US20230324083A1 - Multi-head single-pass sectional compression water chilling device - Google Patents

Multi-head single-pass sectional compression water chilling device Download PDF

Info

Publication number
US20230324083A1
US20230324083A1 US17/789,521 US202217789521A US2023324083A1 US 20230324083 A1 US20230324083 A1 US 20230324083A1 US 202217789521 A US202217789521 A US 202217789521A US 2023324083 A1 US2023324083 A1 US 2023324083A1
Authority
US
United States
Prior art keywords
sectional
condenser
evaporator
combined
water chilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/789,521
Inventor
Jiaqi Jiang
Zhongzhu XUE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Quyu Energy Co Ltd
Original Assignee
Jiangsu Quyu Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Quyu Energy Co Ltd filed Critical Jiangsu Quyu Energy Co Ltd
Assigned to JIANGSU QUYU ENERGY CO., LTD. reassignment JIANGSU QUYU ENERGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JIANG, Jiaqi, XUE, Zhongzhu
Publication of US20230324083A1 publication Critical patent/US20230324083A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present invention relates to the technical field of a water chilling device, in particular to a multi-head single-pass sectional compression water chilling device.
  • the existing water chilling devices all take refrigerating capacity as a primary parameter, and then determine rated chilled water flow by rated supply and return water temperature.
  • the refrigerating capacity and the chilled water flow of the water chilling devices are in a relatively fixed relation, and the chilled water flow is not determined according to the flow required by a terminal of a project.
  • the condition that the refrigerating capacity is not matched with the chilled water flow often occurs.
  • the refrigerating capacity of a single water chilling device can meet the demand of the refrigerating capacity at the terminal, while the flow provided by the water chilling device cannot meet the demand of the flow at the terminal.
  • insufficient chilled water flow means that there is no refrigerating capacity in certain areas, leading to lack of comfort effect.
  • the water chilling devices are in a low-load condition with low efficiency when the number of the water chilling devices is increased, and the operation efficiency is low. If the number of the water chilling devices is not increased, the output of the water pump is generally increased, and the water chilling device provides chilled water with a flow rate larger than the rated flow rate by larger lift loss, which causes that the flow rate of the chilled water in the water chilling devices is too high, and the operation efficiency is also reduced.
  • the flow of chilled water in the water chilling device is in a condition of not matching with the refrigerating capacity in most of time, which causes that the efficiency of the water chilling device is always in a low state.
  • the present invention provides a multi-head single-pass sectional compression water chilling device, which can realize the independent matching combination of the refrigerating capacity and the chilled water flow, and meet the use demands of the refrigerating capacity and the chilled water flow, thus improving the use effect of the water chilling device.
  • the present invention discloses a multi-head single-pass sectional compression water chilling device comprising a combined condenser and a combined evaporator.
  • the combined condenser is formed by sequentially connecting and combining a plurality of sectional condensers, and the combined condenser is internally provided with a condenser tube bundle for use by all the sectional condensers.
  • the combined evaporator is formed by sequentially connecting and combining a plurality of sectional evaporators, and the combined evaporator is internally provided with an evaporator tube bundle for use by all the sectional evaporators.
  • sectional condensers and the sectional evaporators are in one-to-one correspondence, a compressor is connected between each sectional condenser and a corresponding one of the sectional evaporators, and the compressor, the sectional condenser and the sectional evaporator form a refrigeration function section.
  • the refrigeration function section further comprises a throttling device.
  • the throttling device is connected to the sectional condenser and the sectional evaporator, and the throttling device is a pressure reducing device of the water chilling device between the condenser and the evaporator.
  • two ends of the combined condenser are respectively provided with a condenser inlet and a condenser outlet
  • two ends of the combined evaporator are respectively provided with an evaporator inlet and an evaporator outlet
  • the condenser outlet and the evaporator inlet are located on a same side, such that cooling water in the condenser and chilled water in the evaporator can run in a convection mode, thus improving the operation efficiency.
  • the compressors are each selected from a centrifugal compressor, a magnetic levitation compressor and a screw compressor for use in combination, and the specific combination can be selected according to the demand of refrigeration conditions, such that the overall power of the compressor meets the refrigeration requirements and the refrigeration effect is ensured.
  • the design principle of the present invention is as follows.
  • the overall structure of the condenser and the overall structure of the evaporator are designed into a sectional structure, a plurality of refrigeration function sections which can independently operate are formed by arranging the compressor and the throttling device, and the number of the refrigeration function sections can be correspondingly selected for operation according to the demand of refrigerating capacity, thereby ensuring that each compressor in the operation process is in a high-efficient state under the condition of providing the corresponding refrigerating capacity.
  • all the sectional condensers share one condenser tube bundle and all the sectional evaporators share one evaporator tube bundle, so that the refrigerating capacity and the chilled water flow are independent from each other.
  • a proper evaporator tube bundle and a proper condenser tube bundle can be selected according to actual demand of the chilled water flow, and the sufficient chilled water flow can be provided all the time regardless of the number and operating states of the refrigeration function sections.
  • the present invention calculates and determines a proper chilled water flow, so that a refrigeration pump can keep the sufficient chilled water flow at the terminal with lower energy consumption, and the chilled water, as a carrier of the refrigerating capacity, can be continuously and fully distributed in all areas at the terminal of the project.
  • the present invention designs and selects the power or the form of the compressor (such as the centrifugal compressor, the magnetic levitation compressor and the screw compressor) for use in combination according to conditions of the design cold loads, the function industries (such as hospitals, markets and office buildings), the climate zones (such as a cold zone, a hot-summer and cold-winter zone and a hot-summer and warm-winter zone) and the like of the project.
  • the compressor such as the centrifugal compressor, the magnetic levitation compressor and the screw compressor
  • the present invention has the following advantages:
  • Both refrigerating capacity and chilled water flow can be independently controlled according to actual demands, which solves the problem that the refrigerating capacity and the chilled water flow of the existing water chilling device are difficult to match, so that the good use effect of the water chilling device is ensured, and the use comfort is improved.
  • the number of the refrigeration function sections can be selected for operation according to the actual demand of refrigerating capacity, which ensures that each compressor in the operation process is in a high-efficient state under the condition of providing the required refrigerating capacity, and thereby the operation efficiency of the water chilling device is improved.
  • FIG. 1 is a schematic diagram of the structure of the present invention.
  • the present embodiment provides a multi-head single-pass sectional compression water chilling device, which includes a combined condenser 7 and a combined evaporator 8 .
  • the combined condenser 7 is formed by sequentially connecting and combining four sectional condensers, and two ends of the combined condenser 7 are respectively provided with a condenser inlet 51 and a condenser outlet 52 .
  • the four sectional condensers from the condenser inlet 51 to the condenser outlet 52 are a first sectional condenser 11 , a second sectional condenser 21 , a third sectional condenser 31 and a fourth sectional condenser 41 .
  • the combined condenser 7 is internally provided with a condenser tube bundle 1 for joint use by the four sectional condensers.
  • the combined evaporator 8 is formed by sequentially connecting and combining four sectional evaporators, and two ends of the combined evaporator 8 are respectively provided with an evaporator inlet 61 and an evaporator outlet 62 .
  • the four sectional evaporators from the evaporator outlet 62 to the evaporator inlet 61 are a first sectional evaporator 21 , a second sectional evaporator 22 , a third sectional evaporator 23 and a fourth sectional evaporator 24 .
  • the combined evaporator 8 is internally provided with an evaporator tube bundle 2 for joint use by the four sectional evaporators.
  • the condenser outlet 52 and the evaporator inlet 61 are located on the same side.
  • a first compressor 31 and a first throttling device 41 are connected between the first sectional condenser 11 and the first sectional evaporator 21 through pipelines, so as to form a first refrigeration function section.
  • a second compressor 32 and a second throttling device 42 are connected between the second sectional condenser 21 and the second sectional evaporator 22 through pipelines, so as to form a second refrigeration function section.
  • a third compressor 33 and a third throttling device 43 are connected between the third sectional condenser 31 and the third sectional evaporator 23 through pipelines, so as to form a third refrigeration function section.
  • a fourth compressor 34 and a fourth throttling device 44 are connected between the fourth sectional condenser 41 and the fourth sectional evaporator 24 through pipelines, so as to form a fourth refrigeration function section.
  • the first compressor 31 , the second compressor 32 , the third compressor 33 and the fourth compressor 34 are a magnetic levitation compressor, a centrifugal compressor, a centrifugal compressor and a centrifugal compressor, respectively.
  • the magnetic levitation compressor or the centrifugal compressors can be selected to be turned on according to actual conditions, when the cold load is low and environmental conditions are favorable for the high-efficient operation of the magnetic levitation compressor, the magnetic levitation compressor is preferentially turned on to operate through an automatic control system of the water chilling device, and when the cold load is high and the environmental condition is favorable for the high-efficient operation of the centrifugal compressors, the centrifugal compressors are preferentially turned on to operate through the automatic control system of the water chilling device.
  • the whole power of the compressor can be matched with the cold load under different cold load conditions, so that the refrigerating capacity can be more accurately controlled.
  • the water chilling device provided in embodiment 1 is applied as an example. Specifically, the lengths of the condenser tube bundle 1 and the evaporator tube bundle 2 in the water chilling device in embodiment 1, that is, the number of the refrigeration function sections, are determined according to the actual demand of the chilled water flow, and in the present embodiment, four refrigeration function sections are selected.
  • the water chilling device is operated in the following four conditions according to the demand of the refrigerating capacity at the terminal.
  • Condition 1 when the cold load is not more than 25% of the rated refrigerating capacity of the water chilling device, only a first refrigeration function section (or one of the other three refrigeration function sections) is selected for operation, cooling water enters the condenser tube bundle 1 from the condenser inlet 51 and flows out from the condenser outlet 52 , and then the chilled water enters the evaporator tube bundle 2 from the evaporator inlet 61 and flows out from the evaporator outlet 62 .
  • the first compressor 31 When the first refrigeration function section is in the process of operation, the first compressor 31 is operated in high-efficient state, and the first refrigeration function section produces corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal.
  • the flow of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • Condition 2 when the cold load is more than 25% and not more than 50% of the rated refrigerating capacity of the water chilling device, a first refrigeration function section and a second refrigeration function section (two of the four refrigeration function sections) are selected for operation, the operation processes of cooling water and chilled water in the condition 2 are the same as in the condition 1, the first refrigeration function section and the second refrigeration function section operate simultaneously to produce corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal.
  • the flow of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • Condition 3 when the cold load is more than 50% and not more than 75% of the rated refrigerating capacity of the water chilling device, 3 of the four refrigeration function sections are operated to produce corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal.
  • the flow of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • Condition 4 when the cold load is more than 75% of the rated refrigerating capacity of the water chilling device, the four refrigeration function sections are operated simultaneously to produce corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal.
  • the flow of the of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • the multi-head single-pass sectional compression water chilling device provided by the present invention not only can meet and adapt to the demand of changing refrigerating capacity, but also can keep providing sufficient chilled water flow, thus ensuring good and stable use effect of the water chilling device and bringing good user experience effect.
  • the water chilling device also ensures that the compressors in the operation process are always in a high-efficient state, so that the overall operation efficiency of the water chilling device is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A multi-head single-pass sectional compression water chilling device includes a combined condenser and a combined evaporator. The combined condenser is formed by sequentially connecting and combining a plurality of sectional condensers, the combined condenser is internally provided with a condenser tube bundle for use by all the sectional condensers, the combined evaporator is formed by sequentially connecting and combining a plurality of sectional evaporators, the combined evaporator is internally provided with an evaporator tube bundle for use by all the sectional evaporators, the sectional condensers and the sectional evaporators are in one-to-one correspondence, a compressor is connected between each sectional condenser and a corresponding one of the sectional evaporators, and the compressor, the sectional condenser and the corresponding sectional evaporator form a refrigeration function section.

Description

    BACKGROUND Technical Field
  • The present invention relates to the technical field of a water chilling device, in particular to a multi-head single-pass sectional compression water chilling device.
  • Description of Related Art
  • The existing water chilling devices all take refrigerating capacity as a primary parameter, and then determine rated chilled water flow by rated supply and return water temperature. The refrigerating capacity and the chilled water flow of the water chilling devices are in a relatively fixed relation, and the chilled water flow is not determined according to the flow required by a terminal of a project. In operation of the water chilling devices, the condition that the refrigerating capacity is not matched with the chilled water flow often occurs. Specifically, under a certain load condition, the refrigerating capacity of a single water chilling device can meet the demand of the refrigerating capacity at the terminal, while the flow provided by the water chilling device cannot meet the demand of the flow at the terminal. Since chilled water is a carrier of the refrigerating capacity, insufficient chilled water flow means that there is no refrigerating capacity in certain areas, leading to lack of comfort effect. In this case, since a single water chilling device can already meet the demand of refrigerating capacity, the water chilling devices are in a low-load condition with low efficiency when the number of the water chilling devices is increased, and the operation efficiency is low. If the number of the water chilling devices is not increased, the output of the water pump is generally increased, and the water chilling device provides chilled water with a flow rate larger than the rated flow rate by larger lift loss, which causes that the flow rate of the chilled water in the water chilling devices is too high, and the operation efficiency is also reduced. In the operation process, the flow of chilled water in the water chilling device is in a condition of not matching with the refrigerating capacity in most of time, which causes that the efficiency of the water chilling device is always in a low state.
  • Therefore, a new technical scheme is required to solve the above problem.
  • SUMMARY
  • Objective: in order to solve the problem of difficult matching between the refrigerating capacity and the chilled water flow of the water chilling device in the prior art, the present invention provides a multi-head single-pass sectional compression water chilling device, which can realize the independent matching combination of the refrigerating capacity and the chilled water flow, and meet the use demands of the refrigerating capacity and the chilled water flow, thus improving the use effect of the water chilling device.
  • Technical scheme: in order to achieve the above purpose, the present invention discloses a multi-head single-pass sectional compression water chilling device comprising a combined condenser and a combined evaporator. The combined condenser is formed by sequentially connecting and combining a plurality of sectional condensers, and the combined condenser is internally provided with a condenser tube bundle for use by all the sectional condensers. The combined evaporator is formed by sequentially connecting and combining a plurality of sectional evaporators, and the combined evaporator is internally provided with an evaporator tube bundle for use by all the sectional evaporators. The sectional condensers and the sectional evaporators are in one-to-one correspondence, a compressor is connected between each sectional condenser and a corresponding one of the sectional evaporators, and the compressor, the sectional condenser and the sectional evaporator form a refrigeration function section.
  • Further, the refrigeration function section further comprises a throttling device. The throttling device is connected to the sectional condenser and the sectional evaporator, and the throttling device is a pressure reducing device of the water chilling device between the condenser and the evaporator.
  • Further, two ends of the combined condenser are respectively provided with a condenser inlet and a condenser outlet, two ends of the combined evaporator are respectively provided with an evaporator inlet and an evaporator outlet, and the condenser outlet and the evaporator inlet are located on a same side, such that cooling water in the condenser and chilled water in the evaporator can run in a convection mode, thus improving the operation efficiency.
  • Further, the compressors are each selected from a centrifugal compressor, a magnetic levitation compressor and a screw compressor for use in combination, and the specific combination can be selected according to the demand of refrigeration conditions, such that the overall power of the compressor meets the refrigeration requirements and the refrigeration effect is ensured.
  • The design principle of the present invention is as follows. The overall structure of the condenser and the overall structure of the evaporator are designed into a sectional structure, a plurality of refrigeration function sections which can independently operate are formed by arranging the compressor and the throttling device, and the number of the refrigeration function sections can be correspondingly selected for operation according to the demand of refrigerating capacity, thereby ensuring that each compressor in the operation process is in a high-efficient state under the condition of providing the corresponding refrigerating capacity. Meanwhile, all the sectional condensers share one condenser tube bundle and all the sectional evaporators share one evaporator tube bundle, so that the refrigerating capacity and the chilled water flow are independent from each other. A proper evaporator tube bundle and a proper condenser tube bundle can be selected according to actual demand of the chilled water flow, and the sufficient chilled water flow can be provided all the time regardless of the number and operating states of the refrigeration function sections.
  • According to the load demands and device parameters of a system at the terminal of the project, the present invention calculates and determines a proper chilled water flow, so that a refrigeration pump can keep the sufficient chilled water flow at the terminal with lower energy consumption, and the chilled water, as a carrier of the refrigerating capacity, can be continuously and fully distributed in all areas at the terminal of the project.
  • The present invention designs and selects the power or the form of the compressor (such as the centrifugal compressor, the magnetic levitation compressor and the screw compressor) for use in combination according to conditions of the design cold loads, the function industries (such as hospitals, markets and office buildings), the climate zones (such as a cold zone, a hot-summer and cold-winter zone and a hot-summer and warm-winter zone) and the like of the project.
  • Beneficial effects: compared with the prior art, the present invention has the following advantages:
  • Both refrigerating capacity and chilled water flow can be independently controlled according to actual demands, which solves the problem that the refrigerating capacity and the chilled water flow of the existing water chilling device are difficult to match, so that the good use effect of the water chilling device is ensured, and the use comfort is improved.
  • The number of the refrigeration function sections can be selected for operation according to the actual demand of refrigerating capacity, which ensures that each compressor in the operation process is in a high-efficient state under the condition of providing the required refrigerating capacity, and thereby the operation efficiency of the water chilling device is improved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of the structure of the present invention.
  • DESCRIPTION OF THE EMBODIMENTS
  • The present invention is further illustrated by the following detailed embodiments in conjunction with the accompanying drawing, and it should be understood that these embodiments are provided only for illustrating the present invention rather than limiting the scope of the present invention, and that various equivalent modifications of the present invention by those skilled in the art after reading the present invention all fall within the scope defined by the appended claim
  • s of the present invention.
  • Embodiment 1
  • As shown in FIG. 1 , the present embodiment provides a multi-head single-pass sectional compression water chilling device, which includes a combined condenser 7 and a combined evaporator 8. The combined condenser 7 is formed by sequentially connecting and combining four sectional condensers, and two ends of the combined condenser 7 are respectively provided with a condenser inlet 51 and a condenser outlet 52. The four sectional condensers from the condenser inlet 51 to the condenser outlet 52 are a first sectional condenser 11, a second sectional condenser 21, a third sectional condenser 31 and a fourth sectional condenser 41. The combined condenser 7 is internally provided with a condenser tube bundle 1 for joint use by the four sectional condensers. The combined evaporator 8 is formed by sequentially connecting and combining four sectional evaporators, and two ends of the combined evaporator 8 are respectively provided with an evaporator inlet 61 and an evaporator outlet 62. The four sectional evaporators from the evaporator outlet 62 to the evaporator inlet 61 are a first sectional evaporator 21, a second sectional evaporator 22, a third sectional evaporator 23 and a fourth sectional evaporator 24. The combined evaporator 8 is internally provided with an evaporator tube bundle 2 for joint use by the four sectional evaporators. The condenser outlet 52 and the evaporator inlet 61 are located on the same side.
  • In the present embodiment, a first compressor 31 and a first throttling device 41 are connected between the first sectional condenser 11 and the first sectional evaporator 21 through pipelines, so as to form a first refrigeration function section. A second compressor 32 and a second throttling device 42 are connected between the second sectional condenser 21 and the second sectional evaporator 22 through pipelines, so as to form a second refrigeration function section. A third compressor 33 and a third throttling device 43 are connected between the third sectional condenser 31 and the third sectional evaporator 23 through pipelines, so as to form a third refrigeration function section. A fourth compressor 34 and a fourth throttling device 44 are connected between the fourth sectional condenser 41 and the fourth sectional evaporator 24 through pipelines, so as to form a fourth refrigeration function section.
  • In the present embodiment, the first compressor 31, the second compressor 32, the third compressor 33 and the fourth compressor 34 are a magnetic levitation compressor, a centrifugal compressor, a centrifugal compressor and a centrifugal compressor, respectively. The magnetic levitation compressor or the centrifugal compressors can be selected to be turned on according to actual conditions, when the cold load is low and environmental conditions are favorable for the high-efficient operation of the magnetic levitation compressor, the magnetic levitation compressor is preferentially turned on to operate through an automatic control system of the water chilling device, and when the cold load is high and the environmental condition is favorable for the high-efficient operation of the centrifugal compressors, the centrifugal compressors are preferentially turned on to operate through the automatic control system of the water chilling device.
  • Therefore, the whole power of the compressor can be matched with the cold load under different cold load conditions, so that the refrigerating capacity can be more accurately controlled.
  • Embodiment 2
  • In the present embodiment, the water chilling device provided in embodiment 1 is applied as an example. Specifically, the lengths of the condenser tube bundle 1 and the evaporator tube bundle 2 in the water chilling device in embodiment 1, that is, the number of the refrigeration function sections, are determined according to the actual demand of the chilled water flow, and in the present embodiment, four refrigeration function sections are selected.
  • The water chilling device is operated in the following four conditions according to the demand of the refrigerating capacity at the terminal.
  • Condition 1: when the cold load is not more than 25% of the rated refrigerating capacity of the water chilling device, only a first refrigeration function section (or one of the other three refrigeration function sections) is selected for operation, cooling water enters the condenser tube bundle 1 from the condenser inlet 51 and flows out from the condenser outlet 52, and then the chilled water enters the evaporator tube bundle 2 from the evaporator inlet 61 and flows out from the evaporator outlet 62.
  • When the first refrigeration function section is in the process of operation, the first compressor 31 is operated in high-efficient state, and the first refrigeration function section produces corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal. In addition, the flow of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • Condition 2: when the cold load is more than 25% and not more than 50% of the rated refrigerating capacity of the water chilling device, a first refrigeration function section and a second refrigeration function section (two of the four refrigeration function sections) are selected for operation, the operation processes of cooling water and chilled water in the condition 2 are the same as in the condition 1, the first refrigeration function section and the second refrigeration function section operate simultaneously to produce corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal. In addition, the flow of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • Condition 3: when the cold load is more than 50% and not more than 75% of the rated refrigerating capacity of the water chilling device, 3 of the four refrigeration function sections are operated to produce corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal. In addition, the flow of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • Condition 4: when the cold load is more than 75% of the rated refrigerating capacity of the water chilling device, the four refrigeration function sections are operated simultaneously to produce corresponding refrigerating capacity, so as to meet refrigerating capacity demand at the terminal. In addition, the flow of the of the chilled water produced in the evaporator tube bundle 2 also can meet demand at the terminal.
  • According to above contents of the embodiment, the multi-head single-pass sectional compression water chilling device provided by the present invention not only can meet and adapt to the demand of changing refrigerating capacity, but also can keep providing sufficient chilled water flow, thus ensuring good and stable use effect of the water chilling device and bringing good user experience effect. In addition to realizing the above advantages, the water chilling device also ensures that the compressors in the operation process are always in a high-efficient state, so that the overall operation efficiency of the water chilling device is improved.

Claims (4)

To the claims:
1. A multi-head single-pass sectional compression water chilling device, comprising a combined condenser and a combined evaporator, wherein the combined condenser is formed by sequentially connecting and combining a plurality of sectional condensers, the combined condenser is internally provided with a condenser tube bundle for use by all the sectional condensers, the combined evaporator is formed by sequentially connecting and combining a plurality of sectional evaporators, the combined evaporator is internally provided with an evaporator tube bundle for use by all the sectional evaporators, the sectional condensers and the sectional evaporators are in one-to-one correspondence, a compressor is connected between each sectional condenser and a corresponding one of the sectional evaporators, and the compressor, the sectional condenser and the corresponding sectional evaporator form a refrigeration function section.
2. The multi-head single-pass sectional compression water chilling device according to claim 1, wherein the refrigeration function section further comprises a throttling device, and the throttling device is connected to the sectional condenser and the sectional evaporator.
3. The multi-head single-pass sectional compression water chilling device according to claim 1, wherein two ends of the combined condenser are respectively provided with a condenser inlet and a condenser outlet, two ends of the combined evaporator are respectively provided with an evaporator inlet and an evaporator outlet, and the condenser outlet and the evaporator inlet are located on a same side.
4. The multi-head single-pass sectional compression water chilling device according to claim 1, wherein the compressors are each selected from a centrifugal compressor, a magnetic levitation compressor and a screw compressor for use in combination.
US17/789,521 2021-07-29 2022-01-06 Multi-head single-pass sectional compression water chilling device Pending US20230324083A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110862243.6 2021-07-29
CN202110862243.6A CN113587467A (en) 2021-07-29 2021-07-29 Multi-machine-head single-return-stroke segmented compression type water chilling unit
PCT/CN2022/070417 WO2023005155A1 (en) 2021-07-29 2022-01-06 Multi-compressor one-pass segmented compression type water chiller

Publications (1)

Publication Number Publication Date
US20230324083A1 true US20230324083A1 (en) 2023-10-12

Family

ID=78251570

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/789,521 Pending US20230324083A1 (en) 2021-07-29 2022-01-06 Multi-head single-pass sectional compression water chilling device

Country Status (4)

Country Link
US (1) US20230324083A1 (en)
EP (1) EP4148347A4 (en)
CN (1) CN113587467A (en)
WO (1) WO2023005155A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587467A (en) * 2021-07-29 2021-11-02 江苏区宇能源有限公司 Multi-machine-head single-return-stroke segmented compression type water chilling unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103009A1 (en) * 2009-05-15 2012-05-03 Carrier Corporation Hybrid serial counterflow dual refrigerant circuit chiller

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008045039A1 (en) * 2006-10-10 2008-04-17 Carrier Corporation Dual-circuit chiller with two-pass heat exchanger in a series counterflow arrangement
CN101231046A (en) * 2008-02-03 2008-07-30 李华玉 Subsection heat-taking type overlapping heat pump
CN101592412B (en) * 2009-07-01 2011-05-18 东南大学 Adjustable multi-temperature refrigeration device
CN101839547B (en) * 2009-12-26 2012-04-18 艾欧史密斯(中国)热水器有限公司 Heat pump water heater
CN205505470U (en) * 2016-03-30 2016-08-24 广州市设计院 Multimachine head screw rod cooling water set of high -efficient operation under full load rate
CN106440072B (en) * 2016-08-23 2023-10-20 广州市设计院 High-efficient unit formula air conditioner of many evaporating temperature
CN106440435A (en) * 2016-10-27 2017-02-22 南京天加空调设备有限公司 Double-machine-head water chilling unit used for rail transit industry
CN107461848A (en) * 2017-08-17 2017-12-12 江苏区宇能源有限公司 Double condensation energy-saving independent combined-type temperature and humidities adjust air-conditioning box
CN108489132A (en) * 2018-05-23 2018-09-04 江苏区宇能源有限公司 The efficiently especially big cold series connection handpiece Water Chilling Units of energy source station
CN112503788A (en) * 2020-11-30 2021-03-16 珠海格力电器股份有限公司 Multi-refrigerant loop refrigerating system and air conditioning equipment
CN113587467A (en) * 2021-07-29 2021-11-02 江苏区宇能源有限公司 Multi-machine-head single-return-stroke segmented compression type water chilling unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103009A1 (en) * 2009-05-15 2012-05-03 Carrier Corporation Hybrid serial counterflow dual refrigerant circuit chiller

Also Published As

Publication number Publication date
EP4148347A1 (en) 2023-03-15
EP4148347A4 (en) 2024-03-13
CN113587467A (en) 2021-11-02
WO2023005155A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
EP2960600B1 (en) System for managing lubricant levels in tandem compressor assemblies of an hvac system
CN210197600U (en) Secondary pump variable flow chilled water system with energy storage device
CN106839481B (en) Cooling unit with auxiliary cold source
CN106855279B (en) Air conditioning system, refrigeration control method and device
WO2017206631A1 (en) High-temperature air conditioning unit
CN113891635A (en) Cold station unit, integrated cold station system, control method of integrated cold station system and related equipment
US20230324083A1 (en) Multi-head single-pass sectional compression water chilling device
US20190017712A1 (en) High-efficiency extra-large cooling capacity series chiller in energy station
CN216752525U (en) Cold station unit and integrated cold station system
CN113891634A (en) Cold station unit, integrated cold station system, control method of integrated cold station system and related equipment
CN113923937A (en) Energy-saving cooling control method and system for data center
US9951984B2 (en) Tandem compressor refrigeration system and a method of using the same
KR20050050536A (en) A heat pump using the heating and conditioning systems
CN109654597A (en) A kind of air-conditioning system that can adjust heat exchange amount
CN102252377A (en) Water chilling unit and air conditioning tail end
CN210602351U (en) Condenser capable of improving supercooling degree, water chilling unit and air conditioner
CN113048680A (en) Self-adaptive double-cold-source energy-saving system and control method thereof
US11988430B2 (en) Air conditioning unit for an accurate control of supply air temperature, and operation control method and operation control device for air conditioning unit
CN217236139U (en) Heat exchanger and air conditioner
CN217685963U (en) Refrigerant adjusting heat exchanger and air conditioner
CN103542567A (en) Multiple-temperature-zone independent control system and temperature control method for refrigeration equipment
CN214371043U (en) Compression refrigeration system of refrigerator and refrigerator
CN217336229U (en) Refrigerating system of data center
EP1835241A1 (en) Refrigerating apparatus
CN219141176U (en) Composite multi-connected air conditioning system

Legal Events

Date Code Title Description
AS Assignment

Owner name: JIANGSU QUYU ENERGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JIANG, JIAQI;XUE, ZHONGZHU;REEL/FRAME:060361/0453

Effective date: 20220611

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED