthetic substrate.
11. The medical device of claim 1 , wherein the synthetic substrate has a top surface and a bottom surface, the collagen-containing tissue matrix covering the top surface and the bottom surface.
12. The medical device of claim 11 , wherein the region of a surface of the collagen-containing tissue matrix comprising a portion that has been treated with transglutaminase is situated on the top surface.
13. The medical device of claim 12 , further comprising a second region comprising a portion that has been treated with transglutaminase, the second region situated on the bottom surface.
14. The medical device of claim 11 , wherein the region of a surface of the collagen-containing tissue matrix comprising a portion that has been treated with transglutaminase is situated on the bottom surface.
15. The medical device of claim 14 , further comprising a second region comprising a portion that has been treated with transglutaminase, the second region situated on the top surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/357,299 US20230364300A1 (en) | 2017-01-30 | 2023-07-24 | Transglutaminase treated products |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762452000P | 2017-01-30 | 2017-01-30 | |
US15/882,400 US10413634B2 (en) | 2017-01-30 | 2018-01-29 | Transglutaminase treated products |
US16/546,608 US10814033B2 (en) | 2017-01-30 | 2019-08-21 | Transglutaminase treated products |
US17/063,863 US11724004B2 (en) | 2017-01-30 | 2020-10-06 | Transglutaminase treated products |
US18/357,299 US20230364300A1 (en) | 2017-01-30 | 2023-07-24 | Transglutaminase treated products |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/063,863 Division US11724004B2 (en) | 2017-01-30 | 2020-10-06 | Transglutaminase treated products |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230364300A1 true US20230364300A1 (en) | 2023-11-16 |
Family
ID=61224534
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/882,400 Active US10413634B2 (en) | 2017-01-30 | 2018-01-29 | Transglutaminase treated products |
US16/546,608 Active US10814033B2 (en) | 2017-01-30 | 2019-08-21 | Transglutaminase treated products |
US17/063,863 Active 2039-05-23 US11724004B2 (en) | 2017-01-30 | 2020-10-06 | Transglutaminase treated products |
US18/357,299 Pending US20230364300A1 (en) | 2017-01-30 | 2023-07-24 | Transglutaminase treated products |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/882,400 Active US10413634B2 (en) | 2017-01-30 | 2018-01-29 | Transglutaminase treated products |
US16/546,608 Active US10814033B2 (en) | 2017-01-30 | 2019-08-21 | Transglutaminase treated products |
US17/063,863 Active 2039-05-23 US11724004B2 (en) | 2017-01-30 | 2020-10-06 | Transglutaminase treated products |
Country Status (7)
Country | Link |
---|---|
US (4) | US10413634B2 (en) |
EP (1) | EP3573674A1 (en) |
JP (1) | JP6942191B2 (en) |
CN (2) | CN111544652A (en) |
AU (1) | AU2018212908A1 (en) |
CA (1) | CA3051145A1 (en) |
WO (1) | WO2018140853A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018140853A1 (en) * | 2017-01-30 | 2018-08-02 | Lifecell Corporation | Transglutaminase treated products |
US11998654B2 (en) | 2018-07-12 | 2024-06-04 | Bard Shannon Limited | Securing implants and medical devices |
MX2021014988A (en) * | 2019-06-07 | 2022-03-17 | Lifecell Corp | Coated polymeric material. |
CN113081482B (en) * | 2021-04-23 | 2024-02-27 | 柏为(武汉)医疗科技股份有限公司 | Middle ear anti-adhesion membrane and preparation method thereof |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5230097A (en) | 1975-09-02 | 1977-03-07 | Kaneyasu Miyata | Method of mounting different substitute blood vessel |
CA2051092C (en) | 1990-09-12 | 2002-07-23 | Stephen A. Livesey | Method and apparatus for cryopreparation, dry stabilization and rehydration of biological suspensions |
US8067149B2 (en) | 1990-09-12 | 2011-11-29 | Lifecell Corporation | Acellular dermal matrix and method of use thereof for grafting |
US5336616A (en) | 1990-09-12 | 1994-08-09 | Lifecell Corporation | Method for processing and preserving collagen-based tissues for transplantation |
US5374539A (en) | 1991-06-17 | 1994-12-20 | Nimni; Marcel E. | Process for purifying collagen and generating bioprosthesis |
US5549904A (en) * | 1993-06-03 | 1996-08-27 | Orthogene, Inc. | Biological adhesive composition and method of promoting adhesion between tissue surfaces |
EP0821573A4 (en) | 1995-04-19 | 2000-08-09 | St Jude Medical | Matrix substrate for a viable body tissue-derived prosthesis and method for making the same |
US5782915A (en) | 1995-09-15 | 1998-07-21 | Stone; Kevin R. | Articular cartilage heterografts |
US6166288A (en) | 1995-09-27 | 2000-12-26 | Nextran Inc. | Method of producing transgenic animals for xenotransplantation expressing both an enzyme masking or reducing the level of the gal epitope and a complement inhibitor |
ES2263185T3 (en) | 1996-12-10 | 2006-12-01 | Purdue Research Foundation | BIOMATERIAL DERIVED FROM VERPABRADO HEPATIC FABRIC. |
DE19828726A1 (en) | 1997-06-27 | 1999-01-07 | Augustinus Dr Bader | Preparation of bio-artificial transplant |
US6123731A (en) * | 1998-02-06 | 2000-09-26 | Osteotech, Inc. | Osteoimplant and method for its manufacture |
WO1999044533A1 (en) | 1998-03-06 | 1999-09-10 | Crosscart, Inc. | Soft tissue xenografts |
US6383732B1 (en) | 1999-02-11 | 2002-05-07 | Crosscart, Inc. | Method of preparing xenograft heart valves |
EP1082006B1 (en) | 1998-05-26 | 2006-02-01 | Lifecell Corporation | Cryopreservation of human red blood cells |
US20030068815A1 (en) | 1999-02-11 | 2003-04-10 | Stone Kevin R. | Sterilized xenograft tissue |
US6267786B1 (en) | 1999-02-11 | 2001-07-31 | Crosscart, Inc. | Proteoglycan-reduced soft tissue xenografts |
US20070009586A1 (en) | 2000-02-29 | 2007-01-11 | Cohen Kelman I | Wound dressings containing complexes of transition metals and alginate for elastase sequestering |
GB0011356D0 (en) * | 2000-05-12 | 2000-06-28 | Univ Nottingham Trent | Medical implant materials |
CA2419817C (en) | 2000-08-16 | 2014-11-18 | Duke University | Decellularized tissue engineered constructs and tissues |
JP2004529711A (en) | 2001-05-07 | 2004-09-30 | クロスカート インコーポレイテッド | Submucosal xenograft |
TWI284665B (en) | 2001-08-17 | 2007-08-01 | Univ Nat Cheng Kung | Fabrication method of the porous collagen matrix |
CA2463850C (en) | 2001-10-18 | 2013-03-26 | Lifecell Corporation | Remodeling of tissues and organs |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
WO2003059061A1 (en) | 2002-01-11 | 2003-07-24 | Purdue Research Foundation | Biomaterial derived from vertebrate liver tissue |
CN1653227A (en) | 2002-04-05 | 2005-08-10 | 诺维信北美公司 | Improvement of strength and abrasion resistance of durable press finished cellulosic materials |
AUPS242702A0 (en) | 2002-05-21 | 2002-06-13 | Colltech Australia Limited | Improved method for the extraction and purification of collagen |
US6835385B2 (en) | 2002-06-14 | 2004-12-28 | Carol J. Buck | Compositions and methods for softening, thinning and removing hyperkeratotic tissue |
WO2004020470A1 (en) | 2002-08-28 | 2004-03-11 | Tissue Engineering Initiative Co., Ltd. | Process for producing collagen treated with cysteine protease and collagen treated with cysteine protease |
JP3658385B2 (en) | 2002-09-20 | 2005-06-08 | 佳宏 高見 | Method for decellularization of skin, decellularized dermal matrix by the method, method for producing the same, and complex cultured skin using the matrix |
US20040191226A1 (en) | 2002-12-04 | 2004-09-30 | Badylak Stephen F. | Method for repair of body wall |
US20040176855A1 (en) | 2003-03-07 | 2004-09-09 | Acell, Inc. | Decellularized liver for repair of tissue and treatment of organ deficiency |
CA2533259C (en) | 2003-07-21 | 2014-01-28 | Lifecell Corporation | Acellular tissue matrices made from galactose .alpha.-1,3-galactose-deficient tissue |
US7901461B2 (en) * | 2003-12-05 | 2011-03-08 | Ethicon, Inc. | Viable tissue repair implants and methods of use |
US20050186286A1 (en) | 2004-02-25 | 2005-08-25 | Yoshihiro Takami | Skin decellularization method, acellular dermal matrix and production method therefore employing said decellularization method, and composite cultured skin employing said matrix |
EP2433492B1 (en) | 2004-03-17 | 2018-04-25 | Revivicor Inc. | Tissue products derived from animals lacking any expression of functional alpha 1,3 galactosyltransferase |
GB0420091D0 (en) * | 2004-09-10 | 2004-10-13 | Univ Nottingham Trent | Medical implant materials |
US20060073592A1 (en) | 2004-10-06 | 2006-04-06 | Wendell Sun | Methods of storing tissue matrices |
US20070010897A1 (en) | 2005-01-06 | 2007-01-11 | Stone Kevin R | Immunochemically modified and sterilized xenografts and allografts |
US9216236B2 (en) | 2005-03-07 | 2015-12-22 | Technion Research & Development Foundation Limited | Natural tissue-derived decellularized matrix and methods of generating and using same |
GB0515003D0 (en) * | 2005-07-21 | 2005-08-31 | Univ Aston | Medical devices and coatings therefor |
US8470520B2 (en) | 2005-08-26 | 2013-06-25 | Regents Of The University Of Minnesota | Decellularization and recellularization of organs and tissues |
JP5002805B2 (en) | 2005-10-14 | 2012-08-15 | 財団法人ヒューマンサイエンス振興財団 | Production method of biological scaffold |
US20070248575A1 (en) | 2006-04-19 | 2007-10-25 | Jerome Connor | Bone graft composition |
JP5050197B2 (en) | 2006-07-31 | 2012-10-17 | 財団法人ヒューマンサイエンス振興財団 | Production method of biological scaffold |
EP2111239B1 (en) * | 2006-12-15 | 2013-03-06 | Lifebond Ltd. | Gelatin-transglutaminase hemostatic dressings and sealants |
WO2008109407A2 (en) | 2007-03-02 | 2008-09-12 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Extracellular matrix-derived gels and related methods |
WO2008125850A2 (en) | 2007-04-16 | 2008-10-23 | Tissue Science Laboratories Plc | Methods and compositions for tissue regeneration |
US20100179639A1 (en) | 2007-04-16 | 2010-07-15 | Stephen Bloor | Vascular implant |
WO2008146956A1 (en) | 2007-05-06 | 2008-12-04 | Byoung-Hyun Min | Therapeutic composite for cartilage disorder using extracellular matrix (ecm) scaffold |
EP2011524A1 (en) * | 2007-07-02 | 2009-01-07 | Omrix Biopharmaceuticals Ltd. | Fibrin glue with a visualization agent |
ES2714365T3 (en) | 2007-07-10 | 2019-05-28 | Lifecell Corp | Acellular tissue matrix compositions for tissue repair |
CZ301086B6 (en) | 2007-10-17 | 2009-11-04 | Bio-Skin, A. S. | Sterile autogenous, allogenic or xenogenic implant and process for preparing thereof |
TWI353845B (en) | 2008-03-19 | 2011-12-11 | Food Industry Res & Dev Inst | Process for preparing peptide products for promoti |
GB0807868D0 (en) | 2008-04-30 | 2008-06-04 | Knight David P | Cartilage repair material and a method for the preparation thereof |
EP2902044B1 (en) | 2008-06-06 | 2017-11-08 | Lifecell Corporation | Elastase treatment of tissue matrices |
CN102124058B (en) | 2008-06-18 | 2014-05-28 | 生命连结有限公司 | Improved cross-linked compositions |
JP2011526811A (en) | 2008-07-01 | 2011-10-20 | クック・バイオテック・インコーポレイテッド | Isolated extracellular matrix material containing subserosa fascia |
US7927414B2 (en) | 2008-09-05 | 2011-04-19 | Ethicon, Inc. | Method of manufacturing acellular matrix glue |
US8980296B2 (en) | 2009-02-18 | 2015-03-17 | Cormatrix Cardiovascular, Inc. | Compositions and methods for preventing cardiac arrhythmia |
WO2010101962A1 (en) | 2009-03-02 | 2010-09-10 | The Children's Mercy Hospital | Tissue engineered human pulmonary valves with cyclic pressure bioreactor accelerated seeding strategies and methods for assessing inflammatory potential of putative scaffolds for tissue engineered heart valves |
US9155323B2 (en) | 2009-05-15 | 2015-10-13 | Siebte Pmi Verwaltungs Gmbh | Aqueous process for preparing protein isolate and hydrolyzed protein from an oilseed |
US8198408B2 (en) | 2009-07-27 | 2012-06-12 | National Cheng Kung University | Method for preparing porous collagen matrices |
WO2011014155A1 (en) | 2009-07-27 | 2011-02-03 | National Cheng Kung University | Preparation of high purity collagen |
EP3545980A1 (en) | 2010-02-26 | 2019-10-02 | DeCell Technologies Inc. | Methods for tissue decellularization |
WO2012006390A1 (en) | 2010-07-08 | 2012-01-12 | Lifecell Corporation | Method for shaping tissue matrices |
GB2482166A (en) | 2010-07-22 | 2012-01-25 | Tissue Science Lablratories Ltd | Manufacture of collagenous material from use in therapy from collagen particles |
CN103118713B (en) | 2010-08-05 | 2016-06-01 | 生命连结有限公司 | Dry composition wound dressing and binding agent |
SG10201607262PA (en) | 2010-08-30 | 2016-10-28 | Harvard College | A High Strength Chitin Composite Material and Method of Making |
US9238793B2 (en) | 2011-04-28 | 2016-01-19 | Lifecell Corporation | Method for enzymatic treatment of tissue products |
CA2832731C (en) | 2011-04-28 | 2020-04-14 | Lifecell Corporation | Method for enzymatic treatment of tissue products |
US10207025B2 (en) | 2011-04-28 | 2019-02-19 | Lifecell Corporation | Method for enzymatic treatment of tissue products |
EP2714111B1 (en) | 2011-05-31 | 2021-03-17 | LifeCell Corporation | Adipose tissue matrices |
CN103820412B (en) * | 2013-12-02 | 2016-05-04 | 华东师范大学 | Be used for quick-acting haemostatic powder product of clinical operation wound and its preparation method and application |
CN105802251B (en) * | 2016-04-25 | 2019-09-17 | 成都大学 | A kind of self assembly collagen template tissue engineering material and the preparation method and application thereof |
JP7143222B2 (en) * | 2016-05-09 | 2022-09-28 | ライフボンド リミテッド | Mesh-based in-situ crosslinkable composition |
WO2018140854A1 (en) | 2017-01-30 | 2018-08-02 | Lifecell Corporation | Tissue matrix materials and enzymatic adhesives |
WO2018140853A1 (en) * | 2017-01-30 | 2018-08-02 | Lifecell Corporation | Transglutaminase treated products |
-
2018
- 2018-01-29 WO PCT/US2018/015684 patent/WO2018140853A1/en unknown
- 2018-01-29 AU AU2018212908A patent/AU2018212908A1/en not_active Abandoned
- 2018-01-29 CN CN202010506398.1A patent/CN111544652A/en active Pending
- 2018-01-29 EP EP18705232.9A patent/EP3573674A1/en not_active Withdrawn
- 2018-01-29 CN CN201880009304.0A patent/CN110290817B/en active Active
- 2018-01-29 CA CA3051145A patent/CA3051145A1/en active Pending
- 2018-01-29 US US15/882,400 patent/US10413634B2/en active Active
- 2018-01-29 JP JP2019540416A patent/JP6942191B2/en active Active
-
2019
- 2019-08-21 US US16/546,608 patent/US10814033B2/en active Active
-
2020
- 2020-10-06 US US17/063,863 patent/US11724004B2/en active Active
-
2023
- 2023-07-24 US US18/357,299 patent/US20230364300A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US11724004B2 (en) | 2023-08-15 |
EP3573674A1 (en) | 2019-12-04 |
US10413634B2 (en) | 2019-09-17 |
CN110290817A (en) | 2019-09-27 |
CN110290817B (en) | 2020-07-03 |
CN111544652A (en) | 2020-08-18 |
US20210015970A1 (en) | 2021-01-21 |
US10814033B2 (en) | 2020-10-27 |
US20190374678A1 (en) | 2019-12-12 |
WO2018140853A8 (en) | 2019-07-18 |
AU2018212908A1 (en) | 2019-08-08 |
US20180214602A1 (en) | 2018-08-02 |
CA3051145A1 (en) | 2018-08-02 |
WO2018140853A1 (en) | 2018-08-02 |
JP2020505154A (en) | 2020-02-20 |
JP6942191B2 (en) | 2021-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11724004B2 (en) | Transglutaminase treated products | |
CA2809262C (en) | Biomaterials with enhanced properties and devices made therefrom | |
US20210290735A1 (en) | Tissue matrix materials and enzymatic adhesives | |
AU2011276246A1 (en) | Method for shaping tissue matrices | |
US10792394B2 (en) | Methods for localized modification of tissue products | |
Scarritt et al. | Biologic scaffolds composed of extracellular matrix for regenerative medicine | |
PT1171175E (en) | Active agent coated endoprosthesis with long-term stability | |
AU2017201003B2 (en) | Biomaterials with enhanced properties and devices made therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LIFECELL CORPORATION, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, YI;COLLINS, SEAN;HUANG, LI TING;AND OTHERS;SIGNING DATES FROM 20170322 TO 20171009;REEL/FRAME:064358/0246 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |