US20230285121A1 - Orthodontic device - Google Patents

Orthodontic device Download PDF

Info

Publication number
US20230285121A1
US20230285121A1 US18/149,150 US202318149150A US2023285121A1 US 20230285121 A1 US20230285121 A1 US 20230285121A1 US 202318149150 A US202318149150 A US 202318149150A US 2023285121 A1 US2023285121 A1 US 2023285121A1
Authority
US
United States
Prior art keywords
orthodontic
wire
tooth
sliding
bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/149,150
Inventor
Kami Hoss
Steven Howard
Jacob A. Moebius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aadvance Technologies LLC
Original Assignee
Aadvance Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aadvance Technologies LLC filed Critical Aadvance Technologies LLC
Priority to US18/149,150 priority Critical patent/US20230285121A1/en
Publication of US20230285121A1 publication Critical patent/US20230285121A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/28Securing arch wire to bracket
    • A61C7/287Sliding locks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/28Securing arch wire to bracket
    • A61C7/285Locking by rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/28Securing arch wire to bracket
    • A61C7/30Securing arch wire to bracket by resilient means; Dispensers therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/002Orthodontic computer assisted systems

Definitions

  • the field relates to an orthodontic device.
  • Orthodontic braces devices are used to correct dental malocclusion, which can generally be described as an abnormal alignment of a patient's teeth and/or the manner in which the upper and lower teeth fit together.
  • Dental malocclusion is a significant problem in dental public health because of its adverse effects on teeth, bone, muscles, and/or nerve tissue.
  • braces or other orthodontic devices are often used to improve a patient's dental aesthetics.
  • a bracket is attached to a tooth, and an orthodontic wire (e.g., an archwire) is inserted into a wire retention cavity of the bracket.
  • ligatures for example, elastic bands or steel ligatures
  • a wire can be inserted into the bracket and secured mechanically without using ligatures.
  • the wire slides laterally relative to the bracket.
  • orthodontic device in one embodiment, can include a bracket configured to support an orthodontic wire.
  • the orthodontic device can include a locking assembly to be coupled to the bracket and movable between a plurality of operational modes, the plurality of operational modes comprising a first sliding mode in which the orthodontic wire is slidable relative to the bracket and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket.
  • the locking assembly in the second locked mode can prevent sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces.
  • the locking assembly in the second locked mode can prevent sliding of the orthodontic wire during use of the orthodontic device.
  • the locking assembly can be configured to apply a continuously variable frictional force to the wire.
  • the locking assembly can be configured to apply the continuously variable frictional force to the wire to move between the first sliding mode and the second locked mode.
  • the locking assembly can be configured to adjust a frictional force to the wire in a step-wise manner.
  • the locking assembly can be configured to move between the first sliding mode and the second locked mode in a step-wise manner.
  • the orthodontic device can comprise a third open mode in which the orthodontic wire is insertable into and removable from the bracket.
  • the orthodontic device can comprise the orthodontic wire.
  • the locking assembly can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire in the second locked mode.
  • the bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis.
  • the clip In the first sliding mode, the clip can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket.
  • the wedge member in the first sliding mode can be disposed at a first position along the transverse axis
  • the wedge member in the second locked mode can be disposed at a second position along the transverse axis that is different from the first position.
  • a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire.
  • the orthodontic wire can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire.
  • the orthodontic device can comprise a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity.
  • the locking assembly can comprise a rotary member configured to rotate about a rotational direction to switch from the first sliding mode to the second locked mode.
  • the rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket.
  • the rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire.
  • the rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire to switch between the first sliding mode and the second locked mode.
  • the plurality of component surfaces can be angled relative to one another and include at least two different surface profiles.
  • the locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is at least 50 cN.
  • the locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is at least 100 cN.
  • the locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is in a range of 50 cN to 2000 cN.
  • the locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is in a range of 100 cN to 2000 cN.
  • an orthodontic device in another embodiment, can comprise a bracket configured to support an orthodontic wire.
  • the orthodontic device can comprise a fixation mechanism to be coupled to the bracket, the fixation mechanism configured to operate in a manner that allows sliding of the orthodontic wire relative to the bracket and in a manner that prevents sliding of the orthodontic wire relative to the bracket.
  • the fixation mechanism can be movable from a first configuration that allows sliding of the orthodontic wire relative to the bracket to a second configuration that prevents sliding of the orthodontic wire relative to the bracket when the orthodontic wire is subject to typical orthodontic forces.
  • the orthodontic device can comprise the orthodontic wire.
  • the fixation mechanism can be configured to apply a continuously variable frictional force to the wire.
  • the fixation mechanism can be configured to adjust a frictional force to the wire in a step-wise manner.
  • the fixation mechanism can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire in the second configuration.
  • the bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis.
  • the clip In the first configuration, the clip can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket.
  • the wedge member in the first configuration can be disposed at a first position along the transverse axis, and wherein the wedge member in the second configuration is disposed at a second position along the transverse axis that is different from the first position.
  • a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire.
  • the orthodontic wire In the second configuration, the orthodontic wire can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire.
  • the orthodontic device can comprise a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity.
  • the fixation mechanism can comprise a rotary member configured to rotate about a rotational direction to switch from the first configuration to the second configuration.
  • the rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket.
  • the rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire.
  • the rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire to switch between the first configuration and the second configuration.
  • the plurality of component surfaces can be angled relative to one another and include at least two different surface profiles.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 50 cN.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 100 cN.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 50 cN to 2000 cN.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 100 cN to 2000 cN.
  • an orthodontic device in another embodiment, can comprise a bracket configured to support an orthodontic wire.
  • the orthodontic device can comprise a fixation mechanism to be coupled to the bracket, the fixation mechanism movable from a first configuration that allows sliding of the orthodontic wire relative to the bracket to a second configuration that prevents sliding of the orthodontic wire relative to the bracket when the orthodontic wire is subject to typical orthodontic forces.
  • the fixation mechanism in the second configuration can prevent sliding of the orthodontic wire during use of the orthodontic device.
  • the orthodontic device can comprise the orthodontic wire.
  • the fixation mechanism can be configured to apply a continuously variable frictional force to the wire.
  • the fixation mechanism can be configured to adjust a frictional force to the wire in a step-wise manner.
  • the fixation mechanism can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire in the second configuration.
  • the bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis.
  • the clip in the first configuration, can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket.
  • the wedge member in the first configuration can be disposed at a first position along the transverse axis
  • the wedge member in the second configuration can be disposed at a second position along the transverse axis that is different from the first position.
  • a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire.
  • the orthodontic wire in the second configuration, can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire.
  • the orthodontic device can comprise a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity.
  • the fixation mechanism can comprise a rotary member configured to rotate about a rotational direction to switch from the first configuration to the second configuration.
  • the rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket.
  • the rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire.
  • the rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire to switch between the first configuration and the second configuration.
  • the plurality of component surfaces can be angled relative to one another and include at least two different surface profiles.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 50 cN.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 100 cN.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 50 cN to 2000 cN.
  • the fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 100 cN to 2000 cN.
  • an orthodontic device in another embodiment, can include a bracket having a retention cavity sized and shaped to receive and support an orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the orthodontic device can include a clip to be coupled to the bracket and to be positioned over the orthodontic wire in use, the clip configured to move along a transverse axis of the orthodontic device to retain the orthodontic wire in the retention cavity, the transverse axis orthogonal to the lateral axis.
  • the orthodontic device can include a wedge member to be coupled to the bracket, the wedge member configured to move along the transverse axis, the orthodontic wire to be disposed between the wedge member and the clip with the wedge member disposed between the orthodontic wire and the bracket, the wedge member including a tapered wedge surface that engages the orthodontic wire.
  • At least the wedge member can serve as a frictional adjustment mechanism configured to exert an adjustable frictional force against the orthodontic wire, including a range of sliding frictional forces in which the orthodontic wire is slidable relative to the bracket and at least one non-sliding frictional force that prevents sliding of the orthodontic wire in use when the orthodontic wire is subject to typical orthodontic forces.
  • movement of the wedge member along the transverse axis is not configured to cause movement of the clip along the transverse axis. In some embodiments, movement of the clip along the transverse axis is not configured to cause movement of the wedge member along the transverse axis.
  • the frictional adjustment mechanism can be adjustable to apply a continuously variable frictional force against the orthodontic wire.
  • the wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN.
  • the wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN.
  • the orthodontic device can include the orthodontic wire.
  • the wedge member can include one or a plurality of tooling apertures sized to receive a tool to adjust the frictional force against the orthodontic wire.
  • an orthodontic device in another embodiment, can include a bracket having a retention cavity sized and shaped to receive and support an orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the orthodontic device can include a frictional adjustment mechanism comprising a clip and a wedge member that cooperate to exert an adjustable frictional force against the orthodontic wire, the clip and the wedge member to be coupled to the bracket and movable along a transverse axis that is orthogonal to the lateral axis.
  • the frictional adjustment mechanism can configured to exert a range of sliding frictional forces in which the orthodontic wire is slidable relative to the bracket and at least one non-sliding frictional force that prevents sliding of the orthodontic wire in use when the orthodontic wire is subject to typical orthodontic forces.
  • movement of the wedge member along the transverse axis is not configured to cause movement of the clip along the transverse axis. In some embodiments, movement of the clip along the transverse axis is not configured to cause movement of the wedge member along the transverse axis.
  • the frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN. The frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN. The frictional adjustment mechanism can be adjustable to apply a continuously variable frictional force against the orthodontic wire.
  • the orthodontic wire can be disposed between the wedge member and the clip with the wedge member disposed between the orthodontic wire and the bracket.
  • the orthodontic wire can be disposed between the bracket and the wedge member, the wedge member disposed between the wire and the clip.
  • the wedge member can include a tapered wedge surface that engages the orthodontic wire.
  • the wedge member can have a thickness varying along at least a portion of the length of the wedge member.
  • the orthodontic device can include the orthodontic wire.
  • the wedge member can include one or a plurality of tooling apertures sized to receive a tool to adjust the frictional force against the orthodontic wire.
  • an orthodontic device in another embodiment, can include a bracket having a retention cavity sized and shaped to receive and support an orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the orthodontic device can include a clip to be coupled to the bracket, the clip configured to move along a transverse axis of the orthodontic device, the transverse axis non-parallel relative to the lateral axis.
  • the orthodontic device can include a wedge member to be coupled to the bracket, the wedge member configured to move along the transverse axis.
  • the clip, the wedge member, and the bracket can be configured to cooperate to exert an adjustable frictional force against the orthodontic wire.
  • the wedge member has a tapered wedge surface angled relative to a vertical axis that is orthogonal to the lateral axis and the transverse axis, the wedge member having a thickness in the direction of the vertical axis and a length in the direction of the transverse axis, the thickness varying along at least a portion of the length of the wedge member.
  • movement of the wedge member along the transverse axis is not configured to cause movement of the clip along the transverse axis, and movement of the clip along the transverse axis is not configured to cause movement of the wedge member along the transverse axis.
  • the clip and the wedge member can serve as a frictional adjustment mechanism adjustable to exert a range of sliding and non-sliding frictional forces against the orthodontic wire in use.
  • the frictional adjustment mechanism can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces.
  • the wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN.
  • the wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN.
  • the clip, the wedge member, and the bracket can be configured to cooperate to move between a plurality of operational modes, the plurality of operational modes comprising a first sliding mode in which the orthodontic wire is slidable relative to the bracket and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket.
  • the clip and the wedge member can serve as a frictional adjustment mechanism adjustable to apply a continuously variable frictional force against the wire.
  • the clip In the first sliding mode, the clip can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket.
  • the wedge member in the first sliding mode can be disposed at a first position along the transverse axis
  • the wedge member in the second locked mode can be disposed at a second position along the transverse axis that is different from the first position.
  • a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire.
  • the orthodontic wire can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire.
  • the orthodontic wire can be vertically disposed between the bracket and the wedge member, the wedge member disposed between the wire and the clip.
  • the wedge member can include a tapered wedge surface that engages the orthodontic wire.
  • the orthodontic device can include the orthodontic wire.
  • the wedge member can include one or a plurality of tooling apertures sized to receive a tool to adjust the frictional force against the orthodontic wire.
  • an orthodontic device in another embodiment, can comprise a bracket configured to support an orthodontic wire that extends along a lateral axis, the bracket including an interior cavity and a curved follower surface.
  • the orthodontic device can comprise a rotary member to be coupled to the bracket in the interior cavity and configured to rotate about the lateral axis to exert an adjustable frictional force against the orthodontic wire, the rotary member comprising an outer bearing surface that rotates relative to the curved follower surface of the bracket and an inner cam surface that engages with the orthodontic wire to adjust the frictional force.
  • the rotary member can be configured to rotate about the lateral axis to move between a plurality of operational modes, the plurality of operational modes comprises a first sliding mode in which the orthodontic wire is slidable relative to the bracket and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket.
  • the inner cam surface can comprise a plurality of component surfaces that engage with the orthodontic wire.
  • the plurality of component surfaces can be angled relative to one another and can include at least two different surface profiles.
  • the rotary member in the second locked mode can exert a locking force against the orthodontic wire that is at least 50 cN.
  • a method of orthodontic treatment can include securing a first orthodontic device to a first tooth.
  • the method can include adjusting the first orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the first orthodontic device.
  • the method can include securing a second orthodontic device to a second tooth.
  • the method can include adjusting the second orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the second orthodontic device when the orthodontic wire is subject to typical orthodontic forces in use.
  • the method can include adjusting the first orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device.
  • Adjusting the first orthodontic device can comprise moving a clip along an axis transverse to the orthodontic wire to position the clip over the orthodontic wire.
  • Adjusting the first orthodontic device to exert the second non-sliding frictional force can comprise moving a wedge member along the axis transverse to the orthodontic wire to exert the second non-sliding force against the orthodontic wire.
  • Adjusting the first orthodontic device to exert the second non-sliding frictional force can comprise rotating a rotatable member such that an internal cam surface of the rotatable member exerts the second non-sliding force against the orthodontic wire.
  • the method can include securing a third orthodontic device to a third tooth and adjusting the third orthodontic device such that the orthodontic wire is slidable or non-slidable relative to the third orthodontic device.
  • a method of orthodontic treatment can include securing an orthodontic device to a tooth.
  • the method can include adjusting the orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device.
  • the method can include adjusting the orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device.
  • the method can include adjusting the orthodontic device to exert the sliding frictional force in a first treatment procedure before adjusting the orthodontic device to exert the non-sliding frictional force in a second treatment procedure.
  • the method can include securing a second orthodontic device to a second tooth, adjusting the second orthodontic device to exert a second sliding frictional force against the orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device, and adjusting the second orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device.
  • the non-sliding frictional force can prevent sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use.
  • Adjusting the orthodontic device can comprise moving a clip along an axis transverse to the orthodontic wire to position the clip over the orthodontic wire.
  • Adjusting the orthodontic device to exert the non-sliding frictional force can comprise moving a wedge member along the axis transverse to the orthodontic wire to exert the non-sliding frictional force against the orthodontic wire.
  • Adjusting the orthodontic device to exert the non-sliding frictional force can comprise rotating a rotatable member such that an internal cam surface of the rotatable member exerts the non-sliding frictional force against the orthodontic wire.
  • a method of orthodontic treatment can include securing a first orthodontic device to a first tooth, the first orthodontic device having a first plurality of support modes including a first sliding mode and a second non-sliding mode.
  • the method can include securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of support modes including a first sliding mode and a second non-sliding mode.
  • the method can include placing the first orthodontic device into the first sliding mode.
  • the method can include placing the second orthodontic device into the second non-sliding mode.
  • the first and second orthodontic devices in the second non-sliding mode can prevent sliding of an orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use.
  • the method can include inserting an orthodontic wire into a retention cavity of a bracket of the first orthodontic device. Placing the first orthodontic device in the first sliding mode can comprise rotating a rotatable member over the orthodontic wire. Placing the first orthodontic device in the first sliding mode can comprise moving a clip along an axis transverse to the orthodontic wire to position the clip over the orthodontic wire. Placing the second orthodontic device in the second non-sliding mode can comprise rotating a rotatable member such that an internal cam surface of the rotatable member exerts a locking force against the orthodontic wire.
  • Placing the second orthodontic device in the second non-sliding mode comprises moving a wedge member along an axis transverse to the orthodontic wire to exert a locking force against the orthodontic wire.
  • the method can include placing the first orthodontic device into the second non-sliding mode. Placing the first orthodontic device into the second non-sliding mode can comprise switching the first orthodontic device into the second non-sliding mode in a step-wise manner. Placing the first orthodontic device into the second non-sliding mode can comprise continuously increasing a frictional force against the orthodontic wire.
  • the method can include placing the second orthodontic device into the first sliding mode. Placing the second orthodontic device into the first sliding mode can comprise switching the second orthodontic device into the first sliding mode in a step-wise manner. Placing the second orthodontic device into the first sliding mode can comprise continuously increasing a frictional force against the orthodontic wire.
  • a method of orthodontic treatment can include securing an orthodontic device to a tooth, the orthodontic device having a first plurality of operational modes including a first sliding mode and a second non-sliding mode.
  • the method can include placing the orthodontic device into one of the first sliding mode and the second non-sliding mode.
  • the method can include moving the orthodontic device into the other of the first sliding mode and the second non-sliding mode.
  • the method can include securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of operational modes including a first sliding mode and a second non-sliding mode, placing the second orthodontic device into one of the first sliding mode and the second non-sliding mode, and moving the second orthodontic device into the other of the first sliding mode and the second non-sliding mode.
  • Moving the orthodontic device can comprise adjusting the orthodontic device to exert a continuously varying frictional force against the orthodontic wire.
  • Moving the orthodontic device can comprise switching the orthodontic device into the second non-sliding mode in a step-wise manner
  • a method for designing an orthodontic treatment system can include determining an orthodontic force profile to be applied to a patient's teeth to treat the patient based on malocclusion characteristics of the patient's teeth.
  • the method can include, based on the determined orthodontic force profile, selecting a first sliding mode for a first orthodontic device to be secured to a first tooth.
  • the method can include, based on the determined orthodontic force profile, selecting a second non-sliding mode for a second orthodontic device to be secured to a second tooth.
  • the method can include obtaining image data of a patient's teeth and processing the obtained image data to determine malocclusion characteristics of the patient.
  • the method can include manufacturing the first and second orthodontic devices.
  • the method can include selecting the first sliding mode and selecting the second locked mode based on a look-up table (LUT) that maps a plurality of clinical scenarios to operational modes of the first and second orthodontic devices.
  • LUT look-up table
  • a system for creating a patient-specific orthodontic system can comprise an orthodontic design system having processing electronics configured to determine an orthodontic force profile to be applied to a patient's teeth to treat the patient based on malocclusion characteristics of the patient's teeth.
  • the processing electronics can be configured to, based on the determined orthodontic force profile, select a first sliding mode for a first orthodontic device to be secured to a first tooth.
  • the processing electronics can be configured to, based on the determined orthodontic force profile, select a second non-sliding mode for a second orthodontic device to be secured to a second tooth.
  • the processing electronics can be configured to obtain image data of a patient's teeth and to process the obtained image data to determine malocclusion characteristics of the patient.
  • the system can include an imaging device configured to capture the image data.
  • the system can include a manufacturing system configured to manufacture the first and second orthodontic devices.
  • the processing electronics can be configured to select the first sliding mode and to select the second locked mode based on a look-up table (LUT) that maps a plurality of clinical scenarios to operational modes of the first and second orthodontic devices.
  • LUT look-up table
  • a bracket for an orthodontic device can include a base configured to be affixed to a tooth.
  • the bracket can include a support portion extending from the base.
  • the bracket can include a retention cavity extending through the support portion along a lateral axis of the bracket, the retention cavity sized and shaped to receive and support an orthodontic wire.
  • the bracket can include a transverse cavity extending at least partially through the support portion along a transverse axis of the bracket that is non-parallel to the lateral axis, the transverse cavity sized and shaped to receive a wedge member.
  • the transverse cavity can be disposed vertically between the base and the retention cavity.
  • a bracket for an orthodontic device can include a base configured to be affixed to a tooth.
  • the bracket can include a support portion extending from the base, the support portion including an interior cavity and a curved follower surface exposed to the interior cavity, the interior cavity and the curved follower surface sized and shaped to mate with a rotary locking member.
  • the bracket can include a retention cavity extending along a lateral axis, the retention cavity sized and shaped to receive and support an orthodontic wire.
  • the bracket can include a transverse cavity disposed transverse to the retention cavity and extending to the interior cavity.
  • an orthodontic device in another embodiment, can include a bracket configured to support an orthodontic wire.
  • the orthodontic device can include a braking assembly to be coupled to the bracket, the braking assembly configured to operate in a manner that allows sliding of the orthodontic wire relative to the bracket and provides adjustable friction that increases the braking effect on the orthodontic wire to prevent sliding of the orthodontic wire relative to the bracket in use.
  • the braking assembly can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces.
  • the braking assembly can be configured to apply a continuously variable frictional force against the wire.
  • the braking assembly can be configured to apply the continuously variable frictional force to the wire to move between a first sliding mode and a second non-sliding mode.
  • the braking assembly can be configured to adjust a frictional force to the wire in a step-wise manner.
  • the braking assembly can be configured to move between a first sliding mode and a second non-sliding mode in a step-wise manner.
  • the orthodontic device can include the orthodontic wire.
  • the braking assembly can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire to prevent sliding of the orthodontic wire relative to the bracket.
  • the bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis.
  • the orthodontic device can include a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity.
  • the braking assembly can comprise a rotary member configured to rotate about a rotational direction to increase the braking effect.
  • the rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket.
  • the rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire.
  • the rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire.
  • the plurality of component surfaces can be angled relative to one another and include at least two different surface profiles.
  • the braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN.
  • the braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 100 cN.
  • the braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 50 cN to 2000 cN.
  • the braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN.
  • an orthodontic device in another embodiment, can include a bracket configured to support an orthodontic wire.
  • the orthodontic device can include a frictional adjustment mechanism to be coupled to the bracket, the frictional adjustment mechanism adjustable to exert a range of sliding and non-sliding frictional forces against the orthodontic wire in use.
  • the frictional adjustment mechanism can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces.
  • the frictional adjustment mechanism can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire during use of the orthodontic device.
  • the frictional adjustment mechanism can be configured to apply a continuously variable frictional force against the wire.
  • the frictional adjustment mechanism can be configured to apply the continuously variable frictional force to the wire to move between a first sliding mode and a second non-sliding mode.
  • the frictional adjustment mechanism can be configured to adjust a frictional force to the wire in a step-wise manner.
  • the frictional adjustment mechanism can be configured to move between a first sliding mode and a second non-sliding mode in a step-wise manner.
  • the orthodontic device can include the orthodontic wire.
  • the frictional adjustment mechanism can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire to prevent sliding of the orthodontic wire relative to the bracket.
  • the bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device.
  • the clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis.
  • the orthodontic device can include a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity.
  • the frictional adjustment mechanism can comprise a rotary member configured to rotate about a rotational direction to increase the braking effect.
  • the rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket.
  • the rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire.
  • the rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire. The plurality of component surfaces can be angled relative to one another and include at least two different surface profiles.
  • the frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN.
  • the frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 100 cN.
  • the frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 50 cN to 2000 cN.
  • the frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN.
  • a method of orthodontic treatment can include securing a first orthodontic device to a first tooth, the first orthodontic device comprising a first clip and a first wedge member; adjusting the first orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the first orthodontic device along a first lateral axis of the first orthodontic device, wherein adjusting the first orthodontic device comprises moving the first clip along a first transverse axis orthogonal to the first lateral axis, wherein moving the first clip along the first transverse axis does not require movement of the first wedge member along the first transverse axis; securing a second orthodontic device to a second tooth, the second orthodontic device comprising a second clip and a second wedge member; and adjusting the second orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the second orthodontic device along a second lateral axis when the orthodontic wire is subject to typical orthodontic forces in use, wherein
  • the method can include adjusting the first orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device.
  • the first wedge member has a first tapered wedge surface and a first thickness varying along at least a portion of a length of the first wedge member.
  • adjusting the first orthodontic device to exert the second non-sliding frictional force comprises moving the first wedge member along the first transverse axis to cause the first tapered wedge surface to engage with the orthodontic wire to exert the second non-sliding force against the orthodontic wire.
  • the second wedge member has a second tapered wedge surface and a second thickness varying along at least a portion of a length of the second wedge member, the method comprising engaging the orthodontic wire with the second tapered wedge surface.
  • the method can include securing a third orthodontic device to a third tooth and adjusting the third orthodontic device such that the orthodontic wire is slidable or non-slidable relative to the third orthodontic device.
  • a method of orthodontic treatment can include securing an orthodontic device to a tooth, the orthodontic device comprising a clip and a wedge member; adjusting the orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device along a lateral axis, wherein adjusting the orthodontic device to exert the sliding frictional force comprises moving the clip along a transverse axis orthogonal to the lateral axis, wherein moving the clip along the transverse axis does not require movement of the wedge member along the transverse axis; and adjusting the orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device, wherein adjusting the orthodontic device to exert the non-sliding frictional force comprises moving the wedge member along the transverse axis to exert the non-sliding frictional force.
  • the method can include adjusting the orthodontic device to exert the sliding frictional force in a first treatment procedure before adjusting the orthodontic device to exert the non-sliding frictional force in a second treatment procedure.
  • the method can include securing a second orthodontic device to a second tooth; adjusting the second orthodontic device to exert a second sliding frictional force against the orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device; and adjusting the second orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device.
  • the non-sliding frictional force prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use.
  • the wedge member has a tapered wedge surface and a thickness varying along at least a portion of a length of the wedge member, wherein moving the wedge member along the transverse axis to exert the non-sliding frictional force comprises engaging the orthodontic wire with the tapered wedge surface.
  • adjusting the orthodontic device to exert the non-sliding frictional force comprises moving the wedge member along the transverse axis to cause the tapered wedge surface to engage with the orthodontic wire to exert the non-sliding frictional force against the orthodontic wire.
  • the second orthodontic device comprises a second clip and a second wedge member independently movable along a second transverse axis.
  • a method of orthodontic treatment can include securing a first orthodontic device to a first tooth, the first orthodontic device having a first plurality of support modes including a first sliding mode and a second non-sliding mode, the first orthodontic device comprising a first clip and a first wedge member, the first wedge member having a first tapered wedge surface that engages an orthodontic wire and a first thickness varying along at least a portion of a length of the first wedge member; securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of support modes including a first sliding mode and a second non-sliding mode, the second orthodontic device comprising a second clip and a second wedge member, the second wedge member having a second tapered wedge surface that engages the orthodontic wire and a second thickness varying along at least a portion of a length of the second wedge member; placing the first orthodontic device into the first sliding mode that permits sliding of the orthodontic wire along a first lateral axis, wherein placing the first orthodontic device
  • the first and second orthodontic devices in the second non-sliding mode prevent sliding of an orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use.
  • the method can include inserting an orthodontic wire into a retention cavity of a bracket of the first orthodontic device.
  • moving the first clip along the first transverse axis is not configured to cause the first wedge member to move along the first transverse axis.
  • moving the second clip along the second transverse axis is not configured to cause the second wedge member to move along the second transverse axis.
  • moving the second wedge member along the second transverse axis is not configured to cause the second clip to move along the second transverse axis.
  • the method can include placing the first orthodontic device into the second non-sliding mode. In some embodiments, placing the first orthodontic device in the second non-sliding mode comprises moving the first wedge member along the first transverse axis to exert a locking force against the orthodontic wire. In some embodiments, placing the first orthodontic device into the second non-sliding mode comprises switching the first orthodontic device into the second non-sliding mode in a step-wise manner. In some embodiments, placing the first orthodontic device into the second non-sliding mode comprises continuously increasing a frictional force against the orthodontic wire. In some embodiments, the method can include placing the second orthodontic device into the first sliding mode. In some embodiments, placing the second orthodontic device into the first sliding mode comprises switching the second orthodontic device into the first sliding mode in a step-wise manner. In some embodiments, placing the second orthodontic device into the first sliding mode comprises continuously increasing a frictional force against the orthodontic wire.
  • a method of orthodontic treatment can include securing an orthodontic device to a tooth, the orthodontic device having a first plurality of operational modes including a first sliding mode that permits sliding of an orthodontic wire along a lateral axis and a second non-sliding mode that prevents sliding of the orthodontic wire along the lateral axis, the orthodontic device comprising a clip and a wedge member, the wedge member having a tapered wedge surface that engages the orthodontic wire and a thickness varying along at least a portion of a length of the wedge member; placing the orthodontic device into the first sliding mode, wherein placing the orthodontic device into the first sliding mode comprises moving the clip along a transverse axis orthogonal to the lateral axis; and moving the orthodontic device into the second non-sliding mode, wherein moving the orthodontic device into the second non-sliding mode comprises moving the wedge member along the transverse axis to cause the second tapered wedge surface to engage with the orthodontic wire to exert the non-sliding frictional force.
  • the method can include securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of operational modes including a first sliding mode and a second non-sliding mode; placing the second orthodontic device into one of the first sliding mode and the second non-sliding mode; and moving the second orthodontic device into the other of the first sliding mode and the second non-sliding mode.
  • moving the orthodontic device comprises adjusting the orthodontic device to exert a continuously varying frictional force against the orthodontic wire.
  • moving the orthodontic device comprises switching the orthodontic device into the second non-sliding mode in a step-wise manner.
  • FIG. 1 A is a schematic side view of a tooth to be treated using an orthodontic treatment device, in which an orthodontic tension force is applied to move the tooth laterally in a horizontal direction.
  • FIG. 1 B is a schematic side view of a tooth to be treated using an orthodontic treatment device, in which a tension force is applied to impart a torque load to rotate the tooth.
  • FIG. 1 C is a graph that schematically illustrates the applied force over time for a conventional orthodontic treatment as compared with a desired orthodontic treatment.
  • FIG. 2 A is a schematic front, top, right side perspective view of an orthodontic device, according to one embodiment.
  • FIG. 2 B is a schematic rear, top, left perspective view of the device of FIG. 2 A .
  • FIG. 2 C is a schematic top plan view of the device of FIGS. 2 A- 2 B in a sliding support mode.
  • FIG. 2 D is a schematic top plan view of the device of FIGS. 2 A- 2 B in a locked support mode.
  • FIG. 2 E is a schematic front, top, right side perspective view of a wedge member of the device of FIGS. 2 A- 2 D .
  • FIG. 2 F is a schematic rear, bottom, left side perspective view of the wedge member of FIG. 2 E .
  • FIG. 2 G is a schematic front, top, right side perspective view of a clip used in the device of FIGS. 2 A- 2 D .
  • FIG. 2 H is a schematic rear, bottom, left side perspective view of the clip of FIG. 2 G .
  • FIG. 2 I is a schematic front, top, left side perspective view of a bracket used in the device of FIGS. 2 A- 2 D .
  • FIG. 2 J is a schematic rear, right side perspective view of the bracket of FIG. 2 I .
  • FIG. 2 K is a schematic side sectional view of the orthodontic device of FIGS. 2 A- 2 D in an open support mode, taken along section A-A of FIGS. 2 C- 2 D .
  • FIG. 2 L is a schematic side sectional view of the orthodontic device of FIGS. 2 A- 2 D in a sliding support mode, taken along section A-A of FIG. 2 C .
  • FIG. 2 M is a magnified view of the device shown in FIG. 2 L .
  • FIG. 2 N is a schematic side sectional view of the orthodontic device of FIGS. 2 A- 2 D in a locked support mode, taken along section A-A of FIG. 2 D .
  • FIG. 2 O is a magnified view of the device shown in FIG. 2 N .
  • FIG. 3 A is a front, top, right side perspective view of an orthodontic device, according to another embodiment.
  • FIG. 3 B is a front, top, right side perspective view of the orthodontic device of FIG. 3 A in an open mode.
  • FIG. 3 C is a schematic side sectional view of the orthodontic device of FIG. 3 B in the open mode.
  • FIG. 3 D is a schematic side sectional view of the orthodontic device of FIG. 3 A in a sliding mode.
  • FIG. 3 E is a schematic side sectional view of the orthodontic device of FIGS. 3 A- 3 B in a locked mode.
  • FIG. 4 A is a front, top, right side perspective view of an orthodontic device, according to another embodiment.
  • FIG. 4 B is a schematic side sectional view of the orthodontic device of FIG. 4 A in an open mode.
  • FIG. 4 C is a schematic side sectional view of the orthodontic device of FIG. 4 A in a sliding mode.
  • FIG. 4 D is a schematic side sectional view of the orthodontic device of FIG. 4 A in a locked mode.
  • FIG. 5 A is a front, top, right side perspective view of an orthodontic device, according to another embodiment.
  • FIG. 5 B is a schematic side sectional view of the orthodontic device of FIG. 5 A in an open mode.
  • FIG. 5 C is a schematic side sectional view of the orthodontic device of FIG. 5 A in a sliding mode.
  • FIG. 5 D is a schematic side sectional view of the orthodontic device of FIG. 5 A in a locked mode.
  • FIG. 6 A is a schematic front, top, right side perspective view of the orthodontic device with rotary member in an open mode, according to one embodiment.
  • FIG. 6 B is a top plan view of the orthodontic device of FIG. 6 B .
  • FIG. 6 C is a schematic side sectional view of the orthodontic device of FIG. 6 A , shown in the open mode.
  • FIG. 6 D is a schematic side sectional view of the orthodontic device of FIG. 6 A , shown in a sliding mode.
  • FIG. 6 E is a schematic side sectional view of the orthodontic device of FIG. 6 A , shown in a locked mode.
  • FIG. 6 F is a first schematic perspective view of a rotary member according to another embodiment.
  • FIG. 6 G is a second schematic perspective view of the rotary member of FIG. 6 F .
  • FIG. 6 H is a schematic perspective view of a bracket that can be used in cooperation with the rotary member of FIGS. 6 F- 6 G .
  • FIGS. 6 I- 6 K illustrate an orthodontic device having a detent mechanism to provide tactile feedback to the clinician indicative of the mode in which the device is placed, according to one embodiment.
  • FIGS. 6 L- 6 N illustrate an orthodontic device having a detent mechanism, according to another embodiment.
  • FIG. 7 A is a schematic perspective view of an orthodontic device that includes a dual cam locking assembly shown in a locked mode, according to another embodiment.
  • FIG. 7 B is a schematic side sectional view of the orthodontic device of FIG. 7 A in an open mode.
  • FIG. 7 C is a schematic side sectional view of the orthodontic device of FIG. 7 A in a sliding mode.
  • FIG. 7 D is a schematic side sectional view of the orthodontic device of FIG. 7 A in a locked mode.
  • FIG. 8 A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a crab washer, according to another embodiment.
  • FIG. 8 B is a schematic side sectional view of the orthodontic device of FIG. 8 A in a sliding mode.
  • FIG. 8 C is a schematic side sectional view of the orthodontic device of FIG. 8 A in a locked mode.
  • FIG. 9 A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a crimp device, according to another embodiment.
  • FIG. 9 B is a schematic side sectional view of the orthodontic device of FIG. 9 A in a sliding mode.
  • FIG. 9 C is a schematic side sectional view of the orthodontic device of FIG. 9 A in a locked mode.
  • FIG. 10 A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a slide lock, according to another embodiment.
  • FIG. 10 B is a schematic side sectional view of the orthodontic device of FIG. 10 A in an open mode.
  • FIG. 10 C is a schematic side sectional view of the orthodontic device of FIG. 10 A in a sliding mode.
  • FIG. 10 D is a schematic side sectional view of the orthodontic device of FIG. 10 A in a locked mode.
  • FIG. 11 A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a rotating locking element and a slidable lock, according to another embodiment.
  • FIG. 11 B illustrates schematic top and side views of the orthodontic device of FIG. 11 A in a sliding mode.
  • FIG. 11 C illustrates schematic top and side views of the orthodontic device of FIG. 11 A in a locked mode.
  • FIG. 12 A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a clip and a set screw, according to another embodiment.
  • FIG. 12 B is a schematic top view of the orthodontic device of FIG. 12 A in a locked mode.
  • FIG. 12 C is a schematic side view of the orthodontic device of FIG. 12 B in the locked mode.
  • FIG. 13 is a schematic system diagram of a system for creating patient-specific orthodontic systems.
  • FIG. 14 is a flowchart illustrating a method for planning an orthodontic treatment procedure, according to various embodiments.
  • FIG. 15 is a flowchart illustrating a method for performing an orthodontic treatment, according to various embodiments.
  • FIGS. 16 A- 31 illustrate examples of methods of orthodontic treatment, according to various embodiments disclosed herein.
  • Conventional orthodontic devices are designed to straighten teeth using only one particular mode of operation.
  • some conventional devices utilize a sliding mode of operation, in which the orthodontic wire can slide laterally relative to the bracket.
  • a ligature e.g., elastic band or steel ligature
  • the wire can be inserted into the bracket and secured mechanically without using ligatures.
  • passive self-ligating devices for example, the wire may be unconstrained in the bracket so as to slide laterally relatively freely.
  • a clip can express a force against the wire to contain the wire within a retention cavity of the bracket.
  • the wire can slide laterally relative to the bracket, but active devices may induce larger frictional forces as compared with passive devices. Examples of such active and passive sliding mode devices may be found, for example, in U.S. Pat. Nos. 6,071,119 and 9,615,899.
  • the devices can include a bracket configured to support an orthodontic wire and a locking assembly that includes one or a plurality of locking component(s) connected to the bracket.
  • the locking assembly can be switchable between a plurality of support modes.
  • the locking assembly can include a first sliding mode in which the orthodontic wire is laterally slidable relative to the bracket, and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket.
  • the disclosed orthodontic devices can provide increased treatment controllability, reduced treatment times, and improved patient health outcomes.
  • the use of orthodontic devices with multiple operational modes can enable patient-specific design of an orthodontic system to concurrently and efficiently treat multiple misaligned teeth.
  • FIG. 1 A is a schematic side view of a tooth 10 to be treated using an orthodontic treatment device 1 , in which an orthodontic tension force FT is applied to move the tooth 10 laterally in a horizontal direction H, e.g., distally or mesially.
  • the tooth 10 can comprise a crown 13 and one or a plurality of roots 14 extending apically from the crown 13 .
  • the tooth 10 can be embedded in gum tissue 12 .
  • the gum tissue 12 can be disposed over bone structure 11 and between the bone structure 11 and the tooth 10 .
  • the tooth 10 can comprise any suitable type of tooth, such as a molar, a pre-molar, an anterior, an incisor, a bicuspid, a canine, etc.
  • the tooth 10 shown in FIG. 1 A can be a mandibular tooth or a maxillary tooth.
  • One tooth 10 is shown in FIG. 1 A for illustrative purposes, but the devices described herein can be used on multiple teeth, including all the teeth of a patient, or a subset of all the teeth of a patient.
  • the clinician can provide an orthodontic treatment device 1 to the tooth 10 to align or straighten the tooth 10 relative to adjacent teeth and/or the mandibular or maxillary bone structures.
  • the orthodontic device 1 can comprise a bracket 2 affixed to an attachment surface S of the tooth 10 .
  • the clinician can use an adhesive or cement to affix the bracket 2 to the attachment surface S of the tooth 10 .
  • the attachment surface S can comprise a labial or buccal surface of the tooth 10 in some embodiments. In other embodiments, the attachment surface S can comprise a lingual surface of the tooth 10 .
  • An orthodontic wire 3 (e.g., archwire) can be mechanically coupled to the bracket 2 .
  • the wire 3 can be inserted into a retention cavity of the bracket 2 .
  • the wire 3 can comprise any suitable type of orthodontic wire, such as a metallic wire.
  • the wire 3 can comprise stainless steel, a nickel titanium alloy, a copper titanium alloy, or any other suitable material.
  • the wire 3 can comprise a pre-programmed wire that is shaped to have a desired curvature or shape based on the patient's malocclusion characteristics.
  • the wire 3 can comprise a straight wire.
  • the wire 3 can comprise a shape memory alloy in various embodiments.
  • the device 1 can include one or a plurality of hooks 4 onto which an elastic ligature or band (not shown) is looped.
  • the ligature can prevent the wire 3 from separating or coming out of the bracket 2 .
  • a clip or other structure can prevent the wire 3 from coming out of the bracket 2 .
  • stress and strain can be generated with the bracket and wire to impart movement of the tooth 10 .
  • frictional resistance can be determined based on the design of the bracket 2 , such as the space for receiving the archwire 3 , the angle of the archwire 3 relative to the bracket 2 , the torque at the bracket-archwire interface, and the type of ligation.
  • Frictional resistance may additionally or alternatively be determined based on the design of the archwire 3 , including the wire's size and stiffness, the shape (round or polygonal), and the surface friction which may depend on the materials, surface treatments like ionization, and coatings of the archwire 3 .
  • a clinician can apply a combination of force(s) and/or torque(s) (e.g., moments) to a set of teeth to adjust for misalignments and spaces between teeth.
  • a combination of force(s) and/or torque(s) e.g., moments
  • suitable combination(s) of linear forces and torques can be applied to one or more sets of teeth.
  • a combination of linear forces and torques can be applied to one or more misaligned teeth in order to correct the misalignment.
  • the application of only a linear force or a torque may be sufficient to treat the tooth.
  • FIG. 1 A illustrates the application of only a tension force FT to a tooth to be treated.
  • the tension force FT can be applied to the tooth 10 by way of the device 1 in a variety of ways.
  • the bracket 2 can have a locking mode in which the wire 3 is locked relative to the bracket 2 so as to prevent sliding between the wire 3 and the bracket 2 when subjected to typical orthodontic forces.
  • the wire 3 can be pre-programmed or otherwise configured to induce a horizontal tension force FT disposed along a horizontal direction Hon the wire 3 and bracket 2 .
  • the horizontal direction H can correspond to a mesial or distal direction relative to the tooth 10 .
  • the tension force FT can be applied to the bracket 2 by suitably selecting or altering the wire 3 and/or connecting the wire 3 to other teeth in the mouth.
  • the tension force FT can be selected so as to induce the desired movement of the tooth 10 relative to the bone structure 11 .
  • the applied tension force FT can impart respective tensile regions TR and compressive regions CR between the tooth 10 and the neighboring gum tissue 12 and bone structure 11 .
  • the tooth 10 can move such that bone resorption occurs at compressive regions CR and bone formation occurs at tensile regions TR.
  • FIG. 1 B is a schematic side view of a tooth 10 to be treated using an orthodontic treatment device 1 , in which a tension force FT is applied to impart a torque load T to rotate the tooth 10 .
  • the components of FIG. 1 B may be the same as or generally similar to like-numbered components of FIG. 1 A .
  • a tension force FT is applied to the tooth 10 by way of the bracket 2 .
  • a plurality of bends 16 a , 16 b are formed in the wire 3 so that the applied tension force FT imparts a counterclockwise torque T to the bracket 2 and tooth 10 .
  • the induced torque T can be adjusted by bending the wires 3 at a desired angle such that the tension force FT imparts a desired moment or torque.
  • many combinations of applied forces can be used for a patient's treatment plan based on the characteristics of the patient's malocclusion. Converting the tensile force FT to a torque T or moment can create different force profiles in the gum and bond structure. As shown in FIG. 1 B , for example, the induced tensile and compressive regions TR, CR, may differ relative to those of FIG. 1 A , which accordingly can create different movement of the tooth 10 as compared to FIG. 1 A .
  • FIG. 1 C is a graph that schematically illustrates the applied force FT over time for a conventional orthodontic treatment 15 as compared with a desired orthodontic treatment 17 that can be accomplished with embodiments disclosed herein.
  • conventional treatments 15 numerous adjustments of the braces are performed at multiple treatment appointments over the course of months and years.
  • the repetitive adjustments for conventional treatments 15 create force spikes at a relatively high frequency, which increases the pain and discomfort for the patient.
  • improved orthodontic treatment 17 includes force spikes at a lower frequency and amplitude as compared with conventional treatments 15 , which reduces patient pain and discomfort.
  • the orthodontic devices disclosed herein can reduce the frequency of adjustments to the patient's braces so as to achieve force profiles similar to the desired treatment profile 17 shown in FIG.
  • the treated teeth can undergo multiple different treatment modes, such that the treated teeth can experience increasing and/or decreasing applied forces (whether linear forces or torques).
  • the embodiments described herein can modify the expressed frictional forces so as to reduce the sliding forces.
  • the treatment modalities can accordingly change over time based on the applied moments and biologic response of the teeth.
  • FIGS. 2 A- 12 C illustrate examples of orthodontic devices 1 , in accordance with various embodiments disclosed herein.
  • the orthodontic devices 1 of FIGS. 2 A- 12 C can include a bracket 2 configured to support an orthodontic wire 3 and a locking assembly 5 connected to the bracket 2 .
  • the locking assembly 5 can be pre-assembled or connected to the bracket 2 by the manufacturer before being used by the clinician, in some embodiments.
  • the locking assembly 5 and bracket 2 can be provided separately in a kit to the clinician, and the clinician or staff can assembly or connect (e.g., couple) the locking assembly 5 to the bracket 2 .
  • the locking assembly 5 can be switchable between a plurality of operational modes.
  • the locking assembly 5 can include a first sliding mode in which the orthodontic wire 3 is laterally slidable relative to the bracket 2 , and a second locked mode in which the orthodontic wire 3 is slidably locked relative to the bracket 2 .
  • the device 1 can also include a third open mode in which the wire 3 can be inserted into the bracket 2 .
  • the locking assembly 5 can serve in passive or active ligation modes. In a passive ligation sliding mode, the locking assembly 5 may not contact (or may only minimally or incidentally contact) the wire 3 , such that the wire 3 can laterally slide relative to the bracket 2 when the bracket 2 or the wire 3 are subjected to typical orthodontic forces.
  • the locking assembly 5 may contact the wire 3 but may impart a frictional force to the wire 3 by way of an applied normal force.
  • the frictional force may be less than typical orthodontic forces imparted to the bracket 2 or the wire 3 .
  • the locking assembly 5 can be configured to apply locking forces (e.g., a normal force) against the wire 3 to prevent the wire 3 from laterally sliding relative to the bracket 2 when typical orthodontic forces are imparted to the bracket 2 or the wire 3 .
  • locking forces e.g., a normal force
  • the use of multiple support modes can advantageously provide the clinician with more flexibility during treatment, which can improve patient outcomes and reduce treatment times.
  • the locking and sliding modes can be selected independently by the clinician for a set of teeth. For example, the clinician can place one or more teeth in the first sliding mode, and one or more other teeth in the second locked mode. Over the course of treatment, the clinician can switch one or more teeth from the locked mode to the sliding mode, or from the sliding mode to the locked mode.
  • one or more teeth may remain in the locked mode throughout the course of treatment.
  • One or more teeth may remain in the sliding mode throughout the course of treatment.
  • the clinician can independently select whether a tooth to be treated is to be placed in the locked mode or the sliding mode, and/or whether to switch modes during the course of treatment.
  • the locking assembly 5 can serve as a fixation mechanism or braking assembly to apply a frictional force against a wire 3 during use in a patient.
  • the frictional forces can comprise clamping or braking forces applied to the wire 3 to resist sliding movement of the wire 3 as explained herein.
  • the locking assembly 5 can serve as a friction adjustment mechanism to adjust a frictional force against the orthodontic wire.
  • the frictional adjustment mechanism can be adjustable to exert a range of sliding and non-sliding frictional forces against the orthodontic wire 3 in use.
  • the locking assembly 5 can adjust the frictional force in a continuous manner or in a step-wise manner.
  • the applied frictional forces can permit sliding, or prevent sliding when the wire is subject to typical orthodontic forces.
  • the locking assembly 5 can include a wedge member 7 that engages with the bracket 2 to secure the wire 3 to the bracket 2 in a plurality of operational or support modes.
  • FIGS. 2 A- 20 illustrate one embodiment of an orthodontic device 2 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2 .
  • the locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode.
  • the locking assembly 5 includes the clip 5 in the illustrated embodiments, in some embodiments, there may be no clip. In such embodiments, ligaments or elastic bands can be used to retain the wire 3 in the bracket 2 .
  • FIG. 2 A is a schematic front, top, right side perspective view of the orthodontic device 1 .
  • FIG. 2 B is a schematic rear, top, left perspective view of the device 1 of FIG. 2 A .
  • FIG. 2 C is a schematic top plan view of the device 1 of FIGS. 2 A- 2 B in a sliding support mode.
  • FIG. 2 D is a schematic top plan view of the device 1 of FIGS. 2 A- 2 B in a locked support mode.
  • FIG. 2 E is a schematic front, top, right side perspective view of the wedge member 7 of FIGS. 2 A- 2 D .
  • FIG. 2 F is a schematic rear, bottom, left side perspective view of the wedge member 7 of FIG. 2 E .
  • FIG. 2 G is a schematic front, top, right side perspective view of the clip 6 of FIGS. 2 A- 2 D .
  • FIG. 2 H is a schematic rear, bottom, left side perspective view of the clip 6 of FIG. 2 G .
  • FIG. 2 I is a schematic front, top, left side perspective view of the bracket 2 of FIGS. 2 A- 2 D .
  • FIG. 2 J is a schematic rear, right side perspective view of the bracket 2 of FIG. 2 I .
  • FIG. 2 K is a schematic side sectional view of the orthodontic device 1 of FIGS. 2 A- 2 D in the open support mode, taken along section A-A of FIGS. 2 C- 2 D .
  • FIG. 2 L is a schematic side sectional view of the orthodontic device 1 of FIGS.
  • FIG. 2 M is a magnified view of the device 1 shown in FIG. 2 L .
  • FIG. 2 N is a schematic side sectional view of the orthodontic device 1 of FIGS. 2 A- 2 D in the locked support mode, taken along section A-A of FIG. 2 D .
  • FIG. 2 O is a magnified view of the device 1 shown in FIG. 2 N .
  • an orthodontic wire 3 can be inserted into a retention cavity 24 of the bracket 2 .
  • the orthodontic wire 3 can comprise an archwire that provides a desired profile for the patient's maxillary or mandibular teeth to improve alignment of the patient's teeth.
  • the wire 3 can comprise a metal, such as stainless steel, a nickel titanium alloy, a copper titanium alloy, or any other suitable material.
  • the wire 3 can comprise a shape memory alloy.
  • the wire 3 can comprise a pre-programmed wire that is shaped to have a desired curvature or shape based on the patient's malocclusion characteristics.
  • the wire 3 can comprise a straight wire.
  • the wire 3 can be shaped to include loops, kinks, bends, twists, inflections, or other shapes to apply suitable forces and/or torques to one or more teeth under treatment.
  • the wire 3 can be pre-tensioned, pre-compressed, pre-bent, or otherwise biased in a desired mechanical configuration so as to provide adequate treatment for a patient's malocclusion. Any suitable elastic bands, springs, spacers, or other supplemental treatment devices can be used in conjunction with the devices 1 shown herein. Further, although one wire 3 is shown in the retention cavity 24 of the bracket 2 in FIGS.
  • the wire 3 shown in FIGS. 2 A- 20 (and in other embodiments) is a rounded (e.g., elliptical or circular cross-section) wire, but in various arrangements, the wire 3 can comprise a polygonal (e.g., rectangular or square) wire.
  • the wire 3 can extend along a local lateral axis x of the device 1 as shown in FIGS. 2 A- 2 D .
  • the device 1 can have a left side 32 and a right side 33 opposite the left side 32 along the lateral axis x.
  • the wire 3 In the sliding mode of the device 1 , the wire 3 can slide laterally relative to the bracket 2 along the lateral axis x.
  • the locked or non-sliding mode of the device 1 the wire 3 is locked such that the wire 3 is prevented from sliding laterally relative to the bracket along the lateral axis x.
  • the locked mode of the device 1 locks six degrees-of-freedom (6-DOF) of the wire 3 relative to the bracket 2 .
  • the locked mode locks less than 6-DOF.
  • the locked mode can lock the wire 3 in at least 1-DOF, such as a laterally sliding mode to prevent the wire 3 from sliding along the x axis.
  • the locked mode can lock the wire 3 rotationally to prevent the wire 3 from rotating about its own axis (e.g., the lateral x-axis).
  • the locked mode can permit the wire 3 to rotate about the x-axis.
  • the locked mode can also lock the wire 3 to prevent the wire 3 from translating vertically along the z-axis.
  • the locked mode can also lock the wire 3 to prevent the wire 3 from translating transversely along the y-axis.
  • the locked mode can lock the wire 3 to permit the wire 3 from locally rotating about the y- or z-axes at or near locations at which the locking assembly 5 contacts the wire 3 .
  • the clip 6 and wedge member 7 can be mechanically engaged with the bracket 2 crosswise or transverse (e.g., non-parallel to) the wire 3 and the lateral axis x along a local transverse axis y of the device 1 .
  • the device 1 can have a front side 30 and a rear side 31 opposite the front side 30 along the transverse axis y.
  • the clip 6 and the wedge member 7 can be moved (e.g., translated) along the transverse axis y to switch between the open mode, the sliding mode, and the fixed mode.
  • the clip 6 and wedge member 7 can be moved transversely in a generally perpendicular direction relative to the lateral axis x such that the transverse axis y is generally perpendicular to the lateral axis x.
  • the transverse movement of the clip 6 and/or wedge member 7 may not be perpendicular relative to the lateral axis x, but may still be non-parallel or transverse relative to the wire 3 and lateral axis x.
  • the bracket 2 is attached to the tooth 10
  • the clip 6 and/or wedge member 7 can translate in the gingival-occlusal plane of the tooth 10 .
  • the device 1 and its respective components can also include a top side 34 and a bottom side 35 opposite the top side 34 along a local vertical axis z of the device 1 .
  • a base 22 of the bracket 2 at the bottom side 35 of the device 1 can be affixed to the tooth 10 using, e.g., a cement or other adhesive.
  • the bracket 2 can be positioned on a buccal or labial surface, or on a lingual surface in various embodiments.
  • the device 1 can be affixed to the tooth 10 such that the front side 30 faces in a gingival direction (e.g., generally toward the gum tissue 12 ), and such that the rear side 31 faces in an occlusal or incisal direction (e.g., generally towards occlusal or incisal surfaces of the tooth 10 ).
  • the device 1 can be affixed to the tooth 10 such that the front side 30 faces in an occlusal or incisal direction, and such that the rear side 31 faces in a gingival direction.
  • the wedge member 7 can include a tapered wedge surface 36 angled vertically relative to the vertical axis z. As explained above, the wedge member 7 can serve as a locking member to lock the wire 3 relative to the bracket 2 .
  • the wedge member 7 can be thicker at its front and rear ends than at a depressed surface 19 between the front and rear ends.
  • the tapered wedge surface 36 can extend rearwardly from a second tooling aperture.
  • the wedge member 7 can have a thickness varying along at least a portion of the length of the wedge member 7 .
  • the tapered wedge surface 36 of the wedge member 7 can be angled relative to a vertical axis that is orthogonal to the lateral axis and the transverse axis, the wedge member 7 having a thickness in the direction of the vertical axis and a length in the direction of the transverse axis, the thickness varying along at least a portion of the length of the wedge member 7 .
  • the wedge surface 36 is tapered downwardly and rearwardly, but in other embodiments, the wedge surface can be tapered downwardly and forwardly.
  • the depressed surface 19 may be disposed rearward of the wedge surface 36 . The portion of the wedge member 7 at the depressed surface 19 can be thinner than the portion of the wedge member 7 at the wedge surface 36 .
  • the wedge member 7 can include a raised rear portion 39 having a first tooling aperture 9 extending vertically therethrough along the vertical axis z.
  • the clinician can use a suitable tool to engage with the first tooling aperture 9 (for example by inserting the tool into the aperture 9 ) to switch the device 1 from one support mode to another.
  • the wedge member 7 can include a front stop portion 37 and the second tooling aperture 38 near the front stop portion 37 .
  • the front stop portion 37 can engage with a corresponding shoulder 18 of the bracket 2 (see FIG. 2 I ).
  • the clinician can use a suitable tool to engage with the second tooling aperture 38 (for example by inserting the tool into the aperture 38 ) to switch the device 1 from one support mode to another.
  • the wedge member 7 can comprise any suitable type of material, such as a metal, a plastic, etc.
  • the wedge member 7 can be sufficiently stiff so as to impart significant forces against the wire 3 when the device 1 is in the locked mode.
  • the clip 6 can include an upper portion 40 and a lower portion 41 spaced apart from the upper portion 40 along the vertical axis z.
  • a vertically extending connection portion 43 can connect the upper and lower portions 41 , 42 .
  • the upper portion 40 can include a pair of upper arms 42 a laterally spaced apart along the lateral axis x by an upper gap 44 .
  • the lower portion 41 can include a pair of lower arms 42 b laterally spaced apart along the lateral axis x by a lower gap 45 .
  • the clip 6 can include a clip cavity 46 disposed between the upper and lower portions 40 , 41 .
  • the clip 6 can comprise any suitable type of material, such as a metal.
  • the clip 6 can be sufficiently stiff so as to impart significant forces against the wire 3 when the device 1 is in the locked mode.
  • the bracket 2 can include a support portion 29 extending from the base 22 .
  • the support portion 29 can be sized and shaped to receive and support the wire 3 , the wedge member 7 , and the clip 6 .
  • a lower recess 28 can be formed in the bracket 22 to vertically separate portions of the support portion 29 from the base 22 .
  • the lower recess 28 can be angled or curved so as to be partially revolved around the vertical axis z to form a gap between the support portion 29 and the base 22 .
  • the shoulder 18 can define an inner surface of the lower recess 28 .
  • the retention cavity 24 can be defined in the support portion 29 at least in part by a front wall 23 a , a rear wall 23 b spaced apart from the front wall 23 a along the transverse axis y, and a retention surface 26 disposed transversely relative to the front and rear walls 23 a , 23 b .
  • the retention cavity 24 can extend completely through the support portion 29 along the lateral axis x in the illustrated embodiment.
  • the support portion 29 can include one or more front hooks 8 a and one or more rear hooks 8 b .
  • the front hooks 8 a can be disposed at the front side 30 of the device 1 .
  • the rear hooks 8 b can be disposed at the rear side 31 of the device 1 .
  • a pair of front hooks 8 a can be spaced apart by a front spacing 21
  • a pair of rear hooks 8 b can be spaced apart by a rear spacing 20 .
  • ligatures e.g., elastic bands or steel ligatures
  • no ligatures may be used, and the clip 6 may serve to retain the wire 3 in the retention cavity 24 .
  • the support portion 29 can also include upper recesses 27 a , 27 b .
  • the upper recesses 27 a , 27 b can be laterally spaced apart from one another by the rear wall 23 b along the lateral direction x.
  • the upper recesses 27 a , 27 b can extend rearward into the support portion 29 relative to the rear wall 23 b along the transverse axis y.
  • a transverse cavity 25 can extend transversely through the support portion 29 along the transverse axis y.
  • the transverse cavity 25 can extend transversely (e.g., non-parallel) relative to the retention cavity 24 .
  • the retention surface 26 may also serve as a floor or bottom surface of the transverse cavity 25 . As shown in FIGS.
  • the transverse cavity 25 can be positioned vertically along the z-axis between the lower recess 28 and the upper recesses 27 a , 27 b .
  • the transverse cavity 25 extends completely through the support portion 29 along the transverse axis y. In other embodiments, the transverse cavity 25 may extend only partially through the support portion 29 along the transverse axis y.
  • the wedge member 7 When assembled, as shown in FIGS. 2 A- 2 D , the wedge member 7 can extend transversely through the transverse recess 25 of the bracket 2 , with the rear raised portion 39 disposed at the rear side 31 of the device 1 .
  • the upper arms 42 a of the clip 6 can be inserted into the upper recesses 27 a , 27 b of the bracket 2 .
  • the lower arms 42 b of the clip 6 can be inserted into the lower recess 28 of the bracket 2 .
  • the vertically extending connection portion 43 of the clip 6 can be positioned in or near the front spacing 21 of the bracket 2 .
  • the wire 3 , the wedge member 7 , the front wall 23 a , and the retention surface 26 of the bracket 2 can be disposed in the clip cavity 46 vertically between the upper and lower portions 40 , 41 of the clip 6 .
  • the wedge member 7 can be positioned vertically between the wire 3 and the retention surface 26 of the bracket 2 .
  • the wire 3 can be positioned vertically between the wedge member 7 and the retention surface 26 .
  • the clinician can load or insert the wire 3 by placing the device 1 in the open mode, as shown in FIG. 2 K .
  • the wire 3 can be placed in the retention cavity 24 and onto the retention surface 26 of the bracket 2 .
  • the clip 6 is translated to a forward or front position along the transverse axis y such that the upper arms 42 a expose the retention cavity 24 .
  • the wedge member 7 is also translated to, or kept in, a forward or front position along the transverse axis y such that the clinician can access the second tooling aperture 38 and such that the front stop portion 37 is positioned forward of the shoulder 18 .
  • the wire 3 may be supported only by the retention cavity 24 , e.g., by the retention surface 26 and the front and rear walls 23 a , 23 b of the bracket 2 .
  • ligaments can be stretched over the hooks 8 a , 8 b to retain the wire 3 in the cavity 24 , and the clip may be omitted.
  • the device 1 is illustrated in a sliding mode.
  • the clinician can move the device 1 from the open mode to the sliding mode by translating the clip 6 rearwardly along the transverse axis y into a rear position such that the upper arms 42 a are disposed over the wire 3 in the retention cavity 24 and into the upper recesses 27 a , 27 b , and such that the lower arms 42 b are disposed in the lower recess 28 .
  • the upper arms 42 a of the clip can retain the wire 3 in the retention cavity 24 , e.g., to prevent the wire 3 from moving vertically along the z-axis out of the cavity 24 .
  • the wedge member 7 may be kept in, or switched to, the forward position such that the wedge surface 36 does not impart forces on the wire 3 .
  • a space 47 may be provided between the wire 3 and the depressed surface 19 of the wedge member 7 such that the wedge surface 36 does not impart forces on the wire 3 .
  • the upper arms 42 a may or may not contact the wire 3 , such that the upper arms 42 a provide active or passive ligation support.
  • the wire 3 can laterally slide along the lateral axis x.
  • frictional forces may be applied to the wire 3 at magnitudes less than typical orthodontic forces to provide sliding resistance but not at magnitudes sufficient to prevent or lock sliding.
  • a passive sliding mode the wire can slide relatively freely relative to the bracket 2 .
  • a tool can be used to engage the second tooling aperture 38 to translate the wedge member 7 rearwardly along the transverse axis y to a rear position, as shown in FIGS. 2 N and 20 .
  • the clip 6 can be kept in, or translated to, the rear position shown in FIG. 2 L .
  • the clinician can engage the first tooling aperture 9 to translate the wedge member 7 to the forward position.
  • the clinician can further switch the device 1 to the open mode by keeping the wedge member 7 in the forward position and translating the clip 6 to the forward position.
  • movement of the wedge member 7 along the transverse axis is not configured to cause movement of the clip 6 along the transverse axis, and movement of the clip 6 along the transverse axis is not configured to cause movement of the wedge member 7 along the transverse axis
  • the wedge member 7 can accordingly be moved sufficiently rearwardly such that the tapered wedge surface 36 contacts and expresses a locking force against the wire 3 .
  • the tapered wedge surface 36 may have a curvature complementary to the curvature of the wire 3 .
  • the front stop portion 37 can engage the shoulder 18 to prevent the wedge member 7 from being removed entirely from the transverse recess 25 .
  • the tapered wedge surface 36 of the wedge member 7 and the upper arms 42 a of the clip 6 can mechanically cooperate to clamp the wire 3 therebetween.
  • the wedge surface 36 can be shaped such that when the wedge member 7 is in the rear position, the wedge surface 36 and clip 6 exert a sufficiently strong force against the wire such that typical orthodontic forces do not impart sliding translation to the wire 3 relative to the bracket 2 .
  • the locking assembly 5 in the locking or non-sliding mode can exert a frictional force against the wire 3 that is at least 50 cN, at least 75 cN, at least 100 cN, at least 150 cN, at least 200 cN, at least 250 cN, at least 300 cN, at least 350 cN, at least 500 cN, or at least 1000 cN.
  • the locking assembly 5 can exert a frictional force against the wire that is in a range of 50 cN to 800 cN, in a range of 50 cN to 200 cN, in a range of 50 cN to 100 cN, in a range of 50 cN to 2000 cN, in a range of 50 cN to 1000 cN, in a range of 75 cN to 2000 cN, in a range of 75 cN to 1000 cN, in a range of 100 cN to 750 cN, in a range of 100 cN to 700 cN, in a range of 100 cN to 600 cN, in a range of 300 cN to 2000 cN, in a range of 350 cN to 2000 cN, or in a range of 500 cN to 2000 cN.
  • the locking or frictional forces may be sufficiently high so as to indent or otherwise locally deform the wire.
  • the locking assembly 5 can exert a frictional force against the wire 3 that is less than the frictional force exerted in the locked mode.
  • the locking assembly 5 in the sliding mode, can exert a frictional force of less than 50 cN, or less than 100 cN against the wire.
  • the locking assembly 5 in the sliding mode, can exert a frictional force against the wire in a range of 0 cN to 100 cN, in a range of 0 cN to 75 cN, or in a range of 0 cN to 50 cN.
  • the locking assembly 5 in the sliding mode can impart a frictional force against the wire 3 that is less than 90% of the frictional force imparted against the wire 3 in the locked mode, less than 80% of the frictional force imparted against the wire 3 in the locked mode, less than 70% of the frictional force imparted against the wire 3 in the locked mode, less than 60% of the frictional force imparted against the wire 3 in the locked mode, or less than 50% of the frictional force imparted against the wire 3 in the locked mode, In some embodiments, the frictional force imparted against the wire 3 in the sliding mode is in a range of 0% to 80% of the frictional force imparted against the wire in the locked mode, in a range of 0% to 50% of the frictional force imparted against the wire in the locked mode, or in a range of 25% to 80% of the frictional force imparted against the wire in the locked mode.
  • the locking assembly 5 can be movable from a first configuration that allows sliding of the orthodontic wire 3 relative to the bracket 2 (e.g., a first sliding mode) to a second configuration that prevents sliding of the orthodontic wire 3 relative to the bracket 2 when the orthodontic wire 3 is subject to typical orthodontic forces during use of the orthodontic device (e.g., a second locked mode).
  • the wire 3 can be locked or non-sliding so as to substantially prevent sliding of the wire 3 relative to the bracket 2 .
  • the second configuration or locked (e.g., non-sliding) mode can permit less sliding of the wire 3 than the amount of sliding permitted by typical active self-ligating orthodontic devices.
  • the locked mode or configuration may permit a very small amount of sliding (e.g., less than 1 mm, less than 0.5 mm, or less than 0.1 mm) that is less than the amount of sliding permitted by conventional active orthodontic devices.
  • the sliding and locked modes described herein may be operated along a continuum such that the locking assembly 5 can be placed in multiple positions to enable sliding and/or locking. In some embodiments, therefore, the clinician can adjust the locking assembly 5 along a continuum of positions to express a range of frictional forces against the wire 3 in the sliding mode. Similarly, in some embodiments, multiple positions of the locking assembly 5 can serve to lock the wire 3 in the locked mode.
  • the locking assembly 5 can be configured to apply a continuously variable frictional force to the wire 3 .
  • the continuously variable frictional force can be applied to move the wire 3 between the sliding and locked (e.g., non-sliding) configurations.
  • the locking assembly 5 can apply continuously variable frictional forces within the sliding and/or locked modes.
  • the sliding and locked modes can comprise a discrete number of modes, as opposed to a continuum of modes.
  • the locking assembly 5 can be configured to adjust a frictional force to the wire 3 in a step-wise manner.
  • the locking assembly 5 can be configured to move between the sliding and locked configurations in a step-wise manner.
  • the transverse recess 25 extends from the rear side 31 of the device 1 through the bracket 2 with the wedge member 7 disposed in the transverse recess 25 in the illustrated embodiment
  • the wedge member can extend through an aperture at the front side 30 of the device 1 , e.g., through an aperture in the clip 6 .
  • the wedge member 7 is shown as being disposed between the wire 3 and the retention surface 26 , in other embodiments, the wedge member 7 can be disposed between the wire 3 and the clip 6 so as to press the wire 3 against the retention surface 26 .
  • FIGS. 3 A- 3 E illustrate an orthodontic device 1 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2 , according to another embodiment.
  • the components of FIGS. 3 A- 3 E may be the same as or generally similar to like-numbered components of FIGS. 1 A- 20 , and may function or operate in a generally similar manner.
  • the locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode.
  • FIG. 3 A is a front, top, right side perspective view of the orthodontic device 1 in a sliding mode.
  • FIG. 3 B is a front, top, right side perspective view of the orthodontic device 1 of FIG. 3 A in an open mode.
  • FIG. 3 C is a schematic side sectional view of the orthodontic device 1 of FIG. 3 B in the open mode.
  • FIG. 3 D is a schematic side sectional view of the orthodontic device 1 of FIG. 3 A in the sliding mode.
  • FIG. 3 E is a schematic side sectional view of the orthodontic device 1 of FIGS. 3 A- 3 B in a locked mode.
  • the device 1 and its components can be combined with any suitable features of the embodiment of FIGS. 2 A- 20 , and may be positioned on any suitable surface of the tooth 10 to be treated (for example, a lingual surface, or a buccal or labial surface).
  • the device 1 may also be oriented relative to the tooth 10 in any suitable manner (for example, with the front side facing gingivally or occlusally).
  • the wedge member 7 can cooperate with a clamping surface 48 exposed to the retention cavity 24 of the bracket 2 to lock the wire 3 in the locked mode.
  • the tapered wedge surface 36 can be disposed at a front end of the wedge member 7 . As shown, for example, the wedge surface 36 can be angled downwardly and forwardly, rather than downwardly and rearwardly.
  • the wedge surface 36 can accordingly comprise a ramped or tapered surface that can press against the wire 3 when in the locked mode.
  • the clip 6 in the open mode, can be moved or kept in a forward or front position to expose the retention cavity 24 .
  • the wedge member 7 can be moved or kept in a rear position.
  • the wire 3 can be inserted into the retention cavity 24 .
  • the clip 6 in FIG. 3 D , can be moved to a rear position to place the device 1 in a sliding mode. As shown, the wedge member 7 may remain in the rear position.
  • the device 1 can be moved to the locked mode by translating the wedge member 7 forward to a front position such that the tapered wedge surface 36 can press the wire 3 against the clamping surface 48 of the bracket 2 .
  • the clamping surface 48 can have a curvature complementary to that of the wire 3 .
  • the tapered wedge surface 36 may also have a curvature complementary to the curvature of the wire 3 .
  • the wedge surface 36 In the locked mode, the wedge surface 36 may be disposed vertically between the wire and the retention surface of the bracket 2 .
  • the locking assembly 5 of FIGS. 3 A- 3 E in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces.
  • the locking assembly 5 can exert frictional forces in the locked and sliding modes in a manner and with relative magnitudes as described above in connection with FIGS. 2 A- 20 .
  • FIGS. 4 A- 4 D illustrate an orthodontic device 1 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2 , according to another embodiment.
  • the components of FIGS. 4 A- 4 D may be the same as or generally similar to like-numbered components of FIGS. 1 A- 3 E , and may function or operate in a generally similar manner.
  • the locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode.
  • FIG. 4 A is a front, top, right side perspective view of the orthodontic device 1 .
  • FIG. 4 A is a front, top, right side perspective view of the orthodontic device 1 .
  • FIG. 4 B is a schematic side sectional view of the orthodontic device 1 of FIG. 4 A in an open mode.
  • FIG. 4 C is a schematic side sectional view of the orthodontic device 1 of FIG. 4 A in a sliding mode.
  • FIG. 4 D is a schematic side sectional view of the orthodontic device 1 of FIG. 4 A in a locked mode.
  • the device 1 of FIGS. 4 A- 4 D and its components can be combined with any suitable features of the embodiments of FIGS. 2 A- 3 E , and may be positioned on any suitable surface of the tooth 10 to be treated (for example, a lingual surface, or a buccal or labial surface).
  • the device 1 may also be oriented relative to the tooth 10 in any suitable manner (for example, with the front side facing gingivally or occlusally).
  • the wedge member 7 can cooperate with a clamping surface that comprises the retention surface 26 at the floor of the retention cavity 24 of the bracket 2 to lock the wire 3 in the locked mode.
  • the wedge member 7 can be positioned vertically above the wire 3 such that, in a locked mode, the wire 3 can be disposed between the wedge member 7 and the retention surface 26 of the bracket 2 . In the locked mode, the wedge member 7 can be positioned vertically between the clip 6 and the wire 3 . Further, unlike the embodiment of FIGS. 3 A- 3 D , the wedge surface 36 can be disposed at a middle portion of the wedge member 7 , rather than at a front end. Moreover, the wedge surface 36 that contacts the wire 3 in the locked mode may or may not be tapered or angled. In some embodiments, the wedge surface 36 can be generally planar along the transverse axis y.
  • the wedge member 7 can include a tapered front surface 49 at a front end of the wedge member 7 .
  • the tapered front surface 49 can be generally angled or tapered downwardly and rearwardly from the front end of the wedge member 7 along a lower surface of the wedge member 7 .
  • the clip 6 in the open mode, can be moved or kept in a forward or front position to expose the retention cavity 24 .
  • the wedge member 7 can be moved or kept in a rear position.
  • the wire 3 can be inserted into the retention cavity 24 and onto the retention surface 26 .
  • the clip 6 in FIG. 4 C , can be moved to a rear position, and the wedge member 7 can be moved to a first forward or front position to place the device 1 in a sliding mode.
  • the tapered front surface 49 of the wedge member 7 can mate or engage with the front wall 23 a of the bracket 2 in the sliding mode.
  • the tapered front surface 49 may provide a clearance or gap between the wedge member 7 and the wire 3 to permit passive or active ligation in the sliding mode.
  • the clamping surface 36 may not be exposed to the retention cavity 24 but may instead remain in the transverse cavity 25 .
  • the device 1 can be moved to the locked mode by translating the wedge member 7 forward to a second forward or front position that is forward of the first front position.
  • the wedge surface 36 which can project or extend downwardly relative to the tapered front surface 49 , can press the wire 3 against the retention surface 26 of the bracket 2 .
  • the locking assembly 5 of FIGS. 4 A- 4 D in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces.
  • the locking assembly 5 of FIGS. 4 A- 4 D can exert frictional forces in the locked and sliding modes in a manner and with relative magnitudes as described above in connection with FIGS. 2 A- 20 .
  • FIGS. 5 A- 5 D illustrate an orthodontic device 1 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2 , according to another embodiment.
  • the components of FIGS. 5 A- 5 D may be the same as or generally similar to like-numbered components of FIGS. 1 A- 4 D , and may function or operate in a generally similar manner.
  • the locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode.
  • FIG. 5 A is a front, top, right side perspective view of the orthodontic device 1 .
  • FIG. 5 A is a front, top, right side perspective view of the orthodontic device 1 .
  • FIG. 5 B is a schematic side sectional view of the orthodontic device 1 of FIG. 5 A in an open mode.
  • FIG. 5 C is a schematic side sectional view of the orthodontic device 1 of FIG. 5 A in a sliding mode.
  • FIG. 5 D is a schematic side sectional view of the orthodontic device 1 of FIG. 5 A in a locked mode.
  • the device 1 of FIGS. 5 A- 5 D and its components can be combined with any suitable features of the embodiments of FIGS. 2 A- 4 D , and may be positioned on any suitable surface of the tooth 10 to be treated (for example, a lingual surface, or a buccal or labial surface).
  • the device 1 may also be oriented relative to the tooth 10 in any suitable manner (for example, with the front side facing gingivally or occlusally).
  • the wedge member 7 can cooperate with a clamping surface that comprises the retention surface 26 at the floor of the retention cavity 24 of the bracket 2 to lock the wire 3 in the locked mode.
  • the wedge member 7 can be positioned vertically above the wire 3 such that, in a locked mode, the wire 3 can be disposed between the wedge member 7 and the retention surface 26 of the bracket 2 . Further, as with the embodiment of FIGS. 4 A- 4 D , the wedge surface 36 can be disposed at a middle portion of the wedge member 7 , rather than at a front end. Moreover, the wedge surface 36 that contacts the wire 3 in the locked mode may or may not be tapered or angled. In some embodiments, the wedge surface 36 can be generally planar along the transverse axis y. Unlike the embodiment of FIGS.
  • the wedge member 7 be inserted through a transverse cavity 25 that extends rearwardly at least partially through the clip 6 and at least partially through a portion of the bracket 2 .
  • the transverse cavity 25 extends entirely through both the bracket 2 and the clip 6 .
  • the transverse cavity 25 extends only partially through one or both the bracket 2 and the clip 6 .
  • the wedge member 7 can include a tapered rear surface 49 ′ at a rear end of the wedge member 7 .
  • the tapered rear surface 49 ′ can be generally angled or tapered upwardly and rearwardly from the front end of the wedge member 7 along a lower surface of the wedge member 7 .
  • the clip 6 and the wedge member 7 can be moved or kept in a forward or front position to expose the retention cavity 24 .
  • the wire 3 can be inserted into the retention cavity 24 and onto the retention surface 26 .
  • the clip 6 can be moved to a rear position, and the wedge member 7 can be moved to a first rear position to place the device 1 in a sliding mode.
  • the tapered rear surface 49 ′ of the wedge member 7 can mate or engage with the rear wall 23 b of the bracket 2 in the sliding mode, and can partially extend into a portion of the transverse cavity 25 formed through the rear wall 23 b .
  • the tapered rear surface 49 ′ may provide a clearance or gap between the wedge member 7 and the wire 3 to permit passive or active ligation in the sliding mode.
  • the clamping surface 36 may not be exposed to the retention cavity 24 but may instead remain in the transverse cavity 25 .
  • the device 1 can be moved to the locked mode by translating the wedge member 7 rearward to a second rear position that is rearward of the first rear position. In the second rear position of the locked mode, the wedge surface 36 , which can project or extend downwardly relative to the tapered rear surface 49 ′, can press the wire 3 against the retention surface 26 of the bracket 2 .
  • the locking assembly 5 of FIGS. 5 A- 5 D in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces.
  • the locking assembly 5 of FIGS. 5 A- 5 D can exert frictional forces in the locked and sliding modes in a manner and with relative magnitudes as described above in connection with FIGS. 2 A- 20 .
  • FIGS. 6 A- 6 E illustrate one embodiment of an orthodontic device 2 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2 .
  • the locking assembly 5 can include a rotary member 50 instead of a wedge member that engages with the bracket 2 to secure the wire 3 to the bracket 2 in a plurality of operational or support modes.
  • the rotary member 50 can cooperate with the bracket 2 to provide an open operational mode, a sliding operational mode, and a locked operational mode.
  • the clip 6 of FIGS. 2 A- 5 D may be omitted, which can simplify manufacturing and installation of the device 1 .
  • FIG. 6 A is a schematic front, top, right side perspective view of the orthodontic device 1 with rotary member 50 in an open mode, according to one embodiment.
  • FIG. 6 B is a top plan view of the orthodontic device 1 of FIG. 6 B .
  • FIG. 6 C is a schematic side sectional view of the orthodontic device 1 of FIG. 6 A , shown in the open mode.
  • FIG. 6 D is a schematic side sectional view of the orthodontic device 1 of FIG. 6 A , shown in a sliding mode.
  • FIG. 6 E is a schematic side sectional view of the orthodontic device 1 of FIG. 6 A , shown in a locked mode.
  • components of FIGS. 6 A- 6 E may be the same as or generally similar to like-numbered components of FIGS. 1 A- 5 D , and may function or operate in a generally similar manner.
  • the rotary member 50 can be disposed in an interior cavity 56 of the bracket 2 .
  • the bracket 2 can comprise a base 2 and a support portion 29 extending from the base 22 .
  • the interior cavity 56 can be disposed in the support portion 29 .
  • the rotary member 50 can be disposed over an outside surface of the bracket 2 .
  • the rotary member 50 can include a wire receiving aperture 51 sized and shaped to receive the wire 3 .
  • the rotary member 50 can comprise a generally C-shaped structure having opposing truncated end surfaces 57 a , 57 b .
  • the wire receiving aperture 51 can be disposed circumferentially between the truncated end surfaces 57 a , 57 b .
  • the wire 3 is a polygonal (e.g., rectangular) wire, but in other embodiments, the wire 3 can comprise a rounded (e.g., circular or elliptical) wire.
  • the rotary member 50 can comprise an outer curved bearing surface 53 (which can delimit the C-shaped structure of the rotary member 50 ) and an inner curved cam surface 54 .
  • the outer curved bearing surface 56 can be nested within and/or face an opposing follower surface 52 of the bracket 2 .
  • the curved follower surface 52 can be exposed to the interior cavity 56 of the bracket 2 .
  • the curvature of the outer bearing surface 53 may be complementary to the curvature of the follower surface 52 to provide smooth rotational engagement between the bearing surface 53 and the follower surface 52 .
  • the rotary member 50 can mechanically and rotationally couple to the bracket 2 in any suitable manner.
  • a pin can be provided to rotationally connect the bracket 2 with the rotary member 50 .
  • the bracket 2 can comprise a track circumferentially along the follower surface 52 , and a corresponding ridge circumferentially along the bearing surface 53 that fits within the track (or vice versa).
  • a projection on one of the bracket 2 and the rotary member 50 can extend laterally along the x-axis into a circumferential groove in the other of the bracket 2 and the rotary member 50 to rotatably connect the rotary member 50 with the bracket 2 .
  • the rotary member 50 in the open mode, can be oriented such that the wire receiving aperture 51 is aligned with the retention cavity 24 of the bracket 2 .
  • the truncated end surfaces 57 a , 57 b can be aligned with neighboring upper walls 58 a , 58 b of the bracket 2 that are spaced apart along the transverse axis y to provide access to the retention cavity 24 of the bracket 2 .
  • the wire 3 can be inserted into the wire receiving aperture 51 of the rotary member 50 and the retention cavity 24 of the bracket 2 .
  • the wire 3 can be supported by the retention surface 26 in the open mode of the device 1 .
  • the interior cam surface 54 may be spaced from the wire 3 in the open mode.
  • the interior cam surface 54 can include a plurality of connected component surfaces 54 a - 54 d that are angled relative to one another.
  • the component surfaces 54 a - 54 d may be shaped to have similar or different surface profiles.
  • the surface profiles of the component surfaces 54 a - 54 d and relative angles between the component surfaces 54 a - 54 d can be selected to provide sliding and locked modes in cooperation with the bracket 2 .
  • the first, second, and third component surfaces 54 a - 54 c can have generally planar surface profiles.
  • the fourth component surface 54 d can have a rounded or curved profile.
  • the component surfaces 54 a - 54 d can have profiles different from those shown in FIGS. 6 C- 6 E .
  • the interior cam surface 54 can include fewer than four or more than four component surfaces.
  • the clinician can switch the device 1 to the sliding mode by using a tool to engage the outer bearing surface 53 of the rotary member 50 through a transverse cavity 25 that is disposed transverse to the retention cavity 24 and that extends to the interior cavity 56 .
  • the rotary member 50 can be rotated about the lateral axis x in a rotational direction R (clockwise about the ⁇ x axis) relative to the bracket 2 to a first rotational position that corresponds to the sliding mode.
  • the wire 3 can contact a portion of the third component surface 54 c in some embodiments. In other embodiments, a gap or space can be provided between the cam surface 54 and the wire 3 in the sliding mode.
  • the contacted portion of the third component surface 54 c may exert a force against the wire 3 that is sufficiently small so as to enable the wire 3 to slide along the lateral axis x relative to the bracket 2 .
  • a corner portion of the wire 3 can contact the third component surface 54 .
  • the relatively small contact area between the corner portion and the third component surface 54 may provide some frictional resistance but at forces sufficiently small so as to enable the wire 3 to slide relative to the bracket 3 when subjected to typical orthodontic forces.
  • the clinician can determine that the rotary member 50 is in the sliding mode based on tactile feedback when the corner portion of the wire 3 contacts the interior cam surface 54 .
  • the rotary member 50 or the bracket 2 can include mechanical detents or other mechanisms by which the device 1 can be placed in the sliding mode.
  • the clinician can switch the device 1 into the locked or non-sliding mode by further rotating the rotary member 50 relative to the bracket 2 in the rotational direction R about the lateral axis x to a second rotational position that corresponds to the locked mode.
  • a larger surface area of the wire 3 contacts the third component surface 54 c so as to provide significantly increased locking forces as compared with the sliding mode.
  • most or all of a side of the wire 3 can contact the third component surface 54 c with a force sufficient to prevent the wire 3 from sliding laterally along the x-axis relative to the bracket 2 .
  • the interior cam surface 54 (and its respective component surfaces 54 a - 54 d ) can be selectively formed so as to clamp the wire 3 against the retention surface 26 with sufficient force so as to prevent sliding in the locked mode.
  • the clinician can determine that the rotary member 50 is in the locked or non-sliding mode based on tactile feedback when the increased surface area of wire 3 contacts the interior cam surface 54 .
  • the rotary member 50 or the bracket 2 can include mechanical detents or other mechanisms by which the device 1 can be placed in the locked mode.
  • the rotary member 50 is rotated about the lateral x-axis in the same direction R in two stages.
  • the rotary member 50 can be bi-directional such that the rotary member 50 can be rotated in opposite directions about the x-axis to move from the open mode to the sliding mode, and from the open mode to the locked mode.
  • the rotary member 50 can be rotated about a first rotational direction to switch from the open mode to the sliding mode.
  • the rotary member 50 can be rotated about a second rotational direction opposite the first direction to switch from open mode to the locked mode (or from the sliding mode to the locked mode). Still other arrangements may be suitable.
  • the locking assembly 5 with rotary member 50 of FIGS. 6 A- 6 E in the locked or non-sliding mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces.
  • the locking assembly 5 in the locked or non-sliding mode, can apply forces that are sufficiently large so as to deform the wire 3 . Deformation of the wire 3 by the locking assembly 5 can improve the locking of the wire 3 in the locked mode.
  • the locking forces can move or rotate the wire 3 to assist in locking the wire 3 in the locking mode.
  • the locking assembly 5 in the locking or non-sliding mode can exert a frictional force against the wire 3 that is at least 50 cN, at least 75 cN, at least 100 cN, at least 150 cN, at least 200 cN, at least 250 cN, at least 300 cN, at least 350 cN, at least 500 cN, or at least 1000 cN.
  • the locking assembly 5 can exert a frictional force against the wire that is in a range of 50 cN to 800 cN, in a range of 50 cN to 200 cN, in a range of 50 cN to 100 cN, in a range of 50 cN to 2000 cN, in a range of 50 cN to 1000 cN, in a range of 75 cN to 2000 cN, in a range of 75 cN to 1000 cN, in a range of 100 cN to 750 cN, in a range of 100 cN to 700 cN, in a range of 100 cN to 600 cN, in a range of 300 cN to 2000 cN, in a range of 350 cN to 2000 cN, or in a range of 500 cN to 2000 cN.
  • the locking or frictional forces may be sufficiently high so as to indent or otherwise locally deform the wire.
  • the locking assembly 5 can exert a frictional force against the wire 3 that is less than the frictional force exerted in the locked mode.
  • the locking assembly 5 in the sliding mode, can exert a frictional force of less than 50 cN, or less than 100 cN against the wire.
  • the locking assembly 5 in the sliding mode, can exert a frictional force against the wire in a range of 0 cN to 100 cN, in a range of 0 cN to 75 cN, or in a range of 0 cN to 50 cN.
  • the locking assembly 5 in the sliding mode can impart a frictional force against the wire 3 that is less than 90% of the frictional force imparted against the wire 3 in the locked mode, less than 80% of the frictional force imparted against the wire 3 in the locked mode, less than 70% of the frictional force imparted against the wire 3 in the locked mode, less than 60% of the frictional force imparted against the wire 3 in the locked mode, or less than 50% of the frictional force imparted against the wire 3 in the locked mode, In some embodiments, the frictional force imparted against the wire 3 in the sliding mode is in a range of 0% to 80% of the frictional force imparted against the wire in the locked mode, in a range of 0% to 50% of the frictional force imparted against the wire in the locked mode, or in a range of 25% to 80% of the frictional force imparted against the wire in the locked mode.
  • the locking assembly 5 can be movable from a first configuration that allows sliding of the orthodontic wire 3 relative to the bracket 2 (e.g., a first sliding mode) to a second configuration that prevents sliding of the orthodontic wire 3 relative to the bracket 2 when the orthodontic wire 3 is subject to typical orthodontic forces during use of the orthodontic device (e.g., a second locked mode).
  • the wire 3 can be locked so as to substantially prevent sliding of the wire 3 relative to the bracket 2 .
  • the second configuration or locked mode can permit less sliding of the wire 3 than the amount of sliding permitted by typical active self-ligating orthodontic devices.
  • the locked or non-sliding mode or configuration may permit a very small amount of sliding (e.g., less than 1 mm, less than 0.5 mm, or less than 0.1 mm) that is less than the amount of sliding permitted by conventional active orthodontic devices.
  • the sliding and locked (e.g., non-sliding) modes described herein may be operated along a continuum such that the locking assembly 5 can be placed in multiple positions to enable sliding and/or locking. In some embodiments, therefore, the clinician can adjust the locking assembly 5 along a continuum of positions to express a range of frictional forces against the wire 3 in the sliding mode.
  • multiple positions of the locking assembly 5 can serve to lock the wire 3 in the locked or non-sliding mode.
  • the locking assembly 5 can be configured to apply a continuously variable frictional force to the wire 3 .
  • the continuously variable frictional force can be applied to move the wire 3 between the sliding and locked configurations.
  • the locking assembly 5 can apply continuously variable frictional forces within the sliding and/or locked modes.
  • the sliding and locked modes can comprise a discrete number of modes, as opposed to a continuum of modes.
  • the locking assembly 5 can be configured to adjust a frictional force to the wire 3 in a step-wise manner.
  • the locking assembly 5 can be configured to move between the sliding and locked configurations in a step-wise manner.
  • FIG. 6 F is a first schematic perspective view of a rotary member 50 ′ according to another embodiment.
  • FIG. 6 G is a second schematic perspective view of the rotary member 50 ′ of FIG. 6 F .
  • FIG. 6 H is a schematic perspective view of a bracket 2 ′ that can be used in cooperation with the rotary member 50 ′ of FIGS. 6 F- 6 G .
  • the rotary member 50 ′ and the bracket 2 ′ of FIGS. 6 F- 6 H can be used instead of the rotary member 50 and bracket 2 shown in FIGS. 6 A- 6 E .
  • the components of FIGS. 6 F- 6 H can be the same as or generally similar to like-numbered components of FIGS. 6 A- 6 E , and can function or operate in a generally similar manner.
  • first and second tool access apertures 55 a , 55 b can be provided through the rotary body 50 ′.
  • the clinician can engage the rotary member 50 ′ with a tool by way of the access apertures 55 a , 55 b .
  • the clinician can insert a tool into the apertures 55 a , 55 b by way of opposing transverse cavities 25 a , 25 b of the bracket 2 ′, as shown in FIG. 6 H .
  • the rotary member 50 ′ and bracket 2 ′ shown in FIGS. 6 F- 6 H can provided improved access to the clinician for switching between the open, sliding, and locked modes of the device 1 .
  • FIGS. 6 I- 6 K illustrate an orthodontic device 1 having a detent mechanism 105 to provide tactile feedback to the clinician indicative of the mode in which the device 1 is placed (e.g., a sliding mode, a locking mode, etc.), according to various embodiments.
  • components of FIGS. 6 I- 6 K may be the same as or generally similar to like-numbered components of FIGS. 6 A- 6 H , and can be combined with the components of FIGS. 6 A- 6 H .
  • the detent mechanism 105 can include a first slot 105 a and a second slot 105 b circumferentially spaced from the first slot 105 a .
  • a tab 107 can extend through a circumferential track 106 .
  • the tab 107 and track 106 can maintain the rotary member 50 within the bracket 2 .
  • the clinician can engage the tab 107 manually or with a tool to rotate the rotary member 50 from the open mode to the sliding mode and/or to the locking mode.
  • the tab 107 can include a projecting portion 107 a projecting radially outwardly slightly, which can engage with the first slot 105 a to indicate to the clinician that the device 1 is in the sliding mode.
  • the clinician can rotate the tab 107 and rotary member 50 to place the device 1 in the locked mode.
  • the projecting portion 107 a of the tab 107 can engage with the second slot 105 a to indicate to the clinician that the device 1 is in the locked mode.
  • FIGS. 6 L- 6 N illustrate an orthodontic device 1 having a detent mechanism 105 , according to another embodiment.
  • components of FIGS. 6 L- 6 N may be the same as or generally similar to like-numbered components of FIGS. 6 A- 6 K .
  • the device 1 includes the detent mechanism 105 which is generally similar to the detent mechanism 1 of FIGS. 6 I- 6 K , except the tab 107 in FIGS. 6 L- 6 N is on an opposing side of the rotary member 50 as compared to the tab 107 in FIGS. 6 I- 6 K .
  • FIGS. 7 A- 12 C illustrate additional examples of orthodontic devices 1 with other types of locking assemblies 5 .
  • FIG. 7 A is a schematic perspective view of an orthodontic device 1 that includes a dual cam locking assembly 5 shown in a locked mode, according to another embodiment.
  • FIG. 7 B is a schematic side sectional view of the orthodontic device 1 of FIG. 7 A in an open mode.
  • FIG. 7 C is a schematic side sectional view of the orthodontic device 1 of FIG. 7 A in a sliding mode.
  • FIG. 7 D is a schematic side sectional view of the orthodontic device 1 of FIG. 7 A in a locked mode.
  • components in FIGS. 7 A- 7 D may be the same as or generally similar to like-numbered components of FIGS. 1 A- 6 H , and may function or operate in a generally-similar manner.
  • the device 1 of FIGS. 7 A- 7 D can include a locking assembly 5 with a pair of rotary members comprising cams 60 a , 60 b disposed on opposite sides of the retention cavity 24 and coupled to the bracket 2 .
  • the cams 60 a , 60 b can each include corresponding outwardly extending projections 61 a , 61 b .
  • the projections 61 a , 61 b can be disposed at different vertical heights.
  • the first projection 61 a can be disposed at a lower vertical position relative to the z-axis than the second projection 61 b .
  • the length of the first projection 61 a can be shorter than the length of the second projection 61 b .
  • the cams 60 a , 60 b can be rotated (for example, with a tool) such that the projections 61 a , 61 b face away or otherwise do not project into the retention cavity 24 .
  • the clinician can use a tool or hand to rotate the second cam 60 b about the vertical axis z to position the second projection 61 b in the retention cavity 24 .
  • the second projection 61 b can extend over the wire 3 to retain the wire 3 within the retention cavity 24 .
  • the second projection 61 b can contact the wire 3 for active ligation, or can be spaced away from the wire 3 for passive ligation.
  • the wire 3 In the sliding mode, the wire 3 can laterally slide along the lateral axis x under expression of typical orthodontic forces.
  • the clinician can use a tool or hand to rotate the first cam 60 a about the vertical axis z to position the first projection 61 a in the retention cavity 24 .
  • the length of the first projection 61 a can be selected such that when the first cam 60 a is rotate about the vertical axis z the first projection 61 a can contact and impart a force against the wire 3 .
  • the locking assembly 5 with cams 60 a , 60 b shown in FIGS. 7 A- 7 D in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2 A- 20 and 6 A- 6 N .
  • FIG. 8 A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a crab washer 64 , according to another embodiment.
  • FIG. 8 B is a schematic side sectional view of the orthodontic device 1 of FIG. 8 A in a sliding mode.
  • FIG. 8 C is a schematic side sectional view of the orthodontic device 1 of FIG. 8 A in a locked mode.
  • components in FIGS. 8 A- 8 C may be the same as or generally similar to like-numbered components of FIGS. 1 A- 7 D , and may function or operate in a generally-similar manner.
  • the device 1 of FIGS. 8 A- 8 C can include a locking assembly 5 having a crab washer 64 mechanically coupled with the bracket 2 .
  • the wire 3 can be inserted into holes 65 formed in the crab washer 64 .
  • the bracket 2 can include a pair of laterally-extending ledges 67 that engage with wing portions 66 a , 66 b of the crab washer 64 .
  • the wing portions 66 a , 66 b can be upwardly-biased.
  • the ledges 67 can deflect the wing portions 66 a , 66 b downwardly such that the wire 3 can slide through the holes 65 relative to the bracket 2 .
  • the clinician can release the wing portions 66 a , 66 b from the ledges 67 so that the crab washer 64 closes on the wire 3 to lock it into place and prevent lateral sliding.
  • the locking assembly 5 with crab washer 64 shown in FIGS. 8 A- 8 C in the locked mode can be shaped to apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2 A- 20 and 6 A- 6 N .
  • FIG. 9 A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a crimp device 70 , according to another embodiment.
  • FIG. 9 B is a schematic side sectional view of the orthodontic device 1 of FIG. 9 A in a sliding mode.
  • FIG. 9 C is a schematic side sectional view of the orthodontic device 1 of FIG. 9 A in a locked mode.
  • components in FIGS. 9 A- 9 C may be the same as or generally similar to like-numbered components of FIGS. 1 A- 8 C , and may function or operate in a generally-similar manner.
  • the device 1 of FIGS. 9 A- 9 C can include a locking assembly 5 having a crimp device 70 mechanically coupled with the bracket 2 .
  • the wire 3 can be inserted into a loop 71 defined by the crimp device 70 .
  • the bracket 2 can include a pair of lower locking holes 72 that engage with corresponding elastic feet 73 of the crimp device 70 .
  • the crimp device 70 can remain uncrimped to provide a relatively large loop 71 to enable lateral sliding of the wire 3 relative to the bracket 2 .
  • the crimp device 70 In the locked mode of FIG. 9 C , the crimp device 70 can be collapsed to provide a smaller loop 71 to prevent lateral sliding of the wire 3 relative to the bracket 2 .
  • the feet 73 can engage with the locking holes 72 maintain the collapsed crimp.
  • the locking assembly 5 with crimp device 70 shown in FIGS. 9 A- 9 C in the locked mode can be shaped to apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2 A- 20 and 6 A- 6 N .
  • FIG. 10 A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a slide lock 75 , according to another embodiment.
  • FIG. 10 B is a schematic side sectional view of the orthodontic device 1 of FIG. 10 A in an open mode.
  • FIG. 10 C is a schematic side sectional view of the orthodontic device 1 of FIG. 10 A in a sliding mode.
  • FIG. 10 D is a schematic side sectional view of the orthodontic device 1 of FIG. 10 A in a locked mode.
  • components in FIGS. 10 A- 10 D may be the same as or generally similar to like-numbered components of FIGS. 1 A- 9 C , and may function or operate in a generally-similar manner.
  • the device 1 of FIGS. 10 A- 10 D can include a locking assembly 5 having a slide lock 75 mechanically coupled with the bracket 2 .
  • a crimp 76 can be applied about the wire 3 .
  • the slide lock 75 can be configured to slide along the transverse axis y to switch between the open, sliding, and locked modes.
  • the slide lock 75 can include a vertical surface 78 and an upper transverse projection 77 extending transversely relative to the vertical surface 78 . In the open mode shown in FIG. 10 B , the vertical surface and the upper transverse projection can be spaced away from the wire. In the sliding mode of FIG.
  • the slide lock 75 can be translated along the transverse axis y to position the transverse projection 77 over the wire 3 .
  • the transverse projection 77 can serve to retain the wire 3 in the bracket 2 while permitting the wire 3 to slide laterally relative to the bracket 2 .
  • the slide lock 75 can be further translated along the transverse axis y to maintain the transverse projection 77 over the wire 3 and to urge the vertical surface 78 against the wire 3 .
  • the vertical surface 78 can contact the wire 3 and provide a sufficiently large force so as to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2 A- 20 and 6 A- 6 N .
  • FIG. 11 A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a rotating locking element 80 and a slidable lock 82 spaced across from the retention cavity 24 from the locking element 80 , according to another embodiment.
  • FIG. 11 B illustrates schematic top and side views of the orthodontic device 1 of FIG. 11 A in a sliding mode.
  • FIG. 11 C illustrates schematic top and side views of the orthodontic device 1 of FIG. 11 A in a locked mode.
  • components in FIGS. 11 A- 11 C may be the same as or generally similar to like-numbered components of FIGS. 1 A- 10 D , and may function or operate in a generally-similar manner.
  • the device 1 of FIGS. 11 A- 11 C can include a locking assembly 5 having a rotating locking element 80 and a slidable lock 82 coupled with the bracket 2 .
  • the rotating locking element 80 can be rotatable or rockable about the vertical axis z.
  • the slidable lock 82 can be translated along the transverse axis y.
  • the slidable lock 82 can be moved over the wire 3 to retain the wire 3 in the bracket 2 and permit the wire 3 to slide relative to the bracket 2 .
  • the slidable lock 82 In the locked mode of FIG. 11 C , the slidable lock 82 can be translated upwardly until the rotating locking element 80 contacts the wire 3 .
  • the slidable lock 82 and rotatable element 80 can cooperate to apply a force against the wire 3 sufficiently high so as to prevent the wire 3 from translating laterally when subject to typical orthodontic forces, as explained above in connection with FIGS. 2 A- 20 and 6 A- 6 N .
  • FIG. 12 A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a clip 6 and a set screw 90 , according to another embodiment.
  • FIG. 12 B is a schematic top view of the orthodontic device 1 of FIG. 12 A in a locked mode.
  • FIG. 12 C is a schematic side view of the orthodontic device 1 of FIG. 12 B in the locked mode.
  • components in FIGS. 12 A- 12 C may be the same as or generally similar to like-numbered components of FIGS. 1 A- 11 C , and may function or operate in a generally-similar manner.
  • the device 1 of FIGS. 12 A- 12 C can include a locking assembly 5 having a clip 6 and set screw 90 coupled with the bracket 2 .
  • the clip 6 in the sliding mode (not shown), can serve to retain the wire 3 in the bracket 2 while permitting the wire 3 to slide laterally relative to the bracket 2 .
  • the set screw 90 in the sliding mode, can remain recessed within the body of the bracket 2 and may not engage the wire 3 .
  • the clinician can use a tool, such as a screwdriver, to thread the set screw 90 transversely towards the wire 3 .
  • the set screw 90 can clamp the wire 2 against the bracket 2 by applying a force against the wire 3 that is sufficiently high so as to prevent the wire 3 from translating laterally when subject to typical orthodontic forces, as explained above in connection with FIGS. 2 A- 20 and 6 A- 6 N .
  • Each orthodontic patient has his or her own unique set of teeth with their own malocclusion characteristics. It can be challenging to plan and implement patient-specific procedures to concurrently align all of the patient's teeth that are to be treated in an efficient manner.
  • the clinician typically adjusts the wires in a sequential fashion on a regular basis in response to the position of the patient's teeth at a particular treatment appointment with the clinician. For example, in conventional treatments, the clinician may make an adjustment to a first orthodontic device on a first tooth of a patient, which may undesirably and unintentionally induce misalignments to a second tooth of the patient. The clinician may continually make such sequential adjustments until the malocclusion is treated. As explained above in connection with FIG. 1 C , such conventional treatments may induce frequent spikes in orthodontic forces, which can increase patient pain and discomfort, lengthen treatment time, and increase costs.
  • the orthodontic devices 1 disclosed herein can be used in the disclosed methods that can align the teeth to be treated with reduced treatment iteration.
  • the disclosed methods can be used with any of the devices 1 shown and described in connection with FIGS. 2 A- 12 C .
  • the orthodontic devices 1 disclosed herein can operate in a plurality of operating modes. As explained herein, the orthodontic devices 1 can operate in an open operating mode, a sliding operating mode, and a locked operating mode.
  • the use of multiple operating modes provides the clinician with flexibility for treating each tooth.
  • the different operating modes can express different forces and moments on multiple teeth in different manners so as to concurrently accommodate the respective misalignments of the multiple teeth.
  • the clinician may make an adjustment to a first orthodontic device on a first tooth of a patient, without inducing misalignments to a second tooth of the patient.
  • the concurrent treatment of multiple teeth using different treatment modalities can beneficially reduce patient treatment times and alleviate pain and discomfort by reducing the frequency of applied orthodontic force spikes.
  • the embodiments disclosed herein can enable the clinician to plan the course of treatment for the patient's teeth by concurrently treating malocclusion of multiple (or all) teeth.
  • the concurrent treatment can reduce the number of treatment appointments and improve treatment efficacy.
  • the adjustability of the locking members between sliding and non-sliding configurations can enable the clinician to place one or multiple teeth in a sliding configuration and one or more other teeth in a non-sliding configuration.
  • the clinician can adjust the locking assemblies of various teeth to move from sliding to non-sliding, or from non-sliding to sliding, based on the treatment plan and the state of malocclusion of the patient's teeth.
  • FIG. 13 is a schematic system diagram of a system 150 for creating patient-specific orthodontic systems.
  • the system 150 can include an imaging device 152 , an orthodontic design system 154 , and a manufacturing system 156 .
  • the imaging device 152 , design system 154 , and manufacturing system 156 can be co-located at the same facility in some embodiments. In other embodiments, one or more of the imaging device 152 , the design system 154 , and the manufacturing system 156 can be located at different facilities.
  • the imaging device 152 can comprise any suitable type of imaging device, such as an X-ray imaging device, a computed tomography (CT) device, etc.
  • CT computed tomography
  • the imaging device 152 can capture image data of a patient's teeth and can save the image data to a computer-readable medium.
  • the orthodontic design system 154 can comprise processing electronics configured to store and process the image data of the patient's teeth.
  • the image data can be transferred to the design system 154 from the imaging device 152 over a wireless or wired communications network, by way of a removable storage medium, etc.
  • the processing electronics of the design system 154 can analyze the captured and stored image data to determine characteristics of the patient's dental malocclusion.
  • the malocclusion characteristics can be determined in any suitable manner known to the skilled artisan. Based on the malocclusion characteristics, the processing electronics of the design system 154 can also be configured to determine force profiles to be applied to the teeth in order to align the patient's teeth.
  • the processing electronics of the design system 154 can also determine how the orthodontic devices 1 are to be structured and arranged to achieve the force profiles. For example, the design system 154 can determine the desired structure and material of the archwires, which devices 1 are to be in a locked mode, which devices 1 are to be in a sliding mode, etc.
  • the orthodontic design system 154 can comprise processing electronics that can include a processor governed by instructions stored in a memory.
  • the memory may be random access memory (RAM), read-only memory (ROM), flash memory or any other memory, or combination thereof, suitable for storing control software or other instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • flash memory any other memory, or combination thereof, suitable for storing control software or other instructions and data.
  • instructions or programs defining the functions of the disclosed embodiments may be delivered to a processor in many forms, including, but not limited to, information permanently stored on non-writable storage media (e.g. read-only memory devices within a computer, such as ROM, or devices readable by a computer I/O attachment, such as CD-ROM or DVD disks), information alterably stored on writable storage media (e.g.
  • floppy disks floppy disks, removable flash memory and hard drives
  • information conveyed to a computer through communication media including wired or wireless computer networks.
  • the disclosed embodiments may be embodied in software, the functions used to implement the embodiments may optionally or alternatively be embodied in part or in whole using firmware and/or hardware components, such as combinatorial logic, Application Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FPGAs) or other hardware or some combination of hardware, software and/or firmware components.
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field-Programmable Gate Arrays
  • the manufacturing system 156 can be configured to manufacture or procure an orthodontic system including the orthodontic devices 1 designed by the design system 154 based on the design data determined by the design system 154 .
  • the archwires, brackets, and/or locking assemblies can be manufactured or otherwise procured based on the design data provided by the design system 154 .
  • the manufacturing system 156 can include machinery to automatically manufacture or procure the archwires, the brackets, and/or the locking assemblies, as determined by the design system 154 .
  • FIG. 14 is a flowchart illustrating a method 100 for designing an orthodontic treatment system for reducing malocclusion of multiple teeth in a patient, according to various embodiments.
  • the method 100 can determine malocclusion characteristics of the patient's teeth.
  • the patient's mouth can be imaged in any suitable manner by the imaging device 152 (e.g., by an X-ray device, a computed tomography or CT device, etc.).
  • the patient's malocclusion characteristics can be determined by optical analysis techniques known to those having skill in the art.
  • the determined malocclusion characteristics can indicate how each tooth is misaligned relative to a desired orientation and position. As explained in connection with FIG.
  • processing electronics of the design system 154 can analyze and process the image data to make the determination. Additionally or alternatively, in some embodiments, the clinician can analyze the image data to determine the patient's malocclusion characteristics. In some cases, the clinician can manually shape the archwire to achieve the desired force profile.
  • the method 100 can determine force profiles 102 that can be applied to the orthodontic devices in an orthodontic system to concurrently align multiple teeth to be treated. For example, based on the determined patient malocclusion characteristics, the method 100 , which can be implemented by the design system 154 , can determine how to apply forces and torques across the entire orthodontic system of multiple devices 1 .
  • the malocclusion characteristics can be mapped to a look-up table (LUT) or database of force profiles (e.g., linear forces or torque forces) that can be applied to address the particular identified malocclusion characteristics.
  • the LUT or database can map a plurality of clinical scenarios to operational modes of the orthodontic devices 1 .
  • FIGS. 16 A- 31 Examples of force profiles used in example treatment procedures, and which may be provided in appropriate LUTs or databases, are shown in FIGS. 16 A- 31 .
  • the design system 154 can calculate a corresponding force profile.
  • the design system 154 can select how each orthodontic device 1 of the system should be structured and arranged to provide the desired force profile for the overall system. For example, based on the determined force profile, the method 100 can select a first sliding mode for a first orthodontic device 1 to be secured to a first tooth. Moving to a block 104 , based on the determined force profile, the method 100 can select a second locked mode for a second orthodontic device 1 to be secured to a second tooth. As explained below in connection with FIGS. 16 A- 31 , any number of treatment combinations may be suitable depending on the patients' malocclusion characteristics and the determined force profiles.
  • FIG. 15 is a flowchart illustrating a method 200 for performing an orthodontic treatment, according to various embodiments.
  • the embodiments disclosed herein can be used to design a patient-specific orthodontic system that includes a plurality of orthodontic devices 1 selected to achieve a desired force profile.
  • the orthodontic system can be manufactured or procured as explained above in FIG. 13 .
  • the desired force profile can provide a map for how each device 1 of the system is to be structured and arranged.
  • a first orthodontic device 1 can be secured to a first tooth.
  • a second orthodontic device 1 can be secured to a second tooth.
  • the first and second orthodontic devices can comprise any of the devices 1 shown and described in connection with FIGS.
  • the first and second orthodontic devices can each have at least a sliding operational mode and a locked operational mode.
  • the first orthodontic device can be placed in the first sliding mode.
  • the second orthodontic device can be placed in the second locked mode.
  • the use of different operational modes on different teeth can facilitate efficient alignment of the patient's teeth.
  • the clinician can switch between sliding and non-sliding configurations for one or more teeth based on the treatment plan, or on the state of malocclusion.
  • FIGS. 16 A- 31 illustrate examples of methods of orthodontic treatment, according to various embodiments disclosed herein.
  • the methods shown in FIGS. 16 A- 31 can represent applied force profiles for corresponding patient malocclusion scenarios.
  • the malocclusion characteristics and force profiles shown in FIGS. 16 A- 31 can be used in a LUT or database to design an orthodontic system 300 to treat the malocclusion.
  • the orthodontic system 300 can comprise a plurality of orthodontic devices 1 and the associated wires 3 sued therewith. Any of the orthodontic devices 1 described in FIGS. 2 A- 12 C can be used in the systems 300 shown in FIGS. 16 A- 31 .
  • teeth 10 with an “X” marked on them indicate that the orthodontic device 1 attached thereto is placed in a locked mode.
  • Teeth 10 that have an “S” marked on them indicate that the orthodontic device 1 attached thereto is placed in a sliding mode. It should be appreciated that the treatment methods of FIGS. 16 A- 31 are examples only, and that additional or alternative arrangements and structures may be provided in the LUT or database. Moreover, FIGS. 16 A- 31 may illustrate only a subset of the teeth under orthodontic treatment.
  • the overall orthodontic system 300 can include all the devices 1 used to treat the patient's teeth.
  • FIGS. 16 A- 16 B illustrate an orthodontic system 300 configured to treat a clinical scenario in which a malocclusal condition comprises a gap between adjacent teeth 10 a , 10 b .
  • One way to close the gap between the teeth 10 a , 10 b is to form a loop 302 in the wire 3 in the gap.
  • the devices 1 attached to the teeth 10 a , 10 b are placed in the locked mode.
  • the loop 302 can be biased radially outwardly such that the natural state of the loop 302 is to have a larger diameter than that shown in FIGS. 16 A- 16 B .
  • the wire 3 pulls the teeth 10 a , 10 b together to close the gap.
  • all fourth teeth can be placed in the locked mode as indicated by the “X” marks. Locking all four teeth 10 can increase the forces applied to the tooth 10 a . In some cases, however, a reduced force may be desirable, for example, to accommodate other misalignments in other portions of the mouth.
  • a reduced force may be desirable, for example, to accommodate other misalignments in other portions of the mouth.
  • only the teeth 10 a , 10 b can be locked as indicated by the “X” marks.
  • the two leftmost teeth can be placed in the sliding mode “S”.
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 16 A- 16 B can represent example templates in a LUT or database that can be used to address a gap closing clinical scenario, based on desired force profiles for the specific patient at issue.
  • FIGS. 17 A- 17 B illustrate an orthodontic system 300 configured to treat a clinical scenario in which a malocclusal condition comprises crowding between adjacent teeth 10 a , 10 b .
  • a kink 304 can be formed in the wire 3 between the teeth 10 a , 10 b .
  • the devices 1 attached to the teeth 10 a , 10 b are placed in the locked mode.
  • the kink 304 can be outwardly biased such that as the kink 304 relaxes, the wire 3 pushes the teeth 10 a , 10 b apart from one another.
  • FIG. 17 A- 17 B illustrate an orthodontic system 300 configured to treat a clinical scenario in which a malocclusal condition comprises crowding between adjacent teeth 10 a , 10 b .
  • a kink 304 can be formed in the wire 3 between the teeth 10 a , 10 b .
  • the devices 1 attached to the teeth 10 a , 10 b are placed in the locked mode.
  • the kink 304 can
  • all four teeth 10 a - 10 d can have devices 1 in the locked mode to provide a first force profile.
  • the teeth 10 c - 10 d are placed in the sliding mode to provide a second force profile with a reduced force, which may be desirable in some circumstances.
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 17 A- 17 B can represent example templates in a LUT or database that can be used to address a crowding clinical scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 18 illustrates an orthodontic system 300 configured to treat a clinical scenario in which the crown 13 of the tooth 10 b is angularly misaligned.
  • the devices 1 attached to the teeth 10 a - 10 c can be placed in the locked mode.
  • a bend 306 can be formed in the wire 3 between the teeth 10 b , 10 c .
  • the bend 306 can be shaped to impart a torque T at the crown 13 as shown to correctly orient the crown 13 .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 18 can represent example templates in a LUT or database that can be used to address a crown tipping scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 19 illustrates an orthodontic system 300 configured to treat a clinical scenario in which the root 14 of the tooth 10 b is angularly misaligned.
  • the devices 1 attached to the teeth 10 a - 10 c can be placed in the locked mode.
  • a bend 306 can be formed in the wire 3 between the teeth 10 a , 10 b .
  • a loop 302 can be formed in the wire 3 between the teeth 10 b , 10 c .
  • the bend 306 and the loop 302 can be shaped to impart a torque T at the root 14 as shown to correctly orient the root 14 .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 19 can represent example templates in a LUT or database that can be used to address a root tipping scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 20 illustrates an orthodontic system 300 configured to treat a clinical scenario in which an incisor 10 a is angularly misaligned.
  • the crown 13 of the incisor 10 a is tilted labially.
  • the device 1 attached to the incisor 10 a can be placed in the locked mode.
  • the devices 1 attached to the teeth 10 b - 10 f can be placed in the sliding mode.
  • the wire 3 can comprise a rectangular wire such that the tilting of the incisor 10 a relative to the other teeth 10 b - 10 f imparts a torque T to correctly align the crown 13 of the incisor 10 a .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 20 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 21 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 b is rotationally misaligned as seen from a top view of the occlusal surfaces.
  • each of the devices 1 attached to the teeth 10 a - 10 c can be placed in the locked mode.
  • the wire 3 can be shaped to have a bend 306 between the teeth 10 b , 10 c .
  • the wire 3 can be shaped to have a loop 302 between the teeth 10 a , 10 b .
  • the loop 302 and bend 306 can impart a torque T about the vertical coronal axis of the tooth to correctly orient the tooth 10 b .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 21 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 22 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 b is misaligned gingivally relative to the teeth 10 a , 10 c .
  • each of the devices 1 attached to the teeth 10 a - 10 c can be placed in the locked mode.
  • the wire 3 is naturally straight.
  • the naturally straight bias of the wire 3 can impart an upward coronal force F to the tooth 10 b to extrude the tooth 10 b coronally to align the tooth 10 b relative to the teeth 10 a , 10 c .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 22 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 23 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 b is misaligned coronally (upwardly) relative to the teeth 10 a , 10 c .
  • each of the devices 1 attached to the teeth 10 a - 10 c can be placed in the locked mode.
  • the wire 3 is naturally straight.
  • the naturally straight bias of the wire 3 can impart a downward gingival force F to the tooth 10 b to intrude the tooth 10 b gingivally downward to align the tooth 10 b relative to the teeth 10 a , 10 c .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 23 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 24 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 a is misaligned distally relative to the tooth 10 b , which is generally similar to the gap closing scenario of FIGS. 16 A- 16 B .
  • the illustrated template can include providing an elastic band or spring 310 over the wire 3 between the teeth 10 a , 10 b .
  • the device 1 attached to the tooth 10 b can be placed in the locked mode.
  • the devices 1 attached to the other teeth can be placed in the sliding mode.
  • the locked device 1 on the tooth 10 b can hold the tooth 10 b in place, and the band or spring 310 can apply a mesially-directed force F to the tooth 10 a to move the tooth 10 a along a mesial direction to close the gap.
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 24 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue
  • FIG. 25 A illustrates an orthodontic system 300 configured to treat a clinical scenario in which the dental arch (mandibular or maxillary arch) is too wide.
  • the devices 1 attached to the incisors 10 a , 10 b can be placed in a locked mode, while the other teeth can be placed in a sliding mode.
  • the wire 3 can be biased so as to narrow the dental arch inwardly in a lingual direction.
  • FIG. 25 B shows the arch after the narrowing lingualization system was applied in FIG. 25 A .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 25 A- 25 B can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 26 illustrates an orthodontic system 300 configured to treat a clinical scenario in which an inter-arch correction is applied to a cuspid 10 a on the maxillary arch.
  • the device 1 affixed to the cuspid 10 a can be placed in the locked mode, and the other teeth can be placed in the sliding mode.
  • An elastic band 312 can extend between and connect the device 1 on the cuspid 10 a to the orthodontic device 1 attached to a molar 10 b on the mandibular arch.
  • the band 312 can pull the cuspid 10 and the arch distally in some embodiments.
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 26 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 27 illustrates an orthodontic system 300 configured to treat a clinical scenario comprising an impacted second molar 10 a .
  • the devices 1 attached to the first and second molars 10 b , 10 a can be placed in a locked mode.
  • the other teeth can be placed in a sliding mode.
  • the wire 3 can have a normally-straight configuration.
  • a curve 314 in the wire 3 can be provided between the first and second molars 10 b , 10 a , which can push the second molar 10 a into an upright position.
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 27 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 28 A illustrates an orthodontic system 300 configured to tip the anterior teeth outward to maintain appropriate incisor angles.
  • FIG. 28 B illustrates the system 300 after the treatment applied in FIG. 28 A .
  • the devices 1 attached to the incisors 10 a , 10 b can be placed in a locked mode.
  • the other devices 1 can be placed in a sliding mode.
  • the wire 3 can be biased to orient the anterior teeth outwardly.
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 28 A- 28 B can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 29 A illustrates an orthodontic system 300 configured to provide multidimensional control of a tooth 10 b that is misaligned in multiple dimensions.
  • the tooth 10 b is misaligned gingivally (downwardly), horizontally, and rotationally in three directions.
  • the devices 1 attached to the teeth 10 a - 10 c can be placed in a locked mode, while the device 1 attached to the tooth 10 d can be placed in a sliding mode.
  • the wire 3 can be formed in a loop 302 between teeth 10 c and 10 b .
  • a bend 306 can be formed in the wire 3 between the teeth 10 b and 10 a .
  • the wire 3 can engage with the devices 1 to correct the multidimensional misalignments, as shown in the aligned teeth of FIG. 29 B .
  • the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 29 A- 29 B can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 30 illustrates a clinical scenario that utilizes multiple wires 3 a , 3 b along some portions of the system 300 .
  • a first wire 3 a can span the entire dental arch and can be inserted into each of the orthodontic devices 1 of the system 300 .
  • second wire segments 3 b can be provided to span a plurality of adjacent teeth 10 a - 10 c to apply a different force profile for moving the selected teeth 10 a - 10 c .
  • the second wire segment 3 b can be inserted into the devices 1 that are affixed to those teeth 10 a - 10 c .
  • multiple wires can be provided in the bracket.
  • the use of multiple wires can accordingly provide different forces, which can represent another force template in accordance with various embodiments.
  • FIG. 31 illustrates a clinical scenario in which the system 300 includes two wires 3 a , 3 b that can meet end-to-end at the device 1 attached to the tooth 10 b .
  • the respective ends of both wires 3 a , 3 b can be placed in a locked mode by the device 1 such that different wires 3 a , 3 b cover different portions along the dental arch.
  • the wires 3 a , 3 b can have different profiles so as to create different forces along the different segments.
  • a single wire 3 can be provided but can have a varying geometry along the wire 3 , which can be locked at various locations to control orthodontic forces.
  • the procedures and devices disclosed herein may be performed on or applied to any type of tooth such as an incisor, a canine, a bicuspid, a pre-molar, or a molar.
  • the tooth may be depicted as a lower (mandibular) tooth in the figures, this is for purposes of illustration, and is not limiting.
  • the devices and methods may be applied to lower (mandibular) teeth or upper (maxillary) teeth.
  • the disclosed devices and methods can be applied to lingual and/or facial (e.g., labial or buccal) surfaces of the tooth 10 .
  • the disclosed apparatus, methods, and compositions may be applied to human teeth (including juvenile teeth) and/or to animal teeth.
  • the terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth.
  • the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.

Abstract

An orthodontic device can include a bracket configured to support an orthodontic wire. The orthodontic device can include a locking assembly coupled to the bracket and switchable between a plurality of operational modes. The plurality of operational modes can comprise a first sliding mode in which the orthodontic wire is slidable relative to the bracket and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to PCT/US2021/040296, filed On Jul. 2, 2021, which claims priority to U.S. patent application Ser. Nos. 17/065,281 and 17/065,394, filed on Oct. 7, 2020, each of which claims priority to U.S. Provisional Patent Application No. 63/047,979, filed Jul. 3, 2020, the entire contents of each of which are incorporated by reference in their entirety and for all purposes. This application also claims priority to U.S. Provisional Patent Application No. 63/047,979, filed Jul. 3, 2020, the entire contents of each of which are incorporated by reference in their entirety and for all purposes.
  • BACKGROUND Field
  • The field relates to an orthodontic device.
  • Description of the Related Art
  • Orthodontic braces devices are used to correct dental malocclusion, which can generally be described as an abnormal alignment of a patient's teeth and/or the manner in which the upper and lower teeth fit together. Dental malocclusion is a significant problem in dental public health because of its adverse effects on teeth, bone, muscles, and/or nerve tissue. In addition to preventing or reducing physical discomfort, infection, and/or injury to maxillofacial tissues, braces or other orthodontic devices are often used to improve a patient's dental aesthetics. In orthodontic braces devices, a bracket is attached to a tooth, and an orthodontic wire (e.g., an archwire) is inserted into a wire retention cavity of the bracket. In traditional devices, ligatures (for example, elastic bands or steel ligatures) are used secure the wire to the bracket. In self-ligating devices, a wire can be inserted into the bracket and secured mechanically without using ligatures. In both traditional and self-ligating devices, the wire slides laterally relative to the bracket.
  • Current traditional and self-ligating orthodontic devices are applied and adjusted over numerous treatment appointments with the clinician. Such devices may be used for many months or years and may be painful to the patient. Moreover, current orthodontic devices can create unpredictable, unsustained quality of outcomes, as well as poor aesthetics due to the visibility of the braces. In some cases, a clinician can make an adjustment to the braces to align one tooth, which can undesirably induce misalignments in other teeth. Accordingly, there remains a continuing need for improved orthodontic devices.
  • SUMMARY
  • In one embodiment, orthodontic device is disclosed. The orthodontic device can include a bracket configured to support an orthodontic wire. The orthodontic device can include a locking assembly to be coupled to the bracket and movable between a plurality of operational modes, the plurality of operational modes comprising a first sliding mode in which the orthodontic wire is slidable relative to the bracket and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket.
  • In some embodiments, the locking assembly in the second locked mode can prevent sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces. The locking assembly in the second locked mode can prevent sliding of the orthodontic wire during use of the orthodontic device. The locking assembly can be configured to apply a continuously variable frictional force to the wire. The locking assembly can be configured to apply the continuously variable frictional force to the wire to move between the first sliding mode and the second locked mode. The locking assembly can be configured to adjust a frictional force to the wire in a step-wise manner. The locking assembly can be configured to move between the first sliding mode and the second locked mode in a step-wise manner. The orthodontic device can comprise a third open mode in which the orthodontic wire is insertable into and removable from the bracket. The orthodontic device can comprise the orthodontic wire. The locking assembly can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire in the second locked mode. The bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis. In the first sliding mode, the clip can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket. The wedge member in the first sliding mode can be disposed at a first position along the transverse axis, and the wedge member in the second locked mode can be disposed at a second position along the transverse axis that is different from the first position. In the second locked mode, a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire. In the second locked mode, the orthodontic wire can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire. The orthodontic device can comprise a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity. The locking assembly can comprise a rotary member configured to rotate about a rotational direction to switch from the first sliding mode to the second locked mode. The rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket. The rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire. The rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire to switch between the first sliding mode and the second locked mode. The plurality of component surfaces can be angled relative to one another and include at least two different surface profiles. The locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is at least 50 cN. The locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is at least 100 cN. The locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is in a range of 50 cN to 2000 cN. The locking assembly in the second locked mode can exert a locking force against the orthodontic wire that is in a range of 100 cN to 2000 cN.
  • In another embodiment an orthodontic device is disclosed. The orthodontic device can comprise a bracket configured to support an orthodontic wire. The orthodontic device can comprise a fixation mechanism to be coupled to the bracket, the fixation mechanism configured to operate in a manner that allows sliding of the orthodontic wire relative to the bracket and in a manner that prevents sliding of the orthodontic wire relative to the bracket.
  • In some embodiments, the fixation mechanism can be movable from a first configuration that allows sliding of the orthodontic wire relative to the bracket to a second configuration that prevents sliding of the orthodontic wire relative to the bracket when the orthodontic wire is subject to typical orthodontic forces. The orthodontic device can comprise the orthodontic wire. The fixation mechanism can be configured to apply a continuously variable frictional force to the wire. The fixation mechanism can be configured to adjust a frictional force to the wire in a step-wise manner. The fixation mechanism can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire in the second configuration. The bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis. In the first configuration, the clip can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket. The wedge member in the first configuration can be disposed at a first position along the transverse axis, and wherein the wedge member in the second configuration is disposed at a second position along the transverse axis that is different from the first position. In the second configuration, a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire. In the second configuration, the orthodontic wire can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire. The orthodontic device can comprise a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity. The fixation mechanism can comprise a rotary member configured to rotate about a rotational direction to switch from the first configuration to the second configuration. The rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket. The rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire. The rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire to switch between the first configuration and the second configuration. The plurality of component surfaces can be angled relative to one another and include at least two different surface profiles. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 50 cN. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 100 cN. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 50 cN to 2000 cN. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 100 cN to 2000 cN.
  • In another embodiment, an orthodontic device is disclosed. The orthodontic device can comprise a bracket configured to support an orthodontic wire. The orthodontic device can comprise a fixation mechanism to be coupled to the bracket, the fixation mechanism movable from a first configuration that allows sliding of the orthodontic wire relative to the bracket to a second configuration that prevents sliding of the orthodontic wire relative to the bracket when the orthodontic wire is subject to typical orthodontic forces.
  • In some embodiments, the fixation mechanism in the second configuration can prevent sliding of the orthodontic wire during use of the orthodontic device. The orthodontic device can comprise the orthodontic wire. The fixation mechanism can be configured to apply a continuously variable frictional force to the wire. The fixation mechanism can be configured to adjust a frictional force to the wire in a step-wise manner. The fixation mechanism can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire in the second configuration. The bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis. In the first configuration, the clip can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket. The wedge member in the first configuration can be disposed at a first position along the transverse axis, and the wedge member in the second configuration can be disposed at a second position along the transverse axis that is different from the first position. In the second configuration, a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire. In the second configuration, the orthodontic wire can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire. The orthodontic device can comprise a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity. The fixation mechanism can comprise a rotary member configured to rotate about a rotational direction to switch from the first configuration to the second configuration. The rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket. The rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire. The rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire to switch between the first configuration and the second configuration. The plurality of component surfaces can be angled relative to one another and include at least two different surface profiles. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 50 cN. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is at least 100 cN. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 50 cN to 2000 cN. The fixation mechanism in the second configuration can exert a locking force against the orthodontic wire that is in a range of 100 cN to 2000 cN.
  • In another embodiment, an orthodontic device is disclosed. The orthodontic device can include a bracket having a retention cavity sized and shaped to receive and support an orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The orthodontic device can include a clip to be coupled to the bracket and to be positioned over the orthodontic wire in use, the clip configured to move along a transverse axis of the orthodontic device to retain the orthodontic wire in the retention cavity, the transverse axis orthogonal to the lateral axis. The orthodontic device can include a wedge member to be coupled to the bracket, the wedge member configured to move along the transverse axis, the orthodontic wire to be disposed between the wedge member and the clip with the wedge member disposed between the orthodontic wire and the bracket, the wedge member including a tapered wedge surface that engages the orthodontic wire. At least the wedge member can serve as a frictional adjustment mechanism configured to exert an adjustable frictional force against the orthodontic wire, including a range of sliding frictional forces in which the orthodontic wire is slidable relative to the bracket and at least one non-sliding frictional force that prevents sliding of the orthodontic wire in use when the orthodontic wire is subject to typical orthodontic forces.
  • In some embodiments, movement of the wedge member along the transverse axis is not configured to cause movement of the clip along the transverse axis. In some embodiments, movement of the clip along the transverse axis is not configured to cause movement of the wedge member along the transverse axis. In some embodiments, the frictional adjustment mechanism can be adjustable to apply a continuously variable frictional force against the orthodontic wire. The wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN. The wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN. The orthodontic device can include the orthodontic wire. The wedge member can include one or a plurality of tooling apertures sized to receive a tool to adjust the frictional force against the orthodontic wire.
  • In another embodiment, an orthodontic device is disclosed. The orthodontic device can include a bracket having a retention cavity sized and shaped to receive and support an orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The orthodontic device can include a frictional adjustment mechanism comprising a clip and a wedge member that cooperate to exert an adjustable frictional force against the orthodontic wire, the clip and the wedge member to be coupled to the bracket and movable along a transverse axis that is orthogonal to the lateral axis. The frictional adjustment mechanism can configured to exert a range of sliding frictional forces in which the orthodontic wire is slidable relative to the bracket and at least one non-sliding frictional force that prevents sliding of the orthodontic wire in use when the orthodontic wire is subject to typical orthodontic forces.
  • In some embodiments, movement of the wedge member along the transverse axis is not configured to cause movement of the clip along the transverse axis. In some embodiments, movement of the clip along the transverse axis is not configured to cause movement of the wedge member along the transverse axis. In some embodiments, the frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN. The frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN. The frictional adjustment mechanism can be adjustable to apply a continuously variable frictional force against the orthodontic wire. In use, the orthodontic wire can be disposed between the wedge member and the clip with the wedge member disposed between the orthodontic wire and the bracket. In use, the orthodontic wire can be disposed between the bracket and the wedge member, the wedge member disposed between the wire and the clip. The wedge member can include a tapered wedge surface that engages the orthodontic wire. The wedge member can have a thickness varying along at least a portion of the length of the wedge member. The orthodontic device can include the orthodontic wire. The wedge member can include one or a plurality of tooling apertures sized to receive a tool to adjust the frictional force against the orthodontic wire.
  • In another embodiment, an orthodontic device is disclosed. The orthodontic device can include a bracket having a retention cavity sized and shaped to receive and support an orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The orthodontic device can include a clip to be coupled to the bracket, the clip configured to move along a transverse axis of the orthodontic device, the transverse axis non-parallel relative to the lateral axis. The orthodontic device can include a wedge member to be coupled to the bracket, the wedge member configured to move along the transverse axis. The clip, the wedge member, and the bracket can be configured to cooperate to exert an adjustable frictional force against the orthodontic wire.
  • In some embodiments, the wedge member has a tapered wedge surface angled relative to a vertical axis that is orthogonal to the lateral axis and the transverse axis, the wedge member having a thickness in the direction of the vertical axis and a length in the direction of the transverse axis, the thickness varying along at least a portion of the length of the wedge member. In some embodiments, movement of the wedge member along the transverse axis is not configured to cause movement of the clip along the transverse axis, and movement of the clip along the transverse axis is not configured to cause movement of the wedge member along the transverse axis. In some embodiments, the clip and the wedge member can serve as a frictional adjustment mechanism adjustable to exert a range of sliding and non-sliding frictional forces against the orthodontic wire in use. The frictional adjustment mechanism can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces. The wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN. The wedge member can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN. The clip, the wedge member, and the bracket can be configured to cooperate to move between a plurality of operational modes, the plurality of operational modes comprising a first sliding mode in which the orthodontic wire is slidable relative to the bracket and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket. The clip and the wedge member can serve as a frictional adjustment mechanism adjustable to apply a continuously variable frictional force against the wire. In the first sliding mode, the clip can be configured to be positioned over the orthodontic wire to retain the orthodontic wire in the retention cavity of the bracket. The wedge member in the first sliding mode can be disposed at a first position along the transverse axis, and the wedge member in the second locked mode can be disposed at a second position along the transverse axis that is different from the first position. In the second locked mode, a wedge surface of the wedge member can contact and exert a locking force against the orthodontic wire. In the second locked mode, the orthodontic wire can be vertically disposed between the clip and the wedge member, the wedge member and the clip cooperating to clamp the orthodontic wire. In the second locked mode, the orthodontic wire can be vertically disposed between the bracket and the wedge member, the wedge member disposed between the wire and the clip. The wedge member can include a tapered wedge surface that engages the orthodontic wire. The orthodontic device can include the orthodontic wire. The wedge member can include one or a plurality of tooling apertures sized to receive a tool to adjust the frictional force against the orthodontic wire.
  • In another embodiment, an orthodontic device is disclosed. The orthodontic device can comprise a bracket configured to support an orthodontic wire that extends along a lateral axis, the bracket including an interior cavity and a curved follower surface. The orthodontic device can comprise a rotary member to be coupled to the bracket in the interior cavity and configured to rotate about the lateral axis to exert an adjustable frictional force against the orthodontic wire, the rotary member comprising an outer bearing surface that rotates relative to the curved follower surface of the bracket and an inner cam surface that engages with the orthodontic wire to adjust the frictional force.
  • In some embodiments, the rotary member can be configured to rotate about the lateral axis to move between a plurality of operational modes, the plurality of operational modes comprises a first sliding mode in which the orthodontic wire is slidable relative to the bracket and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket. The inner cam surface can comprise a plurality of component surfaces that engage with the orthodontic wire. The plurality of component surfaces can be angled relative to one another and can include at least two different surface profiles. The rotary member in the second locked mode can exert a locking force against the orthodontic wire that is at least 50 cN.
  • In one embodiment, a method of orthodontic treatment is disclosed. The method can include securing a first orthodontic device to a first tooth. The method can include adjusting the first orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the first orthodontic device. The method can include securing a second orthodontic device to a second tooth. The method can include adjusting the second orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the second orthodontic device when the orthodontic wire is subject to typical orthodontic forces in use.
  • In some embodiments, the method can include adjusting the first orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device. Adjusting the first orthodontic device can comprise moving a clip along an axis transverse to the orthodontic wire to position the clip over the orthodontic wire. Adjusting the first orthodontic device to exert the second non-sliding frictional force can comprise moving a wedge member along the axis transverse to the orthodontic wire to exert the second non-sliding force against the orthodontic wire. Adjusting the first orthodontic device to exert the second non-sliding frictional force can comprise rotating a rotatable member such that an internal cam surface of the rotatable member exerts the second non-sliding force against the orthodontic wire. The method can include securing a third orthodontic device to a third tooth and adjusting the third orthodontic device such that the orthodontic wire is slidable or non-slidable relative to the third orthodontic device.
  • In another embodiment, a method of orthodontic treatment is disclosed. The method can include securing an orthodontic device to a tooth. The method can include adjusting the orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device. The method can include adjusting the orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device.
  • In some embodiments, the method can include adjusting the orthodontic device to exert the sliding frictional force in a first treatment procedure before adjusting the orthodontic device to exert the non-sliding frictional force in a second treatment procedure. The method can include securing a second orthodontic device to a second tooth, adjusting the second orthodontic device to exert a second sliding frictional force against the orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device, and adjusting the second orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device. The non-sliding frictional force can prevent sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use. Adjusting the orthodontic device can comprise moving a clip along an axis transverse to the orthodontic wire to position the clip over the orthodontic wire. Adjusting the orthodontic device to exert the non-sliding frictional force can comprise moving a wedge member along the axis transverse to the orthodontic wire to exert the non-sliding frictional force against the orthodontic wire. Adjusting the orthodontic device to exert the non-sliding frictional force can comprise rotating a rotatable member such that an internal cam surface of the rotatable member exerts the non-sliding frictional force against the orthodontic wire.
  • In another embodiment, a method of orthodontic treatment is disclosed. The method can include securing a first orthodontic device to a first tooth, the first orthodontic device having a first plurality of support modes including a first sliding mode and a second non-sliding mode. The method can include securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of support modes including a first sliding mode and a second non-sliding mode. The method can include placing the first orthodontic device into the first sliding mode. The method can include placing the second orthodontic device into the second non-sliding mode.
  • In some embodiments, the first and second orthodontic devices in the second non-sliding mode can prevent sliding of an orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use. The method can include inserting an orthodontic wire into a retention cavity of a bracket of the first orthodontic device. Placing the first orthodontic device in the first sliding mode can comprise rotating a rotatable member over the orthodontic wire. Placing the first orthodontic device in the first sliding mode can comprise moving a clip along an axis transverse to the orthodontic wire to position the clip over the orthodontic wire. Placing the second orthodontic device in the second non-sliding mode can comprise rotating a rotatable member such that an internal cam surface of the rotatable member exerts a locking force against the orthodontic wire. Placing the second orthodontic device in the second non-sliding mode comprises moving a wedge member along an axis transverse to the orthodontic wire to exert a locking force against the orthodontic wire. The method can include placing the first orthodontic device into the second non-sliding mode. Placing the first orthodontic device into the second non-sliding mode can comprise switching the first orthodontic device into the second non-sliding mode in a step-wise manner. Placing the first orthodontic device into the second non-sliding mode can comprise continuously increasing a frictional force against the orthodontic wire. The method can include placing the second orthodontic device into the first sliding mode. Placing the second orthodontic device into the first sliding mode can comprise switching the second orthodontic device into the first sliding mode in a step-wise manner. Placing the second orthodontic device into the first sliding mode can comprise continuously increasing a frictional force against the orthodontic wire.
  • In another embodiment, a method of orthodontic treatment is disclosed. The method can include securing an orthodontic device to a tooth, the orthodontic device having a first plurality of operational modes including a first sliding mode and a second non-sliding mode. The method can include placing the orthodontic device into one of the first sliding mode and the second non-sliding mode. The method can include moving the orthodontic device into the other of the first sliding mode and the second non-sliding mode.
  • In some embodiments, the method can include securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of operational modes including a first sliding mode and a second non-sliding mode, placing the second orthodontic device into one of the first sliding mode and the second non-sliding mode, and moving the second orthodontic device into the other of the first sliding mode and the second non-sliding mode. Moving the orthodontic device can comprise adjusting the orthodontic device to exert a continuously varying frictional force against the orthodontic wire. Moving the orthodontic device can comprise switching the orthodontic device into the second non-sliding mode in a step-wise manner
  • In another embodiment, a method for designing an orthodontic treatment system is disclosed. The method can include determining an orthodontic force profile to be applied to a patient's teeth to treat the patient based on malocclusion characteristics of the patient's teeth. The method can include, based on the determined orthodontic force profile, selecting a first sliding mode for a first orthodontic device to be secured to a first tooth. The method can include, based on the determined orthodontic force profile, selecting a second non-sliding mode for a second orthodontic device to be secured to a second tooth.
  • In some embodiments, the method can include obtaining image data of a patient's teeth and processing the obtained image data to determine malocclusion characteristics of the patient. The method can include manufacturing the first and second orthodontic devices. The method can include selecting the first sliding mode and selecting the second locked mode based on a look-up table (LUT) that maps a plurality of clinical scenarios to operational modes of the first and second orthodontic devices.
  • In another embodiment, a system for creating a patient-specific orthodontic system is disclosed. The system can comprise an orthodontic design system having processing electronics configured to determine an orthodontic force profile to be applied to a patient's teeth to treat the patient based on malocclusion characteristics of the patient's teeth. The processing electronics can be configured to, based on the determined orthodontic force profile, select a first sliding mode for a first orthodontic device to be secured to a first tooth. The processing electronics can be configured to, based on the determined orthodontic force profile, select a second non-sliding mode for a second orthodontic device to be secured to a second tooth.
  • In some embodiments, the processing electronics can be configured to obtain image data of a patient's teeth and to process the obtained image data to determine malocclusion characteristics of the patient. The system can include an imaging device configured to capture the image data. The system can include a manufacturing system configured to manufacture the first and second orthodontic devices. The processing electronics can be configured to select the first sliding mode and to select the second locked mode based on a look-up table (LUT) that maps a plurality of clinical scenarios to operational modes of the first and second orthodontic devices.
  • In another embodiment, a bracket for an orthodontic device is disclosed. The bracket can include a base configured to be affixed to a tooth. The bracket can include a support portion extending from the base. The bracket can include a retention cavity extending through the support portion along a lateral axis of the bracket, the retention cavity sized and shaped to receive and support an orthodontic wire. The bracket can include a transverse cavity extending at least partially through the support portion along a transverse axis of the bracket that is non-parallel to the lateral axis, the transverse cavity sized and shaped to receive a wedge member.
  • In some embodiments, the transverse cavity can be disposed vertically between the base and the retention cavity.
  • In another embodiment, a bracket for an orthodontic device is disclosed. The bracket can include a base configured to be affixed to a tooth. The bracket can include a support portion extending from the base, the support portion including an interior cavity and a curved follower surface exposed to the interior cavity, the interior cavity and the curved follower surface sized and shaped to mate with a rotary locking member. The bracket can include a retention cavity extending along a lateral axis, the retention cavity sized and shaped to receive and support an orthodontic wire.
  • In some embodiments, the bracket can include a transverse cavity disposed transverse to the retention cavity and extending to the interior cavity.
  • In another embodiment, an orthodontic device is disclosed. The orthodontic device can include a bracket configured to support an orthodontic wire. The orthodontic device can include a braking assembly to be coupled to the bracket, the braking assembly configured to operate in a manner that allows sliding of the orthodontic wire relative to the bracket and provides adjustable friction that increases the braking effect on the orthodontic wire to prevent sliding of the orthodontic wire relative to the bracket in use.
  • In some embodiments, the braking assembly can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces. The braking assembly can be configured to apply a continuously variable frictional force against the wire. The braking assembly can be configured to apply the continuously variable frictional force to the wire to move between a first sliding mode and a second non-sliding mode. The braking assembly can be configured to adjust a frictional force to the wire in a step-wise manner. The braking assembly can be configured to move between a first sliding mode and a second non-sliding mode in a step-wise manner. The orthodontic device can include the orthodontic wire. The braking assembly can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire to prevent sliding of the orthodontic wire relative to the bracket. The bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis. The orthodontic device can include a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity. The braking assembly can comprise a rotary member configured to rotate about a rotational direction to increase the braking effect. The rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket. The rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire. The rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire. The plurality of component surfaces can be angled relative to one another and include at least two different surface profiles. The braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN. The braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 100 cN. The braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 50 cN to 2000 cN. The braking assembly can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN.
  • In another embodiment, an orthodontic device is disclosed. The orthodontic device can include a bracket configured to support an orthodontic wire. The orthodontic device can include a frictional adjustment mechanism to be coupled to the bracket, the frictional adjustment mechanism adjustable to exert a range of sliding and non-sliding frictional forces against the orthodontic wire in use.
  • In some embodiments, the frictional adjustment mechanism can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces. The frictional adjustment mechanism can be adjustable to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire during use of the orthodontic device. The frictional adjustment mechanism can be configured to apply a continuously variable frictional force against the wire. The frictional adjustment mechanism can be configured to apply the continuously variable frictional force to the wire to move between a first sliding mode and a second non-sliding mode. The frictional adjustment mechanism can be configured to adjust a frictional force to the wire in a step-wise manner. The frictional adjustment mechanism can be configured to move between a first sliding mode and a second non-sliding mode in a step-wise manner. The orthodontic device can include the orthodontic wire. The frictional adjustment mechanism can comprise a clip and a wedge member that cooperate to slidably lock the orthodontic wire to prevent sliding of the orthodontic wire relative to the bracket. The bracket can comprise a retention cavity sized and shaped to receive and support the orthodontic wire, the retention cavity extending along a lateral axis of the orthodontic device. The clip and wedge member can be movable along a transverse axis of the orthodontic device, the transverse axis non-parallel to the lateral axis. The orthodontic device can include a transverse cavity extending through the bracket transverse to the retention cavity, the wedge member disposed in the transverse cavity. The frictional adjustment mechanism can comprise a rotary member configured to rotate about a rotational direction to increase the braking effect. The rotary member can be disposed in an interior cavity of the bracket, the rotary member comprising an outer bearing surface that rotates relative to a curved follower surface of the bracket. The rotary member can be configured to rotate about a lateral axis parallel to the orthodontic wire. The rotary member can comprise an inner cam surface having a plurality of component surfaces that engage with the orthodontic wire. The plurality of component surfaces can be angled relative to one another and include at least two different surface profiles. The frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 50 cN. The frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is at least 100 cN. The frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 50 cN to 2000 cN. The frictional adjustment mechanism can be configured to exert a non-sliding force against the orthodontic wire to prevent sliding that is in a range of 100 cN to 2000 cN.
  • In another embodiment, a method of orthodontic treatment is disclosed. The method can include securing a first orthodontic device to a first tooth, the first orthodontic device comprising a first clip and a first wedge member; adjusting the first orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the first orthodontic device along a first lateral axis of the first orthodontic device, wherein adjusting the first orthodontic device comprises moving the first clip along a first transverse axis orthogonal to the first lateral axis, wherein moving the first clip along the first transverse axis does not require movement of the first wedge member along the first transverse axis; securing a second orthodontic device to a second tooth, the second orthodontic device comprising a second clip and a second wedge member; and adjusting the second orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the second orthodontic device along a second lateral axis when the orthodontic wire is subject to typical orthodontic forces in use, wherein adjusting the second orthodontic device comprises moving the second clip along a second transverse axis orthogonal to the second lateral axis and independently moving the second wedge member along the second transverse axis to exert the non-sliding frictional force, wherein moving the second clip along the second transverse axis does not require movement of the second wedge member along the second transverse axis.
  • In some embodiments, the method can include adjusting the first orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device. In some embodiments, the first wedge member has a first tapered wedge surface and a first thickness varying along at least a portion of a length of the first wedge member. In some embodiments, adjusting the first orthodontic device to exert the second non-sliding frictional force comprises moving the first wedge member along the first transverse axis to cause the first tapered wedge surface to engage with the orthodontic wire to exert the second non-sliding force against the orthodontic wire. In some embodiments, the second wedge member has a second tapered wedge surface and a second thickness varying along at least a portion of a length of the second wedge member, the method comprising engaging the orthodontic wire with the second tapered wedge surface. In some embodiments, the method can include securing a third orthodontic device to a third tooth and adjusting the third orthodontic device such that the orthodontic wire is slidable or non-slidable relative to the third orthodontic device.
  • In another embodiment, a method of orthodontic treatment is disclosed. The method can include securing an orthodontic device to a tooth, the orthodontic device comprising a clip and a wedge member; adjusting the orthodontic device to exert a sliding frictional force against an orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device along a lateral axis, wherein adjusting the orthodontic device to exert the sliding frictional force comprises moving the clip along a transverse axis orthogonal to the lateral axis, wherein moving the clip along the transverse axis does not require movement of the wedge member along the transverse axis; and adjusting the orthodontic device to exert a non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device, wherein adjusting the orthodontic device to exert the non-sliding frictional force comprises moving the wedge member along the transverse axis to exert the non-sliding frictional force.
  • In some embodiments, the method can include adjusting the orthodontic device to exert the sliding frictional force in a first treatment procedure before adjusting the orthodontic device to exert the non-sliding frictional force in a second treatment procedure. In some embodiments, the method can include securing a second orthodontic device to a second tooth; adjusting the second orthodontic device to exert a second sliding frictional force against the orthodontic wire such that the orthodontic wire is slidable relative to the orthodontic device; and adjusting the second orthodontic device to exert a second non-sliding frictional force against the orthodontic wire that prevents sliding of the orthodontic wire relative to the orthodontic device. In some embodiments, the non-sliding frictional force prevents sliding of the orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use. In some embodiments, the wedge member has a tapered wedge surface and a thickness varying along at least a portion of a length of the wedge member, wherein moving the wedge member along the transverse axis to exert the non-sliding frictional force comprises engaging the orthodontic wire with the tapered wedge surface. In some embodiments, adjusting the orthodontic device to exert the non-sliding frictional force comprises moving the wedge member along the transverse axis to cause the tapered wedge surface to engage with the orthodontic wire to exert the non-sliding frictional force against the orthodontic wire. In some embodiments, the second orthodontic device comprises a second clip and a second wedge member independently movable along a second transverse axis.
  • In another embodiment, a method of orthodontic treatment is disclosed. The method can include securing a first orthodontic device to a first tooth, the first orthodontic device having a first plurality of support modes including a first sliding mode and a second non-sliding mode, the first orthodontic device comprising a first clip and a first wedge member, the first wedge member having a first tapered wedge surface that engages an orthodontic wire and a first thickness varying along at least a portion of a length of the first wedge member; securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of support modes including a first sliding mode and a second non-sliding mode, the second orthodontic device comprising a second clip and a second wedge member, the second wedge member having a second tapered wedge surface that engages the orthodontic wire and a second thickness varying along at least a portion of a length of the second wedge member; placing the first orthodontic device into the first sliding mode that permits sliding of the orthodontic wire along a first lateral axis, wherein placing the first orthodontic device comprises moving the first clip along a first transverse axis orthogonal to the first lateral axis; and placing the second orthodontic device into the second non-sliding mode that prevents sliding of the orthodontic wire along a second lateral axis of the second orthodontic device, wherein placing the second orthodontic device comprises moving the second clip along a second transverse axis orthogonal to the second lateral axis and moving the second wedge member along the second transverse axis to cause the second tapered wedge surface to engage with the orthodontic wire.
  • In some embodiments, the first and second orthodontic devices in the second non-sliding mode prevent sliding of an orthodontic wire when the orthodontic wire is subject to typical orthodontic forces in use. In some embodiments, the method can include inserting an orthodontic wire into a retention cavity of a bracket of the first orthodontic device. In some embodiments, moving the first clip along the first transverse axis is not configured to cause the first wedge member to move along the first transverse axis. In some embodiments, moving the second clip along the second transverse axis is not configured to cause the second wedge member to move along the second transverse axis. In some embodiments, moving the second wedge member along the second transverse axis is not configured to cause the second clip to move along the second transverse axis. In some embodiments, the method can include placing the first orthodontic device into the second non-sliding mode. In some embodiments, placing the first orthodontic device in the second non-sliding mode comprises moving the first wedge member along the first transverse axis to exert a locking force against the orthodontic wire. In some embodiments, placing the first orthodontic device into the second non-sliding mode comprises switching the first orthodontic device into the second non-sliding mode in a step-wise manner. In some embodiments, placing the first orthodontic device into the second non-sliding mode comprises continuously increasing a frictional force against the orthodontic wire. In some embodiments, the method can include placing the second orthodontic device into the first sliding mode. In some embodiments, placing the second orthodontic device into the first sliding mode comprises switching the second orthodontic device into the first sliding mode in a step-wise manner. In some embodiments, placing the second orthodontic device into the first sliding mode comprises continuously increasing a frictional force against the orthodontic wire.
  • In another embodiment, a method of orthodontic treatment is disclosed. The method can include securing an orthodontic device to a tooth, the orthodontic device having a first plurality of operational modes including a first sliding mode that permits sliding of an orthodontic wire along a lateral axis and a second non-sliding mode that prevents sliding of the orthodontic wire along the lateral axis, the orthodontic device comprising a clip and a wedge member, the wedge member having a tapered wedge surface that engages the orthodontic wire and a thickness varying along at least a portion of a length of the wedge member; placing the orthodontic device into the first sliding mode, wherein placing the orthodontic device into the first sliding mode comprises moving the clip along a transverse axis orthogonal to the lateral axis; and moving the orthodontic device into the second non-sliding mode, wherein moving the orthodontic device into the second non-sliding mode comprises moving the wedge member along the transverse axis to cause the second tapered wedge surface to engage with the orthodontic wire to exert the non-sliding frictional force.
  • In some embodiments, the method can include securing a second orthodontic device to a second tooth, the second orthodontic device having a second plurality of operational modes including a first sliding mode and a second non-sliding mode; placing the second orthodontic device into one of the first sliding mode and the second non-sliding mode; and moving the second orthodontic device into the other of the first sliding mode and the second non-sliding mode. In some embodiments, moving the orthodontic device comprises adjusting the orthodontic device to exert a continuously varying frictional force against the orthodontic wire. In some embodiments, moving the orthodontic device comprises switching the orthodontic device into the second non-sliding mode in a step-wise manner.
  • For purposes of this summary, certain aspects, advantages, and novel features of certain disclosed inventions are summarized. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the inventions disclosed herein may be embodied or carried out in a manner that achieves one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein. Further, the foregoing is intended to summarize certain disclosed inventions and is not intended to limit the scope of the inventions disclosed herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic side view of a tooth to be treated using an orthodontic treatment device, in which an orthodontic tension force is applied to move the tooth laterally in a horizontal direction.
  • FIG. 1B is a schematic side view of a tooth to be treated using an orthodontic treatment device, in which a tension force is applied to impart a torque load to rotate the tooth.
  • FIG. 1C is a graph that schematically illustrates the applied force over time for a conventional orthodontic treatment as compared with a desired orthodontic treatment.
  • FIG. 2A is a schematic front, top, right side perspective view of an orthodontic device, according to one embodiment.
  • FIG. 2B is a schematic rear, top, left perspective view of the device of FIG. 2A.
  • FIG. 2C is a schematic top plan view of the device of FIGS. 2A-2B in a sliding support mode.
  • FIG. 2D is a schematic top plan view of the device of FIGS. 2A-2B in a locked support mode.
  • FIG. 2E is a schematic front, top, right side perspective view of a wedge member of the device of FIGS. 2A-2D.
  • FIG. 2F is a schematic rear, bottom, left side perspective view of the wedge member of FIG. 2E.
  • FIG. 2G is a schematic front, top, right side perspective view of a clip used in the device of FIGS. 2A-2D.
  • FIG. 2H is a schematic rear, bottom, left side perspective view of the clip of FIG. 2G.
  • FIG. 2I is a schematic front, top, left side perspective view of a bracket used in the device of FIGS. 2A-2D.
  • FIG. 2J is a schematic rear, right side perspective view of the bracket of FIG. 2I.
  • FIG. 2K is a schematic side sectional view of the orthodontic device of FIGS. 2A-2D in an open support mode, taken along section A-A of FIGS. 2C-2D.
  • FIG. 2L is a schematic side sectional view of the orthodontic device of FIGS. 2A-2D in a sliding support mode, taken along section A-A of FIG. 2C.
  • FIG. 2M is a magnified view of the device shown in FIG. 2L.
  • FIG. 2N is a schematic side sectional view of the orthodontic device of FIGS. 2A-2D in a locked support mode, taken along section A-A of FIG. 2D.
  • FIG. 2O is a magnified view of the device shown in FIG. 2N.
  • FIG. 3A is a front, top, right side perspective view of an orthodontic device, according to another embodiment.
  • FIG. 3B is a front, top, right side perspective view of the orthodontic device of FIG. 3A in an open mode.
  • FIG. 3C is a schematic side sectional view of the orthodontic device of FIG. 3B in the open mode.
  • FIG. 3D is a schematic side sectional view of the orthodontic device of FIG. 3A in a sliding mode.
  • FIG. 3E is a schematic side sectional view of the orthodontic device of FIGS. 3A-3B in a locked mode.
  • FIG. 4A is a front, top, right side perspective view of an orthodontic device, according to another embodiment.
  • FIG. 4B is a schematic side sectional view of the orthodontic device of FIG. 4A in an open mode.
  • FIG. 4C is a schematic side sectional view of the orthodontic device of FIG. 4A in a sliding mode.
  • FIG. 4D is a schematic side sectional view of the orthodontic device of FIG. 4A in a locked mode.
  • FIG. 5A is a front, top, right side perspective view of an orthodontic device, according to another embodiment.
  • FIG. 5B is a schematic side sectional view of the orthodontic device of FIG. 5A in an open mode.
  • FIG. 5C is a schematic side sectional view of the orthodontic device of FIG. 5A in a sliding mode.
  • FIG. 5D is a schematic side sectional view of the orthodontic device of FIG. 5A in a locked mode.
  • FIG. 6A is a schematic front, top, right side perspective view of the orthodontic device with rotary member in an open mode, according to one embodiment.
  • FIG. 6B is a top plan view of the orthodontic device of FIG. 6B.
  • FIG. 6C is a schematic side sectional view of the orthodontic device of FIG. 6A, shown in the open mode.
  • FIG. 6D is a schematic side sectional view of the orthodontic device of FIG. 6A, shown in a sliding mode.
  • FIG. 6E is a schematic side sectional view of the orthodontic device of FIG. 6A, shown in a locked mode.
  • FIG. 6F is a first schematic perspective view of a rotary member according to another embodiment.
  • FIG. 6G is a second schematic perspective view of the rotary member of FIG. 6F.
  • FIG. 6H is a schematic perspective view of a bracket that can be used in cooperation with the rotary member of FIGS. 6F-6G.
  • FIGS. 6I-6K illustrate an orthodontic device having a detent mechanism to provide tactile feedback to the clinician indicative of the mode in which the device is placed, according to one embodiment.
  • FIGS. 6L-6N illustrate an orthodontic device having a detent mechanism, according to another embodiment.
  • FIG. 7A is a schematic perspective view of an orthodontic device that includes a dual cam locking assembly shown in a locked mode, according to another embodiment.
  • FIG. 7B is a schematic side sectional view of the orthodontic device of FIG. 7A in an open mode.
  • FIG. 7C is a schematic side sectional view of the orthodontic device of FIG. 7A in a sliding mode.
  • FIG. 7D is a schematic side sectional view of the orthodontic device of FIG. 7A in a locked mode.
  • FIG. 8A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a crab washer, according to another embodiment.
  • FIG. 8B is a schematic side sectional view of the orthodontic device of FIG. 8A in a sliding mode.
  • FIG. 8C is a schematic side sectional view of the orthodontic device of FIG. 8A in a locked mode.
  • FIG. 9A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a crimp device, according to another embodiment.
  • FIG. 9B is a schematic side sectional view of the orthodontic device of FIG. 9A in a sliding mode.
  • FIG. 9C is a schematic side sectional view of the orthodontic device of FIG. 9A in a locked mode.
  • FIG. 10A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a slide lock, according to another embodiment.
  • FIG. 10B is a schematic side sectional view of the orthodontic device of FIG. 10A in an open mode.
  • FIG. 10C is a schematic side sectional view of the orthodontic device of FIG. 10A in a sliding mode.
  • FIG. 10D is a schematic side sectional view of the orthodontic device of FIG. 10A in a locked mode.
  • FIG. 11A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a rotating locking element and a slidable lock, according to another embodiment.
  • FIG. 11B illustrates schematic top and side views of the orthodontic device of FIG. 11A in a sliding mode.
  • FIG. 11C illustrates schematic top and side views of the orthodontic device of FIG. 11A in a locked mode.
  • FIG. 12A is a schematic perspective view of an orthodontic device that includes a locking assembly comprising a clip and a set screw, according to another embodiment.
  • FIG. 12B is a schematic top view of the orthodontic device of FIG. 12A in a locked mode.
  • FIG. 12C is a schematic side view of the orthodontic device of FIG. 12B in the locked mode.
  • FIG. 13 is a schematic system diagram of a system for creating patient-specific orthodontic systems.
  • FIG. 14 is a flowchart illustrating a method for planning an orthodontic treatment procedure, according to various embodiments.
  • FIG. 15 is a flowchart illustrating a method for performing an orthodontic treatment, according to various embodiments.
  • FIGS. 16A-31 illustrate examples of methods of orthodontic treatment, according to various embodiments disclosed herein.
  • Throughout the drawings, unless otherwise noted, reference numbers may be re-used to indicate a general correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
  • DETAILED DESCRIPTION
  • Conventional orthodontic devices are designed to straighten teeth using only one particular mode of operation. For example, some conventional devices utilize a sliding mode of operation, in which the orthodontic wire can slide laterally relative to the bracket. In traditional sliding-mode orthodontic devices, a ligature (e.g., elastic band or steel ligature) can be connected to hooks of the bracket over the wire to secure the wire to the bracket. In self-ligating sliding-mode devices, the wire can be inserted into the bracket and secured mechanically without using ligatures. In passive self-ligating devices, for example, the wire may be unconstrained in the bracket so as to slide laterally relatively freely. By contrast, in active self-ligating devices, a clip can express a force against the wire to contain the wire within a retention cavity of the bracket. In both active and passive self-ligating devices, the wire can slide laterally relative to the bracket, but active devices may induce larger frictional forces as compared with passive devices. Examples of such active and passive sliding mode devices may be found, for example, in U.S. Pat. Nos. 6,071,119 and 9,615,899.
  • Thus, traditional and self-ligating sliding devices like those mentioned above operate in only a single mode that enables a substantial amount of sliding between the wire and the bracket. However, conventional sliding devices may impart an unpredictable force on all of the teeth connected by the archwire, which can make tooth adjustments inefficient and/or unpredictable, and which may negatively affect patient outcomes. Frictional forces may induce binding of the wires, further reducing treatment predictability and treatment time. Wires may also slide excessively so as to contact buccal tissue and cause discomfort to the patient.
  • Other types of conventional orthodontic devices utilize a frictionless mode of operation. For example, clear alignment trays can be worn over the teeth and can be shaped to straighten a patient's teeth. These alignment trays tend to only be effective in correcting mild malocclusion and the outcomes are seldom persistent, even if a retainer is worn daily post-treatment. Over time, maintaining well aligned teeth can be costly and inconvenient for the patient. In other frictionless devices, wires can be applied to the tooth and bent in desired configurations to align a patient's teeth. These frictionless devices also have a single mode of operation in which a wire or tray is fixed relative to the teeth that are to be treated. Some frictionless devices are applied by bending wires into loops and bends during an appointment, which is inefficient for the clinician. Moreover, the use of wire loops can be uncomfortable and difficult to clean for the patient. Many of the bends in the wire are often replicated through the end of the treatment, which can be difficult and time-consuming.
  • Accordingly, there remains a continuing need for improved orthodontic devices. Various embodiments disclosed herein relate to orthodontic devices that have a plurality of operating or wire support modes, as opposed to only a single support or operating mode. The devices can include a bracket configured to support an orthodontic wire and a locking assembly that includes one or a plurality of locking component(s) connected to the bracket. The locking assembly can be switchable between a plurality of support modes. For example, the locking assembly can include a first sliding mode in which the orthodontic wire is laterally slidable relative to the bracket, and a second locked mode in which the orthodontic wire is slidably locked relative to the bracket.
  • Beneficially, and as explained herein, the disclosed orthodontic devices can provide increased treatment controllability, reduced treatment times, and improved patient health outcomes. Moreover, the use of orthodontic devices with multiple operational modes can enable patient-specific design of an orthodontic system to concurrently and efficiently treat multiple misaligned teeth.
  • I. OVERVIEW OF DEVICE COMPONENTS
  • FIG. 1A is a schematic side view of a tooth 10 to be treated using an orthodontic treatment device 1, in which an orthodontic tension force FT is applied to move the tooth 10 laterally in a horizontal direction H, e.g., distally or mesially. The tooth 10 can comprise a crown 13 and one or a plurality of roots 14 extending apically from the crown 13. The tooth 10 can be embedded in gum tissue 12. The gum tissue 12 can be disposed over bone structure 11 and between the bone structure 11 and the tooth 10. The tooth 10 shown in FIG. 1A is a molar tooth, but it should be appreciated that the tooth 10 can comprise any suitable type of tooth, such as a molar, a pre-molar, an anterior, an incisor, a bicuspid, a canine, etc. Moreover, the tooth 10 shown in FIG. 1A can be a mandibular tooth or a maxillary tooth. One tooth 10 is shown in FIG. 1A for illustrative purposes, but the devices described herein can be used on multiple teeth, including all the teeth of a patient, or a subset of all the teeth of a patient.
  • If the clinician determines that the tooth 10 is misaligned, the clinician can provide an orthodontic treatment device 1 to the tooth 10 to align or straighten the tooth 10 relative to adjacent teeth and/or the mandibular or maxillary bone structures. The orthodontic device 1 can comprise a bracket 2 affixed to an attachment surface S of the tooth 10. For example, the clinician can use an adhesive or cement to affix the bracket 2 to the attachment surface S of the tooth 10. The attachment surface S can comprise a labial or buccal surface of the tooth 10 in some embodiments. In other embodiments, the attachment surface S can comprise a lingual surface of the tooth 10. An orthodontic wire 3 (e.g., archwire) can be mechanically coupled to the bracket 2. For example, in some embodiments, the wire 3 can be inserted into a retention cavity of the bracket 2. The wire 3 can comprise any suitable type of orthodontic wire, such as a metallic wire. For example, the wire 3 can comprise stainless steel, a nickel titanium alloy, a copper titanium alloy, or any other suitable material. In some embodiments, the wire 3 can comprise a pre-programmed wire that is shaped to have a desired curvature or shape based on the patient's malocclusion characteristics. In some embodiments, the wire 3 can comprise a straight wire. The wire 3 can comprise a shape memory alloy in various embodiments.
  • In some arrangements, the device 1 can include one or a plurality of hooks 4 onto which an elastic ligature or band (not shown) is looped. In such devices, the ligature can prevent the wire 3 from separating or coming out of the bracket 2. Additionally or alternatively, a clip or other structure can prevent the wire 3 from coming out of the bracket 2. In conventional orthodontic devices, stress and strain can be generated with the bracket and wire to impart movement of the tooth 10. In orthodontic devices, frictional resistance can be determined based on the design of the bracket 2, such as the space for receiving the archwire 3, the angle of the archwire 3 relative to the bracket 2, the torque at the bracket-archwire interface, and the type of ligation. Frictional resistance may additionally or alternatively be determined based on the design of the archwire 3, including the wire's size and stiffness, the shape (round or polygonal), and the surface friction which may depend on the materials, surface treatments like ionization, and coatings of the archwire 3.
  • A clinician can apply a combination of force(s) and/or torque(s) (e.g., moments) to a set of teeth to adjust for misalignments and spaces between teeth. As explained herein in connection with various clinical scenarios shown in FIGS. 16A-31 , different types of tooth misalignment can be addressed by applying suitable combination(s) of linear forces and torques to one or more sets of teeth. For example, in some clinical scenarios, a combination of linear forces and torques can be applied to one or more misaligned teeth in order to correct the misalignment. In other clinical scenarios, the application of only a linear force or a torque may be sufficient to treat the tooth. Ribeiro et al. describe conventional friction and frictionless mechanics for space closure in orthodontics, which is incorporated by reference herein in its entirety and for all purposes. See Ribeiro and Jacob, “Understanding the basis of space closure in orthodontics for a more efficient orthodontic treatment,” Dental Press J Orthod., 2016 Mar.-Apr.; 21(2):115-25. As explained herein, it can be challenging to independently treat one or more misaligned teeth without affecting or moving other teeth. Various embodiments disclosed herein beneficially enable the clinician to independently treat the malocclusion of one or more teeth without affecting other teeth.
  • As an example, FIG. 1A illustrates the application of only a tension force FT to a tooth to be treated. The tension force FT can be applied to the tooth 10 by way of the device 1 in a variety of ways. In various disclosed embodiments, the bracket 2 can have a locking mode in which the wire 3 is locked relative to the bracket 2 so as to prevent sliding between the wire 3 and the bracket 2 when subjected to typical orthodontic forces. In such an embodiment, the wire 3 can be pre-programmed or otherwise configured to induce a horizontal tension force FT disposed along a horizontal direction Hon the wire 3 and bracket 2. As shown, the horizontal direction H can correspond to a mesial or distal direction relative to the tooth 10. In other embodiments, for example, in which the bracket 2 is in a sliding mode, the tension force FT can be applied to the bracket 2 by suitably selecting or altering the wire 3 and/or connecting the wire 3 to other teeth in the mouth.
  • The tension force FT can be selected so as to induce the desired movement of the tooth 10 relative to the bone structure 11. In the illustrated embodiment, the applied tension force FT can impart respective tensile regions TR and compressive regions CR between the tooth 10 and the neighboring gum tissue 12 and bone structure 11. Over time, the tooth 10 can move such that bone resorption occurs at compressive regions CR and bone formation occurs at tensile regions TR.
  • FIG. 1B is a schematic side view of a tooth 10 to be treated using an orthodontic treatment device 1, in which a tension force FT is applied to impart a torque load T to rotate the tooth 10. Unless otherwise noted, the components of FIG. 1B may be the same as or generally similar to like-numbered components of FIG. 1A. As with FIG. 1A, a tension force FT is applied to the tooth 10 by way of the bracket 2. However, in FIG. 1B, a plurality of bends 16 a, 16 b are formed in the wire 3 so that the applied tension force FT imparts a counterclockwise torque T to the bracket 2 and tooth 10. The induced torque T can be adjusted by bending the wires 3 at a desired angle such that the tension force FT imparts a desired moment or torque. As explained below in Section III, many combinations of applied forces can be used for a patient's treatment plan based on the characteristics of the patient's malocclusion. Converting the tensile force FT to a torque T or moment can create different force profiles in the gum and bond structure. As shown in FIG. 1B, for example, the induced tensile and compressive regions TR, CR, may differ relative to those of FIG. 1A, which accordingly can create different movement of the tooth 10 as compared to FIG. 1A.
  • FIG. 1C is a graph that schematically illustrates the applied force FT over time for a conventional orthodontic treatment 15 as compared with a desired orthodontic treatment 17 that can be accomplished with embodiments disclosed herein. In conventional treatments 15, numerous adjustments of the braces are performed at multiple treatment appointments over the course of months and years. The repetitive adjustments for conventional treatments 15 create force spikes at a relatively high frequency, which increases the pain and discomfort for the patient. By contrast, improved orthodontic treatment 17 includes force spikes at a lower frequency and amplitude as compared with conventional treatments 15, which reduces patient pain and discomfort. Advantageously, as explained herein, the orthodontic devices disclosed herein can reduce the frequency of adjustments to the patient's braces so as to achieve force profiles similar to the desired treatment profile 17 shown in FIG. 1C and to thereby reduce patient pain and discomfort. In various clinical scenarios, the treated teeth can undergo multiple different treatment modes, such that the treated teeth can experience increasing and/or decreasing applied forces (whether linear forces or torques). For example, in some scenarios, the embodiments described herein can modify the expressed frictional forces so as to reduce the sliding forces. The treatment modalities can accordingly change over time based on the applied moments and biologic response of the teeth.
  • II. EXAMPLES OF ORTHODONTIC DEVICES
  • FIGS. 2A-12C illustrate examples of orthodontic devices 1, in accordance with various embodiments disclosed herein. The orthodontic devices 1 of FIGS. 2A-12C can include a bracket 2 configured to support an orthodontic wire 3 and a locking assembly 5 connected to the bracket 2. In each of the embodiments disclosed herein, the locking assembly 5 can be pre-assembled or connected to the bracket 2 by the manufacturer before being used by the clinician, in some embodiments. In other embodiments, the locking assembly 5 and bracket 2 can be provided separately in a kit to the clinician, and the clinician or staff can assembly or connect (e.g., couple) the locking assembly 5 to the bracket 2. The locking assembly 5 can be switchable between a plurality of operational modes. For example, the locking assembly 5 can include a first sliding mode in which the orthodontic wire 3 is laterally slidable relative to the bracket 2, and a second locked mode in which the orthodontic wire 3 is slidably locked relative to the bracket 2. The device 1 can also include a third open mode in which the wire 3 can be inserted into the bracket 2. In the first sliding mode, the locking assembly 5 can serve in passive or active ligation modes. In a passive ligation sliding mode, the locking assembly 5 may not contact (or may only minimally or incidentally contact) the wire 3, such that the wire 3 can laterally slide relative to the bracket 2 when the bracket 2 or the wire 3 are subjected to typical orthodontic forces. In an active ligation sliding mode, the locking assembly 5 may contact the wire 3 but may impart a frictional force to the wire 3 by way of an applied normal force. In the active sliding mode, the frictional force may be less than typical orthodontic forces imparted to the bracket 2 or the wire 3.
  • By contrast, in the second locked mode, the locking assembly 5 can be configured to apply locking forces (e.g., a normal force) against the wire 3 to prevent the wire 3 from laterally sliding relative to the bracket 2 when typical orthodontic forces are imparted to the bracket 2 or the wire 3. The use of multiple support modes can advantageously provide the clinician with more flexibility during treatment, which can improve patient outcomes and reduce treatment times. It should be appreciated herein that the locking and sliding modes can be selected independently by the clinician for a set of teeth. For example, the clinician can place one or more teeth in the first sliding mode, and one or more other teeth in the second locked mode. Over the course of treatment, the clinician can switch one or more teeth from the locked mode to the sliding mode, or from the sliding mode to the locked mode. In some procedures, one or more teeth may remain in the locked mode throughout the course of treatment. One or more teeth may remain in the sliding mode throughout the course of treatment. Beneficially, the clinician can independently select whether a tooth to be treated is to be placed in the locked mode or the sliding mode, and/or whether to switch modes during the course of treatment.
  • Thus, in various embodiments, the locking assembly 5 can serve as a fixation mechanism or braking assembly to apply a frictional force against a wire 3 during use in a patient. The frictional forces can comprise clamping or braking forces applied to the wire 3 to resist sliding movement of the wire 3 as explained herein. The locking assembly 5 can serve as a friction adjustment mechanism to adjust a frictional force against the orthodontic wire. The frictional adjustment mechanism can be adjustable to exert a range of sliding and non-sliding frictional forces against the orthodontic wire 3 in use. The locking assembly 5 can adjust the frictional force in a continuous manner or in a step-wise manner. In various embodiments, the applied frictional forces can permit sliding, or prevent sliding when the wire is subject to typical orthodontic forces.
  • A. Orthodontic Devices Having Locking Assemblies with Wedge Members
  • In various embodiments, the locking assembly 5 can include a wedge member 7 that engages with the bracket 2 to secure the wire 3 to the bracket 2 in a plurality of operational or support modes. FIGS. 2A-20 illustrate one embodiment of an orthodontic device 2 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2. The locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode. Although the locking assembly 5 includes the clip 5 in the illustrated embodiments, in some embodiments, there may be no clip. In such embodiments, ligaments or elastic bands can be used to retain the wire 3 in the bracket 2.
  • FIG. 2A is a schematic front, top, right side perspective view of the orthodontic device 1. FIG. 2B is a schematic rear, top, left perspective view of the device 1 of FIG. 2A. FIG. 2C is a schematic top plan view of the device 1 of FIGS. 2A-2B in a sliding support mode. FIG. 2D is a schematic top plan view of the device 1 of FIGS. 2A-2B in a locked support mode. FIG. 2E is a schematic front, top, right side perspective view of the wedge member 7 of FIGS. 2A-2D. FIG. 2F is a schematic rear, bottom, left side perspective view of the wedge member 7 of FIG. 2E. FIG. 2G is a schematic front, top, right side perspective view of the clip 6 of FIGS. 2A-2D. FIG. 2H is a schematic rear, bottom, left side perspective view of the clip 6 of FIG. 2G. FIG. 2I is a schematic front, top, left side perspective view of the bracket 2 of FIGS. 2A-2D. FIG. 2J is a schematic rear, right side perspective view of the bracket 2 of FIG. 2I. FIG. 2K is a schematic side sectional view of the orthodontic device 1 of FIGS. 2A-2D in the open support mode, taken along section A-A of FIGS. 2C-2D. FIG. 2L is a schematic side sectional view of the orthodontic device 1 of FIGS. 2A-2D in the sliding support mode, taken along section A-A of FIG. 2C. FIG. 2M is a magnified view of the device 1 shown in FIG. 2L. FIG. 2N is a schematic side sectional view of the orthodontic device 1 of FIGS. 2A-2D in the locked support mode, taken along section A-A of FIG. 2D. FIG. 2O is a magnified view of the device 1 shown in FIG. 2N.
  • As shown in FIGS. 2A-2D and 2K-20 , an orthodontic wire 3 can be inserted into a retention cavity 24 of the bracket 2. As explained above, the orthodontic wire 3 can comprise an archwire that provides a desired profile for the patient's maxillary or mandibular teeth to improve alignment of the patient's teeth. In various embodiments, the wire 3 can comprise a metal, such as stainless steel, a nickel titanium alloy, a copper titanium alloy, or any other suitable material. For example, in some embodiments, the wire 3 can comprise a shape memory alloy. In some embodiments, the wire 3 can comprise a pre-programmed wire that is shaped to have a desired curvature or shape based on the patient's malocclusion characteristics. In some embodiments, the wire 3 can comprise a straight wire. As explained below in Section III, the wire 3 can be shaped to include loops, kinks, bends, twists, inflections, or other shapes to apply suitable forces and/or torques to one or more teeth under treatment. Additionally or alternatively, the wire 3 can be pre-tensioned, pre-compressed, pre-bent, or otherwise biased in a desired mechanical configuration so as to provide adequate treatment for a patient's malocclusion. Any suitable elastic bands, springs, spacers, or other supplemental treatment devices can be used in conjunction with the devices 1 shown herein. Further, although one wire 3 is shown in the retention cavity 24 of the bracket 2 in FIGS. 2A-20 (and in other embodiments), it should be appreciated that more than one (e.g., two, three, etc.) may be provided in the retention cavity 24 in various arrangements (see, e.g., FIGS. 30-31 ). The wire 3 shown in FIGS. 2A-20 (and in other embodiments) is a rounded (e.g., elliptical or circular cross-section) wire, but in various arrangements, the wire 3 can comprise a polygonal (e.g., rectangular or square) wire.
  • The wire 3 can extend along a local lateral axis x of the device 1 as shown in FIGS. 2A-2D. The device 1 can have a left side 32 and a right side 33 opposite the left side 32 along the lateral axis x. In the sliding mode of the device 1, the wire 3 can slide laterally relative to the bracket 2 along the lateral axis x. In the locked or non-sliding mode of the device 1, the wire 3 is locked such that the wire 3 is prevented from sliding laterally relative to the bracket along the lateral axis x. In some embodiments, the locked mode of the device 1 locks six degrees-of-freedom (6-DOF) of the wire 3 relative to the bracket 2. In other embodiments, the locked mode locks less than 6-DOF. For example, as explained herein, the locked mode can lock the wire 3 in at least 1-DOF, such as a laterally sliding mode to prevent the wire 3 from sliding along the x axis. Additionally or alternatively, the locked mode can lock the wire 3 rotationally to prevent the wire 3 from rotating about its own axis (e.g., the lateral x-axis). In other embodiments, the locked mode can permit the wire 3 to rotate about the x-axis. Additionally or alternatively, the locked mode can also lock the wire 3 to prevent the wire 3 from translating vertically along the z-axis. Additionally or alternatively, the locked mode can also lock the wire 3 to prevent the wire 3 from translating transversely along the y-axis. Additionally or alternatively, the locked mode can lock the wire 3 to permit the wire 3 from locally rotating about the y- or z-axes at or near locations at which the locking assembly 5 contacts the wire 3.
  • As illustrated in FIGS. 2A-2D and 2K-20 , the clip 6 and wedge member 7 can be mechanically engaged with the bracket 2 crosswise or transverse (e.g., non-parallel to) the wire 3 and the lateral axis x along a local transverse axis y of the device 1. The device 1 can have a front side 30 and a rear side 31 opposite the front side 30 along the transverse axis y. The clip 6 and the wedge member 7 can be moved (e.g., translated) along the transverse axis y to switch between the open mode, the sliding mode, and the fixed mode. In the illustrated embodiment, the clip 6 and wedge member 7 can be moved transversely in a generally perpendicular direction relative to the lateral axis x such that the transverse axis y is generally perpendicular to the lateral axis x. In other embodiments, the transverse movement of the clip 6 and/or wedge member 7 may not be perpendicular relative to the lateral axis x, but may still be non-parallel or transverse relative to the wire 3 and lateral axis x. When the bracket 2 is attached to the tooth 10, the clip 6 and/or wedge member 7 can translate in the gingival-occlusal plane of the tooth 10.
  • The device 1 and its respective components can also include a top side 34 and a bottom side 35 opposite the top side 34 along a local vertical axis z of the device 1. During an orthodontic treatment procedure, a base 22 of the bracket 2 at the bottom side 35 of the device 1 can be affixed to the tooth 10 using, e.g., a cement or other adhesive. As explained above, the bracket 2 can be positioned on a buccal or labial surface, or on a lingual surface in various embodiments. In some embodiments, the device 1 can be affixed to the tooth 10 such that the front side 30 faces in a gingival direction (e.g., generally toward the gum tissue 12), and such that the rear side 31 faces in an occlusal or incisal direction (e.g., generally towards occlusal or incisal surfaces of the tooth 10). In other embodiments, the device 1 can be affixed to the tooth 10 such that the front side 30 faces in an occlusal or incisal direction, and such that the rear side 31 faces in a gingival direction.
  • Turning to FIGS. 2E-2F, the wedge member 7 can include a tapered wedge surface 36 angled vertically relative to the vertical axis z. As explained above, the wedge member 7 can serve as a locking member to lock the wire 3 relative to the bracket 2. In FIGS. 2E-2F, the wedge member 7 can be thicker at its front and rear ends than at a depressed surface 19 between the front and rear ends. The tapered wedge surface 36 can extend rearwardly from a second tooling aperture. The wedge member 7 can have a thickness varying along at least a portion of the length of the wedge member 7. The tapered wedge surface 36 of the wedge member 7 can be angled relative to a vertical axis that is orthogonal to the lateral axis and the transverse axis, the wedge member 7 having a thickness in the direction of the vertical axis and a length in the direction of the transverse axis, the thickness varying along at least a portion of the length of the wedge member 7. In the illustrated embodiment, the wedge surface 36 is tapered downwardly and rearwardly, but in other embodiments, the wedge surface can be tapered downwardly and forwardly. The depressed surface 19 may be disposed rearward of the wedge surface 36. The portion of the wedge member 7 at the depressed surface 19 can be thinner than the portion of the wedge member 7 at the wedge surface 36. The wedge member 7 can include a raised rear portion 39 having a first tooling aperture 9 extending vertically therethrough along the vertical axis z. The clinician can use a suitable tool to engage with the first tooling aperture 9 (for example by inserting the tool into the aperture 9) to switch the device 1 from one support mode to another. The wedge member 7 can include a front stop portion 37 and the second tooling aperture 38 near the front stop portion 37. As explained herein, the front stop portion 37 can engage with a corresponding shoulder 18 of the bracket 2 (see FIG. 2I). The clinician can use a suitable tool to engage with the second tooling aperture 38 (for example by inserting the tool into the aperture 38) to switch the device 1 from one support mode to another. The wedge member 7 can comprise any suitable type of material, such as a metal, a plastic, etc. The wedge member 7 can be sufficiently stiff so as to impart significant forces against the wire 3 when the device 1 is in the locked mode.
  • As shown in FIGS. 2F and 2G, the clip 6 can include an upper portion 40 and a lower portion 41 spaced apart from the upper portion 40 along the vertical axis z. A vertically extending connection portion 43 can connect the upper and lower portions 41, 42. The upper portion 40 can include a pair of upper arms 42 a laterally spaced apart along the lateral axis x by an upper gap 44. The lower portion 41 can include a pair of lower arms 42 b laterally spaced apart along the lateral axis x by a lower gap 45. The clip 6 can include a clip cavity 46 disposed between the upper and lower portions 40, 41. The clip 6 can comprise any suitable type of material, such as a metal. The clip 6 can be sufficiently stiff so as to impart significant forces against the wire 3 when the device 1 is in the locked mode.
  • As shown in FIGS. 2I-2J, the bracket 2 can include a support portion 29 extending from the base 22. The support portion 29 can be sized and shaped to receive and support the wire 3, the wedge member 7, and the clip 6. As shown in FIGS. 2I-2J, a lower recess 28 can be formed in the bracket 22 to vertically separate portions of the support portion 29 from the base 22. The lower recess 28 can be angled or curved so as to be partially revolved around the vertical axis z to form a gap between the support portion 29 and the base 22. The shoulder 18 can define an inner surface of the lower recess 28. The retention cavity 24 can be defined in the support portion 29 at least in part by a front wall 23 a, a rear wall 23 b spaced apart from the front wall 23 a along the transverse axis y, and a retention surface 26 disposed transversely relative to the front and rear walls 23 a, 23 b. The retention cavity 24 can extend completely through the support portion 29 along the lateral axis x in the illustrated embodiment.
  • The support portion 29 can include one or more front hooks 8 a and one or more rear hooks 8 b. The front hooks 8 a can be disposed at the front side 30 of the device 1. The rear hooks 8 b can be disposed at the rear side 31 of the device 1. In FIGS. 2A-2D and 2I-2J, a pair of front hooks 8 a can be spaced apart by a front spacing 21, and a pair of rear hooks 8 b can be spaced apart by a rear spacing 20. In some embodiments, ligatures (e.g., elastic bands or steel ligatures) can be stretched around the hooks 8 a-8 b to retain the wire 3 in the retention cavity 24. In other embodiments, no ligatures may be used, and the clip 6 may serve to retain the wire 3 in the retention cavity 24.
  • The support portion 29 can also include upper recesses 27 a, 27 b. The upper recesses 27 a, 27 b can be laterally spaced apart from one another by the rear wall 23 b along the lateral direction x. The upper recesses 27 a, 27 b can extend rearward into the support portion 29 relative to the rear wall 23 b along the transverse axis y. A transverse cavity 25 can extend transversely through the support portion 29 along the transverse axis y. The transverse cavity 25 can extend transversely (e.g., non-parallel) relative to the retention cavity 24. In the illustrated embodiment, the retention surface 26 may also serve as a floor or bottom surface of the transverse cavity 25. As shown in FIGS. 2I-2J, the transverse cavity 25 can be positioned vertically along the z-axis between the lower recess 28 and the upper recesses 27 a, 27 b. In the illustrated embodiment, the transverse cavity 25 extends completely through the support portion 29 along the transverse axis y. In other embodiments, the transverse cavity 25 may extend only partially through the support portion 29 along the transverse axis y.
  • When assembled, as shown in FIGS. 2A-2D, the wedge member 7 can extend transversely through the transverse recess 25 of the bracket 2, with the rear raised portion 39 disposed at the rear side 31 of the device 1. The upper arms 42 a of the clip 6 can be inserted into the upper recesses 27 a, 27 b of the bracket 2. The lower arms 42 b of the clip 6 can be inserted into the lower recess 28 of the bracket 2. The vertically extending connection portion 43 of the clip 6 can be positioned in or near the front spacing 21 of the bracket 2. Thus, in FIGS. 2A-2D, the wire 3, the wedge member 7, the front wall 23 a, and the retention surface 26 of the bracket 2 can be disposed in the clip cavity 46 vertically between the upper and lower portions 40, 41 of the clip 6. In the illustrated embodiment, moreover, the wedge member 7 can be positioned vertically between the wire 3 and the retention surface 26 of the bracket 2. In other embodiments, however, the wire 3 can be positioned vertically between the wedge member 7 and the retention surface 26.
  • Turning to the operation of the device 1, the clinician can load or insert the wire 3 by placing the device 1 in the open mode, as shown in FIG. 2K. The wire 3 can be placed in the retention cavity 24 and onto the retention surface 26 of the bracket 2. In the open mode of FIG. 2K, the clip 6 is translated to a forward or front position along the transverse axis y such that the upper arms 42 a expose the retention cavity 24. The wedge member 7 is also translated to, or kept in, a forward or front position along the transverse axis y such that the clinician can access the second tooling aperture 38 and such that the front stop portion 37 is positioned forward of the shoulder 18. In the open mode, the wire 3 may be supported only by the retention cavity 24, e.g., by the retention surface 26 and the front and rear walls 23 a, 23 b of the bracket 2. In some embodiments, ligaments can be stretched over the hooks 8 a, 8 b to retain the wire 3 in the cavity 24, and the clip may be omitted.
  • Turning to FIGS. 2L and 2M, the device 1 is illustrated in a sliding mode. The clinician can move the device 1 from the open mode to the sliding mode by translating the clip 6 rearwardly along the transverse axis y into a rear position such that the upper arms 42 a are disposed over the wire 3 in the retention cavity 24 and into the upper recesses 27 a, 27 b, and such that the lower arms 42 b are disposed in the lower recess 28. In the sliding mode, the upper arms 42 a of the clip can retain the wire 3 in the retention cavity 24, e.g., to prevent the wire 3 from moving vertically along the z-axis out of the cavity 24. The wedge member 7 may be kept in, or switched to, the forward position such that the wedge surface 36 does not impart forces on the wire 3. For example, as shown in FIG. 2M, a space 47 may be provided between the wire 3 and the depressed surface 19 of the wedge member 7 such that the wedge surface 36 does not impart forces on the wire 3. In the sliding mode, the upper arms 42 a may or may not contact the wire 3, such that the upper arms 42 a provide active or passive ligation support. In the sliding mode of FIGS. 2L and 2M, the wire 3 can laterally slide along the lateral axis x. In an active sliding mode, frictional forces may be applied to the wire 3 at magnitudes less than typical orthodontic forces to provide sliding resistance but not at magnitudes sufficient to prevent or lock sliding. In a passive sliding mode, the wire can slide relatively freely relative to the bracket 2.
  • If the clinician wishes to place the device 1 in the locked or non-sliding mode, a tool can be used to engage the second tooling aperture 38 to translate the wedge member 7 rearwardly along the transverse axis y to a rear position, as shown in FIGS. 2N and 20 . The clip 6 can be kept in, or translated to, the rear position shown in FIG. 2L. If the clinician wishes to switch the device 1 to the sliding mode from the locked mode, the clinician can engage the first tooling aperture 9 to translate the wedge member 7 to the forward position. The clinician can further switch the device 1 to the open mode by keeping the wedge member 7 in the forward position and translating the clip 6 to the forward position. In some embodiments, movement of the wedge member 7 along the transverse axis is not configured to cause movement of the clip 6 along the transverse axis, and movement of the clip 6 along the transverse axis is not configured to cause movement of the wedge member 7 along the transverse axis
  • In the locked or non-sliding mode of FIGS. 2N and 20 , the wedge member 7 can accordingly be moved sufficiently rearwardly such that the tapered wedge surface 36 contacts and expresses a locking force against the wire 3. In some embodiments, the tapered wedge surface 36 may have a curvature complementary to the curvature of the wire 3. The front stop portion 37 can engage the shoulder 18 to prevent the wedge member 7 from being removed entirely from the transverse recess 25. As shown in FIGS. 2N and 20 , the tapered wedge surface 36 of the wedge member 7 and the upper arms 42 a of the clip 6 can mechanically cooperate to clamp the wire 3 therebetween. The wedge surface 36 can be shaped such that when the wedge member 7 is in the rear position, the wedge surface 36 and clip 6 exert a sufficiently strong force against the wire such that typical orthodontic forces do not impart sliding translation to the wire 3 relative to the bracket 2.
  • In various embodiments, for example, the locking assembly 5 (e.g., the wedge member 7 and the clip 6) in the locking or non-sliding mode can exert a frictional force against the wire 3 that is at least 50 cN, at least 75 cN, at least 100 cN, at least 150 cN, at least 200 cN, at least 250 cN, at least 300 cN, at least 350 cN, at least 500 cN, or at least 1000 cN. The locking assembly 5 can exert a frictional force against the wire that is in a range of 50 cN to 800 cN, in a range of 50 cN to 200 cN, in a range of 50 cN to 100 cN, in a range of 50 cN to 2000 cN, in a range of 50 cN to 1000 cN, in a range of 75 cN to 2000 cN, in a range of 75 cN to 1000 cN, in a range of 100 cN to 750 cN, in a range of 100 cN to 700 cN, in a range of 100 cN to 600 cN, in a range of 300 cN to 2000 cN, in a range of 350 cN to 2000 cN, or in a range of 500 cN to 2000 cN. In various embodiments, in the locking mode, the locking or frictional forces may be sufficiently high so as to indent or otherwise locally deform the wire.
  • In the sliding mode, the locking assembly 5 can exert a frictional force against the wire 3 that is less than the frictional force exerted in the locked mode. For example, in various embodiments, in the sliding mode, the locking assembly 5 can exert a frictional force of less than 50 cN, or less than 100 cN against the wire. In various embodiments, in the sliding mode, the locking assembly 5 can exert a frictional force against the wire in a range of 0 cN to 100 cN, in a range of 0 cN to 75 cN, or in a range of 0 cN to 50 cN. In various embodiments, the locking assembly 5 in the sliding mode can impart a frictional force against the wire 3 that is less than 90% of the frictional force imparted against the wire 3 in the locked mode, less than 80% of the frictional force imparted against the wire 3 in the locked mode, less than 70% of the frictional force imparted against the wire 3 in the locked mode, less than 60% of the frictional force imparted against the wire 3 in the locked mode, or less than 50% of the frictional force imparted against the wire 3 in the locked mode, In some embodiments, the frictional force imparted against the wire 3 in the sliding mode is in a range of 0% to 80% of the frictional force imparted against the wire in the locked mode, in a range of 0% to 50% of the frictional force imparted against the wire in the locked mode, or in a range of 25% to 80% of the frictional force imparted against the wire in the locked mode.
  • Accordingly, in various embodiments, the locking assembly 5 can be movable from a first configuration that allows sliding of the orthodontic wire 3 relative to the bracket 2 (e.g., a first sliding mode) to a second configuration that prevents sliding of the orthodontic wire 3 relative to the bracket 2 when the orthodontic wire 3 is subject to typical orthodontic forces during use of the orthodontic device (e.g., a second locked mode). In the second configuration (or the second locked mode), the wire 3 can be locked or non-sliding so as to substantially prevent sliding of the wire 3 relative to the bracket 2. For example, the second configuration or locked (e.g., non-sliding) mode can permit less sliding of the wire 3 than the amount of sliding permitted by typical active self-ligating orthodontic devices. Thus, the locked mode or configuration may permit a very small amount of sliding (e.g., less than 1 mm, less than 0.5 mm, or less than 0.1 mm) that is less than the amount of sliding permitted by conventional active orthodontic devices. Further, it should be appreciated that the sliding and locked modes described herein may be operated along a continuum such that the locking assembly 5 can be placed in multiple positions to enable sliding and/or locking. In some embodiments, therefore, the clinician can adjust the locking assembly 5 along a continuum of positions to express a range of frictional forces against the wire 3 in the sliding mode. Similarly, in some embodiments, multiple positions of the locking assembly 5 can serve to lock the wire 3 in the locked mode. Accordingly, the locking assembly 5 can be configured to apply a continuously variable frictional force to the wire 3. The continuously variable frictional force can be applied to move the wire 3 between the sliding and locked (e.g., non-sliding) configurations. The locking assembly 5 can apply continuously variable frictional forces within the sliding and/or locked modes. In other embodiments, however, the sliding and locked modes can comprise a discrete number of modes, as opposed to a continuum of modes. For example, the locking assembly 5 can be configured to adjust a frictional force to the wire 3 in a step-wise manner. The locking assembly 5 can be configured to move between the sliding and locked configurations in a step-wise manner.
  • It should be appreciated that, although the transverse recess 25 extends from the rear side 31 of the device 1 through the bracket 2 with the wedge member 7 disposed in the transverse recess 25 in the illustrated embodiment, in other embodiments, the wedge member can extend through an aperture at the front side 30 of the device 1, e.g., through an aperture in the clip 6. Further, although the wedge member 7 is shown as being disposed between the wire 3 and the retention surface 26, in other embodiments, the wedge member 7 can be disposed between the wire 3 and the clip 6 so as to press the wire 3 against the retention surface 26.
  • FIGS. 3A-3E illustrate an orthodontic device 1 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2, according to another embodiment. Unless otherwise noted, the components of FIGS. 3A-3E may be the same as or generally similar to like-numbered components of FIGS. 1A-20 , and may function or operate in a generally similar manner. For example, as with FIGS. 2A-20 , the locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode. In particular, FIG. 3A is a front, top, right side perspective view of the orthodontic device 1 in a sliding mode. FIG. 3B is a front, top, right side perspective view of the orthodontic device 1 of FIG. 3A in an open mode. FIG. 3C is a schematic side sectional view of the orthodontic device 1 of FIG. 3B in the open mode. FIG. 3D is a schematic side sectional view of the orthodontic device 1 of FIG. 3A in the sliding mode. FIG. 3E is a schematic side sectional view of the orthodontic device 1 of FIGS. 3A-3B in a locked mode.
  • The device 1 and its components can be combined with any suitable features of the embodiment of FIGS. 2A-20 , and may be positioned on any suitable surface of the tooth 10 to be treated (for example, a lingual surface, or a buccal or labial surface). The device 1 may also be oriented relative to the tooth 10 in any suitable manner (for example, with the front side facing gingivally or occlusally). Unlike the embodiment of FIGS. 2A-20 , however, the wedge member 7 can cooperate with a clamping surface 48 exposed to the retention cavity 24 of the bracket 2 to lock the wire 3 in the locked mode. Further, unlike the embodiment of FIGS. 2A-20 , the tapered wedge surface 36 can be disposed at a front end of the wedge member 7. As shown, for example, the wedge surface 36 can be angled downwardly and forwardly, rather than downwardly and rearwardly. The wedge surface 36 can accordingly comprise a ramped or tapered surface that can press against the wire 3 when in the locked mode.
  • As shown in FIG. 3C, in the open mode, the clip 6 can be moved or kept in a forward or front position to expose the retention cavity 24. The wedge member 7 can be moved or kept in a rear position. The wire 3 can be inserted into the retention cavity 24. In FIG. 3D, the clip 6 can be moved to a rear position to place the device 1 in a sliding mode. As shown, the wedge member 7 may remain in the rear position. Turning to FIG. 3E, the device 1 can be moved to the locked mode by translating the wedge member 7 forward to a front position such that the tapered wedge surface 36 can press the wire 3 against the clamping surface 48 of the bracket 2. In some embodiments, the clamping surface 48 can have a curvature complementary to that of the wire 3. In some embodiments, the tapered wedge surface 36 may also have a curvature complementary to the curvature of the wire 3. In the locked mode, the wedge surface 36 may be disposed vertically between the wire and the retention surface of the bracket 2.
  • As with the embodiment of FIGS. 2A-20 , the locking assembly 5 of FIGS. 3A-3E in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces. In various embodiments, for example, the locking assembly 5 can exert frictional forces in the locked and sliding modes in a manner and with relative magnitudes as described above in connection with FIGS. 2A-20 .
  • FIGS. 4A-4D illustrate an orthodontic device 1 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2, according to another embodiment. Unless otherwise noted, the components of FIGS. 4A-4D may be the same as or generally similar to like-numbered components of FIGS. 1A-3E, and may function or operate in a generally similar manner. For example, as with FIGS. 2A-3E, the locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode. In particular, FIG. 4A is a front, top, right side perspective view of the orthodontic device 1. FIG. 4B is a schematic side sectional view of the orthodontic device 1 of FIG. 4A in an open mode. FIG. 4C is a schematic side sectional view of the orthodontic device 1 of FIG. 4A in a sliding mode. FIG. 4D is a schematic side sectional view of the orthodontic device 1 of FIG. 4A in a locked mode.
  • The device 1 of FIGS. 4A-4D and its components can be combined with any suitable features of the embodiments of FIGS. 2A-3E, and may be positioned on any suitable surface of the tooth 10 to be treated (for example, a lingual surface, or a buccal or labial surface). The device 1 may also be oriented relative to the tooth 10 in any suitable manner (for example, with the front side facing gingivally or occlusally). Unlike the embodiments of FIGS. 2A-3E, however, the wedge member 7 can cooperate with a clamping surface that comprises the retention surface 26 at the floor of the retention cavity 24 of the bracket 2 to lock the wire 3 in the locked mode. The wedge member 7 can be positioned vertically above the wire 3 such that, in a locked mode, the wire 3 can be disposed between the wedge member 7 and the retention surface 26 of the bracket 2. In the locked mode, the wedge member 7 can be positioned vertically between the clip 6 and the wire 3. Further, unlike the embodiment of FIGS. 3A-3D, the wedge surface 36 can be disposed at a middle portion of the wedge member 7, rather than at a front end. Moreover, the wedge surface 36 that contacts the wire 3 in the locked mode may or may not be tapered or angled. In some embodiments, the wedge surface 36 can be generally planar along the transverse axis y. In addition, the wedge member 7 can include a tapered front surface 49 at a front end of the wedge member 7. The tapered front surface 49 can be generally angled or tapered downwardly and rearwardly from the front end of the wedge member 7 along a lower surface of the wedge member 7.
  • As shown in FIG. 4B, in the open mode, the clip 6 can be moved or kept in a forward or front position to expose the retention cavity 24. The wedge member 7 can be moved or kept in a rear position. The wire 3 can be inserted into the retention cavity 24 and onto the retention surface 26. In FIG. 4C, the clip 6 can be moved to a rear position, and the wedge member 7 can be moved to a first forward or front position to place the device 1 in a sliding mode. As shown, in the first forward position, the tapered front surface 49 of the wedge member 7 can mate or engage with the front wall 23 a of the bracket 2 in the sliding mode. In the sliding mode, the tapered front surface 49 may provide a clearance or gap between the wedge member 7 and the wire 3 to permit passive or active ligation in the sliding mode. In the sliding mode, the clamping surface 36 may not be exposed to the retention cavity 24 but may instead remain in the transverse cavity 25. Turning to FIG. 4D, the device 1 can be moved to the locked mode by translating the wedge member 7 forward to a second forward or front position that is forward of the first front position. In the second forward position of the locked mode, the wedge surface 36, which can project or extend downwardly relative to the tapered front surface 49, can press the wire 3 against the retention surface 26 of the bracket 2.
  • As with the embodiment of FIGS. 2A-3E, the locking assembly 5 of FIGS. 4A-4D in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces. In various embodiments, for example, the locking assembly 5 of FIGS. 4A-4D can exert frictional forces in the locked and sliding modes in a manner and with relative magnitudes as described above in connection with FIGS. 2A-20 .
  • FIGS. 5A-5D illustrate an orthodontic device 1 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2, according to another embodiment. Unless otherwise noted, the components of FIGS. 5A-5D may be the same as or generally similar to like-numbered components of FIGS. 1A-4D, and may function or operate in a generally similar manner. For example, as with FIGS. 2A-4D, the locking assembly 5 can include a clip 6 and wedge member 7 that cooperate with one another and with the bracket 2 to provide an open mode, a sliding support mode, and a locked support mode. In particular, FIG. 5A is a front, top, right side perspective view of the orthodontic device 1. FIG. 5B is a schematic side sectional view of the orthodontic device 1 of FIG. 5A in an open mode. FIG. 5C is a schematic side sectional view of the orthodontic device 1 of FIG. 5A in a sliding mode. FIG. 5D is a schematic side sectional view of the orthodontic device 1 of FIG. 5A in a locked mode.
  • The device 1 of FIGS. 5A-5D and its components can be combined with any suitable features of the embodiments of FIGS. 2A-4D, and may be positioned on any suitable surface of the tooth 10 to be treated (for example, a lingual surface, or a buccal or labial surface). The device 1 may also be oriented relative to the tooth 10 in any suitable manner (for example, with the front side facing gingivally or occlusally). As with the embodiment of FIGS. 4A-4D, the wedge member 7 can cooperate with a clamping surface that comprises the retention surface 26 at the floor of the retention cavity 24 of the bracket 2 to lock the wire 3 in the locked mode. The wedge member 7 can be positioned vertically above the wire 3 such that, in a locked mode, the wire 3 can be disposed between the wedge member 7 and the retention surface 26 of the bracket 2. Further, as with the embodiment of FIGS. 4A-4D, the wedge surface 36 can be disposed at a middle portion of the wedge member 7, rather than at a front end. Moreover, the wedge surface 36 that contacts the wire 3 in the locked mode may or may not be tapered or angled. In some embodiments, the wedge surface 36 can be generally planar along the transverse axis y. Unlike the embodiment of FIGS. 4A-4D, however, the wedge member 7 be inserted through a transverse cavity 25 that extends rearwardly at least partially through the clip 6 and at least partially through a portion of the bracket 2. In some embodiments, the transverse cavity 25 extends entirely through both the bracket 2 and the clip 6. In other embodiments, the transverse cavity 25 extends only partially through one or both the bracket 2 and the clip 6. In addition, the wedge member 7 can include a tapered rear surface 49′ at a rear end of the wedge member 7. The tapered rear surface 49′ can be generally angled or tapered upwardly and rearwardly from the front end of the wedge member 7 along a lower surface of the wedge member 7.
  • As shown in FIG. 5B, in the open mode, the clip 6 and the wedge member 7 can be moved or kept in a forward or front position to expose the retention cavity 24. The wire 3 can be inserted into the retention cavity 24 and onto the retention surface 26. In FIG. 5C, the clip 6 can be moved to a rear position, and the wedge member 7 can be moved to a first rear position to place the device 1 in a sliding mode. As shown, in the first rear position, the tapered rear surface 49′ of the wedge member 7 can mate or engage with the rear wall 23 b of the bracket 2 in the sliding mode, and can partially extend into a portion of the transverse cavity 25 formed through the rear wall 23 b. In the sliding mode, the tapered rear surface 49′ may provide a clearance or gap between the wedge member 7 and the wire 3 to permit passive or active ligation in the sliding mode. In the sliding mode, the clamping surface 36 may not be exposed to the retention cavity 24 but may instead remain in the transverse cavity 25. Turning to FIG. 5D, the device 1 can be moved to the locked mode by translating the wedge member 7 rearward to a second rear position that is rearward of the first rear position. In the second rear position of the locked mode, the wedge surface 36, which can project or extend downwardly relative to the tapered rear surface 49′, can press the wire 3 against the retention surface 26 of the bracket 2.
  • As with the embodiment of FIGS. 2A-4D, the locking assembly 5 of FIGS. 5A-5D in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces. In various embodiments, for example, the locking assembly 5 of FIGS. 5A-5D can exert frictional forces in the locked and sliding modes in a manner and with relative magnitudes as described above in connection with FIGS. 2A-20 .
  • B. Orthodontic Devices Having Locking Assemblies with Rotary Members
  • FIGS. 6A-6E illustrate one embodiment of an orthodontic device 2 that includes a bracket 2 and a locking assembly 5 mechanically connected to the bracket 2. In some embodiments, the locking assembly 5 can include a rotary member 50 instead of a wedge member that engages with the bracket 2 to secure the wire 3 to the bracket 2 in a plurality of operational or support modes. The rotary member 50 can cooperate with the bracket 2 to provide an open operational mode, a sliding operational mode, and a locked operational mode. In the illustrated embodiment, the clip 6 of FIGS. 2A-5D may be omitted, which can simplify manufacturing and installation of the device 1.
  • FIG. 6A is a schematic front, top, right side perspective view of the orthodontic device 1 with rotary member 50 in an open mode, according to one embodiment. FIG. 6B is a top plan view of the orthodontic device 1 of FIG. 6B. FIG. 6C is a schematic side sectional view of the orthodontic device 1 of FIG. 6A, shown in the open mode. FIG. 6D is a schematic side sectional view of the orthodontic device 1 of FIG. 6A, shown in a sliding mode. FIG. 6E is a schematic side sectional view of the orthodontic device 1 of FIG. 6A, shown in a locked mode. Unless otherwise noted, components of FIGS. 6A-6E may be the same as or generally similar to like-numbered components of FIGS. 1A-5D, and may function or operate in a generally similar manner.
  • As shown in FIG. 6A-6E, the rotary member 50 can be disposed in an interior cavity 56 of the bracket 2. The bracket 2 can comprise a base 2 and a support portion 29 extending from the base 22. The interior cavity 56 can be disposed in the support portion 29. In other embodiments, the rotary member 50 can be disposed over an outside surface of the bracket 2. The rotary member 50 can include a wire receiving aperture 51 sized and shaped to receive the wire 3. The rotary member 50 can comprise a generally C-shaped structure having opposing truncated end surfaces 57 a, 57 b. The wire receiving aperture 51 can be disposed circumferentially between the truncated end surfaces 57 a, 57 b. In the illustrated embodiment, the wire 3 is a polygonal (e.g., rectangular) wire, but in other embodiments, the wire 3 can comprise a rounded (e.g., circular or elliptical) wire. The rotary member 50 can comprise an outer curved bearing surface 53 (which can delimit the C-shaped structure of the rotary member 50) and an inner curved cam surface 54. The outer curved bearing surface 56 can be nested within and/or face an opposing follower surface 52 of the bracket 2. The curved follower surface 52 can be exposed to the interior cavity 56 of the bracket 2. As shown, the curvature of the outer bearing surface 53 may be complementary to the curvature of the follower surface 52 to provide smooth rotational engagement between the bearing surface 53 and the follower surface 52.
  • The rotary member 50 can mechanically and rotationally couple to the bracket 2 in any suitable manner. For example, in some embodiments, a pin can be provided to rotationally connect the bracket 2 with the rotary member 50. In other embodiments, the bracket 2 can comprise a track circumferentially along the follower surface 52, and a corresponding ridge circumferentially along the bearing surface 53 that fits within the track (or vice versa). In still other embodiments, a projection on one of the bracket 2 and the rotary member 50 can extend laterally along the x-axis into a circumferential groove in the other of the bracket 2 and the rotary member 50 to rotatably connect the rotary member 50 with the bracket 2.
  • As shown in FIGS. 6A-6C, in the open mode, the rotary member 50 can be oriented such that the wire receiving aperture 51 is aligned with the retention cavity 24 of the bracket 2. The truncated end surfaces 57 a, 57 b can be aligned with neighboring upper walls 58 a, 58 b of the bracket 2 that are spaced apart along the transverse axis y to provide access to the retention cavity 24 of the bracket 2. The wire 3 can be inserted into the wire receiving aperture 51 of the rotary member 50 and the retention cavity 24 of the bracket 2. As shown in FIG. 6C, the wire 3 can be supported by the retention surface 26 in the open mode of the device 1. In some embodiments, the interior cam surface 54 may be spaced from the wire 3 in the open mode.
  • As shown in FIGS. 6C-6E, the interior cam surface 54 can include a plurality of connected component surfaces 54 a-54 d that are angled relative to one another. The component surfaces 54 a-54 d may be shaped to have similar or different surface profiles. The surface profiles of the component surfaces 54 a-54 d and relative angles between the component surfaces 54 a-54 d can be selected to provide sliding and locked modes in cooperation with the bracket 2. In the embodiment shown in FIGS. 6C-6E, the first, second, and third component surfaces 54 a-54 c can have generally planar surface profiles. The fourth component surface 54 d can have a rounded or curved profile. In other embodiments, the component surfaces 54 a-54 d can have profiles different from those shown in FIGS. 6C-6E. Moreover, although four component surfaces 54 a-54 d are shown in FIGS. 6C-6E, in other embodiments, the interior cam surface 54 can include fewer than four or more than four component surfaces.
  • The clinician can switch the device 1 to the sliding mode by using a tool to engage the outer bearing surface 53 of the rotary member 50 through a transverse cavity 25 that is disposed transverse to the retention cavity 24 and that extends to the interior cavity 56. As shown in FIG. 6D, the rotary member 50 can be rotated about the lateral axis x in a rotational direction R (clockwise about the −x axis) relative to the bracket 2 to a first rotational position that corresponds to the sliding mode. In the sliding mode, the wire 3 can contact a portion of the third component surface 54 c in some embodiments. In other embodiments, a gap or space can be provided between the cam surface 54 and the wire 3 in the sliding mode. If the cam surface 54 contacts the wire 3 in the sliding mode for providing active ligation, the contacted portion of the third component surface 54 c may exert a force against the wire 3 that is sufficiently small so as to enable the wire 3 to slide along the lateral axis x relative to the bracket 2. For example, in the arrangement of FIG. 6D, a corner portion of the wire 3 can contact the third component surface 54. The relatively small contact area between the corner portion and the third component surface 54 may provide some frictional resistance but at forces sufficiently small so as to enable the wire 3 to slide relative to the bracket 3 when subjected to typical orthodontic forces.
  • In various embodiments, the clinician can determine that the rotary member 50 is in the sliding mode based on tactile feedback when the corner portion of the wire 3 contacts the interior cam surface 54. In other embodiments, such as the embodiments of FIGS. 6I-N, the rotary member 50 or the bracket 2 can include mechanical detents or other mechanisms by which the device 1 can be placed in the sliding mode.
  • Turning to FIG. 6E, the clinician can switch the device 1 into the locked or non-sliding mode by further rotating the rotary member 50 relative to the bracket 2 in the rotational direction R about the lateral axis x to a second rotational position that corresponds to the locked mode. In the locked mode, a larger surface area of the wire 3 contacts the third component surface 54 c so as to provide significantly increased locking forces as compared with the sliding mode. For example, as shown in FIG. 6D, most or all of a side of the wire 3 can contact the third component surface 54 c with a force sufficient to prevent the wire 3 from sliding laterally along the x-axis relative to the bracket 2. Thus, the interior cam surface 54 (and its respective component surfaces 54 a-54 d) can be selectively formed so as to clamp the wire 3 against the retention surface 26 with sufficient force so as to prevent sliding in the locked mode.
  • In various embodiments, the clinician can determine that the rotary member 50 is in the locked or non-sliding mode based on tactile feedback when the increased surface area of wire 3 contacts the interior cam surface 54. In other embodiments, the rotary member 50 or the bracket 2 can include mechanical detents or other mechanisms by which the device 1 can be placed in the locked mode. In the illustrated embodiment, the rotary member 50 is rotated about the lateral x-axis in the same direction R in two stages. In other embodiments, the rotary member 50 can be bi-directional such that the rotary member 50 can be rotated in opposite directions about the x-axis to move from the open mode to the sliding mode, and from the open mode to the locked mode. For example, in some embodiments, the rotary member 50 can be rotated about a first rotational direction to switch from the open mode to the sliding mode. The rotary member 50 can be rotated about a second rotational direction opposite the first direction to switch from open mode to the locked mode (or from the sliding mode to the locked mode). Still other arrangements may be suitable.
  • As with the embodiment of FIGS. 2A-5D, the locking assembly 5 with rotary member 50 of FIGS. 6A-6E in the locked or non-sliding mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces. For example, in the locked or non-sliding mode, the locking assembly 5 can apply forces that are sufficiently large so as to deform the wire 3. Deformation of the wire 3 by the locking assembly 5 can improve the locking of the wire 3 in the locked mode. Furthermore, the locking forces can move or rotate the wire 3 to assist in locking the wire 3 in the locking mode. In various embodiments, for example, the locking assembly 5 in the locking or non-sliding mode can exert a frictional force against the wire 3 that is at least 50 cN, at least 75 cN, at least 100 cN, at least 150 cN, at least 200 cN, at least 250 cN, at least 300 cN, at least 350 cN, at least 500 cN, or at least 1000 cN. The locking assembly 5 can exert a frictional force against the wire that is in a range of 50 cN to 800 cN, in a range of 50 cN to 200 cN, in a range of 50 cN to 100 cN, in a range of 50 cN to 2000 cN, in a range of 50 cN to 1000 cN, in a range of 75 cN to 2000 cN, in a range of 75 cN to 1000 cN, in a range of 100 cN to 750 cN, in a range of 100 cN to 700 cN, in a range of 100 cN to 600 cN, in a range of 300 cN to 2000 cN, in a range of 350 cN to 2000 cN, or in a range of 500 cN to 2000 cN. In various embodiments, in the locking or non-sliding mode, the locking or frictional forces may be sufficiently high so as to indent or otherwise locally deform the wire.
  • In the sliding mode, the locking assembly 5 can exert a frictional force against the wire 3 that is less than the frictional force exerted in the locked mode. For example, in various embodiments, in the sliding mode, the locking assembly 5 can exert a frictional force of less than 50 cN, or less than 100 cN against the wire. In various embodiments, in the sliding mode, the locking assembly 5 can exert a frictional force against the wire in a range of 0 cN to 100 cN, in a range of 0 cN to 75 cN, or in a range of 0 cN to 50 cN. In various embodiments, the locking assembly 5 in the sliding mode can impart a frictional force against the wire 3 that is less than 90% of the frictional force imparted against the wire 3 in the locked mode, less than 80% of the frictional force imparted against the wire 3 in the locked mode, less than 70% of the frictional force imparted against the wire 3 in the locked mode, less than 60% of the frictional force imparted against the wire 3 in the locked mode, or less than 50% of the frictional force imparted against the wire 3 in the locked mode, In some embodiments, the frictional force imparted against the wire 3 in the sliding mode is in a range of 0% to 80% of the frictional force imparted against the wire in the locked mode, in a range of 0% to 50% of the frictional force imparted against the wire in the locked mode, or in a range of 25% to 80% of the frictional force imparted against the wire in the locked mode.
  • Accordingly, in various embodiments, the locking assembly 5 can be movable from a first configuration that allows sliding of the orthodontic wire 3 relative to the bracket 2 (e.g., a first sliding mode) to a second configuration that prevents sliding of the orthodontic wire 3 relative to the bracket 2 when the orthodontic wire 3 is subject to typical orthodontic forces during use of the orthodontic device (e.g., a second locked mode). In the second configuration (or the second locked or non-sliding mode), the wire 3 can be locked so as to substantially prevent sliding of the wire 3 relative to the bracket 2. For example, the second configuration or locked mode can permit less sliding of the wire 3 than the amount of sliding permitted by typical active self-ligating orthodontic devices. Thus, the locked or non-sliding mode or configuration may permit a very small amount of sliding (e.g., less than 1 mm, less than 0.5 mm, or less than 0.1 mm) that is less than the amount of sliding permitted by conventional active orthodontic devices. Further, it should be appreciated that the sliding and locked (e.g., non-sliding) modes described herein may be operated along a continuum such that the locking assembly 5 can be placed in multiple positions to enable sliding and/or locking. In some embodiments, therefore, the clinician can adjust the locking assembly 5 along a continuum of positions to express a range of frictional forces against the wire 3 in the sliding mode. Similarly, in some embodiments, multiple positions of the locking assembly 5 can serve to lock the wire 3 in the locked or non-sliding mode. Accordingly, the locking assembly 5 can be configured to apply a continuously variable frictional force to the wire 3. The continuously variable frictional force can be applied to move the wire 3 between the sliding and locked configurations. The locking assembly 5 can apply continuously variable frictional forces within the sliding and/or locked modes. In other embodiments, however, the sliding and locked modes can comprise a discrete number of modes, as opposed to a continuum of modes. For example, the locking assembly 5 can be configured to adjust a frictional force to the wire 3 in a step-wise manner. The locking assembly 5 can be configured to move between the sliding and locked configurations in a step-wise manner.
  • FIG. 6F is a first schematic perspective view of a rotary member 50′ according to another embodiment. FIG. 6G is a second schematic perspective view of the rotary member 50′ of FIG. 6F. FIG. 6H is a schematic perspective view of a bracket 2′ that can be used in cooperation with the rotary member 50′ of FIGS. 6F-6G. The rotary member 50′ and the bracket 2′ of FIGS. 6F-6H can be used instead of the rotary member 50 and bracket 2 shown in FIGS. 6A-6E. Unless otherwise noted, the components of FIGS. 6F-6H can be the same as or generally similar to like-numbered components of FIGS. 6A-6E, and can function or operate in a generally similar manner. In FIGS. 6F-6G, first and second tool access apertures 55 a, 55 b can be provided through the rotary body 50′. The clinician can engage the rotary member 50′ with a tool by way of the access apertures 55 a, 55 b. For example, the clinician can insert a tool into the apertures 55 a, 55 b by way of opposing transverse cavities 25 a, 25 b of the bracket 2′, as shown in FIG. 6H. Thus, the rotary member 50′ and bracket 2′ shown in FIGS. 6F-6H can provided improved access to the clinician for switching between the open, sliding, and locked modes of the device 1.
  • FIGS. 6I-6K illustrate an orthodontic device 1 having a detent mechanism 105 to provide tactile feedback to the clinician indicative of the mode in which the device 1 is placed (e.g., a sliding mode, a locking mode, etc.), according to various embodiments. Unless otherwise noted, components of FIGS. 6I-6K may be the same as or generally similar to like-numbered components of FIGS. 6A-6H, and can be combined with the components of FIGS. 6A-6H. In FIGS. 6I-6K, the detent mechanism 105 can include a first slot 105 a and a second slot 105 b circumferentially spaced from the first slot 105 a. A tab 107 can extend through a circumferential track 106. The tab 107 and track 106 can maintain the rotary member 50 within the bracket 2. The clinician can engage the tab 107 manually or with a tool to rotate the rotary member 50 from the open mode to the sliding mode and/or to the locking mode. In the sliding mode, the tab 107 can include a projecting portion 107 a projecting radially outwardly slightly, which can engage with the first slot 105 a to indicate to the clinician that the device 1 is in the sliding mode. The clinician can rotate the tab 107 and rotary member 50 to place the device 1 in the locked mode. The projecting portion 107 a of the tab 107 can engage with the second slot 105 a to indicate to the clinician that the device 1 is in the locked mode.
  • FIGS. 6L-6N illustrate an orthodontic device 1 having a detent mechanism 105, according to another embodiment. Unless otherwise noted, components of FIGS. 6L-6N may be the same as or generally similar to like-numbered components of FIGS. 6A-6K. For example, the device 1 includes the detent mechanism 105 which is generally similar to the detent mechanism 1 of FIGS. 6I-6K, except the tab 107 in FIGS. 6L-6N is on an opposing side of the rotary member 50 as compared to the tab 107 in FIGS. 6I-6K.
  • C. Orthodontic Devices with Other Types of Locking Assemblies
  • Additional types of locking assemblies 5 may be used to provide an open operating mode, a sliding mode, and a locked mode. FIGS. 7A-12C illustrate additional examples of orthodontic devices 1 with other types of locking assemblies 5.
  • FIG. 7A is a schematic perspective view of an orthodontic device 1 that includes a dual cam locking assembly 5 shown in a locked mode, according to another embodiment. FIG. 7B is a schematic side sectional view of the orthodontic device 1 of FIG. 7A in an open mode. FIG. 7C is a schematic side sectional view of the orthodontic device 1 of FIG. 7A in a sliding mode. FIG. 7D is a schematic side sectional view of the orthodontic device 1 of FIG. 7A in a locked mode. Unless otherwise noted, components in FIGS. 7A-7D may be the same as or generally similar to like-numbered components of FIGS. 1A-6H, and may function or operate in a generally-similar manner.
  • The device 1 of FIGS. 7A-7D can include a locking assembly 5 with a pair of rotary members comprising cams 60 a, 60 b disposed on opposite sides of the retention cavity 24 and coupled to the bracket 2. The cams 60 a, 60 b can each include corresponding outwardly extending projections 61 a, 61 b. The projections 61 a, 61 b can be disposed at different vertical heights. For example, the first projection 61 a can be disposed at a lower vertical position relative to the z-axis than the second projection 61 b. Further, the length of the first projection 61 a can be shorter than the length of the second projection 61 b. In the open mode shown in FIG. 7B, the cams 60 a, 60 b can be rotated (for example, with a tool) such that the projections 61 a, 61 b face away or otherwise do not project into the retention cavity 24.
  • Turning to FIG. 7C, the clinician can use a tool or hand to rotate the second cam 60 b about the vertical axis z to position the second projection 61 b in the retention cavity 24. As shown, the second projection 61 b can extend over the wire 3 to retain the wire 3 within the retention cavity 24. The second projection 61 b can contact the wire 3 for active ligation, or can be spaced away from the wire 3 for passive ligation. In the sliding mode, the wire 3 can laterally slide along the lateral axis x under expression of typical orthodontic forces.
  • Turning to FIG. 7D, the clinician can use a tool or hand to rotate the first cam 60 a about the vertical axis z to position the first projection 61 a in the retention cavity 24. The length of the first projection 61 a can be selected such that when the first cam 60 a is rotate about the vertical axis z the first projection 61 a can contact and impart a force against the wire 3. The locking assembly 5 with cams 60 a, 60 b shown in FIGS. 7A-7D in the locked mode can apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2A-20 and 6A-6N.
  • FIG. 8A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a crab washer 64, according to another embodiment. FIG. 8B is a schematic side sectional view of the orthodontic device 1 of FIG. 8A in a sliding mode. FIG. 8C is a schematic side sectional view of the orthodontic device 1 of FIG. 8A in a locked mode. Unless otherwise noted, components in FIGS. 8A-8C may be the same as or generally similar to like-numbered components of FIGS. 1A-7D, and may function or operate in a generally-similar manner.
  • The device 1 of FIGS. 8A-8C can include a locking assembly 5 having a crab washer 64 mechanically coupled with the bracket 2. The wire 3 can be inserted into holes 65 formed in the crab washer 64. The bracket 2 can include a pair of laterally-extending ledges 67 that engage with wing portions 66 a, 66 b of the crab washer 64. The wing portions 66 a, 66 b can be upwardly-biased. In the sliding mode of FIG. 8B, the ledges 67 can deflect the wing portions 66 a, 66 b downwardly such that the wire 3 can slide through the holes 65 relative to the bracket 2. In the locked mode of FIG. 8C, the clinician can release the wing portions 66 a, 66 b from the ledges 67 so that the crab washer 64 closes on the wire 3 to lock it into place and prevent lateral sliding. The locking assembly 5 with crab washer 64 shown in FIGS. 8A-8C in the locked mode can be shaped to apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2A-20 and 6A-6N.
  • FIG. 9A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a crimp device 70, according to another embodiment. FIG. 9B is a schematic side sectional view of the orthodontic device 1 of FIG. 9A in a sliding mode. FIG. 9C is a schematic side sectional view of the orthodontic device 1 of FIG. 9A in a locked mode. Unless otherwise noted, components in FIGS. 9A-9C may be the same as or generally similar to like-numbered components of FIGS. 1A-8C, and may function or operate in a generally-similar manner.
  • The device 1 of FIGS. 9A-9C can include a locking assembly 5 having a crimp device 70 mechanically coupled with the bracket 2. The wire 3 can be inserted into a loop 71 defined by the crimp device 70. The bracket 2 can include a pair of lower locking holes 72 that engage with corresponding elastic feet 73 of the crimp device 70. In the sliding mode of FIG. 9B, the crimp device 70 can remain uncrimped to provide a relatively large loop 71 to enable lateral sliding of the wire 3 relative to the bracket 2. In the locked mode of FIG. 9C, the crimp device 70 can be collapsed to provide a smaller loop 71 to prevent lateral sliding of the wire 3 relative to the bracket 2. The feet 73 can engage with the locking holes 72 maintain the collapsed crimp. The locking assembly 5 with crimp device 70 shown in FIGS. 9A-9C in the locked mode can be shaped to apply a sufficiently large force against the wire 3 to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2A-20 and 6A-6N.
  • FIG. 10A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a slide lock 75, according to another embodiment. FIG. 10B is a schematic side sectional view of the orthodontic device 1 of FIG. 10A in an open mode. FIG. 10C is a schematic side sectional view of the orthodontic device 1 of FIG. 10A in a sliding mode. FIG. 10D is a schematic side sectional view of the orthodontic device 1 of FIG. 10A in a locked mode. Unless otherwise noted, components in FIGS. 10A-10D may be the same as or generally similar to like-numbered components of FIGS. 1A-9C, and may function or operate in a generally-similar manner.
  • The device 1 of FIGS. 10A-10D can include a locking assembly 5 having a slide lock 75 mechanically coupled with the bracket 2. In some embodiments, a crimp 76 can be applied about the wire 3. The slide lock 75 can be configured to slide along the transverse axis y to switch between the open, sliding, and locked modes. As shown, the slide lock 75 can include a vertical surface 78 and an upper transverse projection 77 extending transversely relative to the vertical surface 78. In the open mode shown in FIG. 10B, the vertical surface and the upper transverse projection can be spaced away from the wire. In the sliding mode of FIG. 10C, the slide lock 75 can be translated along the transverse axis y to position the transverse projection 77 over the wire 3. The transverse projection 77 can serve to retain the wire 3 in the bracket 2 while permitting the wire 3 to slide laterally relative to the bracket 2. In the locked mode of FIG. 10D, the slide lock 75 can be further translated along the transverse axis y to maintain the transverse projection 77 over the wire 3 and to urge the vertical surface 78 against the wire 3. The vertical surface 78 can contact the wire 3 and provide a sufficiently large force so as to prevent sliding of the wire 3 relative to the bracket 2 when subject to typical orthodontic forces, as explained above in connection with FIGS. 2A-20 and 6A-6N.
  • FIG. 11A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a rotating locking element 80 and a slidable lock 82 spaced across from the retention cavity 24 from the locking element 80, according to another embodiment. FIG. 11B illustrates schematic top and side views of the orthodontic device 1 of FIG. 11A in a sliding mode. FIG. 11C illustrates schematic top and side views of the orthodontic device 1 of FIG. 11A in a locked mode. Unless otherwise noted, components in FIGS. 11A-11C may be the same as or generally similar to like-numbered components of FIGS. 1A-10D, and may function or operate in a generally-similar manner.
  • The device 1 of FIGS. 11A-11C can include a locking assembly 5 having a rotating locking element 80 and a slidable lock 82 coupled with the bracket 2. In the illustrated embodiment, the rotating locking element 80 can be rotatable or rockable about the vertical axis z. The slidable lock 82 can be translated along the transverse axis y. In the sliding mode of FIG. 11B, the slidable lock 82 can be moved over the wire 3 to retain the wire 3 in the bracket 2 and permit the wire 3 to slide relative to the bracket 2. In the locked mode of FIG. 11C, the slidable lock 82 can be translated upwardly until the rotating locking element 80 contacts the wire 3. In the locked mode, the slidable lock 82 and rotatable element 80 can cooperate to apply a force against the wire 3 sufficiently high so as to prevent the wire 3 from translating laterally when subject to typical orthodontic forces, as explained above in connection with FIGS. 2A-20 and 6A-6N.
  • FIG. 12A is a schematic perspective view of an orthodontic device 1 that includes a locking assembly 5 comprising a clip 6 and a set screw 90, according to another embodiment. FIG. 12B is a schematic top view of the orthodontic device 1 of FIG. 12A in a locked mode. FIG. 12C is a schematic side view of the orthodontic device 1 of FIG. 12B in the locked mode. Unless otherwise noted, components in FIGS. 12A-12C may be the same as or generally similar to like-numbered components of FIGS. 1A-11C, and may function or operate in a generally-similar manner.
  • The device 1 of FIGS. 12A-12C can include a locking assembly 5 having a clip 6 and set screw 90 coupled with the bracket 2. As with the embodiments of FIGS. 2A-5D, in the sliding mode (not shown), the clip 6 can serve to retain the wire 3 in the bracket 2 while permitting the wire 3 to slide laterally relative to the bracket 2. In the sliding mode, the set screw 90 can remain recessed within the body of the bracket 2 and may not engage the wire 3. In the locked mode, the clinician can use a tool, such as a screwdriver, to thread the set screw 90 transversely towards the wire 3. In the locked mode, the set screw 90 can clamp the wire 2 against the bracket 2 by applying a force against the wire 3 that is sufficiently high so as to prevent the wire 3 from translating laterally when subject to typical orthodontic forces, as explained above in connection with FIGS. 2A-20 and 6A-6N.
  • III. SYSTEMS AND METHODS FOR PATIENT-SPECIFIC ORTHODONTIC TREATMENTS
  • Each orthodontic patient has his or her own unique set of teeth with their own malocclusion characteristics. It can be challenging to plan and implement patient-specific procedures to concurrently align all of the patient's teeth that are to be treated in an efficient manner. In conventional orthodontic treatments, the clinician typically adjusts the wires in a sequential fashion on a regular basis in response to the position of the patient's teeth at a particular treatment appointment with the clinician. For example, in conventional treatments, the clinician may make an adjustment to a first orthodontic device on a first tooth of a patient, which may undesirably and unintentionally induce misalignments to a second tooth of the patient. The clinician may continually make such sequential adjustments until the malocclusion is treated. As explained above in connection with FIG. 1C, such conventional treatments may induce frequent spikes in orthodontic forces, which can increase patient pain and discomfort, lengthen treatment time, and increase costs.
  • Beneficially, the orthodontic devices 1 disclosed herein can be used in the disclosed methods that can align the teeth to be treated with reduced treatment iteration. The disclosed methods can be used with any of the devices 1 shown and described in connection with FIGS. 2A-12C. Unlike conventional orthodontic devices, the orthodontic devices 1 disclosed herein can operate in a plurality of operating modes. As explained herein, the orthodontic devices 1 can operate in an open operating mode, a sliding operating mode, and a locked operating mode. The use of multiple operating modes provides the clinician with flexibility for treating each tooth. For example, the different operating modes can express different forces and moments on multiple teeth in different manners so as to concurrently accommodate the respective misalignments of the multiple teeth. Thus, in contrast with conventional treatments, the clinician may make an adjustment to a first orthodontic device on a first tooth of a patient, without inducing misalignments to a second tooth of the patient. The concurrent treatment of multiple teeth using different treatment modalities can beneficially reduce patient treatment times and alleviate pain and discomfort by reducing the frequency of applied orthodontic force spikes.
  • Moreover, the embodiments disclosed herein can enable the clinician to plan the course of treatment for the patient's teeth by concurrently treating malocclusion of multiple (or all) teeth. The concurrent treatment can reduce the number of treatment appointments and improve treatment efficacy. The adjustability of the locking members between sliding and non-sliding configurations can enable the clinician to place one or multiple teeth in a sliding configuration and one or more other teeth in a non-sliding configuration. Over the course of treatment, the clinician can adjust the locking assemblies of various teeth to move from sliding to non-sliding, or from non-sliding to sliding, based on the treatment plan and the state of malocclusion of the patient's teeth.
  • FIG. 13 is a schematic system diagram of a system 150 for creating patient-specific orthodontic systems. The system 150 can include an imaging device 152, an orthodontic design system 154, and a manufacturing system 156. The imaging device 152, design system 154, and manufacturing system 156 can be co-located at the same facility in some embodiments. In other embodiments, one or more of the imaging device 152, the design system 154, and the manufacturing system 156 can be located at different facilities. The imaging device 152 can comprise any suitable type of imaging device, such as an X-ray imaging device, a computed tomography (CT) device, etc. The imaging device 152 can capture image data of a patient's teeth and can save the image data to a computer-readable medium.
  • The orthodontic design system 154 can comprise processing electronics configured to store and process the image data of the patient's teeth. In some embodiments, the image data can be transferred to the design system 154 from the imaging device 152 over a wireless or wired communications network, by way of a removable storage medium, etc. The processing electronics of the design system 154 can analyze the captured and stored image data to determine characteristics of the patient's dental malocclusion. The malocclusion characteristics can be determined in any suitable manner known to the skilled artisan. Based on the malocclusion characteristics, the processing electronics of the design system 154 can also be configured to determine force profiles to be applied to the teeth in order to align the patient's teeth. As explained herein, the processing electronics of the design system 154 can also determine how the orthodontic devices 1 are to be structured and arranged to achieve the force profiles. For example, the design system 154 can determine the desired structure and material of the archwires, which devices 1 are to be in a locked mode, which devices 1 are to be in a sliding mode, etc.
  • The orthodontic design system 154 can comprise processing electronics that can include a processor governed by instructions stored in a memory. The memory may be random access memory (RAM), read-only memory (ROM), flash memory or any other memory, or combination thereof, suitable for storing control software or other instructions and data. Those skilled in the art should also readily appreciate that instructions or programs defining the functions of the disclosed embodiments may be delivered to a processor in many forms, including, but not limited to, information permanently stored on non-writable storage media (e.g. read-only memory devices within a computer, such as ROM, or devices readable by a computer I/O attachment, such as CD-ROM or DVD disks), information alterably stored on writable storage media (e.g. floppy disks, removable flash memory and hard drives) or information conveyed to a computer through communication media, including wired or wireless computer networks. In addition, while the disclosed embodiments may be embodied in software, the functions used to implement the embodiments may optionally or alternatively be embodied in part or in whole using firmware and/or hardware components, such as combinatorial logic, Application Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FPGAs) or other hardware or some combination of hardware, software and/or firmware components.
  • The manufacturing system 156 can be configured to manufacture or procure an orthodontic system including the orthodontic devices 1 designed by the design system 154 based on the design data determined by the design system 154. For example, in some embodiments, the archwires, brackets, and/or locking assemblies can be manufactured or otherwise procured based on the design data provided by the design system 154. In some cases, the manufacturing system 156 can include machinery to automatically manufacture or procure the archwires, the brackets, and/or the locking assemblies, as determined by the design system 154.
  • FIG. 14 is a flowchart illustrating a method 100 for designing an orthodontic treatment system for reducing malocclusion of multiple teeth in a patient, according to various embodiments. In a block 101, the method 100 can determine malocclusion characteristics of the patient's teeth. In various embodiments, for example, the patient's mouth can be imaged in any suitable manner by the imaging device 152 (e.g., by an X-ray device, a computed tomography or CT device, etc.). Based on the captured image data, the patient's malocclusion characteristics can be determined by optical analysis techniques known to those having skill in the art. The determined malocclusion characteristics can indicate how each tooth is misaligned relative to a desired orientation and position. As explained in connection with FIG. 13 , processing electronics of the design system 154 can analyze and process the image data to make the determination. Additionally or alternatively, in some embodiments, the clinician can analyze the image data to determine the patient's malocclusion characteristics. In some cases, the clinician can manually shape the archwire to achieve the desired force profile.
  • Moving to a block 102, the method 100 can determine force profiles 102 that can be applied to the orthodontic devices in an orthodontic system to concurrently align multiple teeth to be treated. For example, based on the determined patient malocclusion characteristics, the method 100, which can be implemented by the design system 154, can determine how to apply forces and torques across the entire orthodontic system of multiple devices 1. In some embodiments, the malocclusion characteristics can be mapped to a look-up table (LUT) or database of force profiles (e.g., linear forces or torque forces) that can be applied to address the particular identified malocclusion characteristics. The LUT or database can map a plurality of clinical scenarios to operational modes of the orthodontic devices 1. Examples of force profiles used in example treatment procedures, and which may be provided in appropriate LUTs or databases, are shown in FIGS. 16A-31 . Thus, for a particular malocclusion profile (such as a malocclusion profile shown in any of FIGS. 16A-31 ), the design system 154 can calculate a corresponding force profile.
  • Moving to a block 103, based on the corresponding determined force profiles, the design system 154 can select how each orthodontic device 1 of the system should be structured and arranged to provide the desired force profile for the overall system. For example, based on the determined force profile, the method 100 can select a first sliding mode for a first orthodontic device 1 to be secured to a first tooth. Moving to a block 104, based on the determined force profile, the method 100 can select a second locked mode for a second orthodontic device 1 to be secured to a second tooth. As explained below in connection with FIGS. 16A-31 , any number of treatment combinations may be suitable depending on the patients' malocclusion characteristics and the determined force profiles.
  • FIG. 15 is a flowchart illustrating a method 200 for performing an orthodontic treatment, according to various embodiments. As explained above, the embodiments disclosed herein can be used to design a patient-specific orthodontic system that includes a plurality of orthodontic devices 1 selected to achieve a desired force profile. In some arrangements, the orthodontic system can be manufactured or procured as explained above in FIG. 13 . The desired force profile can provide a map for how each device 1 of the system is to be structured and arranged. For example, in a block 201, a first orthodontic device 1 can be secured to a first tooth. Turning to a block 202, a second orthodontic device 1 can be secured to a second tooth. The first and second orthodontic devices can comprise any of the devices 1 shown and described in connection with FIGS. 2A-12C. The first and second orthodontic devices can each have at least a sliding operational mode and a locked operational mode. In a block 203, the first orthodontic device can be placed in the first sliding mode. In a block 204, the second orthodontic device can be placed in the second locked mode. As explained herein, the use of different operational modes on different teeth can facilitate efficient alignment of the patient's teeth. Moreover, as explained above, over the course of treatment, the clinician can switch between sliding and non-sliding configurations for one or more teeth based on the treatment plan, or on the state of malocclusion.
  • FIGS. 16A-31 illustrate examples of methods of orthodontic treatment, according to various embodiments disclosed herein. The methods shown in FIGS. 16A-31 can represent applied force profiles for corresponding patient malocclusion scenarios. As explained above, the malocclusion characteristics and force profiles shown in FIGS. 16A-31 can be used in a LUT or database to design an orthodontic system 300 to treat the malocclusion. The orthodontic system 300 can comprise a plurality of orthodontic devices 1 and the associated wires 3 sued therewith. Any of the orthodontic devices 1 described in FIGS. 2A-12C can be used in the systems 300 shown in FIGS. 16A-31 . As shown throughout FIGS. 16A-31 , teeth 10 with an “X” marked on them indicate that the orthodontic device 1 attached thereto is placed in a locked mode. Teeth 10 that have an “S” marked on them indicate that the orthodontic device 1 attached thereto is placed in a sliding mode. It should be appreciated that the treatment methods of FIGS. 16A-31 are examples only, and that additional or alternative arrangements and structures may be provided in the LUT or database. Moreover, FIGS. 16A-31 may illustrate only a subset of the teeth under orthodontic treatment. The overall orthodontic system 300 can include all the devices 1 used to treat the patient's teeth.
  • FIGS. 16A-16B illustrate an orthodontic system 300 configured to treat a clinical scenario in which a malocclusal condition comprises a gap between adjacent teeth 10 a, 10 b. One way to close the gap between the teeth 10 a, 10 b is to form a loop 302 in the wire 3 in the gap. As shown in FIGS. 16A-16B, the devices 1 attached to the teeth 10 a, 10 b are placed in the locked mode. The loop 302 can be biased radially outwardly such that the natural state of the loop 302 is to have a larger diameter than that shown in FIGS. 16A-16B. As the wire 302 relaxes into its natural state to form a larger loop the wire 3 pulls the teeth 10 a, 10 b together to close the gap. As shown in FIG. 16A, all fourth teeth can be placed in the locked mode as indicated by the “X” marks. Locking all four teeth 10 can increase the forces applied to the tooth 10 a. In some cases, however, a reduced force may be desirable, for example, to accommodate other misalignments in other portions of the mouth. Thus, in FIG. 16A, only the teeth 10 a, 10 b can be locked as indicated by the “X” marks. The two leftmost teeth can be placed in the sliding mode “S”. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 16A-16B can represent example templates in a LUT or database that can be used to address a gap closing clinical scenario, based on desired force profiles for the specific patient at issue.
  • FIGS. 17A-17B illustrate an orthodontic system 300 configured to treat a clinical scenario in which a malocclusal condition comprises crowding between adjacent teeth 10 a, 10 b. To address the crowding, a kink 304 can be formed in the wire 3 between the teeth 10 a, 10 b. As shown in FIGS. 17A-17B, the devices 1 attached to the teeth 10 a, 10 b are placed in the locked mode. The kink 304 can be outwardly biased such that as the kink 304 relaxes, the wire 3 pushes the teeth 10 a, 10 b apart from one another. In FIG. 17A, all four teeth 10 a-10 d can have devices 1 in the locked mode to provide a first force profile. In FIG. 17B, the teeth 10 c-10 d are placed in the sliding mode to provide a second force profile with a reduced force, which may be desirable in some circumstances. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 17A-17B can represent example templates in a LUT or database that can be used to address a crowding clinical scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 18 illustrates an orthodontic system 300 configured to treat a clinical scenario in which the crown 13 of the tooth 10 b is angularly misaligned. To address the crown tipping scenario of FIG. 18 , the devices 1 attached to the teeth 10 a-10 c can be placed in the locked mode. A bend 306 can be formed in the wire 3 between the teeth 10 b, 10 c. The bend 306 can be shaped to impart a torque T at the crown 13 as shown to correctly orient the crown 13. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 18 can represent example templates in a LUT or database that can be used to address a crown tipping scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 19 illustrates an orthodontic system 300 configured to treat a clinical scenario in which the root 14 of the tooth 10 b is angularly misaligned. To address the root tipping scenario of FIG. 19 , the devices 1 attached to the teeth 10 a-10 c can be placed in the locked mode. A bend 306 can be formed in the wire 3 between the teeth 10 a, 10 b. A loop 302 can be formed in the wire 3 between the teeth 10 b, 10 c. The bend 306 and the loop 302 can be shaped to impart a torque T at the root 14 as shown to correctly orient the root 14. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 19 can represent example templates in a LUT or database that can be used to address a root tipping scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 20 illustrates an orthodontic system 300 configured to treat a clinical scenario in which an incisor 10 a is angularly misaligned. As shown, the crown 13 of the incisor 10 a is tilted labially. To address the misaligned incisor 10 a, the device 1 attached to the incisor 10 a can be placed in the locked mode. The devices 1 attached to the teeth 10 b-10 f can be placed in the sliding mode. The wire 3 can comprise a rectangular wire such that the tilting of the incisor 10 a relative to the other teeth 10 b-10 f imparts a torque T to correctly align the crown 13 of the incisor 10 a. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 20 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 21 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 b is rotationally misaligned as seen from a top view of the occlusal surfaces. In FIG. 21 , each of the devices 1 attached to the teeth 10 a-10 c can be placed in the locked mode. The wire 3 can be shaped to have a bend 306 between the teeth 10 b, 10 c. The wire 3 can be shaped to have a loop 302 between the teeth 10 a, 10 b. The loop 302 and bend 306 can impart a torque T about the vertical coronal axis of the tooth to correctly orient the tooth 10 b. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 21 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 22 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 b is misaligned gingivally relative to the teeth 10 a, 10 c. In FIG. 22 , each of the devices 1 attached to the teeth 10 a-10 c can be placed in the locked mode. In FIG. 22 , the wire 3 is naturally straight. The naturally straight bias of the wire 3 can impart an upward coronal force F to the tooth 10 b to extrude the tooth 10 b coronally to align the tooth 10 b relative to the teeth 10 a, 10 c. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 22 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 23 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 b is misaligned coronally (upwardly) relative to the teeth 10 a, 10 c. In FIG. 23 , each of the devices 1 attached to the teeth 10 a-10 c can be placed in the locked mode. In FIG. 23 , the wire 3 is naturally straight. The naturally straight bias of the wire 3 can impart a downward gingival force F to the tooth 10 b to intrude the tooth 10 b gingivally downward to align the tooth 10 b relative to the teeth 10 a, 10 c. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 23 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 24 illustrates an orthodontic system 300 configured to treat a clinical scenario in which a tooth 10 a is misaligned distally relative to the tooth 10 b, which is generally similar to the gap closing scenario of FIGS. 16A-16B. The illustrated template can include providing an elastic band or spring 310 over the wire 3 between the teeth 10 a, 10 b. The device 1 attached to the tooth 10 b can be placed in the locked mode. The devices 1 attached to the other teeth can be placed in the sliding mode. The locked device 1 on the tooth 10 b can hold the tooth 10 b in place, and the band or spring 310 can apply a mesially-directed force F to the tooth 10 a to move the tooth 10 a along a mesial direction to close the gap. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 24 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 25A illustrates an orthodontic system 300 configured to treat a clinical scenario in which the dental arch (mandibular or maxillary arch) is too wide. The devices 1 attached to the incisors 10 a, 10 b can be placed in a locked mode, while the other teeth can be placed in a sliding mode. The wire 3 can be biased so as to narrow the dental arch inwardly in a lingual direction. FIG. 25B shows the arch after the narrowing lingualization system was applied in FIG. 25A. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 25A-25B can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 26 illustrates an orthodontic system 300 configured to treat a clinical scenario in which an inter-arch correction is applied to a cuspid 10 a on the maxillary arch. As shown, the device 1 affixed to the cuspid 10 a can be placed in the locked mode, and the other teeth can be placed in the sliding mode. An elastic band 312 can extend between and connect the device 1 on the cuspid 10 a to the orthodontic device 1 attached to a molar 10 b on the mandibular arch. The band 312 can pull the cuspid 10 and the arch distally in some embodiments. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 26 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 27 illustrates an orthodontic system 300 configured to treat a clinical scenario comprising an impacted second molar 10 a. The devices 1 attached to the first and second molars 10 b, 10 a can be placed in a locked mode. The other teeth can be placed in a sliding mode. The wire 3 can have a normally-straight configuration. A curve 314 in the wire 3 can be provided between the first and second molars 10 b, 10 a, which can push the second molar 10 a into an upright position. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIG. 27 can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 28A illustrates an orthodontic system 300 configured to tip the anterior teeth outward to maintain appropriate incisor angles. FIG. 28B illustrates the system 300 after the treatment applied in FIG. 28A. In the illustrated embodiment, the devices 1 attached to the incisors 10 a, 10 b can be placed in a locked mode. The other devices 1 can be placed in a sliding mode. The wire 3 can be biased to orient the anterior teeth outwardly. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 28A-28B can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 29A illustrates an orthodontic system 300 configured to provide multidimensional control of a tooth 10 b that is misaligned in multiple dimensions. As shown, the tooth 10 b is misaligned gingivally (downwardly), horizontally, and rotationally in three directions. To align the tooth 10 b, the devices 1 attached to the teeth 10 a-10 c can be placed in a locked mode, while the device 1 attached to the tooth 10 d can be placed in a sliding mode. The wire 3 can be formed in a loop 302 between teeth 10 c and 10 b. A bend 306 can be formed in the wire 3 between the teeth 10 b and 10 a. The wire 3 can engage with the devices 1 to correct the multidimensional misalignments, as shown in the aligned teeth of FIG. 29B. Thus, the combinations of operational modes for the devices 1 and the structure of the wire 3 shown in FIGS. 29A-29B can represent example templates in a LUT or database that can be used to address the illustrated scenario, based on desired force profiles for the specific patient at issue.
  • FIG. 30 illustrates a clinical scenario that utilizes multiple wires 3 a, 3 b along some portions of the system 300. A first wire 3 a can span the entire dental arch and can be inserted into each of the orthodontic devices 1 of the system 300. As shown in FIG. 30 , second wire segments 3 b can be provided to span a plurality of adjacent teeth 10 a-10 c to apply a different force profile for moving the selected teeth 10 a-10 c. Thus, in FIG. 30 , the second wire segment 3 b can be inserted into the devices 1 that are affixed to those teeth 10 a-10 c. For those devices 1 affixed to the teeth 10 a-10 c, therefore, multiple (e.g., two) wires can be provided in the bracket. The use of multiple wires can accordingly provide different forces, which can represent another force template in accordance with various embodiments.
  • FIG. 31 illustrates a clinical scenario in which the system 300 includes two wires 3 a, 3 b that can meet end-to-end at the device 1 attached to the tooth 10 b. In such an arrangement, the respective ends of both wires 3 a, 3 b can be placed in a locked mode by the device 1 such that different wires 3 a, 3 b cover different portions along the dental arch. In some embodiments, the wires 3 a, 3 b can have different profiles so as to create different forces along the different segments. In other embodiments, a single wire 3 can be provided but can have a varying geometry along the wire 3, which can be locked at various locations to control orthodontic forces.
  • IV. CONCLUSION
  • Although the tooth 10 schematically depicted in some of the figures is a molar, the procedures and devices disclosed herein may be performed on or applied to any type of tooth such as an incisor, a canine, a bicuspid, a pre-molar, or a molar. Further, although the tooth may be depicted as a lower (mandibular) tooth in the figures, this is for purposes of illustration, and is not limiting. The devices and methods may be applied to lower (mandibular) teeth or upper (maxillary) teeth. Also, the disclosed devices and methods can be applied to lingual and/or facial (e.g., labial or buccal) surfaces of the tooth 10. Moreover, the disclosed apparatus, methods, and compositions may be applied to human teeth (including juvenile teeth) and/or to animal teeth.
  • Reference throughout this specification to “some embodiments” or “an embodiment” means that a particular feature, structure, element, act, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in some embodiments” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment and may refer to one or more of the same or different embodiments. Furthermore, the particular features, structures, elements, acts, or characteristics may be combined in any suitable manner (including differently than shown or described) in other embodiments. Further, in various embodiments, features, structures, elements, acts, or characteristics can be combined, merged, rearranged, reordered, or left out altogether. Thus, no single feature, structure, element, act, or characteristic or group of features, structures, elements, acts, or characteristics is necessary or required for each embodiment. All possible combinations and subcombinations are intended to fall within the scope of this disclosure.
  • As used in this application, the terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
  • Similarly, it should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment.
  • The foregoing description sets forth various example embodiments and other illustrative, but non-limiting, embodiments of the inventions disclosed herein. The description provides details regarding combinations, modes, and uses of the disclosed inventions. Other variations, combinations, modifications, equivalents, modes, uses, implementations, and/or applications of the disclosed features and aspects of the embodiments are also within the scope of this disclosure, including those that become apparent to those of skill in the art upon reading this specification. Additionally, certain objects and advantages of the inventions are described herein. It is to be understood that not necessarily all such objects or advantages may be achieved in any particular embodiment. Thus, for example, those skilled in the art will recognize that the inventions may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. Also, in any method or process disclosed herein, the acts or operations making up the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence.

Claims (21)

1.-214. (canceled)
215. A method for designing an orthodontic treatment system, the method comprising:
determining an orthodontic force profile to be applied to a patient's teeth to treat the patient based on malocclusion characteristics of the patient's teeth;
based on the determined orthodontic force profile, selecting a first sliding mode for a first orthodontic device to be secured to a first tooth; and
based on the determined orthodontic force profile, selecting a second non-sliding mode for a second orthodontic device to be secured to a second tooth.
216. The method of claim 215, further comprising obtaining image data of a patient's teeth and processing the obtained image data to determine malocclusion characteristics of the patient.
217. The method of claim 215, further comprising manufacturing the first and second orthodontic devices.
218. The method of claim 215, further comprising selecting the first sliding mode and selecting the second locked mode based on a look-up table (LUT) that maps a plurality of clinical scenarios to operational modes of the first and second orthodontic devices.
219. The method of claim 215, further comprising determining the malocclusion characteristics of the patient's teeth based on at least image data of the patient's teeth.
220. The method of claim 215, further comprising switching at least the first sliding mode to a first non-sliding for the first orthodontic device on the first tooth, or the second non-sliding mode to a second sliding mode for the second orthodontic device on the second tooth.
221. The method of claim 215, further comprising, when a gap is between the first tooth and the second tooth is to be closed, forming a loop in a wire extending through the first orthodontic device and the second orthodontic device, wherein the loop is between the first tooth and the second tooth.
222. The method of claim 215, further comprising, when the first tooth and the second tooth are to be separated apart, forming a kink in a wire extending through the first orthodontic device and the second orthodontic device, wherein the kink is between the first tooth and the second tooth.
223. The method of claim 215, further comprising, when a crown of the first tooth is angularly misaligned with a crown of the second tooth, forming a bend in a wire extending through the first orthodontic device and the second orthodontic device, wherein the bend is between the first tooth and the second tooth and configured to impart a torque at the crown of the first tooth.
224. The method of claim 215, further comprising, when the second tooth is an incisor, and a crown of the first tooth is tilted labially, using a rectangular wire to extend through the first orthodontic device and the second orthodontic device.
225. A system for creating a patient-specific orthodontic system, the system comprising an orthodontic design system having processing electronics configured to:
determine an orthodontic force profile to be applied to a patient's teeth to treat the patient based on malocclusion characteristics of the patient's teeth;
based on the determined orthodontic force profile, select a first sliding mode for a first orthodontic device to be secured to a first tooth; and
based on the determined orthodontic force profile, select a second non-sliding mode for a second orthodontic device to be secured to a second tooth.
226. The system of claim 225, wherein the processing electronics are configured to obtain image data of a patient's teeth and to process the obtained image data to determine malocclusion characteristics of the patient.
227. The system of claim 225, further comprising an imaging device configured to capture the image data.
228. The system of claim 225, further comprising a manufacturing system configured to manufacture the first and second orthodontic devices.
229. The system of claim 225, wherein the processing electronics are configured to select the first sliding mode and to select the second locked mode based on a look-up table (LUT) that maps a plurality of clinical scenarios to operational modes of the first and second orthodontic devices.
230. The system of claim 225, wherein the processing electronics are configured to switch at least the first sliding mode to a first non-sliding for the first orthodontic device on the first tooth, or the second non-sliding mode to a second sliding mode for the second orthodontic device on the second tooth.
231. The system of claim 225, wherein the processing electronics are configured to, when a gap is between the first tooth and the second tooth is to be closed, form a loop in a wire extending through the first orthodontic device and the second orthodontic device, wherein the loop is between the first tooth and the second tooth.
232. The system of claim 225, wherein the processing electronics are configured to, when the first tooth and the second tooth are to be separated apart, form a kink in a wire extending through the first orthodontic device and the second orthodontic device, wherein the kink is between the first tooth and the second tooth.
233. The system of claim 225, wherein the processing electronics are configured to, when a crown of the first tooth is angularly misaligned with a crown of the second tooth, form a bend in a wire extending through the first orthodontic device and the second orthodontic device, wherein the bend is between the first tooth and the second tooth and configured to impart a torque at the crown of the first tooth.
234. The system of claim 225, wherein, when the second tooth is an incisor, and a crown of the first tooth is tilted labially, a rectangular wire is used with the first orthodontic device and the second orthodontic device.
US18/149,150 2020-07-03 2023-01-02 Orthodontic device Pending US20230285121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/149,150 US20230285121A1 (en) 2020-07-03 2023-01-02 Orthodontic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063047979P 2020-07-03 2020-07-03
US17/065,281 US11259899B2 (en) 2020-07-03 2020-10-07 Orthodontic device
PCT/US2021/040296 WO2022006519A2 (en) 2020-07-03 2021-07-02 Orthodontic device
US18/149,150 US20230285121A1 (en) 2020-07-03 2023-01-02 Orthodontic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/040296 Continuation WO2022006519A2 (en) 2020-07-03 2021-07-02 Orthodontic device

Publications (1)

Publication Number Publication Date
US20230285121A1 true US20230285121A1 (en) 2023-09-14

Family

ID=79166451

Family Applications (3)

Application Number Title Priority Date Filing Date
US17/065,394 Active US11324573B2 (en) 2020-07-03 2020-10-07 Orthodontic device
US17/065,281 Active US11259899B2 (en) 2020-07-03 2020-10-07 Orthodontic device
US18/149,150 Pending US20230285121A1 (en) 2020-07-03 2023-01-02 Orthodontic device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US17/065,394 Active US11324573B2 (en) 2020-07-03 2020-10-07 Orthodontic device
US17/065,281 Active US11259899B2 (en) 2020-07-03 2020-10-07 Orthodontic device

Country Status (4)

Country Link
US (3) US11324573B2 (en)
EP (1) EP4175585A2 (en)
CA (1) CA3188663A1 (en)
WO (1) WO2022006519A2 (en)

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975823A (en) 1975-01-21 1976-08-24 Alan Jay Sosnay Orthodontic torquing system
JPH039712U (en) 1989-06-20 1991-01-30
US5080584A (en) 1990-05-30 1992-01-14 Acme-Monaco Corporation Method for forming nickel/titanium braided arch wires
US5044947A (en) 1990-06-29 1991-09-03 Ormco Corporation Orthodontic archwire and method of moving teeth
US5344315A (en) 1993-12-02 1994-09-06 Hamilton Ortho Inc. Multi-strand orthodontic arch wires and methods for use thereof
AUPN597795A0 (en) 1995-10-17 1995-11-09 Goldschmied Pty Ltd Orthodontic appliance
US6071118A (en) 1998-02-17 2000-06-06 Damon Family Limited Partnership Self-ligating orthodontic bracket
JP2002505382A (en) 1998-03-05 2002-02-19 メムリー・コーポレイション Pseudoelastic beta titanium alloy and its use
US6071119A (en) * 1998-12-22 2000-06-06 3M Innovative Properties Company Dual mode self-ligating orthodontic bracket
US6132209A (en) 1999-04-13 2000-10-17 Tp Orthodontics, Inc. Orthodontic wire
US6648640B2 (en) 1999-11-30 2003-11-18 Ora Metrix, Inc. Interactive orthodontic care system based on intra-oral scanning of teeth
US6506049B2 (en) * 2000-09-20 2003-01-14 Augusta Developments Inc. Orthodontic brackets and convertible buccal tubes
US6612143B1 (en) 2001-04-13 2003-09-02 Orametrix, Inc. Robot and method for bending orthodontic archwires and other medical devices
US6932597B2 (en) 2001-09-12 2005-08-23 Norbert Abels Self-ligating orthodontic brackets including a metal ligation cover hingedly connected to a bracket base
US20030049582A1 (en) 2001-09-12 2003-03-13 Norbert Abels Self-ligating orthodontic brackets that provide spring action from ligation cover to arch wire for dynamic active ligation
EP1539020A4 (en) 2002-07-03 2005-12-21 Univ Connecticut Advanced thermoplastics for orthodontics
US7621743B2 (en) 2002-11-26 2009-11-24 Orthodontic Research And Development, S.L. Orthodontic bracket
US20040131989A1 (en) 2003-01-08 2004-07-08 Dellinger Eugene Lee Orthodontic apparatus
US6963788B2 (en) 2003-03-04 2005-11-08 Norbert Abels Holography-aided orthodontic archwire bending
US20050019718A1 (en) 2003-07-22 2005-01-27 Hanson G. Herbert Orthodontic devices for use with arch wires
US7335021B2 (en) 2003-09-22 2008-02-26 Stephen Gerard Nikodem Methods and apparatus to facilitate orthodontic alignment of teeth
ITPD20030278A1 (en) 2003-11-20 2005-05-21 Valter Vigolo SELF-LOCKING ORTHODONTIC ATTACK AND METHOD
US7160106B2 (en) 2004-03-01 2007-01-09 Ormco Corporation Archwire assembly with stops
US20060008761A1 (en) 2004-07-12 2006-01-12 Allred Peter M Dental appliances having separate performance and bonding regions
US7063531B2 (en) 2004-07-16 2006-06-20 Rolf Maijer Orthodontic bracket system
US20070082315A1 (en) 2004-10-29 2007-04-12 Sabater Alberto C Self-ligating bracket comprising lateral runners
US7240528B2 (en) 2004-11-22 2007-07-10 Lingualcare, Inc. Method and device for shaping an orthodontic archwire
US20060199137A1 (en) 2005-03-04 2006-09-07 Norbert Abels Orthodontic retainer system with removable retaining wire
BRPI0502124A (en) 2005-05-30 2007-01-23 Carlos Eduardo Miqui interchangeable lock bracket enhancement
US7611353B2 (en) 2005-09-28 2009-11-03 American Orthodontics Corporation Self-ligating bracket system
ATE427717T1 (en) 2005-12-09 2009-04-15 Bernard Contencin ORTHODONTIC TOOTH BRACKET FOR ORTHODONTIC TREATMENT.
US8979528B2 (en) 2006-09-07 2015-03-17 Rmo, Inc. Customized orthodontic appliance method and system
US9554875B2 (en) 2006-09-07 2017-01-31 Rmo, Inc. Method for producing a customized orthodontic appliance
US8376739B2 (en) 2011-05-12 2013-02-19 Rmo, Inc. Self ligating orthodontic bracket having a rotatable member
US20130309624A1 (en) 2006-09-07 2013-11-21 Rmo, Inc. Self Ligating Orthodontic Bracket System Employing Brackets Having Rotatable Members
US7686613B2 (en) 2007-07-10 2010-03-30 3M Innovative Properties Company Narrow ceramic self-ligating orthodontic bracket
US7845941B2 (en) 2007-11-02 2010-12-07 Mark Minium Orthodontic instrument for use with adjustable orthodontic apparatus
US7857618B2 (en) * 2007-11-27 2010-12-28 Ultradent Products, Inc. Orthodontic bracket including mechanism for reducing slot width for early torque control
US8382917B2 (en) 2007-12-03 2013-02-26 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
US8246348B2 (en) 2007-12-27 2012-08-21 Wolfgang Heiser Self-ligating orthodontic bracket
WO2009141825A2 (en) 2008-05-22 2009-11-26 Rgb Orthodontics Ltd. Orthodontic bracket and method
US20090325118A1 (en) 2008-06-27 2009-12-31 Ultradent Products, Inc. Orthodontic brackets having a bendable or flexible member formed from amorphous metallic alloys
AT508036A1 (en) 2008-08-06 2010-10-15 Pbd Patent & Business Dev Ag ORTHODONTIC COMPONENT, PARTICULARLY BRACKET
MX2010008061A (en) 2008-08-13 2010-11-22 Ormco Corp Aesthetic orthodontic bracket and method of making same.
US7963768B2 (en) 2008-09-05 2011-06-21 Jack Keith Hilliard Self-ligating orthodontic bracket assembly
US20100112508A1 (en) 2008-11-03 2010-05-06 Alexandre Gallo Lopes Reversible auto-linked bracket of low profile with double lock
EP2189077A1 (en) 2008-11-21 2010-05-26 Ormco Corporation Orthodontic apparatus and othodontic member
DE102008060820A1 (en) 2008-12-05 2010-06-10 Bernhard Förster Gmbh Self-ligating bracket for orthodontics
US20100151403A1 (en) 2008-12-12 2010-06-17 Tuneberg Lee H Bracket with improved arch wire slot liner
CN102348427B (en) 2009-01-16 2014-11-26 奥姆科公司 Orthodontic bracket and method of correcting malpositioned teeth
US20100203463A1 (en) 2009-02-06 2010-08-12 Ortho Organizers, Inc. Self-ligating orthodontic bracket
US20100285420A1 (en) 2009-05-07 2010-11-11 Ormco Corporation Orthodontic bracket having a lingually biased closure member and associated method
DE102009029834A1 (en) 2009-06-17 2010-12-23 Bernhard Förster Gmbh Series of brackets for orthodontics
US8162660B2 (en) 2009-11-20 2012-04-24 Robert T Rudman Rotating clip orthodontic bracket
US9226803B2 (en) * 2010-01-25 2016-01-05 Christopher C. Cosse Orthodontic appliance systems
US20110269093A1 (en) 2010-04-29 2011-11-03 Waugh Jr Robert Lawson Orthodontic bracket and elastomeric insert system
ITRM20100303A1 (en) 2010-06-04 2011-12-05 Orthodontic Manufacturer Sia S R L ATTACHMENT DEVICE FOR ORTHODONTIC ARCHES OR WIRES AND RELATED METHOD OF APPLICATION OF AN ARC OR ORTHODONTIC WIRE.
BRMU9001529Y8 (en) 2010-08-11 2019-09-10 Gallo Lopes Alexandre prefabricated binding bar with variable friction
EP2740811B1 (en) 2010-08-24 2018-08-01 Ormco Corporation Method for shape setting a shape memory alloy wire
CN101912312B (en) 2010-08-25 2012-08-01 陈启锋 Lingual bracket
US9345558B2 (en) 2010-09-03 2016-05-24 Ormco Corporation Self-ligating orthodontic bracket and method of making same
IT1402667B1 (en) 2010-11-04 2013-09-13 Borri ORTHODONTIC APPARATUS.
KR101177364B1 (en) 2010-11-18 2012-08-29 휴비트 주식회사 Self-ligating brackets
US8998607B2 (en) 2010-11-24 2015-04-07 Ormco Corporation Self-ligating orthodontic bracket having undercuts and related methods
CN102058439B (en) 2011-02-01 2013-07-24 许天民 Automatic low-friction bracket
EP2672917A1 (en) 2011-02-09 2013-12-18 Biomers PTE Ltd Method for design of custom composite orthodontic wires and implementation thereof
BRPI1100503B1 (en) 2011-02-15 2022-04-26 Temistocles Uriarte Zucchi Interactive/passive bracket
EP2699190A1 (en) * 2011-04-19 2014-02-26 3M Innovative Properties Company Self ligating orthodontic appliance and related methods
US20130045455A1 (en) 2011-05-21 2013-02-21 Farrokh Farzin-Nia Self-ligating orthodontic bracket with flexible ligating slide
US8568139B2 (en) * 2011-11-23 2013-10-29 Ronald M Roncone Orthodontic bracket
US9022781B2 (en) 2012-02-15 2015-05-05 Align Technology, Inc. Orthodontic appliances that accommodate incremental and continuous tooth movement, systems and methods
TWM444154U (en) 2012-06-08 2013-01-01 Micro Art Technology Co Ltd Self locking positioning device of tooth brace
BR112015001571A2 (en) 2012-07-23 2017-07-04 3M Innovative Properties Co Orthodontic appliance and method of activating a wire in an orthodontic appliance.
US20140370455A1 (en) 2012-08-05 2014-12-18 Timothy J. Allesee Passive Active Ligation System for Orthodontic Brackets
US8550814B1 (en) 2012-08-16 2013-10-08 Monte Collins Multi-component orthodontic bracket assembly
CA2887510C (en) * 2012-10-09 2020-07-14 Dentsply International Inc. Self-ligating orthodontic brackets
US9427291B2 (en) 2012-10-30 2016-08-30 University Of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
US8992214B2 (en) 2012-11-13 2015-03-31 Mem Dental Technology Co., Ltd. Orthodontic self-ligating brackets
US9089386B2 (en) 2012-11-16 2015-07-28 World Class Technology Corporation Self-ligating bracket with sliding cover
BR102013001208B1 (en) 2013-01-17 2020-09-29 Alexandre Gallo Lopes SELF-LIGABLE BRACELET CONSTRUCTIVE SYSTEM WITH RESISTANCE TO VARIABLE SLIP
US20140205962A1 (en) 2013-01-18 2014-07-24 Paul L. Damon Orthodontic Bracket
DE212014000061U1 (en) 2013-03-08 2016-01-05 Overjet Llc Static self-ligating orthodontic braces
EP2967759A4 (en) 2013-03-15 2016-11-09 3M Innovative Properties Co Self-ligating orthodontic appliance
US9254182B2 (en) 2013-03-15 2016-02-09 Ormco Corporation Orthodontic archwire
US9532853B2 (en) 2013-03-15 2017-01-03 Ormco Corporation Self-ligating orthodontic bracket and method of using the same
EP2783656B1 (en) 2013-03-15 2017-06-28 American Orthodontics Corporation Self-ligating bracket
BR202013007004Y1 (en) 2013-03-26 2019-04-16 Celestino José Prudente Nóbrega CONSTRUCTIVE ARRANGEMENT IN ORTHODONTIC ACCESSORY
WO2014201460A1 (en) 2013-06-14 2014-12-18 Ormco Corporation Self-ligating orthodontic bracket with rotatable closure member
US10945815B2 (en) 2013-08-19 2021-03-16 Premier Orthodontics Designs, Lllp Orthodontic bracket
US9198740B2 (en) 2013-08-19 2015-12-01 Premier Orthodontic Designs, Lllp Orthodontic bracket
KR102211376B1 (en) 2013-09-06 2021-02-02 오름코 코포레이션 Orthodontic appliances and methods of making and using same
US9655694B2 (en) 2013-12-06 2017-05-23 Christopher C. Cosse Adjustable-prescription orthodontic bracket assemblies
EP2891468B1 (en) 2014-01-03 2018-02-21 Guangliang Wang Orthodontic self-locking bracket
US9901420B2 (en) 2014-02-25 2018-02-27 Ormco Corporation Orthodontic appliances including ferromagnetic shape memory alloys and methods of orthodontic treatment using same
US10111731B2 (en) 2014-11-18 2018-10-30 American Orthodontics Corporation Self-ligating bracket
US20160175072A1 (en) 2014-12-19 2016-06-23 Ormco Corporation Self-ligating orthodontic bracket with rotatable closure member
US10575929B2 (en) 2015-03-24 2020-03-03 Acme Monaco Corporation Multiforce orthodontic archwire
TWI547269B (en) 2015-05-15 2016-09-01 國立清華大學 Orthodontic device
JP6976174B2 (en) 2015-06-08 2021-12-08 アメリカン オーソドンティックス コーポレーション Self-ligating bracket
US20170000588A1 (en) 2015-07-01 2017-01-05 Ormco Corporation Self-ligating orthodontic bracket with an external rotatable closure member
FR3038828B1 (en) 2015-07-16 2017-08-11 Jlh SELF-LATURING ORTHODONTIC HOUSING AND ASSEMBLY COMPRISING SEVERAL OF THESE HOUSINGS
JP6313528B2 (en) 2015-12-20 2018-04-18 貞宏 林 Orthodontic bracket

Also Published As

Publication number Publication date
EP4175585A2 (en) 2023-05-10
CA3188663A1 (en) 2022-01-06
US20220000586A1 (en) 2022-01-06
US11324573B2 (en) 2022-05-10
WO2022006519A3 (en) 2022-02-03
US20220000587A1 (en) 2022-01-06
US11259899B2 (en) 2022-03-01
WO2022006519A2 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
Upadhyay et al. Mini-implant anchorage for en-masse retraction of maxillary anterior teeth: a clinical cephalometric study
US10624718B2 (en) Orthodontic appliances that accommodate incremental and continuous tooth movement, systems and methods
Kook et al. A modified palatal anchorage plate for simple and efficient distalization
Lee et al. Midpalatal miniscrews and high-pull headgear for anteroposterior and vertical anchorage control: cephalometric comparisons of treatment changes
Choi et al. Clinical applications of miniscrews that broaden the scope of non‐surgical orthodontic treatment
Hsu et al. Canine-lateral incisor transposition: controlling root resorption with a bone-anchored T-loop retraction
Bocchieri et al. Correction of a bilateral maxillary canine-first premolar transposition in the late mixed dentition
Sherwood Correction of skeletal open bite with implant anchored molar/bicuspid intrusion
Cai et al. Orthodontic decompensation and correction of skeletal Class III malocclusion with gradual dentoalveolar remodeling in a growing patient
Pisek et al. Treatment of a severe Class II Division 1 malocclusion combined with surgical miniscrew anchorage
Derton et al. Resolution of lower second molar impaction through miniscrew-supported biomechanics: A proposal for a simplified classification
US20230285121A1 (en) Orthodontic device
Badri Effective and efficient correction of severe skeletal class II division 1 malocclusion with intermaxillary elastics
Chung et al. Correction of collapsed occlusion with degenerative joint disease focused on the mandibular arch and timely relocation of a miniplate
Quintao et al. Is traditional treatment a good option for an adult with a Class II deepbite malocclusion?
WO2023130104A1 (en) Orthodontic device
Kim Correction of Occlusal Canting with TADs
Ciğerim et al. Fixed Orthodontic Treatment of a Patient With Skeletal Class II Malocclusion with Infrazygomatic Anchorage and En-Masse Retraction.
Sethi Kumar et al. Alignment of an ectopic canine with mini-implant anchorage: a case report
TADs Application of Buccal TADs for Distalization of Teeth
Garib et al. Correcting anteroposterior discrepancies in patients with orofacial clefts
Kowtham Raj Comparison of Intrusion of Maxillary Incisors using Three-Piece Intrusion Arch and Skeletal Anchorage: A Finite Element study
Secchi et al. Contemporary straight wire biomechanics
Aiello et al. The Use of TADs in the Mandibular Arch to Prevent Proclination of the Lower Incisors during the Use of the Mini Scope Herbst Appliance
B. Naini et al. Alignment and Levelling