US20230236576A1 - Sensor systems principally for swimming pools and spas - Google Patents
Sensor systems principally for swimming pools and spas Download PDFInfo
- Publication number
- US20230236576A1 US20230236576A1 US18/128,011 US202318128011A US2023236576A1 US 20230236576 A1 US20230236576 A1 US 20230236576A1 US 202318128011 A US202318128011 A US 202318128011A US 2023236576 A1 US2023236576 A1 US 2023236576A1
- Authority
- US
- United States
- Prior art keywords
- water
- spa
- pool
- sensors
- swimming pool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000009182 swimming Effects 0.000 title claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 132
- 238000004891 communication Methods 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims description 33
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical class ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 claims description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000006227 byproduct Substances 0.000 claims description 7
- 239000000460 chlorine Substances 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 7
- 239000010452 phosphate Substances 0.000 claims description 7
- 238000004659 sterilization and disinfection Methods 0.000 claims description 7
- 230000033116 oxidation-reduction process Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims 2
- 230000008878 coupling Effects 0.000 description 21
- 238000010168 coupling process Methods 0.000 description 21
- 238000005859 coupling reaction Methods 0.000 description 21
- 230000001939 inductive effect Effects 0.000 description 21
- 230000008569 process Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 208000034699 Vitreous floaters Diseases 0.000 description 5
- 230000000712 assembly Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/185—Controlling the light source by remote control via power line carrier transmission
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4155—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H4/00—Swimming or splash baths or pools
- E04H4/14—Parts, details or accessories not otherwise provided for
- E04H4/148—Lighting means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/19—Controlling the light source by remote control via wireless transmission
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H4/00—Swimming or splash baths or pools
- E04H4/12—Devices or arrangements for circulating water, i.e. devices for removal of polluted water, cleaning baths or for water treatment
- E04H4/1209—Treatment of water for swimming pools
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49217—Compensation of temperature increase by the measurement
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5429—Applications for powerline communications
- H04B2203/5458—Monitor sensor; Alarm systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5462—Systems for power line communications
- H04B2203/5483—Systems for power line communications using coupling circuits
Definitions
- This invention relates to sensor systems principally for swimming pools or spas (or both) and more particularly, although not necessarily exclusively, to sensor arrays positioned within bodies of water and with which communication may occur via power-line communications (PLC) protocols.
- PLC power-line communications
- U.S. Pat. No. 7,164,364 to Losada discloses lighting systems for use within swimming pools.
- a battery-powered radio remote control may be used to control light-emitting diodes (LEDs) of the systems.
- Radio-frequency (RF) signals from the remote control of the Losada patent are received by a modulator-receiver installed in the primary winding of a transformer and passed through the transformer to the LEDs.
- Smart floaters also exist. These buoyant devices typically include certain sensors and batteries and float freely within swimming pools. Sensed information is transmitted wirelessly (using RF signals) from the floaters for further processing. Because the smart floaters typically are lightweight and untethered, these floaters are subject to undesired removal from the pools by people or pets. Some of the sensors contained in the floaters further may be permanently damaged if not maintained in contact with water.
- thermometers and other sensors may be used in swimming pools and spas. These sensors may display information concerning water of a pool (e.g., water temperature) but historically are disconnected from any control system. They thus lack any transmitter or receiver and, in some cases, any power supply whatsoever. Other temperature sensors may be located within the circulatory systems of pools and measure water temperature as the water circulates. These types of sensors work only when pumps are active (so as to circulate water), and they are subject to inaccuracies because the temperature of water within the circulatory system may differ materially from that of water within the swimming pool.
- a pool or spa control system includes a sensor system with one or more sensors in contact with a main body of water.
- the sensor system measures water condition data of the body of water and is mounted on a wall submerged in the main body of water.
- the pool or spa control system also includes a modem that facilitates data communications between the sensor system and communication equipment positioned at a different location from the main body of water.
- a sensor system in an additional example, includes a housing with a first inductive coupling that is electrically coupled to a power line.
- the power line enables transmission of electrical power from a transformer to the first inductive coupling and data communications from a modem to the first inductive coupling using a power-line communication protocol.
- the sensor system also includes a cartridge with a second inductive coupling and a first sensor. The cartridge receives the electrical power and the data communications at the second inductive coupling from the first inductive coupling.
- a method for controlling a sensor system includes transmitting electrical power from a transformer to a sensor along a power line, where the sensor is in contact with a body of water. The method also includes transmitting data communications from a modem to the sensor along the power line using a power-line communication protocol. Further, the method includes receiving sensor readings of the sensor at the modem from the power line.
- a sensor system for a swimming pool or spa communicates with a lighting system or a sensor system using a power-line communication technique.
- a pool or spa control system includes a sensor system located in or adjacent a main body of water and having wired electrical connections with a transformer and a modem assembly.
- FIG. 1 is a schematic diagram of an example of a system using power-line communication (PLC) protocols to operate a color light within a swimming pool or spa, according to certain embodiments of the present disclosure.
- PLC power-line communication
- FIG. 2 is a schematic diagram of an example of a system using PLC protocols to operate both a light and one or more sensors, according to certain embodiments of the present disclosure.
- FIG. 3 is an example of an assembly and a housing for a light or sensor used in the systems of FIGS. 1 and 2 , according to certain embodiments of the present disclosure.
- FIG. 4 is a flow chart of a process for communicating with lights or sensors using PLC protocols, according to certain embodiments of the present disclosure.
- an array of one or more sensors may be positioned within (or nearby) a main body of water and connected by wire to a source of electrical power. Data communication to and from the array may occur using the wired power connection, providing a more reliable and permanent communications mechanism than are provided by batteries and RF systems, for example. At least part of the wired connection may utilize techniques described in the Losada patent, although other PLC protocols may be employed instead.
- FIGS. 1 - 2 illustrate exemplary aspects of systems of the present invention.
- FIG. 1 is shown as using power-line communication (PLC) protocols to operate a color light within a swimming pool or spa, whereas FIG. 2 uses such communications to operate both a light and one or more sensors.
- system 10 may include device 14 incorporating at least a transformer and a modem.
- the transformer of the device 14 may function to decrease the voltage of an incoming supply of electricity so as to provide one or more lights 18 with electricity at the decreased voltage.
- the modem of the device 14 operates to modulate data (information) onto a voltage waveform output by the transformer to the lights 18 . Alternatively, other modulation techniques may be employed.
- any appropriate wired connection 22 may exist between the device 14 and the lights 18 .
- the incoming supply of electricity to the device 14 may be any suitable source. Often (but not necessarily always) the incoming supply of electricity will be 115V alternating current (AC) from a main residential or commercial supply.
- the transformer of the device 14 typically (but not necessarily) steps down the voltage to, e.g., 24V AC so as to power the lights 18 .
- the transformer may provide electrical power at a stepped down voltage to objects or assemblies in contact with the main body of pool or spa water.
- Control information for the lights 18 likewise may come from any suitable source.
- FIG. 1 illustrates a software application (app) 26 , which may be installed on a mobile smartphone, through which a human user may supply control information.
- the control information from the app 26 may be transmitted to the device 14 via the internet 30 and a controller 34 .
- information from the app 26 may be transmitted directly to the controller 34 . Any of such transmissions may be wireless or wired.
- the mobile smartphone running the app 26 may be communicatively coupled to the controller 34 using a Bluetooth connection when the mobile smartphone is within Bluetooth communication range of the controller 34 .
- the controller 34 may include a wired connection or a docking station capable of providing a communication link between the smartphone running the app 26 and the controller 34 .
- the controller 34 may include a processor and a memory, such as a non-transitory computer-readable medium.
- the memory may store instructions that are executable by the processor for the processor to perform operations described herein.
- communication equipment enabling communication between the device 14 e.g., a transformer/modem assembly
- the controller 34 may include RS-485 or Zigbee protocols, as examples.
- the device 14 may power one or more sensors 38 , as shown in FIG. 2 .
- a wired connection 42 exists between the device 14 and the sensors 38 . That is, the sensors 38 are not “free-floating” sensors within the pool or spa.
- the sensors 38 may receive electrical power and data from the device 14 .
- Suitable equipment additionally may be present in the device 14 , the controller 34 , or both so as to receive information from the sensors 38 via the connection 42 .
- the sensors 38 may be located in or adjacent main bodies of water of pools or spas.
- Non-limiting examples of information which may be provided by sensors 38 include: temperature of water in the pool or spa (measurable even when an associated pool circulation pump is not operating); pressure (allowing detection of the depth of the sensor and, in turn, the water level in the pool or spa); pH of the water; oxidation reduction potential (ORP) of the water; conductivity of the water; stray current in the water; levels of dissolved oxygen (O 2 ) or other gasses in the water; turbidity of the water; hardness of the water; alkalinity of the water; chlorine level in the water; phosphate level in the water; lumens level in the water; any other feature of the water chemistry; and/or chloramines/halogenated disinfection by-products.
- a set of sensors 38 may provide a pool or a spa with a sensor system capable of providing data relating to water conditions within, or other aspects of, the swimming pool or spa.
- the sensors 38 may include a communication component, such as a modem, that is able to modulate data (information) onto the voltage waveform of the wired connection 42 .
- the communication component may provide a mechanism for the sensors 38 to communicate information that is detected by the sensors 38 to the smart phone running the app 26 or to other devices that are controlling pool or spa operations.
- the sensors 38 may modulate data onto the voltage waveform indicating a temperature of water within a pool.
- the temperature information may be displayed within the app 26 on the smartphone, and the temperature information may also be relayed to a heating controller of the pool for use in controlling operation of a heating element.
- Information from other sensors 38 such as chemical sensors, may also be communicated by the communication component along the wired connection 42 .
- the information from the chemical sensors may be provided to a chemical controller that is able to adjust distribution of chemicals to the pool or spa based on the information transmitted along the wired connection 42 from the sensors 38 .
- FIG. 3 depicts alternate aspects of the invention.
- An assembly 46 is shown as including cartridge 50 and housing 54 , the latter of which preferably is installed on or in a swimming pool or spa.
- the cartridge 50 may be communicatively and electrically coupled to the housing 54 via an inductive coil, through which data also may pass.
- the cartridge 50 also may contain one or more of the lights 18 and/or the sensors 38 .
- the cartridge 50 includes both a light 18 and a sensor 38 .
- the cartridge 50 may be easily removable from the housing 54 for repair or replacement.
- a control signal from the components of the cartridge 50 may receive power and control signals through the inductive coil in the housing 54 .
- the housing 54 may receive the power and data through a wired connection (such as wired connection 22 ) with the device 14 , which may include the transformer and the modem.
- the transformer of the device 14 may transform power from a main residential power supply, a commercial power supply, or any other suitable power supply into a power output that is suitable for use by the cartridge 50 .
- the modem of the device 14 may apply the control signals, which are used to control the components of the cartridge 50 , to the wired connection 22 between the cartridge 50 and the device 14 .
- the components of the cartridge 50 are both powered and controlled by the wired connection 22 .
- the modem facilitates data communications to and from the cartridge 50 using PLC protocols or any other data transmission techniques across the wired connection 22 (i.e., a power line).
- the cartridge 50 may include a communication component, such as a modem, that is able to modulate data (information) onto the voltage waveform received at the housing 54 .
- the communication component may provide a mechanism for the sensors 38 of the cartridge 50 to communicate information that is detected by the sensors 38 to the smart phone running the app 26 or to other devices that are controlling pool or spa operations.
- the sensors 38 may modulate data onto the voltage waveform indicating a temperature of water within a pool.
- the temperature information may be displayed within the app 26 on the smartphone, and the temperature information may also be relayed to a heating controller of the pool for use in controlling operation of a heating element.
- Information from other sensors 38 such as chemical sensors, within the cartridge 50 may also be communicated by the communication component along the wired connection 22 .
- the information from the chemical sensors may be provided to a chemical controller that is able to adjust distribution of chemicals to the pool or spa based on the information transmitted along the wired connection 22 from the sensors 38 .
- the cartridge 50 receives power and data from the inductive coil of the housing 54 , the cartridge 50 is easily removable from the housing 54 for repair or replacement. For example, when a sensor 38 or a light 18 within the cartridge 50 malfunctions or otherwise stops working, the cartridge 50 is removable and replaceable within the housing 54 without pulling long lengths of cord through a conduit.
- FIG. 4 is a flow chart of a process 60 for communicating with the lights 18 and/or sensors 38 using PLC protocols.
- the process 60 involves receiving a control signal from a user at the software application 26 .
- the control signal may include a signal instructing the lights 18 to a particular light output (e.g., color, lumens, on/off, etc.) or a signal requesting a sensor reading from the sensors 38 .
- Other control signals relating to the lights 18 and the sensors 38 may also be received at the software application 26 .
- the process 60 involves determining whether the software application is within a local wireless connection range to the controller 34 .
- a mobile smartphone running the software application 26 may be capable of wirelessly connecting with the controller 34 using a Bluetooth connection or other wireless standard connection when the mobile smartphone is within a wireless connection range of the controller 34 .
- the process 60 involves transmitting the control signal from the software application 26 to the controller 34 using a wireless connection. If the software application 26 is being run on a device that is not in wireless range of the controller 34 , at block 68 the process 60 involves transmitting the control signal from the software application 26 to the controller 34 using an internet-based cloud server. For example, the mobile device may transmit the control signal to a cloud server using a wired or wireless connection to the internet 30 , and the controller 34 may receive the control signal from the cloud server through a wired or wireless connection to the internet 30 .
- the process 60 involves transmitting the control signal from the controller 34 to the modem of the device 14 .
- the modem may receive the control signal and prepare modulated data signal packets for application onto the wired connections 22 and 42 .
- the process 60 involves applying the modulated data signals to the wired connections 22 and 42 .
- the wired connections 22 and 42 may also provide a path for transmission of the power from the transformer of the device 14 to the lights 18 and the sensors 38 .
- the modulated data signals are transmitted along the wired connections 22 and 42 that also provide a power transmission path for the lights and the sensors 38 .
- the process 60 optionally involves receiving sensor readings or lighting information from the wired connections 22 and 42 at the modem of the device 14 .
- the modem can demodulate the sensor readings or the lighting information and distribute the information to appropriate devices associated with the pool or spa.
- the modem can provide the information to the controller 34 , and the controller 34 can distribute the information to the software application 26 for display to a user.
- the controller 34 can distribute the information from the sensors 38 , for example, to pool or spa controllers capable of adjusting processes that affect the readings of the sensors 38 (e.g., a pool heater, a chemical distributor, etc.).
- Embodiments of the present invention thus may include components such as a transformer which may provide electrical power to objects or assemblies in contact with the main body of pool water.
- the invention may also include a modem facilitating data communications to and from the objects and assemblies preferably using PLC techniques.
- the invention may include a sensor system capable of providing data relating to water conditions within, or other aspects of, a swimming pool or spa.
- Optional lights which, like the sensors or other objects or assemblies, may receive power and operating instructions via PLC may also be included as components of the invention.
- the invention may include equipment allowing communication between the transformer/modem assembly and a pool controller or internet-based cloud service.
- the equipment allowing the communication between the transformer/modem assembly and the pool controller or the internet-based cloud service may utilize RS-485 or Zigbee protocols, as examples.
- the sensor system may utilize an inductive coupling to pass power and data to sensors (and receive data from sensors), with the sensors being easily disconnectable from a housing and removable without pulling long wires through a pool conduit.
- Non-limiting examples of information which may be provided by sensors include: temperature of water in the pool or spa (measurable even when an associated pool circulation pump is not operating); pressure (allowing detection of the depth of the sensor and, in turn, the water level in the pool or spa); pH of the water; ORP of the water; conductivity of the water; stray current in the water; levels of dissolved oxygen (O 2 ) or other gasses in the water; turbidity of the water; hardness of the water; alkalinity of the water; chlorine level in the water; phosphate level in the water; lumens level in the water; any other feature of the water chemistry; chloramines/halogenated disinfection by-products; or any combination thereof.
- Exemplary concepts or combinations of features of the invention may include a sensor system for a swimming pool or spa which communicates using PLC protocol.
- the exemplary concepts or combinations of features of the invention may also include non-free-floating sensor systems for pools or spas configured to receive modulated power signals.
- the exemplary concepts or combinations of features of the invention may include sensor systems located in or adjacent main bodies of water of pools or spas and having wired electrical connections with transformer/modem assemblies.
- any reference to a series of examples is to be understood as a reference to each of those examples disjunctively (e.g., “Examples 1-4” is to be understood as “Examples 1, 2, 3, or 4”).
- Example 1 is a pool or spa control system, comprising: a sensor system comprising one or more sensors in contact with a main body of water, wherein the sensor system is configured to measure water condition data of the body of water, and wherein the sensor system is mounted on a wall submerged in the main body of water; and a modem configured to facilitate data communications between the sensor system and communication equipment positioned at a different location from the main body of water.
- Example 2 is the pool or spa control system of example 1, wherein the data communications between the sensor system and the communication equipment comprises power line communication.
- Example 3 is the pool or spa control system of examples 1-2, further comprising: a transformer configured to provide electrical power to the sensor system.
- Example 4 is the pool or spa control system of example 3, further comprising a power line electrically coupling the transformer to the sensor system, wherein the modem facilitates the data communications between the sensor system and the communication equipment over the power line.
- Example 5 is the pool or spa control system of example 4, further comprising: a housing comprising a first inductive coupling that is electrically coupled to the power line; and a cartridge comprising a second inductive coupling and a first sensor of the one or more sensors, wherein the cartridge is configured to receive the electrical power and the data communications at the second inductive coupling from the first inductive coupling.
- Example 6 is the pool or spa control system of examples 1-5, wherein the sensor system further comprises a lighting device.
- Example 7 is the pool or spa control system of example 6, further comprising: a first power line electrically coupling a transformer to the sensor system, wherein the modem facilitates the data communications between the sensor system and the communication equipment over the first power line; and a second power line electrically coupling the transformer to the lighting device, wherein the modem facilitates the data communications between the light device and the communication equipment over the second power line.
- Example 8 is the pool or spa control system of examples 1-7, further comprising: a controller configured to receive control instructions from a mobile device or an internet-based cloud service; and the communication equipment configured to provide control signals from the controller to the modem for transmission of the data communications to the sensing system.
- Example 9 is the pool or spa control system of example 8, wherein the communication equipment provides the control signals to the modem using RS-485 or Zigbee protocols.
- Example 10 is the pool or spa control system of examples 1-9, wherein the body of water comprises a main body of pool or spa water.
- Example 11 is the pool or spa control system of example 1-10, wherein the sensor system is configured to provide an indication of temperature of the body of water, pressure at the sensor system, pH of the body of water, oxidation reduction potential (ORP) of the body of water, conductivity of the body of water, stray current in the body of water, levels of dissolved oxygen (O 2 ) or other gasses in the body of water, turbidity of the body of water, hardness of the body of water, alkalinity of the body of water, chlorine level in the body of water, phosphate level in the body of water, lumens level in the body of water, chloramines/halogenated disinfection by-products in the body of water, or any combination thereof.
- ORP oxidation reduction potential
- Example 12 is a sensor system, comprising: a housing comprising a first inductive coupling that is electrically coupled to a power line, wherein the power line is configured to enable transmission of electrical power from a transformer to the first inductive coupling and data communications from a modem to the first inductive coupling using a power-line communication protocol; and a cartridge comprising a second inductive coupling and a first sensor, wherein the cartridge is configured to receive the electrical power and the data communications at the second inductive coupling from the first inductive coupling.
- Example 13 is the sensor system of example 12, wherein the cartridge further comprises a light source that is controllable by the data communications from the modem.
- Example 14 is the sensor system of examples 12-13, wherein the cartridge is positionable within a main body of pool or spa water, and wherein the cartridge is configured to transmit an indication of temperature of the main body of pool or spa water, pressure at the cartridge, pH of the main body of pool or spa water, oxidation reduction potential (ORP) of the main body of pool or spa water, conductivity of the main body of pool or spa water, stray current in the main body of pool or spa water, levels of dissolved oxygen (O 2 ) or other gasses in the main body of pool or spa water, turbidity of the main body of pool or spa water, hardness of the main body of pool or spa water, alkalinity of the main body of pool or spa water, chlorine level in the main body of pool or spa water, phosphate level in the main body of pool or spa water, lumens level in the main body of pool or spa water, chloramines/halogenated disinfection by-products in the main body of pool or spa water, or any combination thereof to the housing using the second inductive coup
- Example 15 is the sensor system of examples 12-14, wherein the data communications from the modem comprise instructions for the cartridge to operate the first sensor.
- Example 16 is the sensor system of examples 12-15, wherein the cartridge is replaceable with an additional cartridge comprising a second sensor.
- Example 17 is a method for controlling a sensor system, comprising: transmitting electrical power from a transformer to a sensor along a power line, wherein the sensor is in contact with a body of water; transmitting data communications from a modem to the sensor along the power line using a power-line communication protocol; and receiving sensor readings of the sensor at the modem from the power line.
- Example 18 is the method of example 17, wherein the sensor readings comprise an indication of temperature of the body of water, pressure at the sensor, pH of the body of water, oxidation reduction potential (ORP) of the body of water, conductivity of the body of water, stray current in the body of water, levels of dissolved oxygen (O 2 ) or other gasses in the body of water, turbidity of the body of water, hardness of the body of water, alkalinity of the body of water, chlorine level in the body of water, phosphate level in the body of water, lumens level in the body of water, chloramines/halogenated disinfection by-products in the body of water, or any combination thereof.
- ORP oxidation reduction potential
- Example 19 is the method of examples 17-18, further comprising: transmitting electrical power from the transformer to a lighting device along a second power line, wherein the lighting device is in contact with the body of water; and transmitting the data communications from the modem to the lighting device along the second power line using the power-line communication protocol to control the lighting device.
- Example 20 is the method of examples 17-19, further comprising: demodulating the sensor readings from the power line using the power-line communication protocol; and distributing demodulated sensor readings to controllers of a pool or spa system for use in controlling processes of the pool or spa system.
- Example 21 is a sensor system for a swimming pool or spa that communicates with a lighting system or a sensor system using a power-line communication technique.
- Example 22 is a pool or spa control system, comprising: a sensor system located in or adjacent a main body of water and having wired electrical connections with a transformer and a modem assembly.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Telephonic Communication Services (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
A pool or spa control system includes a sensor system with one or more sensors in contact with a main body of water. The sensor system measures water condition data of the body of water and is mounted on a wall submerged in the main body of water. The pool or spa control system also includes a modem that facilitates data communications between the sensor system and communication equipment positioned at a different location from the main body of water.
Description
- This application is a continuation of U.S. patent application Ser. No. 16/680,381, filed Nov. 11, 2019, entitled “SENSOR SYSTEMS PRINCIPALLY FOR SWIMMING POOLS AND SPAS, which application claims the benefit of and priority to U.S. Provisional Application No. 62/758,854, filed Nov. 12, 2018, entitled “SENSOR SYSTEMS PRINCIPALLY FOR SWIMMING POOLS AND SPAS,” the entire contents of which are hereby incorporated by this reference.
- This invention relates to sensor systems principally for swimming pools or spas (or both) and more particularly, although not necessarily exclusively, to sensor arrays positioned within bodies of water and with which communication may occur via power-line communications (PLC) protocols.
- U.S. Pat. No. 7,164,364 to Losada discloses lighting systems for use within swimming pools. A battery-powered radio remote control may be used to control light-emitting diodes (LEDs) of the systems. Radio-frequency (RF) signals from the remote control of the Losada patent are received by a modulator-receiver installed in the primary winding of a transformer and passed through the transformer to the LEDs.
- “Smart floaters” also exist. These buoyant devices typically include certain sensors and batteries and float freely within swimming pools. Sensed information is transmitted wirelessly (using RF signals) from the floaters for further processing. Because the smart floaters typically are lightweight and untethered, these floaters are subject to undesired removal from the pools by people or pets. Some of the sensors contained in the floaters further may be permanently damaged if not maintained in contact with water.
- Yet additionally, conventional thermometers and other sensors may be used in swimming pools and spas. These sensors may display information concerning water of a pool (e.g., water temperature) but historically are disconnected from any control system. They thus lack any transmitter or receiver and, in some cases, any power supply whatsoever. Other temperature sensors may be located within the circulatory systems of pools and measure water temperature as the water circulates. These types of sensors work only when pumps are active (so as to circulate water), and they are subject to inaccuracies because the temperature of water within the circulatory system may differ materially from that of water within the swimming pool.
- The terms “disclosure,” “the disclosure,” “this disclosure” and “the present disclosure” used in this patent are intended to refer broadly to all of the subject matter of this patent and the claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the subject matter covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the subject matter of the present disclosure and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings and each claim.
- In an example, a pool or spa control system includes a sensor system with one or more sensors in contact with a main body of water. The sensor system measures water condition data of the body of water and is mounted on a wall submerged in the main body of water. The pool or spa control system also includes a modem that facilitates data communications between the sensor system and communication equipment positioned at a different location from the main body of water.
- In an additional example, a sensor system includes a housing with a first inductive coupling that is electrically coupled to a power line. The power line enables transmission of electrical power from a transformer to the first inductive coupling and data communications from a modem to the first inductive coupling using a power-line communication protocol. The sensor system also includes a cartridge with a second inductive coupling and a first sensor. The cartridge receives the electrical power and the data communications at the second inductive coupling from the first inductive coupling.
- In an additional example, a method for controlling a sensor system includes transmitting electrical power from a transformer to a sensor along a power line, where the sensor is in contact with a body of water. The method also includes transmitting data communications from a modem to the sensor along the power line using a power-line communication protocol. Further, the method includes receiving sensor readings of the sensor at the modem from the power line.
- In an additional example, a sensor system for a swimming pool or spa communicates with a lighting system or a sensor system using a power-line communication technique.
- In an additional example, a pool or spa control system includes a sensor system located in or adjacent a main body of water and having wired electrical connections with a transformer and a modem assembly.
-
FIG. 1 is a schematic diagram of an example of a system using power-line communication (PLC) protocols to operate a color light within a swimming pool or spa, according to certain embodiments of the present disclosure. -
FIG. 2 is a schematic diagram of an example of a system using PLC protocols to operate both a light and one or more sensors, according to certain embodiments of the present disclosure. -
FIG. 3 is an example of an assembly and a housing for a light or sensor used in the systems ofFIGS. 1 and 2 , according to certain embodiments of the present disclosure. -
FIG. 4 is a flow chart of a process for communicating with lights or sensors using PLC protocols, according to certain embodiments of the present disclosure. - The subject matter of embodiments of the present disclosure is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
- Sensors and systems of the present invention may avoid some or all of the difficulties described in the background section. In some embodiments of the invention, an array of one or more sensors may be positioned within (or nearby) a main body of water and connected by wire to a source of electrical power. Data communication to and from the array may occur using the wired power connection, providing a more reliable and permanent communications mechanism than are provided by batteries and RF systems, for example. At least part of the wired connection may utilize techniques described in the Losada patent, although other PLC protocols may be employed instead.
-
FIGS. 1-2 illustrate exemplary aspects of systems of the present invention.FIG. 1 is shown as using power-line communication (PLC) protocols to operate a color light within a swimming pool or spa, whereasFIG. 2 uses such communications to operate both a light and one or more sensors. As depicted inFIG. 1 ,system 10 may includedevice 14 incorporating at least a transformer and a modem. The transformer of thedevice 14 may function to decrease the voltage of an incoming supply of electricity so as to provide one ormore lights 18 with electricity at the decreased voltage. The modem of thedevice 14 operates to modulate data (information) onto a voltage waveform output by the transformer to thelights 18. Alternatively, other modulation techniques may be employed. - Although both the transformer and modem are illustrated jointly in
FIGS. 1-2 , they need not necessarily exist in the same housing. Any appropriatewired connection 22 may exist between thedevice 14 and thelights 18. The incoming supply of electricity to thedevice 14 may be any suitable source. Often (but not necessarily always) the incoming supply of electricity will be 115V alternating current (AC) from a main residential or commercial supply. The transformer of thedevice 14 typically (but not necessarily) steps down the voltage to, e.g., 24V AC so as to power thelights 18. For example, the transformer may provide electrical power at a stepped down voltage to objects or assemblies in contact with the main body of pool or spa water. - Control information for the
lights 18 likewise may come from any suitable source.FIG. 1 illustrates a software application (app) 26, which may be installed on a mobile smartphone, through which a human user may supply control information. The control information from theapp 26 may be transmitted to thedevice 14 via theinternet 30 and acontroller 34. Alternatively, information from theapp 26 may be transmitted directly to thecontroller 34. Any of such transmissions may be wireless or wired. For example, the mobile smartphone running theapp 26 may be communicatively coupled to thecontroller 34 using a Bluetooth connection when the mobile smartphone is within Bluetooth communication range of thecontroller 34. In another example, thecontroller 34 may include a wired connection or a docking station capable of providing a communication link between the smartphone running theapp 26 and thecontroller 34. Thecontroller 34 may include a processor and a memory, such as a non-transitory computer-readable medium. The memory may store instructions that are executable by the processor for the processor to perform operations described herein. Further, communication equipment enabling communication between the device 14 (e.g., a transformer/modem assembly) and thecontroller 34 may include RS-485 or Zigbee protocols, as examples. - In addition to or instead of powering the
lights 18, thedevice 14 may power one ormore sensors 38, as shown inFIG. 2 . In this case, awired connection 42 exists between thedevice 14 and thesensors 38. That is, thesensors 38 are not “free-floating” sensors within the pool or spa. Via thewired connection 42, thesensors 38 may receive electrical power and data from thedevice 14. Suitable equipment additionally may be present in thedevice 14, thecontroller 34, or both so as to receive information from thesensors 38 via theconnection 42. Further, thesensors 38 may be located in or adjacent main bodies of water of pools or spas. Non-limiting examples of information which may be provided bysensors 38 include: temperature of water in the pool or spa (measurable even when an associated pool circulation pump is not operating); pressure (allowing detection of the depth of the sensor and, in turn, the water level in the pool or spa); pH of the water; oxidation reduction potential (ORP) of the water; conductivity of the water; stray current in the water; levels of dissolved oxygen (O2) or other gasses in the water; turbidity of the water; hardness of the water; alkalinity of the water; chlorine level in the water; phosphate level in the water; lumens level in the water; any other feature of the water chemistry; and/or chloramines/halogenated disinfection by-products. A set ofsensors 38 may provide a pool or a spa with a sensor system capable of providing data relating to water conditions within, or other aspects of, the swimming pool or spa. - The
sensors 38 may include a communication component, such as a modem, that is able to modulate data (information) onto the voltage waveform of thewired connection 42. The communication component may provide a mechanism for thesensors 38 to communicate information that is detected by thesensors 38 to the smart phone running theapp 26 or to other devices that are controlling pool or spa operations. For example, thesensors 38 may modulate data onto the voltage waveform indicating a temperature of water within a pool. The temperature information may be displayed within theapp 26 on the smartphone, and the temperature information may also be relayed to a heating controller of the pool for use in controlling operation of a heating element. Information fromother sensors 38, such as chemical sensors, may also be communicated by the communication component along thewired connection 42. In such an example, the information from the chemical sensors may be provided to a chemical controller that is able to adjust distribution of chemicals to the pool or spa based on the information transmitted along thewired connection 42 from thesensors 38. -
FIG. 3 depicts alternate aspects of the invention. Anassembly 46 is shown as includingcartridge 50 andhousing 54, the latter of which preferably is installed on or in a swimming pool or spa. Thecartridge 50 may be communicatively and electrically coupled to thehousing 54 via an inductive coil, through which data also may pass. Thecartridge 50 also may contain one or more of thelights 18 and/or thesensors 38. In an example, thecartridge 50 includes both a light 18 and asensor 38. In some versions of the invention, thecartridge 50 may be easily removable from thehousing 54 for repair or replacement. - A control signal from the components of the cartridge 50 (e.g., a light 18, a
sensor 38, or both), may receive power and control signals through the inductive coil in thehousing 54. As discussed above with respect toFIGS. 1 and 2 , thehousing 54 may receive the power and data through a wired connection (such as wired connection 22) with thedevice 14, which may include the transformer and the modem. The transformer of thedevice 14 may transform power from a main residential power supply, a commercial power supply, or any other suitable power supply into a power output that is suitable for use by thecartridge 50. Further, the modem of thedevice 14 may apply the control signals, which are used to control the components of thecartridge 50, to thewired connection 22 between thecartridge 50 and thedevice 14. In this manner, the components of thecartridge 50 are both powered and controlled by thewired connection 22. In an example, the modem facilitates data communications to and from thecartridge 50 using PLC protocols or any other data transmission techniques across the wired connection 22 (i.e., a power line). - Further, the
cartridge 50 may include a communication component, such as a modem, that is able to modulate data (information) onto the voltage waveform received at thehousing 54. The communication component may provide a mechanism for thesensors 38 of thecartridge 50 to communicate information that is detected by thesensors 38 to the smart phone running theapp 26 or to other devices that are controlling pool or spa operations. For example, thesensors 38 may modulate data onto the voltage waveform indicating a temperature of water within a pool. The temperature information may be displayed within theapp 26 on the smartphone, and the temperature information may also be relayed to a heating controller of the pool for use in controlling operation of a heating element. Information fromother sensors 38, such as chemical sensors, within thecartridge 50 may also be communicated by the communication component along thewired connection 22. In such an example, the information from the chemical sensors may be provided to a chemical controller that is able to adjust distribution of chemicals to the pool or spa based on the information transmitted along thewired connection 22 from thesensors 38. - Additionally, because the
cartridge 50 receives power and data from the inductive coil of thehousing 54, thecartridge 50 is easily removable from thehousing 54 for repair or replacement. For example, when asensor 38 or a light 18 within thecartridge 50 malfunctions or otherwise stops working, thecartridge 50 is removable and replaceable within thehousing 54 without pulling long lengths of cord through a conduit. -
FIG. 4 is a flow chart of aprocess 60 for communicating with thelights 18 and/orsensors 38 using PLC protocols. Atblock 62, theprocess 60 involves receiving a control signal from a user at thesoftware application 26. In an example, the control signal may include a signal instructing thelights 18 to a particular light output (e.g., color, lumens, on/off, etc.) or a signal requesting a sensor reading from thesensors 38. Other control signals relating to thelights 18 and thesensors 38 may also be received at thesoftware application 26. - At
block 64, theprocess 60 involves determining whether the software application is within a local wireless connection range to thecontroller 34. For example, a mobile smartphone running thesoftware application 26 may be capable of wirelessly connecting with thecontroller 34 using a Bluetooth connection or other wireless standard connection when the mobile smartphone is within a wireless connection range of thecontroller 34. - If the
software application 26 is being run on a device within wireless range of thecontroller 34, atblock 66 theprocess 60 involves transmitting the control signal from thesoftware application 26 to thecontroller 34 using a wireless connection. If thesoftware application 26 is being run on a device that is not in wireless range of thecontroller 34, atblock 68 theprocess 60 involves transmitting the control signal from thesoftware application 26 to thecontroller 34 using an internet-based cloud server. For example, the mobile device may transmit the control signal to a cloud server using a wired or wireless connection to theinternet 30, and thecontroller 34 may receive the control signal from the cloud server through a wired or wireless connection to theinternet 30. - At
block 70, theprocess 60 involves transmitting the control signal from thecontroller 34 to the modem of thedevice 14. The modem may receive the control signal and prepare modulated data signal packets for application onto thewired connections - At block 72, the
process 60 involves applying the modulated data signals to thewired connections wired connections device 14 to thelights 18 and thesensors 38. Thus, the modulated data signals are transmitted along thewired connections sensors 38. - At
block 74, theprocess 60 optionally involves receiving sensor readings or lighting information from the wiredconnections device 14. The modem can demodulate the sensor readings or the lighting information and distribute the information to appropriate devices associated with the pool or spa. For example, the modem can provide the information to thecontroller 34, and thecontroller 34 can distribute the information to thesoftware application 26 for display to a user. Similarly, thecontroller 34 can distribute the information from thesensors 38, for example, to pool or spa controllers capable of adjusting processes that affect the readings of the sensors 38 (e.g., a pool heater, a chemical distributor, etc.). - Embodiments of the present invention thus may include components such as a transformer which may provide electrical power to objects or assemblies in contact with the main body of pool water. The invention may also include a modem facilitating data communications to and from the objects and assemblies preferably using PLC techniques. Further, the invention may include a sensor system capable of providing data relating to water conditions within, or other aspects of, a swimming pool or spa. Optional lights which, like the sensors or other objects or assemblies, may receive power and operating instructions via PLC may also be included as components of the invention. Additionally, the invention may include equipment allowing communication between the transformer/modem assembly and a pool controller or internet-based cloud service.
- The equipment allowing the communication between the transformer/modem assembly and the pool controller or the internet-based cloud service may utilize RS-485 or Zigbee protocols, as examples. Optionally, the sensor system may utilize an inductive coupling to pass power and data to sensors (and receive data from sensors), with the sensors being easily disconnectable from a housing and removable without pulling long wires through a pool conduit. Non-limiting examples of information which may be provided by sensors include: temperature of water in the pool or spa (measurable even when an associated pool circulation pump is not operating); pressure (allowing detection of the depth of the sensor and, in turn, the water level in the pool or spa); pH of the water; ORP of the water; conductivity of the water; stray current in the water; levels of dissolved oxygen (O2) or other gasses in the water; turbidity of the water; hardness of the water; alkalinity of the water; chlorine level in the water; phosphate level in the water; lumens level in the water; any other feature of the water chemistry; chloramines/halogenated disinfection by-products; or any combination thereof.
- Exemplary concepts or combinations of features of the invention may include a sensor system for a swimming pool or spa which communicates using PLC protocol. The exemplary concepts or combinations of features of the invention may also include non-free-floating sensor systems for pools or spas configured to receive modulated power signals. Further, the exemplary concepts or combinations of features of the invention may include sensor systems located in or adjacent main bodies of water of pools or spas and having wired electrical connections with transformer/modem assemblies.
- These examples are not intended to be mutually exclusive, exhaustive, or restrictive in any way, and the invention is not limited to these example embodiments but rather encompasses all possible modifications and variations within the scope of any claims ultimately drafted and issued in connection with the invention (and their equivalents). For avoidance of doubt, any combination of features not physically impossible or expressly identified as non-combinable herein may be within the scope of the invention.
- The entire contents of the Losada patent are incorporated herein by this reference. Also incorporated herein by this reference are the entire contents of U.S. patent application Ser. No. 16/122,356, filed Sep. 5, 2018, and entitled “Select Communications and Data Aspects of Pool and Spa Equipment Such as Salt-Water Chlorinators.” Further, although applicant has described devices and techniques for use principally with swimming pools, persons skilled in the relevant field will recognize that the present invention may be employed in connection with other objects and in other manners. Finally, references to “pools” and “swimming pools” herein may also refer to spas or other water containing vessels used for recreation or therapy and having components with which communications are needed or desired.
- In the following, further examples are described to facilitate the understanding of the subject matter of the present disclosure:
- As used below, any reference to a series of examples is to be understood as a reference to each of those examples disjunctively (e.g., “Examples 1-4” is to be understood as “Examples 1, 2, 3, or 4”).
- Example 1 is a pool or spa control system, comprising: a sensor system comprising one or more sensors in contact with a main body of water, wherein the sensor system is configured to measure water condition data of the body of water, and wherein the sensor system is mounted on a wall submerged in the main body of water; and a modem configured to facilitate data communications between the sensor system and communication equipment positioned at a different location from the main body of water.
- Example 2 is the pool or spa control system of example 1, wherein the data communications between the sensor system and the communication equipment comprises power line communication.
- Example 3 is the pool or spa control system of examples 1-2, further comprising: a transformer configured to provide electrical power to the sensor system.
- Example 4 is the pool or spa control system of example 3, further comprising a power line electrically coupling the transformer to the sensor system, wherein the modem facilitates the data communications between the sensor system and the communication equipment over the power line.
- Example 5 is the pool or spa control system of example 4, further comprising: a housing comprising a first inductive coupling that is electrically coupled to the power line; and a cartridge comprising a second inductive coupling and a first sensor of the one or more sensors, wherein the cartridge is configured to receive the electrical power and the data communications at the second inductive coupling from the first inductive coupling.
- Example 6 is the pool or spa control system of examples 1-5, wherein the sensor system further comprises a lighting device.
- Example 7 is the pool or spa control system of example 6, further comprising: a first power line electrically coupling a transformer to the sensor system, wherein the modem facilitates the data communications between the sensor system and the communication equipment over the first power line; and a second power line electrically coupling the transformer to the lighting device, wherein the modem facilitates the data communications between the light device and the communication equipment over the second power line.
- Example 8 is the pool or spa control system of examples 1-7, further comprising: a controller configured to receive control instructions from a mobile device or an internet-based cloud service; and the communication equipment configured to provide control signals from the controller to the modem for transmission of the data communications to the sensing system.
- Example 9 is the pool or spa control system of example 8, wherein the communication equipment provides the control signals to the modem using RS-485 or Zigbee protocols.
- Example 10 is the pool or spa control system of examples 1-9, wherein the body of water comprises a main body of pool or spa water.
- Example 11 is the pool or spa control system of example 1-10, wherein the sensor system is configured to provide an indication of temperature of the body of water, pressure at the sensor system, pH of the body of water, oxidation reduction potential (ORP) of the body of water, conductivity of the body of water, stray current in the body of water, levels of dissolved oxygen (O2) or other gasses in the body of water, turbidity of the body of water, hardness of the body of water, alkalinity of the body of water, chlorine level in the body of water, phosphate level in the body of water, lumens level in the body of water, chloramines/halogenated disinfection by-products in the body of water, or any combination thereof.
- Example 12 is a sensor system, comprising: a housing comprising a first inductive coupling that is electrically coupled to a power line, wherein the power line is configured to enable transmission of electrical power from a transformer to the first inductive coupling and data communications from a modem to the first inductive coupling using a power-line communication protocol; and a cartridge comprising a second inductive coupling and a first sensor, wherein the cartridge is configured to receive the electrical power and the data communications at the second inductive coupling from the first inductive coupling.
- Example 13 is the sensor system of example 12, wherein the cartridge further comprises a light source that is controllable by the data communications from the modem.
- Example 14 is the sensor system of examples 12-13, wherein the cartridge is positionable within a main body of pool or spa water, and wherein the cartridge is configured to transmit an indication of temperature of the main body of pool or spa water, pressure at the cartridge, pH of the main body of pool or spa water, oxidation reduction potential (ORP) of the main body of pool or spa water, conductivity of the main body of pool or spa water, stray current in the main body of pool or spa water, levels of dissolved oxygen (O2) or other gasses in the main body of pool or spa water, turbidity of the main body of pool or spa water, hardness of the main body of pool or spa water, alkalinity of the main body of pool or spa water, chlorine level in the main body of pool or spa water, phosphate level in the main body of pool or spa water, lumens level in the main body of pool or spa water, chloramines/halogenated disinfection by-products in the main body of pool or spa water, or any combination thereof to the housing using the second inductive coupling.
- Example 15 is the sensor system of examples 12-14, wherein the data communications from the modem comprise instructions for the cartridge to operate the first sensor.
- Example 16 is the sensor system of examples 12-15, wherein the cartridge is replaceable with an additional cartridge comprising a second sensor.
- Example 17 is a method for controlling a sensor system, comprising: transmitting electrical power from a transformer to a sensor along a power line, wherein the sensor is in contact with a body of water; transmitting data communications from a modem to the sensor along the power line using a power-line communication protocol; and receiving sensor readings of the sensor at the modem from the power line.
- Example 18 is the method of example 17, wherein the sensor readings comprise an indication of temperature of the body of water, pressure at the sensor, pH of the body of water, oxidation reduction potential (ORP) of the body of water, conductivity of the body of water, stray current in the body of water, levels of dissolved oxygen (O2) or other gasses in the body of water, turbidity of the body of water, hardness of the body of water, alkalinity of the body of water, chlorine level in the body of water, phosphate level in the body of water, lumens level in the body of water, chloramines/halogenated disinfection by-products in the body of water, or any combination thereof.
- Example 19 is the method of examples 17-18, further comprising: transmitting electrical power from the transformer to a lighting device along a second power line, wherein the lighting device is in contact with the body of water; and transmitting the data communications from the modem to the lighting device along the second power line using the power-line communication protocol to control the lighting device.
- Example 20 is the method of examples 17-19, further comprising: demodulating the sensor readings from the power line using the power-line communication protocol; and distributing demodulated sensor readings to controllers of a pool or spa system for use in controlling processes of the pool or spa system.
- Example 21 is a sensor system for a swimming pool or spa that communicates with a lighting system or a sensor system using a power-line communication technique.
- Example 22 is a pool or spa control system, comprising: a sensor system located in or adjacent a main body of water and having wired electrical connections with a transformer and a modem assembly.
- Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the presently disclosed subject matter have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present disclosure is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications may be made without departing from the scope of the claims below.
Claims (13)
1. A pool or spa control system comprising:
a. a sensor system comprising one or more sensors for obtaining data relating to conditions of a swimming pool or spa;
b. a lighting system comprising one or more lighting devices, the one or more lighting devices comprising a light output with a controllable characteristic; and
c. a controller in communication with the sensor system and the lighting system, wherein the controller is configured to provide a control signal to the lighting system for controlling the one or more lighting devices based on the data obtained from the one or more sensors.
2. The pool or spa control system of claim 1 , wherein the conditions of the swimming pool or spa comprise water conditions within the swimming pool or spa.
3. The pool or spa control system of claim 2 , wherein the sensor system is configured to provide an indication of temperature of the body of water, pressure at the sensor system, pH of the body of water, oxidation reduction potential (ORP) of the body of water, conductivity of the body of water, stray current in the body of water, levels of dissolved oxygen (O2) or other gasses in the body of water, turbidity of the body of water, hardness of the body of water, alkalinity of the body of water, chlorine level in the body of water, phosphate level in the body of water, lumens level in the body of water, chloramines/halogenated disinfection by-products in the body of water, or any combination thereof.
4. The pool or spa control system of claim 1 , wherein the controllable characteristic of the light output comprises at least one of a color, lumens, or activation status.
5. The pool or spa control system of claim 1 , wherein the controller is further configured to communicate data from the sensors to an application on a remote user device.
6. The pool or spa control system of claim 1 , wherein the controller is further configured to send a control signal to equipment of the swimming pool or spa based on the data obtained from the one or more sensors.
7. A method of controlling a swimming pool or spa control system, the method comprising:
a. receiving data relating to conditions of a swimming pool or spa from one or more sensors of a sensor system;
b. providing a control signal to a lighting system comprising one or more lighting devices for controlling the one or more lighting devices based on the received data from the one or more sensors, the one or more lighting devices comprising a light output with a controllable characteristic.
8. The method of claim 7 , wherein the data from the one or more sensors comprises data relating to water conditions within the swimming pool or spa.
9. The method of claim 8 , wherein the data relating to water conditions comprises at least one of water temperature, pressure at the sensor system, water pH, water oxidation reduction potential (ORP), water conductivity, stray current in the swimming pool or spa, levels of dissolved oxygen (O2) or other gasses in the swimming pool or spa, turbidity of the swimming pool or spa, water hardness, water alkalinity, chlorine level, phosphate level, lumens level, chloramines/halogenated disinfection by-products level, or any combination thereof.
10. The method of claim 7 , wherein providing the control signal comprises controlling the controllable characteristic of the light output.
11. The method of claim 10 , wherein the controllable characteristic comprises at least one of a color, lumens, or activation status.
12. The method of claim 7 , further comprising communicating the data received from the sensors to an application on a remote user device.
13. The method of claim 7 , further comprising sending a control signal to equipment of the swimming pool or spa based on the data obtained from the one or more sensors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/128,011 US20230236576A1 (en) | 2018-11-12 | 2023-03-29 | Sensor systems principally for swimming pools and spas |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862758854P | 2018-11-12 | 2018-11-12 | |
US16/680,381 US20200150633A1 (en) | 2018-11-12 | 2019-11-11 | Sensor systems principally for swimming pools and spas |
US18/128,011 US20230236576A1 (en) | 2018-11-12 | 2023-03-29 | Sensor systems principally for swimming pools and spas |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/680,381 Continuation US20200150633A1 (en) | 2018-11-12 | 2019-11-11 | Sensor systems principally for swimming pools and spas |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230236576A1 true US20230236576A1 (en) | 2023-07-27 |
Family
ID=69160187
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/680,381 Pending US20200150633A1 (en) | 2018-11-12 | 2019-11-11 | Sensor systems principally for swimming pools and spas |
US18/128,011 Pending US20230236576A1 (en) | 2018-11-12 | 2023-03-29 | Sensor systems principally for swimming pools and spas |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/680,381 Pending US20200150633A1 (en) | 2018-11-12 | 2019-11-11 | Sensor systems principally for swimming pools and spas |
Country Status (4)
Country | Link |
---|---|
US (2) | US20200150633A1 (en) |
EP (1) | EP3861639A2 (en) |
AU (1) | AU2019380358A1 (en) |
WO (1) | WO2020102115A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9031702B2 (en) | 2013-03-15 | 2015-05-12 | Hayward Industries, Inc. | Modular pool/spa control system |
US11720085B2 (en) | 2016-01-22 | 2023-08-08 | Hayward Industries, Inc. | Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment |
US20170212536A1 (en) | 2016-01-22 | 2017-07-27 | Hayward Industries, Inc. | Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment |
US10925804B2 (en) | 2017-10-04 | 2021-02-23 | Sundance Spas, Inc. | Remote spa control system |
AU2022386176A1 (en) * | 2021-11-11 | 2024-05-02 | Zodiac Pool Systems Llc | Pool and spa operational parameter sharing via network connections |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2201922B2 (en) | 2002-09-06 | 2006-07-01 | Sacopa, S.A.U | LIGHTING SYSTEM FOR POOLS FOR POOLS. |
US7967963B2 (en) * | 2005-04-08 | 2011-06-28 | Hach Lange Gmbh | Wastewater analysis sensor cartridge |
EP1991332A4 (en) * | 2006-02-09 | 2012-08-08 | Hayward Ind Inc | Programmable aerator cooling system |
ES2691029T3 (en) * | 2006-11-28 | 2018-11-23 | Hayward Industries, Inc. | Programmable underwater lighting system |
US8104110B2 (en) * | 2007-01-12 | 2012-01-31 | Gecko Alliance Group Inc. | Spa system with flow control feature |
WO2011137458A1 (en) * | 2010-04-30 | 2011-11-03 | Icontrol Networks, Inc. | Power and data solution for remote low-power devices |
DK3025428T3 (en) * | 2013-07-25 | 2018-12-10 | Ecole Polytechnique Fed Lausanne Epfl | DISTRIBUTED INTELLIGENT MODULE SYSTEM USING POWER CONNECTION COMMUNICATION FOR ELECTRIC APPLIANCE AUTOMATION |
US9267327B2 (en) * | 2014-06-17 | 2016-02-23 | Crestron Electronics Inc. | Shading control network using a control network |
US9807855B2 (en) * | 2015-12-07 | 2017-10-31 | Pentair Water Pool And Spa, Inc. | Systems and methods for controlling aquatic lighting using power line communication |
US20180224822A1 (en) * | 2017-01-23 | 2018-08-09 | Hayward Industries, Inc. | Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment |
DK179560B1 (en) * | 2017-05-16 | 2019-02-18 | Apple Inc. | Far-field extension for digital assistant services |
US10825319B1 (en) * | 2017-09-05 | 2020-11-03 | Objectvideo Labs, Llc | Underwater video monitoring for swimming pool |
-
2019
- 2019-11-11 AU AU2019380358A patent/AU2019380358A1/en active Pending
- 2019-11-11 WO PCT/US2019/060799 patent/WO2020102115A2/en unknown
- 2019-11-11 EP EP19836153.7A patent/EP3861639A2/en active Pending
- 2019-11-11 US US16/680,381 patent/US20200150633A1/en active Pending
-
2023
- 2023-03-29 US US18/128,011 patent/US20230236576A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2020102115A2 (en) | 2020-05-22 |
EP3861639A2 (en) | 2021-08-11 |
WO2020102115A3 (en) | 2020-07-30 |
US20200150633A1 (en) | 2020-05-14 |
AU2019380358A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230236576A1 (en) | Sensor systems principally for swimming pools and spas | |
US11160154B2 (en) | Commissioning load control systems | |
CN110462974B (en) | Wireless power transmitter, wireless power receiving electronic device, and operating method thereof | |
KR100755144B1 (en) | Refrigerator for wireless data communication with sensor for detecting condition of stored food | |
US9693512B2 (en) | Wireless sensor systems for hydroponics | |
US20140303810A1 (en) | Systems and methods for wirelessly communicating with automatic swimming pool cleaners | |
US8180489B2 (en) | Communication system for a water softener system | |
US20140131459A1 (en) | Remote control system for controlling operation of a fan assembly | |
US20090009093A1 (en) | Switchable induction light | |
WO2010077991A4 (en) | Inductive signal transfer system for computing devices | |
KR20140112357A (en) | Wireless power supply system, power transmission controlling apparatus and power reception controlling apparatus | |
US20130068631A1 (en) | Method and apparatus for sanitizing water in a bathing unit and control interface for use in connection with same | |
US20230108168A1 (en) | Systems and methods of displaying temperature on equipment such as automatic swimming pool cleaners and associated components | |
CN105978044A (en) | Electronic circuit, field device comprising at least one such electronic circuit and method | |
RU2009136491A (en) | ELECTRIC ENERGY CONSUMPTION MANAGEMENT SYSTEM AND VALVE MANAGEMENT SYSTEM | |
US20220312160A1 (en) | Concepts and methods for pool system communication between connectable devices | |
CN105527880A (en) | Seawater intelligent monitoring and control system | |
US20190095378A1 (en) | Select communications and data aspects of pool and spa equipment such as salt-water chlorinators | |
US20240068258A1 (en) | Automatic swimming pool cleaner with water sensing | |
US20230162589A1 (en) | System for and method of remotely monitoring chemistry of recreational water facilities | |
US20230286837A1 (en) | Chlorinator synchronous rectification | |
KR200265164Y1 (en) | Wireless room controller for automatic hot water distributor | |
US20240093521A1 (en) | Docking system for automatic swimming pool cleaner | |
US20230042259A1 (en) | System and a method for changing color of pool lights | |
CN116916999A (en) | Method for regulating TETS power transfer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: ZODIAC POOL SYSTEMS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOLDMAN, DAVID;HENG, HWA;SIGNING DATES FROM 20190225 TO 20190226;REEL/FRAME:064250/0129 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |