US20230265079A1 - Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof - Google Patents
Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof Download PDFInfo
- Publication number
- US20230265079A1 US20230265079A1 US18/096,397 US202318096397A US2023265079A1 US 20230265079 A1 US20230265079 A1 US 20230265079A1 US 202318096397 A US202318096397 A US 202318096397A US 2023265079 A1 US2023265079 A1 US 2023265079A1
- Authority
- US
- United States
- Prior art keywords
- compound
- ido1
- mhz
- nmr
- hydroxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 35
- 239000003112 inhibitor Substances 0.000 title abstract description 39
- 102100040061 Indoleamine 2,3-dioxygenase 1 Human genes 0.000 title description 61
- 101710120843 Indoleamine 2,3-dioxygenase 1 Proteins 0.000 title description 55
- 238000004519 manufacturing process Methods 0.000 title 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 44
- 201000010099 disease Diseases 0.000 claims abstract description 29
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 9
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 114
- 229910052731 fluorine Inorganic materials 0.000 claims description 98
- -1 amino, hydroxy Chemical group 0.000 claims description 78
- 229910052739 hydrogen Inorganic materials 0.000 claims description 35
- 229910052801 chlorine Inorganic materials 0.000 claims description 27
- 150000003839 salts Chemical class 0.000 claims description 23
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 19
- 125000003545 alkoxy group Chemical group 0.000 claims description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 13
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 12
- 125000000389 2-pyrrolyl group Chemical group [H]N1C([*])=C([H])C([H])=C1[H] 0.000 claims description 10
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 9
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 8
- 229910052794 bromium Inorganic materials 0.000 claims description 8
- 125000004574 piperidin-2-yl group Chemical group N1C(CCCC1)* 0.000 claims description 7
- 201000010915 Glioblastoma multiforme Diseases 0.000 claims description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 208000005017 glioblastoma Diseases 0.000 claims description 4
- 230000004770 neurodegeneration Effects 0.000 claims description 4
- 230000004060 metabolic process Effects 0.000 claims description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 3
- 238000011282 treatment Methods 0.000 abstract description 13
- 230000008482 dysregulation Effects 0.000 abstract description 11
- 230000005764 inhibitory process Effects 0.000 abstract description 10
- 238000003786 synthesis reaction Methods 0.000 abstract description 10
- 102000004190 Enzymes Human genes 0.000 abstract description 7
- 108090000790 Enzymes Proteins 0.000 abstract description 7
- 206010003246 arthritis Diseases 0.000 abstract description 2
- 150000003384 small molecules Chemical class 0.000 abstract description 2
- 102000006639 indoleamine 2,3-dioxygenase Human genes 0.000 abstract 2
- 108020004201 indoleamine 2,3-dioxygenase Proteins 0.000 abstract 2
- 230000001024 immunotherapeutic effect Effects 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 description 72
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 64
- 239000000203 mixture Substances 0.000 description 34
- 239000007787 solid Substances 0.000 description 31
- 238000005160 1H NMR spectroscopy Methods 0.000 description 29
- 238000012512 characterization method Methods 0.000 description 28
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- 230000000694 effects Effects 0.000 description 24
- 239000011541 reaction mixture Substances 0.000 description 23
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 21
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 18
- 229910001868 water Inorganic materials 0.000 description 18
- 125000003118 aryl group Chemical group 0.000 description 17
- 238000004128 high performance liquid chromatography Methods 0.000 description 17
- CSCPPACGZOOCGX-WFGJKAKNSA-N acetone d6 Chemical compound [2H]C([2H])([2H])C(=O)C([2H])([2H])[2H] CSCPPACGZOOCGX-WFGJKAKNSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 208000035475 disorder Diseases 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 14
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 14
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000003814 drug Substances 0.000 description 13
- 235000019439 ethyl acetate Nutrition 0.000 description 13
- 239000012453 solvate Substances 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 11
- 101001037256 Homo sapiens Indoleamine 2,3-dioxygenase 1 Proteins 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 11
- 239000012267 brine Substances 0.000 description 11
- 239000000284 extract Substances 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 239000008346 aqueous phase Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 210000004556 brain Anatomy 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 125000004433 nitrogen atom Chemical group N* 0.000 description 9
- 231100000252 nontoxic Toxicity 0.000 description 9
- 230000003000 nontoxic effect Effects 0.000 description 9
- VXWVFZFZYXOBTA-UHFFFAOYSA-N 5-bromo-1h-indole Chemical group BrC1=CC=C2NC=CC2=C1 VXWVFZFZYXOBTA-UHFFFAOYSA-N 0.000 description 8
- 229940043367 IDO1 inhibitor Drugs 0.000 description 8
- YGPSJZOEDVAXAB-UHFFFAOYSA-N kynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC=C1N YGPSJZOEDVAXAB-UHFFFAOYSA-N 0.000 description 8
- 239000002502 liposome Substances 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- RDXURUGZGUGFNH-UHFFFAOYSA-N (5-bromo-1h-indol-2-yl)methanamine Chemical compound BrC1=CC=C2NC(CN)=CC2=C1 RDXURUGZGUGFNH-UHFFFAOYSA-N 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000002552 dosage form Substances 0.000 description 7
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 125000006239 protecting group Chemical group 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- CFABANPJKXPUFN-UHFFFAOYSA-N 5-bromo-1h-indole-2-carbaldehyde Chemical compound BrC1=CC=C2NC(C=O)=CC2=C1 CFABANPJKXPUFN-UHFFFAOYSA-N 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000004440 column chromatography Methods 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- MUJNAWXXOJRNGK-UHFFFAOYSA-N n-[3-(6-methyl-1,2,3,4-tetrahydrocarbazol-9-yl)propyl]cyclohexanamine Chemical compound C1=2CCCCC=2C2=CC(C)=CC=C2N1CCCNC1CCCCC1 MUJNAWXXOJRNGK-UHFFFAOYSA-N 0.000 description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Chemical group 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910052717 sulfur Chemical group 0.000 description 6
- 239000011593 sulfur Chemical group 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- CFOAUYCPAUGDFF-UHFFFAOYSA-N tosmic Chemical compound CC1=CC=C(S(=O)(=O)C[N+]#[C-])C=C1 CFOAUYCPAUGDFF-UHFFFAOYSA-N 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- XHLKOHSAWQPOFO-UHFFFAOYSA-N 5-phenyl-1h-imidazole Chemical compound N1C=NC=C1C1=CC=CC=C1 XHLKOHSAWQPOFO-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 125000002883 imidazolyl group Chemical group 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229940002612 prodrug Drugs 0.000 description 5
- 239000000651 prodrug Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 5
- 229960004799 tryptophan Drugs 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- GRKBVQRPRSFGPW-UHFFFAOYSA-N 2-(3-benzylimidazol-4-yl)-1H-indole Chemical compound C(N1C=NC=C1C1=CC2=CC=CC=C2N1)C1=CC=CC=C1 GRKBVQRPRSFGPW-UHFFFAOYSA-N 0.000 description 4
- KPRZOPQOBJRYSW-UHFFFAOYSA-N 2-(aminomethyl)phenol Chemical compound NCC1=CC=CC=C1O KPRZOPQOBJRYSW-UHFFFAOYSA-N 0.000 description 4
- WXHIORGVGZYWHJ-UHFFFAOYSA-N 5-bromo-2-(1H-imidazol-5-yl)-1H-indole Chemical compound BrC=1C=C2C=C(NC2=CC=1)C1=CN=CN1 WXHIORGVGZYWHJ-UHFFFAOYSA-N 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 101710136122 Tryptophan 2,3-dioxygenase Proteins 0.000 description 4
- 102000057288 Tryptophan 2,3-dioxygenases Human genes 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- SIKJAQJRHWYJAI-UHFFFAOYSA-N benzopyrrole Natural products C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 125000003709 fluoroalkyl group Chemical group 0.000 description 4
- 150000003278 haem Chemical class 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 102000012427 human indoleamine 2,3-dioxygenase 1 Human genes 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- LBJSTVXBHUOORC-UHFFFAOYSA-N 2-[(5-phenylimidazol-1-yl)methyl]-1H-indole Chemical compound C1(=CC=CC=C1)C1=CN=CN1CC=1NC2=CC=CC=C2C=1 LBJSTVXBHUOORC-UHFFFAOYSA-N 0.000 description 3
- CYKQZXQSMNQYDL-UHFFFAOYSA-N 2-[3-[(5-bromo-1H-indol-2-yl)methyl]imidazol-4-yl]-4-fluorophenol Chemical compound N1=CN(C(C2=C(O)C=CC(F)=C2)=C1)CC=1NC2=C(C=1)C=C(Br)C=C2 CYKQZXQSMNQYDL-UHFFFAOYSA-N 0.000 description 3
- BGNGWHSBYQYVRX-UHFFFAOYSA-N 4-(dimethylamino)benzaldehyde Chemical compound CN(C)C1=CC=C(C=O)C=C1 BGNGWHSBYQYVRX-UHFFFAOYSA-N 0.000 description 3
- XDXNMOGAXGHSEP-UHFFFAOYSA-N 5-bromo-2-[(5-phenylimidazol-1-yl)methyl]-1H-indole Chemical compound BrC=1C=C2C=C(NC2=CC=1)CN1C=NC=C1C1=CC=CC=C1 XDXNMOGAXGHSEP-UHFFFAOYSA-N 0.000 description 3
- ODFFPRGJZRXNHZ-UHFFFAOYSA-N 5-fluoroindole Chemical group FC1=CC=C2NC=CC2=C1 ODFFPRGJZRXNHZ-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 241000416162 Astragalus gummifer Species 0.000 description 3
- OGEAFRJSWWFKAT-UHFFFAOYSA-N BrC=1C=C2C=C(NC2=CC=1)C1=CN=CN1CC1=C(C=CC=C1)O Chemical compound BrC=1C=C2C=C(NC2=CC=1)C1=CN=CN1CC1=C(C=CC=C1)O OGEAFRJSWWFKAT-UHFFFAOYSA-N 0.000 description 3
- YBXSVLHUCWFJCX-UHFFFAOYSA-N C=1(NC2=C(C=1)C=C(Br)C=C2)C=1N(C=NC=1)CC1=CC=C(OC)C=C1 Chemical compound C=1(NC2=C(C=1)C=C(Br)C=C2)C=1N(C=NC=1)CC1=CC=C(OC)C=C1 YBXSVLHUCWFJCX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- BYHJHXPTQMMKCA-QMMMGPOBSA-N N-formyl-L-kynurenine Chemical compound [O-]C(=O)[C@@H]([NH3+])CC(=O)C1=CC=CC=C1NC=O BYHJHXPTQMMKCA-QMMMGPOBSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 125000004663 dialkyl amino group Chemical group 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 3
- 238000007824 enzymatic assay Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 229940093915 gynecological organic acid Drugs 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 3
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 3
- 125000001041 indolyl group Chemical group 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000006201 parenteral dosage form Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 238000011321 prophylaxis Methods 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 238000005556 structure-activity relationship Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 235000010487 tragacanth Nutrition 0.000 description 3
- 239000000196 tragacanth Substances 0.000 description 3
- 229940116362 tragacanth Drugs 0.000 description 3
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000001052 yellow pigment Substances 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- PJOPNLWUFQKDGJ-UHFFFAOYSA-N (5-fluoro-1h-indol-2-yl)methanamine Chemical compound FC1=CC=C2NC(CN)=CC2=C1 PJOPNLWUFQKDGJ-UHFFFAOYSA-N 0.000 description 2
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- IZXYWGNIIIWKDO-UHFFFAOYSA-N 2-(3-benzylimidazol-4-yl)-5-bromo-1H-indole Chemical compound C(C1=CC=CC=C1)N1C=NC=C1C=1NC2=CC=C(C=C2C=1)Br IZXYWGNIIIWKDO-UHFFFAOYSA-N 0.000 description 2
- OHQWRWBATWFKHD-UHFFFAOYSA-N 2-[3-[(5-bromo-1H-indol-2-yl)methyl]imidazol-4-yl]-4-chlorophenol Chemical compound BrC=1C=C2C=C(NC2=CC=1)CN1C=NC=C1C1=C(C=CC(=C1)Cl)O OHQWRWBATWFKHD-UHFFFAOYSA-N 0.000 description 2
- XRAMARWSOYLXKK-UHFFFAOYSA-N 2-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound C=1N=CN(C=1C1=C(C=CC=C1)O)CC=1NC2=CC=C(C=C2C=1)F XRAMARWSOYLXKK-UHFFFAOYSA-N 0.000 description 2
- KTIRFPFFOXIVKR-UHFFFAOYSA-N 2-[5-(5-bromo-1H-indol-2-yl)imidazol-1-yl]-1-phenylethanol Chemical compound BrC=1C=C2C=C(NC2=CC=1)C1=CN=CN1CC(O)C1=CC=CC=C1 KTIRFPFFOXIVKR-UHFFFAOYSA-N 0.000 description 2
- FPUYNFZIGIXUCA-UHFFFAOYSA-N 3-[[5-(5-bromo-1H-indol-2-yl)imidazol-1-yl]methyl]phenol Chemical compound BrC=1C=C2C=C(NC2=CC=1)C1=CN=CN1CC=1C=C(C=CC=1)O FPUYNFZIGIXUCA-UHFFFAOYSA-N 0.000 description 2
- TXHSBJADEHBGOG-UHFFFAOYSA-N 3-chloro-2-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound ClC=1C(=C(C=CC=1)O)C1=CN=CN1CC=1NC2=CC=C(C=C2C=1)F TXHSBJADEHBGOG-UHFFFAOYSA-N 0.000 description 2
- VCKPUUFAIGNJHC-UHFFFAOYSA-N 3-hydroxykynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC(O)=C1N VCKPUUFAIGNJHC-UHFFFAOYSA-N 0.000 description 2
- GRFNBEZIAWKNCO-UHFFFAOYSA-N 3-pyridinol Chemical compound OC1=CC=CN=C1 GRFNBEZIAWKNCO-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- PQEQVJRKWGMMKW-UHFFFAOYSA-N 4-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound C=1N=CN(C=1C1=CC=C(O)C=C1)CC=1NC2=C(C=1)C=C(F)C=C2 PQEQVJRKWGMMKW-UHFFFAOYSA-N 0.000 description 2
- ZSBHOCVLOMTACK-UHFFFAOYSA-N 4-[[5-(5-bromo-1H-indol-2-yl)imidazol-1-yl]methyl]benzonitrile Chemical compound BrC=1C=C2C=C(NC2=CC=1)C1=CN=CN1CC1=CC=C(C#N)C=C1 ZSBHOCVLOMTACK-UHFFFAOYSA-N 0.000 description 2
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 2
- WUKHMKZMNDFMRC-UHFFFAOYSA-N 5-bromo-2-[3-[[4-(trifluoromethyl)phenyl]methyl]imidazol-4-yl]-1H-indole Chemical compound C=1(NC2=CC=C(Br)C=C2C=1)C=1N(C=NC=1)CC1=CC=C(C(F)(F)F)C=C1 WUKHMKZMNDFMRC-UHFFFAOYSA-N 0.000 description 2
- QZRPLAQFYQNRKL-UHFFFAOYSA-N 5-chloro-2-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound N1=CN(C(=C1)C1=C(O)C=C(Cl)C=C1)CC=1NC2=C(C=1)C=C(F)C=C2 QZRPLAQFYQNRKL-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- DTJYBOUDGQQXLH-UHFFFAOYSA-N C1(=CC=C(C=C1)CN1C=NC=C1C=1NC2=CC=C(C=C2C=1)Br)C1=CC=CC=C1 Chemical compound C1(=CC=C(C=C1)CN1C=NC=C1C=1NC2=CC=C(C=C2C=1)Br)C1=CC=CC=C1 DTJYBOUDGQQXLH-UHFFFAOYSA-N 0.000 description 2
- QUMCIHKVKQYNPA-RUZDIDTESA-N C1(CCCCC1)CN1[C@@H](C=2N(C=3C=NC(=NC1=3)NC1=C(C=C(C(=O)NC3CCN(CC3)C)C=C1)OC)C(=NN=2)C)CC Chemical compound C1(CCCCC1)CN1[C@@H](C=2N(C=3C=NC(=NC1=3)NC1=C(C=C(C(=O)NC3CCN(CC3)C)C=C1)OC)C(=NN=2)C)CC QUMCIHKVKQYNPA-RUZDIDTESA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 102000016938 Catalase Human genes 0.000 description 2
- 108010053835 Catalase Proteins 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 2
- 239000012346 acetyl chloride Substances 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000000423 cell based assay Methods 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 125000004655 dihydropyridinyl group Chemical group N1(CC=CC=C1)* 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 125000004438 haloalkoxy group Chemical group 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- HCZHHEIFKROPDY-UHFFFAOYSA-N kynurenic acid Chemical compound C1=CC=C2NC(C(=O)O)=CC(=O)C2=C1 HCZHHEIFKROPDY-UHFFFAOYSA-N 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 238000000302 molecular modelling Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 125000004043 oxo group Chemical group O=* 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 2
- 239000008057 potassium phosphate buffer Substances 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000003206 sterilizing agent Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- PBWDRTGTQIXVBR-UHFFFAOYSA-N tert-butyl 5-bromoindole-1-carboxylate Chemical compound BrC1=CC=C2N(C(=O)OC(C)(C)C)C=CC2=C1 PBWDRTGTQIXVBR-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 2
- JQSHBVHOMNKWFT-DTORHVGOSA-N varenicline Chemical compound C12=CC3=NC=CN=C3C=C2[C@H]2C[C@@H]1CNC2 JQSHBVHOMNKWFT-DTORHVGOSA-N 0.000 description 2
- IWTBVKIGCDZRPL-UHFFFAOYSA-N (+/-)-3-Methyl-1-pentanol Natural products CCC(C)CCO IWTBVKIGCDZRPL-UHFFFAOYSA-N 0.000 description 1
- YPBKTZBXSBLTDK-PKNBQFBNSA-N (3e)-3-[(3-bromo-4-fluoroanilino)-nitrosomethylidene]-4-[2-(sulfamoylamino)ethylamino]-1,2,5-oxadiazole Chemical compound NS(=O)(=O)NCCNC1=NON\C1=C(N=O)/NC1=CC=C(F)C(Br)=C1 YPBKTZBXSBLTDK-PKNBQFBNSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- HEVMDQBCAHEHDY-UHFFFAOYSA-N (Dimethoxymethyl)benzene Chemical compound COC(OC)C1=CC=CC=C1 HEVMDQBCAHEHDY-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- FIARMZDBEGVMLV-UHFFFAOYSA-N 1,1,2,2,2-pentafluoroethanolate Chemical group [O-]C(F)(F)C(F)(F)F FIARMZDBEGVMLV-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- NQPJDJVGBDHCAD-UHFFFAOYSA-N 1,3-diazinan-2-one Chemical compound OC1=NCCCN1 NQPJDJVGBDHCAD-UHFFFAOYSA-N 0.000 description 1
- AICIYIDUYNFPRY-UHFFFAOYSA-N 1,3-dihydro-2H-imidazol-2-one Chemical compound O=C1NC=CN1 AICIYIDUYNFPRY-UHFFFAOYSA-N 0.000 description 1
- SILNNFMWIMZVEQ-UHFFFAOYSA-N 1,3-dihydrobenzimidazol-2-one Chemical compound C1=CC=C2NC(O)=NC2=C1 SILNNFMWIMZVEQ-UHFFFAOYSA-N 0.000 description 1
- XHAOTPHHFWVMKO-UHFFFAOYSA-N 1,4-dihydro-1,4-benzodiazepin-5-one Chemical compound O=C1NC=CNC2=CC=CC=C12 XHAOTPHHFWVMKO-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- SBNOTUDDIXOFSN-UHFFFAOYSA-N 1h-indole-2-carbaldehyde Chemical compound C1=CC=C2NC(C=O)=CC2=C1 SBNOTUDDIXOFSN-UHFFFAOYSA-N 0.000 description 1
- AAILEWXSEQLMNI-UHFFFAOYSA-N 1h-pyridazin-6-one Chemical compound OC1=CC=CN=N1 AAILEWXSEQLMNI-UHFFFAOYSA-N 0.000 description 1
- JCZAVVUIFWZMQI-UHFFFAOYSA-N 1h-thieno[2,3-d]imidazole Chemical compound N1C=NC2=C1C=CS2 JCZAVVUIFWZMQI-UHFFFAOYSA-N 0.000 description 1
- 125000000453 2,2,2-trichloroethyl group Chemical group [H]C([H])(*)C(Cl)(Cl)Cl 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- JVSFQJZRHXAUGT-UHFFFAOYSA-N 2,2-dimethylpropanoyl chloride Chemical compound CC(C)(C)C(Cl)=O JVSFQJZRHXAUGT-UHFFFAOYSA-N 0.000 description 1
- 125000003660 2,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003821 2-(trimethylsilyl)ethoxymethyl group Chemical group [H]C([H])([H])[Si](C([H])([H])[H])(C([H])([H])[H])C([H])([H])C(OC([H])([H])[*])([H])[H] 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- IOOWNWLVCOUUEX-WPRPVWTQSA-N 2-[(3r,6s)-2-hydroxy-3-[(2-thiophen-2-ylacetyl)amino]oxaborinan-6-yl]acetic acid Chemical compound OB1O[C@H](CC(O)=O)CC[C@@H]1NC(=O)CC1=CC=CS1 IOOWNWLVCOUUEX-WPRPVWTQSA-N 0.000 description 1
- YQRYZEWQRMCGNE-UHFFFAOYSA-N 2-[[5-(5-bromo-1H-indol-2-yl)imidazol-1-yl]methyl]aniline Chemical compound BrC=1C=C2C=C(NC2=CC=1)C1=CN=CN1CC1=C(N)C=CC=C1 YQRYZEWQRMCGNE-UHFFFAOYSA-N 0.000 description 1
- ZGCYXBMXCQRSEU-UHFFFAOYSA-N 2-chloro-6-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound ClC1=C(C(=CC=C1)C1=CN=CN1CC=1NC2=CC=C(C=C2C=1)F)O ZGCYXBMXCQRSEU-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- 125000004791 2-fluoroethoxy group Chemical group FCCO* 0.000 description 1
- 125000004777 2-fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- UMZCLZPXPCNKML-UHFFFAOYSA-N 2h-imidazo[4,5-d][1,3]thiazole Chemical compound C1=NC2=NCSC2=N1 UMZCLZPXPCNKML-UHFFFAOYSA-N 0.000 description 1
- BMUDPLZKKRQECS-UHFFFAOYSA-K 3-[18-(2-carboxyethyl)-8,13-bis(ethenyl)-3,7,12,17-tetramethylporphyrin-21,24-diid-2-yl]propanoic acid iron(3+) hydroxide Chemical compound [OH-].[Fe+3].[N-]1C2=C(C)C(CCC(O)=O)=C1C=C([N-]1)C(CCC(O)=O)=C(C)C1=CC(C(C)=C1C=C)=NC1=CC(C(C)=C1C=C)=NC1=C2 BMUDPLZKKRQECS-UHFFFAOYSA-K 0.000 description 1
- PZMSFDYEFUPXDS-UHFFFAOYSA-N 3-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound C1(=CC(=CC=C1)C=1N(C=NC=1)CC=1NC2=C(C=1)C=C(F)C=C2)O PZMSFDYEFUPXDS-UHFFFAOYSA-N 0.000 description 1
- 125000003469 3-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- VHSVJUKMYOSUKL-UHFFFAOYSA-N 4-chloro-2-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound C1=C(C2=C(O)C=CC(Cl)=C2)N(C=N1)CC=1NC2=C(C=1)C=C(F)C=C2 VHSVJUKMYOSUKL-UHFFFAOYSA-N 0.000 description 1
- 125000004801 4-cyanophenyl group Chemical group [H]C1=C([H])C(C#N)=C([H])C([H])=C1* 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- AOVCXKFOAYKQOI-UHFFFAOYSA-N 4-fluoro-2-[3-[(5-fluoro-1H-indol-2-yl)methyl]imidazol-4-yl]phenol Chemical compound FC1=CC(=C(C=C1)O)C1=CN=CN1CC=1NC2=CC=C(C=C2C=1)F AOVCXKFOAYKQOI-UHFFFAOYSA-N 0.000 description 1
- KAKIPBBHSOKMEY-UHFFFAOYSA-N 5-bromo-2-[3-(piperidin-2-ylmethyl)imidazol-4-yl]-1H-indole Chemical compound C1(=CN=CN1CC1NCCCC1)C=1NC2=C(C=1)C=C(C=C2)Br KAKIPBBHSOKMEY-UHFFFAOYSA-N 0.000 description 1
- CVICEEPAFUYBJG-UHFFFAOYSA-N 5-chloro-2,2-difluoro-1,3-benzodioxole Chemical group C1=C(Cl)C=C2OC(F)(F)OC2=C1 CVICEEPAFUYBJG-UHFFFAOYSA-N 0.000 description 1
- WTXBRZCVLDTWLP-UHFFFAOYSA-N 5-fluoro-1H-indole-2-carboxylic acid Chemical compound FC1=CC=C2NC(C(=O)O)=CC2=C1 WTXBRZCVLDTWLP-UHFFFAOYSA-N 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 229910014263 BrF3 Inorganic materials 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical group CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 101000892398 Homo sapiens Tryptophan 2,3-dioxygenase Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229940126528 Immuno-Oncology Drug Drugs 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 150000007945 N-acyl ureas Chemical class 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 1
- 229910017912 NH2OH Inorganic materials 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- YGACXVRLDHEXKY-WXRXAMBDSA-N O[C@H](C[C@H]1c2c(cccc2F)-c2cncn12)[C@H]1CC[C@H](O)CC1 Chemical compound O[C@H](C[C@H]1c2c(cccc2F)-c2cncn12)[C@H]1CC[C@H](O)CC1 YGACXVRLDHEXKY-WXRXAMBDSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical group CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 238000006619 Stille reaction Methods 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 102100040653 Tryptophan 2,3-dioxygenase Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003510 anti-fibrotic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002543 antimycotic Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003725 azepanyl group Chemical group 0.000 description 1
- MNFORVFSTILPAW-UHFFFAOYSA-N azetidin-2-one Chemical compound O=C1CCN1 MNFORVFSTILPAW-UHFFFAOYSA-N 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- CSKNSYBAZOQPLR-UHFFFAOYSA-N benzenesulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=CC=C1 CSKNSYBAZOQPLR-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical compound ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000012754 cardiac puncture Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910000333 cerium(III) sulfate Inorganic materials 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 239000007910 chewable tablet Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000010402 computational modelling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004802 cyanophenyl group Chemical group 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 125000004786 difluoromethoxy group Chemical group [H]C(F)(F)O* 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 125000005043 dihydropyranyl group Chemical group O1C(CCC=C1)* 0.000 description 1
- 125000005053 dihydropyrimidinyl group Chemical group N1(CN=CC=C1)* 0.000 description 1
- 125000005056 dihydrothiazolyl group Chemical group S1C(NC=C1)* 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 125000005883 dithianyl group Chemical group 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 229950006370 epacadostat Drugs 0.000 description 1
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 235000020375 flavoured syrup Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000004428 fluoroalkoxy group Chemical group 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- NHGVZTMBVDFPHJ-UHFFFAOYSA-N formyl fluoride Chemical compound FC=O NHGVZTMBVDFPHJ-UHFFFAOYSA-N 0.000 description 1
- 238000010575 fractional recrystallization Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229940109738 hematin Drugs 0.000 description 1
- 238000003919 heteronuclear multiple bond coherence Methods 0.000 description 1
- 238000005570 heteronuclear single quantum coherence Methods 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 238000011293 immunotherapeutic strategy Methods 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- XJTQJERLRPWUGL-UHFFFAOYSA-N iodomethylbenzene Chemical compound ICC1=CC=CC=C1 XJTQJERLRPWUGL-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003041 laboratory chemical Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 229960003194 meglumine Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 230000037125 natural defense Effects 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- OIPZNTLJVJGRCI-UHFFFAOYSA-M octadecanoyloxyaluminum;dihydrate Chemical compound O.O.CCCCCCCCCCCCCCCCCC(=O)O[Al] OIPZNTLJVJGRCI-UHFFFAOYSA-M 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 238000007248 oxidative elimination reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229940031826 phenolate Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 210000005059 placental tissue Anatomy 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- UFUASNAHBMBJIX-UHFFFAOYSA-N propan-1-one Chemical group CC[C]=O UFUASNAHBMBJIX-UHFFFAOYSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- VTGOHKSTWXHQJK-UHFFFAOYSA-N pyrimidin-2-ol Chemical compound OC1=NC=CC=N1 VTGOHKSTWXHQJK-UHFFFAOYSA-N 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- GJAWHXHKYYXBSV-UHFFFAOYSA-N quinolinic acid Chemical compound OC(=O)C1=CC=CN=C1C(O)=O GJAWHXHKYYXBSV-UHFFFAOYSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000003419 tautomerization reaction Methods 0.000 description 1
- ZRHYDZGNLOZALR-UHFFFAOYSA-N tert-butyl 5-bromo-2-(1-tritylimidazol-4-yl)indole-1-carboxylate Chemical compound BrC=1C=C2C=C(N(C2=CC=1)C(=O)OC(C)(C)C)C=1N=CN(C=1)C(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 ZRHYDZGNLOZALR-UHFFFAOYSA-N 0.000 description 1
- VDBQXMOILQWSQX-UHFFFAOYSA-N tert-butyl 5-bromo-2-tributylstannylindole-1-carboxylate Chemical compound BrC=1C=C2C=C(N(C2=CC=1)C(=O)OC(C)(C)C)[Sn](CCCC)(CCCC)CCCC VDBQXMOILQWSQX-UHFFFAOYSA-N 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000006211 transdermal dosage form Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- STMPXDBGVJZCEX-UHFFFAOYSA-N triethylsilyl trifluoromethanesulfonate Chemical compound CC[Si](CC)(CC)OS(=O)(=O)C(F)(F)F STMPXDBGVJZCEX-UHFFFAOYSA-N 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 238000006513 van Leusen imidazole synthesis reaction Methods 0.000 description 1
- 238000006175 van Leusen reaction Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 235000016804 zinc Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
Definitions
- the present application pertains to compounds and methods for inhibition of indoleamine 2,3-dioxygenase-1. More particularly, the present application pertains to use of the compounds to treat diseases and disorders mediated by indoleamine 2,3-dioxygenase-1 and the corresponding methods of treatment.
- IDO1 indoleamine 2,3-dioxygenase-1
- IDO1 is a heme-containing enzyme that catalyzes the oxidative cleavage of the C2-C3 indole double bond to produce N-formylkynurenine.
- the generated N-formylkynurenine is then further metabolized to other bioactive metabolites, including kynurenine, kynurenic acid, 3-hydroxy-kynurenine, quinolinic acid and eventually nicotinamide adenine dinucleotide (NAD + ).
- Expression of IDO1 can be induced by IFN- ⁇ , TNF- ⁇ and other inflammatory cytokines.
- IDO1 Although initially identified as an important enzyme in modulating the immune response in placental tissue, IDO1 was later implicated as a key mediator of innate and adaptive immunity in the microenvironment of tumors. The expression of IDO1 by various tumor cells leads to the depletion of tryptophan in the microenvironment and subsequent block of T-cell proliferation. Dysregulation of IDO1 expression has also been implicated in the progression of several other conditions such as arthritis, inflammation, and neurological disorders such as Alzheimer's disease. Inhibition of IDO1 with a small molecule is an attractive immunotherapeutic strategy for the treatment of a wide range of cancers; discovery of additional classes of such molecules is a continued need in immuno-oncology drug design.
- An object of the present application is to provide inhibitors of IDO1.
- the inhibitors are useful in treating disorders associated with abnormal IDO1 activity or dysregulation of IDO1 expression.
- the present application provides a compound, or a pharmaceutically acceptable salt thereof, of either of Formulas I is provided:
- the present application provides a method of treating a disease associated with tryptophan metabolism in a subject, the method comprising administering a therapeutically effective amount to a subject of a compound, or a pharmaceutically acceptable salt thereof, of either of Formulas I:
- the method of treatment is for treating cancer, such as glioblastoma multiforme.
- the method is for treating neurodegeneration, such as in Alzheimer's disease.
- the present application provides a pharmaceutical composition
- a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound, or a pharmaceutically acceptable salt thereof, of either of Formulas I:
- the present application provides a use of an inhibitor compound as defined above and in the detailed description below, for treatment of a disease or disorder associated with dysregulation of IDO1 expression or abnormal IDO1 activity in a subject in need thereof.
- the use is for treating cancer, such as glioblastoma multiforme.
- the method is for treating neurodegeneration, such as in Alzheimer's disease.
- IDO indoleamine 2,3-dioxygenase 1
- TDO tryptophan 2,3-dioxygenase
- 4-PI 4-phenylimidazole
- SAR structure-activity relationship
- TosMIC tosylmethyl isocyanide
- Boc2O di-tert-butyl dicarbonate
- LDA lithium diisopropylamide
- THF tetrahydrofuran
- DMF N,N-dimethylformamide
- LE ligand efficiency
- LLE ligand lipophilicity efficiency
- Ar aryl group.
- acyl as used herein means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein.
- Representative examples of acyl include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.
- administering should be understood to mean providing a compound of the present invention to an individual in a form that can be introduced into that individual's body in an amount effective for prophylaxis, treatment, or diagnosis, as applicable.
- forms may include e.g., oral dosage forms, injectable dosage forms, transdermal dosage forms, inhalation dosage forms, and rectal dosage forms.
- alkoxy as used herein means an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom.
- Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.
- alkyl as used herein means a straight or branched chain hydrocarbon containing from 1 to 20 carbon atoms, preferably from 1 to 10 carbon atoms, more preferably 1, 2, 3, 4, 5, or 6 carbons.
- Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, and n-decyl.
- amido as used herein means an amino, alkylamino, or dialkylamino group appended to the parent molecular moiety through a carbonyl group, as defined herein.
- Representative examples of amido include, but are not limited to, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, and ethylmethylaminocarbonyl.
- amino as used herein means a —NH 2 group.
- aryl as used herein means a monocyclic hydrocarbon aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl.
- arylalkyl as used herein means an aryl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of arylalkyl include, but are not limited to, benzyl, 2-phenylethyl and 3-phenylpropyl.
- carbonyl as used herein means a —C( ⁇ O)— group.
- carboxy as used herein means a —COOH group, which may be protected as an ester group: —COO-alkyl.
- cyano as used herein means a —CN group.
- cyanophenyl as used herein means a —CN group appended to the parent molecular moiety through a phenyl group, including, but not limited to, 4-cyanophenyl, 3-cyanophenyl, and 2-cyanophenyl.
- cycloalkyl as used herein means a saturated cyclic hydrocarbon group containing from 3 to 8 carbons.
- examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
- dialkylamino as used herein means two independent alkyl groups, as defined herein, appended to the parent molecular moiety through a nitrogen atom.
- Representative examples of dialkylamino include, but are not limited to, dimethylamino, diethylamino, ethylmethylamino, and butylmethylamino.
- fluoro as used herein means —F.
- fluoroalkoxy as used herein means at least one fluoroalkyl group, as defined herein, appended to the parent molecular moiety through an oxygen group, as defined herein.
- fluoroalkyl include, but are not limited to, trifluoromethoxy (CF 3 O—), and difluoromethoxy (CHF 2 O—).
- fluoroalkyl as used herein means at least one fluoro group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of fluoroalkyl include, but are not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, and 2,2,2-trifluoroethyl.
- halo or halogen as used herein means Cl, Br, I, or F.
- haloalkoxy as used herein means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein.
- Representative examples of haloalkoxy include, but are not limited to, 2-fluoroethoxy, trifluoromethoxy, and pentafluoroethoxy.
- haloalkyl as used herein means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of haloalkyl include, but are not limited to, chloromethyl, 2-fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.
- heteroaryl refers to an aromatic ring containing one or more heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Such rings can be monocyclic or bicyclic as further described herein. Heteroaryl rings are connected to the parent molecular moiety through a carbon or nitrogen atom.
- heteroaryl or “5- or 6-membered heteroaryl ring”, as used herein, refer to 5- or 6-membered aromatic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof.
- examples of such rings include, but are not limited to, a ring wherein one carbon is replaced with an O or atom; one, two, or three N atoms arranged in a suitable manner to provide an aromatic ring; or a ring wherein two carbon atoms in the ring are replaced with one 0 or S atom and one N atom.
- Such rings can include, but are not limited to, a six-membered aromatic ring wherein one to four of the ring carbon atoms are replaced by nitrogen atoms, five-membered rings containing a sulfur, oxygen, or nitrogen in the ring; five membered rings containing one to four nitrogen atoms; and five membered rings containing an oxygen or sulfur and one to three nitrogen atoms.
- 5- to 6-membered heteroaryl rings include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, [1,2,3]thiadiazolyl, [1,2,3]oxadiazolyl, thiazolyl, thienyl, [1,2,3]triazinyl, [1,2,4]triazinyl, [1,3,5]triazinyl, [1,2,3]triazolyl, and [1,2,4]triazolyl.
- bicyclic heteroaryl or “8- to 12-membered bicyclic heteroaryl ring”, as used herein, refers to an 8-, 9-, 10-, 11-, or 12-membered bicyclic aromatic ring containing at least 3 double bonds, and wherein the atoms of the ring include one or more heteroatoms independently selected from oxygen, sulfur, and nitrogen.
- bicyclic heteroaryl rings include indolyl, benzothienyl, benzofuranyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, benzoisothiazolyl, benzoisoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pteridinyl, purinyl, naphthyridinyl, cinnolinyl, thieno[2,3-d]imidazole, thieno[3,2-b]pyridinyl, and pyrrolopyrimidinyl.
- heterocyclic ring and “heterocycle”, as used herein, refer to a 4- to 12-membered monocyclic or bicyclic ring containing one, two, three, four, or five heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur and also containing either at least one carbon atom attached to four other atoms or one carbon atom substituted with an oxo group and attached to two other atoms.
- Four-and five-membered rings may have zero or one double bond.
- Six-membered rings may have zero, one, or two double bonds.
- Seven- and eight-membered rings may have zero, one, two, or three double bonds.
- the non-aromatic heterocycle groups of the invention can be attached through a carbon atom or a nitrogen atom.
- the non-aromatic heterocycle groups may be present in tautomeric form.
- Representative examples of nitrogen-containing heterocycles include, but are not limited to, azepanyl, azetidinyl, aziridinyl, azocanyl, dihydropyridazinyl, dihydropyridinyl, dihydropyrimidinyl, morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, pyrrolinyl, dihydrothiazolyl, dihydropyridinyl, and thiomorpholinyl.
- non-nitrogen containing non-aromatic heterocycles include, but are not limited to, dioxanyl, dithianyl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, and [1,3]dioxolanyl.
- heterocycles include, but are not limited to, azetidin-2-one, azepan-2-one, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, 1H-benzo[d]imidazol-2(3H)-one, [1,2,4]thiadiazolonyl, [1,2,5]thiadiazol
- hydroxy as used herein means an —OH group.
- hydroxy-protecting group means a substituent which protects hydroxyl groups against undesirable reactions during synthetic procedures.
- hydroxy-protecting groups include, but are not limited to, methoxymethyl, benzyloxymethyl, 2-methoxyethoxymethyl, 2-(trimethylsilyl)ethoxymethyl, benzyl, triphenylmethyl, 2,2,2-trichloroethyl, t-butyl, trimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, methylene acetal, acetonide benzylidene acetal, cyclic ortho esters, methoxymethylene, cyclic carbonates, and cyclic boronates.
- Hydroxy-protecting groups are appended onto hydroxy groups by reaction of the compound that contains the hydroxy group with a base, such as triethylamine, and a reagent selected from an alkyl halide, alkyl trifilate, trialkylsilyl halide, trialkylsilyl triflate, aryldialkylsilyltriflate, or an alkylchloroformate, CH 2 I 2 , or a dihaloboronate ester, for example with methyliodide, benzyl iodide, triethylsilyltriflate, acetyl chloride, benzylchloride, or dimethylcarbonate.
- a protecting group also may be appended onto a hydroxy group by reaction of the compound that contains the hydroxy group with acid and an alkyl acetal.
- nitrogen protecting group means those groups intended to protect a nitrogen atom against undesirable reactions during synthetic procedures. Nitrogen protecting groups comprise carbamates, amides, N-benzyl derivatives, and imine derivatives. Preferred nitrogen protecting groups are acetyl, benzoyl, benzyl, benzyloxycarbonyl (Cbz), formyl, phenylsulfonyl, pivaloyl, tert-butoxycarbonyl (Boc), tert-butylacetyl, trifluoroacetyl, and triphenylmethyl (trityl).
- Nitrogen-protecting groups are appended onto primary or secondary amino groups by reacting the compound that contains the amine group with base, such as triethylamine, and a reagent selected from an alkyl halide, an alkyl trifilate, a dialkyl anhydride, for example as represented by (alkyl-O) 2 C ⁇ O, a diaryl anhydride, for example as represented by (aryl-O) 2 C ⁇ O, an acyl halide, an alkylchloroformate, or an alkylsulfonylhalide, an arylsulfonylhalide, or halo-CON(alkyl) 2 , for example acetylchloride, benzoylchloride, benzylbromide, benzyloxycarbonylchloride, formylfluoride, phenylsulfonylchloride, pivaloylchloride, (tert-butyl-O—C ⁇ O)
- prodrug encompasses pharmaceutically acceptable esters, carbonates, thiocarbonates, N-acyl derivatives, N-acyloxyalkyl derivatives, quaternary derivatives of tertiary amines, N-Mannich bases, Schiff bases, aminoacid conjugates, phosphate esters, metal salts and sulfonate esters of compounds disclosed herein.
- prodrugs include compounds that comprise a biohydrolyzable moiety (e.g., a biohydrolyzable amide, biohydrolyzable carbamate, biohydrolyzable carbonate, biohydrolyzable ester, biohydrolyzable phosphate, or biohydrolyzable ureide analog).
- Prodrugs of compounds disclosed herein are readily envisioned and prepared by those of ordinary skill in the art. See, e.g., Design of Prodrugs, Bundgaard, A. Ed., Elseview, 1985; Bundgaard, hours., “Design and Application of Prodrugs,” A Textbook of Drug Design and Development , Krosgaard-Larsen and hours. Bundgaard, Ed., 1991, Chapter 5, p. 113-191; and Bundgaard, hours., Advanced Drug Delivery Review, 1992, 8, 1-38.
- protecting group when used to refer to part of a molecule subjected to a chemical reaction, means a chemical moiety that is not reactive under the conditions of that chemical reaction, and which may be removed to provide a moiety that is reactive under those conditions.
- Protecting groups are well known in the art. See, e.g., Greene, T. W. and Wuts, P. G. M., Protective Groups in Organic Synthesis (3 rd ed., John Wiley & Sons: 1999); Larock, R. C., Comprehensive Organic Transformations (2 nd ed., John Wiley & Sons: 1999).
- Some examples include benzyl, diphenylmethyl, trityl, Cbz, Boc, Fmoc, methoxycarbonyl, ethoxycarbonyl, and pthalimido.
- Protecting groups include, for example, nitrogen protecting groups and hydroxy-protecting groups.
- the present application provides compounds that are useful as inhibitors of indoleamine 2,3-dioxygenase-1(IDO1). Such compounds can be particularly useful in the treatment of diseases or disorders that are mediated by IDO1 activity.
- the present application further provides uses and methods for the treatment of a subject affected by a disease or disorder associated with dysregulation of IDO1 expression and/or abnormal IDO1 activity.
- a number of co-crystals with IDO1 have been disclosed including 4-phenylimidazole (4-PI), and members of the GDC-0919, and imidazothiazole inhibitor series. Based upon these X-ray bound co-crystals the IDO1 active site is commonly divided into three regions: pocket A, pocket B, and a heme cofactor. Aromatic, halogen-substituted aromatics or heteroaromatic motifs (such as indole) are most frequently chosen to occupy pocket A. Pocket B contains a mixture of hydrophilic (Arg-231) and hydrophobic (Phe) residues. The heme cofactor contains two distinct structural features: the porphyrin-bound iron atom, and a propionate residue which projects into the binding site.
- inhibitors of IDO1 that have been designed based on modelling studies such that they are anticipated to bind in all three regions of the IDO1 active site. These inhibitors have now been found to selectively inhibit IDO1.
- the present application provides an inhibitor compound, or a pharmaceutically acceptable salt thereof, that comprises an optionally-substitituted indolyl group bound directly, or via a methylene group, to an optionally-substituted imidazole group.
- the inhibitor is a compound of Formula Ia or Ib:
- R 4 is H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl; and R 2 , R 3 , R 5 , and R 6 are each independently H, F, Cl, amino, or hydroxyl. In another example, R 4 is H, F, Cl, amino, hydroxy, methoxy or cyano.
- an IDO1 inhibitor that is a compound of Formula Ia in which X is Br; R 4 is H, methoxy, or cyano, R 2 is H, amino or hydroxyl; and R 3 , R 5 , and R 6 are each H.
- an IDO1 inhibitor that is a compound of Formula Ib in which X is Br or F; R 6 is H; R 5 is H, F, or Cl; R 3 and R 4 are each H, Cl, or hydroxy; and R 2 is H or hydroxy.
- an IDO1 inhibitor that is a compound of Formula Ib in which R 1 is pyrrol-2-yl, and X is F or Br.
- the compounds of the invention can be used in the form of pharmaceutically acceptable salts derived from inorganic or organic acids.
- Pharmaceutically acceptable salt(s) are well-known in the art.
- the term “pharmaceutically acceptable salts” as used herein generally refers to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases.
- Suitable pharmaceutically acceptable base addition salts include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine.
- Suitable non-toxic acids include inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, galacturonic, gluconic, glucuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, and p-toluenesulfonic acid.
- inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethe
- Non-toxic acids include hydrochloric, hydrobromic, phosphoric, sulfuric, and methanesulfonic acids.
- Examples of specific salts thus include hydrochloride and mesylate salts.
- Others are well-known in the art. See, e.g., Remington's Pharmaceutical Sciences, 18 th ed. (Mack Publishing, Easton Pa.: 1990) and Remington: The Science and Practice of Pharmacy, 19 th ed. (Mack Publishing, Easton Pa.: 1995).
- acid addition salts, carboxylate salts, amino acid addition salts, and zwitterion salts of compounds of the present invention may also be considered pharmaceutically acceptable if they are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
- Such salts may also include various solvates and hydrates of the compound of the present invention.
- the compounds of the invention can be used in the form of pharmaceutically acceptable solvates.
- Pharmaceutically acceptable solvate(s) are well-known in the art.
- pharmaceutically acceptable solvates generally refers to solvates prepared from pharmaceutically acceptable non-toxic solvents.
- a pharmaceutically acceptable solvate is an aggregate that consists of an inhibitor compound with one or more pharmaceutically acceptable, non-toxic solvent molecules.
- a hydrate is one example of a pharmaceutically acceptable solvate.
- the solvent in the solvate can be an alcohol, examples of which are 1-butanol, 2-butanol, ethanol, 2-ethoxyethanol, ethylene glycol, isopropanol, 2-methoxyethanol, 3-methyl-1-butanol, 1-pentanol and 1-propanol.
- Certain compounds of the present invention may be isotopically labelled, e.g., with various isotopes of carbon, fluorine, or iodine, as applicable when the compound in question contains at least one such atom.
- Stereoisomers include enantiomers and diastereomers, and mixtures of enantiomers or diastereomers.
- Individual stereoisomers of compounds of the invention may be prepared synthetically from commercially available starting materials which contain asymmetric or chiral centers or by preparation of racemic mixtures followed by resolution well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and optional liberation of the optically pure product from the auxiliary as described in Furniss, Hannaford, Smith, and Tatchell, “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), Longman Scientific & Technical, Essex CM20 2JE, England, or (2) direct separation of the mixture of optical enantiomers on chiral chromatographic columns or (3) fractional recrystallization methods.
- Certain compounds of the present invention may exist as cis or trans isomers, wherein substituents on a ring may attached in such a manner that they are on the same side of the ring (cis) relative to each other, or on opposite sides of the ring relative to each other (trans).
- substituents on a ring may attached in such a manner that they are on the same side of the ring (cis) relative to each other, or on opposite sides of the ring relative to each other (trans).
- Such methods are well known to those of ordinary skill in the art, and may include separation of isomers by recrystallization or chromatography. It should be understood that the compounds of the invention may possess tautomeric forms, as well as geometric isomers, and that these also constitute an aspect of the invention.
- a chemical moiety that forms part of a larger compound may be described herein using a name commonly accorded it when it exists as a single molecule or a name commonly accorded its radical.
- the terms “pyridine” and “pyridyl” are accorded the same meaning when used to describe a moiety attached to other chemical moieties.
- the two phrases “XOH, wherein X is pyridyl” and “XOH, wherein X is pyridine” are accorded the same meaning, and encompass the compounds pyridin-2-ol, pyridin-3-ol and pyridin-4-ol.
- an IDO1 inhibitor compound as described above, which is substantially pure.
- substantially pure means that the isolated material is at least 90% pure, preferably 95% pure, even more preferably 99% pure as assayed by analytical techniques known in the art.
- compositions comprising one or more IDO1 inhibitor as described herein, or a pharmaceutically acceptable salt or solvate thereof.
- Such compositions can be used in the treatment of diseases or disorders characterized by or associated with a dysregulation of IDO1 expression or abnormal IDO1 activity.
- These pharmaceutical compositions comprise one or more IDO1 inhibitor as described herein, or a pharmaceutically acceptable salt or solvate thereof, and one or more pharmaceutically acceptable excipient.
- pharmaceutically acceptable excipient means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water;
- compositions of the present invention can be formulated for oral administration in solid or liquid form, for parenteral intravenous, subcutaneous, intramuscular, intraperitoneal, intra-arterial, or intradermal injection, for or for vaginal, nasal, topical, or rectal administration.
- Pharmaceutical compositions of the present invention suitable for oral administration can be presented as discrete dosage forms, e.g., tablets, chewable tablets, caplets, capsules, liquids, and flavored syrups. Such dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1990).
- Parenteral dosage forms can be administered to patients by various routes including subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are specifically sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions. Pharmaceutical compositions for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions.
- aqueous and nonaqueous carriers, diluents, solvents or vehicles examples include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like, and suitable mixtures thereof), vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate, or suitable mixtures thereof.
- Suitable fluidity of the composition may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- These compositions may also contain adjuvants such as preservative agents, wetting agents, emulsifying agents, and dispersing agents.
- microorganisms Prevention of the action of microorganisms may be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example, sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- agents delaying absorption for example, aluminum monostearate and gelatin.
- the absorption of the drug in order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Suspensions in addition to the active compounds, may contain suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, and mixtures thereof.
- suspending agents for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, and mixtures thereof.
- the compounds of the invention can be incorporated into slow-release or targeted-delivery systems such as polymer matrices, liposomes, and microspheres. They may be sterilized, for example, by filtration through a bacteria-retaining filter or by incorporation of sterilizing agents in the form of sterile solid compositions, which may be dissolved in sterile water or some other sterile injectable medium
- Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations also are prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
- the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic, parenterally acceptable diluent or solvent such as a solution in 1,3-butanediol.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid are used in the preparation of injectables.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- one or more compounds of the invention is mixed with at least one inert pharmaceutically acceptable carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and salicylic acid; b) binders such as carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia; c) humectants such as glycerol; d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; e) solution retarding agents such as paraffin; f) absorption accelerators such as quaternary ammonium compounds; g) wetting agents such as cetyl alcohol and glycerol monostearate; h
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugar as well as high molecular weight polyethylene glycols.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract in a delayed manner Examples of materials which can be useful for delaying release of the active agent can include polymeric substances and waxes.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and
- the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches.
- a desired compound of the invention is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
- the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to the compounds of this invention, lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
- Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
- Liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes may be used.
- the present compositions in liposome form may contain, in addition to the compounds of the invention, stabilizers, preservatives, and the like.
- the preferred lipids are the natural and synthetic phospholipids and phosphatidylcholines (lecithins) used separately or together. Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y., (1976), p 33 et seq.
- Actual dosage levels of active ingredients in the pharmaceutical compositions of this invention can be varied so as to obtain an amount of the active compound(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions and mode of administration.
- the selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- an effective amount of one of the compounds of the invention can be employed in pure form or, where such forms exist, in a pharmaceutically acceptable salt form or a pharmaceutically acceptable solvate form.
- the compound can be administered as a pharmaceutical composition containing the compound of interest in combination with one or more pharmaceutically acceptable carriers. It will be understood, however, that the total daily usage of the compounds and compositions of the invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; the risk/benefit ratio; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- the total daily dose of the compounds of the present invention as administered to a human or lower animal may range from about 0.0003 to about 30 mg/kg of body weight.
- more preferable doses can be in the range of from about 0.0003 to about 1 mg/kg body weight.
- the effective daily dose can be divided into multiple doses for purposes of administration; consequently, single dose compositions may contain such amounts or submultiples thereof to make up the daily dose.
- the compositions of the invention are preferably provided in the form of tablets containing about 1.0, about 5.0, about 10.0, about 15.0, about 25.0, about 50.0, about 100, about 250, or about 500 milligrams of the active ingredient.
- the present application provides a method of treating a disease or disorder associated with dysregulation of IDO1 expression and/or abnormal IDO1 activity.
- a method for preventing onset or progression of a disease or disorder associated with dysregulation of IDO1 expression and/or abnormal IDO1 activity is provided.
- diseases or disorders are characterized by or associated with increased IDO1 expression or activity.
- These methods comprises administering a therapeutically effective amount to a subject of a compound, or a pharmaceutically acceptable salt or solvate thereof, of Formula Ia or Ib:
- the method is for treating a disease associated with tryptophan metabolism.
- the disease can be cancer, such as glioblastoma multiforme, neurodegeneration or Alzheimer's disease.
- the present application provides a use of a compound, or a pharmaceutically acceptable salt or solvate thereof, of Formula Ia or Ib:
- the inhibitor compounds of the present application can be used in combination with one or more additional therapeutic agent that are being used and/or developed to treat cancers or other diseases or disorders that are associated with dysregulation of IDO1 expression or abnormal IDO1 activity, e.g., inflammatory disorders, Alzheimers' disease.
- the one or more additional therapeutic agent may be, for example, a chemotherapeutic agent, an immunotherapeutic agent, a radiotherapeutic agent, an anti-neoplastic agent, an anti-cancer agent, an anti-proliferation agent, an anti-fibrotic agent, an anti-angiogenic agent, a therapeutic antibody, or any combination thereof.
- the terms “prevent,” “preventing” and “prevention” contemplate an action that occurs before a patient begins to suffer from the specified disease or disorder, which inhibits or reduces the severity of the disease or disorder or of one or more of its symptoms.
- the terms encompass prophylaxis.
- a “prophylactically effective amount” of a compound is an amount sufficient to prevent a disease or condition, or one or more symptoms associated with the disease or condition, or prevent its recurrence.
- a prophylactically effective amount of a compound is an amount of therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease.
- the term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
- a “diagnostically effective amount” of a compound is an amount sufficient to diagnose a disease or condition.
- administration of a compound for diagnostic purposes does not continue for as long as a therapeutic use of a compound, and might be administered only once if such is sufficient to produce the diagnosis.
- a “therapeutically effective amount” of a compound is an amount sufficient to treat a disease or condition, or one or more symptoms associated with the disease or condition.
- subject is intended to include living organisms in which disease may occur. Examples of subjects include humans, monkeys, cows, sheep, goats, dogs, cats, mice, rats, and transgenic species thereof.
- Mass spectra were recorded using electron spray ionisation (ESP + ) with a Xevo TQ-XS Tandem Triple Quadrupole Mass Spectrometer. The parent ion [M+H] + is quoted. Purity was determined using either a Waters Aquity UPLC® (2.1 ⁇ 50 mm, 1.7 ⁇ m particle size) or a Waters 1525EF Binary HPLC pump/Silia Chrom® SB C18 (4.6 ⁇ 250 nm, 5.0 ⁇ m particle size) with a Waters 2487 Dual ⁇ Absorbance Detector. For both instruments elution with a water/0.1% formic acid and acetonitrile gradient was used with a flow rate of 0.60 mL/min (5 and 15 minute run times respectively). UV detection was carried out at a wavelength of 254 nm.
- Reagents and solvents were purified by standard means (e.g., by following relevant directions in D. D. Perrin, W. L. F. A., Purification of Laboratory Chemicals. 1988). All experiments were performed under anhydrous conditions under an atmosphere of argon, except where stated, using oven-dried apparatus and employing standard techniques for handling air-sensitive materials. Unless stated otherwise, reactions were performed at room temperature (RT). Describe various experimental setups by subtitle, then start numbering with IUPAC names as subtitles. The starting materials are either commercially available or may be prepared from commercially available reagents using chemical reactions known in the art.
- inhibitor compounds as described above were synthesized.
- the inhibitor compounds were designed to include a suitable lipophilic group, such as a 5-bromoindole ring, for occupying pocket A of the IDO1 active site.
- a suitable lipophilic group such as a 5-bromoindole ring
- incorporation of an imidazole group attached to the C2 position of the indole could bind Fe 2+ and the free NH of the imidazole could hydrogen bond to Ser167 of the IDO1 active site.
- This design was supported by computational modelling (using PDB ID: 2DOT as a template) which indicated that an imidazole attached to the C2 position of 5-bromoindole would be orientated at an appropriate vector to bind Fe 2+ .
- These “Series 1” compounds are generally denoted herein by a compound number starting with “9”.
- 5-bromo-2-imidazoindole (6) was synthesized in a 5-step sequence.
- Commercially available 5-bromoindole (4) was protected with a Boc group and then stannylated at the C2 position to provide compound 5.
- a Stille coupling was then utilized to attach a trityl protected imidazole ring. This was followed by protecting group removal to furnish the target molecule.
- the inhibitory activity of 6 was determined against IDO using an in vitro assay described in the Examples below and was measured to be 30 ⁇ M. Despite the modest gain in potency of 6 versus 4-PI, compound 6 was evaluated as a suitably versatile scaffold for the generation of analogs.
- E. Coli were transformed with a PET15b-6HISIDO1 vector.
- a single colony was inoculated in Luria-Bertani (LB) medium containing 100 ug/mL ampicillin and was allowed to grow for 4 hrs at 37° C. This culture was added to a 50 mL culture and grown overnight at 37° C. The 50 mL overnight culture was transferred to 1 L culture of LB Overnight ExpressTM autoinduction medium containing 635 ⁇ M Aminolevulinic acid, 20 ⁇ M Hematin porcine, and 100 ug/mL of ampicillin 1 L culture was grown at 30° C. for 24 hours. Bacterial cells were then collected as a pellet through centrifugation at 6000 g for 10 min at 4° C.
- Cell Pellets were stored at ⁇ 80° C. until use. Cell pellets corresponding to 500 mL of bacterial culture were suspended in 50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole, 0.1% Triton X-100, pH 7.8, 1 mg/mL Lysozyme (Sigma-Aldrich cat #L7001) and 1 tablet cOmpleteTM EDTA-free Protease Inhibitor Cocktail per 50 mL of buffer (Roche cat #11873580001). The cell suspension was sonicated on ice at 90% maximal power using a Sonics Vibra-Cell VCX130 for 5 mins 30 seconds, then centrifuged at 16,000g for 20 mins at 4° C.
- IDO enzymatic assay was carried out generally following a procedure provided in Röhrig, U. F.; Majjigapu, S. R.; Vogel, P.; Zoete, V.; Michielin, O., J. Med. Chem. 2015, 58 (24), 9421-37.
- a standard reaction mixture 200 ⁇ L/well) containing 50 mM potassium phosphate buffer (pH 6.5), 20 mM ascorbic acid (neutralised with NaOH), 200 ⁇ g/mL catalase, 10 ⁇ M methylene blue, 6.25 ⁇ g/mL recombinant human IDO1 and 200 ⁇ M L-Tryptophan was added to the test compound dissolved in DMSO at a determined concentration.
- a standard reaction mixture (200 ⁇ L/well) containing 50 mM potassium phosphate buffer (pH 6.5), 20 mM ascorbic acid (neutralised with NaOH), 200 ⁇ g/mL catalase, 10 ⁇ M methylene blue, 12.5 ⁇ g/mL recombinant human IDO1 and 500 ⁇ M L-Tryptophan was added to the test compound dissolved in DMSO at a determined concentration. The mixture was incubated for 1 hour at 37° C. and the reaction was stopped by adding 40 ⁇ L/well of 30% (w/v) trichloroacetic acid. After heating at 65° C.
- 125 ⁇ L was transferred into a well of a 96-well microplate and mixed with 125 ⁇ L of 2% (w/v) p-dimethylaminobenzaldehyde in acetic acid.
- the yellow pigment derived from kynurenine was measured at 480 nm using a CytationTM3 microplate reader. Percent inhibition was calculated using [(X ⁇ Y)/X] ⁇ 100 where X is absorbance value of without inhibitor and Y is the absorbance value of enzyme with indicated concentration of inhibitor. Normalized data was analyzed with Graphpad Prism 6 using non-liner regression curve fitting. IC 50 values presented as means with N ⁇ 3.
- human IDO1 cDNA was PCR amplified using a validated IDO1 expression plasmid as template (Origene, cat #SC126221) and sub-cloned into TRIPZ Tet-On inducible expression vector (Dharmacon). Briefly, TRIPZ vector was digested with AgeI and MluI restriction enzymes and the vector backbone was recovered. IDO1 coding sequence was PCR cloned with forward primer containing AgeI and reverse primer containing MluI restriction site.
- Primer sequences are: IDO1 Fw 5′-GTCAACCGGTATGGCACACGCTATGGAAAACTC-3′ and IDO1 Re 5′-GTCA ACGCGTTTAACCTTCCTTCAAAAGGGATT-3′.
- PCR product was digested with AgeI and MluI then ligated with pre-cut TRIPZ vector. Cloning was confirmed by DNA sequencing.
- HEK-293 cell line was maintained in DMEM (high glucose) supplemented with 5% heat-inactivated Fetal Bovine Serum (GIBCO) and Antibiotic-Antimycotic (Life Technologies). Cells were grown at 37° C. in 5% CO2 atmosphere.
- HEK-293 cells were transfected with TRIPZ vector carrying human IDO1 gene using Lipofectamine 2000 according to manufacturer's instruction.
- Stable cell lines (HEK293/TRIPZ-IDO1) were selected by growing cells in the presence of puromycin (lug/ml) for one week and then maintained in regular growth medium.
- HEK293/TRIPZ-IDO1 cells were seeded in a 96-well microplate at a density of 3 ⁇ 104 cells/well. 24 hours later, cell culture medium was added in the following order: first, 50 ⁇ L of complete medium with serial dilutions of compounds was added to cells and incubated for 30 min; second, 20 ⁇ L of complete medium containing 1 ug/ml doxycycline (Clontech) was added to each well for the induction of IDO1 expression. Cell culture medium was collected 24 h after the induction of IDO1. Medium was centrifuged at 3000 g for 15 min to sediment cell debris and 150 pL of supernatant was transferred to wells of new microplates.
- Percent inhibition was calculated using [(X ⁇ Y)] ⁇ 1 ⁇ 100 where X is absorbance value of without inhibitor and Y is the absorbance value of enzyme with indicated concentration of inhibitor. Data was analyzed with Graphpad Prism 6 using non-linear regression curve fitting with EC 50 values presented as means with N ⁇ 3.
- Compound 10d displayed an inhibitory activity of 100 nM while the chloro-compound 10e displayed an activity of 38 nM.
- compounds 10f-m were synthesized starting from known amine 11 as outlined in the Examples above.
- Compounds 10f, 101 and 10m displayed comparable IDO IC 50 values relative to their brominated analogs (10c, 10d and 10e respectively).
- Compound 10m proved to be especially potent (IDO IC 50 34 nM, IDO EC50 260 nM).
- Compound 10m is at least one-fold more potent in a head-to-head enzymatic assay than clinical candidate epacadostat. Intriguingly, switching to the 5-fluoroindole analogs had a beneficial effect on the relative ICs 50 /EC 50 values. While 5-bromoindole analogs (10b-e) displayed a significant reduction in potency in the cellular (HEK293) assays relative to the enzymatic assays, the 5-fluoroindole derivatives showed significant improvement in relative IC 50 /EC 50 values.
- mice In order to assess the pharmacokinetics of the IDO1 inhibitors of the present application, two inhibitors were administered to mice at 20 mg/kg via PO (G29), or IP (G28). For a preliminary pharmacokinetic profile, three animals were sacrificed per time point at 30 minutes and two hours post-dose. For a full pharmacokinetic profile, three animals were sacrificed per time point at 15 minute, 30 minutes, 1, 2, 4, 6, 8, and 24 hours post-dose.
- mice were perfused with phosphate buffered saline (PBS) and the brains were collected.
- PBS phosphate buffered saline
- the blood and brain samples were protein precipitated with ice-cold acetonitrile and the concentration of the test compound in the resulting supernatant was quantified using LC/MS/MS.
- the parameters were computed using the “PK” package with the R statistical computing software using a non-compartmental analysis.
- the plasma and brain protein binding of compounds was determined using pooled plasma from mice (in-house) or pooled brain homogenized with PBS (1:3 m:v).
- tissue plasma or brain
- phosphate buffer 150 ⁇ L
- Tissue Concentration Time Plasma (mg/ml) Brain (ng/g) (hr) Mean SE Mean SE 0.25 1,883 85 1,655 326 0.5 1,840 37 4,021 243 1 1,408 124 3,516 1,096 2 562 104 2,763 177 4 133 71 1,370 342 6 BQL 552 85 8 BQL 509.6 64.8
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Inhibition of indoleamine 2,3-dioxygenase (IDO1) is an attractive immunotherapeutic approach for the treatment of a variety of cancers. Dysregulation of this enzyme has also been implicated in other severe diseases such as Alzheimer's disease and arthritis. Small molecule inhibitors of IDO, syntheses, and uses thereof are provided.
Description
- This application is a divisional application of U.S. Ser. No. 16/961,112 filed July 9, 2020, which is the National Phase of and claims priority from, International Patent Application Number PCT/CA2019/050031 filed Jan. 9, 2019, which claims priority from U.S. Provisional Application Ser. No. 62/615,653 filed Jan. 10, 2018, each of which is incorporated herein by reference.
- A Sequence Listing conforming to the rules of WIPO Standard ST.26 is hereby incorporated by reference. Said Sequence Listing has been filed as an electronic document via PatentCenter in ASCII format encoded as XML. The electronic document, created on May 8, 2023, is entitled “750-5 PCT-US-DIV_ST26”, and is 3,771 bytes in size.
- The present application pertains to compounds and methods for inhibition of
indoleamine 2,3-dioxygenase-1. More particularly, the present application pertains to use of the compounds to treat diseases and disorders mediated byindoleamine 2,3-dioxygenase-1 and the corresponding methods of treatment. - Over the past two decades immunotherapy has emerged as powerful tool in the treatment of many cancers. In this arena,
indoleamine 2,3-dioxygenase-1(IDO1) has received significant attention from both industry and academia. IDO1 is a heme-containing enzyme that catalyzes the oxidative cleavage of the C2-C3 indole double bond to produce N-formylkynurenine. The generated N-formylkynurenine is then further metabolized to other bioactive metabolites, including kynurenine, kynurenic acid, 3-hydroxy-kynurenine, quinolinic acid and eventually nicotinamide adenine dinucleotide (NAD+). Expression of IDO1 can be induced by IFN-γ, TNF-α and other inflammatory cytokines. - Although initially identified as an important enzyme in modulating the immune response in placental tissue, IDO1 was later implicated as a key mediator of innate and adaptive immunity in the microenvironment of tumors. The expression of IDO1 by various tumor cells leads to the depletion of tryptophan in the microenvironment and subsequent block of T-cell proliferation. Dysregulation of IDO1 expression has also been implicated in the progression of several other conditions such as arthritis, inflammation, and neurological disorders such as Alzheimer's disease. Inhibition of IDO1 with a small molecule is an attractive immunotherapeutic strategy for the treatment of a wide range of cancers; discovery of additional classes of such molecules is a continued need in immuno-oncology drug design.
- The above information is provided for the purpose of making known information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
- An object of the present application is to provide inhibitors of IDO1. The inhibitors are useful in treating disorders associated with abnormal IDO1 activity or dysregulation of IDO1 expression.
- According to one aspect, the present application provides a compound, or a pharmaceutically acceptable salt thereof, of either of Formulas I is provided:
-
- wherein X is H, F, Cl, or Br; R1 is piperidin-2-yl, 1-phenylmethan-1-yl-1-ol, pyrrol-2-yl, or
-
- and R2, R3, R4, R5, and R6 are each independently H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl.
- In one embodiment there is provided an inhibitor compound as defined above in which R1 is
- In another embodiment there is provided an inhibitor compound as defined above in which R4 is H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl; and R2, R3, R5, and R6 are each independently H, F, Cl, amino, or hydroxy.
- In another embodiment there is provided an inhibitor compound as defined above in which R4 is H, F, Cl, amino, hydroxy, methoxy, or cyano.
- In another embodiment there is provided an inhibitor compound as defined above in which the compound is of Formula Ia; X is Br; R4 is H, methoxy, or cyano; R2 is H, amino, or hydroxy; and R3, R5, and R6 are each H.
- In another embodiment there is provided an inhibitor compound as defined above in which the compound is of Formula Ib; X is F or Br; R6 is H; R5 is H, F, or Cl; R3 and R4 are each H, Cl, or hydroxy; and R2 is H or hydroxy.
- In another embodiment there is provided an inhibitor compound as defined above in which the compound is of Formula 1b, R1 is pyrrol-2-yl, and X is F or Br.
- According to another aspect, the present application provides a method of treating a disease associated with tryptophan metabolism in a subject, the method comprising administering a therapeutically effective amount to a subject of a compound, or a pharmaceutically acceptable salt thereof, of either of Formulas I:
-
- wherein
- X is H, F, Cl, or Br;
- R1 is piperidin-2-yl, 1-phenylmethan-1-yl-1-ol, pyrrol-2-yl, or
-
- and R2, R3, R4, R5, and R6 are each independently H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl.
- In one embodiment, the method of treatment is for treating cancer, such as glioblastoma multiforme. In another embodiment, the method is for treating neurodegeneration, such as in Alzheimer's disease.
- According to another aspect, the present application provides a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound, or a pharmaceutically acceptable salt thereof, of either of Formulas I:
-
- wherein
- X is H, F, Cl, or Br;
- R1 is piperidin-2-yl, 1-phenylmethan-1-yl-1-ol, pyrrol-2-yl, or
-
- and R2, R3, R4, R5, and R6 are each independently H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl.
- According to another aspect, the present application provides a use of an inhibitor compound as defined above and in the detailed description below, for treatment of a disease or disorder associated with dysregulation of IDO1 expression or abnormal IDO1 activity in a subject in need thereof. In one embodiment, the use is for treating cancer, such as glioblastoma multiforme. In another embodiment, the method is for treating neurodegeneration, such as in Alzheimer's disease.
- With the foregoing and other advantages and features of the invention that will become hereafter apparent, the nature of the invention may be more clearly understood by reference to the following detailed description of the invention and the appended claims.
- All patents, patent applications, and other publications referred to herein are hereby incorporated by reference in their entireties.
- Unless otherwise defined, terms as used in the specification refer to the following definitions, as detailed below.
- The following abbreviations and associated terms are used herein: IDO1,
indoleamine 2,3-dioxygenase 1; TDO,tryptophan 2,3-dioxygenase; 4-PI, 4-phenylimidazole; SAR, structure-activity relationship; TosMIC, tosylmethyl isocyanide; Boc2O, di-tert-butyl dicarbonate; LDA, lithium diisopropylamide; THF, tetrahydrofuran; DMF, N,N-dimethylformamide; LE, ligand efficiency; LLE, ligand lipophilicity efficiency; Ar, aryl group. - The term “acyl” as used herein means an alkyl group, as defined herein, appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of acyl include, but are not limited to, acetyl, 1-oxopropyl, 2,2-dimethyl-1-oxopropyl, 1-oxobutyl, and 1-oxopentyl.
- The terms “administration” or “administering” compound should be understood to mean providing a compound of the present invention to an individual in a form that can be introduced into that individual's body in an amount effective for prophylaxis, treatment, or diagnosis, as applicable. Such forms may include e.g., oral dosage forms, injectable dosage forms, transdermal dosage forms, inhalation dosage forms, and rectal dosage forms.
- The term “alkoxy” as used herein means an alkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.
- The term “alkyl” as used herein means a straight or branched chain hydrocarbon containing from 1 to 20 carbon atoms, preferably from 1 to 10 carbon atoms, more preferably 1, 2, 3, 4, 5, or 6 carbons. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, and n-decyl.
- The term “amido” as used herein means an amino, alkylamino, or dialkylamino group appended to the parent molecular moiety through a carbonyl group, as defined herein. Representative examples of amido include, but are not limited to, aminocarbonyl, methylaminocarbonyl, dimethylaminocarbonyl, and ethylmethylaminocarbonyl.
- The term “amino” as used herein means a —NH2 group.
- The term “aryl” as used herein means a monocyclic hydrocarbon aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl.
- The term “arylalkyl” as used herein means an aryl group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of arylalkyl include, but are not limited to, benzyl, 2-phenylethyl and 3-phenylpropyl.
- The term “carbonyl” as used herein means a —C(═O)— group.
- The term “carboxy” as used herein means a —COOH group, which may be protected as an ester group: —COO-alkyl.
- The term “cyano” as used herein means a —CN group.
- The term “cyanophenyl” as used herein means a —CN group appended to the parent molecular moiety through a phenyl group, including, but not limited to, 4-cyanophenyl, 3-cyanophenyl, and 2-cyanophenyl.
- The term “cycloalkyl” as used herein means a saturated cyclic hydrocarbon group containing from 3 to 8 carbons. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
- The term “dialkylamino” as used herein means two independent alkyl groups, as defined herein, appended to the parent molecular moiety through a nitrogen atom. Representative examples of dialkylamino include, but are not limited to, dimethylamino, diethylamino, ethylmethylamino, and butylmethylamino.
- The term “fluoro” as used herein means —F.
- The term “fluoroalkoxy” as used herein means at least one fluoroalkyl group, as defined herein, appended to the parent molecular moiety through an oxygen group, as defined herein. Representative examples of fluoroalkyl include, but are not limited to, trifluoromethoxy (CF3O—), and difluoromethoxy (CHF2O—).
- The term “fluoroalkyl” as used herein means at least one fluoro group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of fluoroalkyl include, but are not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, and 2,2,2-trifluoroethyl.
- The term “formyl” as used herein means a —C(O)H group.
- The term “halo” or “halogen” as used herein means Cl, Br, I, or F.
- The term “haloalkoxy” as used herein means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. Representative examples of haloalkoxy include, but are not limited to, 2-fluoroethoxy, trifluoromethoxy, and pentafluoroethoxy.
- The term “haloalkyl” as used herein means at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of haloalkyl include, but are not limited to, chloromethyl, 2-fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.
- The term “heteroaryl”, as used herein, refers to an aromatic ring containing one or more heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Such rings can be monocyclic or bicyclic as further described herein. Heteroaryl rings are connected to the parent molecular moiety through a carbon or nitrogen atom.
- The terms “monocyclic heteroaryl” or “5- or 6-membered heteroaryl ring”, as used herein, refer to 5- or 6-membered aromatic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Examples of such rings include, but are not limited to, a ring wherein one carbon is replaced with an O or atom; one, two, or three N atoms arranged in a suitable manner to provide an aromatic ring; or a ring wherein two carbon atoms in the ring are replaced with one 0 or S atom and one N atom. Such rings can include, but are not limited to, a six-membered aromatic ring wherein one to four of the ring carbon atoms are replaced by nitrogen atoms, five-membered rings containing a sulfur, oxygen, or nitrogen in the ring; five membered rings containing one to four nitrogen atoms; and five membered rings containing an oxygen or sulfur and one to three nitrogen atoms. Representative examples of 5- to 6-membered heteroaryl rings include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, [1,2,3]thiadiazolyl, [1,2,3]oxadiazolyl, thiazolyl, thienyl, [1,2,3]triazinyl, [1,2,4]triazinyl, [1,3,5]triazinyl, [1,2,3]triazolyl, and [1,2,4]triazolyl.
- The term “bicyclic heteroaryl” or “8- to 12-membered bicyclic heteroaryl ring”, as used herein, refers to an 8-, 9-, 10-, 11-, or 12-membered bicyclic aromatic ring containing at least 3 double bonds, and wherein the atoms of the ring include one or more heteroatoms independently selected from oxygen, sulfur, and nitrogen. Representative examples of bicyclic heteroaryl rings include indolyl, benzothienyl, benzofuranyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, benzoisothiazolyl, benzoisoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pteridinyl, purinyl, naphthyridinyl, cinnolinyl, thieno[2,3-d]imidazole, thieno[3,2-b]pyridinyl, and pyrrolopyrimidinyl.
- The terms “heterocyclic ring” and “heterocycle”, as used herein, refer to a 4- to 12-membered monocyclic or bicyclic ring containing one, two, three, four, or five heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur and also containing either at least one carbon atom attached to four other atoms or one carbon atom substituted with an oxo group and attached to two other atoms. Four-and five-membered rings may have zero or one double bond. Six-membered rings may have zero, one, or two double bonds. Seven- and eight-membered rings may have zero, one, two, or three double bonds. The non-aromatic heterocycle groups of the invention can be attached through a carbon atom or a nitrogen atom. The non-aromatic heterocycle groups may be present in tautomeric form. Representative examples of nitrogen-containing heterocycles include, but are not limited to, azepanyl, azetidinyl, aziridinyl, azocanyl, dihydropyridazinyl, dihydropyridinyl, dihydropyrimidinyl, morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, pyrrolinyl, dihydrothiazolyl, dihydropyridinyl, and thiomorpholinyl. Representative examples of non-nitrogen containing non-aromatic heterocycles include, but are not limited to, dioxanyl, dithianyl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, and [1,3]dioxolanyl.
- Additional examples of heterocycles include, but are not limited to, azetidin-2-one, azepan-2-one, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, 1H-benzo[d]imidazol-2(3H)-one, [1,2,4]thiadiazolonyl, [1,2,5]thiadiazolonyl, [1,3,4]thiadiazinonyl, [1,2,4]oxadiazolonyl, [1,2,5]oxadiazolonyl, [1,3,4]oxadiazinonyl, and 1,5-dihydro-benzo[b][1,4]diazepin-2-on-yl.
- The term “hydroxy” as used herein means an —OH group.
- The term “hydroxy-protecting group” means a substituent which protects hydroxyl groups against undesirable reactions during synthetic procedures. Examples of hydroxy-protecting groups include, but are not limited to, methoxymethyl, benzyloxymethyl, 2-methoxyethoxymethyl, 2-(trimethylsilyl)ethoxymethyl, benzyl, triphenylmethyl, 2,2,2-trichloroethyl, t-butyl, trimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, methylene acetal, acetonide benzylidene acetal, cyclic ortho esters, methoxymethylene, cyclic carbonates, and cyclic boronates. Hydroxy-protecting groups are appended onto hydroxy groups by reaction of the compound that contains the hydroxy group with a base, such as triethylamine, and a reagent selected from an alkyl halide, alkyl trifilate, trialkylsilyl halide, trialkylsilyl triflate, aryldialkylsilyltriflate, or an alkylchloroformate, CH2I2, or a dihaloboronate ester, for example with methyliodide, benzyl iodide, triethylsilyltriflate, acetyl chloride, benzylchloride, or dimethylcarbonate. A protecting group also may be appended onto a hydroxy group by reaction of the compound that contains the hydroxy group with acid and an alkyl acetal.
- The term “nitrogen protecting group” as used herein means those groups intended to protect a nitrogen atom against undesirable reactions during synthetic procedures. Nitrogen protecting groups comprise carbamates, amides, N-benzyl derivatives, and imine derivatives. Preferred nitrogen protecting groups are acetyl, benzoyl, benzyl, benzyloxycarbonyl (Cbz), formyl, phenylsulfonyl, pivaloyl, tert-butoxycarbonyl (Boc), tert-butylacetyl, trifluoroacetyl, and triphenylmethyl (trityl). Nitrogen-protecting groups are appended onto primary or secondary amino groups by reacting the compound that contains the amine group with base, such as triethylamine, and a reagent selected from an alkyl halide, an alkyl trifilate, a dialkyl anhydride, for example as represented by (alkyl-O) 2 C═O, a diaryl anhydride, for example as represented by (aryl-O) 2 C═O, an acyl halide, an alkylchloroformate, or an alkylsulfonylhalide, an arylsulfonylhalide, or halo-CON(alkyl) 2 , for example acetylchloride, benzoylchloride, benzylbromide, benzyloxycarbonylchloride, formylfluoride, phenylsulfonylchloride, pivaloylchloride, (tert-butyl-O—C═O) 2O, trifluoroacetic anhydride, and triphenylmethylchloride.
- The term “oxo” as used herein means (═O).
- Unless otherwise indicated, the term “prodrug” encompasses pharmaceutically acceptable esters, carbonates, thiocarbonates, N-acyl derivatives, N-acyloxyalkyl derivatives, quaternary derivatives of tertiary amines, N-Mannich bases, Schiff bases, aminoacid conjugates, phosphate esters, metal salts and sulfonate esters of compounds disclosed herein. Examples of prodrugs include compounds that comprise a biohydrolyzable moiety (e.g., a biohydrolyzable amide, biohydrolyzable carbamate, biohydrolyzable carbonate, biohydrolyzable ester, biohydrolyzable phosphate, or biohydrolyzable ureide analog). Prodrugs of compounds disclosed herein are readily envisioned and prepared by those of ordinary skill in the art. See, e.g., Design of Prodrugs, Bundgaard, A. Ed., Elseview, 1985; Bundgaard, hours., “Design and Application of Prodrugs,” A Textbook of Drug Design and Development , Krosgaard-Larsen and hours. Bundgaard, Ed., 1991,
Chapter 5, p. 113-191; and Bundgaard, hours., Advanced Drug Delivery Review, 1992, 8, 1-38. - Unless otherwise indicated, the term “protecting group” or “protective group,” when used to refer to part of a molecule subjected to a chemical reaction, means a chemical moiety that is not reactive under the conditions of that chemical reaction, and which may be removed to provide a moiety that is reactive under those conditions. Protecting groups are well known in the art. See, e.g., Greene, T. W. and Wuts, P. G. M., Protective Groups in Organic Synthesis (3 rd ed., John Wiley & Sons: 1999); Larock, R. C., Comprehensive Organic Transformations (2 nd ed., John Wiley & Sons: 1999). Some examples include benzyl, diphenylmethyl, trityl, Cbz, Boc, Fmoc, methoxycarbonyl, ethoxycarbonyl, and pthalimido. Protecting groups include, for example, nitrogen protecting groups and hydroxy-protecting groups.
- The present application provides compounds that are useful as inhibitors of
indoleamine 2,3-dioxygenase-1(IDO1). Such compounds can be particularly useful in the treatment of diseases or disorders that are mediated by IDO1 activity. For example, the present application further provides uses and methods for the treatment of a subject affected by a disease or disorder associated with dysregulation of IDO1 expression and/or abnormal IDO1 activity. - A number of co-crystals with IDO1 have been disclosed including 4-phenylimidazole (4-PI), and members of the GDC-0919, and imidazothiazole inhibitor series. Based upon these X-ray bound co-crystals the IDO1 active site is commonly divided into three regions: pocket A, pocket B, and a heme cofactor. Aromatic, halogen-substituted aromatics or heteroaromatic motifs (such as indole) are most frequently chosen to occupy pocket A. Pocket B contains a mixture of hydrophilic (Arg-231) and hydrophobic (Phe) residues. The heme cofactor contains two distinct structural features: the porphyrin-bound iron atom, and a propionate residue which projects into the binding site.
- Provided herein are inhibitors of IDO1 that have been designed based on modelling studies such that they are anticipated to bind in all three regions of the IDO1 active site. These inhibitors have now been found to selectively inhibit IDO1.
- In one aspect, the present application provides an inhibitor compound, or a pharmaceutically acceptable salt thereof, that comprises an optionally-substitituted indolyl group bound directly, or via a methylene group, to an optionally-substituted imidazole group. According to one embodiment, the inhibitor is a compound of Formula Ia or Ib:
-
- wherein
- X is H, F, Cl, or Br;
- R1 is piperidin-2-yl, 1-phenylmethan-1-yl-1-ol, pyrrol-2-yl, or
-
- and R2, R3, R4, R5, and R6 are each independently H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or aryl, such as, phenyl.
- In one embodiment there is provided an IDO1 inhibitor compound of Formula Ia or Ib in which R1 is
- In an example of this embodiment, R4 is H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl; and R2, R3, R5, and R6 are each independently H, F, Cl, amino, or hydroxyl. In another example, R4 is H, F, Cl, amino, hydroxy, methoxy or cyano.
- In accordance with another embodiment, there is provided an IDO1 inhibitor that is a compound of Formula Ia in which X is Br; R4 is H, methoxy, or cyano, R2 is H, amino or hydroxyl; and R3, R5, and R6 are each H.
- In accordance with another embodiment, there is provided an IDO1 inhibitor that is a compound of Formula Ib in which X is Br or F; R6 is H; R5 is H, F, or Cl; R3 and R4 are each H, Cl, or hydroxy; and R2 is H or hydroxy.
- In accordance with a further embodiment, there is provided an IDO1 inhibitor that is a compound of Formula Ib in which R1 is pyrrol-2-yl, and X is F or Br.
- The compounds of the invention can be used in the form of pharmaceutically acceptable salts derived from inorganic or organic acids. Pharmaceutically acceptable salt(s) are well-known in the art. For clarity, the term “pharmaceutically acceptable salts” as used herein generally refers to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases. Suitable pharmaceutically acceptable base addition salts include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Suitable non-toxic acids include inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, galacturonic, gluconic, glucuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, and p-toluenesulfonic acid. Specific non-toxic acids include hydrochloric, hydrobromic, phosphoric, sulfuric, and methanesulfonic acids. Examples of specific salts thus include hydrochloride and mesylate salts. Others are well-known in the art. See, e.g., Remington's Pharmaceutical Sciences, 18 th ed. (Mack Publishing, Easton Pa.: 1990) and Remington: The Science and Practice of Pharmacy, 19 th ed. (Mack Publishing, Easton Pa.: 1995). The preparation and use of acid addition salts, carboxylate salts, amino acid addition salts, and zwitterion salts of compounds of the present invention may also be considered pharmaceutically acceptable if they are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use. Such salts may also include various solvates and hydrates of the compound of the present invention.
- The compounds of the invention can be used in the form of pharmaceutically acceptable solvates. Pharmaceutically acceptable solvate(s) are well-known in the art. For clarity, the term “pharmaceutically acceptable solvates” as used herein generally refers to solvates prepared from pharmaceutically acceptable non-toxic solvents. A pharmaceutically acceptable solvate is an aggregate that consists of an inhibitor compound with one or more pharmaceutically acceptable, non-toxic solvent molecules. A hydrate is one example of a pharmaceutically acceptable solvate. In another example, the solvent in the solvate can be an alcohol, examples of which are 1-butanol, 2-butanol, ethanol, 2-ethoxyethanol, ethylene glycol, isopropanol, 2-methoxyethanol, 3-methyl-1-butanol, 1-pentanol and 1-propanol.
- Certain compounds of the present invention may be isotopically labelled, e.g., with various isotopes of carbon, fluorine, or iodine, as applicable when the compound in question contains at least one such atom.
- Certain compounds of the present invention may exist as stereoisomers wherein, asymmetric or chiral centers are present. These stereoisomers are “R” or “S” depending on the configuration of substituents around the chiral carbon atom. The terms “R” and “S” used herein are configurations as defined in IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, in Pure Appl. Chem., 1976, 45: 13-30. The invention contemplates various stereoisomers and mixtures thereof and these are specifically included within the scope of this invention. Stereoisomers include enantiomers and diastereomers, and mixtures of enantiomers or diastereomers. Individual stereoisomers of compounds of the invention may be prepared synthetically from commercially available starting materials which contain asymmetric or chiral centers or by preparation of racemic mixtures followed by resolution well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and optional liberation of the optically pure product from the auxiliary as described in Furniss, Hannaford, Smith, and Tatchell, “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), Longman Scientific & Technical, Essex CM20 2JE, England, or (2) direct separation of the mixture of optical enantiomers on chiral chromatographic columns or (3) fractional recrystallization methods.
- Certain compounds of the present invention may exist as cis or trans isomers, wherein substituents on a ring may attached in such a manner that they are on the same side of the ring (cis) relative to each other, or on opposite sides of the ring relative to each other (trans). Such methods are well known to those of ordinary skill in the art, and may include separation of isomers by recrystallization or chromatography. It should be understood that the compounds of the invention may possess tautomeric forms, as well as geometric isomers, and that these also constitute an aspect of the invention.
- It should be noted that a chemical moiety that forms part of a larger compound may be described herein using a name commonly accorded it when it exists as a single molecule or a name commonly accorded its radical. For example, the terms “pyridine” and “pyridyl” are accorded the same meaning when used to describe a moiety attached to other chemical moieties. Thus, for example, the two phrases “XOH, wherein X is pyridyl” and “XOH, wherein X is pyridine” are accorded the same meaning, and encompass the compounds pyridin-2-ol, pyridin-3-ol and pyridin-4-ol.
- It should also be noted that names of compounds having one or more chiral centers that do not specify the stereochemistry of those centers encompass pure stereoisomers and mixtures thereof. Moreover, any atom shown in a drawing with unsatisfied valences is assumed to be attached to enough hydrogen atoms to satisfy the valences. In addition, chemical bonds depicted with one solid line parallel to one dashed line encompass both single and double (e.g., aromatic) bonds, if valences permit.
- According to some embodiments, there is provided an IDO1 inhibitor compound, as described above, which is substantially pure. The term “substantially pure” means that the isolated material is at least 90% pure, preferably 95% pure, even more preferably 99% pure as assayed by analytical techniques known in the art.
- The present application further provides compositions comprising one or more IDO1 inhibitor as described herein, or a pharmaceutically acceptable salt or solvate thereof. Such compositions can be used in the treatment of diseases or disorders characterized by or associated with a dysregulation of IDO1 expression or abnormal IDO1 activity. These pharmaceutical compositions comprise one or more IDO1 inhibitor as described herein, or a pharmaceutically acceptable salt or solvate thereof, and one or more pharmaceutically acceptable excipient.
- The term “pharmaceutically acceptable excipient”, as used herein, means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols; such a propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of one skilled in the art of formulations.
- The pharmaceutical compositions can be formulated for oral administration in solid or liquid form, for parenteral intravenous, subcutaneous, intramuscular, intraperitoneal, intra-arterial, or intradermal injection, for or for vaginal, nasal, topical, or rectal administration. Pharmaceutical compositions of the present invention suitable for oral administration can be presented as discrete dosage forms, e.g., tablets, chewable tablets, caplets, capsules, liquids, and flavored syrups. Such dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton Pa. (1990).
- Parenteral dosage forms can be administered to patients by various routes including subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are specifically sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions. Pharmaceutical compositions for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like, and suitable mixtures thereof), vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate, or suitable mixtures thereof. Suitable fluidity of the composition may be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. These compositions may also contain adjuvants such as preservative agents, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of microorganisms may be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example, sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- In some cases, in order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Suspensions, in addition to the active compounds, may contain suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth, and mixtures thereof. If desired, and for more effective distribution, the compounds of the invention can be incorporated into slow-release or targeted-delivery systems such as polymer matrices, liposomes, and microspheres. They may be sterilized, for example, by filtration through a bacteria-retaining filter or by incorporation of sterilizing agents in the form of sterile solid compositions, which may be dissolved in sterile water or some other sterile injectable medium immediately before use.
- Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations also are prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues. The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic, parenterally acceptable diluent or solvent such as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, one or more compounds of the invention is mixed with at least one inert pharmaceutically acceptable carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and salicylic acid; b) binders such as carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia; c) humectants such as glycerol; d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; e) solution retarding agents such as paraffin; f) absorption accelerators such as quaternary ammonium compounds; g) wetting agents such as cetyl alcohol and glycerol monostearate; h) absorbents such as kaolin and bentonite clay; and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugar as well as high molecular weight polyethylene glycols. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract in a delayed manner Examples of materials which can be useful for delaying release of the active agent can include polymeric substances and waxes.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. A desired compound of the invention is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention. The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to the compounds of this invention, lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
- Compounds of the invention may also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes may be used. The present compositions in liposome form may contain, in addition to the compounds of the invention, stabilizers, preservatives, and the like. The preferred lipids are the natural and synthetic phospholipids and phosphatidylcholines (lecithins) used separately or together. Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y., (1976), p 33 et seq.
- Actual dosage levels of active ingredients in the pharmaceutical compositions of this invention can be varied so as to obtain an amount of the active compound(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions and mode of administration. The selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- An effective amount of one of the compounds of the invention can be employed in pure form or, where such forms exist, in a pharmaceutically acceptable salt form or a pharmaceutically acceptable solvate form. Alternatively or in addition, the compound can be administered as a pharmaceutical composition containing the compound of interest in combination with one or more pharmaceutically acceptable carriers. It will be understood, however, that the total daily usage of the compounds and compositions of the invention will be decided by the attending physician within the scope of sound medical judgment. The specific effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; the risk/benefit ratio; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- The total daily dose of the compounds of the present invention as administered to a human or lower animal may range from about 0.0003 to about 30 mg/kg of body weight. For purposes of oral administration, more preferable doses can be in the range of from about 0.0003 to about 1 mg/kg body weight. If desired, the effective daily dose can be divided into multiple doses for purposes of administration; consequently, single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. For oral administration, the compositions of the invention are preferably provided in the form of tablets containing about 1.0, about 5.0, about 10.0, about 15.0, about 25.0, about 50.0, about 100, about 250, or about 500 milligrams of the active ingredient.
- Methods of Treatment
- In another aspect, the present application provides a method of treating a disease or disorder associated with dysregulation of IDO1 expression and/or abnormal IDO1 activity. In another aspect, there is provided a method for preventing onset or progression of a disease or disorder associated with dysregulation of IDO1 expression and/or abnormal IDO1 activity. Typically, such diseases or disorders are characterized by or associated with increased IDO1 expression or activity.
- These methods comprises administering a therapeutically effective amount to a subject of a compound, or a pharmaceutically acceptable salt or solvate thereof, of Formula Ia or Ib:
-
- wherein
- X is H, F, Cl, or Br;
- R1 is piperidin-2-yl, 1-phenylmethan-1-yl-1-ol, pyrrol-2-yl, or
-
- and R2, R3, R4, R5, and R6 are each independently H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl.
- In one embodiment, the method is for treating a disease associated with tryptophan metabolism. For example, the disease can be cancer, such as glioblastoma multiforme, neurodegeneration or Alzheimer's disease.
- In a related aspect, the present application provides a use of a compound, or a pharmaceutically acceptable salt or solvate thereof, of Formula Ia or Ib:
-
- wherein
- X is H, F, Cl, or Br;
- R1 is piperidin-2-yl, 1-phenylmethan-1-yl-1-ol, pyrrol-2-yl, or
-
- and R2, R3, R4, R5, and R6 are each independently H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl, for: (i) treatment of a disease or disorder associated with dysregulation of IDO1 expression or abnormal IDO1 activity in a subject in need thereof; or (ii) for prevention of onset or progression of the disease or disorder associated with dysregulation of IDO1 expression or abnormal IDO1 activity in a subject in need thereof.
- In one embodiment, the inhibitor compounds of the present application can be used in combination with one or more additional therapeutic agent that are being used and/or developed to treat cancers or other diseases or disorders that are associated with dysregulation of IDO1 expression or abnormal IDO1 activity, e.g., inflammatory disorders, Alzheimers' disease. The one or more additional therapeutic agent may be, for example, a chemotherapeutic agent, an immunotherapeutic agent, a radiotherapeutic agent, an anti-neoplastic agent, an anti-cancer agent, an anti-proliferation agent, an anti-fibrotic agent, an anti-angiogenic agent, a therapeutic antibody, or any combination thereof.
- Unless otherwise indicated, the terms “prevent,” “preventing” and “prevention” contemplate an action that occurs before a patient begins to suffer from the specified disease or disorder, which inhibits or reduces the severity of the disease or disorder or of one or more of its symptoms. The terms encompass prophylaxis.
- Unless otherwise indicated, a “prophylactically effective amount” of a compound is an amount sufficient to prevent a disease or condition, or one or more symptoms associated with the disease or condition, or prevent its recurrence. A prophylactically effective amount of a compound is an amount of therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease. The term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
- Unless otherwise indicated, a “diagnostically effective amount” of a compound is an amount sufficient to diagnose a disease or condition. In general, administration of a compound for diagnostic purposes does not continue for as long as a therapeutic use of a compound, and might be administered only once if such is sufficient to produce the diagnosis.
- Unless otherwise indicated, a “therapeutically effective amount” of a compound is an amount sufficient to treat a disease or condition, or one or more symptoms associated with the disease or condition.
- The term “subject” is intended to include living organisms in which disease may occur. Examples of subjects include humans, monkeys, cows, sheep, goats, dogs, cats, mice, rats, and transgenic species thereof.
- 1H/13C NMR spectra were recorded on a Bruker Ultrashield™ (300/75 MHz) and Agilent (700/175 MHz) spectrometers at ambient probe temperatures using residual undeuterated solvent as an internal reference.1 Data are presented as follows: chemical shift (in ppm on a δ scale relative to δTMS&B =0), multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, qn=quintet, sep=septet, m=multiplet, br=broad), coupling constant (J/Hz) and integration.
- Mass spectra were recorded using electron spray ionisation (ESP+) with a Xevo TQ-XS Tandem Triple Quadrupole Mass Spectrometer. The parent ion [M+H]+ is quoted. Purity was determined using either a Waters Aquity UPLC® (2.1×50 mm, 1.7 μm particle size) or a Waters 1525EF Binary HPLC pump/Silia Chrom® SB C18 (4.6×250 nm, 5.0 μm particle size) with a Waters 2487 Dual λ Absorbance Detector. For both instruments elution with a water/0.1% formic acid and acetonitrile gradient was used with a flow rate of 0.60 mL/min (5 and 15 minute run times respectively). UV detection was carried out at a wavelength of 254 nm.
- Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F254 plates with visualisation by ultraviolet light (254 nm) and potassium permanganate or phosphomolybdic acid/Ce2(SO4)3 dips. Flash chromatography was carried out on RediSep columns using an Isco CombiFlash SG100c.
- Reagents and solvents were purified by standard means (e.g., by following relevant directions in D. D. Perrin, W. L. F. A., Purification of Laboratory Chemicals. 1988). All experiments were performed under anhydrous conditions under an atmosphere of argon, except where stated, using oven-dried apparatus and employing standard techniques for handling air-sensitive materials. Unless stated otherwise, reactions were performed at room temperature (RT). Describe various experimental setups by subtitle, then start numbering with IUPAC names as subtitles. The starting materials are either commercially available or may be prepared from commercially available reagents using chemical reactions known in the art.
- In this Example, a series of inhibitor compounds as described above were synthesized. The inhibitor compounds were designed to include a suitable lipophilic group, such as a 5-bromoindole ring, for occupying pocket A of the IDO1 active site. Further, without wishing to be bound by theory, incorporation of an imidazole group attached to the C2 position of the indole could bind Fe2+ and the free NH of the imidazole could hydrogen bond to Ser167 of the IDO1 active site. This design was supported by computational modelling (using PDB ID: 2DOT as a template) which indicated that an imidazole attached to the C2 position of 5-bromoindole would be orientated at an appropriate vector to bind Fe2+. These “
Series 1” compounds are generally denoted herein by a compound number starting with “9”. - The general synthetic pathway employed to generate the Series 1 inhibitors is shown below:
- 5-bromo-2-imidazoindole (6) was synthesized in a 5-step sequence. Commercially available 5-bromoindole (4) was protected with a Boc group and then stannylated at the C2 position to provide
compound 5. A Stille coupling was then utilized to attach a trityl protected imidazole ring. This was followed by protecting group removal to furnish the target molecule. The inhibitory activity of 6 was determined against IDO using an in vitro assay described in the Examples below and was measured to be 30 μM. Despite the modest gain in potency of 6 versus 4-PI, compound 6 was evaluated as a suitably versatile scaffold for the generation of analogs. - To progress compound 6 the strategy focused on increasing potency through addition of suitable side-chains to occupy pocket B. Molecular modelling studies indicated an aromatic group bridged by an appropriate spacer (i.e. methylene) attached to the N3-position of the imidazole would extend into pocket B. To demonstrate this, compounds 9a-k were synthesized in two steps (one pot) using the van Leusen imidazole synthesis protocol. As such, imine formation between the appropriate benzyl amine and 2-indolecarboxaldeyde (7 or 8), followed by subsequent reaction with TosMIC provided indole-imidazoles 9a-k.
-
- To a stirred solution of 5-bromoindole 6 (3.92 g, 20.0 mmol) in CH2Cl2 (50 mL) was added DMAP (0.24 g, 2.00 mmol) and di-tert-butyl dicarbonate (4.80 g, 22.0 mmol). The reaction mixture was stirred overnight before being diluted with EtOAc (20 mL), washed with HCl (0.1 N aqueous) and brine. The organic extract was dried (Na2SO4) and concentrated in vacuo to afford tert-butyl 5-bromo-1H-indole-1-carboxylate as a clear oil. The crude product was used directly in the next step without further purification.
- To a stirred solution of tert-butyl 5-bromo-1H-indole-1-carboxylate (1.48 g, 5.00 mmol) in THF (15 mL) was added dropwise LDA (6.0 mL, 1.0 M in THF, 6.00 mmol) at −78° C. The reaction mixture was stirred for 1 h at −78° C. before n-Bu3SnCl (1.65 mL, 6.08 mmol) was added. After stirring for 1 h at −78° C. the reaction mixture was quenched with saturated aqueous ammonium chloride (10 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×25 mL). The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo to afford tert-butyl 5-bromo-2-(tributylstannyl)-1H-indole-1-carboxylate as a clear oil.
- The crude residue (2.18 g, 5.00 mmol) was dissolved in DMF (20 mL) and tetrakis(triphenylphosphine)palladium(0) (0.29 g, 0.25 mmol), CuI (95.0 mg, 0.50 mmol) followed by CsF (1.52 g, 10.00 mmol) were added. The solution was degassed for 10 minutes and the reaction mixture was heated to 50° C. and stirred overnight. The reaction mixture was quenched with H2O (10 mL), the layers were separated and the aqueous phase was extracted with EtOAc (2×25 mL). The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo to afford tert-butyl 5-bromo-2-(1-trityl-1H-imidazol-4-yl)-1H-indole-1-carboxylate. The crude residue was dissolved in THF/MeOH/H2O (5:6:3, 70 mL). K2CO3 (1.60 g, 11.59 mmol) was added and the reaction mixture was heated to 70° C. and stirred overnight before being cooled to RT and concentrated in vacuo. The residue was suspended in H2O (20 mL) and EtOAc (20 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×20 mL). The combined organic extracts were washed with brine, dried (Na2SO4) and concentrated in vacuo. The crude residue was then dissolved in MeOH/AcOH (2:1, 30 mL), heated to 70° C. and stirred overnight. The reaction mixture was then cooled to RT and concentrated in vacuo. Purification by column chromatography (MeOH/CH2Cl2, 0:100→5:95 gradient run) afforded 5-bromo-2-(1H-imidazol-5-yl)-1H-indole 6 as an off-white solid.
- 1H NMR (DMSO-d6, 300 MHz) δ 12.32 (br s, 1H), 11.48 (br s, 1H), 7.77 (s, 1H), 7.63 (s, 1H), 7.58 (s, 1H), 7.39 (d, J=8.57 Hz, 1H), 7.11 (dd, J=1.49 Hz, J=8.57 Hz, 1H), 6.59 (s, 1H); 13C NMR (acetone-d6, 75 MHz) 137.4, 137.0, 136.8, 135.3, 133.0, 124.8, 123.4, 115.6, 114.3, 113.6, 97.5; HRMS (ESI) calculated for C11H8BrN3[M+H]+: 261.9980. Found: 261.9985. Purity by UPLC: 99% (tR=1.23 min).
-
- To a stirred solution of indole-2-carboxaldehyde (284 mg, 1.96 mmol) in DMF (2.0 mL) was added benzyl amine (214 μL, 1.96 mmol). The reaction mixture was stirred for 3 hours before the addition of K2CO3 (270 mg, 1.96 mmol) and 1-(isocyanomethylsulfonyl)-4-methylbenzene (382 mg, 1.96 mmol). The reaction mixture was then heated to 60° C. and stirred for 24 hours before being quenched with H2O (10 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×25 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification by column chromatography (MeOH 10% NH4OH/CH2Cl2, 0:1→1:9 gradient run) provided compound 9b (319 mg, 1.17 mmol, 60%) as a white solid.
- 1H NMR (acetone-d6, 300 MHz) δ 10.52 (s, 1H), 7.78 (s, 1H), 7.47 (d, J=8.5 Hz, 1H), 7.40-7.25 (m, 5H), 7.16-7.06 (m, 3H), 6.99 (t, J=7.4 Hz, 1H), 6.44 (s, 1H), 5.55 (s, 2H); 13C NMR (acetone-d6, 75 MHz): 140.8, 138.7, 137.6, 129.9, 129.7, 129.7, 129.5, 128.5, 128.3, 127.4, 122.8, 121.0, 120.5, 111.8, 101.0, 49.6; HRMS (ESI) calculated for C18H16N3[M+H]+: 274.1339. Found: 274.1335. Purity by HPLC: 94% (tR=8.80 min).
- The following
Series 1 inhibitors were prepared in an analogous manner to 2-(1-benzyl-1H-imidazol-5-yl)-1H-indole (9b): -
- 1H NMR (acetone-d6, 300 MHz) δ 11.13 (s, 1H), 7.48 (s, 1H), 7.17 (d, J=1.8 Hz, 1H), 6.97 (s, 1H), 7.17-6.76 (m, 4H), 6.73 (dd, J=8.6, 1.9 Hz, 1H), 6.58 (d, J=7.2 Hz, 2H), 5.96 (s, 1H), 5.05 (s, 2H); HRMS (ESI) calculated for C18H15BrN3[M+H]+: 352.0444. Found: 352.0443. Purity by HPLC: 97% (tR=9.76 min). Isolated as a white solid (25.0 mg, 71.0 μmol, 16%).
-
- 1H NMR (acetone-d6, 300 MHz) δ 10.75 (s, 1H), 7.87 (s, 1H), 7.67-7.61 (m, 5H), 7.48-7.41 (m, 3H), 7.38-7.32 (m, 2H), 7.26-7.17 (m, 3H), 6.53 (s, 1H), 5.61 (s, 2H); HRMS (ESI) calculated for C24H19BrN3[M+H]+: 428.0757. Found: 428.0760. Purity by HPLC: 99% (tR=9.22 min). Isolated as a yellow solid (66.0 mg, 154 μmol, 34% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 11.47 (s, 1H), 7.81 (s, 1H), 7.64 (d, J=1.8 Hz, 1H), 7.42 (s, 1H), 7.34 (d, J=8.6 Hz, 1H), 7.19 (dd, J=8.6, 1.8 Hz, 1H), 7.07 (d, J=8.6 Hz, 2H), 6.86 (d, J=8.6 Hz, 2H), 6.48 (s, 1H), 5.45 (s, 2H), 3.73 (s, 3H); HRMS (ESI) calculated for C19H17BrN3O [M+H]+: 382.0550. Found: 382.0540. Purity by HPLC: 99% (tR=9.89 min). Isolated as a white solid (110 mg, 288 μmol, 44% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 10.82 (s, 1H), 7.91 (s, 1H), 7.70 -7.64 (m, 3H), 7.36-7.32 (m, 3H), 7.34 (d, J=8.4 Hz, 1H), 7.24-7.19 (m, 1H), 6.45 (s, 1H), 5.70 (s, 2H); HRMS (ESI) calculated for C19H14BrF3N3[M+H]+: 420.0318. Found: 420.0303. Purity by HPLC: 98% (tR=10.30 min). Isolated as a white solid (61.0 mg, 145 μmol, 16% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.59 (s, 1H), 7.97 (s, 1H), 7.80-7.77 (m, 2H), 7.61 (s, 1H), 7.45 (s, 1H), 7.29 (d, J=8.8 Hz, 1H), 7.20-7.17 (m, 3H), 6.35 (s, 1H), 5.62 (s, 2H); HRMS (ESI) calculated for C19H14BrN4 [M+H] +: 377.0396. Found: 377.0383. Purity by HPLC: 96% (tR=9.42 min). Isolated as a white solid (41.0 mg, 109 μmol, 12% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 11.81 (br s, 1H), 7.74 (d, J=1.9 Hz, 1H), 7.72 (s, 1H), 7.39 (d, J=8.6 Hz, 1H), 7.27 (s, 1H), 7.23 (dd, J=8.7, 1.8 Hz, 1H), 6.64 (s, 1H), 4.26 (dd, J=14.2, 5.1 Hz, 1H), 4.08 (dd, J=14.3, 8.3 Hz, 1H), 3.11-3.06 (m, 1H), 3.03-2.94 (m, 1H), 2.57 (dt, J=11.6, 2.9 Hz, 1H), 1.82-1.68 (m, 2H), 1.62-1.57 (m, 1H), 1.50-1.15 (m, 3H); HRMS (ESI) calculated for C17H20BrN4[M+H]+: 359.0866. Found: 359.0857. Purity by HPLC: 98% (tR=7.73 min). (32.0 mg, 89.0 μmol, 20% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 11.12 (s, 1H), 7.77 (s, 1H), 7.66 (s, 1H), 7.42 (dt, J=9.7, 4.7 Hz, 3H), 7.38-7.23 (m, 5H), 7.22 (s, 1H), 5.12 (dd, J=8.5, 3.8 Hz, 1H), 4.44 (dd, J=14.4, 3.9 Hz, 1H), 4.32 (dd, J=14.4, 8.6 Hz, 1H); HRMS (ESI) calculated for C19H17BrN3O [M+H]+: 382.0550. Found: 382.0537. Purity by HPLC: 97% (tR=9.53 min). Isolated as an orange solid (174 mg, 955 μmol, 68% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 11.16 (s, 1H), 7.34 (s, 1H), 7.15 (s, 1H), 7.01 (s, 1H), 6.85 (d, J=8.4 Hz, 1H), 6.73 (d, J=8.6 Hz, 1H), 6.51 (d, J=6.6 Hz, 1H), 6.26 (d, J=7.9 Hz, 1H), 5.98 (s, 1H), 5.87-5.67 (m, 2H), 4.78 (d, J=7.6 Hz, 4H).); HRMS (ESI) calculated for C18H16BrN4[M+H]+: 367.0553. Found: 367.0564. Purity by HPLC: 99% (tR=9.09 min). Isolated as a white solid (130 mg, 354 μmol, 32% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.65 (s, 1H), 9.99 (s, 1H), 7.80 (s, 1H), 7.63 (d, J=1.4 Hz, 1H), 7.44 (s, 1H), 7.32 (d, J=9.1 Hz, 1H), 7.18 (dd, J=8.6, 1.8 Hz, 1H), 7.10 (t, J=7.9 Hz, 1H), 6.89 (d, J=7.9 Hz, 1H), 6.89 (d, J=8.0 Hz, 1H), 6.68 (t, J=7.6 Hz, 1H), 6.52 (d, J=7.3 Hz, 1H), 6.40 (s, 1 H), 5.37 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 154.5, 140.4, 135.0, 130.3, 128.9, 128.8, 128.6, 127.2, 125.2, 124.1, 123.3, 122.1, 119.2, 115.1, 112.9, 111.8, 98.4, 44.4; HRMS (ESI) calculated for C18H15BrN3O[M+H]+: 368.0393. Found: 368.0389. Purity by HPLC: 97% (tR=9.44 min). Isolated as a white solid (97.0 mg, 264 μmol, 29% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 10.76 (s, 1H), 8.60 (s, 1H), 7.82 (s, 1H), 7.64 (s, 1H), 7.39 (s, 1H), 7.33 (d, J=8.6 Hz, 1H), 7.20 (dd, J=8.6, 1.9 Hz, 1H), 7.16 (t, J=8.2 Hz, 1H), 6.73 (dd, J=8.2, 2.4 Hz, 1H), 6.63 (dt, J=7.6, 0.7 Hz, 1H), 6.53 (s, 1H), 5.47 (s, 2H); HRMS (ESI) calculated for C18H15BrN3O[M+H]+: 368.0393. Found: 368.0381. Purity by HPLC: 95% (tR=9.07 min). Isolated as a white solid (97.0 mg, 263 μmol, 30% yield).
- The isolation of a byproduct from the van Leusen reaction between 5-bromo-2-indolecarboxaldeyde (7) and 2-hydroxybenzylamine during synthesis of inhibitor 9j. Upon close inspection of the reaction mixture, a second imidazole-containing compound was identified as a minor product (ca 2:1 ratio). After careful chromatographic separation, both products were analyzed using HSQC/HMBC spectroscopy. The structure of the minor product was assigned as 10c. While the major product of the reaction (9j) was found to have an activity of 6.0 μM, the byproduct 10c was found to have an activity of 180 nM (see below).
- Without wishing to be bound by theory, molecular modelling of compound 10c revealed a proposed binding mode with the 2-hydroxyphenyl group now binding in pocket A, and the 5-bromoindole group now binding in pocket B. This flip in binding modes orientates the indole-NH in proximity to hydrogen bond with the propionate of the heme in IDO1. These so-called “flipped” compounds are hereafter referenced as “
Series 2” inhibitors, and are identified herein using either 10 or G alphanumeric prefixes. - Computational docking indicated that the phenol ring of 10c now occupies pocket A and acts as a hydrogen bond donor to Ser167. The formation of compound 10c can be mechanistically-rationalized by tautomerization of intermediate 7i (likely promoted by the 2-phenolate group) to produce 7ii, as shown in the following scheme:
- Series 2 inhibitors were prepared using the following general reaction scheme:
-
- To a stirred solution of 5-bromo-1H-indole-2-carbaldehyde (7) (3.49 g, 15.6 mmol) in EtOH/H2O (5:2, 70 mL) was added NH2OH·HCl (2.15 g, 31.2 mmol) followed by Na2CO3 (2.48 mg, 23.4 mmol). The reaction mixture was heated to 60° C. and stirred for 1 h before being diluted with H2O (25 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. The crude residue was dissolved in MeOH (150 mL) and cooled to 0° C. NiCl2·6H2O (3.70 g, 15.6 mmol) was then added slowly followed by the slow addition of NaBH4 (3.56 g, 93.6 mmol). The reaction mixture was stirred for 1 h before being quenched with H2O (10 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification by column chromatography (MeOH 10% NH4OH/CH2Cl2, 0:1→1:9 gradient run) provided the amine 11 (1.52 g, 6.76 mmol, 43%) as a brown solid.
- 1H NMR (DMSO-d6, 300 MHz) δ 11.31 (br s, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.32 (d, J=8.5 Hz, 1H), 7.14 (dd, (d, J=8.5, 1.9 Hz, 1H), 6.26 (s, 1H), 3.90 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 143.9, 134.8, 130.1, 122.7, 121.6, 112.8, 111.3, 97.6, 39.1.
-
- To a stirred solution of 5-Fluoroindole-2-carboxylic acid 14 (5.00 g, 27.8 mmol) in THF (150 mL) was added CDI (9.00 g, 55.8 mmol). The reaction mixture was stirred for 2 h before the addition of NH4OH (28-30% aq. solution, 50 mL). The reaction mixture was then stirred for 2 h before being quenched with H2O (100 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×100 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. The crude residue was dissolved in THF (150 mL) and cooled to 0° C. LiAlH4 (2.50 g, 65.9 mmol) was added slowly and the reaction mixture was warmed to RT before heating to reflux and stirred for 2 h. The reaction mixture was then quenched with H2O (100 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×100 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification by column chromatography (MeOH 10% NH4OH/CH2Cl2, 0:1→1:9 gradient run) provided the amine 12 (3.45 g, 21.0 mmol, 76%) as a white solid.
- 1H NMR (DMSO-d6, 300 MHz) δ 11.7 (br s, 1H), 7.29 (dd, J=8.8, 4.5 Hz, 1H), 7.18 (d, J=10.1, 1.3 Hz, 1H), 6.83 (dt, J=9.2, 1.7 Hz, 1H), 6.23 (s, 1H), 3.84 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 156.8 (d, J (C, F)=229.9 Hz), 144.6, 132.7, 128.4 (d, J (C, F)=9.9 Hz), 111.6 (d, J (C, F)=9.5 Hz), 108.0 (d, J (C, F)=25.8 Hz), 104.0 (d, J (C, F)=23.2 Hz), 97.9 (d, J (C, F)=3.2 Hz), 48.4.
-
- From 5-bromo-1H-indole-2-carbaldehyde (7) of Example 16: To a stirred solution of 5-bromo-1H-indole-2-carbaldehyde (7) (200 mg, 0.89 mmol) in DMF (2.0 mL) was added 2-(aminomethyl)phenol (110 mg, 0.89 mmol). The reaction mixture was stirred for 3 h before the addition of K2CO3 (246 mg, 1.78 mmol) and 1-(isocyanomethylsulfonyl)-4-methylbenzene (174 mg, 893 μmol). The reaction mixture was then heated to 60° C. and stirred for 24 hours before being quenched with H2O (5 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×25 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification by column chromatography (MeOH 10% NH4OH/CH2Cl2, 0:1→1:9 gradient run) provided compound 10c (54.0 mg, 263 μmol, 16%) as a brown solid.
- From (5-bromo-1H-indol-2-yl)methanamine (11) of Example 16: To a stirred solution of (5-bromo-1H-indol-2-yl)methanamine (11) (500 mg, 2.22 mmol) in DMF (2 mL) was added salicylaldehyde (236 μL, 2.22 mmol). The reaction mixture was stirred for 3 h before the addition of K2CO3 (591 mg, 4.44 mmol) and 1-(isocyanomethylsulfonyl)-4-methylbenzene (433 mg, 2.22 mmol). The reaction mixture was then heated to 60° C. and stirred for 24 hours before being quenched with H2O (5 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2×25 mL). The combined organic extracts were washed with brine, dried (MgSO4) and concentrated in vacuo. Purification by column chromatography (MeOH 10% NH4OH/CH2Cl2, 0:1→1:9 gradient run) provided compound 10c (166 mg, 451 μmol, 20%) as a brown solid.
- 1H NMR (DMSO-d6, 300 MHz) δ 11.28 (s, 1H), 9.87 (s, 1H), 7.75 (s, 1H), 7.56 (d, J=1.6 Hz, 1H), 7.26 (d, J=8.6 Hz, 1H), 7.21 (dd, J=11.5, 4.9 Hz, 2H), 7.13 (dd, J=8.6, 1.9 Hz, 1H), 7.07 (dd, J=7.5, 1.5 Hz, 1H), 6.98 — 6.92 (m, 1H), 6.87 (s, 1H), 6.79 (t, J=7.4 Hz, 1H), 5.78 (d, J=14.8 Hz, 1H), 5.26 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 155.0, 138.0, 136.9, 134.9, 131.8, 130.0, 129.8, 129.5, 127.8, 123.6, 122.0, 119.2, 116.7, 115.7, 113.1, 111.5, 99.6, 42.1; HRMS (ESI) calculated for C18H15BrN3O[M+H]+: 368.0393. Found: 368.0406. Purity by HPLC: 95% (tR=9.33 min).
- The following compounds were synthesized following a procedure analogous to that for the synthesis of compound 10c:
-
- 1H NMR (acetone-d6, 300 MHz) δ 10.88 (s, 1H), 7.78 (s, 1H), 7.49-7.42 (m, 4H), 7.41-7.38 (m, 1H), 7.37-7.34 (m, 2H), 7.09-7.04 (m, 2H), 6.99-6.94 (m, 1H), 6.09 (s, 1H), 5.43 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 139.4, 136.4, 135.0, 132.5, 129.7, 128.8, 128.1, 127.7, 127.6, 121.3, 120.0, 119.1, 111.3, 100.0, 42.3; HRMS (ESI) calculated for C18H16N3[M+H]+: 274.1339. Found: 274.1340. Purity by HPLC: 99% (tR=10.37 min). Isolated as an orange solid (99.0 mg, 362 μmol, 18% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 11.39 (br s, 1H), 7.85 (d, J=0.8 Hz, 1H), 7.61 (d, J=1.9 Hz, 1H), 7.42 -7.32 (m, 5H), 7.29 (d, J=8.6 Hz, 1H), 7.16 (dd, J=8.6, 2.0 Hz, 1H), 7.09 (d, J=0.9 Hz, 1H), 5.95 (s, 1H), 5.40 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 139.5, 136.9, 135.0, 132.5, 129.6, 129.5, 128.8, 128.1, 127.8, 123.7, 122.1, 112.2, 111.6, 99.6, 42.3; HRMS (ESI) calculated for C18H15BrN3[M+H]+: 352.0444. Found: 352.0443. Purity by HPLC: 99% (tR=9.67 min). Isolated as a white solid (99.0 mg, 281 μmol, 14% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 10.37 (br s, 1H), 7.68 (d, J=0.7 Hz, 1H), 7.61 (d, J=1.9 Hz, 1H), 7.27 (d, J=8.7 Hz, 1H), 7.16 (dd, J=8.6, 1.9 Hz, 1H), 7.02 (dd, J=4.8, 2.8 Hz, 1H), 7.01 (d, J=5.3 Hz), 6.96 (d, J=0.8 Hz, 1H), 6.91 (d, J=2.6 Hz, 1H), 6.89 (d, J=2.1 Hz, 1H), 6.12 (s, 1H), 5.40 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 156.1 (d, J (C, F)=234.7 Hz), 152.3, 139.4, 137.7, 135.9, 130.4, 129.9, 129.4, 124.6, 123.0, 118.7 (d, J(C, F)=8.8 Hz), 118.5 (d, J(C, F)=23.1 Hz), 117.5 (d, J(C, F)=8.1 Hz), 117.1 (d, J(C, F)=22.6 Hz), 114.1, 112.5, 100.6, 41.4; HRMS (ESI) calculated for C18H14BrFN3O [M+H]+: 386.0304. Found: 386.0307. Purity by HPLC: 93% (tR=9.29 min). Isolated as a white solid (120 mg, 311 μmol, 35% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 10.99 (s, 1H), 10.03 (br s, 1H), 7.70 (d, J=0.8 Hz, 1H), 7.59 (d, J=1.8 Hz, 1H), 7.29 (d, J=8.6 Hz, 1H), 7.23 (dd, J=8.7, 2.7 Hz, 1H), 7.15 (dd, J=8.6, 1.9 Hz, 1H), 7.11 (d, J=2.7 Hz, 1H), 7.03 (d, J=8.7 Hz, 1H), 6.93 (d, J=0.8 Hz, 1H), 6.04 (s, 1H), 5.34 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 154.1, 138.5, 136.7, 134.9, 130.8, 129.4, 128.7, 128.4, 123.7, 122.4, 122.1, 118.6, 117.2, 113.2, 111.6, 99.7, 42.3; HRMS (ESI) calculated for C15H14BrClN3O[M+H]+: 402.0003. Found: 402.0005. Purity by HPLC: 99% (tR=9.55 min). Isolated as a white solid (148 mg, 368 μmol, 50% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.19 (br s, 1H), 9.99 (br s, 1H), 7.77 (d, J=0.96 Hz, 1H), 7.29 (d, J=8.8, 4.6 Hz, 1H), 7.26-7.20 (m, 1H), 7.15 (dd, J=10.0, 2.5 Hz, 1H), 7.10 (dd, J=7.5, 1.7 Hz, 1H), 6.98 (dd, J=8.1, 0.8 Hz, 1H), 6.90-6.83 (m, 2H), 6.80 (dd, J=7.5, 0.9 Hz, 1H), 5.83 (s, 1H), 5.27 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 157.0 (d, J (C, F)=231.1 Hz), 155.1, 138.0, 137.3, 132.9, 131.9, 130.2, 129.9, 127.9, 127.8, 119.2, 116.7, 115.7, 112.1 (d, J(C, F)=9.8 Hz), 109.3 (d, J (C, F)=26.2 Hz), 104.5 (d, J (C, F)=23.2), 100.2 (d, J (C, F)=4.6 Hz), 42.3; HRMS (ESI) calculated for C18H15FN3O[M+H]+: 308.1194. Found: 308.1189. Purity by UPLC: 99% (tR=1.79 min). Isolated as a white solid (326 mg, 1.06 mmol, 58% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.30 (br s, 1H), 9.64 (br s, 1H), 7.82 (s, 1H), 7.33 (dd, J=8.7, 4.8 Hz, 1H), 7.24 -7.19 (m, 2H), 7.05 (s, 1H), 6.93 -6.75 (m, 4H), 5.97 (s, 1H), 5.37 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 157.6, 157.0 (d, J (C, F)=231.3 Hz), 139.4, 137.3, 133.1, 132.7, 130.8, 129.9, 127.9 (d, J(C, F)=10.4 Hz), 127.5, 118.8, 115.0, 114.9, 112.2 (d, J (C, F)=9.7 Hz), 109.4 (d, J (C, F)=26.1 Hz), 104.6 (d, J (C, F)=23.6 Hz), 100.1 (d, J (C, F)=4.5 Hz), 42.3; HRMS (ESI) calculated for C15H15FN3O[M+H]+: 308.1194. Found: 308.1208. Purity by UPLC: 98% (tR=1.72 min). Isolated as a white solid (76.0 mg, 247 μmol, 14% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.26 (s, 1H), 9.67 (s, 1H), 7.77 (s, 1H), 7.31 (dd, J=8.7, 4.6 Hz, 1H), 7.19 (d, J=8.4 Hz, 1H), 7.18 (s, 1H), 6.94 (s, 1H), 6.89 (dt, J=9.5, 2.2 Hz, 1H), 6.79 (d, J=8.4 Hz, 1H), 5.96 (s, 1H), 5.30 (s, 1H), 5.30 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 157.3, 157.0 (d, J (C, F)=231.1 Hz), 138.6, 137.4, 133.0, 132.8, 129.8, 127.9 (d, J (C, F)=10.4 Hz), 126.7, 120.1, 115.6, 112.2 (d, J (C, F)=9.7 Hz), 109.4 (d, J (C, F)=26.0 Hz), 104.6 (d, J (C, F)=23.2 Hz), 100.2 (d, J (C, F)=4.4 Hz), 40.4; HRMS (ESI) calculated for C18H15FN3O[M+H]+: 308.1194. Found: 308.1200. Purity by UPLC: 99% (tR=1.51 min). Isolated as a white solid (267 mg, 869 μmol, 71% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.16 (br s, 1H), 9.68 (br s, 1H), 7.82 (s, 1H), 7.41 (dd, J=8.0, 1.6 Hz, 1H), 7.27 (dd, J=8.8, 4.7 Hz, 1H), 7.14 (dd, J=10.0, 2.5 Hz, 1H), 7.04 (dd, J=7.6, 1.6 Hz, 1H), 6.93 (d, J=1.0 Hz, 1H), 6.90 - 6.81 (m, 2H), 5.84 (d, J=1.3 Hz, 1H), 5.22 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 157.0 (d, J (C, F)=231.2 Hz), 150.8, 138.6, 137.0, 132.9, 130.7, 130.1, 128.8, 128.4, 127.8 (d, J (C, F) =10.4 Hz), 121.5, 120.4, 119.9, 112.1 (d, J (C, F)=9.7 Hz), 109.3 (d, J (C, F)=20.6 Hz), 104.5 (d, J (C, F)=23.2 Hz), 100.2 (d, J (C, F)=4.0 Hz), 40.4; HRMS (ESI) calculated for C18H14ClFN3O [M+H]+: 342.0804. Found: 342.0806. Purity by UPLC: 99% (tR=1.67 min). Isolated as a white solid (193 mg, 565 μmol, 46% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.20 (s, 1H), 10.57 (br s, 1H), 7.80 (s, 1H), 7.29 (dd, J=8.8, 4.7 Hz, 1H), 7.16 (dd, J=10.1, 2.1 Hz, 1H), 7.10 (d, J=8.1 Hz, 1H), 7.00 (d, J=1.8 Hz, 1H), 6.92 (s, 1H), 6.91 -6.84 (m, 2H), 5.88 (s, 1H), 5.26 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 157.0 (d, J (C, F)=231.7 Hz), 156.1, 138.4, 137.1, 133.7, 133.1, 132.9, 128.9, 127.9 (d, J(C, F)=10.6 Hz), 127.8, 119.2, 116.0, 115.5, 112.2 (d, J (C, F)=9.7 Hz), 109.3 (d, J (C, F)=26.0 Hz), 104.5 (d, J (C, F)=23.2 Hz), 100.2 (d, J (C, F)=4.5 Hz), 42.4; HRMS (ESI) calculated for C18H4ClFN3O [M+H]+: 342.0804. Found: 342.0810. Purity by UPLC: 99% (tR=1.88 min). Isolated as a white solid (315 mg, 922 μmol, 50% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.16 (br s, 1H), 10.18 (br s, 1H), 7.83 (d, J=0.9 Hz, 1H), 7.27 (dd, J=8.9, 4.8 Hz, 1H), 7.23 (t, J=8.1 Hz, 1H), 7.12 (dd, J=10.1, 2.4 Hz, 1H), 6.94-6.82 (m, 4H), 5.80 (br s, 1H), 5.16 (d, J=16.1 Hz, 1H), 5.02 (d, J=16.0 Hz, 1H); 13C NMR (DMSO-d6, 75 MHz) δ 157.7, 156.9 (d, J (C, F)=231.2 Hz), 138.0, 136.7, 135.3, 132.9, 130.9, 128.9, 127.8 (d, J (C, F)=10.1 Hz), 125.5, 119.8, 115.8, 114.3, 112.0 (d, J (C, F)=9.5 Hz), 109.2 (d, J (C, F)=25.9 Hz), 104.4 (d, J (C, F) =23.0 Hz), 100.2 (d, J (C, F)=3.6 Hz), 42.0; HRMS (ESI) calculated for C18H14ClFN3O [M+H]+: 342.0804. Found: 342.0813. Purity by UPLC: 99% (tR=1.64 min). Isolated as a white solid (345 mg, 1.01 mmol, 81% yield).
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.20 (s, 1H), 10.01 (s, 1H), 7.79 (s, 1H), 7.29 (dd, J=8.8, 4.6 Hz), 7.16 (dd, J=10.0, 2.4 Hz, 1H), 7.07 (dt, J=8.3, 3.1 Hz, 1H), 6.98-6.91 (m, 3H), 6.87 (dt, J=9.3, 2.2 Hz, 1H), 5.87 (s, 1H), 5.30 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 157.6 (J (C, F)=137.6 Hz), 154.4 (J (C, F)=141.1 Hz), 151.4 (J (C, F)=1.6 Hz), 138.5, 137.1, 132.9, 129.0 (J (C, F)=1.6 Hz), 128.4, 127.8 (J (C, F)=10.4 Hz), 117.8 (J (C, F)=9.4 Hz), 117.6 (J (C, F)=23.7 Hz), 116.6 (J (C, F)=8.2 Hz), 116.1 (J (C, F)=22.8 Hz), 112.2 (J (C, F)=9.7 Hz), 109.3 (J (C, F)=26.1 Hz), 104.6 (J (C, F)=23.2 Hz), 100.3 (J (C, F)=4.5 Hz), 42.4; HRMS (ESI) calculated for C18H14F2N3O [M+H]+: 326.1099. Found: 326.1104. Purity by UPLC: 99% (tR=1.80 min). Isolated as a white solid (380 mg, 1.17 mmol, 63% yield).
-
- 1H NMR (acetone-d6, 300 MHz) δ 10.94 (br s, 1H), 10.67 (br s, 1H), 7.29 (s, 1H), 7.17 (br s, 1H), 6.86 (d, J=8.8 Hz, 1H), 8.39 (d, J=8.7 Hz, 1H), 6.63 (s, 1H), 6.37 (br s, 1H), 5.60 (s, 1H), 5.51 (s, 1H), 4.96 (s, 1H); HRMS (ESI) calculated for C16H14BrN4[M+H]+: 341.0396. Found: 341.0371.
-
- 1H NMR (acetone-d6, 300 MHz) δ 11.27 (br s, 1H), 11.13 (br s, 1H), 7.74 (s, 1H), 7.32 (dd, J=8.8, 4.5 Hz, 1H), 7.19 (dd, J=9.9, 2.5 Hz, 1H), 7.08 (d, J=0.89, 1H), 6.89 (dt, J=9.3, 2.1 Hz, 1H), 6.83-6.81 (m, 1H), 6.07 (br s, 1H), 5.97 (br s, 1H), 5.40 (s, 1H); HRMS (ESI) calculated for C16H14FN4[M+H]+: 281.1202. Found: 281.1212.
-
- 1H NMR (DMSO-d6, 300 MHz) δ 11.17 (s, 1H), 10.24 (s, 1H), 7.76 (s, 1H), 7.30-7.24 (m, 2H), 7.15 (d, J=10.0, 2.28 Hz, 1H), 7.09 (d, J=7.67 Hz, 1H), 6.96 (d, J=8.7 Hz, 1H), 6.93 (d, J=0.8 Hz, 1H), 6.86 (dt, J=9.2, 2.3 Hz, 1H), 5.87 (s, 1H), 5.24 (s, 2H); 13C NMR (DMSO-d6, 75 MHz) δ 157.0 (d, J (C, F)=231.4 Hz), 154.1, 138.5, 137.0, 132.9, 130.8, 129.5, 128.7, 128.4, 127.8 (d, J (C, F)=10.4 Hz), 122.4, 118.6, 117.3, 112.2 (d, J (C, F)=9.7 Hz), 109.3 (d, J (C, F)=26.3 Hz), 104.5 (d, J (C, F)=23.3 Hz), 100.3 (d, J (C, F)=4.1 Hz), 42.4; HRMS (ESI) calculated for C15H14ClFN3O [M+H]+: 342.0809. Found: 342.0809. Purity by UPLC: 99% (tR=1.69 min). Isolated as a white solid (300 mg, 878 μmol, 72% yield).
- A. Human Recombinant IDO1 Expression and Purification
- E. Coli were transformed with a PET15b-6HISIDO1 vector. A single colony was inoculated in Luria-Bertani (LB) medium containing 100 ug/mL ampicillin and was allowed to grow for 4 hrs at 37° C. This culture was added to a 50 mL culture and grown overnight at 37° C. The 50 mL overnight culture was transferred to 1 L culture of LB Overnight ExpressTM autoinduction medium containing 635 μM Aminolevulinic acid, 20 μM Hematin porcine, and 100 ug/mL of ampicillin 1 L culture was grown at 30° C. for 24 hours. Bacterial cells were then collected as a pellet through centrifugation at 6000 g for 10 min at 4° C. Cell Pellets were stored at −80° C. until use. Cell pellets corresponding to 500 mL of bacterial culture were suspended in 50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1% Triton X-100, pH 7.8, 1 mg/mL Lysozyme (Sigma-Aldrich cat #L7001) and 1 tablet cOmplete™ EDTA-free Protease Inhibitor Cocktail per 50 mL of buffer (Roche cat #11873580001). The cell suspension was sonicated on ice at 90% maximal power using a Sonics Vibra-Cell VCX130 for 5 mins 30 seconds, then centrifuged at 16,000g for 20 mins at 4° C. Supernatant was then collected and applied to 1 mL resin volume of cOmplete™ His-Tag Purification Resin (Roche cat #05893682001). The resin was washed with 20 resin volumes of 50 mM NaH2PO4, 300 mM NaCl, and 20 mM imidazole at pH 7.8. Protein containing fractions were collected in 1 mL fractions following addition of elution buffer (50 mM NaH2PO4, 300 mM NaCl and 500 mM imidazole at pH 8.0) to the resin. Protein containing fractions as determined by Bradford assay were then pooled and dialyzed into 50 mM Tris pH 7.5 buffer.
- B. IDO1 Enzymatic Inhibition Assay
- IDO enzymatic assay was carried out generally following a procedure provided in Röhrig, U. F.; Majjigapu, S. R.; Vogel, P.; Zoete, V.; Michielin, O., J. Med. Chem. 2015, 58 (24), 9421-37. A standard reaction mixture (200 μL/well) containing 50 mM potassium phosphate buffer (pH 6.5), 20 mM ascorbic acid (neutralised with NaOH), 200 μg/mL catalase, 10 μM methylene blue, 6.25 μg/mL recombinant human IDO1 and 200 μM L-Tryptophan was added to the test compound dissolved in DMSO at a determined concentration. The mixture was incubated for 1 hour at 37° C. and the reaction was stopped by adding 40 μL/well of 30% (w/v) trichloroacetic acid. After heating at 65° C. for 15 min, 125 μL was transferred into a well of a 96-well microplate and mixed with 125 pL of 2% (w/v) p-dimethylaminobenzaldehyde in acetic acid. The yellow pigment derived from kynurenine was measured at 480 nm using a Cytation™ 3 microplate reader. Percent inhibition was calculated using [(X−Y)/X]×100 where X is absorbance value of without inhibitor and Y is the absorbance value of enzyme with indicated concentration of inhibitor. Normalized data was analyzed with Graphpad Prism 6 using non-liner regression curve fitting. IC50 values presented as means with N≥3.
-
Entry IC50 (μM) 9a 13.0 9b 34.0 9c 34.0 9d 21.0 9e >100 9f 4.0 9g >100 9h 19.0 9i 50.0 9j 6.0 9k 2.0 10a 4.44 10b 1.25 10c 0.180 10d 0.100 10e 0.038 10f 0.322 10g 4.64 10h 83.3 10i 22.7 10j 21.0 10k 44.8 10l 0.113 10m 0.034 G28 0.309 G29 0.230 - C. TDO2 Enzymatic Inhibition Assay
- A standard reaction mixture (200 μL/well) containing 50 mM potassium phosphate buffer (pH 6.5), 20 mM ascorbic acid (neutralised with NaOH), 200 μg/mL catalase, 10 μM methylene blue, 12.5 μg/mL recombinant human IDO1 and 500 μM L-Tryptophan was added to the test compound dissolved in DMSO at a determined concentration. The mixture was incubated for 1 hour at 37° C. and the reaction was stopped by adding 40 μL/well of 30% (w/v) trichloroacetic acid. After heating at 65° C. for 15 min, 125 μL was transferred into a well of a 96-well microplate and mixed with 125 μL of 2% (w/v) p-dimethylaminobenzaldehyde in acetic acid. The yellow pigment derived from kynurenine was measured at 480 nm using a Cytation™3 microplate reader. Percent inhibition was calculated using [(X−Y)/X]×100 where X is absorbance value of without inhibitor and Y is the absorbance value of enzyme with indicated concentration of inhibitor. Normalized data was analyzed with Graphpad Prism 6 using non-liner regression curve fitting. IC50 values presented as means with N≥3.
-
Compound TDO IC50 10l 84.0 μM 10m 54.4 μM 10f >200 μM 10e >200 μM 10c 157.6 μM 10d 70.1 μM 10b >200 μM 10g 42.5 μM - D. Cellular Assay of IDOL inhibition
- Construction of Human IDO1 Inducible Expression Vector and HEK293 Cell Line
- To generate the inducible expression vector, human IDO1 cDNA was PCR amplified using a validated IDO1 expression plasmid as template (Origene, cat #SC126221) and sub-cloned into TRIPZ Tet-On inducible expression vector (Dharmacon). Briefly, TRIPZ vector was digested with AgeI and MluI restriction enzymes and the vector backbone was recovered. IDO1 coding sequence was PCR cloned with forward primer containing AgeI and reverse primer containing MluI restriction site. Primer sequences are:
IDO1 Fw 5′-GTCAACCGGTATGGCACACGCTATGGAAAACTC-3′ andIDO1 Re 5′-GTCA ACGCGTTTAACCTTCCTTCAAAAGGGATT-3′. PCR product was digested with AgeI and MluI then ligated with pre-cut TRIPZ vector. Cloning was confirmed by DNA sequencing. HEK-293 cell line was maintained in DMEM (high glucose) supplemented with 5% heat-inactivated Fetal Bovine Serum (GIBCO) and Antibiotic-Antimycotic (Life Technologies). Cells were grown at 37° C. in 5% CO2 atmosphere. HEK-293 cells were transfected with TRIPZ vector carrying human IDO1 gene using Lipofectamine 2000 according to manufacturer's instruction. Stable cell lines (HEK293/TRIPZ-IDO1) were selected by growing cells in the presence of puromycin (lug/ml) for one week and then maintained in regular growth medium. - IDO1 Inhibition in HEK293/IDO1 Transfected Cells
- HEK293/TRIPZ-IDO1 cells were seeded in a 96-well microplate at a density of 3×104 cells/well. 24 hours later, cell culture medium was added in the following order: first, 50 μL of complete medium with serial dilutions of compounds was added to cells and incubated for 30 min; second, 20 μL of complete medium containing 1 ug/ml doxycycline (Clontech) was added to each well for the induction of IDO1 expression. Cell culture medium was collected 24 h after the induction of IDO1. Medium was centrifuged at 3000 g for 15 min to sediment cell debris and 150 pL of supernatant was transferred to wells of new microplates. 30 μL of 30% (w/v) trichloroacetic acid was added to each sample-containing well and reaction was incubated at 65° C. for 20 min to hydrolyze N-formylkynurenine produced by the catalytic reaction of IDO1. The reaction mixture was centrifuged at 3000 g for 15 min 125 μL of supernatant was transferred to a new assay plate and mixed with 125 μL of 2% (w/v) p-dimethylaminobenzaldehyde (Sigma-Aldrich cat #156477) in acetic acid. The yellow pigment derived from kynurenine was measured at 480 nm using a Cytation™ 3 microplate reader (BioTek). Percent inhibition was calculated using [(X−Y)]×1×100 where X is absorbance value of without inhibitor and Y is the absorbance value of enzyme with indicated concentration of inhibitor. Data was analyzed with Graphpad Prism 6 using non-linear regression curve fitting with EC50 values presented as means with N≥3.
-
Entry EC50 (μM) 9a 11.0 9b 11.0 9c 3.10 9d 4.30 9e 4.50 9f 6.90 9g 10.7 9h 9.50 9i 12.0 9j 5.0 9k 10.0 10a 9.12 10b 18.7 10c 1.45 10d 1.04 10e 0.890 10f 0.480 10g 4.19 10h 4.56 10i 6.26 10j 5.55 10k 6.40 10l 0.320 10m 0.260 G28 0.467 G29 0.250 - Compound 9a with a phenyl substituent linked by a methylene group was found to possess an IC50 of 13 μM: a two-fold increase in potency versus compound 6. The analogous nor-bromine compound 9b was found to be three-fold less active (IC50=34 μM). However, both compounds exhibited equivalent potency in cellular assay (EC50 11.0 μM). Further studies were performed to consider the effect of substituents positioned in the para-position of 9a to increase potency by either interacting with arginine-231 or by making hydrophobic interactions with additional residues in pocket B. Compounds 9c and 9e containing a 4-phenyl and 4-trifluoromethyl substituent respectively, displayed poorer activity against ID01, while the electron rich 4-methyoxyphenyl compound 9d displayed a modest potency increase compared to the parent 9a. Compound 9f with a 4-cyano substituent showed ca 3-fold increase in potency relative to 9a. With an N3-substituent capable of binding in pocket B identified, the next objective was to increase the potency of the inhibitor series by addition of a H-bond donor. Inclusion of a hydrogen bond donor in either the ortho or meta positions of 9a was expected to provide opportunity for an intermolecular hydrogen bond to the propionate. Installation of a hydrogen bond donor (amine or hydroxyl) at the ortho-position of 9a afforded differing effects on the inhibitory activity. The 2-hydroxyphenyl derivative (9j) displayed an activity of 6 μM.
- The most potent of
Series 1 was found to be the 3-hydroxy substituted 9k with an activity of 2 μM. The modest potency jumps from the installation of the 4-cyano (9f) and 3-hydroxyl (9k) groups versus compound 9a were encouraging. - Further SAR studies were performed on the
Series 2 inhibitors. The nor-hydroxyl analog 10b and was found to be approximately five-fold less active than compound 10c. While the nor-hydroxyl/nor-bromo analogue 10a displayed a 24-fold drop in potency. Based on literature precedent and the computation model employed in these studies, inclusion of substituents at the 5-position of the aromatic ring of 10c appeared optimal to interact with a small pocket at the top of the enzyme active site near cysteine-129. Compounds 10d and 10e were synthesized containing 5-fluoro- and 5-chloro substituents, respectively. Both analogs were found to be active in the nanomolar range. - Compound 10d displayed an inhibitory activity of 100 nM while the chloro-compound 10e displayed an activity of 38 nM. In an effort to reduce lipophilicity and improve ligand efficiency, the possibility of switching to a 5-fluoroindole ring was investigated. To that end, compounds 10f-m were synthesized starting from known
amine 11 as outlined in the Examples above. Compounds 10f, 101 and 10m displayed comparable IDO IC50 values relative to their brominated analogs (10c, 10d and 10e respectively). Compound 10m proved to be especially potent (IDO IC50 34 nM, IDO EC50 260 nM). Compound 10m is at least one-fold more potent in a head-to-head enzymatic assay than clinical candidate epacadostat. Intriguingly, switching to the 5-fluoroindole analogs had a beneficial effect on the relative ICs50/EC50 values. While 5-bromoindole analogs (10b-e) displayed a significant reduction in potency in the cellular (HEK293) assays relative to the enzymatic assays, the 5-fluoroindole derivatives showed significant improvement in relative IC50/EC50 values. - Compounds 10l and 10m displayed excellent selectivity over TDO (84.0 iuM and 54.4 μaM respectively). Compounds 10a-g and 10l-m displayed good LE values (LE>0.3). Inhibitor 10m showed an LE value (0.44) which is comparable to the mean LE value (0.45) reported for oral drugs. 10f (fu,plasma=4.03%) and 10l (fu,plasma=1.64%) were identified as compounds with acceptable free fraction in plasma. In general, fluorinated analogs displayed higher fu,plasma values, likely due to reduced lipophilicity relative to the brominated analogs.
- In order to assess the pharmacokinetics of the IDO1 inhibitors of the present application, two inhibitors were administered to mice at 20 mg/kg via PO (G29), or IP (G28). For a preliminary pharmacokinetic profile, three animals were sacrificed per time point at 30 minutes and two hours post-dose. For a full pharmacokinetic profile, three animals were sacrificed per time point at 15 minute, 30 minutes, 1, 2, 4, 6, 8, and 24 hours post-dose.
- Blood samples were collected via cardiac puncture, the mice were perfused with phosphate buffered saline (PBS) and the brains were collected. The blood and brain samples were protein precipitated with ice-cold acetonitrile and the concentration of the test compound in the resulting supernatant was quantified using LC/MS/MS. For the full pharmacokinetic profile, the parameters were computed using the “PK” package with the R statistical computing software using a non-compartmental analysis.
- Tissue Protein Binding:
- The plasma and brain protein binding of compounds was determined using pooled plasma from mice (in-house) or pooled brain homogenized with PBS (1:3 m:v). We used the HTD 96b micro-equilibrium dialysis apparatus (HTDialysis, Gales Ferry CT), a 96 well teflon plate with wells bisected by a dialysis membrane with a molecular weight cutoff of 12-14 kilodaltons. One side of the well was loaded with tissue (plasma or brain) containing the test compound (150 μL) and the other side with phosphate buffer (150 μL). The apparatus was then incubated at 37° C. rotating at 100rpm for 6 hours. After incubation, an aliquot from each side of the well was mixed with either buffer or plasma to ensure all collected samples had an equal mixture of tissue and buffer. The samples were then protein precipitated with ice-cold acetonitrile containing an internal standard (tolbutamide), centrifuged, and the supernatant was analyzed for the test compound by LC/MS/MS. Protein binding was determined by comparing the peak area for the test compound in the tissue and buffer samples.
- The results of the full pharmacokinetic study using G28 are provided in the tables below:
-
Tissue Concentration Time Plasma (mg/ml) Brain (ng/g) (hr) Mean SE Mean SE 0.25 1,883 85 1,655 326 0.5 1,840 37 4,021 243 1 1,408 124 3,516 1,096 2 562 104 2,763 177 4 133 71 1,370 342 6 BQL 552 85 8 BQL 509.6 64.8 -
Compound Parameters Parameter Name Plasma Brain Tmax (hr) 0.25 0.5 Cmax (ng/ml) 1,883 4,021 T1/2 (hr) 0.83 2.36 AUC0-last (ng · h/mL) 2,914 9,867 AUC0-∞ (ng · h/mL) 2,915 14,210 % FU 1.17% 1.61% IC50 310 nM EC50 470 nM - The results of the preliminary pharmacokinetic study using G29 are provided in the table below:
-
Mean Time (Hr) Type M1 M2 M3 (ng/ml) SD 0.5 Plasma 2658.6 1606.0 2740.2 2334.9 632.6 Brain 2392.7 868.8 2561.5 1941.0 932.3 B/P Ratio 0.9 0.5 0.9 0.8 0.2 Mean Time (Hr) Type M4 M5 M6 (ng/ml) SD 2 Plasma 628.9 408.4 — 518.6 156.0 Brain 3447.9 2049.2 — 2748.6 989.0 B/P Ratio 5.5 5.0 — 5.3 0.3 - The results of these studies demonstrate that these IDO inhibitors are brain penetrant.
- All publications, patents and patent applications mentioned in this Specification are indicative of the level of skill of those skilled in the art to which this invention pertains and are herein incorporated by reference to the same extent as if each individual publication, patent, or patent applications was specifically and individually indicated to be incorporated by reference.
- The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims (13)
1-7. (canceled)
8. A method of treating a disease associated with tryptophan metabolism in a subject, the method comprising administering a therapeutically effective amount to a subject of a compound, or a pharmaceutically acceptable salt thereof, of either of Formulas I:
wherein
X is H, F, Cl, or Br;
R1 is piperidin-2-yl, 1-phenylmethan-1 -yl-1-ol, pyrrol-2-yl, or
9. The method of claim 8 in which the disease is cancer.
10. The method of claim 9 in which the disease is glioblastoma multiforme.
11. The method of claim 8 in which the disease is neurodegeneration.
12. The method of claim 11 in which the disease is Alzheimer's disease.
13-19. (canceled)
21. The method of claim 20 , wherein R4 is H, F, Cl, amino, hydroxy, alkoxy, cyano, trifluoromethyl, or phenyl; and R2, R3, R5, and R6 are each independently H, F, Cl, amino, or hydroxy.
22. The method of claim 21 , wherein R4 is H, F, Cl, amino, hydroxy, methoxy, or cyano.
23. The method of claim 22 , wherein the compound is of Formula Ia; X is Br; R4 is H, methoxy, or cyano; R2 is H, amino, or hydroxy; and R3, R5, and R6 are each H.
24. The method of claim 22 , wherein the compound is of Formula Ib; X is F or Br; R6 is H; R5 is H, F, or Cl; R3 and R4 are each H, Cl, or hydroxy; and R2 is H or hydroxy.
25. The method of claim 8 , wherein the compound is of Formula 1b, R1 is pyrrol-2-yl, and X is F or Br.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/096,397 US20230265079A1 (en) | 2018-01-10 | 2023-01-12 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862615653P | 2018-01-10 | 2018-01-10 | |
PCT/CA2019/050031 WO2019136558A1 (en) | 2018-01-10 | 2019-01-09 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
US202016961112A | 2020-07-09 | 2020-07-09 | |
US18/096,397 US20230265079A1 (en) | 2018-01-10 | 2023-01-12 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2019/050031 Division WO2019136558A1 (en) | 2018-01-10 | 2019-01-09 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
US16/961,112 Division US11572354B2 (en) | 2018-01-10 | 2019-01-09 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230265079A1 true US20230265079A1 (en) | 2023-08-24 |
Family
ID=67218159
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/961,112 Active US11572354B2 (en) | 2018-01-10 | 2019-01-09 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
US18/096,397 Pending US20230265079A1 (en) | 2018-01-10 | 2023-01-12 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/961,112 Active US11572354B2 (en) | 2018-01-10 | 2019-01-09 | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof |
Country Status (2)
Country | Link |
---|---|
US (2) | US11572354B2 (en) |
WO (1) | WO2019136558A1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK3272745T3 (en) * | 2016-07-21 | 2019-09-02 | Inst Farmakologii Polskiej Akademii Nauk | IMIDAZOLYL-SUBSTITUTED INDEX DERIVATIVES BINDING 5-HT7 SEROTONIN RECEPTOR AND PHARMACEUTICAL COMPOSITIONS THEREOF |
-
2019
- 2019-01-09 US US16/961,112 patent/US11572354B2/en active Active
- 2019-01-09 WO PCT/CA2019/050031 patent/WO2019136558A1/en active Application Filing
-
2023
- 2023-01-12 US US18/096,397 patent/US20230265079A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2019136558A1 (en) | 2019-07-18 |
US20210053942A1 (en) | 2021-02-25 |
US11572354B2 (en) | 2023-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230109858A1 (en) | Heterocyclic inhibitors of ptpn11 | |
US7799820B2 (en) | 2-Heterocycle-substituted indole derivatives for treating diabetes and associated conditions | |
JP5406725B2 (en) | Compounds useful as protein kinase inhibitors | |
US11713313B2 (en) | GLS1 inhibitors for treating disease | |
RU2572624C2 (en) | Inhibitors of catechol-o-methyltransferase and thereof application in treatment of psychic disorders | |
US20180297991A1 (en) | Novel Ferroportin Inhibitors | |
US20210032249A1 (en) | Amide derivative inhibitor and preparation method and application thereof | |
US11370786B2 (en) | GLS1 inhibitors for treating disease | |
US20100093692A1 (en) | Piperidinyl-piperidine and piperazinyl-piperidine for use in the treatment of diabetes or pain | |
US9556159B2 (en) | Renin inhibitor | |
CN111655692B (en) | Nitrogen-containing heterocyclic amide compound and medical application thereof | |
US20230131535A1 (en) | ARYLMETHYLENE AROMATIC COMPOUNDS AS Kv1.3 POTASSIUM SHAKER CHANNEL BLOCKERS | |
US20130109721A1 (en) | FAAH Inhibitors | |
JP2020508327A (en) | 1,4,6-Trisubstituted-2-alkyl-1H-benzo [d] imidazole derivatives as dihydroorotate oxygenase inhibitors | |
US20190352300A1 (en) | Pyrrolopyrimidine itk inhibitors for treating inflammation and cancer | |
WO2020051572A1 (en) | Brd4-jak2 inhibitors | |
EP3845538B1 (en) | Dihydroimidazopyrazinone compound, composition including same, and use thereof | |
US20230265079A1 (en) | Inhibitor of indoleamine 2,3-dioxygenase-1 and methods of manufacture and use thereof | |
AU2016304331B2 (en) | Method of treating cancer with a combination of benzylideneguanidine derivatives and chemotherapeutic agent. | |
US20230399332A1 (en) | IMIDAZO[1,2-a]PYRAZINE OR PYRAZOLO[1,5-a]PYRIMIDINE DERIVATIVE AND USE THEREOF | |
US10626087B2 (en) | Indoline and tetrahydroquinoline sulfonyl inhibitors of dimetalloenzymes and use of the same | |
EP4332101A1 (en) | Methionine adenosyltransferase inhibitor, preparation method therefor and application thereof | |
US20200299297A1 (en) | New alcoxyamino derivatives for treating pain and pain related conditions | |
AU2018236530B2 (en) | Deuterated benzimidazole compound and medicinal use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY HEALTH NETWORK, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEAVER, DONALD F.;BRANT, MICHAEL G.;WOHNIG, STEPHANIE;AND OTHERS;SIGNING DATES FROM 20190114 TO 20190212;REEL/FRAME:062390/0622 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |