US20230308404A1 - Message routing based on unavailability - Google Patents

Message routing based on unavailability Download PDF

Info

Publication number
US20230308404A1
US20230308404A1 US17/656,301 US202217656301A US2023308404A1 US 20230308404 A1 US20230308404 A1 US 20230308404A1 US 202217656301 A US202217656301 A US 202217656301A US 2023308404 A1 US2023308404 A1 US 2023308404A1
Authority
US
United States
Prior art keywords
recipient
sender
instant message
current user
user status
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/656,301
Other versions
US11777878B1 (en
Inventor
Isaac Jordan Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADP Inc
Original Assignee
ADP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADP Inc filed Critical ADP Inc
Priority to US17/656,301 priority Critical patent/US11777878B1/en
Assigned to ADP, INC. reassignment ADP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THOMPSON, ISAAC JORDAN
Publication of US20230308404A1 publication Critical patent/US20230308404A1/en
Priority to US18/479,753 priority patent/US20240031314A1/en
Application granted granted Critical
Publication of US11777878B1 publication Critical patent/US11777878B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • H04L51/043Real-time or near real-time messaging, e.g. instant messaging [IM] using or handling presence information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • H04L51/046Interoperability with other network applications or services
    • H04L51/12
    • H04L51/14
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/214Monitoring or handling of messages using selective forwarding
    • H04L51/36
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/56Unified messaging, e.g. interactions between e-mail, instant messaging or converged IP messaging [CPM]

Definitions

  • the present disclosure relates generally to instant messaging systems, and in particular, to asynchronous messaging in instances of unavailable recipients.
  • Instant messaging services have well instantiated constructs from the early 2000s regarding sending messages and indicating user status. Some instant messaging (IM) services can even communicate if a message has been read or if the other party is typing a response in a high bandwidth connection to ensure that the sender is aware of the recipient's active response activity.
  • IM instant messaging
  • An illustrative embodiment provides a computer-implemented method for asynchronous messaging on an instant messaging system.
  • the method comprises receiving an instant message from a send addressed to a recipient on the instant messaging system and determining a current user status of the recipient. Responsive to a determination the recipient is currently available, the instant messaging system sends the instant message to the recipient in real time. Responsive to a determination the recipient is currently unavailable, the instant messaging system, according to sender preferences, sends the instant message to the recipient via an alternative communication system or stores the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available.
  • the system comprises a storage device configured to store program instructions and one or more processors operably connected to the storage device and configured to execute the program instructions to cause the system to: receive, from a sender, an instant message addressed to a recipient on the instant messaging system; determine a current user status of the recipient; responsive to a determination the recipient is currently available, send the instant message to the recipient in real time; and responsive to a determination the recipient is currently unavailable, according to sender preferences: send the instant message to the recipient via an alternative communication system; or store the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available.
  • the computer program product comprises a computer-readable storage medium having program instructions embodied thereon to perform the steps of: receiving, from a sender, an instant message addressed to a recipient on the instant messaging system; determining a current user status of the recipient; responsive to a determination the recipient is currently available, sending the instant message to the recipient in real time; and responsive to a determination the recipient is currently unavailable, according to sender preferences: sending the instant message to the recipient via an alternative communication system; or storing the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available.
  • FIG. 1 is a pictorial representation of a network of data processing systems in which illustrative embodiments may be implemented;
  • FIG. 2 depicts a block diagram illustrating an instant messaging system in accordance with an illustrative embodiment
  • FIG. 3 depicts a flowchart illustrating a process for asynchronous messaging on an instant messaging system in accordance with illustrative embodiments
  • FIG. 4 depicts a diagram illustrating a user interface with a Do not Disturb notice for an instant messaging system in accordance with an illustrative embodiment
  • FIG. 5 depicts a diagram illustrating a user interface presenting a sender with messaging options in response to a Do not Disturb notice in accordance with an illustrative embodiment
  • FIG. 6 depicts a diagram illustrating a user preferences and priority choice interface for an instant messaging system in accordance with an illustrative embodiment
  • FIG. 7 is an illustration of a block diagram of a data processing system in accordance with an illustrative embodiment.
  • the illustrative embodiments recognize and take into account one or more different considerations. For example, the illustrative embodiments recognize and take into account that some instant messaging (IM) services can communicate if a message has been read or if the other party is typing a response in a high bandwidth connection to ensure that the sender is aware of the recipient's active response activity.
  • IM instant messaging
  • the illustrative embodiments also recognize and take into account that current instant messaging services do not have administrative set up or preferences to support synchronous to asynchronous messaging when a recipient is busy or otherwise unavailable to receive an instant message (e.g., Do not Disturb).
  • Current instant messaging services do not have protected Do not Disturb (DnD) status as messages can still be sent and act as disturbances to the recipient.
  • DnD Do not Disturb
  • the illustrative embodiments provide an instant messaging system that enables asynchronous messaging when recipients are unavailable.
  • the asynchronous protocol of the illustrative embodiments allows an instant message to be stored in a queue and sent in an alternative manner via the user's preference and priority of message type at a later time triggered by a status change of the recipient or sent immediately via an alternative communication system such as email or SMS text.
  • an alternative communication system such as email or SMS text.
  • the sender does not risk losing the text message or train of thought and does not have to manually park the text in another software or clipboard solution because the instant messaging system itself can convert the rich text message to email or store the message until the presence servicer indicates the recipient's status as changed back to available/active.
  • Network data processing system 100 is a network of computers in which the illustrative embodiments may be implemented.
  • Network data processing system 100 contains network 102 , which is the medium used to provide communications links between various devices and computers connected together within network data processing system 100 .
  • Network 102 might include connections, such as wire, wireless communication links, or fiber optic cables.
  • server computer 104 and server computer 106 connect to network 102 along with storage unit 108 .
  • client devices 110 connect to network 102 .
  • server computer 104 provides information, such as boot files, operating system images, and applications to client devices 110 .
  • Client devices 110 can be, for example, computers, workstations, or network computers.
  • client devices 110 include client computers 112 , 114 , and 116 .
  • Client devices 110 can also include other types of client devices such as mobile phone 118 , tablet computer 120 , and smart glasses 122 .
  • server computer 104 is network devices that connect to network 102 in which network 102 is the communications media for these network devices.
  • client devices 110 may form an Internet of things (IoT) in which these physical devices can connect to network 102 and exchange information with each other over network 102 .
  • IoT Internet of things
  • Client devices 110 are clients to server computer 104 in this example.
  • Network data processing system 100 may include additional server computers, client computers, and other devices not shown.
  • Client devices 110 connect to network 102 utilizing at least one of wired, optical fiber, or wireless connections.
  • Program code located in network data processing system 100 can be stored on a computer-recordable storage medium and downloaded to a data processing system or other device for use.
  • the program code can be stored on a computer-recordable storage medium on server computer 104 and downloaded to client devices 110 over network 102 for use on client devices 110 .
  • phrases “at least one of,” when used with a list of items, means different combinations of one or more of the listed items can be used, and only one of each item in the list may be needed. In other words, “at least one of” means any combination of items and number of items may be used from the list, but not all of the items in the list are required.
  • the item can be a particular object, a thing, or a category.
  • network data processing system 100 is the Internet with network 102 representing a worldwide collection of networks and gateways that use the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one another.
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • network data processing system 100 also may be implemented using a number of different types of networks.
  • network 102 can be comprised of at least one of the Internet, an intranet, a local area network (LAN), a metropolitan area network (MAN), or a wide area network (WAN).
  • FIG. 1 is intended as an example, and not as an architectural limitation for the different illustrative embodiments.
  • a “number of” when used with reference to items means one or more items.
  • a number of different types of networks is one or more different types of networks.
  • FIG. 2 depicts a block diagram illustrating an instant messaging system in accordance with an illustrative embodiment.
  • Instant messaging system 200 may be implemented in network data processing system 100 shown in FIG. 1 .
  • Instant messaging system 200 comprises a number of users 202 that communicate with each other via chat software 210 .
  • Each user 204 has an associated user profile 206 stored in instant messaging system 200 and sender preferences 208 that specify alternative methods of sending messages 212 when recipients are not immediately available.
  • the current user status 218 of users 202 is maintained by presence server 216 .
  • Synchronous service 214 continually pings presence server 216 to enable instant messaging system 200 to indicate the current user status 218 via user interface (UI) 226 .
  • UI user interface
  • the current user status 218 indicated via UI 226 informs the sender as to whether the recipient in question is currently available to immediately receive the message in real time.
  • the recipient may be currently unavailable for a number of reasons.
  • the recipient may a Do not Disturb (DnD) status indicated in the UI 226 and is therefore not receiving messages at the moment.
  • the current user status 218 of the recipient may indicate that the recipient is sharing a screen with other viewers such as during a video conference, in which case it might be an unwelcome interruption to have an instant message or instant message notification pop up on the recipient's screen.
  • An instant message may also include confidential information that the sender and/or recipient do not want inadvertently disclosed via such a shared screen.
  • Other potential statuses may be used to indicate momentary unavailability of the recipient and tracked by presence server 216 and indicated via UI 226 .
  • instant messaging system 200 provides several alternatives for sending messages 212 without the need for a sender to manually copy and paste (“park”) the text of the instant message into another software or clipboard solution (e.g., word processor document or notepad application) and send the message later.
  • park the text of the instant message into another software or clipboard solution
  • Which alternative communication method is used depends on the sender preferences 208 and their preferred priority set by the user 204 .
  • One alternative method stores the instant message in a message queue 220 while the recipient is unavailable. A change in current user status 218 indicating recipient availability then automatically triggers the instant messaging system 200 to send the message. Another alternative method sends the instant message as an email to the recipient via email application programming interface (API) 222 . If the recipient has a mobile telephone number stored in a user profile 206 , the sender may also have the option of sending the instant message as a short message service (SMS) text message via SMS API 224 .
  • SMS short message service
  • Instant messaging system 200 can be implemented in software, hardware, firmware, or a combination thereof.
  • the operations performed by instant messaging system 200 can be implemented in program code configured to run on hardware, such as a processor unit.
  • firmware the operations performed by instant messaging system 200 can be implemented in program code and data and stored in persistent memory to run on a processor unit.
  • the hardware may include circuits that operate to perform the operations in instant messaging system 200 .
  • the hardware may take a form selected from at least one of a circuit system, an integrated circuit, an application specific integrated circuit (ASIC), a programmable logic device, or some other suitable type of hardware configured to perform a number of operations.
  • ASIC application specific integrated circuit
  • the device can be configured to perform the number of operations.
  • the device can be reconfigured at a later time or can be permanently configured to perform the number of operations.
  • Programmable logic devices include, for example, a programmable logic array, a programmable array logic, a field programmable logic array, a field programmable gate array, and other suitable hardware devices.
  • the processes can be implemented in organic components integrated with inorganic components and can be comprised entirely of organic components excluding a human being.
  • the processes can be implemented as circuits in organic semiconductors.
  • These components for instant messaging system 200 can be located in computer system 250 , which is a physical hardware system and includes one or more data processing systems. When more than one data processing system is present in computer system 250 , those data processing systems are in communication with each other using a communications medium.
  • the communications medium can be a network.
  • the data processing systems can be selected from at least one of a computer, a server computer, a tablet computer, or some other suitable data processing system.
  • instant messaging system 200 can run on one or more processors 252 in computer system 250 .
  • a processor is a hardware device and is comprised of hardware circuits such as those on an integrated circuit that respond and process instructions and program code that operate a computer.
  • processors 252 execute instructions for a process
  • one or more processors can be on the same computer or on different computers in computer system 250 .
  • the process can be distributed between processors 252 on the same or different computers in computer system 250 .
  • one or more processors 252 can be of the same type or different type of processors 252 .
  • processors 252 can be selected from at least one of a single core processor, a dual-core processor, a multi-processor core, a general-purpose central processing unit (CPU), a graphics processing unit (GPU), a quantum processing unit (QPU), a digital signal processor (DSP), or some other type of processor.
  • CPU central processing unit
  • GPU graphics processing unit
  • QPU quantum processing unit
  • DSP digital signal processor
  • FIG. 3 depicts a flowchart illustrating a process for asynchronous messaging on an instant messaging system in accordance with illustrative embodiments.
  • Process 300 can be implemented in hardware, software, or both. When implemented in software, the process can take the form of program code that is run by one of more processor units located in one or more hardware devices in one or more computer systems. Process 300 may be implemented in instant messaging system 200 in FIG. 2 .
  • Process 300 begins with the instant messaging system receiving, from a sender, an instant message addressed to a recipient on the instant messaging system (step 302 ).
  • the instant messaging system determines a current user status of the recipient to ascertain if the recipient is currently available (step 304 ).
  • Step 304 may entail a synchronous API call to the “status” server (e.g., presence server 216 ) and endpoint to retrieve the status of the recipient. This API call would be real time and resolve instantly in a functioning network.
  • the “status” server e.g., presence server 216
  • the current user status may be provided by a presence server in the instant messaging system.
  • a current user status of unavailable may be indicated by one of a DnD status or a Sharing Screen status.
  • the instant messaging system Responsive to a determination the recipient is currently available, the instant messaging system sends the instant message to the recipient in real time (step 306 ).
  • This message may be a synchronous API call to the instant messaging service as a message body (with rich text or possibly a file attachment such as a .jpg or .doc file) via the standard application handling or via an IM system to IM system endpoint (e.g., Cisco Webex® to iMessage® or MSFT Teams®).
  • This API call would be real time and resolve instantly in a functioning network with a response from the end point of a successful receipt.
  • the instant messaging system may further determine the sender's preference of priority (either SMS/text, email, or send later) and, if SMS is preference 1 , whether a mobile telephone number for the recipient is stored in a user profile in the instant messaging system (step 308 ).
  • This determination may be an application check of the other user's profile settings or alternatively a synchronous API call to another instant messaging service's endpoint to retrieve the profile settings of the recipient.
  • This API call would be real time and resolve instantly in a functioning network.
  • the response in this scenario would be a profile setting of a blank or a populated mobile telephone number field and an authorization to allow SMS messaging.
  • the instant messaging system Responsive to a determination that a mobile telephone number for the recipient is stored in a user profile in the instant messaging system, the instant messaging system prompts the sender to choose among alternate methods (via a dialog box or via the priority ranking of options) to send the instant message when the recipient is currently unavailable (see FIG. 5 ) (step 310 ).
  • Sending the SMS message may comprise a synchronous API call to the SMS handling server via a SMS message endpoint to send the message to the recipient. This API call would be real time and resolve instantly in a functioning network.
  • the SMS server should handle the message via the SMS Cellular network and respond back with a success message.
  • the instant messaging system determines a method choice for messaging the recipient selected by the sender (step 312 ).
  • This method choice is specified by sender preferences and priority ranking (see FIG. 6 ), which may be preset by the sender or selected by the sender in response to a prompt in step 310 .
  • This determination may be an application check of the current user's profile settings to retrieve the profile settings and priority ranking of the sender. The system response in this scenario would be the profile setting of either email or “wait until later.”
  • the instant messaging system sends the message via an alternative communication system (step 314 ).
  • This alternative messaging system may comprise email or an SMS text message (in the case where a recipient mobile telephone number is stored in a user profile).
  • Email messaging may comprise an asynchronous API call to the email service as a message (with rich text or possibly a file attachment such as a .jpg or .doc file) via a standard email application handling. This API call to the email software would be real time and resolve instantly in a functioning network with a response from the end point of a successful receipt.
  • the instant messaging system stores the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available (step 316 ).
  • This stored message may comprise a message (with rich text or possibly a file attachment such as a .jpg or .doc file) via the message handler as a later message once the instant messaging current user status of the recipient resets to “active” (i.e., available).
  • Process 300 terminates thereafter.
  • FIG. 4 depicts a diagram illustrating a user interface with a Do not Disturb notice for an instant messaging system in accordance with an illustrative embodiment.
  • the sender has selected a recipient 402 in user interface 400 .
  • Recipient 402 has a DnD current user status, indicated by icon 406 adjacent the user's avatar, as well as by notice 404 at the bottom of the interface.
  • FIG. 5 depicts a diagram illustrating a user interface presenting a sender with messaging options in response to a Do not Disturb notice in accordance with an illustrative embodiment.
  • user interface 400 in response to the send er clicking on the DnD notice set by the recipient, presents the sender with a real time interactive pop-up menu 502 of options for sending the message.
  • FIG. 6 depicts a diagram illustrating a user preferences interface for an instant messaging system in accordance with an illustrative embodiment.
  • preferences interface 600 allows the user to select several options and a priority ranking of each for sending an instant message when a recipient is unavailable.
  • User preferences interface 600 has options and the ability to denote preferred ranking preferences for sending via email 602 , via SMS text 604 , and delay until recipient is active again 606 .
  • the user has selected SMS/text 604 as the priority 1 option, email 602 as the priority 2 option, and delayed 606 as priority 3 .
  • User preferences interface 600 also allows the user to provide a mobile telephone number in field 608 for receiving SMS text messages when the user sets a DnD status as a recipient.
  • Prioritized send options allow the instant messaging system of the illustrative embodiments to provide fallbacks in cases of API call failures. If an API call fails, and the other endpoint is not responding, the API does not have to continually retry the call but can instead switch to the next highest ranked send option.
  • the sender has selected SMS 604 as the priority 1 send option, but no mobile telephone number is stored in the profile of the recipient in question. Therefore, the instant messaging system falls back to email 602 as the priority 2 option. If there is a problem with email service, such as an interruption of service with the email server, the instant messaging system would then fall back on placing the message into a queue to send later when the recipient user status changes back to available.
  • Data processing system 700 may be used to implement one or more computers and client devices 110 and servers computer 104 , 106 in FIG. 1 and instant messaging system 200 in FIG. 2 .
  • data processing system 700 includes communications framework 702 , which provides communications between processor unit 704 , memory 706 , persistent storage 708 , communications unit 710 , input/output unit 712 , and display 714 .
  • communications framework 702 may take the form of a bus system.
  • Processor unit 704 serves to execute instructions for software that may be loaded into memory 706 .
  • Processor unit 704 may be a number of processors, a multi-processor core, or some other type of processor, depending on the particular implementation.
  • processor unit 704 comprises one or more conventional general-purpose central processing units (CPUs).
  • processor unit 704 comprises one or more graphical processing units (CPUs).
  • Memory 706 and persistent storage 708 are examples of storage devices 716 .
  • a storage device is any piece of hardware that is capable of storing information, such as, for example, without limitation, at least one of data, program code in functional form, or other suitable information either on a temporary basis, a permanent basis, or both on a temporary basis and a permanent basis.
  • Storage devices 716 may also be referred to as computer-readable storage devices in these illustrative examples.
  • Memory 706 in these examples, may be, for example, a random access memory or any other suitable volatile or non-volatile storage device.
  • Persistent storage 708 may take various forms, depending on the particular implementation.
  • persistent storage 708 may contain one or more components or devices.
  • persistent storage 708 may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the above.
  • the media used by persistent storage 708 also may be removable.
  • a removable hard drive may be used for persistent storage 708 .
  • Communications unit 710 in these illustrative examples, provides for communications with other data processing systems or devices. In these illustrative examples, communications unit 710 is a network interface card.
  • Input/output unit 712 allows for input and output of data with other devices that may be connected to data processing system 700 .
  • input/output unit 712 may provide a connection for user input through at least one of a keyboard, a mouse, or some other suitable input device. Further, input/output unit 712 may send output to a printer.
  • Display 714 provides a mechanism to display information to a user.
  • Instructions for at least one of the operating system, applications, or programs may be located in storage devices 716 , which are in communication with processor unit 704 through communications framework 702 .
  • the processes of the different embodiments may be performed by processor unit 704 using computer-implemented instructions, which may be located in a memory, such as memory 706 .
  • program code computer-usable program code, or computer-readable program code that may be read and executed by a processor in processor unit 704 .
  • the program code in the different embodiments may be embodied on different physical or computer-readable storage media, such as memory 706 or persistent storage 708 .
  • Program code 718 is located in a functional form on computer-readable media 720 that is selectively removable and may be loaded onto or transferred to data processing system 700 for execution by processor unit 704 .
  • Program code 718 and computer-readable media 720 form computer program product 722 in these illustrative examples.
  • computer-readable media 720 may be computer-readable storage media 724 or computer-readable signal media 726 .
  • computer-readable storage media 724 is a physical or tangible storage device used to store program code 718 rather than a medium that propagates or transmits program code 718 .
  • program code 718 may be transferred to data processing system 700 using computer-readable signal media 726 .
  • Computer-readable signal media 726 may be, for example, a propagated data signal containing program code 718 .
  • computer-readable signal media 726 may be at least one of an electromagnetic signal, an optical signal, or any other suitable type of signal. These signals may be transmitted over at least one of communications links, such as wireless communications links, optical fiber cable, coaxial cable, a wire, or any other suitable type of communications link.
  • the different components illustrated for data processing system 700 are not meant to provide architectural limitations to the manner in which different embodiments may be implemented.
  • the different illustrative embodiments may be implemented in a data processing system including components in addition to or in place of those illustrated for data processing system 700 .
  • Other components shown in FIG. 7 can be varied from the illustrative examples shown.
  • the different embodiments may be implemented using any hardware device or system capable of running program code 718 .
  • each block in the flowcharts or block diagrams can represent at least one of a module, a segment, a function, or a portion of an operation or step.
  • one or more of the blocks can be implemented as program code, hardware, or a combination of the program code and hardware.
  • the hardware may, for example, take the form of integrated circuits that are manufactured or configured to perform one or more operations in the flowcharts or block diagrams.
  • the implementation may take the form of firmware.
  • Each block in the flowcharts or the block diagrams may be implemented using special purpose hardware systems that perform the different operations or combinations of special purpose hardware and program code run by the special purpose hardware.
  • the function or functions noted in the blocks may occur out of the order noted in the figures.
  • two blocks shown in succession may be performed substantially concurrently, or the blocks may sometimes be performed in the reverse order, depending upon the functionality involved.
  • other blocks may be added in addition to the illustrated blocks in a flowchart or block diagram.
  • a component may be configured to perform the action or operation described.
  • the component may have a configuration or design for a structure that provides the component an ability to perform the action or operation that is described in the illustrative examples as being performed by the component.

Abstract

Asynchronous messaging on an instant messaging system is provided. The method comprises receiving an instant message from a send addressed to a recipient on the instant messaging system and determining a current user status of the recipient. Responsive to a determination the recipient is currently available, the instant messaging system sends the instant message to the recipient in real time. Responsive to a determination the recipient is currently unavailable, the instant messaging system, according to sender preferences, sends the instant message to the recipient via an alternative communication system or stores the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available.

Description

    BACKGROUND INFORMATION 1. Field
  • The present disclosure relates generally to instant messaging systems, and in particular, to asynchronous messaging in instances of unavailable recipients.
  • 2. Background
  • Instant messaging services have well instantiated constructs from the early 2000s regarding sending messages and indicating user status. Some instant messaging (IM) services can even communicate if a message has been read or if the other party is typing a response in a high bandwidth connection to ensure that the sender is aware of the recipient's active response activity.
  • Therefore, it would be desirable to have a method and apparatus that take into account at least some of the issues discussed above, as well as other possible issues. For example, it would be desirable to have a method and apparatus that automate data management process.
  • SUMMARY
  • An illustrative embodiment provides a computer-implemented method for asynchronous messaging on an instant messaging system. The method comprises receiving an instant message from a send addressed to a recipient on the instant messaging system and determining a current user status of the recipient. Responsive to a determination the recipient is currently available, the instant messaging system sends the instant message to the recipient in real time. Responsive to a determination the recipient is currently unavailable, the instant messaging system, according to sender preferences, sends the instant message to the recipient via an alternative communication system or stores the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available.
  • Another illustrative embodiment provides a system for asynchronous messaging on an instant messaging system. The system comprises a storage device configured to store program instructions and one or more processors operably connected to the storage device and configured to execute the program instructions to cause the system to: receive, from a sender, an instant message addressed to a recipient on the instant messaging system; determine a current user status of the recipient; responsive to a determination the recipient is currently available, send the instant message to the recipient in real time; and responsive to a determination the recipient is currently unavailable, according to sender preferences: send the instant message to the recipient via an alternative communication system; or store the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available.
  • Another illustrative embodiment provides a computer program product for asynchronous messaging on an instant messaging system. The computer program product comprises a computer-readable storage medium having program instructions embodied thereon to perform the steps of: receiving, from a sender, an instant message addressed to a recipient on the instant messaging system; determining a current user status of the recipient; responsive to a determination the recipient is currently available, sending the instant message to the recipient in real time; and responsive to a determination the recipient is currently unavailable, according to sender preferences: sending the instant message to the recipient via an alternative communication system; or storing the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available.
  • The features and functions can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments in which further details can be seen with reference to the following description and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features believed characteristic of the illustrative embodiments are set forth in the appended claims. The illustrative embodiments, however, as well as a preferred mode of use, further objectives and features thereof, will best be understood by reference to the following detailed description of an illustrative embodiment of the present disclosure when read in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is a pictorial representation of a network of data processing systems in which illustrative embodiments may be implemented;
  • FIG. 2 depicts a block diagram illustrating an instant messaging system in accordance with an illustrative embodiment;
  • FIG. 3 depicts a flowchart illustrating a process for asynchronous messaging on an instant messaging system in accordance with illustrative embodiments;
  • FIG. 4 depicts a diagram illustrating a user interface with a Do not Disturb notice for an instant messaging system in accordance with an illustrative embodiment;
  • FIG. 5 depicts a diagram illustrating a user interface presenting a sender with messaging options in response to a Do not Disturb notice in accordance with an illustrative embodiment;
  • FIG. 6 depicts a diagram illustrating a user preferences and priority choice interface for an instant messaging system in accordance with an illustrative embodiment; and
  • FIG. 7 is an illustration of a block diagram of a data processing system in accordance with an illustrative embodiment.
  • DETAILED DESCRIPTION
  • The illustrative embodiments recognize and take into account one or more different considerations. For example, the illustrative embodiments recognize and take into account that some instant messaging (IM) services can communicate if a message has been read or if the other party is typing a response in a high bandwidth connection to ensure that the sender is aware of the recipient's active response activity.
  • The illustrative embodiments also recognize and take into account that current instant messaging services do not have administrative set up or preferences to support synchronous to asynchronous messaging when a recipient is busy or otherwise unavailable to receive an instant message (e.g., Do not Disturb). Current instant messaging services do not have protected Do not Disturb (DnD) status as messages can still be sent and act as disturbances to the recipient.
  • The illustrative embodiments provide an instant messaging system that enables asynchronous messaging when recipients are unavailable. The asynchronous protocol of the illustrative embodiments allows an instant message to be stored in a queue and sent in an alternative manner via the user's preference and priority of message type at a later time triggered by a status change of the recipient or sent immediately via an alternative communication system such as email or SMS text. By providing true asynchronous messaging, the illustrative embodiments enforce the validity of a DnD status. At the same time, the sender does not risk losing the text message or train of thought and does not have to manually park the text in another software or clipboard solution because the instant messaging system itself can convert the rich text message to email or store the message until the presence servicer indicates the recipient's status as changed back to available/active.
  • With reference to FIG. 1 , a pictorial representation of a network of data processing systems is depicted in which illustrative embodiments may be implemented. Network data processing system 100 is a network of computers in which the illustrative embodiments may be implemented. Network data processing system 100 contains network 102, which is the medium used to provide communications links between various devices and computers connected together within network data processing system 100. Network 102 might include connections, such as wire, wireless communication links, or fiber optic cables.
  • In the depicted example, server computer 104 and server computer 106 connect to network 102 along with storage unit 108. In addition, client devices 110 connect to network 102. In the depicted example, server computer 104 provides information, such as boot files, operating system images, and applications to client devices 110. Client devices 110 can be, for example, computers, workstations, or network computers. As depicted, client devices 110 include client computers 112, 114, and 116. Client devices 110 can also include other types of client devices such as mobile phone 118, tablet computer 120, and smart glasses 122.
  • In this illustrative example, server computer 104, server computer 106, storage unit 108, and client devices 110 are network devices that connect to network 102 in which network 102 is the communications media for these network devices. Some or all of client devices 110 may form an Internet of things (IoT) in which these physical devices can connect to network 102 and exchange information with each other over network 102.
  • Client devices 110 are clients to server computer 104 in this example. Network data processing system 100 may include additional server computers, client computers, and other devices not shown. Client devices 110 connect to network 102 utilizing at least one of wired, optical fiber, or wireless connections.
  • Program code located in network data processing system 100 can be stored on a computer-recordable storage medium and downloaded to a data processing system or other device for use. For example, the program code can be stored on a computer-recordable storage medium on server computer 104 and downloaded to client devices 110 over network 102 for use on client devices 110.
  • The phrase “at least one of,” when used with a list of items, means different combinations of one or more of the listed items can be used, and only one of each item in the list may be needed. In other words, “at least one of” means any combination of items and number of items may be used from the list, but not all of the items in the list are required. The item can be a particular object, a thing, or a category.
  • For example, without limitation, “at least one of item A, item B, or item C” may include item A, item A and item B, or item B. This example also may include item A, item B, and item C or item B and item C. Of course, any combinations of these items can be present. In some illustrative examples, “at least one of” can be, for example, without limitation, two of item A; one of item B; and ten of item C; four of item B and seven of item C; or other suitable combinations. In the depicted example, network data processing system 100 is the Internet with network 102 representing a worldwide collection of networks and gateways that use the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate with one another. At the heart of the Internet is a backbone of high-speed data communication lines between major nodes or host computers consisting of thousands of commercial, governmental, educational, and other computer systems that route data and messages. Of course, network data processing system 100 also may be implemented using a number of different types of networks. For example, network 102 can be comprised of at least one of the Internet, an intranet, a local area network (LAN), a metropolitan area network (MAN), or a wide area network (WAN). FIG. 1 is intended as an example, and not as an architectural limitation for the different illustrative embodiments.
  • In the illustrative example, a “number of” when used with reference to items means one or more items. For example, a number of different types of networks is one or more different types of networks.
  • FIG. 2 depicts a block diagram illustrating an instant messaging system in accordance with an illustrative embodiment. Instant messaging system 200 may be implemented in network data processing system 100 shown in FIG. 1 .
  • Instant messaging system 200 comprises a number of users 202 that communicate with each other via chat software 210. Each user 204 has an associated user profile 206 stored in instant messaging system 200 and sender preferences 208 that specify alternative methods of sending messages 212 when recipients are not immediately available.
  • The current user status 218 of users 202 is maintained by presence server 216. Synchronous service 214 continually pings presence server 216 to enable instant messaging system 200 to indicate the current user status 218 via user interface (UI) 226.
  • As users 202 attempt to exchange messages 212 through chat software 210, the current user status 218 indicated via UI 226 informs the sender as to whether the recipient in question is currently available to immediately receive the message in real time. The recipient may be currently unavailable for a number of reasons. For example, the recipient may a Do not Disturb (DnD) status indicated in the UI 226 and is therefore not receiving messages at the moment. As another example, the current user status 218 of the recipient may indicate that the recipient is sharing a screen with other viewers such as during a video conference, in which case it might be an unwelcome interruption to have an instant message or instant message notification pop up on the recipient's screen. An instant message may also include confidential information that the sender and/or recipient do not want inadvertently disclosed via such a shared screen. Other potential statuses may be used to indicate momentary unavailability of the recipient and tracked by presence server 216 and indicated via UI 226.
  • In instances where the current user status 218 indicates that the recipient is not available, instant messaging system 200 provides several alternatives for sending messages 212 without the need for a sender to manually copy and paste (“park”) the text of the instant message into another software or clipboard solution (e.g., word processor document or notepad application) and send the message later. Which alternative communication method is used depends on the sender preferences 208 and their preferred priority set by the user 204.
  • One alternative method stores the instant message in a message queue 220 while the recipient is unavailable. A change in current user status 218 indicating recipient availability then automatically triggers the instant messaging system 200 to send the message. Another alternative method sends the instant message as an email to the recipient via email application programming interface (API) 222. If the recipient has a mobile telephone number stored in a user profile 206, the sender may also have the option of sending the instant message as a short message service (SMS) text message via SMS API 224.
  • Instant messaging system 200 can be implemented in software, hardware, firmware, or a combination thereof. When software is used, the operations performed by instant messaging system 200 can be implemented in program code configured to run on hardware, such as a processor unit. When firmware is used, the operations performed by instant messaging system 200 can be implemented in program code and data and stored in persistent memory to run on a processor unit. When hardware is employed, the hardware may include circuits that operate to perform the operations in instant messaging system 200.
  • In the illustrative examples, the hardware may take a form selected from at least one of a circuit system, an integrated circuit, an application specific integrated circuit (ASIC), a programmable logic device, or some other suitable type of hardware configured to perform a number of operations. With a programmable logic device, the device can be configured to perform the number of operations. The device can be reconfigured at a later time or can be permanently configured to perform the number of operations. Programmable logic devices include, for example, a programmable logic array, a programmable array logic, a field programmable logic array, a field programmable gate array, and other suitable hardware devices. Additionally, the processes can be implemented in organic components integrated with inorganic components and can be comprised entirely of organic components excluding a human being. For example, the processes can be implemented as circuits in organic semiconductors.
  • These components for instant messaging system 200 can be located in computer system 250, which is a physical hardware system and includes one or more data processing systems. When more than one data processing system is present in computer system 250, those data processing systems are in communication with each other using a communications medium. The communications medium can be a network. The data processing systems can be selected from at least one of a computer, a server computer, a tablet computer, or some other suitable data processing system.
  • For example, instant messaging system 200 can run on one or more processors 252 in computer system 250. As used herein a processor is a hardware device and is comprised of hardware circuits such as those on an integrated circuit that respond and process instructions and program code that operate a computer. When processors 252 execute instructions for a process, one or more processors can be on the same computer or on different computers in computer system 250. In other words, the process can be distributed between processors 252 on the same or different computers in computer system 250. Further, one or more processors 252 can be of the same type or different type of processors 252. For example, one or more processors 252 can be selected from at least one of a single core processor, a dual-core processor, a multi-processor core, a general-purpose central processing unit (CPU), a graphics processing unit (GPU), a quantum processing unit (QPU), a digital signal processor (DSP), or some other type of processor.
  • FIG. 3 depicts a flowchart illustrating a process for asynchronous messaging on an instant messaging system in accordance with illustrative embodiments. Process 300 can be implemented in hardware, software, or both. When implemented in software, the process can take the form of program code that is run by one of more processor units located in one or more hardware devices in one or more computer systems. Process 300 may be implemented in instant messaging system 200 in FIG. 2 .
  • Process 300 begins with the instant messaging system receiving, from a sender, an instant message addressed to a recipient on the instant messaging system (step 302). The instant messaging system determines a current user status of the recipient to ascertain if the recipient is currently available (step 304). Step 304 may entail a synchronous API call to the “status” server (e.g., presence server 216) and endpoint to retrieve the status of the recipient. This API call would be real time and resolve instantly in a functioning network.
  • The current user status may be provided by a presence server in the instant messaging system. A current user status of unavailable may be indicated by one of a DnD status or a Sharing Screen status.
  • Responsive to a determination the recipient is currently available, the instant messaging system sends the instant message to the recipient in real time (step 306). This message may be a synchronous API call to the instant messaging service as a message body (with rich text or possibly a file attachment such as a .jpg or .doc file) via the standard application handling or via an IM system to IM system endpoint (e.g., Cisco Webex® to iMessage® or MSFT Teams®). This API call would be real time and resolve instantly in a functioning network with a response from the end point of a successful receipt.
  • Responsive to a determination the recipient is currently unavailable (see FIG. 4 ), the instant messaging system may further determine the sender's preference of priority (either SMS/text, email, or send later) and, if SMS is preference 1, whether a mobile telephone number for the recipient is stored in a user profile in the instant messaging system (step 308). This determination may be an application check of the other user's profile settings or alternatively a synchronous API call to another instant messaging service's endpoint to retrieve the profile settings of the recipient. This API call would be real time and resolve instantly in a functioning network. The response in this scenario would be a profile setting of a blank or a populated mobile telephone number field and an authorization to allow SMS messaging.
  • Responsive to a determination that a mobile telephone number for the recipient is stored in a user profile in the instant messaging system, the instant messaging system prompts the sender to choose among alternate methods (via a dialog box or via the priority ranking of options) to send the instant message when the recipient is currently unavailable (see FIG. 5 ) (step 310). Sending the SMS message may comprise a synchronous API call to the SMS handling server via a SMS message endpoint to send the message to the recipient. This API call would be real time and resolve instantly in a functioning network. The SMS server should handle the message via the SMS Cellular network and respond back with a success message.
  • If there is no mobile telephone number for the recipient stored in a user profile, the instant messaging system determines a method choice for messaging the recipient selected by the sender (step 312). This method choice is specified by sender preferences and priority ranking (see FIG. 6 ), which may be preset by the sender or selected by the sender in response to a prompt in step 310. This determination may be an application check of the current user's profile settings to retrieve the profile settings and priority ranking of the sender. The system response in this scenario would be the profile setting of either email or “wait until later.”
  • If the method choice in the send preferences and priority ranking is to send the message immediately without delay, the instant messaging system sends the message via an alternative communication system (step 314). This alternative messaging system may comprise email or an SMS text message (in the case where a recipient mobile telephone number is stored in a user profile). Email messaging may comprise an asynchronous API call to the email service as a message (with rich text or possibly a file attachment such as a .jpg or .doc file) via a standard email application handling. This API call to the email software would be real time and resolve instantly in a functioning network with a response from the end point of a successful receipt.
  • If the method choice is to wait until the recipient is available, the instant messaging system stores the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available (step 316). This stored message may comprise a message (with rich text or possibly a file attachment such as a .jpg or .doc file) via the message handler as a later message once the instant messaging current user status of the recipient resets to “active” (i.e., available). Process 300 terminates thereafter.
  • FIG. 4 depicts a diagram illustrating a user interface with a Do not Disturb notice for an instant messaging system in accordance with an illustrative embodiment. In the present example, the sender has selected a recipient 402 in user interface 400. Recipient 402 has a DnD current user status, indicated by icon 406 adjacent the user's avatar, as well as by notice 404 at the bottom of the interface.
  • FIG. 5 depicts a diagram illustrating a user interface presenting a sender with messaging options in response to a Do not Disturb notice in accordance with an illustrative embodiment. In this example, in response to the send er clicking on the DnD notice set by the recipient, user interface 400 presents the sender with a real time interactive pop-up menu 502 of options for sending the message.
  • FIG. 6 depicts a diagram illustrating a user preferences interface for an instant messaging system in accordance with an illustrative embodiment. In this example, preferences interface 600 allows the user to select several options and a priority ranking of each for sending an instant message when a recipient is unavailable. User preferences interface 600 has options and the ability to denote preferred ranking preferences for sending via email 602, via SMS text 604, and delay until recipient is active again 606. In the present example, the user has selected SMS/text 604 as the priority 1 option, email 602 as the priority 2 option, and delayed 606 as priority 3. User preferences interface 600 also allows the user to provide a mobile telephone number in field 608 for receiving SMS text messages when the user sets a DnD status as a recipient.
  • Prioritized send options allow the instant messaging system of the illustrative embodiments to provide fallbacks in cases of API call failures. If an API call fails, and the other endpoint is not responding, the API does not have to continually retry the call but can instead switch to the next highest ranked send option. Using the example in FIG. 6 , the sender has selected SMS 604 as the priority 1 send option, but no mobile telephone number is stored in the profile of the recipient in question. Therefore, the instant messaging system falls back to email 602 as the priority 2 option. If there is a problem with email service, such as an interruption of service with the email server, the instant messaging system would then fall back on placing the message into a queue to send later when the recipient user status changes back to available.
  • Turning now to FIG. 7 , an illustration of a block diagram of a data processing system is depicted in accordance with an illustrative embodiment. Data processing system 700 may be used to implement one or more computers and client devices 110 and servers computer 104, 106 in FIG. 1 and instant messaging system 200 in FIG. 2 . In this illustrative example, data processing system 700 includes communications framework 702, which provides communications between processor unit 704, memory 706, persistent storage 708, communications unit 710, input/output unit 712, and display 714. In this example, communications framework 702 may take the form of a bus system.
  • Processor unit 704 serves to execute instructions for software that may be loaded into memory 706. Processor unit 704 may be a number of processors, a multi-processor core, or some other type of processor, depending on the particular implementation. In an embodiment, processor unit 704 comprises one or more conventional general-purpose central processing units (CPUs). In an alternate embodiment, processor unit 704 comprises one or more graphical processing units (CPUs).
  • Memory 706 and persistent storage 708 are examples of storage devices 716. A storage device is any piece of hardware that is capable of storing information, such as, for example, without limitation, at least one of data, program code in functional form, or other suitable information either on a temporary basis, a permanent basis, or both on a temporary basis and a permanent basis. Storage devices 716 may also be referred to as computer-readable storage devices in these illustrative examples. Memory 706, in these examples, may be, for example, a random access memory or any other suitable volatile or non-volatile storage device. Persistent storage 708 may take various forms, depending on the particular implementation.
  • For example, persistent storage 708 may contain one or more components or devices. For example, persistent storage 708 may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the above. The media used by persistent storage 708 also may be removable. For example, a removable hard drive may be used for persistent storage 708. Communications unit 710, in these illustrative examples, provides for communications with other data processing systems or devices. In these illustrative examples, communications unit 710 is a network interface card.
  • Input/output unit 712 allows for input and output of data with other devices that may be connected to data processing system 700. For example, input/output unit 712 may provide a connection for user input through at least one of a keyboard, a mouse, or some other suitable input device. Further, input/output unit 712 may send output to a printer. Display 714 provides a mechanism to display information to a user.
  • Instructions for at least one of the operating system, applications, or programs may be located in storage devices 716, which are in communication with processor unit 704 through communications framework 702. The processes of the different embodiments may be performed by processor unit 704 using computer-implemented instructions, which may be located in a memory, such as memory 706.
  • These instructions are referred to as program code, computer-usable program code, or computer-readable program code that may be read and executed by a processor in processor unit 704. The program code in the different embodiments may be embodied on different physical or computer-readable storage media, such as memory 706 or persistent storage 708.
  • Program code 718 is located in a functional form on computer-readable media 720 that is selectively removable and may be loaded onto or transferred to data processing system 700 for execution by processor unit 704. Program code 718 and computer-readable media 720 form computer program product 722 in these illustrative examples. In one example, computer-readable media 720 may be computer-readable storage media 724 or computer-readable signal media 726.
  • In these illustrative examples, computer-readable storage media 724 is a physical or tangible storage device used to store program code 718 rather than a medium that propagates or transmits program code 718. Alternatively, program code 718 may be transferred to data processing system 700 using computer-readable signal media 726.
  • Computer-readable signal media 726 may be, for example, a propagated data signal containing program code 718. For example, computer-readable signal media 726 may be at least one of an electromagnetic signal, an optical signal, or any other suitable type of signal. These signals may be transmitted over at least one of communications links, such as wireless communications links, optical fiber cable, coaxial cable, a wire, or any other suitable type of communications link.
  • The different components illustrated for data processing system 700 are not meant to provide architectural limitations to the manner in which different embodiments may be implemented. The different illustrative embodiments may be implemented in a data processing system including components in addition to or in place of those illustrated for data processing system 700. Other components shown in FIG. 7 can be varied from the illustrative examples shown. The different embodiments may be implemented using any hardware device or system capable of running program code 718.
  • The flowcharts and block diagrams in the different depicted embodiments illustrate the architecture, functionality, and operation of some possible implementations of apparatuses and methods in an illustrative embodiment. In this regard, each block in the flowcharts or block diagrams can represent at least one of a module, a segment, a function, or a portion of an operation or step. For example, one or more of the blocks can be implemented as program code, hardware, or a combination of the program code and hardware. When implemented in hardware, the hardware may, for example, take the form of integrated circuits that are manufactured or configured to perform one or more operations in the flowcharts or block diagrams. When implemented as a combination of program code and hardware, the implementation may take the form of firmware. Each block in the flowcharts or the block diagrams may be implemented using special purpose hardware systems that perform the different operations or combinations of special purpose hardware and program code run by the special purpose hardware.
  • In some alternative implementations of an illustrative embodiment, the function or functions noted in the blocks may occur out of the order noted in the figures. For example, in some cases, two blocks shown in succession may be performed substantially concurrently, or the blocks may sometimes be performed in the reverse order, depending upon the functionality involved. Also, other blocks may be added in addition to the illustrated blocks in a flowchart or block diagram.
  • The different illustrative examples describe components that perform actions or operations. In an illustrative embodiment, a component may be configured to perform the action or operation described. For example, the component may have a configuration or design for a structure that provides the component an ability to perform the action or operation that is described in the illustrative examples as being performed by the component.
  • Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different illustrative embodiments may provide different features as compared to other illustrative embodiments. The embodiment or embodiments selected are chosen and described in order to best explain the principles of the embodiments, the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.

Claims (24)

1. A computer-implemented method for asynchronous messaging on an instant messaging system, the method comprising:
receiving, by a data processing system coupled with memory, from a sender, an instant message addressed to a recipient on the instant messaging system;
determining, by the data processing system, a current user status of the recipient to be unavailable based on the recipient sharing a screen with one or more other computing devices;
identifying, by the data processing system, that an alternative communication system is not associated with the recipient by querying a profile of the recipient
receiving, by the data processing system, responsive to identifying that the alternative communication system is not associated with the recipient, a selection from the sender to delay a transmittal of the instant message to the recipient;
storing, by the data processing system, the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available; and
sending, by the data processing system, the instant message to the recipient responsive to the current user status of the recipient changing to available.
2. The method of claim 1, wherein the alternative communication system comprises email.
3. The method of claim 1, wherein the alternative communication system comprises short message service.
4. (canceled)
5. The method of claim 1, wherein responsive to identifying that the alternative communication system is not associated with the recipient, prompting the sender to choose among alternate methods to send the instant message when the recipient is currently unavailable.
6. The method of claim 1, wherein the current user status of unavailable is indicated by one of:
a Do Not Disturb status; or
a Sharing Screen status.
7. The method of claim 1, wherein the current user status is provided by a presence server in the instant messaging system.
8. The method of claim 1, wherein a set of sender preferences are ranked by the sender.
9. A system for asynchronous messaging on an instant messaging system, the system comprising:
a storage device configured to store program instructions; and
one or more processors operably connected to the storage device and configured to execute the program instructions to cause the system to:
receive, from a sender, an instant message addressed to a recipient on the instant messaging system;
determine a current user status of the recipient to be unavailable based on the recipient sharing a screen with one or more other computing devices;
identify that an alternative communication system is not associated with the recipient by querying a profile of the recipient;
receive, responsive to identifying that the alternative communication system is not associated with the recipient, a selection from the sender to delay a transmittal of the instant message to the recipient;
store the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available; and
send the instant message to the recipient responsive to the current user status of the recipient changing to available.
10. The system of claim 9, wherein the alternative communication system comprises email.
11. The system of claim 9, wherein the alternative communication system comprises short message service.
12. (canceled)
13. The system of claim 9, wherein responsive to identifying that the alternative communication system is not associated with the recipient, prompting the sender to choose among alternate methods to send the instant message when the recipient is currently unavailable.
14. The system of claim 9, wherein the current user status of unavailable is indicated by one of:
a Do Not Disturb status; or
a Sharing Screen status.
15. The system of claim 9, wherein the current user status is provided by a presence server in the instant messaging system.
16. The system of claim 9, wherein a set of sender preference are ranked by the sender.
17. A computer program product for asynchronous messaging on an instant messaging system, the computer program product comprising:
a non-transitory computer-readable storage medium having program instructions embodied thereon the perform the steps of:
receiving, from a sender, an instant message addressed to a recipient on the instant messaging system;
determining a current user status of the recipient to be unavailable based on the recipient sharing a screen with one or more other computing devices;
identifying that an alternative communication system is not associated with the recipient by querying a profile of the recipient;
receiving, responsive to identifying that the alternative communication system is not associated with the recipient, a selection from the sender to delay a transmittal of the instant message to the recipient;
storing the instant message in a queue until triggered to send the instant message when the current user status of the recipient changes to available; and
sending the instant message to the recipient responsive to the current user status of the recipient changing to available.
18. The computer program product of claim 17, wherein the alternative communication system comprises email.
19. The computer program product of claim 17, wherein the alternative communication system comprises short message service.
20. (canceled)
21. The computer program product of claim 17, wherein responsive to identifying that the alternative communication system is not associated with the recipient, prompting the sender to choose among alternate methods to send the instant message when the recipient is currently unavailable.
22. The computer program product of claim 17, wherein the current user status of unavailable is indicated by one of:
a Do Not Disturb status; or
a Sharing Screen status.
23. The computer program product of claim 17, wherein the current user status is provided by a presence server in the instant messaging system.
24. The computer program product of claim 17, wherein a set of sender preferences are ranked by the sender.
US17/656,301 2022-03-24 2022-03-24 Message routing based on unavailability Active US11777878B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/656,301 US11777878B1 (en) 2022-03-24 2022-03-24 Message routing based on unavailability
US18/479,753 US20240031314A1 (en) 2022-03-24 2023-10-02 Message routing based on unavailability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/656,301 US11777878B1 (en) 2022-03-24 2022-03-24 Message routing based on unavailability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/479,753 Continuation US20240031314A1 (en) 2022-03-24 2023-10-02 Message routing based on unavailability

Publications (2)

Publication Number Publication Date
US20230308404A1 true US20230308404A1 (en) 2023-09-28
US11777878B1 US11777878B1 (en) 2023-10-03

Family

ID=88096670

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/656,301 Active US11777878B1 (en) 2022-03-24 2022-03-24 Message routing based on unavailability
US18/479,753 Pending US20240031314A1 (en) 2022-03-24 2023-10-02 Message routing based on unavailability

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/479,753 Pending US20240031314A1 (en) 2022-03-24 2023-10-02 Message routing based on unavailability

Country Status (1)

Country Link
US (2) US11777878B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020087634A1 (en) * 1999-08-03 2002-07-04 Ogle David Mark Technique for enabling wireless messaging systems to use alternative message delivery mechanisms
US20040019695A1 (en) * 2002-07-25 2004-01-29 International Business Machines Corporation Messaging system and method using alternative message delivery paths
US20050071433A1 (en) * 2003-09-25 2005-03-31 Sun Microsystems, Inc. Method and system for processing instant messenger operations dependent upon presence state information in an instant messaging system
US20060025164A1 (en) * 2004-07-30 2006-02-02 Richard Wang Method and system for integrating instant message into unified message
US20090313336A1 (en) * 2008-06-17 2009-12-17 International Business Machines Corporation Transmission of instant messages according to availability
US20100069095A1 (en) * 2008-09-15 2010-03-18 Microsoft Corporation System and methods for communication between instant message users and short message service users
US20120226763A1 (en) * 2003-06-30 2012-09-06 AOL Inc., Intelligent processing in the context of away and offline instant messages
US20150373515A1 (en) * 2004-12-01 2015-12-24 Google Inc. Automatically enabling the forwarding of instant messages

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020087634A1 (en) * 1999-08-03 2002-07-04 Ogle David Mark Technique for enabling wireless messaging systems to use alternative message delivery mechanisms
US20040019695A1 (en) * 2002-07-25 2004-01-29 International Business Machines Corporation Messaging system and method using alternative message delivery paths
US20120226763A1 (en) * 2003-06-30 2012-09-06 AOL Inc., Intelligent processing in the context of away and offline instant messages
US20050071433A1 (en) * 2003-09-25 2005-03-31 Sun Microsystems, Inc. Method and system for processing instant messenger operations dependent upon presence state information in an instant messaging system
US20060025164A1 (en) * 2004-07-30 2006-02-02 Richard Wang Method and system for integrating instant message into unified message
US20150373515A1 (en) * 2004-12-01 2015-12-24 Google Inc. Automatically enabling the forwarding of instant messages
US20090313336A1 (en) * 2008-06-17 2009-12-17 International Business Machines Corporation Transmission of instant messages according to availability
US20100069095A1 (en) * 2008-09-15 2010-03-18 Microsoft Corporation System and methods for communication between instant message users and short message service users

Also Published As

Publication number Publication date
US20240031314A1 (en) 2024-01-25
US11777878B1 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US7496630B2 (en) Adaptive notification delivery in a multi-device environment
US8516049B2 (en) Administering instant messaging (‘IM’) chat sessions
US8606859B2 (en) Method and system to communicate messages in a computer network
US7552177B2 (en) Method for determining availability of participation in instant messaging
US7990900B2 (en) Event notification control based on data about a user's communication device stored in a user notification profile
US20080285729A1 (en) Communication Modalities Management
US20100056187A1 (en) Method and system for providing cellular telephone subscription for e-mail threads
CN111711663A (en) Processing method and device for publishing and subscribing services and electronic equipment
US10574782B2 (en) Method and server for generating contact relationship data in network communication system
MX2010014055A (en) Multi-modal communication through modal-specific interfaces.
US20070239830A1 (en) Method and apparatus for instant message notification and forwarding
CN115004673B (en) Message pushing method, device, electronic equipment and computer readable medium
US20180241800A1 (en) Email webclient notification queuing
US20170359778A1 (en) Multi-Channel Communications For Sending Push Notifications To Mobile Devices
US10243895B2 (en) Method of and system for processing an electronic message destined for an electronic device
US9998885B2 (en) Method of and system for processing an electronic message destined for an electronic device
JP5611952B2 (en) Asynchronous queuing messaging for web applications
EP3920035B1 (en) Message transmission/reception method, communication device, and program
US11777878B1 (en) Message routing based on unavailability
CN115499501A (en) Message pushing method, system, service gateway and storage medium
JP5050649B2 (en) Computer system, method, and program for queuing
CN113014404B (en) Message transmission method and device, server and second client
US9596199B2 (en) Enabling and supporting a presence server cache
US9785917B2 (en) System and method for obtaining a portion of an archived email message
CN113238808A (en) Message pushing method and device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADP, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMPSON, ISAAC JORDAN;REEL/FRAME:059388/0996

Effective date: 20220323

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE