US20230252916A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
US20230252916A1
US20230252916A1 US17/858,308 US202217858308A US2023252916A1 US 20230252916 A1 US20230252916 A1 US 20230252916A1 US 202217858308 A US202217858308 A US 202217858308A US 2023252916 A1 US2023252916 A1 US 2023252916A1
Authority
US
United States
Prior art keywords
display
module
modules
display module
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/858,308
Other versions
US11715396B1 (en
Inventor
Jong Woo Jin
Jinhyeong Yu
Hyunwoo Kim
Jae Ho Shin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Display Technology Co Ltd
Original Assignee
Silicon Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Display Technology Co Ltd filed Critical Silicon Display Technology Co Ltd
Assigned to SILICON DISPLAY TECHNOLOGY reassignment SILICON DISPLAY TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JIN, JONG WOO, KIM, HYUNWOO, SHIN, JAE HO, YU, JINHYEONG
Application granted granted Critical
Publication of US11715396B1 publication Critical patent/US11715396B1/en
Publication of US20230252916A1 publication Critical patent/US20230252916A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3023Segmented electronic displays
    • H01L27/3293
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • An embodiment relates to a display apparatus.
  • Such display apparatuses may be used as relatively small display devices such as TVs, monitors, and various personal portable digital devices, and may also be used as relatively large displays such as a public display and digital signage.
  • the above-described large display apparatus is generally disposed outdoors and is used for providing information to a plurality of users. Therefore, the large display apparatus needs to be implemented in a large area so that the users may easily recognize the information provided from the display apparatus even at a long distance.
  • a tile-type display apparatus that implements a single large-size screen by disposing a plurality of display apparatuses adjacently is used.
  • the tile-type display apparatus Since the tile-type display apparatus has a form in which a plurality of divided display apparatuses are combined with each other, a seam (or a joint) is present between adjacent display apparatuses. Since such a seam corresponds to a non-display part (or a bezel area) in which the image is not implemented, it gives a sense of a disconnection and/or heterogeneity to the user viewing the tile-type display apparatus, and significantly deteriorates image immersion.
  • An embodiment aims to provide a more seamless large display apparatus.
  • the embodiment aims to provide a large display apparatus that is easy to be manufactured.
  • a display apparatus for solving these technical objects includes a plurality of display modules including a display region where a plurality of pixels are positioned and a non-display region outside the display region, wherein, for two display modules adjacent among a plurality of display modules to provide a continuous display region, the display region of the first display module among two adjacent display modules and the non-display region of the second display module among the two adjacent display modules overlap each other in a plane view.
  • the first and second display modules may be bonded by a first adhesive member in the overlapping area
  • the first direction width of the overlapping region may be 20% or less of the first direction width of the display region of the second display module.
  • the first direction width of the overlapping area may be 3 mm or more
  • the ratio of the sum of the thickness of the non-display region of the second display module and the thickness of the adhesive member to the first direction width of the display region of the first display module may be 10:1 or more.
  • the second display module may be positioned under the first display module.
  • the third display module among a plurality of display modules may be combined to the display region of the second display module to overlap each other on a plane, and is positioned under the second display module, and the first, second, and third display modules may be arranged along the first direction.
  • the third display module among a plurality of display modules may be combined with the non-display region of the second display module to overlap each other on a plane, the third display module is positioned on the second display module, and the first, second, and third display modules may be arranged along the first direction.
  • Each of a plurality of display modules may include: a first substrate where the display region and the non-display region are positioned; and a second substrate connected to the first substrate and including a driving unit generating a signal provided to a plurality of pixels.
  • the first substrate and/or the second substrate may be bent so that the second substrate is positioned on the back surface of the first substrate.
  • Each of a plurality of display modules may include a first cover supporting the first substrate on the back surface of the first substrate, and the first substrate of the first module may be positioned between the first cover of the first display module and the first cover of the second display module.
  • the distance between two adjacent pixels of the first display module and the distance between the pixel of the first display module and the pixel of the second display module adjacent to each other may be the same within a 5% error range.
  • the distance between the pixel of the first display module adjacent to the second display module and the boundary of the first display module adjacent to the second display module may be less than the distance between two adjacent pixels of the first display module.
  • Each of a plurality of display modules further includes a second cover positioned corresponding to the display region.
  • the areas of the first cover and the second cover may be different from each other.
  • the first direction lengths of the first cover and the second cover are the same as each other, and the second direction lengths intersecting the first direction may be different from each other.
  • the first cover and/or the second cover may be attached to the display module by a second adhesive member, and the first adhesive member and the second adhesive member may include the same material.
  • An optical member positioned between the second covers of the first and second display modules may be further included.
  • the optical member may include a resin or an optically clear adhesive (OCA).
  • OCA optically clear adhesive
  • a black matrix positioned correspondingly between the pixel of the first display module and the pixels of the second display module adjacent to each other may be further included.
  • a first window positioned corresponding to the entire display region of a plurality of display modules on a plurality of second covers may be further included, and the black matrix may be positioned on the first window.
  • a second window provided under a plurality of first covers may be further included.
  • a third cover positioned corresponding to the entire display region of a plurality of display modules may be further included.
  • FIG. 1 is a top plan view of a display module included in a display apparatus according to a first embodiment.
  • FIG. 2 is a top plan view of a display apparatus according to a first embodiment.
  • FIG. 3 is a cross-sectional view of a part of a display apparatus according to an aspect of a first embodiment.
  • FIG. 4 is a cross-sectional view of a part of a display apparatus according to another aspect of a first embodiment.
  • FIG. 5 is a cross-sectional view of another part of a display apparatus according to a first embodiment.
  • FIG. 6 is a top plan view of a display module included in a display apparatus according to a second embodiment.
  • FIG. 7 is a rear view of a display module included in a display apparatus according to a second embodiment.
  • FIG. 8 is a top plan view of a display apparatus according to a second embodiment.
  • FIG. 9 is a cross-sectional view of a part of a display apparatus according to a second embodiment.
  • FIG. 10 is a cross-sectional view of another part of a display apparatus according to a second embodiment.
  • FIG. 11 is a cross-sectional view of a part of a display apparatus according to a third embodiment.
  • FIG. 12 is a top plan view of a display apparatus according to a fourth embodiment.
  • FIG. 13 is a cross-sectional view of a part of a display apparatus according to a fourth embodiment.
  • FIG. 14 is a cross-sectional view of another part of a display apparatus according to a fourth embodiment.
  • FIG. 15 is a top plan view of a part of a display apparatus according to a fifth embodiment.
  • FIG. 16 is a cross-sectional view of a part of a display apparatus according to a fifth embodiment.
  • FIG. 17 is a top plan view of a part of a display apparatus according to a sixth embodiment.
  • FIG. 18 is a cross-sectional view of a part of a display apparatus according to a sixth embodiment.
  • FIG. 19 is a cross-sectional view of a part of a display apparatus according to a seventh embodiment.
  • FIG. 20 is a top plan view of a part of a display apparatus according to an eighth embodiment.
  • FIG. 21 is a cross-sectional view of a part of a display apparatus according to an eighth embodiment.
  • the word “comprise”, and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.
  • the word “ ⁇ on” means positioning above or below the object portion, but does not essentially mean positioning on the upper side of the object portion based on a gravity direction.
  • FIG. 1 a display module constituting a display apparatus according to an embodiment is described with reference to FIG. 1 .
  • FIG. 1 is a top plan view of a display module included in a display apparatus according to a first embodiment.
  • a display module 10 includes a display panel 100 , a first substrate 200 connected to the display panel 100 , a second substrate 300 connected to the first substrate 200 , and a third substrate 400 connected to the second substrate 300 .
  • the constituent elements shown in FIG. 1 are not essential in implementing the display module, so the following display module may have more or fewer constituent elements than the constituent elements listed above.
  • the display panel 100 includes a plurality of pixels positioned in the display region 110 on the substrate and displaying an image, a driving unit 120 generating a scan signal to be transmitted to a plurality of pixels, a pad unit 140 for receiving a signal from the outside, and wiring 130 for transmitting a signal transmitted from the pad unit 140 to a plurality of pixels and the driving unit 120 .
  • a plurality of pixels may be LED pixels.
  • Each of a plurality of pixels may include a light-emitting element and a capacitor, a transistor, and the like for driving the light-emitting element.
  • a plurality of pixels may be OLED pixels. That is, the light-emitting element included in each of a plurality of pixels may be an LED, an OLED, a mini LED, a micro LED, a QD LED, etc., and may further include a color conversion layer.
  • Two borders of the display region 110 may be positioned on two borders of the display panel 100 (referring to an upper border and a right border of the display region 110 ). That is, the non-display region is not positioned on two borders of the display panel 100 .
  • the driving unit 120 may be positioned in the non-display region other than the display region 110 .
  • the driving unit 120 may change the level of the scan signal provided to the pixels to an enable level/disable level based on an applied clock signal, start pulse signal, and the like.
  • the driving unit 120 may include a transistor, a capacitor, etc. on the substrate of the display panel 100 .
  • the transistor included in the driving unit 120 and the transistor included in the display region 110 may be positioned on the same layer.
  • the wirings 130 may route between the pad unit 140 and the pixels and between the pad unit 140 and the driving unit 120 .
  • the display panel 100 may be stretchable, flexible, bendable, and foldable.
  • the first substrate 200 may be connected to the pad unit 140 of the display panel 100 positioned in the non-display region.
  • the first substrate 200 may be connected to the pad unit 140 of the display panel 100 positioned in the non-display region.
  • the first substrate 200 may be a flexible printed circuit substrate (FPCB) or a chip on film (COF). Since the first substrate 200 may mount an integrated circuit chip 210 , the first substrate 200 is described below as a chip-on-film (COF).
  • the integrated circuit chip 210 may be a data driving IC.
  • the integrated circuit chip 210 may generate a data signal corresponding to a plurality of pixels to be transmitted to a plurality of pixels through the pad unit 140 and the wirings 130 .
  • the first substrate 200 may be bent in the back direction of the display panel 100 .
  • the integrated circuit chip 210 may be positioned on the back surface of the display panel 100 .
  • the second substrate 300 may be connected to the first substrate 200 .
  • the second substrate 300 may be a flexible printed circuit substrate (FPCB) or a chip on film (COF). Since the second substrate 300 does not include an integrated circuit chip, the second substrate 300 is described below as a flexible printed circuit substrate (FPCB). Like the first substrate 200 , the second substrate 300 may also be bent in the back surface direction of the display panel 100 .
  • the third substrate 400 may be connected to the second substrate 300 .
  • the third substrate 400 may be a printed circuit substrate (PCB), but may also be a flexible printed circuit substrate (FPCB) or a chip-on-film (COF) depending on an embodiment.
  • a signal control IC, a power management IC, etc. may be positioned on the third substrate 400 .
  • the third substrate 400 may be positioned on the back surface of the display panel 100 .
  • FIG. 2 is a top plan view of a display apparatus according to a first embodiment.
  • the display apparatus 1 may have a form in which a plurality of display modules 10 a to 10 g are combined in a matrix form.
  • Each of the display modules 10 a to 10 g is partially attached to the non-display region of the adjacent display module. Accordingly, each of the display modules 10 a to 10 g may overlap the adjacent display module on a plane.
  • the arrangement of the display modules 10 a to 10 g is described with reference to FIG. 3 to FIG. 5 .
  • FIG. 3 is a cross-sectional view of a part of a display apparatus according to an aspect of a first embodiment
  • FIG. 4 is a cross-sectional view of a part of a display apparatus according to another aspect of a first embodiment
  • FIG. 5 is a cross-sectional view of another part of a display apparatus according to a first embodiment.
  • a portion of the first display module 10 a is attached to the second display module 10 b
  • a portion of the second display module 10 b is attached to the third display module 10 c
  • a portion of the third display module 10 c is attached to the fourth display module 10 d.
  • the display panel 100 a may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 a and the boundary of the display region 110 b coincide.
  • the driving unit 120 b of the display panel 100 b may be positioned in the non-display region of the display panel 100 b.
  • the display panel 100 a may be attached to the display panel 100 b as an adhesive member 150 .
  • the adhesive member 150 may include a resin or an optically clear adhesive (OCA), an adhesive film, a double-sided adhesive tape, and the like. Accordingly, the display region 110 a on the substrate 100 a and the display region 110 b on the substrate 100 b are seamlessly disposed along the x-axis direction.
  • the x-axis direction width of the area where the display panel 100 a and the display panel 100 b overlap may be at least 3 mm, and may be less than or equal to 20% of the x-axis direction width of the display region 110 b . This is to secure the area of the display region 110 b while securing the minimum area for bonding two display panels 100 a and 100 b.
  • the display panel 100 b may be positioned to overlap the non-display region of the display panel 100 c so that the boundary of the display panel 100 b and the boundary of the display region 110 c coincide.
  • the driving unit 120 c of the display panel 100 c may be positioned in the non-display region of the display panel 100 c.
  • the display modules 10 a , 10 b , 10 c , and 10 d along the x-axis direction may be sequentially disposed to have a step in the ⁇ z-axis direction.
  • the step difference may occur between two adjacent display modules.
  • the x-axis direction length of each of the display regions 110 a and 110 b is several cm to hundreds of cm, but the sum of the thicknesses of the display region 110 b and the adhesive member 150 is several ⁇ m to hundreds of ⁇ m, so it has a ratio of approximately 10:1 to 100000:1 between the two.
  • the step difference between two adjacent display modules is not recognized by the user, and even if an additional member described below is attached to the front and/or back surfaces of the display modules 10 a , 10 b , 10 c , and 10 d , it is difficult to cause lifting between the display modules 10 a , 10 b , 10 c , and 10 d and the member.
  • windows 500 and 502 can be additionally provided above and below the display modules 10 a , 10 b , 10 c , and 10 d .
  • the windows 500 and 502 may be made of a material such as glass, polymethyl methacrylate (PMMA), acryl (acryl), and polyester (PET), but is not limited thereto.
  • the windows 500 and 502 may be attached to the front and back surfaces of the display modules 10 a , 10 b , 10 c , and 10 d , respectively.
  • a part of the first display module 10 a is attached to the second display module 10 b
  • a part of the third display module 10 c is attached to the second display module 10 b
  • a part of the fourth display module 10 d is attached to the third display module 10 c.
  • the display panel 100 a may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 a and the boundary of the display region 110 b coincide.
  • the driving unit 120 b of the display panel 100 b may be positioned in the non-display region of the display panel 100 b.
  • the display panel 100 a may be attached to the display panel 100 b as an adhesive member 150 a . Accordingly, the display region 110 a on the display panel 100 a and the display region 110 b on the display panel 100 b are seamlessly disposed along the x-axis direction.
  • the display panel 100 c may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 c and the boundary of the display region 110 b coincide.
  • An additional driving unit may be positioned in the non-display region of the display panel 100 b overlapping the display panel 100 c.
  • the display panel 100 c may be attached to the display panel 100 b as an adhesive member 150 b .
  • the display region 110 b on the display panel 100 b and the display region 110 c on the display panel 100 c are seamlessly disposed along the x-axis direction.
  • the display modules 10 a , 10 b , 10 c , and 10 d may be disposed to have the step difference in the z-axis direction or the ⁇ z-axis direction along the x-axis direction.
  • a part of the first display module 10 a is attached to the fifth display module 10 e
  • a part of the fifth display module 10 e is attached to the sixth display module 10 f
  • a part of the sixth display module 10 f is attached to the seventh display module 10 g.
  • the display panel 100 e may be positioned to overlap the non-display region of the display panel 100 a so that the boundary of the display panel 100 e and the boundary of the display region 110 a coincide.
  • the wirings 130 a of the display panel 100 a may be placed in the non-display region of the display panel 100 a overlapping the display panel 100 e.
  • the display panel 100 e may be attached to the display panel 100 a as an adhesive member 151 . Accordingly, the display region 110 a on the display panel 100 a and the display region 110 e on the display panel 100 e are seamlessly disposed along the y-axis direction.
  • the bending area 101 a of the display panel 100 a may be bent in the back surface direction of the display panel 100 a . Then, the integrated circuit chip 210 a , the first substrate 200 a , the second substrate 300 a , and the third substrate 400 a may be positioned on the back surface of the display panel 100 a .
  • the third substrate 400 a may be electrically connected to the third substrate 400 e .
  • the third substrate 400 a and the third substrate 400 e may be electrically connected to an external substrate (not shown) that controls the display apparatus 1 as a whole.
  • the display panel 100 f may be positioned to overlap the non-display region of the display panel 100 e so that the boundary of the display panel 100 f and the boundary of the display region 110 e coincide. In the non-display region of the display panel 100 e , wirings 130 e of the display panel 100 e may be placed.
  • the display modules 10 a , 10 e , 10 f , and 10 g may be sequentially disposed along the y-axis direction to have a step difference in the z-axis direction. At this time, since two adjacent display modules among the display modules 10 a , 10 e , 10 f , and 10 g overlap each other, a step may occur between two adjacent display modules.
  • the y-axis direction length of the display modules 10 a , 10 e , 10 f , and 10 g is several cm to several hundred cm, but the sum of the thicknesses of the display panels 100 a , 110 e , 110 f , and 110 g and the adhesive member 151 is several ⁇ m to several tens of ⁇ m, so it has a ratio of approximately 10000:1 between the two.
  • the step difference between two adjacent display modules is not recognized by the user, and even if an additional member described below is attached to the front and/or back surface of the display modules 10 a , 10 e , 10 f , and 10 g , it is difficult to cause lifting between the display modules 10 a , 10 e , 10 f , and 10 g and the member.
  • the windows 500 and 502 may be additionally provided above and below the display modules 10 a , 10 e , 10 f , and 10 g.
  • FIG. 6 is a top plan view of a display module included in a display apparatus according to a second embodiment
  • FIG. 7 is a rear view of a display module included in a display apparatus according to a second embodiment.
  • the display module 10 includes a display panel 100 , a first substrate 200 connected to the display panel 100 , a second substrate 300 connected to the first substrate 200 , and a third substrate 400 connected to the second substrate 300 .
  • description of the constituent elements overlapping with the constituent elements described in FIG. 1 is omitted.
  • the display module 10 included in the display apparatus according to the present embodiment further includes a first cover 160 positioned on the display region 110 on the substrate.
  • the first cover 160 may cover all or part of the display region 110 .
  • the display module 10 included in the display apparatus according to the present embodiment is positioned on the back surface of the display panel 100 and further includes a second cover 162 supporting the display panel 100 .
  • the first covers 160 of two adjacent display modules may be positioned adjacent to each other, and the second covers 162 of each display module may also be positioned adjacent to each other.
  • first cover 160 and the second cover 162 have been described as quadrangular in the above, the shape of the first cover 160 and the second cover 162 may be triangular, hexagonal, or the like.
  • the area of the first cover 160 may be greater than or equal to the area of the second cover 162 .
  • the x-axis direction length W 1 of the first cover 160 may be greater than or equal to the x-axis direction length W 2 of the second cover 162 .
  • the y-axis direction length H 1 of the first cover 160 may be greater than the y-axis direction length H 2 of the second cover 162 . This is to prepare a space for accommodating the bent part when the display panel 100 is bent.
  • FIG. 8 is a top plan view of a display apparatus according to a second embodiment.
  • a plurality of display modules 10 a to 10 g may be coupled in a matrix type.
  • the first covers 160 a to 160 g attached to the front surface of a plurality of display modules 10 a to 10 g may also be disposed in a matrix form.
  • Each of the display modules 10 a to 10 g is partially attached to the non-display region of the adjacent display module. Therefore, each of the display modules 10 a to 10 g may be overlapped with the adjacent display module on a plane.
  • FIG. 9 is a cross-sectional view of a part of a display apparatus according to a second embodiment
  • FIG. 10 is a cross-sectional view of another part of a display apparatus according to a second embodiment.
  • a part of the first module 10 a is attached to the second module 10 b
  • a part of the second module 10 b is attached to the third module 10 c
  • a part of the third module 10 c is attached to the fourth module 10 d.
  • the display panel 100 a may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 a and the boundary of the display region 110 b coincide.
  • the driving unit 120 b of the display panel 100 b may be positioned in the non-display region of the display panel 100 b.
  • the first cover 160 a and the first cover 160 b may be positioned to be in contact with each other in the x-axis direction or to be spaced apart from each other at a predetermined interval.
  • the first cover 160 a and the first cover 160 b may be attached to each other as an adhesive member.
  • the second cover 162 a and the second cover 162 b may be positioned to be in contact with each other in the x-axis direction or to be spaced apart from each other at a predetermined interval.
  • the second cover 162 a and the second cover 162 b may also be attached to each other as an adhesive member.
  • the x-axis direction length W 1 of the first cover 160 b may be the same as the x-axis direction length W 2 of the second cover 162 b.
  • the display panel 100 a may be attached to the display panel 100 b as an adhesive member 150 . Accordingly, the display region 110 a on the display panel 100 a and the display region 110 b on the display panel 100 b are seamlessly disposed along the x-axis direction.
  • the display panel 100 b may be positioned to overlap the non-display region of the display panel (not shown) of the display module 10 c so that the boundary of the display panel 100 b coincides with the boundary of the display region (not shown) of the display module 10 c .
  • a driving unit (not shown) of the display module 10 c may be positioned in the non-display region of the display panel (not shown) of the display module 10 c.
  • the windows 500 and 502 may be additionally provided above and below the display modules 10 a , 10 b , 10 c , and 10 d to improve instrument strength.
  • the windows 500 and 502 may be attached to the front surface of the first covers 160 a , 160 b , 160 c , and 160 d and the front surface of the first substrates 200 a and 200 b , the second substrates 300 a and 300 b , and the third substrates 400 a and 400 b , respectively.
  • a part of the first module 10 a is attached to the fifth module 10 e
  • a part of the fifth module 10 e is attached to the sixth module 10 f
  • a part of the sixth module 10 f is attached to the seventh module 10 g.
  • the display panel 100 e may be positioned to overlap the non-display region of the display panel 100 a so that the boundary of the display panel 100 e and the boundary of the display region 110 a coincide.
  • Wiring (not shown) of the display panel 100 a may be positioned in the non-display region of the display panel 100 a overlapping the display panel 100 e.
  • the first cover 160 a and the first cover 160 e may be positioned to be spaced apart from each other at a predetermined interval in the y-axis direction.
  • the first cover 160 a and the first cover 160 e may be attached to each other as an adhesive member.
  • the second cover 162 a and the second cover 162 e may be positioned to be spaced apart from each other at a predetermined interval in the y-axis direction.
  • the y-axis direction length H 1 of the first cover 160 e may be greater than the y-axis direction length H 2 of the second cover 162 e . Due to this difference in length, the bending area 101 a of the display panel 100 a may be bent. That is, the bent bending area 101 a may be positioned between the second cover 162 a and the second cover 162 e.
  • the display panel 100 e may be attached to the display panel 100 a as an adhesive member 151 . Accordingly, the display region 110 a on the display panel 100 a and the display region 110 e on the display panel 100 e are seamlessly disposed along the y-axis direction.
  • the adhesive member 151 may be the same material as the adhesive used to adhere the first cover 160 e and/or the second cover 162 e to the display panel 100 e . Also, in the process step of attaching the display panel 100 a to the display panel 100 e , the first cover 160 e and/or the second cover 162 e may be attached to the display panel 100 e.
  • the bending area 101 a of the display panel 100 a may be bent in the back surface direction of the display panel 100 a . Then, the integrated circuit chip 210 a , the first substrate 200 a , the second substrate 300 a , and the third substrate 400 a may be positioned on the back surface of the display panel 100 a.
  • windows 500 and 502 may be additionally provided above and below the display modules 10 a , 10 e , 10 f , and 10 g .
  • the windows 500 and 502 may be attached to the front surface of the first covers 160 a , 160 e , 160 f and 160 g and the front surface of the first substrates 200 a and 200 e , the second substrates 300 a , and 300 e , and the third substrates 400 as and 400 e , respectively.
  • FIG. 11 is a cross-sectional view of a part of a display apparatus according to a third embodiment.
  • the bending area 101 a of the display panel 100 a is bent in a shape to cover the side surface of the second cover 162 a.
  • the first substrate 200 a since the first substrate 200 a also has a flexible characteristic, the first substrate 200 a may also be bent in the back surface direction of the display panel 100 a . Then, the integrated circuit chip 210 a , the first substrate 200 a , the second substrate 300 a , and the third substrate 400 a may be positioned on the back surface of the display panel 100 a.
  • the bending area 101 a of the display panel 100 a and the first substrate 200 a are bent so as to surround the side surface of the second cover 162 a.
  • FIG. 12 is a top plan view of a display apparatus according to a fourth embodiment.
  • a plurality of display modules 10 a to 10 g may be combined in a matrix form.
  • Each of the display modules 10 a to 10 g is partially attached to the non-display region of the adjacent display module. Therefore, each of the display modules 10 a to 10 g may be overlapped with an adjacent display module on a plane.
  • a single cover 164 may be attached to the front surface of a plurality of the display modules 10 a to 10 g.
  • FIG. 13 is a cross-sectional view of a part of a display apparatus according to a fourth embodiment
  • FIG. 14 is a cross-sectional view of another part of a display apparatus according to a fourth embodiment.
  • the thickness of the display panel is omitted, and the same and similar parts as compared with one aspect of the first embodiment are omitted.
  • a part of the first module 10 a is attached to the second module 10 b
  • a part of the second module 10 b is attached to the third module 10 c
  • a part of the third module 10 c is attached to the fourth module 10 d.
  • a single cover 160 a may be attached to the front surface of the first to fourth display modules 10 a to 10 d .
  • the second cover 162 a and the second cover 162 b may be positioned to be in contact with each other in the x-axis direction or to be spaced apart from each other at a predetermined interval.
  • the second cover 162 a and the second cover 162 b may also be attached to each other as an adhesive member.
  • the windows 500 and 502 may be additionally provided above and below the display modules 10 a , 10 b , 10 c , and 10 d to improve the instrument strength.
  • the windows 500 and 502 may be attached to the front surface of the front cover 164 and the front surface of the first substrates 200 a and 200 b , the second substrates 300 a and 300 b , and the third substrates 400 a and 400 b , respectively.
  • a part of the first module 10 a is attached to the fifth module 10 e
  • a part of the fifth module 10 e is attached to the sixth module 10 f
  • a part of the sixth module 10 f is attached to the seventh module 10 g.
  • the single cover 160 a may be attached to the front surface of the first to fourth display modules 10 a to 10 d .
  • the second cover 162 a and the second cover 162 e may be positioned to be spaced apart from each other at a predetermined interval in the y-axis direction.
  • the integrated circuit chip 210 a , the first substrate 200 a , the second substrate 300 a , and the third substrate 400 a may be positioned on one surface of the second cover 162 e.
  • the windows 500 and 502 may be additionally provided above and below the display modules 10 a , 10 e , 10 f , and 10 g to improve the instrument strength.
  • the windows 500 and 502 may be attached to the front surface of the front cover 164 and the front surface of the first substrates 200 a and 200 e , the second substrates 300 a and 300 e , and the third substrates 400 a and 400 e , respectively.
  • FIG. 15 is a top plan view of a part of a display apparatus according to a fifth embodiment
  • FIG. 16 is a cross-sectional view of a part of a display apparatus according to a fifth embodiment.
  • a plurality of pixels PXa 1 , PXa 2 , . . . are positioned in the display region 110 a of the display module 10 a , and each of the pixels PXa 1 and PXa 2 includes at least one sub-pixel P 1 , . . . , P 6 .
  • a plurality of pixels PXb 1 , . . . are positioned in the display panel 100 b of the display module 10 b , and each pixel PXb 1 includes at least one sub-pixel P 7 , P 8 , and P 9 .
  • a part of the display module 10 a may be attached to the non-display region of the display module 10 b through the adhesive member 150 .
  • the driving circuit 120 b may be positioned in the non-display region of the display module 10 b.
  • the x-axis direction distance between a plurality of pixels PXa 1 and PXa 2 is L1.
  • the x-axis direction distance between the pixel PXa 2 of the display module 10 a and the pixel PXb 1 of the adjacent display module 10 b is L2.
  • L1 and L2 may be the same.
  • the x-axis direction distance from the pixel PXa 2 of the display module 10 a to the boundary between the display panel 100 a is L3.
  • L3 may be less than L1. That is, by disposing the pixel PXa 2 close to the boundary of the display panel 100 a , the distance between the adjacent pixels (PXa 2 and PXb 1 /PXa 1 and PXa 2 ) may be constant even when two adjacent display modules 10 a and 10 b are combined.
  • the display panel is an OLED display panel
  • a TFE (thin film encapsulation) type of encapsulation is formed, the area required for encapsulation at the boundary of the display panel 100 a is only within a few ⁇ m to several tens of ⁇ m, so the TFE region may be positioned within the region having the length of L3 that is smaller than L1.
  • the pixel PXa 2 may be positioned close to the border of the display panel 100 a.
  • the display panel is a micro LED display panel, there is no big problem in a lifespan even if the LED, which is a light-emitting element, is exposed to the air, so there is no need for an encapsulation member, so the pixel PXa 2 may be positioned close to the border of the display panel 100 a .
  • the first cover, the front cover, the like may be omitted, however like the second embodiment, the first cover may be attached on the display panel, or like the third embodiment, the front cover may be attached on the display panel to protect the light-emitting element.
  • FIG. 17 is a top plan view of a part of a display apparatus according to a sixth embodiment
  • FIG. 18 is a cross-sectional view of a part of a display apparatus according to a sixth embodiment.
  • a black matrix 510 is disposed on the front surface of the display modules 10 a and 10 b.
  • the black matrix 510 is positioned on one surface of the window 500 . Then, the black matrix 510 is positioned in regions G 1 , G 2 , and G 3 between the pixels PXa 1 , PXa 2 , and PXb 1 . Since the black matrix 510 is positioned to correspond to the gap GA between the adjacent first covers 160 a and 160 b , it is possible to prevent the gap G 2 between the first covers 160 a and 160 b from being recognized.
  • FIG. 19 is a cross-sectional view of a part of a display apparatus according to a seventh embodiment.
  • the black matrix 511 is positioned on the display panels 100 a and 100 b . Then, the black matrix 511 is positioned in the area between the pixels PXa 1 , PXa 2 , and PXb 1 . Since the black matrix 511 is positioned to correspond between the adjacent display panels 100 a and 100 b , it is possible to prevent a step difference between the display panels 100 a and 100 b from being recognized.
  • FIG. 20 is a top plan view of a part of a display apparatus according to an eighth embodiment
  • FIG. 21 is a cross-sectional view of a part of a display apparatus according to an eighth embodiment.
  • the optical member 170 is positioned between the display modules 10 a and 10 b.
  • the optical member 170 since the optical member 170 is positioned in the gap GA between the adjacent first covers 160 a and 160 b , it is possible to prevent the gap GA between the first covers 160 a and 160 b from being recognized.
  • the refractive index of the optical member 170 may be substantially the same as that of the first covers 160 a and 160 b .
  • the optical member 170 may be a resin or optically clear adhesive.
  • a sense of the disconnection between a plurality of the display apparatus may be removed, and a seamless large display apparatus may be implemented, thereby improving immersion of an image.

Abstract

A display apparatus according to an embodiment includes a plurality of display modules including a display region where a plurality of pixels are positioned and a non-display region outside the display region, wherein, for two display modules adjacent among a plurality of display modules to provide a continuous display region, the display region of the first display module among two adjacent display modules and the non-display region of the second display module among the two adjacent display modules overlap each other in a plane view.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority to and the benefit of Korean Patent Application No. filed in the Korean Intellectual Property Office on, the entire contents of which are incorporated herein by reference.
  • BACKGROUND (A) Field
  • An embodiment relates to a display apparatus.
  • (b) Description of the Related Art
  • As an information society develops, a demand for a display apparatus for displaying images is increasing in various forms. Such display apparatuses may be used as relatively small display devices such as TVs, monitors, and various personal portable digital devices, and may also be used as relatively large displays such as a public display and digital signage.
  • The above-described large display apparatus is generally disposed outdoors and is used for providing information to a plurality of users. Therefore, the large display apparatus needs to be implemented in a large area so that the users may easily recognize the information provided from the display apparatus even at a long distance.
  • When the display apparatus is manufactured in a large size using one base substrate, it is difficult to secure a yield above a certain level, so productivity or reliability may deteriorate. In order to solve this problem, a tile-type display apparatus that implements a single large-size screen by disposing a plurality of display apparatuses adjacently is used.
  • Since the tile-type display apparatus has a form in which a plurality of divided display apparatuses are combined with each other, a seam (or a joint) is present between adjacent display apparatuses. Since such a seam corresponds to a non-display part (or a bezel area) in which the image is not implemented, it gives a sense of a disconnection and/or heterogeneity to the user viewing the tile-type display apparatus, and significantly deteriorates image immersion.
  • The above information disclosed in this Background section is only for enhancement of understanding of the background, and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
  • SUMMARY
  • An embodiment aims to provide a more seamless large display apparatus.
  • In addition, the embodiment aims to provide a large display apparatus that is easy to be manufactured.
  • A display apparatus according to an embodiment for solving these technical objects includes a plurality of display modules including a display region where a plurality of pixels are positioned and a non-display region outside the display region, wherein, for two display modules adjacent among a plurality of display modules to provide a continuous display region, the display region of the first display module among two adjacent display modules and the non-display region of the second display module among the two adjacent display modules overlap each other in a plane view.
  • The first and second display modules may be bonded by a first adhesive member in the overlapping area,
  • The first direction width of the overlapping region may be 20% or less of the first direction width of the display region of the second display module.
  • The first direction width of the overlapping area may be 3 mm or more,
  • The ratio of the sum of the thickness of the non-display region of the second display module and the thickness of the adhesive member to the first direction width of the display region of the first display module may be 10:1 or more.
  • The second display module may be positioned under the first display module.
  • The third display module among a plurality of display modules may be combined to the display region of the second display module to overlap each other on a plane, and is positioned under the second display module, and the first, second, and third display modules may be arranged along the first direction.
  • The third display module among a plurality of display modules may be combined with the non-display region of the second display module to overlap each other on a plane, the third display module is positioned on the second display module, and the first, second, and third display modules may be arranged along the first direction.
  • Each of a plurality of display modules may include: a first substrate where the display region and the non-display region are positioned; and a second substrate connected to the first substrate and including a driving unit generating a signal provided to a plurality of pixels.
  • The first substrate and/or the second substrate may be bent so that the second substrate is positioned on the back surface of the first substrate.
  • Each of a plurality of display modules may include a first cover supporting the first substrate on the back surface of the first substrate, and the first substrate of the first module may be positioned between the first cover of the first display module and the first cover of the second display module.
  • The distance between two adjacent pixels of the first display module and the distance between the pixel of the first display module and the pixel of the second display module adjacent to each other may be the same within a 5% error range.
  • The distance between the pixel of the first display module adjacent to the second display module and the boundary of the first display module adjacent to the second display module may be less than the distance between two adjacent pixels of the first display module.
  • Each of a plurality of display modules further includes a second cover positioned corresponding to the display region.
  • The areas of the first cover and the second cover may be different from each other.
  • The first direction lengths of the first cover and the second cover are the same as each other, and the second direction lengths intersecting the first direction may be different from each other.
  • The first cover and/or the second cover may be attached to the display module by a second adhesive member, and the first adhesive member and the second adhesive member may include the same material.
  • An optical member positioned between the second covers of the first and second display modules may be further included.
  • The optical member may include a resin or an optically clear adhesive (OCA).
  • A black matrix positioned correspondingly between the pixel of the first display module and the pixels of the second display module adjacent to each other may be further included.
  • A first window positioned corresponding to the entire display region of a plurality of display modules on a plurality of second covers may be further included, and the black matrix may be positioned on the first window.
  • A second window provided under a plurality of first covers may be further included.
  • A third cover positioned corresponding to the entire display region of a plurality of display modules may be further included.
  • The effect of the display apparatus according to the embodiment is described as follows.
  • According to at least one of the embodiments, there is a merit in that it is possible to provide a large display apparatus in which a sense of disconnection between a plurality of display apparatuses is removed.
  • Also, according to at least one of the embodiments, there is a merit that it may improve the immersion of the image.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top plan view of a display module included in a display apparatus according to a first embodiment.
  • FIG. 2 is a top plan view of a display apparatus according to a first embodiment.
  • FIG. 3 is a cross-sectional view of a part of a display apparatus according to an aspect of a first embodiment.
  • FIG. 4 is a cross-sectional view of a part of a display apparatus according to another aspect of a first embodiment.
  • FIG. 5 is a cross-sectional view of another part of a display apparatus according to a first embodiment.
  • FIG. 6 is a top plan view of a display module included in a display apparatus according to a second embodiment.
  • FIG. 7 is a rear view of a display module included in a display apparatus according to a second embodiment.
  • FIG. 8 is a top plan view of a display apparatus according to a second embodiment.
  • FIG. 9 is a cross-sectional view of a part of a display apparatus according to a second embodiment.
  • FIG. 10 is a cross-sectional view of another part of a display apparatus according to a second embodiment.
  • FIG. 11 is a cross-sectional view of a part of a display apparatus according to a third embodiment.
  • FIG. 12 is a top plan view of a display apparatus according to a fourth embodiment.
  • FIG. 13 is a cross-sectional view of a part of a display apparatus according to a fourth embodiment.
  • FIG. 14 is a cross-sectional view of another part of a display apparatus according to a fourth embodiment.
  • FIG. 15 is a top plan view of a part of a display apparatus according to a fifth embodiment.
  • FIG. 16 is a cross-sectional view of a part of a display apparatus according to a fifth embodiment.
  • FIG. 17 is a top plan view of a part of a display apparatus according to a sixth embodiment.
  • FIG. 18 is a cross-sectional view of a part of a display apparatus according to a sixth embodiment.
  • FIG. 19 is a cross-sectional view of a part of a display apparatus according to a seventh embodiment.
  • FIG. 20 is a top plan view of a part of a display apparatus according to an eighth embodiment.
  • FIG. 21 is a cross-sectional view of a part of a display apparatus according to an eighth embodiment.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • In the following detailed description, only certain embodiments of the present invention have been shown and described, simply by way of illustration. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
  • Further, the size and thickness of each of elements that are displayed in the drawings are described for better understanding and ease of description, and the present invention is not limited by the described size and thickness. In the drawings, the thicknesses of layers, films, panels, regions, etc., are exaggerated for clarity. In addition, in the drawings, for better understanding and ease of description, the thicknesses of some layers and areas are exaggerated. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present.
  • In addition, unless explicitly described to the contrary, the word “comprise”, and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of stated elements but not the exclusion of any other elements. Further, in the specification, the word “˜on” means positioning above or below the object portion, but does not essentially mean positioning on the upper side of the object portion based on a gravity direction.
  • Hereinafter, a display module constituting a display apparatus according to an embodiment is described with reference to FIG. 1 .
  • FIG. 1 is a top plan view of a display module included in a display apparatus according to a first embodiment. As shown in FIG. 1 , a display module 10 includes a display panel 100, a first substrate 200 connected to the display panel 100, a second substrate 300 connected to the first substrate 200, and a third substrate 400 connected to the second substrate 300. The constituent elements shown in FIG. 1 are not essential in implementing the display module, so the following display module may have more or fewer constituent elements than the constituent elements listed above.
  • More specifically, among the constituent elements, the display panel 100 includes a plurality of pixels positioned in the display region 110 on the substrate and displaying an image, a driving unit 120 generating a scan signal to be transmitted to a plurality of pixels, a pad unit 140 for receiving a signal from the outside, and wiring 130 for transmitting a signal transmitted from the pad unit 140 to a plurality of pixels and the driving unit 120.
  • A plurality of pixels may be LED pixels. Each of a plurality of pixels may include a light-emitting element and a capacitor, a transistor, and the like for driving the light-emitting element. In addition, a plurality of pixels may be OLED pixels. That is, the light-emitting element included in each of a plurality of pixels may be an LED, an OLED, a mini LED, a micro LED, a QD LED, etc., and may further include a color conversion layer.
  • Two borders of the display region 110 may be positioned on two borders of the display panel 100 (referring to an upper border and a right border of the display region 110). That is, the non-display region is not positioned on two borders of the display panel 100.
  • The driving unit 120 may be positioned in the non-display region other than the display region 110. The driving unit 120 may change the level of the scan signal provided to the pixels to an enable level/disable level based on an applied clock signal, start pulse signal, and the like.
  • The driving unit 120 may include a transistor, a capacitor, etc. on the substrate of the display panel 100. The transistor included in the driving unit 120 and the transistor included in the display region 110 may be positioned on the same layer.
  • The wirings 130 may route between the pad unit 140 and the pixels and between the pad unit 140 and the driving unit 120.
  • The display panel 100 may be stretchable, flexible, bendable, and foldable.
  • The first substrate 200 may be connected to the pad unit 140 of the display panel 100 positioned in the non-display region. The first substrate 200 may be connected to the pad unit 140 of the display panel 100 positioned in the non-display region. The first substrate 200 may be a flexible printed circuit substrate (FPCB) or a chip on film (COF). Since the first substrate 200 may mount an integrated circuit chip 210, the first substrate 200 is described below as a chip-on-film (COF).
  • The integrated circuit chip 210 may be a data driving IC. The integrated circuit chip 210 may generate a data signal corresponding to a plurality of pixels to be transmitted to a plurality of pixels through the pad unit 140 and the wirings 130.
  • The first substrate 200 may be bent in the back direction of the display panel 100. When the first substrate 200 is bent, the integrated circuit chip 210 may be positioned on the back surface of the display panel 100.
  • The second substrate 300 may be connected to the first substrate 200. The second substrate 300 may be a flexible printed circuit substrate (FPCB) or a chip on film (COF). Since the second substrate 300 does not include an integrated circuit chip, the second substrate 300 is described below as a flexible printed circuit substrate (FPCB). Like the first substrate 200, the second substrate 300 may also be bent in the back surface direction of the display panel 100.
  • The third substrate 400 may be connected to the second substrate 300. The third substrate 400 may be a printed circuit substrate (PCB), but may also be a flexible printed circuit substrate (FPCB) or a chip-on-film (COF) depending on an embodiment. A signal control IC, a power management IC, etc. may be positioned on the third substrate 400. When the first substrate 200 and the second substrate 300 are bent, the third substrate 400 may be positioned on the back surface of the display panel 100.
  • Next, the display apparatus combined with the display module in FIG. 1 is described with reference to FIG. 2 .
  • FIG. 2 is a top plan view of a display apparatus according to a first embodiment. As shown in FIG. 2 , the display apparatus 1 may have a form in which a plurality of display modules 10 a to 10 g are combined in a matrix form. Each of the display modules 10 a to 10 g is partially attached to the non-display region of the adjacent display module. Accordingly, each of the display modules 10 a to 10 g may overlap the adjacent display module on a plane. The arrangement of the display modules 10 a to 10 g is described with reference to FIG. 3 to FIG. 5 .
  • FIG. 3 is a cross-sectional view of a part of a display apparatus according to an aspect of a first embodiment, FIG. 4 is a cross-sectional view of a part of a display apparatus according to another aspect of a first embodiment, and FIG. 5 is a cross-sectional view of another part of a display apparatus according to a first embodiment.
  • As shown in FIG. 3 , on the cross-section taken along a line I-I′, a portion of the first display module 10 a is attached to the second display module 10 b, a portion of the second display module 10 b is attached to the third display module 10 c, and a portion of the third display module 10 c is attached to the fourth display module 10 d.
  • The display panel 100 a may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 a and the boundary of the display region 110 b coincide. The driving unit 120 b of the display panel 100 b may be positioned in the non-display region of the display panel 100 b.
  • The display panel 100 a may be attached to the display panel 100 b as an adhesive member 150. The adhesive member 150 may include a resin or an optically clear adhesive (OCA), an adhesive film, a double-sided adhesive tape, and the like. Accordingly, the display region 110 a on the substrate 100 a and the display region 110 b on the substrate 100 b are seamlessly disposed along the x-axis direction.
  • For example, the x-axis direction width of the area where the display panel 100 a and the display panel 100 b overlap may be at least 3 mm, and may be less than or equal to 20% of the x-axis direction width of the display region 110 b. This is to secure the area of the display region 110 b while securing the minimum area for bonding two display panels 100 a and 100 b.
  • Similarly, the display panel 100 b may be positioned to overlap the non-display region of the display panel 100 c so that the boundary of the display panel 100 b and the boundary of the display region 110 c coincide. The driving unit 120 c of the display panel 100 c may be positioned in the non-display region of the display panel 100 c.
  • The display modules 10 a, 10 b, 10 c, and 10 d along the x-axis direction may be sequentially disposed to have a step in the −z-axis direction. At this time, since two adjacent display modules among the display modules 10 a, 10 b, 10 c, and 10 d overlap each other, the step difference may occur between two adjacent display modules. However, the x-axis direction length of each of the display regions 110 a and 110 b is several cm to hundreds of cm, but the sum of the thicknesses of the display region 110 b and the adhesive member 150 is several μm to hundreds of μm, so it has a ratio of approximately 10:1 to 100000:1 between the two. Therefore, the step difference between two adjacent display modules is not recognized by the user, and even if an additional member described below is attached to the front and/or back surfaces of the display modules 10 a, 10 b, 10 c, and 10 d, it is difficult to cause lifting between the display modules 10 a, 10 b, 10 c, and 10 d and the member.
  • To improve instrument strength, windows 500 and 502 can be additionally provided above and below the display modules 10 a, 10 b, 10 c, and 10 d. The windows 500 and 502 may be made of a material such as glass, polymethyl methacrylate (PMMA), acryl (acryl), and polyester (PET), but is not limited thereto.
  • The windows 500 and 502 may be attached to the front and back surfaces of the display modules 10 a, 10 b, 10 c, and 10 d, respectively.
  • As shown in FIG. 4 , on the cross-section taken along a line I-I′, a part of the first display module 10 a is attached to the second display module 10 b, a part of the third display module 10 c is attached to the second display module 10 b, and a part of the fourth display module 10 d is attached to the third display module 10 c.
  • The display panel 100 a may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 a and the boundary of the display region 110 b coincide. The driving unit 120 b of the display panel 100 b may be positioned in the non-display region of the display panel 100 b.
  • The display panel 100 a may be attached to the display panel 100 b as an adhesive member 150 a. Accordingly, the display region 110 a on the display panel 100 a and the display region 110 b on the display panel 100 b are seamlessly disposed along the x-axis direction.
  • The display panel 100 c may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 c and the boundary of the display region 110 b coincide. An additional driving unit may be positioned in the non-display region of the display panel 100 b overlapping the display panel 100 c.
  • The display panel 100 c may be attached to the display panel 100 b as an adhesive member 150 b. Thus, the display region 110 b on the display panel 100 b and the display region 110 c on the display panel 100 c are seamlessly disposed along the x-axis direction.
  • If more than tens to hundreds of the display modules 10 a, 10 b, 10 c, and 10 d are connected along the x-axis direction, since it may be difficult to attach the windows 500 and 501 due to the step created in one direction (the z-axis direction or the −z-axis direction), the display modules 10 a, 10 b, 10 c, and 10 d may be disposed to have the step difference in the z-axis direction or the −z-axis direction along the x-axis direction.
  • As shown in FIG. 5 , on the cross-section taken along a line II-II′, a part of the first display module 10 a is attached to the fifth display module 10 e, a part of the fifth display module 10 e is attached to the sixth display module 10 f, and a part of the sixth display module 10 f is attached to the seventh display module 10 g.
  • The display panel 100 e may be positioned to overlap the non-display region of the display panel 100 a so that the boundary of the display panel 100 e and the boundary of the display region 110 a coincide. The wirings 130 a of the display panel 100 a may be placed in the non-display region of the display panel 100 a overlapping the display panel 100 e.
  • The display panel 100 e may be attached to the display panel 100 a as an adhesive member 151. Accordingly, the display region 110 a on the display panel 100 a and the display region 110 e on the display panel 100 e are seamlessly disposed along the y-axis direction.
  • The bending area 101 a of the display panel 100 a may be bent in the back surface direction of the display panel 100 a. Then, the integrated circuit chip 210 a, the first substrate 200 a, the second substrate 300 a, and the third substrate 400 a may be positioned on the back surface of the display panel 100 a. The third substrate 400 a may be electrically connected to the third substrate 400 e. In addition, the third substrate 400 a and the third substrate 400 e may be electrically connected to an external substrate (not shown) that controls the display apparatus 1 as a whole.
  • The display panel 100 f may be positioned to overlap the non-display region of the display panel 100 e so that the boundary of the display panel 100 f and the boundary of the display region 110 e coincide. In the non-display region of the display panel 100 e, wirings 130 e of the display panel 100 e may be placed.
  • The display modules 10 a, 10 e, 10 f, and 10 g may be sequentially disposed along the y-axis direction to have a step difference in the z-axis direction. At this time, since two adjacent display modules among the display modules 10 a, 10 e, 10 f, and 10 g overlap each other, a step may occur between two adjacent display modules. However, the y-axis direction length of the display modules 10 a, 10 e, 10 f, and 10 g) is several cm to several hundred cm, but the sum of the thicknesses of the display panels 100 a, 110 e, 110 f, and 110 g and the adhesive member 151 is several μm to several tens of μm, so it has a ratio of approximately 10000:1 between the two. Therefore, the step difference between two adjacent display modules is not recognized by the user, and even if an additional member described below is attached to the front and/or back surface of the display modules 10 a, 10 e, 10 f, and 10 g, it is difficult to cause lifting between the display modules 10 a, 10 e, 10 f, and 10 g and the member.
  • To improve instrument strength, the windows 500 and 502 may be additionally provided above and below the display modules 10 a, 10 e, 10 f, and 10 g.
  • Next, a display apparatus according to a second embodiment is described with reference to FIG. 6 to FIG. 10 .
  • FIG. 6 is a top plan view of a display module included in a display apparatus according to a second embodiment, and FIG. 7 is a rear view of a display module included in a display apparatus according to a second embodiment.
  • As shown in FIG. 6 , the display module 10 includes a display panel 100, a first substrate 200 connected to the display panel 100, a second substrate 300 connected to the first substrate 200, and a third substrate 400 connected to the second substrate 300. In the following, description of the constituent elements overlapping with the constituent elements described in FIG. 1 is omitted.
  • Compared to the display module included in the display apparatus according to the first embodiment, the display module 10 included in the display apparatus according to the present embodiment further includes a first cover 160 positioned on the display region 110 on the substrate. The first cover 160 may cover all or part of the display region 110.
  • As shown in FIG. 7 , compared to the display module included in the display apparatus according to the first embodiment, the display module 10 included in the display apparatus according to the present embodiment is positioned on the back surface of the display panel 100 and further includes a second cover 162 supporting the display panel 100.
  • When connecting the display modules, the first covers 160 of two adjacent display modules may be positioned adjacent to each other, and the second covers 162 of each display module may also be positioned adjacent to each other.
  • Although the first cover 160 and the second cover 162 have been described as quadrangular in the above, the shape of the first cover 160 and the second cover 162 may be triangular, hexagonal, or the like.
  • The area of the first cover 160 may be greater than or equal to the area of the second cover 162. The x-axis direction length W1 of the first cover 160 may be greater than or equal to the x-axis direction length W2 of the second cover 162.
  • Also, the y-axis direction length H1 of the first cover 160 may be greater than the y-axis direction length H2 of the second cover 162. This is to prepare a space for accommodating the bent part when the display panel 100 is bent.
  • Next the display apparatus to which the display module in FIG. 6 and FIG. 7 is coupled is described with reference to FIG. 8 .
  • FIG. 8 is a top plan view of a display apparatus according to a second embodiment.
  • As shown in FIG. 8 , a plurality of display modules 10 a to 10 g may be coupled in a matrix type. In addition, the first covers 160 a to 160 g attached to the front surface of a plurality of display modules 10 a to 10 g may also be disposed in a matrix form.
  • Each of the display modules 10 a to 10 g is partially attached to the non-display region of the adjacent display module. Therefore, each of the display modules 10 a to 10 g may be overlapped with the adjacent display module on a plane.
  • This is described with reference to FIG. 9 and FIG. 10 .
  • FIG. 9 is a cross-sectional view of a part of a display apparatus according to a second embodiment, and FIG. 10 is a cross-sectional view of another part of a display apparatus according to a second embodiment.
  • As shown in FIG. 9 , on the cross-section taken along a line III-III′, a part of the first module 10 a is attached to the second module 10 b, a part of the second module 10 b is attached to the third module 10 c, and a part of the third module 10 c is attached to the fourth module 10 d.
  • The display panel 100 a may be positioned to overlap the non-display region of the display panel 100 b so that the boundary of the display panel 100 a and the boundary of the display region 110 b coincide. The driving unit 120 b of the display panel 100 b may be positioned in the non-display region of the display panel 100 b.
  • The first cover 160 a and the first cover 160 b may be positioned to be in contact with each other in the x-axis direction or to be spaced apart from each other at a predetermined interval. The first cover 160 a and the first cover 160 b may be attached to each other as an adhesive member. The second cover 162 a and the second cover 162 b may be positioned to be in contact with each other in the x-axis direction or to be spaced apart from each other at a predetermined interval. The second cover 162 a and the second cover 162 b may also be attached to each other as an adhesive member. Here, the x-axis direction length W1 of the first cover 160 b may be the same as the x-axis direction length W2 of the second cover 162 b.
  • The display panel 100 a may be attached to the display panel 100 b as an adhesive member 150. Accordingly, the display region 110 a on the display panel 100 a and the display region 110 b on the display panel 100 b are seamlessly disposed along the x-axis direction.
  • Similarly, the display panel 100 b may be positioned to overlap the non-display region of the display panel (not shown) of the display module 10 c so that the boundary of the display panel 100 b coincides with the boundary of the display region (not shown) of the display module 10 c. A driving unit (not shown) of the display module 10 c may be positioned in the non-display region of the display panel (not shown) of the display module 10 c.
  • The windows 500 and 502 may be additionally provided above and below the display modules 10 a, 10 b, 10 c, and 10 d to improve instrument strength. The windows 500 and 502 may be attached to the front surface of the first covers 160 a, 160 b, 160 c, and 160 d and the front surface of the first substrates 200 a and 200 b, the second substrates 300 a and 300 b, and the third substrates 400 a and 400 b, respectively.
  • As shown in FIG. 10 , on the cross-section taken along a line IV-IV′, a part of the first module 10 a is attached to the fifth module 10 e, a part of the fifth module 10 e is attached to the sixth module 10 f, and a part of the sixth module 10 f is attached to the seventh module 10 g.
  • The display panel 100 e may be positioned to overlap the non-display region of the display panel 100 a so that the boundary of the display panel 100 e and the boundary of the display region 110 a coincide. Wiring (not shown) of the display panel 100 a may be positioned in the non-display region of the display panel 100 a overlapping the display panel 100 e.
  • The first cover 160 a and the first cover 160 e may be positioned to be spaced apart from each other at a predetermined interval in the y-axis direction. The first cover 160 a and the first cover 160 e may be attached to each other as an adhesive member. The second cover 162 a and the second cover 162 e may be positioned to be spaced apart from each other at a predetermined interval in the y-axis direction.
  • Here, the y-axis direction length H1 of the first cover 160 e may be greater than the y-axis direction length H2 of the second cover 162 e. Due to this difference in length, the bending area 101 a of the display panel 100 a may be bent. That is, the bent bending area 101 a may be positioned between the second cover 162 a and the second cover 162 e.
  • The display panel 100 e may be attached to the display panel 100 a as an adhesive member 151. Accordingly, the display region 110 a on the display panel 100 a and the display region 110 e on the display panel 100 e are seamlessly disposed along the y-axis direction. The adhesive member 151 may be the same material as the adhesive used to adhere the first cover 160 e and/or the second cover 162 e to the display panel 100 e. Also, in the process step of attaching the display panel 100 a to the display panel 100 e, the first cover 160 e and/or the second cover 162 e may be attached to the display panel 100 e.
  • The bending area 101 a of the display panel 100 a may be bent in the back surface direction of the display panel 100 a. Then, the integrated circuit chip 210 a, the first substrate 200 a, the second substrate 300 a, and the third substrate 400 a may be positioned on the back surface of the display panel 100 a.
  • To improve the instrument strength, windows 500 and 502 may be additionally provided above and below the display modules 10 a, 10 e, 10 f, and 10 g. The windows 500 and 502 may be attached to the front surface of the first covers 160 a, 160 e, 160 f and 160 g and the front surface of the first substrates 200 a and 200 e, the second substrates 300 a, and 300 e, and the third substrates 400 as and 400 e, respectively.
  • Next, the display module of the display apparatus according to the third embodiment is described with reference to FIG. 11 .
  • FIG. 11 is a cross-sectional view of a part of a display apparatus according to a third embodiment.
  • According to the third embodiment, the bending area 101 a of the display panel 100 a is bent in a shape to cover the side surface of the second cover 162 a.
  • Referring to FIG. 11 , since the first substrate 200 a also has a flexible characteristic, the first substrate 200 a may also be bent in the back surface direction of the display panel 100 a. Then, the integrated circuit chip 210 a, the first substrate 200 a, the second substrate 300 a, and the third substrate 400 a may be positioned on the back surface of the display panel 100 a.
  • According to the third embodiment, the bending area 101 a of the display panel 100 a and the first substrate 200 a are bent so as to surround the side surface of the second cover 162 a.
  • Next, a display apparatus according to a fourth embodiment is described with reference to FIG. 12 to FIG. 14 .
  • FIG. 12 is a top plan view of a display apparatus according to a fourth embodiment.
  • As shown in FIG. 12 , a plurality of display modules 10 a to 10 g may be combined in a matrix form. Each of the display modules 10 a to 10 g is partially attached to the non-display region of the adjacent display module. Therefore, each of the display modules 10 a to 10 g may be overlapped with an adjacent display module on a plane.
  • A single cover 164 may be attached to the front surface of a plurality of the display modules 10 a to 10 g.
  • Hereinafter, the arrangement of the display modules 10 a to 10 g and the single cover 164 is described with reference to FIG. 13 and FIG. 14 .
  • FIG. 13 is a cross-sectional view of a part of a display apparatus according to a fourth embodiment, and FIG. 14 is a cross-sectional view of another part of a display apparatus according to a fourth embodiment. In FIG. 13 and FIG. 14 , the thickness of the display panel is omitted, and the same and similar parts as compared with one aspect of the first embodiment are omitted.
  • As shown in FIG. 13 , on the cross-section taken along a line V-V′, a part of the first module 10 a is attached to the second module 10 b, a part of the second module 10 b is attached to the third module 10 c, and a part of the third module 10 c is attached to the fourth module 10 d.
  • A single cover 160 a may be attached to the front surface of the first to fourth display modules 10 a to 10 d. The second cover 162 a and the second cover 162 b may be positioned to be in contact with each other in the x-axis direction or to be spaced apart from each other at a predetermined interval. The second cover 162 a and the second cover 162 b may also be attached to each other as an adhesive member.
  • The windows 500 and 502 may be additionally provided above and below the display modules 10 a, 10 b, 10 c, and 10 d to improve the instrument strength. The windows 500 and 502 may be attached to the front surface of the front cover 164 and the front surface of the first substrates 200 a and 200 b, the second substrates 300 a and 300 b, and the third substrates 400 a and 400 b, respectively.
  • As shown in FIG. 14 , on the cross-section taken along a line VI-VI′, a part of the first module 10 a is attached to the fifth module 10 e, a part of the fifth module 10 e is attached to the sixth module 10 f, and a part of the sixth module 10 f is attached to the seventh module 10 g.
  • The single cover 160 a may be attached to the front surface of the first to fourth display modules 10 a to 10 d. The second cover 162 a and the second cover 162 e may be positioned to be spaced apart from each other at a predetermined interval in the y-axis direction.
  • The integrated circuit chip 210 a, the first substrate 200 a, the second substrate 300 a, and the third substrate 400 a may be positioned on one surface of the second cover 162 e.
  • The windows 500 and 502 may be additionally provided above and below the display modules 10 a, 10 e, 10 f, and 10 g to improve the instrument strength. The windows 500 and 502 may be attached to the front surface of the front cover 164 and the front surface of the first substrates 200 a and 200 e, the second substrates 300 a and 300 e, and the third substrates 400 a and 400 e, respectively.
  • Next, the position of the display region in the display panel is described with reference to FIG. 15 and FIG. 16 .
  • FIG. 15 is a top plan view of a part of a display apparatus according to a fifth embodiment, and FIG. 16 is a cross-sectional view of a part of a display apparatus according to a fifth embodiment.
  • Referring to FIG. 15 , a plurality of pixels PXa1, PXa2, . . . are positioned in the display region 110 a of the display module 10 a, and each of the pixels PXa1 and PXa2 includes at least one sub-pixel P1, . . . , P6. Similarly, a plurality of pixels PXb1, . . . are positioned in the display panel 100 b of the display module 10 b, and each pixel PXb1 includes at least one sub-pixel P7, P8, and P9.
  • Referring to FIG. 16 , a part of the display module 10 a may be attached to the non-display region of the display module 10 b through the adhesive member 150. The driving circuit 120 b may be positioned in the non-display region of the display module 10 b.
  • The x-axis direction distance between a plurality of pixels PXa1 and PXa2 is L1. The x-axis direction distance between the pixel PXa2 of the display module 10 a and the pixel PXb1 of the adjacent display module 10 b is L2. Here, L1 and L2 may be the same.
  • The x-axis direction distance from the pixel PXa2 of the display module 10 a to the boundary between the display panel 100 a is L3. Here, L3 may be less than L1. That is, by disposing the pixel PXa2 close to the boundary of the display panel 100 a, the distance between the adjacent pixels (PXa2 and PXb1/PXa1 and PXa2) may be constant even when two adjacent display modules 10 a and 10 b are combined.
  • When the display panel is an OLED display panel, if a TFE (thin film encapsulation) type of encapsulation is formed, the area required for encapsulation at the boundary of the display panel 100 a is only within a few μm to several tens of μm, so the TFE region may be positioned within the region having the length of L3 that is smaller than L1. The pixel PXa2 may be positioned close to the border of the display panel 100 a.
  • If the display panel is a micro LED display panel, there is no big problem in a lifespan even if the LED, which is a light-emitting element, is exposed to the air, so there is no need for an encapsulation member, so the pixel PXa2 may be positioned close to the border of the display panel 100 a. In this case, like the first embodiment, the first cover, the front cover, the like may be omitted, however like the second embodiment, the first cover may be attached on the display panel, or like the third embodiment, the front cover may be attached on the display panel to protect the light-emitting element.
  • Next, a black matrix for preventing visibility of the gap between the adjacent first covers is described with reference to FIG. 17 to FIG. 19 .
  • FIG. 17 is a top plan view of a part of a display apparatus according to a sixth embodiment, and FIG. 18 is a cross-sectional view of a part of a display apparatus according to a sixth embodiment.
  • Referring to FIG. 17 , a black matrix 510 is disposed on the front surface of the display modules 10 a and 10 b.
  • Referring to FIG. 18 , the black matrix 510 is positioned on one surface of the window 500. Then, the black matrix 510 is positioned in regions G1, G2, and G3 between the pixels PXa1, PXa2, and PXb1. Since the black matrix 510 is positioned to correspond to the gap GA between the adjacent first covers 160 a and 160 b, it is possible to prevent the gap G2 between the first covers 160 a and 160 b from being recognized.
  • FIG. 19 is a cross-sectional view of a part of a display apparatus according to a seventh embodiment.
  • Referring to FIG. 19 , the black matrix 511 is positioned on the display panels 100 a and 100 b. Then, the black matrix 511 is positioned in the area between the pixels PXa1, PXa2, and PXb1. Since the black matrix 511 is positioned to correspond between the adjacent display panels 100 a and 100 b, it is possible to prevent a step difference between the display panels 100 a and 100 b from being recognized.
  • Next, an optical member for preventing the recognition of the gap between adjacent first covers is described with reference to FIG. 20 and FIG. 21 .
  • FIG. 20 is a top plan view of a part of a display apparatus according to an eighth embodiment, and FIG. 21 is a cross-sectional view of a part of a display apparatus according to an eighth embodiment.
  • Referring to FIG. 20 , the optical member 170 is positioned between the display modules 10 a and 10 b.
  • Referring to FIG. 21 , since the optical member 170 is positioned in the gap GA between the adjacent first covers 160 a and 160 b, it is possible to prevent the gap GA between the first covers 160 a and 160 b from being recognized. The refractive index of the optical member 170 may be substantially the same as that of the first covers 160 a and 160 b. The optical member 170 may be a resin or optically clear adhesive.
  • According to at least one of the embodiments of the present disclosure, a sense of the disconnection between a plurality of the display apparatus may be removed, and a seamless large display apparatus may be implemented, thereby improving immersion of an image.
  • While this invention has been described in connection with what is presently considered to be practical embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (23)

1. A display apparatus comprising a plurality of display modules including a display region where a plurality of pixels are positioned and a non-display region outside the display region,
wherein, for two display modules adjacent among the plurality of display modules to provide a continuous display region, the display region of a first display module among the two adjacent display modules and the non-display region of a second display module among the two adjacent display modules overlap each other in a plane view,
wherein the first and second display modules are bonded by a first adhesive member in an overlapping area between the first display module and the second display module; and
wherein a ratio of a sum of a thickness of the non-display region of the second display module and a thickness of the adhesive member to a first direction width of the display region of the first display module is 10:1 or more.
2. (canceled)
3. The display apparatus of claim 1, wherein
the first direction width of the overlapping area is 20% or less of the first direction width of the display region of the second display module.
4. The display apparatus of claim 3, wherein
the first direction width of the overlapping area is 3 mm or more.
5. (canceled)
6. The display apparatus of claim 1, wherein
the second display module is positioned under the first display module.
7. The display apparatus of claim 6, wherein
a third display module among a plurality of display modules is coupled to the display region of the second display module to overlap each other on a plane, and is positioned under the second display module, and
the first, second, and third display modules are arranged along the first direction.
8. The display apparatus of claim 7, wherein
the third display module among a plurality of display modules is combined with the non-display region of the second display module to overlap each other on a plane, the third display module is positioned on the second display module, and
the first, second, and third display modules are arranged along the first direction.
9. (canceled)
10. (canceled)
11. A display apparatus comprising a plurality of display modules including a display region where a plurality of pixels are positioned and a non-display region outside the display region,
wherein, for two display modules adjacent among the plurality of display modules to provide a continuous display region, the display region of a first display module among the two adjacent display modules and the non-display region of the second display module among the two adjacent display modules overlap each other in a plane view,
wherein each of the plurality of display modules includes:
a first substrate where the display region and the non-display region are positioned; and
a second substrate connected to the first substrate and including a driving unit generating a signal provided to the plurality of pixels;
wherein at least one of the first substrate and the second substrate is bent so that the second substrate is positioned on a back surface of the first substrate; and
wherein
each of the plurality of display modules includes a first cover supporting the first substrate on the back surface of the first substrate,
the first substrate of the first display module is positioned between the first cover of the first display module and the first cover of the second display module.
12. The display apparatus of claim 11, wherein
a distance between two adjacent pixels of the first display module and a distance between the pixel of the first display module and the pixel of the second display module adjacent to each other are the same within a 5% error range.
13. The display apparatus of claim 12, wherein
the distance between the pixel of the first display module adjacent to the second display module and the boundary of the first display module adjacent to the second display module is less than the distance between two adjacent pixels of the first display module.
14. The display apparatus of claim 12, wherein
each of a plurality of display modules further includes
a second cover positioned corresponding to the display region.
15. The display apparatus of claim 14, wherein
areas of the first cover and the second cover are different from each other.
16. The display apparatus of claim 15, wherein
first direction lengths of the first cover and the second cover are the same as each other, and second direction lengths intersecting the first direction are different from each other.
17. The display apparatus of claim 14, wherein
the first cover and/or the second cover are attached to the display module by a second adhesive member, and
the first adhesive member and the second adhesive member includes the same material.
18. The display apparatus of claim 14, further comprising
an optical member positioned between the second covers of the first and second display modules.
19. The display apparatus of claim 18, wherein
the optical member includes a resin or an optical clear adhesive (OCA).
20. The display apparatus of claim 12, further comprising
a black matrix positioned correspondingly between the pixel of the first display module and the pixels of the second display module adjacent to each other.
21. The display apparatus of claim 20, further comprising
a first window positioned corresponding to the entire display region of a plurality of display modules on a plurality of second covers, and
the black matrix is positioned on the first window.
22. The display apparatus of claim 12, further comprising
a second window provided under a plurality of first covers.
23. The display apparatus of claim 12, further comprising
a third cover positioned corresponding to the entire display region of a plurality of display modules.
US17/858,308 2022-02-07 2022-07-06 Display apparatus Active US11715396B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220015789A KR20230119529A (en) 2022-02-07 2022-02-07 Display apparatus
KR10-2022-0015789 2022-02-07

Publications (2)

Publication Number Publication Date
US11715396B1 US11715396B1 (en) 2023-08-01
US20230252916A1 true US20230252916A1 (en) 2023-08-10

Family

ID=87472876

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/858,308 Active US11715396B1 (en) 2022-02-07 2022-07-06 Display apparatus

Country Status (2)

Country Link
US (1) US11715396B1 (en)
KR (1) KR20230119529A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028316A1 (en) * 2012-02-29 2015-01-29 Konica Minolta, Inc. Light emitting panel and method for manufacturing same
US20180151539A1 (en) * 2016-11-30 2018-05-31 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US20200251457A1 (en) * 2019-01-31 2020-08-06 Innolux Corporation Tiled display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362046B2 (en) 2001-11-10 2008-04-22 Image Portal Limited Partial overlapping display tiles of organic light emitting device
US20070001927A1 (en) 2005-07-01 2007-01-04 Eastman Kodak Company Tiled display for electronic signage
US8305294B2 (en) 2009-09-08 2012-11-06 Global Oled Technology Llc Tiled display with overlapping flexible substrates
CN103985371B (en) 2014-05-31 2017-03-15 深圳市华星光电技术有限公司 Flexible splicing display device
CN112349211B (en) 2014-07-31 2023-04-18 株式会社半导体能源研究所 Display device and electronic apparatus
TWI652525B (en) 2017-12-22 2019-03-01 友達光電股份有限公司 Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028316A1 (en) * 2012-02-29 2015-01-29 Konica Minolta, Inc. Light emitting panel and method for manufacturing same
US20180151539A1 (en) * 2016-11-30 2018-05-31 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US20200251457A1 (en) * 2019-01-31 2020-08-06 Innolux Corporation Tiled display device

Also Published As

Publication number Publication date
US11715396B1 (en) 2023-08-01
KR20230119529A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
TWI715552B (en) Display device and portable terminal
US9285835B2 (en) Flexible display device and method of manufacturing the same
JP6220499B2 (en) Flexible display panel and display device including the flexible display panel
CN108169839B (en) Light guide plate and liquid crystal display including the same
US10192950B2 (en) Display module and multi-display device including the same
KR101320385B1 (en) Flexible display panel and the display apparatus comprising the flexible display panel
US10181576B2 (en) Display device
US11758663B2 (en) Display device
CN109243306A (en) Display panel, display device and foldable display device
US11342539B2 (en) Display panel aligned with window and display device having the same
US20190146261A1 (en) Display device and method of manufacturing the same
JPWO2015114960A1 (en) Display device and electronic device
US10390448B2 (en) Curved display device having improved display area
US11715396B1 (en) Display apparatus
JP2009186971A (en) Electro-optical device and electronic equipment
KR20080003962U (en) Flexible multi display Device
CN109300439B (en) Display device configured to measure light and adjust display brightness and method of driving the same
US20240047434A1 (en) Double-surface display panel and double-surface spliced display screen
EP3213317B1 (en) Display module and multi-display device including the same
US10606122B2 (en) Light source module, and backlight unit and liquid crystal display device including the same
JP4296877B2 (en) Electro-optical device and electronic apparatus including the electro-optical device
CN220290397U (en) Spliced display panel and display
US20230213972A1 (en) Foldable display device
KR20110016794A (en) Backlight unit and liquid crystal display device having the same
KR200444223Y1 (en) Flexible multi display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILICON DISPLAY TECHNOLOGY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JIN, JONG WOO;YU, JINHYEONG;KIM, HYUNWOO;AND OTHERS;REEL/FRAME:060409/0904

Effective date: 20220401

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE