US20230355582A1 - Modified release formulation - Google Patents

Modified release formulation Download PDF

Info

Publication number
US20230355582A1
US20230355582A1 US18/355,618 US202318355618A US2023355582A1 US 20230355582 A1 US20230355582 A1 US 20230355582A1 US 202318355618 A US202318355618 A US 202318355618A US 2023355582 A1 US2023355582 A1 US 2023355582A1
Authority
US
United States
Prior art keywords
modified release
afq056
release formulation
minutes
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/355,618
Inventor
Bruno Galli
Jean-Marie GLANTZMANN
Arnaud Grandeury
Klaus-Peter MOLL
Martin MUELLER-ZSIGMONDY
Karsten PUTZBACH
Dirk Spickermann
Hubert Thoma
Mike UFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51211272&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20230355582(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Novartis AG filed Critical Novartis AG
Priority to US18/355,618 priority Critical patent/US20230355582A1/en
Publication of US20230355582A1 publication Critical patent/US20230355582A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/02Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/34Tobacco-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse

Definitions

  • the drug substance AFQ056 is a subtype-selective, non-competitive antagonist at the metabotropic glutamate receptor 5 (mGluR5).
  • Glutamate is the main excitatory neurotransmitter in the nervous system and as such is involved in a variety of physiological and pathophysiological functions. Excessive glutamatergic transmission has been shown to play a role in both movement disorders and psychiatric conditions and the pharmacological use of glutamate receptor antagonists has shown efficacy in these indications.
  • AFQ056 has the molecular formula C 19 H 23 NO 3 and the following structural formula:
  • AFQ056 is a chiral molecule with 3 asymmetric carbon atoms and has a melting point of about 115° C. One single polymorph has been identified.
  • WO 03/047581 describes the preparation of AFQ056 and its use as a pharmaceutical, especially in the treatment of nervous system disorders including Parkinson's disease.
  • Parkinson's disease PD
  • L-dopa a precursor of dopamine
  • LIDs dyskinesias
  • AFQ056 has previously been formulated as a hard gelatin capsule and as a powder for oral suspension, both with immediate release (IR) properties.
  • Results in Parkinson's disease patients administered AFQ056 demonstrate a reduction in L-dopa induced dyskinesias without inducing any clinically or statistically significant worsening of the underlying Parkinsonian motor symptoms.
  • the most frequent adverse events observed in patients are in the nervous system and psychiatric system organ class, including dizziness, dyskinesia, nausea, fatigue, and hallucinations. Results also revealed that a significant proportion of patients did not achieve and maintain the target dose throughout the study, presumably due to tolerability issues such as dizziness.
  • the IR formulation used in these studies required twice-daily dosing.
  • modified release formulations are the prolonged blood plasma levels of drug compared to an immediate release formulation.
  • Modified release formulations usually contain more of the drug than the single dose administered in an immediate release dose form. If the formulation releases the drug at a rate that is faster than the intended controlled release rate (often referred to as dose dumping), there is a risk of overdosing with potential severe consequences for the patient.
  • US 2003/0118641 relates to abuse-resistant sustained release opioid formulations using an ionic exchange resin.
  • WO 2008/086804 describes the preparation of pharmaceutical compositions comprising polyglycols that mitigate the risk of alcohol induced dose dumping and that reduce the risk of drug abuse.
  • US 2008/0085305 refers to robust sustained release formulations based on hydrophilic gums that resist dose dumping when ingested with alcohol.
  • Roberts et al. (Int. Journal of Pharmaceutics 2007, 332, p. 31-37) describe the influence of ethanol on an oral dosage form comprising hypromellose matrices and aspirin.
  • no modified release formulation has been developed that takes into account the specificities of AFQ056 and at at the same time eliminates the risk for alcohol induced does dumping after co-ingestion.
  • a safe modified release formulation preferably a once daily dose, with a lowered Cmax/AUC ratio relevant for tolerability, efficacy and compliance, thus allowing more patients to be treated with clinically efficacious doses of AFQ056.
  • a pharmaceutical formulation that prevents drug abuse, in particular regarding a concomitant consumption of alcoholic beverages.
  • the present invention provides drug products comprising AFQ056 having modified drug substance release properties.
  • a modified release formulation comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form, and a modified release agent, preferably hydroxy propyl methylcellulose (also known as hypromellose), together with one or more pharmaceutically acceptable excipients.
  • a modified release formulation comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form as active pharmaceutical ingredient and a modified release agent, preferably hydroxyl propyl methylcellulose, such that the active pharmaceutical ingredient is released from the formulation in a controlled fashion over a period of 6 hours, or over a period of 7 hours, so that at least 80% of the active pharmaceutical ingredient has been released at the end of this period.
  • a modified release agent preferably hydroxyl propyl methylcellulose
  • the drug products in the form of modified release formulations of the present invention release AFQ056 in a range of from about 14% to about 20% after 60 minutes; about 51% to about 61% after 180 minutes; about 67% to about 77% after 240 minutes; about 90% to about 95% after 360 minutes; and about 95% to about 99% after 420 minutes.
  • a modified release formulation comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form that exhibits a similar or decreased release rate in ethanol containing media as compared to a purely aqueous media.
  • the drug substance has a particle size distribution of ⁇ 10 ⁇ 50 ⁇ m, ⁇ 50 ⁇ 100 ⁇ m and ⁇ 90 ⁇ 200 ⁇ m.
  • the drug products of the present invention are single unit dosage forms with AFQ056 present in an amount of about 25 mg to about 250 mg.
  • AFQ056 is present in an amount of about 50 to about 200 mg, more preferably in an amount of about 75 to 150 mg, more preferably in an amount of about 100 mg.
  • the pharmaceutical composition comprises a coating.
  • a single unit dosage form comprising about 25 mg to about 250 mg AFQ056, about 69 mg to about 135 mg hypromellose (type 2208 characterized by viscosities between about 80 to about 120 cP (2% in water at 20° C.)) about 20 mg to about 160 mg lactose monohydrate, about 3 mg to about 38 mg sodium starch glycolate, about 2 mg to about 4.5 mg Magnesium stearate and about 1 mg to about 2.2 mg colloidal silicon dioxide.
  • the drug product is a pharmaceutical composition comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in the form of a single unit dosage form comprising equal to or less than 100 mg AFQ056 compressed to round tablets with a diameter of about 8 mm.
  • the drug product comprising AFQ056 is in the form of a single unit dosage form comprising more than 100 mg AFQ056 compressed to round tablets with a diameter of about 11 mm.
  • a process for the production of a composition comprising AFQ056 and having modified release properties.
  • the process comprises
  • a modified release formulation in the manufacture of a medicament for the treatment of Parkinson's disease L-dopa induced dyskinesia, Fragile X syndrome (Martin-Bell syndrome), dyskinesia in Fragile X syndrome, obsessive compulsory disorders, autism, cystitis, and for the treatment, prevention or delay of progression of acute, traumatic and chronic degenerative processes of the nervous system, such as Parkinson's disease, senile dementia, Alzheimer's disease, Huntington's chorea, amyotrophic lateral sclerosis and multiple sclerosis, diseases such as schizophrenia and anxiety, depression, pain, itch and drug abuse such as alcohol and nicotine abuse and cocaine use disorders.
  • a method of treating a patient with Parkinson's disease and exhibiting L-dopa induced dyskinesia which comprises administering to said patient an effective amount of the drug product comprising AFQ056 with a modified release profile of Cmax/AUC of about, 0.08 to about 0.18 and a Tmax of about 4 hours to about 6 hours.
  • FIG. 1 A shows the dissolution profiles of two modified release formulations (Form A and Form B) and of a formulation for a capsule (immediate release form 50 mg).
  • FIG. 1 B shows the in vivo—in vitro correlation (IVIVC) of modified release formulations for Form B.
  • IVIVC in vitro correlation
  • FIG. 1 C shows the in vivo—in vitro correlation (IVIVC) of modified release formulations for Form B.
  • IVIVC in vitro correlation
  • FIG. 1 D shows the in vivo—in vitro correlation (IVIVC) of a formulation for a capsule (immediate release form 50 mg).
  • IVIVC in vitro correlation
  • FIG. 1 E shows pharmacokinetic (PK) profiles of the two modified release formulations (Form A and Form B) and the formulation for a capsule (immediate release form 50 mg).
  • FIG. 2 graphically depicts the solubility of AFQ056 at 37° C. in different aqueous media.
  • FIG. 2 shows that raising ethanol levels in the pure aqueous solution lead to a steadily increasing solubility of AFQ056.
  • 0.5% LDAO Liauryldimethylamine N-oxide
  • LDAO Lauryldimethylamine N-oxide
  • the LDAO in water solution and the water-ethanol solution show a different solubility pattern of AFQ056.
  • the solubility of AFQ056 remains comparable.
  • both the LDAO in water solution and the water-ethanol solution show a similar solubility for AFQ056.
  • the solubility with/without LDAO is dominated by the presence of the ethanol.
  • FIG. 3 shows the dissolution rate of the modified release form. All modified release dosage strengths show consistently a lower dissolution rate in the presence of 20% ethanol. When tested with a biorelevant dissolution rate method, all modified release dosage strengths show consistently a lower dissolution rate in the presence of 20% ethanol. Based on the solubilities, one would have expected rather the same dissolution rate.
  • FIG. 4 graphically depicts the dissolution rates of the modified release form and of the immediate release form in the presence of ethanol, the latter consistently showing a trend to faster dissolution rate in the presence of 20% and 40% Ethanol which is expected from solubility at the respective ethanolic concetrations.
  • immediate release (IR) dosage strengths show consistently a trend to faster dissolution rate in the presence of 20% and 40% ethanol which is expected.
  • the modified release (MR) forms independent of their strengths are dissolving similarly or at a slower rate in the presence of ethanol. Even in the presence of 40% ethanol despite the high solubility an increase of the dissolution rate is not noted.
  • FIG. 5 A shows the dissolution profile of the immediate release form (capsule) comprising 50 mg AFQ056. After about 30 minutes in the 0.5% LDAO in water solution containing 40% ethanol, a dissolution of 100% is achieved.
  • FIG. 5 B compares the simulated (line) plasma concentration profile to the observed plasma concentration profile of the 50 mg capsule (symbols).
  • FIG. 5 C shows that in the simulation of human PK parameters (simulation of human PK applying the in-vitro in-vivo correlation model) of the 50 mg capsule, the Tmax value in the ethanol containing solution is achieved faster and the Cmax and the AUC 48h are both higher compared to the observed plasma concentrations in study X2101.
  • FIG. 6 A graphically depicts the dissolution profile of the immediate release form (capsule) comprising 400 mg AFQ. After about 30 minutes in the LDAO in water solution containing 40% ethanol, a dissolution of almost 100% is achieved.
  • FIG. 6 B compares a simulated (line) plasma concentration profile to the observed plasma concentration profile of the 400 mg capsule (symbols).
  • FIG. 6 C shows that in the simulation of human PK parameters (simulation of human PK applying the in-vitro in-vivo correlation model) of the 400 mg capsule, the Tmax value in the ethanol containing solution is achieved faster and the Cmax and the AUC 48h are both higher compared to the observed plasma concentrations in study X2101.
  • FIG. 7 A graphically depicts the dissolution profile of the modified release form comprising 200 mg AFQ056. After 8 hours in the LDAO in water solution containing 40% ethanol, a dissolution of less than 80% was observed.
  • FIG. 7 B compares the simulated (line) plasma concentration profile to human PK data of MR Form B (symbols) observed.
  • FIG. 7 C shows that in the simulation of human PK parameters (simulation of human PK applying the in-vitro in-vivo correlation model) for Form B, the Tmax value in the ethanol containing solution is almost identical and the Cmax and the AUC 48h are both almost equal to the observed plasma concentrations in study X2101.
  • FIG. 8 A provides a comparative dissolution profile of AFQ056 modified release film-coated tablets studied in a human experiment. It is shown that the modified release tablets release the active pharmaceutical ingredient in a controlled fashion almost linearly during several hours. At the end of a period of 6 hours, or at the end of a period of 7 hours, at least 80% of the active pharmaceutical ingredient has been released.
  • FIG. 8 B provides a comparative dissolution profile of AFQ056 modified release film-coated tablets studied in a human experiment. It is shown that the modified release tablets release the active pharmaceutical ingredient in a controlled fashion almost linearly during several hours. At the end of a period of 6 hours, or at the end of a period of 7 hours, at least 80% of the active pharmaceutical ingredient has been released.
  • FIG. 9 graphically depicts mean (SD) plasma concentration-time profiles of modified release forms compared with a capsule immediate release form, under fasted and fed conditions.
  • FIG. 10 graphically depicts mean (SD) plasma concentration-time profile of a selected modified release formulation B under fasted versus fed conditions.
  • FIG. 11 graphically depicts percent AFQ056 drug substance dissolved after 45 minutes versus AFQ056 drug substance particle size ⁇ 90 value (90% of the particles are smaller or equal).
  • the present invention provides drug products in the form of modified-release formulations of AFQ056, which alter the pharmacokinetic profile of AFQ056, resulting in effective and sustained drug concentration over a longer period of time, reducing the peak to trough ratio.
  • the modified release formulations of the present invention have a positive food effect with increased Cmax compared to the fasted state.
  • a modified release form is a solid oral dosage form that permits the release of the active ingredient over an extended period of time to maintain therapeutically effective plasma levels.
  • the modified release formulation may be a controlled release formulation, one that exhibits substantially zero order release kinetics. It may also be a sustained release formulation, which exhibits first order kinetics.
  • An immediate release form is a solid oral dosage form that permits the release of most or all of the active ingredient over a short period of time, such as 60 minutes or less, and make rapid absorption of the drug possible.
  • Dose dumping is an unintended, rapid drug release in a short period of time of the entire amount or of a significant fraction of the active drug substance retained in a release dosage form.
  • AFQ056 The solubility pattern of AFQ056 was examined ( FIGS. 1 A-E ). AFQ056 is hardly soluble in water but soluble in organic solvents such as ethanol. In pure aqueous solutions the solubility of AFQ056 steadily increases with raising ethanol concentrations. The solubility pattern of AFQ056 in a LDAO water-ethanol solution is distinct from the solubility pattern of AFQ056 in a pure aqueous solution only up to an amount of 20% ethanol present in the solution. It was observed that the increase in solubility of AFQ056 by raising the presence of ethanol is even steeper than the solubility of a comparable drug such as aspirin (Roberts et al.; Int.
  • FIGS. 5 A- 5 C and 6 A- 6 C show that the predicted pharmacokinetic parameters of AFQ056 immediate release forms (50 mg AFQ056 capsule and 400 mg AFQ056 capsule) change dramatically in the presence of ethanol.
  • Tmax is reached faster and both Cmax and AUC 48h are higher for an immediate relase form in the presence of ethanol.
  • Immediate release forms of AFQ056 have therefore the inherent risk of dose dumping and can create severe consequences for the patient if ethanol-containing beverages are consumed in parallel.
  • Particle size distribution is also an important factor influencing the dissolution of a drug substance and is known to influence the drug release from matrix tablets.
  • FIG. 3 and FIG. 4 illustrate the release pattern of the present formulations in ethanol containing solutions. It is speculated that the combination of several factors such as the presence of hypromellose, the particle size and the size distribution of the drug substance result in the observed release pattern of the AFQ056 modified release formulations. Surprisingly the predicted pharmacokinetic parameters of the modified release formulation remain almost equal in the presence of ethanol ( FIGS. 7 A- 7 C ). It is therefore shown that the modified release form is dose dumping resistant in the presence of ethanol.
  • AFQ056 may be prepared as described in WO 03/047581, the contents of which are incorporated by reference. In the modified release formulations of the present invention, AFQ056 is present as free base.
  • Excipients that may be used in the formulations of the present invention are standard excipients commonly used for tablet dosage forms and include but are not limited to fillers, modified release agents, disintegrants, lubricants, glidants, solvents, viscosity agents, emulsifiers, binding agents, buffers, bulking agents, coloring agents, taste-improving agents, flow agents, fillers, absorbents and water soluble coatings.
  • fillers which may be used in the formulations of the present invention include but are not limited to lactose monohydrate, dibasic calcium phosphate, calcium carbonate, sugar alcohols (e.g. mannitol), microcrystalline cellulose and starch.
  • lactose monohydrate is used as a filler.
  • modified release agents which may be used in the formulations of the present invention without being resistant to dose dumping in the presence of ethanol include but are not limited to hydroxy propyl methylcellulose (HPMC), also known as hypromellose, (a) hydrophilic carbohydrate macromolecules (acacia, agar, alginic acid, carboxymethylcellulose, carrageenans, dextrin, gellan gum, guar gum, hydroxyethyl cellulose, hydroxypropyl cellulose, hypromellose, maltodextrin, methylcellulose, pectin, propylene glycol alginate, sodium alginate, starch, tragacanth, and xanthan gum) and (b) noncarbohydrate hydrophilic macromolecules, including gelatin, povidone carbomers, polyethylene oxide, and polyvinyl alcohol.
  • HPMC hydroxy propyl methylcellulose
  • hydrophilic carbohydrate macromolecules acacia, agar, alginic acid, carboxymethyl
  • Modified release agents which may be used in formulations of the present invention that are dose dumping resistant in the presence of ethanol are preferably, hypromellose such as hypromellose type 2208 and type 2910 is used. More preferably, Methocel K100 Premium LV CR, Methocel K4M Premium CR, Methocel K15M Premium CR, Methocel K100M Premium CR, Methocel E4M Premium CR, and Methocel E1OM Premium CR is used, in sum characterized by viscosities between about 80 to about 120000 cP (20° C.).
  • binders which may be used in the formulations of the present invention include but are not limited to cellulose derivatives (e.g. hypromellose, hydroxypropylcellulose, methylcellulose), gelatin, polyvinylpyrrolidone, copovidone, starch, sucrose and polyethylene glycol.
  • cellulose derivatives e.g. hypromellose, hydroxypropylcellulose, methylcellulose
  • gelatin e.g. hypromellose, hydroxypropylcellulose, methylcellulose
  • polyvinylpyrrolidone e.g. hypromellose, hydroxypropylcellulose, methylcellulose
  • copovidone e.g. hypromellose, type 2910, is used.
  • glidants may be used in the formulations of the present invention and include e.g. silicon dioxide as precipitated silica and as colloidal silica, colloidal silicon dioxide.
  • colloidal silicon dioxide e.g., Aerosil®is used.
  • disintegrants may be used in the formulations of the present invention, including, but not limited to, sodium starch glycolate, carboxymethylcellulose sodium/croscarmellose Sodium, crospovidone/cross-linked polyvinylpyrrolidone, starches, celluloses and pullulan.
  • sodium starch glycolate is used.
  • lubricants which may be used in the formulations of the present invention, include but are not limited to magnesium stearate, calcium stearate, zinc stearate, stearic acid, sodium benzoate, sodium stearyl fumarate, sodium lauryl sulfate, hydrogenated vegetable oil, glycerides (glyceryl behenate and distearate).
  • magnesium stearate is used as lubricant.
  • Coatings which may be used in the formulations of the present invention include but are not limited to hypromellose, hydroxypropyl cellulose, methylcellulose, povidone, polyvinyl alcohol, Macrogol poly(vinyl alcohol) grafted copolymer and starches.
  • hypromellose macrogol 4000/polyethylene glycol 4000, talc, iron oxide (red, yellow, black), and titanium dioxide is used.
  • modified release formulations of the present invention may be made by mixing, aqueous granulation, screening, drying, tablet compression and film-coating steps, all of which are well known in the art.
  • the modified release formulations are made by mixing AFQ056, filler, binder and disintegrant in a high shear granulator for approximately 5 minutes. Purified water is added under mixing and the mixture kneaded in a high shear granulator. The granulate is then passed through a screen using a screening mill and dried in a fluid bed dryer.
  • the granulate After drying, the granulate is mixed with filler, modified release agent and glidant, followed by consecutive sieving using a screening mill and mixing in a diffusion mixer (tumble). A lubricant is sieved and then added to the mixture from the diffusion mixer. The composition is then formed by final mixing.
  • the resulting granules of the composition may have a diameter from a few microns to a few hundred microns; e.g., diameters of at most about 450 microns, e.g., 20 to 450 microns, preferably 50-200 ⁇ m, most preferably, 100-200 ⁇ m.
  • a narrow particle size distribution is preferred.
  • a preferred particle size distribution is ⁇ 10 ⁇ 50 ⁇ m, ⁇ 50 ⁇ 100-150 ⁇ m and ⁇ 90 ⁇ 200-450 ⁇ m, i.e., 10% of particles are smaller than 50 ⁇ m, 50% of particles are smaller than 150 ⁇ m, and 90% of particles are smaller than 450 ⁇ m.
  • the blend is then compressed into tablet cores using a rotary tablet press.
  • a coating mixture in purified water is dispersed and the tablet cores are film coated in a pan coater with perforated coating system.
  • the modified release formulations are made by mixing AFQ056, lactose monohydrate, hypromellose (type 2208) and sodium starch glycolate in a high shear granulator for approximately 5 minutes. Purified water is added under mixing and the mixture kneaded in a high shear granulator. The granulate is then passed through a screen using a screening mill and dried in a fluid bed dyer.
  • the granulate is mixed with hypromellose (type 2208), lactose monohydrate and colloidal silicon dioxide followed by consecutive sieving using a screening mill and mixing in a diffusion mixer (tumble).
  • the magnesium stearate is sieved and then added to the mixture from the diffusion mixer.
  • the composition is formed by final mixing.
  • the blend is then compressed into tablet cores using a rotary tablet press.
  • a coating mixture in purified water is dispersed and the tablet cores are film coated in a pan coater with perforated coating system.
  • the modified release formulations of the present invention are useful in treating Parkinson's disease (PD) and effective amounts of such formulations are administered to such patients.
  • PD Parkinson's disease
  • phrases “effective amount”, “amount effective” or “amounts effective” describe concentrations or amounts of the drug substance according to the present invention, which may be used to produce a favorable change in L-dopa induced motor complications such as dyskinesias (LIDs).
  • the total daily effective amount(s) can be administered in divided doses (e.g., multiple capsules or tablets).
  • the total daily effective amount is delivered in a single dosage form (e.g., one tablet), which in total, delivers an effective amount of AFQ056.
  • a single dosage form e.g., one tablet
  • the drug products of the present invention may be administered multiple times a day, twice a day (b.i.d.) or once a day (o.d.). A once a day dose is preferable since it may lead to increased patient compliance.
  • a single dosage form of the modified release formulation of the present invention provides AFQ056 in an amount of about 25 mg to about 250 mg.
  • a single dosage form of the modified release formulation of the present invention provides AFQ056 in an amount of about 50 to about 200 mg.
  • the drug products of the present invention may be used to treat nervous system disorders mediated in full or in part by mGluR5.
  • Such disorders include Parkinson's disease L-dopa induced dyskinesia, Fragile X syndrome (Martin-Bell syndrome), dyskinesia in Fragile X syndrome, obsessive compulsory disorders, autism, cystitis, acute, traumatic and chronic degenerative diseases of the nervous system such as Parkinson's disease, senile dementia, Alzheimer's disease, Huntington's chorea, amyotrophic lateral sclerosis and multiple sclerosis, psychiatric diseases such as schizophrenia and anxiety, depression, pain, itch and drug abuse, e.g. alcohol and nicotine abuse and cocaine use disorders.
  • the drug products of the present invention may be used in the manufacture of a medicament for the treatment of Parkinson's disease L-dopa induced dyskinesia, Fragile X syndrome (Martin-Bell syndrome), dyskinesia in Fragile X syndrome, obsessive compulsory disorders, autism, cystitis, and for the treatment, prevention or delay of progression of acute, traumatic and chronic degenerative processes of the nervous system, such as Parkinson's disease, senile dementia, Alzheimer's disease, Huntington's chorea, amyotrophic lateral sclerosis and multiple sclerosis, psychiatric diseases such as schizophrenia and anxiety, depression, pain, itch and drug abuse such as alcohol and nicotine abuse and cocaine use disorders.
  • Parkinson's disease L-dopa induced dyskinesia Fragile X syndrome (Martin-Bell syndrome)
  • dyskinesia in Fragile X syndrome obsessive compulsory disorders
  • autism cystitis
  • psychiatric diseases such as schizophrenia and anxiety, depression, pain,
  • the drug products of the present invention are used to treat Parkinson's Disease-Levodopa Induced Dyskinesia (PD-LID).
  • PD-LID Parkinson's Disease-Levodopa Induced Dyskinesia
  • An open-label, randomized, five periods, seven treatments cross-over study in healthy subjects is conducted.
  • a total of forty five (45) subjects are enrolled to obtain data on at least 30 completers.
  • Each subject receives a total of 5 single doses of AFQ056; three doses under fasted conditions and two doses under fed conditions.
  • the study consists of a screening period (up to 27 days), 5 baseline periods, 4 wash out periods of 7-2 days inclusive. 5 treatment periods followed by a Study Completion Evaluation 5-10 days (inclusive) after the last drug administration.
  • Subjects who meet the eligibility criteria at screening are admitted to baseline evaluations for treatment period 1. Subjects are admitted to the study site at least 12 hours prior to dosing in each period for baseline evaluations. All baseline safety evaluation results must be available prior to dosing. After an overnight fast, subjects are randomized to one of the treatment sequence (Table 2).
  • pharmacokinetic assessments are made up to 72 h post dose.
  • a wash-out period of 7 ⁇ 2 days inclusive separates each treatment period. The washout period is calculated between dose to dose and baseline of subsequent period can overlap with the 5 th day after dosing.
  • the total study duration for each subject lasts a minimum of 53 days and a maximum of 70 days from screening to study completion. Subject are domiciled for approximately 20 days in total (4 days for each period) for all sequences.
  • the study has a 3-Latin, 5-sequences ⁇ 5-period open-label design that is suitable for comparing the pharmacokinetics including relative bioavailability of three modified release formulations of AFQ056.
  • the immediate release capsule formulation size O, IR
  • This study design allows the comparison of pharmacokinetic profile of AFQ056 from three modified release (MR) formulations relative to the IR formulation under fasted conditions, and to assess the food effect on the pharmacokinetics of the three MR forms.
  • Latin-square design is selected as it offers maximum precision of comparison across different treatments with minimum number of study subjects.
  • the cross-over design permits investigation of all five treatment conditions within each subject and is used to account for interindividual variability.
  • a wash out period of at least 5 days ensures complete washout of AFQ056 based on a half life of 7 to 17 hours for 50 mg and for 100 mg doses. Sampling for 72 hours post dose is considered sufficient for characterizing the PK profiles of all formulations, including the MR forms.
  • Mean (SD) plasma concentration-time profile of selected modified release formulation form B, fasted versus fed, is depicted in FIG. 10 .
  • the tablet core is formulated using common excipients for such pharmaceutical dosage forms. Release of the drug substance from the tablet core occurs through an erosion and diffusion mechanism, and is controlled by the hypromellose (type 2208) content of the formulated product. A pharmacokinetic study is performed using different 100 mg modified release tablet formulations in order to evaluate the impact of delaying release of the active ingredient.
  • the same ratio of excipients in the 100 mg tablet core is used to create the additional dosage strengths.
  • the lower dosage strengths e.g. 25 mg, 50 mg and 75 mg use lactose monohydrate as compensation for drug substance in order to maintain the tablet weight and size.
  • the tablet cores of dosage strengths less than or equal to 100 mg are compressed to round tablets possessing a diameter of 8 mm.
  • the tablet weight and size are increased.
  • the same formulation principle is applied i.e. using lactose monohydrate as compensation for drug substance.
  • the tablet cores of dosage strengths more than 100 mg are compressed to round tablets possessing a diameter of 11 mm.
  • Table 4 summarizes the tablet core composition of the different dosage strengths.
  • Dissolution of AFQ056 modified release film-coated tablets occurs through an erosion and diffusion mechanism, with a target release time of approximately 6 to 7 hours for >80% of the active ingredient (Table 5).
  • the dissolution method uses dissolution apparatus 2 (paddle) at 100 rpm with 900 ml of Water+0.5% LDAO. Comparative dissolution profiles for AFQ056 modified release film-coated tablets are provided in FIGS. 8 A- 8 B .
  • Particle size distribution is an important factor in dissolution of the modified release forms of the present invention.
  • the following experiments are performed to in order to determine how particle size effects dissolution at various time points.
  • FIG. 11 graphically depicts the percentage of AFQ056 dissolved after 45 minutes versus particle size at ⁇ 90.
  • particle size distribution is a key factor in dissolution rate and thus the performance of the MR Form.
  • the drug substance has a particle size distribution of ⁇ 10 ⁇ 50 ⁇ m, ⁇ 50 ⁇ 100 ⁇ m and ⁇ 90 ⁇ 200 ⁇ m.

Abstract

Drug products in the form of modified release formulations comprising the drug substance (-)-(3aR,45,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester (AFQ056), as well as processes for making such drug products are provided. The drug products are useful in treating patients with Parkinson's disease and exhibiting L-dopa induced dyskinesia.

Description

    BACKGROUND OF THE INVENTION
  • The drug substance AFQ056 is a subtype-selective, non-competitive antagonist at the metabotropic glutamate receptor 5 (mGluR5). Glutamate is the main excitatory neurotransmitter in the nervous system and as such is involved in a variety of physiological and pathophysiological functions. Excessive glutamatergic transmission has been shown to play a role in both movement disorders and psychiatric conditions and the pharmacological use of glutamate receptor antagonists has shown efficacy in these indications.
  • The systemic chemical name for AFQ056 is (-)-(3aR,4S,7aR)-Octahydro-4-hydroxy-4-[(3-methylphenyl)ethynyl]-1H-indole-1-carboxylic acid methyl ester, and is also known as (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester. AFQ056 has the molecular formula C19H23NO3 and the following structural formula:
  • Figure US20230355582A1-20231109-C00001
  • AFQ056 drug substance is a white to practically white powder, which is hardly soluble in water but soluble in organic solvents (distribution coefficient is Log P=4.7). AFQ056 is a chiral molecule with 3 asymmetric carbon atoms and has a melting point of about 115° C. One single polymorph has been identified.
  • WO 03/047581 describes the preparation of AFQ056 and its use as a pharmaceutical, especially in the treatment of nervous system disorders including Parkinson's disease. Parkinson's disease (PD) is a degenerative movement disorder that affects approximately 100-250 cases per 100,000 individuals. Treatment with L-dopa, a precursor of dopamine, constitutes the mainstay and gold standard in the treatment of PD. One of the major problems associated with long-term L-dopa treatment is the development of L-dopa induced motor complications such as dyskinesias (LIDs).
  • AFQ056 has previously been formulated as a hard gelatin capsule and as a powder for oral suspension, both with immediate release (IR) properties. Results in Parkinson's disease patients administered AFQ056 demonstrate a reduction in L-dopa induced dyskinesias without inducing any clinically or statistically significant worsening of the underlying Parkinsonian motor symptoms. The most frequent adverse events observed in patients are in the nervous system and psychiatric system organ class, including dizziness, dyskinesia, nausea, fatigue, and hallucinations. Results also revealed that a significant proportion of patients did not achieve and maintain the target dose throughout the study, presumably due to tolerability issues such as dizziness. The IR formulation used in these studies required twice-daily dosing.
  • Advantages of modified release formulations are the prolonged blood plasma levels of drug compared to an immediate release formulation. Modified release formulations usually contain more of the drug than the single dose administered in an immediate release dose form. If the formulation releases the drug at a rate that is faster than the intended controlled release rate (often referred to as dose dumping), there is a risk of overdosing with potential severe consequences for the patient.
  • An additional safety concern can occur where the drug may interact with alcohol (ethanol) and lead to changes in the pharmacokinetic pattern. Oral formulations are often taken with a commonly available beverage such as water, carbonated beverage etc. or occasionally with an alcohol-containing (ethanol-containing) beverage. Dose dumping needs to be prevented also when the patient consumes alcoholic beverages hours after ingestion of the modified release formulation. Dose dumping needs to be prevented also when patients desire to abuse a drug due to its inherent side effects, like hallucinations etc.
  • US 2003/0118641 relates to abuse-resistant sustained release opioid formulations using an ionic exchange resin. WO 2008/086804 describes the preparation of pharmaceutical compositions comprising polyglycols that mitigate the risk of alcohol induced dose dumping and that reduce the risk of drug abuse. US 2008/0085305 refers to robust sustained release formulations based on hydrophilic gums that resist dose dumping when ingested with alcohol. Roberts et al. (Int. Journal of Pharmaceutics 2007, 332, p. 31-37) describe the influence of ethanol on an oral dosage form comprising hypromellose matrices and aspirin. To the best of the inventors' knowledge no modified release formulation has been developed that takes into account the specificities of AFQ056 and at at the same time eliminates the risk for alcohol induced does dumping after co-ingestion.
  • Therefore, there is a need for a safe modified release formulation, preferably a once daily dose, with a lowered Cmax/AUC ratio relevant for tolerability, efficacy and compliance, thus allowing more patients to be treated with clinically efficacious doses of AFQ056. Furthermore, there is a need for a pharmaceutical formulation that prevents drug abuse, in particular regarding a concomitant consumption of alcoholic beverages.
  • SUMMARY OF THE INVENTION
  • The present invention provides drug products comprising AFQ056 having modified drug substance release properties. In one embodiment of the invention there is provided a modified release formulation comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form, and a modified release agent, preferably hydroxy propyl methylcellulose (also known as hypromellose), together with one or more pharmaceutically acceptable excipients.
  • In one embodiment of the invention there is provided a modified release formulation comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form as active pharmaceutical ingredient and a modified release agent, preferably hydroxyl propyl methylcellulose, such that the active pharmaceutical ingredient is released from the formulation in a controlled fashion over a period of 6 hours, or over a period of 7 hours, so that at least 80% of the active pharmaceutical ingredient has been released at the end of this period.
  • The drug products in the form of modified release formulations of the present invention release AFQ056 in a range of from about 14% to about 20% after 60 minutes; about 51% to about 61% after 180 minutes; about 67% to about 77% after 240 minutes; about 90% to about 95% after 360 minutes; and about 95% to about 99% after 420 minutes.
  • In another embodiment of the invention there is provided a modified release formulation comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form that exhibits a similar or decreased release rate in ethanol containing media as compared to a purely aqueous media.
  • The drug substance has a particle size distribution of ×10≤50 μm, ×50≤100 μm and ×90≤200 μm.
  • In one embodiment of the invention, the drug products of the present invention are single unit dosage forms with AFQ056 present in an amount of about 25 mg to about 250 mg. In a preferred embodiment, AFQ056 is present in an amount of about 50 to about 200 mg, more preferably in an amount of about 75 to 150 mg, more preferably in an amount of about 100 mg.
  • In another embodiment, the pharmaceutical composition comprises a coating.
  • In a further embodiment a single unit dosage form is provided comprising about 25 mg to about 250 mg AFQ056, about 69 mg to about 135 mg hypromellose (type 2208 characterized by viscosities between about 80 to about 120 cP (2% in water at 20° C.)) about 20 mg to about 160 mg lactose monohydrate, about 3 mg to about 38 mg sodium starch glycolate, about 2 mg to about 4.5 mg Magnesium stearate and about 1 mg to about 2.2 mg colloidal silicon dioxide.
  • In another embodiment, the drug product is a pharmaceutical composition comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in the form of a single unit dosage form comprising equal to or less than 100 mg AFQ056 compressed to round tablets with a diameter of about 8 mm. In still another embodiment, the drug product comprising AFQ056 is in the form of a single unit dosage form comprising more than 100 mg AFQ056 compressed to round tablets with a diameter of about 11 mm.
  • In another embodiment of the invention, there is provided a process for the production of a composition comprising AFQ056 and having modified release properties. The process comprises
      • (i) mixing AFQ056 with filler, binder and disintegrant in a high shear granulator
      • (ii) adding purified water under mixing
      • (iii) kneading the mixture in a high shear granulator
      • (iv) passing the granulate through a screen using a screening mill
      • (v) drying the granulate in a fluid bed dryer
      • (vi) mixing the dry granulate with a modified release agent, filler and glidant in a diffusion mixer followed by consecutive sieving and mixing
      • (vii) sieving a lubricant and adding to the mixture from step (vi)
      • (viii) final mixing the mixture from step (vii) in a diffusion mixer.
      • (ix) forming the composition.
  • In another embodiment of the invention there is provided the use of a modified release formulation in the manufacture of a medicament for the treatment of Parkinson's disease L-dopa induced dyskinesia, Fragile X syndrome (Martin-Bell syndrome), dyskinesia in Fragile X syndrome, obsessive compulsory disorders, autism, cystitis, and for the treatment, prevention or delay of progression of acute, traumatic and chronic degenerative processes of the nervous system, such as Parkinson's disease, senile dementia, Alzheimer's disease, Huntington's chorea, amyotrophic lateral sclerosis and multiple sclerosis, diseases such as schizophrenia and anxiety, depression, pain, itch and drug abuse such as alcohol and nicotine abuse and cocaine use disorders.
  • Also provided is a method of treating a patient with Parkinson's disease and exhibiting L-dopa induced dyskinesia, by administering an effective amount of a pharmaceutical composition of the present invention.
  • In another embodiment there is provided a method of treating a patient with Parkinson's disease and exhibiting L-dopa induced dyskinesia, which comprises administering to said patient an effective amount of the drug product comprising AFQ056 with a modified release profile of Cmax/AUC of about, 0.08 to about 0.18 and a Tmax of about 4 hours to about 6 hours.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows the dissolution profiles of two modified release formulations (Form A and Form B) and of a formulation for a capsule (immediate release form 50 mg).
  • FIG. 1B shows the in vivo—in vitro correlation (IVIVC) of modified release formulations for Form B. The calculated profiles are in line with the measured human plasma concentrations and shows the validity of the used prediction model. The measured in-vitro profiles together with the model (not shown) allow to predict the human profiles derived from the in-vitro modified release and immediate release—formulation dissolution data.
  • FIG. 1C shows the in vivo—in vitro correlation (IVIVC) of modified release formulations for Form B. The calculated profiles are in line with the measured human plasma concentrations and shows the validity of the used prediction model. The measured in-vitro profiles together with the model (not shown) allow to predict the human profiles derived from the in-vitro modified release and immediate release—formulation dissolution data.
  • FIG. 1D shows the in vivo—in vitro correlation (IVIVC) of a formulation for a capsule (immediate release form 50 mg). The calculated profiles are in line with the measured human plasma concentrations and shows the validity of the used prediction model. The measured in-vitro profiles together with the model (not shown) allow to predict the human profiles derived from the in-vitro modified release and immediate release—formulation dissolution data.
  • FIG. 1E shows pharmacokinetic (PK) profiles of the two modified release formulations (Form A and Form B) and the formulation for a capsule (immediate release form 50 mg).
  • FIG. 2 graphically depicts the solubility of AFQ056 at 37° C. in different aqueous media. FIG. 2 shows that raising ethanol levels in the pure aqueous solution lead to a steadily increasing solubility of AFQ056. 0.5% LDAO (Lauryldimethylamine N-oxide) is the medium for testing the dissolution rate. Up to the amount of about 20% of ethanol in the solutions, the LDAO in water solution and the water-ethanol solution show a different solubility pattern of AFQ056. Up to 20% of ethanol, the solubility of AFQ056 remains comparable. In the presence of about 40% ethanol in the solutions, both the LDAO in water solution and the water-ethanol solution show a similar solubility for AFQ056. In the presence of 40% ethanol, the solubility with/without LDAO is dominated by the presence of the ethanol.
  • FIG. 3 shows the dissolution rate of the modified release form. All modified release dosage strengths show consistently a lower dissolution rate in the presence of 20% ethanol. When tested with a biorelevant dissolution rate method, all modified release dosage strengths show consistently a lower dissolution rate in the presence of 20% ethanol. Based on the solubilities, one would have expected rather the same dissolution rate.
  • FIG. 4 graphically depicts the dissolution rates of the modified release form and of the immediate release form in the presence of ethanol, the latter consistently showing a trend to faster dissolution rate in the presence of 20% and 40% Ethanol which is expected from solubility at the respective ethanolic concetrations. When tested with a biorelevant dissolution rate method immediate release (IR) dosage strengths show consistently a trend to faster dissolution rate in the presence of 20% and 40% ethanol which is expected. However, the modified release (MR) forms independent of their strengths are dissolving similarly or at a slower rate in the presence of ethanol. Even in the presence of 40% ethanol despite the high solubility an increase of the dissolution rate is not noted.
  • FIG. 5A shows the dissolution profile of the immediate release form (capsule) comprising 50 mg AFQ056. After about 30 minutes in the 0.5% LDAO in water solution containing 40% ethanol, a dissolution of 100% is achieved.
  • FIG. 5B compares the simulated (line) plasma concentration profile to the observed plasma concentration profile of the 50 mg capsule (symbols).
  • FIG. 5C shows that in the simulation of human PK parameters (simulation of human PK applying the in-vitro in-vivo correlation model) of the 50 mg capsule, the Tmax value in the ethanol containing solution is achieved faster and the Cmax and the AUC48h are both higher compared to the observed plasma concentrations in study X2101.
  • FIG. 6A graphically depicts the dissolution profile of the immediate release form (capsule) comprising 400 mg AFQ. After about 30 minutes in the LDAO in water solution containing 40% ethanol, a dissolution of almost 100% is achieved.
  • FIG. 6B compares a simulated (line) plasma concentration profile to the observed plasma concentration profile of the 400 mg capsule (symbols).
  • FIG. 6C shows that in the simulation of human PK parameters (simulation of human PK applying the in-vitro in-vivo correlation model) of the 400 mg capsule, the Tmax value in the ethanol containing solution is achieved faster and the Cmax and the AUC48h are both higher compared to the observed plasma concentrations in study X2101.
  • FIG. 7A graphically depicts the dissolution profile of the modified release form comprising 200 mg AFQ056. After 8 hours in the LDAO in water solution containing 40% ethanol, a dissolution of less than 80% was observed.
  • FIG. 7B compares the simulated (line) plasma concentration profile to human PK data of MR Form B (symbols) observed.
  • FIG. 7C shows that in the simulation of human PK parameters (simulation of human PK applying the in-vitro in-vivo correlation model) for Form B, the Tmax value in the ethanol containing solution is almost identical and the Cmax and the AUC48h are both almost equal to the observed plasma concentrations in study X2101.
  • FIG. 8A provides a comparative dissolution profile of AFQ056 modified release film-coated tablets studied in a human experiment. It is shown that the modified release tablets release the active pharmaceutical ingredient in a controlled fashion almost linearly during several hours. At the end of a period of 6 hours, or at the end of a period of 7 hours, at least 80% of the active pharmaceutical ingredient has been released.
  • FIG. 8B provides a comparative dissolution profile of AFQ056 modified release film-coated tablets studied in a human experiment. It is shown that the modified release tablets release the active pharmaceutical ingredient in a controlled fashion almost linearly during several hours. At the end of a period of 6 hours, or at the end of a period of 7 hours, at least 80% of the active pharmaceutical ingredient has been released.
  • FIG. 9 graphically depicts mean (SD) plasma concentration-time profiles of modified release forms compared with a capsule immediate release form, under fasted and fed conditions.
  • FIG. 10 graphically depicts mean (SD) plasma concentration-time profile of a selected modified release formulation B under fasted versus fed conditions.
  • FIG. 11 graphically depicts percent AFQ056 drug substance dissolved after 45 minutes versus AFQ056 drug substance particle size ×90 value (90% of the particles are smaller or equal).
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides drug products in the form of modified-release formulations of AFQ056, which alter the pharmacokinetic profile of AFQ056, resulting in effective and sustained drug concentration over a longer period of time, reducing the peak to trough ratio. The modified release formulations of the present invention have a positive food effect with increased Cmax compared to the fasted state.
  • A modified release form is a solid oral dosage form that permits the release of the active ingredient over an extended period of time to maintain therapeutically effective plasma levels. The modified release formulation may be a controlled release formulation, one that exhibits substantially zero order release kinetics. It may also be a sustained release formulation, which exhibits first order kinetics.
  • An immediate release form is a solid oral dosage form that permits the release of most or all of the active ingredient over a short period of time, such as 60 minutes or less, and make rapid absorption of the drug possible.
  • Dose dumping is an unintended, rapid drug release in a short period of time of the entire amount or of a significant fraction of the active drug substance retained in a release dosage form.
  • The solubility pattern of AFQ056 was examined (FIGS. 1A-E). AFQ056 is hardly soluble in water but soluble in organic solvents such as ethanol. In pure aqueous solutions the solubility of AFQ056 steadily increases with raising ethanol concentrations. The solubility pattern of AFQ056 in a LDAO water-ethanol solution is distinct from the solubility pattern of AFQ056 in a pure aqueous solution only up to an amount of 20% ethanol present in the solution. It was observed that the increase in solubility of AFQ056 by raising the presence of ethanol is even steeper than the solubility of a comparable drug such as aspirin (Roberts et al.; Int. Journal of Pharmaceutics 2007, 332, p. 31-37). Solubilities of AFQ056 are about 0.02 mg/ml in water and raise up to about 53 mg/ml (factor 2500× solubility increase) in ethanol at room temperature. This is in contrast to 8.4 mg/ml for Aspirin in water raising up to about 237 mg/ml in ethanol (factor 28× solubility increase). It was observed that high concentrations of ethanol significantly raise the dissolution rate and thus have an impact on the pharmacokinetic parameters. FIGS. 5A-5C and 6A-6C show that the predicted pharmacokinetic parameters of AFQ056 immediate release forms (50 mg AFQ056 capsule and 400 mg AFQ056 capsule) change dramatically in the presence of ethanol. Tmax is reached faster and both Cmax and AUC48h are higher for an immediate relase form in the presence of ethanol. Immediate release forms of AFQ056 have therefore the inherent risk of dose dumping and can create severe consequences for the patient if ethanol-containing beverages are consumed in parallel. Particle size distribution is also an important factor influencing the dissolution of a drug substance and is known to influence the drug release from matrix tablets.
  • Description of the dynamics of getting AFQ056 into solution is finally related to various factors such as the intrinsic properties of AFQ056, the composition of the described dissolution media, specific properties of HPMC (hypromellose) influencing solubility/dissolution rate of AFQ056 and the resulting viscosity in the surrounding of the solids to be dissolved.
  • Despite the solubility characteristics of AFQ056 (factor 2500× solubility increase in ethanol compared to water) it was surprisingly found that the release rate of the modified release formulations of the present invention is similar or even slower in ethanol than that in water. FIG. 3 and FIG. 4 illustrate the release pattern of the present formulations in ethanol containing solutions. It is speculated that the combination of several factors such as the presence of hypromellose, the particle size and the size distribution of the drug substance result in the observed release pattern of the AFQ056 modified release formulations. Surprisingly the predicted pharmacokinetic parameters of the modified release formulation remain almost equal in the presence of ethanol (FIGS. 7A-7C). It is therefore shown that the modified release form is dose dumping resistant in the presence of ethanol.
  • AFQ056 may be prepared as described in WO 03/047581, the contents of which are incorporated by reference. In the modified release formulations of the present invention, AFQ056 is present as free base.
  • Excipients that may be used in the formulations of the present invention are standard excipients commonly used for tablet dosage forms and include but are not limited to fillers, modified release agents, disintegrants, lubricants, glidants, solvents, viscosity agents, emulsifiers, binding agents, buffers, bulking agents, coloring agents, taste-improving agents, flow agents, fillers, absorbents and water soluble coatings.
  • Examples of fillers which may be used in the formulations of the present invention include but are not limited to lactose monohydrate, dibasic calcium phosphate, calcium carbonate, sugar alcohols (e.g. mannitol), microcrystalline cellulose and starch. Preferably, lactose monohydrate is used as a filler.
  • Examples of modified release agents which may be used in the formulations of the present invention without being resistant to dose dumping in the presence of ethanol include but are not limited to hydroxy propyl methylcellulose (HPMC), also known as hypromellose, (a) hydrophilic carbohydrate macromolecules (acacia, agar, alginic acid, carboxymethylcellulose, carrageenans, dextrin, gellan gum, guar gum, hydroxyethyl cellulose, hydroxypropyl cellulose, hypromellose, maltodextrin, methylcellulose, pectin, propylene glycol alginate, sodium alginate, starch, tragacanth, and xanthan gum) and (b) noncarbohydrate hydrophilic macromolecules, including gelatin, povidone carbomers, polyethylene oxide, and polyvinyl alcohol. Modified release agents which may be used in formulations of the present invention that are dose dumping resistant in the presence of ethanol are preferably, hypromellose such as hypromellose type 2208 and type 2910 is used. More preferably, Methocel K100 Premium LV CR, Methocel K4M Premium CR, Methocel K15M Premium CR, Methocel K100M Premium CR, Methocel E4M Premium CR, and Methocel E1OM Premium CR is used, in sum characterized by viscosities between about 80 to about 120000 cP (20° C.).
  • Examples of binders which may be used in the formulations of the present invention include but are not limited to cellulose derivatives (e.g. hypromellose, hydroxypropylcellulose, methylcellulose), gelatin, polyvinylpyrrolidone, copovidone, starch, sucrose and polyethylene glycol. In a preferred embodiment hypromellose, type 2910, is used.
  • Various glidants may be used in the formulations of the present invention and include e.g. silicon dioxide as precipitated silica and as colloidal silica, colloidal silicon dioxide. Preferably colloidal silicon dioxide e.g., Aerosil®is used.
  • Various disintegrants may be used in the formulations of the present invention, including, but not limited to, sodium starch glycolate, carboxymethylcellulose sodium/croscarmellose Sodium, crospovidone/cross-linked polyvinylpyrrolidone, starches, celluloses and pullulan. Preferably, sodium starch glycolate is used.
  • Examples of lubricants which may be used in the formulations of the present invention, include but are not limited to magnesium stearate, calcium stearate, zinc stearate, stearic acid, sodium benzoate, sodium stearyl fumarate, sodium lauryl sulfate, hydrogenated vegetable oil, glycerides (glyceryl behenate and distearate). In a preferred embodiment, magnesium stearate is used as lubricant.
  • Coatings which may be used in the formulations of the present invention include but are not limited to hypromellose, hydroxypropyl cellulose, methylcellulose, povidone, polyvinyl alcohol, Macrogol poly(vinyl alcohol) grafted copolymer and starches. In a preferred embodiment hypromellose, macrogol 4000/polyethylene glycol 4000, talc, iron oxide (red, yellow, black), and titanium dioxide is used.
  • The modified release formulations of the present invention may be made by mixing, aqueous granulation, screening, drying, tablet compression and film-coating steps, all of which are well known in the art.
  • For example, the modified release formulations are made by mixing AFQ056, filler, binder and disintegrant in a high shear granulator for approximately 5 minutes. Purified water is added under mixing and the mixture kneaded in a high shear granulator. The granulate is then passed through a screen using a screening mill and dried in a fluid bed dryer.
  • After drying, the granulate is mixed with filler, modified release agent and glidant, followed by consecutive sieving using a screening mill and mixing in a diffusion mixer (tumble). A lubricant is sieved and then added to the mixture from the diffusion mixer. The composition is then formed by final mixing.
  • The resulting granules of the composition may have a diameter from a few microns to a few hundred microns; e.g., diameters of at most about 450 microns, e.g., 20 to 450 microns, preferably 50-200 μm, most preferably, 100-200 μm.
  • A narrow particle size distribution is preferred. For example, a preferred particle size distribution is ×10≤50 μm, ×50≤100-150 μm and ×90≤200-450 μm, i.e., 10% of particles are smaller than 50 μm, 50% of particles are smaller than 150 μm, and 90% of particles are smaller than 450 μm.
  • The blend is then compressed into tablet cores using a rotary tablet press. A coating mixture in purified water is dispersed and the tablet cores are film coated in a pan coater with perforated coating system.
  • Preferably, the modified release formulations are made by mixing AFQ056, lactose monohydrate, hypromellose (type 2208) and sodium starch glycolate in a high shear granulator for approximately 5 minutes. Purified water is added under mixing and the mixture kneaded in a high shear granulator. The granulate is then passed through a screen using a screening mill and dried in a fluid bed dyer.
  • After drying, the granulate is mixed with hypromellose (type 2208), lactose monohydrate and colloidal silicon dioxide followed by consecutive sieving using a screening mill and mixing in a diffusion mixer (tumble). The magnesium stearate is sieved and then added to the mixture from the diffusion mixer. The composition is formed by final mixing. The blend is then compressed into tablet cores using a rotary tablet press. A coating mixture in purified water is dispersed and the tablet cores are film coated in a pan coater with perforated coating system.
  • The modified release formulations of the present invention are useful in treating Parkinson's disease (PD) and effective amounts of such formulations are administered to such patients.
  • The phrases “effective amount”, “amount effective” or “amounts effective” describe concentrations or amounts of the drug substance according to the present invention, which may be used to produce a favorable change in L-dopa induced motor complications such as dyskinesias (LIDs). The total daily effective amount(s) can be administered in divided doses (e.g., multiple capsules or tablets).
  • Preferably, the total daily effective amount is delivered in a single dosage form (e.g., one tablet), which in total, delivers an effective amount of AFQ056. Thus, the drug products of the present invention may be administered multiple times a day, twice a day (b.i.d.) or once a day (o.d.). A once a day dose is preferable since it may lead to increased patient compliance.
  • In accordance with the present invention, a single dosage form of the modified release formulation of the present invention provides AFQ056 in an amount of about 25 mg to about 250 mg. Preferably, a single dosage form of the modified release formulation of the present invention provides AFQ056 in an amount of about 50 to about 200 mg.
  • The drug products of the present invention may be used to treat nervous system disorders mediated in full or in part by mGluR5. Such disorders include Parkinson's disease L-dopa induced dyskinesia, Fragile X syndrome (Martin-Bell syndrome), dyskinesia in Fragile X syndrome, obsessive compulsory disorders, autism, cystitis, acute, traumatic and chronic degenerative diseases of the nervous system such as Parkinson's disease, senile dementia, Alzheimer's disease, Huntington's chorea, amyotrophic lateral sclerosis and multiple sclerosis, psychiatric diseases such as schizophrenia and anxiety, depression, pain, itch and drug abuse, e.g. alcohol and nicotine abuse and cocaine use disorders.
  • The drug products of the present invention may be used in the manufacture of a medicament for the treatment of Parkinson's disease L-dopa induced dyskinesia, Fragile X syndrome (Martin-Bell syndrome), dyskinesia in Fragile X syndrome, obsessive compulsory disorders, autism, cystitis, and for the treatment, prevention or delay of progression of acute, traumatic and chronic degenerative processes of the nervous system, such as Parkinson's disease, senile dementia, Alzheimer's disease, Huntington's chorea, amyotrophic lateral sclerosis and multiple sclerosis, psychiatric diseases such as schizophrenia and anxiety, depression, pain, itch and drug abuse such as alcohol and nicotine abuse and cocaine use disorders.
  • In a preferred embodiment, the drug products of the present invention are used to treat Parkinson's Disease-Levodopa Induced Dyskinesia (PD-LID).
  • The following examples further illustrate the invention, which are not meant in any way to limit the scope thereof.
  • EXAMPLE 1
  • The following formulations (tablet core compositions) of AFQ056 are made:
  • TABLE 1
    IR-Caps Form A Form B Form C
    [mg/ [mg/ [mg/ [mg/
    dose] dose] dose] dose]
    AFQ056 100.00 100.00 100.00 99.00
    Lactose monohydrate 100.00 22.00 22.00 21.78
    Microcrystalline Cellulose 20.00
    Sodium Starch glycolate 16.25 12.50 12.50 12.375
    Hypromellose 10.00 42.80 69.50 71.775
    Colloidal Silicon Dioxide 1.25 0.90 1.00 0.99
    Magnesium stearate 2.50 1.80 2.00 1.98
    Total 250.00 180.00 207.00 207.90
    IR-Caps Form A Form B Form C
    [%] [%] [%] [%]
    AFQ056 40.00 55.56 48.31 47.62
    Hypromellose 4.00 23.78 33.57 34.52
    Lactose monohydrate 40.00 12.22 10.63 10.48
    Microcrystalline Cellulose 8.40
    Sodium Starch glycolate 6.50 6.94 6.04 5.95
    Magnesium stearate 1.00 1.00 0.97 0.95
    Colloidal Silicon Dioxide 0.50 0.50 0.48 0.48
  • Since previous oral formulations have exhibited an increased exposure upon concomitant intake of a high-fat meal, the extent of which has been found to be formulation-dependent, this study is designed to assess the food-effect (by administration of a high fat breakfast) on the PK of the modified release forms.
  • The effect of a high-fat breakfast on the pharmacokinetics and relative bioavailability of three prolonged release formulations of AFQ056 at a single dose of −100 mg (with reference to the fasted state PK) is assessed. In addition, the tolerability of three different prolonged release formulations of AFQ056 at a single dose of 100 mg under fasted and fed conditions is tested
  • An open-label, randomized, five periods, seven treatments cross-over study in healthy subjects is conducted. A total of forty five (45) subjects are enrolled to obtain data on at least 30 completers. Each subject receives a total of 5 single doses of AFQ056; three doses under fasted conditions and two doses under fed conditions.
  • The study consists of a screening period (up to 27 days), 5 baseline periods, 4 wash out periods of 7-2 days inclusive. 5 treatment periods followed by a Study Completion Evaluation 5-10 days (inclusive) after the last drug administration.
  • Subjects who meet the eligibility criteria at screening are admitted to baseline evaluations for treatment period 1. Subjects are admitted to the study site at least 12 hours prior to dosing in each period for baseline evaluations. All baseline safety evaluation results must be available prior to dosing. After an overnight fast, subjects are randomized to one of the treatment sequence (Table 2).
      • Treatment 1: AFQ056 100 mg Form-A. fasted
      • Treatment 2: AFQ056 100 mg Form-A, fed
      • Treatment 3: AFQ056 100 mg Form-B. fasted
      • Treatment 4: AFQ056 100 mg Form-B. fed
      • Treatment 5: AFQ056 99 mg Form-C. fasted
      • Treatment 6: AFQ056 99 mg Form-C, fed
      • Treatment 7: AFQ056 50 mg Capsule, fasted
  • TABLE 2
    Treatment sequenc per
    Sequence Period 1 Period 2 Period 3 Period 4 Period 5
    1 1 2 3 4 7
    2 2 3 4 7 1
    3 3 4 7 1 2
    4 4 7 1 2 3
    5 7 1 2 3 4
    6 1 2 5 6 7
    7 2 5 6 7 1
    8 5 6 7 1 2
    9 6 7 1 2 5
    10 7 1 2 5 6
    11 3 4 5 6 7
    12 4 5 6 7 3
    13 5 6 7 3 4
    14 6 7 3 4 5
    15 7 3 4 5 6
  • Following each single dose of AFQ056, pharmacokinetic assessments are made up to 72 h post dose. A wash-out period of 7±2 days inclusive separates each treatment period. The washout period is calculated between dose to dose and baseline of subsequent period can overlap with the 5th day after dosing.
  • The total study duration for each subject lasts a minimum of 53 days and a maximum of 70 days from screening to study completion. Subject are domiciled for approximately 20 days in total (4 days for each period) for all sequences.
  • The study has a 3-Latin, 5-sequences×5-period open-label design that is suitable for comparing the pharmacokinetics including relative bioavailability of three modified release formulations of AFQ056. The immediate release capsule formulation (size O, IR) is used as a reference to enable comparisons with data obtained in previously completed trials. This study design allows the comparison of pharmacokinetic profile of AFQ056 from three modified release (MR) formulations relative to the IR formulation under fasted conditions, and to assess the food effect on the pharmacokinetics of the three MR forms. Latin-square design is selected as it offers maximum precision of comparison across different treatments with minimum number of study subjects. The cross-over design permits investigation of all five treatment conditions within each subject and is used to account for interindividual variability. A wash out period of at least 5 days ensures complete washout of AFQ056 based on a half life of 7 to 17 hours for 50 mg and for 100 mg doses. Sampling for 72 hours post dose is considered sufficient for characterizing the PK profiles of all formulations, including the MR forms.
  • Comparisons of the concentration-time profile for the fasted and fed conditions for all formulations are provided in FIG. 9 .
  • Mean (SD) plasma concentration-time profile of selected modified release formulation form B, fasted versus fed, is depicted in FIG. 10 .
  • The results of the non-compartmental PK analysis are summarized in Table 3. For better comparability the PK parameters were normalized to dose where necessary.
  • TABLE 3
    Key PK parameters (average +/− SD) from preliminary analysis for
    market formulation (MF) IR and modified-release (MR) formulation
    Cmax/ AUC0- Ratio
    Food Tmax 1) Dose 24 h/dose Cmax/
    State n [h] [ng/mL] [ng*h/mL] AUC
    MR Fasted 23 3.0 1.760 13.027 0.137
    Formulation A (2.0-6.0) (0.754) (4.950) (0.33)
    Fed 23 4.0 3.437 17.612 0.206
    (1.5-10.0) (1.777) (9.919) (0.054)
    MR Fasted 21 4.0 1.076 12.165 0.092
    Formulation B (1.5-6.0) (0.456) (5.766) (0.023)
    Fed 21 6.0 2.555 16.070 0.168
    (2.0-24.0) (1.067) (7.418) (0.051)
    MR Fasted 21 3.0/2.0- 0.926 12.828 0.083
    Formulation C 8.0) (0.281) (6.989) (0.036)
    Fed 22 4.0 2.570 17.595 0.158
    (2.0-8.0) (0.868) (7.600) (0.047)
    IR Capsule Fasted 33 1.0 2.955 14.071 0.221
    (0.5-6.0) (1.340) (6.956) (0.070)
    1) values for Tmax are median (range)
  • Results indicate that modified release (MR) forms show a decrease in Cmax (at Tmax) with very little loss of AUC. Cmax/AUC ratios are favorable for all modified release forms over the intermediate release (IR) form with the best ratio for Form B and C. All MR forms have a positive food effect with increased Cmax compared to the fasted state.
  • EXAMPLE 2
  • The tablet core is formulated using common excipients for such pharmaceutical dosage forms. Release of the drug substance from the tablet core occurs through an erosion and diffusion mechanism, and is controlled by the hypromellose (type 2208) content of the formulated product. A pharmacokinetic study is performed using different 100 mg modified release tablet formulations in order to evaluate the impact of delaying release of the active ingredient.
  • The same ratio of excipients in the 100 mg tablet core is used to create the additional dosage strengths. The lower dosage strengths e.g. 25 mg, 50 mg and 75 mg use lactose monohydrate as compensation for drug substance in order to maintain the tablet weight and size. The tablet cores of dosage strengths less than or equal to 100 mg are compressed to round tablets possessing a diameter of 8 mm.
  • For the higher dosage strengths e.g. 150 mg, 200 mg and 250 mg, the tablet weight and size are increased. The same formulation principle is applied i.e. using lactose monohydrate as compensation for drug substance. The tablet cores of dosage strengths more than 100 mg are compressed to round tablets possessing a diameter of 11 mm. Table 4 summarizes the tablet core composition of the different dosage strengths.
  • TABLE 4
    Tablet core composition overview for AFQ056 MR FCT
    Amount per film-coated tablet (mg)
    Ingredient 25 mg 50 mg 100 mg 150 mg 200 mg 250 mg
    AFQ056 25.00 50.00 100.00 150.00 200.00 250.00
    Lactose 96.30 71.20 22.00 152.00 100.50 55.00
    monohydrate
    Sodium starch 3.13 6.25 12.50 18.75 25.00 31.25
    glycolate
    Hypromellose 79.48 76.35 69.5 120.75 115.90 105.25
    Magnesium 2.00 2.00 2.00 4.50 4.40 4.50
    Stearate
    Colloidal 1.00 1.00 1.00 2.00 2.20 2.00
    silicon
    dioxide
    Core tablet 206.9 206.8 207.0 448.0 448.0 448.0
    weight
  • Dissolution of AFQ056 modified release film-coated tablets occurs through an erosion and diffusion mechanism, with a target release time of approximately 6 to 7 hours for >80% of the active ingredient (Table 5). The dissolution method uses dissolution apparatus 2 (paddle) at 100 rpm with 900 ml of Water+0.5% LDAO. Comparative dissolution profiles for AFQ056 modified release film-coated tablets are provided in FIGS. 8A-8B.
  • TABLE 5
    Dissolution results for AFQ056 MR Film-coated tablets
    Amount of AFQ056 released (%) in:
    Strength/Batch No. 60 min 180 min 240 min 360 min 420 min
    25 mg/X217 0911 13.9 51.4 67.3 90.1 95.6
    50 mg/X218 0911 19.1 59.4 75.9 94.6 98.6
    100 mg/X220 0911 16.1 58.2 73.8 95.3 98.6
    150 mg/X221 0911 20.4 61.1 76.5 95.2 98.1
    200 mg/X266 1111 20.0 57.4 71.5 90.8 95.4
  • EXAMPLE 3
  • Particle size distribution is an important factor in dissolution of the modified release forms of the present invention. The following experiments are performed to in order to determine how particle size effects dissolution at various time points.
  • FIG. 11 graphically depicts the percentage of AFQ056 dissolved after 45 minutes versus particle size at ×90. As can be discerned from the figure, particle size distribution is a key factor in dissolution rate and thus the performance of the MR Form. The drug substance has a particle size distribution of ×10≤50 μm, ×50≤100 μm and ×90≤200 μm.

Claims (10)

1-12. (canceled)
13. A stable modified release formulation comprising (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form as active pharmaceutical ingredient and a modified release agent, wherein the modified release agent is hydroxy propyl methylcellulose, such that the active pharmaceutical ingredient is released from the formulation in a controlled fashion over a period of 6-7 hours such that at least 80% of the active pharmaceutical ingredient has been released at the end of this period, and wherein the formulation exhibits a similar or decreased release rate inethanol containing media as compared to an aqueous media with 0.5% LDAO, and
wherein (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form is present in about 200 mg.
14. The modified release formulation according to claim 13 having the following release characteristics in water: about 14% to about 20% after 60 minutes; about 51% to about 61% after 180 minutes; about 67% to about 77% after 240 minutes; about 90% to about 95% after 360 minutes; and about 95% to about 99% after 420 minutes. The before mentioned release characteristics are obtained by using standard dissolution rate equipment (paddle according to e.g. USP) at 100 rpm with 900 ml of Water+0.5% LDAO.
15. The modified release formulation according to claim 13 further comprising a coating.
16. The modified release formulation according to claim 13 in form of a single unit dosage form comprising 200 mg (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form, about 69 mg to about 135 mg hypromellose (type 2208 characterized by viscosities between about 80 to about 120 cP (20° C.)), about 20 mg to about 160 mg lactose monohydrate, about 3 mg to about 38 mg sodium starch glycolate, about 2 mg to about 4.5 mg Magnesium stearate and about 1 mg to about 2.2 mg colloidal silicon dioxide.
17. The modified release formulation according to claim 13 wherein (-)-(3aR,4S,7aR)-4-Hydroxy-4m-tolylethynyl-octahydro-indole-1-carboxylic acid methyl ester in free base form is present in an amount of about 25-250 mg.
18. The modified release formulation according to claim 13 in single unit dosage form compressed to round tablets with a diameter of about 8 mm.
19. The modified release formulation according to claim 13 in single unit dosage form compressed to round tablets with a diameter of about 11 mm.
20. A process for the production of a modified release formulation of claim 13,
comprising
(i) mixing AFQ056 with filler, binder and disintegrant in a high shear granulator
(ii) adding purified water under mixing
(iii) kneading the mixture in a high shear granulator
(iv) passing the granulate through a screen using a screening mill
(v) drying the granulate in a fluid bed dryer
(vi) mixing the dry granulate with a modified release agent, filler and glidant followed by consecutive sieving using screening mill and mixing in a diffusion mixer
(vii) sieving a lubricant and adding to the mixture from the diffusion mixer
(viii) forming the composition
21. A method of treatment of Parkinson's disease L-dopa induced dyskinesia, Fragile X syndrome (Martin-Bell syndrome), dyskinesia in Fragile X syndrome, obsessive compulsory disorders, autism, cystitis, and for the treatment, prevention or delay of progression of acute, traumatic and chronic degenerative processes of the nervous system, such as Parkinson's disease, senile dementia, Alzheimer's disease, huntington's chorea, amyotrophic lateral sclerosis and multiple sclerosis, psychiatric diseases such as schizophrenia and anxiety, depression, pain, itch and drug abuse such as alcohol and nicotine abuse and cocaine use disorders comprising administration of the formulation of claim 13 to a patient in need thereof.
US18/355,618 2013-06-12 2023-07-20 Modified release formulation Pending US20230355582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/355,618 US20230355582A1 (en) 2013-06-12 2023-07-20 Modified release formulation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361834104P 2013-06-12 2013-06-12
PCT/IB2014/062136 WO2014199316A1 (en) 2013-06-12 2014-06-11 Modified release formulation
US201514897439A 2015-12-10 2015-12-10
US16/898,071 US20210069150A1 (en) 2013-06-12 2020-06-10 Modified release formulation
US18/355,618 US20230355582A1 (en) 2013-06-12 2023-07-20 Modified release formulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/898,071 Division US20210069150A1 (en) 2013-06-12 2020-06-10 Modified release formulation

Publications (1)

Publication Number Publication Date
US20230355582A1 true US20230355582A1 (en) 2023-11-09

Family

ID=51211272

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/897,439 Abandoned US20160128979A1 (en) 2013-06-12 2014-06-11 Modified release formulation
US16/898,071 Pending US20210069150A1 (en) 2013-06-12 2020-06-10 Modified release formulation
US18/355,618 Pending US20230355582A1 (en) 2013-06-12 2023-07-20 Modified release formulation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/897,439 Abandoned US20160128979A1 (en) 2013-06-12 2014-06-11 Modified release formulation
US16/898,071 Pending US20210069150A1 (en) 2013-06-12 2020-06-10 Modified release formulation

Country Status (22)

Country Link
US (3) US20160128979A1 (en)
EP (1) EP3007682B1 (en)
JP (1) JP6444996B2 (en)
KR (1) KR102290249B1 (en)
CN (2) CN105263479A (en)
AU (1) AU2014279743B2 (en)
BR (1) BR112015030431B1 (en)
CA (1) CA2911486C (en)
CL (1) CL2015003596A1 (en)
EA (1) EA031395B1 (en)
ES (1) ES2644698T3 (en)
HK (1) HK1216839A1 (en)
MA (1) MA38646B1 (en)
MX (1) MX369742B (en)
PE (1) PE20160183A1 (en)
PH (1) PH12015502556A1 (en)
PL (1) PL3007682T3 (en)
PT (1) PT3007682T (en)
SG (1) SG11201509178TA (en)
TN (1) TN2015000498A1 (en)
WO (1) WO2014199316A1 (en)
ZA (1) ZA201508228B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050259A1 (en) 2015-09-23 2017-03-30 Xw Laboratories Inc. Prodrugs of gamma-hydroxybutyric acid, compositions and uses thereof
US11878001B2 (en) 2017-07-31 2024-01-23 Novartis Ag Use of mavoglurant in the reduction of cocaine use or in preventing relapse into cocaine use
AU2018310882C1 (en) * 2017-07-31 2021-12-09 Novartis Ag Use of mavoglurant in the reduction of alcohol use or in preventing relapse into alcohol use
EA202191812A1 (en) 2019-01-29 2021-10-25 Новартис Аг APPLICATION OF ANTAGONIST mGluR5 FOR TREATMENT OF TOLERANCE TO OPIOID ANALGETICS
AU2021307607A1 (en) 2020-07-17 2022-11-17 Novartis Ag Mavoglurant, a mGluR5 antagonist, for use in the treatment in the reduction of opioid use
AU2021397439A1 (en) 2020-12-11 2023-07-06 Novartis Ag Use of mglur5 antagonists for treating amphetamine addiction
CN116981456A (en) 2020-12-14 2023-10-31 诺华股份有限公司 Use of mGluR5 antagonists for the treatment of gambling disorders

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118641A1 (en) 2000-07-27 2003-06-26 Roxane Laboratories, Inc. Abuse-resistant sustained-release opioid formulation
GB0128996D0 (en) * 2001-12-04 2002-01-23 Novartis Ag Organic compounds
GB2418886A (en) * 2003-08-25 2006-04-12 Alpex Pharma Sa Tablet punches and method for tableting
GB0514296D0 (en) * 2005-07-12 2005-08-17 Novartis Ag Organic compounds
WO2007062338A2 (en) * 2005-11-18 2007-05-31 Astrazeneca Ab Solid formulations
US20070141148A1 (en) * 2005-11-30 2007-06-21 Merz Pharma Gmbh & Co. Kgaa Neramexane MR matrix tablet
US20080085305A1 (en) 2006-10-10 2008-04-10 Penwest Pharmaceuticals Co. Robust sustained release formulations of oxymorphone
EP2104493A2 (en) 2007-01-16 2009-09-30 Egalet A/S Use of i) a polyglycol and n) an active drug substance for the preparation of a pharmaceutical composition for i) mitigating the risk of alcohol induced dose dumping and/or ii) reducing the risk of drug abuse
JP2012506436A (en) * 2008-10-22 2012-03-15 ハウス イアー インスティトゥート Treatment and / or prevention of inner ear diseases by modulation of metabotropic glutamate receptors
US20120039999A1 (en) * 2010-08-11 2012-02-16 Ashish Chatterji Pharmaceutical compositions of metabotropic glutamate 5 receptor (mglu5) antagonists
US20120040008A1 (en) * 2010-08-11 2012-02-16 Ashish Chatterji Pharmaceutical compositions of metabotropic glutamate 5 receptor (mglu5) antagonists
AR084515A1 (en) * 2010-12-22 2013-05-22 Merz Pharma Gmbh & Co Kgaa NITROGEN HETEROCICLICAL DERIVATIVES, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND USE OF THE SAME IN THE TREATMENT OF DISEASES ASSOCIATED WITH THE CENTRAL NERVOUS SYSTEM SUCH AS PARKINSON AND ALZHEIMER, BETWEEN OTHER
WO2012139876A1 (en) * 2011-04-14 2012-10-18 Merz Pharma Gmbh & Co. Kgaa Enteric formulations of metabotropic glutamate receptor modulators

Also Published As

Publication number Publication date
EA201690005A1 (en) 2016-04-29
KR20160018702A (en) 2016-02-17
BR112015030431A2 (en) 2017-07-25
CA2911486C (en) 2021-09-21
EP3007682A1 (en) 2016-04-20
EA031395B1 (en) 2018-12-28
CN105263479A (en) 2016-01-20
CL2015003596A1 (en) 2016-09-02
CA2911486A1 (en) 2014-12-18
US20210069150A1 (en) 2021-03-11
PL3007682T3 (en) 2017-12-29
MX369742B (en) 2019-11-20
PT3007682T (en) 2017-11-02
ZA201508228B (en) 2016-11-30
PH12015502556A1 (en) 2016-02-22
SG11201509178TA (en) 2015-12-30
MA38646A1 (en) 2017-09-29
US20160128979A1 (en) 2016-05-12
JP6444996B2 (en) 2018-12-26
MX2015017202A (en) 2016-11-11
ES2644698T3 (en) 2017-11-30
BR112015030431B1 (en) 2023-02-28
TN2015000498A1 (en) 2017-04-06
HK1216839A1 (en) 2016-12-09
EP3007682B1 (en) 2017-07-26
JP2016520663A (en) 2016-07-14
AU2014279743A1 (en) 2015-11-26
CN111467313A (en) 2020-07-31
AU2014279743B2 (en) 2017-05-25
WO2014199316A1 (en) 2014-12-18
PE20160183A1 (en) 2016-04-28
MA38646B1 (en) 2018-04-30
KR102290249B1 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
US20230355582A1 (en) Modified release formulation
JP6588915B2 (en) Pharmaceutical composition comprising AZD9291
EP2974720B1 (en) Mosapride sustained-release preparation for providing pharmacological clinical effects with once-a-day administration
KR101084832B1 (en) Neramexane modified release matrix tablet
EP2603205B1 (en) Use of binders for manufacturing storage stable formulations
KR101858797B1 (en) Pharmaceutical compositions comprising hydromorphone and naloxone
JP6232135B2 (en) Hydromorphone and naloxone for the treatment of pain and opioid-induced bowel dysfunction syndrome
TWI548425B (en) High-loading, controlled-release magnesium oral dosage forms and methods of making and using same
KR102197465B1 (en) Enteric tablet containing dimethyl fumarate as an active ingredient
AU2015372434A1 (en) Method of treatment
WO2009027786A2 (en) Matrix dosage forms of varenicline
US11701350B2 (en) Dextromethorphan extended release pharmaceutical composition
KR20170119651A (en) High-loading, controlled-release magnesium oral dosage forms and methods for making and using same
TW201609197A (en) Mosapride sustained-release formulation providing pharmacological and clinical effects with once-daily administration
EP2363120A1 (en) Combinations of dimebolin and memantine

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED