US20230229206A1 - Heater apparatus-integrated peripheral component interconnect card for a computing device - Google Patents

Heater apparatus-integrated peripheral component interconnect card for a computing device Download PDF

Info

Publication number
US20230229206A1
US20230229206A1 US17/576,658 US202217576658A US2023229206A1 US 20230229206 A1 US20230229206 A1 US 20230229206A1 US 202217576658 A US202217576658 A US 202217576658A US 2023229206 A1 US2023229206 A1 US 2023229206A1
Authority
US
United States
Prior art keywords
heater
component
computing device
pci card
affixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/576,658
Other versions
US11687130B1 (en
Inventor
Eric Michael TUNKS
John Randolph Stuewe
Ayedin Nikazm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dell Products LP
Original Assignee
Dell Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dell Products LP filed Critical Dell Products LP
Priority to US17/576,658 priority Critical patent/US11687130B1/en
Assigned to DELL PRODUCTS L.P. reassignment DELL PRODUCTS L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NIKAZM, AYEDIN, TUNKS, ERIC MICHAEL, STUEWE, JOHN RANDOLPH
Application granted granted Critical
Publication of US11687130B1 publication Critical patent/US11687130B1/en
Publication of US20230229206A1 publication Critical patent/US20230229206A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0212Printed circuits or mounted components having integral heating means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • G06F1/185Mounting of expansion boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1487Blade assemblies, e.g. blade cases or inner arrangements within a blade
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means

Definitions

  • Computing devices may perform services.
  • the computing devices may include hardware components and software components.
  • the software components may utilize the hardware components to provide the services.
  • the invention in general, in one aspect, relates to a computing device.
  • the computing device includes a peripheral component interconnect (PCI) card and a heater apparatus.
  • the heater apparatus is located proximate to the PCI card and configured to heat the PCI card.
  • the invention in general, in one aspect, relates to an information handling system including a cabinet housing a plurality of computing devices.
  • Each computing device includes a peripheral component interconnect (PCI) card and a heater apparatus.
  • the heater apparatus is located proximate to the PCI card and configured to heat the PCI card.
  • PCI peripheral component interconnect
  • the invention relates to a method for heating a peripheral component interconnect (PCI) card in a computing device.
  • the method for heating the PCI card in the computing device may include determining a heating condition of the computing device; in response to determination, initiating heating of the PCI card using a heater component that is parallel to the PCI card, wherein the heater component is proximate to a first side of the PCI card.
  • PCI peripheral component interconnect
  • FIG. 1 shows a diagram of an information handling system in accordance with one or more embodiments of the invention.
  • FIG. 2 shows a diagram of a computing device in accordance with one or more embodiments of the invention.
  • FIG. 3.1 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • FIG. 3.2 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • FIG. 3.3 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • any component described with regard to a figure in various embodiments of the invention, may be equivalent to one or more like-named components described with regard to any other figure.
  • descriptions of these components will not be repeated with regard to each figure.
  • each and every embodiment of the components of each figure is incorporated by reference and assumed to be optionally present within every other figure having one or more like-named components.
  • any description of the components of a figure is to be interpreted as an optional embodiment, which may be implemented in addition to, in conjunction with, or in place of the embodiments described with regard to a corresponding like-named component in any other figure.
  • ordinal numbers e.g., first, second, third, etc.
  • an element i.e., any noun in the application.
  • the use of ordinal numbers is not to imply or create any particular ordering of the elements nor to limit any element to being only a single element unless expressly disclosed, such as by the use of the terms “before”, “after”, “single”, and other such terminology. Rather, the use of ordinal numbers is to distinguish between the elements.
  • a first element is distinct from a second element, and the first element may encompass more than one element and succeed (or precede) the second element in an ordering of elements.
  • operatively connected means that there exists between elements/components/devices a direct or indirect connection that allows the elements to interact with one another in some way.
  • operatively connected may refer to any direct (e.g., wired directly between two devices or components) or indirect (e.g., wired and/or wireless connections between any number of devices or components connecting the operatively connected devices) connection.
  • any path through which information and/or power may travel may be considered an operative connection.
  • Computing devices may include any number of hardware components that facilitate providing the services of the computing devices.
  • the hardware components may include, for example, processors, non-persistent storage drives, persistent storage drives, circuit cards that interconnect these components, etc.
  • computing devices might be deployed in environments that result in the temperature of the computing devices being outside of their designed operating range. For example, the computing devices may be designed to operate at temperatures above 0° C. When the computing devices are deployed to harsh environmental conditions (e.g., -40° C. - 60° C.), the computing devices may not operate properly and, in certain scenarios, may be damaged.
  • embodiments of the invention provide a heating mechanism to heat a peripheral component interconnect (PCI) card(s) in a computing device to a temperature that is within its designed operating range. More specifically, embodiments of the invention include a heater apparatus that is located proximate to the PCI card. The positioning of the heater apparatus enables targeted heating of the PCI card without taking up valuable space within the computing device.
  • PCI peripheral component interconnect
  • FIG. 1 shows a diagram of an information handling system ( 100 ) in accordance with one or more embodiments of the invention.
  • the system may include a cabinet ( 110 ) and any number of computing devices (e.g., 120 ).
  • the cabinet ( 110 ) may be a mechanical structure that enables computing devices (e.g., 120 ) to be positioned with respect to one another.
  • the cabinet ( 110 ) may be a rack mountable enclosure that enables the computing devices (e.g., 120 ) to be disposed within it.
  • the cabinet ( 110 ) may be implemented as other types of structures adapted to house, position, orient, and/or otherwise physically, mechanically, electrically, and/or thermally manage the computing devices (e.g., 120 ). By managing the computing devices (e.g., 120 ), the cabinet ( 110 ) may enable multiple computing devices to be densely packed in a space without negatively impacting the operation of the information handling system ( 100 ).
  • a computing device may be a mechanical structure for housing components of the information handling system ( 100 ).
  • the computing device e.g., 120
  • the computing device may be implemented as a rack mountable enclosure for housing components of the information handling system.
  • the computing device may be adapted to be disposed within the cabinet ( 110 ) and/or utilize services provided by the cabinet ( 110 ) and/or other devices.
  • the computing device may utilize computing device resources provided by hardware components.
  • the hardware components may include, for example, processors, non-persistent storage drives, a printed circuited board(s), persistent storage drives, special purpose hardware, and/or other types of physical components that contribute to the operation of the computing device.
  • FIG. 2 shows a diagram of a computing device ( 200 ) in accordance with one or more embodiments of the invention.
  • the computing device includes six sides (i.e., top, bottom, right, left, front, and back), where air drawn into from the frontside of the computing device and expelled from the backside of the computing device (airflow direction is shown with an arrow).
  • air incoming from the frontside of the computing device is cooler than air outgoing from the backside of the computing device.
  • the computing device ( 200 ) may utilize computing device resources provided by a number of hardware components housed within the computing device.
  • the number of hardware components may include, for example, persistent storage drives (not shown), non-persistent storage drives (not shown), processors (not shown), peripheral component interconnects (not shown), a printed circuit board (not shown), and/or other types of physical components that contribute to the operation of the computing device ( 200 ).
  • Some examples of the hardware components are shown in FIGS. 3.1 - 3.3 , but the examples of the hardware components are not limited to those shown in FIGS. 3.1 - 3.3 .
  • one or more of the hardware components may be omitted or additional hardware components may be added based on the services provided by the computing device.
  • FIGS. 3.1 and 3.2 show different embodiments to employ a heater apparatus-integrated PCI card in a computing device in accordance with one or more embodiments disclosed below.
  • FIG. 3.1 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • the side-view of the portion of the computing device includes a heater apparatus (e.g., 300 A) in which the heater apparatus includes a heater component (e.g., 305 A) and a number of insulator components (e.g., 310 A, 310 B), a PCI card (e.g., 320 A), a PCI card connector (e.g., 325 A), a heat sink (e.g., 330 A), a printed circuit board ( 340 ), a frame ( 345 ), a number of pins (e.g., 350 A), and a number of holes (e.g., 355 A).
  • a heater apparatus e.g., 300 A
  • the heater apparatus includes a heater component (e.g., 305 A) and a number of insulator components (e.g., 310 A, 310 B),
  • the PCI card (e.g., 320 A) is oriented orthogonally to the printed circuit board ( 340 ) and is connected to the printed circuit board via the PCI card connector (e.g., 325 A).
  • the heater component (e.g., 305 A) is parallel to the PCI card, in which the heater apparatus (e.g., 300 A) is located proximate to the PCI card (e.g., 320 A) and is configured to heat the PCI card.
  • the base of the heat sink (e.g., 330 A) is affixed to the PCI card (e.g., 320 A).
  • any excess thermal energy may leave the PCI card through the heat sink (e.g., 330 A). In this manner, the surface area of the PCI card will be enlarged for faster thermal energy dissipation when necessary.
  • FIG. 3.1 includes the heat sink (e.g., 330 A), there may be embodiments of the invention that do not include the heat sink without departing from the invention.
  • the heater apparatus (e.g., 300 A) is affixed to the frame ( 345 ) and the corresponding parts of the frame are affixed to the printed circuit board ( 340 ) via the number of pins (e.g., 350 A). After applying an inward force (shown with an arrow), the number of pins passes through the number of holes (e.g., 355 A) to secure the frame ( 345 ) to the printed circuit board ( 340 ). While FIG. 3.1 shows a set of pins, any number of pins, any configuration of pins, and any placement of pins may be used to secure the frame ( 345 ) to the printed circuit board ( 340 ) without departing from the invention. Further, other mechanical mechanisms, e.g., screws, for affixing the heater apparatus to the frame may be used without departing from the invention.
  • the heater component (e.g., 305 A) may be made of polyimide film, silicon rubber, any other material, and/or any combination thereof that enables the heater component to perform the functions described herein.
  • the heater component (e.g., 305 A) is disposed between the number of insulator components (e.g., 310 A, 310 B).
  • the heater apparatus (e.g., 300 A) may have sufficient thickness and compliance such that it fits within the narrow gaps above and below the PCI card (e.g., 320 A).
  • the insulator component e.g., 310 A, 310 B, provides electrical insulation characteristics such that it prevents shorting due to any sharp, protruding features on the PCI card.
  • the insulator component may be made of rigid, flame retardant, and electrically insulating polypropylene material, any type of electrical insulation material, and/or any combination thereof that enables the insulator component to perform the functions described herein.
  • FIG. 3.2 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • the side-view of the portion of the computing device includes a heater apparatus (not shown) in which the heater apparatus includes a heater component (e.g., 305 A) and a number of insulator components (e.g., 310 A, 310 B), a PCI card (e.g., 320 A), a PCI card connector (e.g., 325 A), a heat sink (e.g., 330 A), a printed circuit board ( 340 ), a frame ( 345 ), a number of pins (e.g., 350 A), a number of holes (e.g., 360 A), a PCI card riser ( 365 ), and a PCI card cage ( 370 ).
  • a heater apparatus includes a heater component (e.g., 305 A) and a number of insulator components (e.g., 310 A,
  • the PCI card (e.g., 320 A) is oriented parallel to the printed circuit board ( 340 ) and is connected to the PCI card riser ( 365 ) via the PCI card connector (e.g., 325 A).
  • the heater apparatus is affixed to the frame ( 345 ) and the corresponding parts of the frame are affixed to the PCI card riser ( 365 ) via the number of pins (e.g., 350 A). After applying an inward force (shown with an arrow), the number of pins passes through the number of holes (e.g., 350 A) to secure the frame ( 345 ) to the PCI card riser ( 365 ). While FIG.
  • 3.2 shows a set of pins, any number of pins, any configuration of pins, and any placement of pins maybe used to secure the frame ( 345 ) to the PCI card riser ( 365 ) without departing from the invention. Further, other mechanical mechanisms, e.g., screws, for affixing the frame to the PCI card riser may be used without departing from the invention.
  • the PCI card cage ( 370 ) provides additional structural retention and/or protection to the PCI card riser ( 365 ) and the hardware components that are affixed to it (e.g., the PCI card (e.g., 320 A), the heater apparatus, the heat sink (e.g., 330 A), etc.).
  • the PCI card cage ( 370 ) may be made of metallic film, any other rigid material, and/or any combination thereof that enables the PCI card cage to perform the functions described herein.
  • the PCI card riser ( 365 ) and the hardware components that are affixed to it can also be protected by the topside of the computing device (e.g., 200 , FIG. 2 ) without departing from the invention.
  • FIG. 3.3 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • the side-view of the portion of the computing device includes a heater apparatus (not shown) in which the heater apparatus includes a heater component (e.g., 305 A) and a number of insulator components (e.g., 310 A, 310 B), a PCI card (e.g., 320 A), a PCI card connector (e.g., 325 A), a heat sink (e.g., 330 A), a printed circuit board ( 340 ), a frame ( 345 ), a number of pins (e.g., 350 A), a number of holes (e.g., 360 A), a PCI card riser ( 365 ), a PCI card cage ( 370 ), a heater component connector ( 375 ), a heater control component ( 380 ), a plurality temperature
  • the heater control component ( 380 ) is configured to control the heater component (e.g., 305 A) and it may provide heating control services.
  • the heating control services may include (i) obtaining information regarding the temperature of one or more hardware components within the computing device (e.g., 200 , FIG.
  • the information may be obtained through the plurality of temperature sensors (e.g., 385 A) in the computing device, (ii) determining a heating condition, e.g., determining whether the temperature within the computing device is below the appropriate operating temperature range (e.g., whether the temperature is below 0° C.), (iii) initiating a heating process to bring the PCI card(s) to their designed operating temperature, and (iv) preventing damage (e.g., thermal runaway) to the heater component (e.g., 305 A) in the event of overheating.
  • a heating condition e.g., determining whether the temperature within the computing device is below the appropriate operating temperature range (e.g., whether the temperature is below 0° C.)
  • damage e.g., thermal runaway
  • the heater control component ( 380 ) may be implemented as a logical entity (e.g., a program executing using a number of printed circuit board components (not shown)).
  • the computing device e.g., 200 , FIG. 2
  • the computing device may host a program that provides the functionality of the heater control component.
  • one end of the plurality of temperature sensors (e.g., 385 A) is operatively connected to the heater control component ( 380 ), while the other end of the plurality of temperature sensors is operatively connected to at least one hardware component (e.g., the PCI card (e.g., 320 A), the PCI card riser ( 365 ), etc.) within the computing device (e.g., 200 , FIG. 2 ).
  • the PCI card e.g., 320 A
  • the heater control component ( 380 ) is configured to determine whether to activate the heater component (e.g., 305 A).
  • the heater control component ( 380 ) uses input from the plurality of temperature sensors (e.g., 385 A) to determine whether to activate the heater component (e.g., 305 A).
  • the heater component connector ( 375 ) provides power to the heater component (e.g., 305 A).
  • heater component connector ( 375 ) and the heater control component ( 380 ) are shown that they are located on top of the printed circuit board ( 340 ), they may be placed at any location within the computing device without departing from the invention.
  • one end of the plurality of heater component wires is operatively connected to the heater component connector ( 375 ), while the other end of the plurality of heater component wires (e.g., 390 A) is operatively connected to the heater component (e.g., 305 A).
  • FIG. 3.3 shows a power connector mechanism
  • any configuration of power connector mechanism at any location within the computing device may be used to provide the required power to the heater component to initiate the heating process without departing from the invention.
  • the heater component e.g., 305 A
  • the heater component may be supplied with power, directly or indirectly (e.g., via the heater component connector, the printed circuit board, etc.), via one or more power supplies (not shown) within the computing device.

Abstract

A computing device includes a peripheral component interconnect (PCI) card and a heater apparatus. The heater apparatus is located proximate to the PCI card and configured to heat the PCI card.

Description

    BACKGROUND
  • Computing devices may perform services. In order to provide the services, the computing devices may include hardware components and software components. The software components may utilize the hardware components to provide the services.
  • SUMMARY
  • In general, in one aspect, the invention relates to a computing device. The computing device includes a peripheral component interconnect (PCI) card and a heater apparatus. The heater apparatus is located proximate to the PCI card and configured to heat the PCI card.
  • In general, in one aspect, the invention relates to an information handling system including a cabinet housing a plurality of computing devices. Each computing device includes a peripheral component interconnect (PCI) card and a heater apparatus. The heater apparatus is located proximate to the PCI card and configured to heat the PCI card.
  • In general, in one aspect, the invention relates to a method for heating a peripheral component interconnect (PCI) card in a computing device. The method for heating the PCI card in the computing device may include determining a heating condition of the computing device; in response to determination, initiating heating of the PCI card using a heater component that is parallel to the PCI card, wherein the heater component is proximate to a first side of the PCI card.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Certain embodiments of the invention will be described with reference to the accompanying drawings. However, the accompanying drawings illustrate only certain aspects or implementations of the invention by way of example, and are not meant to limit the scope of the claims.
  • FIG. 1 shows a diagram of an information handling system in accordance with one or more embodiments of the invention.
  • FIG. 2 shows a diagram of a computing device in accordance with one or more embodiments of the invention.
  • FIG. 3.1 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • FIG. 3.2 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • FIG. 3.3 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention.
  • DETAILED DESCRIPTION
  • Specific embodiments will now be described with reference to the accompanying figures. In the following description, numerous details are set forth as examples of the invention. It will be understood by those skilled in the art that one or more embodiments of the present invention may be practiced without these specific details, and that numerous variations or modifications may be possible without departing from the scope of the invention. Certain details known to those of ordinary skill in the art are omitted to avoid obscuring the description.
  • In the following description of the figures, any component described with regard to a figure, in various embodiments of the invention, may be equivalent to one or more like-named components described with regard to any other figure. For brevity, descriptions of these components will not be repeated with regard to each figure. Thus, each and every embodiment of the components of each figure is incorporated by reference and assumed to be optionally present within every other figure having one or more like-named components. Additionally, in accordance with various embodiments of the invention, any description of the components of a figure is to be interpreted as an optional embodiment, which may be implemented in addition to, in conjunction with, or in place of the embodiments described with regard to a corresponding like-named component in any other figure.
  • Throughout the application, ordinal numbers (e.g., first, second, third, etc.) may be used as an adjective for an element (i.e., any noun in the application). The use of ordinal numbers is not to imply or create any particular ordering of the elements nor to limit any element to being only a single element unless expressly disclosed, such as by the use of the terms “before”, “after”, “single”, and other such terminology. Rather, the use of ordinal numbers is to distinguish between the elements. By way of an example, a first element is distinct from a second element, and the first element may encompass more than one element and succeed (or precede) the second element in an ordering of elements.
  • As used herein, the phrase operatively connected, or operative connection, means that there exists between elements/components/devices a direct or indirect connection that allows the elements to interact with one another in some way. For example, the phrase ‘operatively connected’ may refer to any direct (e.g., wired directly between two devices or components) or indirect (e.g., wired and/or wireless connections between any number of devices or components connecting the operatively connected devices) connection. Thus, any path through which information and/or power may travel may be considered an operative connection.
  • Computing devices may include any number of hardware components that facilitate providing the services of the computing devices. The hardware components may include, for example, processors, non-persistent storage drives, persistent storage drives, circuit cards that interconnect these components, etc. In some cases, computing devices might be deployed in environments that result in the temperature of the computing devices being outside of their designed operating range. For example, the computing devices may be designed to operate at temperatures above 0° C. When the computing devices are deployed to harsh environmental conditions (e.g., -40° C. - 60° C.), the computing devices may not operate properly and, in certain scenarios, may be damaged.
  • To address one or more of the aforementioned issues, embodiments of the invention provide a heating mechanism to heat a peripheral component interconnect (PCI) card(s) in a computing device to a temperature that is within its designed operating range. More specifically, embodiments of the invention include a heater apparatus that is located proximate to the PCI card. The positioning of the heater apparatus enables targeted heating of the PCI card without taking up valuable space within the computing device.
  • Various embodiments of the computing device are described below.
  • FIG. 1 shows a diagram of an information handling system (100) in accordance with one or more embodiments of the invention. The system may include a cabinet (110) and any number of computing devices (e.g., 120).
  • The cabinet (110) may be a mechanical structure that enables computing devices (e.g., 120) to be positioned with respect to one another. For example, the cabinet (110) may be a rack mountable enclosure that enables the computing devices (e.g., 120) to be disposed within it. The cabinet (110) may be implemented as other types of structures adapted to house, position, orient, and/or otherwise physically, mechanically, electrically, and/or thermally manage the computing devices (e.g., 120). By managing the computing devices (e.g., 120), the cabinet (110) may enable multiple computing devices to be densely packed in a space without negatively impacting the operation of the information handling system (100).
  • A computing device (e.g., 120) may be a mechanical structure for housing components of the information handling system (100). For example, the computing device (e.g., 120) may be implemented as a rack mountable enclosure for housing components of the information handling system. The computing device (e.g., 120) may be adapted to be disposed within the cabinet (110) and/or utilize services provided by the cabinet (110) and/or other devices.
  • To provide services, the computing device (e.g., 120) may utilize computing device resources provided by hardware components. The hardware components may include, for example, processors, non-persistent storage drives, a printed circuited board(s), persistent storage drives, special purpose hardware, and/or other types of physical components that contribute to the operation of the computing device.
  • Turning now to FIG. 2 , FIG. 2 shows a diagram of a computing device (200) in accordance with one or more embodiments of the invention. In one or more embodiments of the invention, the computing device includes six sides (i.e., top, bottom, right, left, front, and back), where air drawn into from the frontside of the computing device and expelled from the backside of the computing device (airflow direction is shown with an arrow). In general, air incoming from the frontside of the computing device is cooler than air outgoing from the backside of the computing device.
  • In one or more embodiments of the invention, to provide services, the computing device (200) may utilize computing device resources provided by a number of hardware components housed within the computing device. The number of hardware components may include, for example, persistent storage drives (not shown), non-persistent storage drives (not shown), processors (not shown), peripheral component interconnects (not shown), a printed circuit board (not shown), and/or other types of physical components that contribute to the operation of the computing device (200). Some examples of the hardware components are shown in FIGS. 3.1-3.3 , but the examples of the hardware components are not limited to those shown in FIGS. 3.1-3.3 . In other embodiments, one or more of the hardware components may be omitted or additional hardware components may be added based on the services provided by the computing device.
  • FIGS. 3.1 and 3.2 show different embodiments to employ a heater apparatus-integrated PCI card in a computing device in accordance with one or more embodiments disclosed below.
  • Turning now to FIG. 3.1 , FIG. 3.1 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention. In one or more embodiments of the invention, the side-view of the portion of the computing device includes a heater apparatus (e.g., 300A) in which the heater apparatus includes a heater component (e.g., 305A) and a number of insulator components (e.g., 310A, 310B), a PCI card (e.g., 320A), a PCI card connector (e.g., 325A), a heat sink (e.g., 330A), a printed circuit board (340), a frame (345), a number of pins (e.g., 350A), and a number of holes (e.g., 355A).
  • In an embodiment of the invention shown in FIG. 3.1 , the PCI card (e.g., 320A) is oriented orthogonally to the printed circuit board (340) and is connected to the printed circuit board via the PCI card connector (e.g., 325A). The heater component (e.g., 305A) is parallel to the PCI card, in which the heater apparatus (e.g., 300A) is located proximate to the PCI card (e.g., 320A) and is configured to heat the PCI card. Further, the base of the heat sink (e.g., 330A) is affixed to the PCI card (e.g., 320A). While the heater component (e.g., 305A) heats the PCI card, any excess thermal energy may leave the PCI card through the heat sink (e.g., 330A). In this manner, the surface area of the PCI card will be enlarged for faster thermal energy dissipation when necessary.
  • Those skilled in the art will appreciate that while the embodiment of the invention shown in FIG. 3.1 includes the heat sink (e.g., 330A), there may be embodiments of the invention that do not include the heat sink without departing from the invention.
  • In one or more embodiments of the invention, the heater apparatus (e.g., 300A) is affixed to the frame (345) and the corresponding parts of the frame are affixed to the printed circuit board (340) via the number of pins (e.g., 350A). After applying an inward force (shown with an arrow), the number of pins passes through the number of holes (e.g., 355A) to secure the frame (345) to the printed circuit board (340). While FIG. 3.1 shows a set of pins, any number of pins, any configuration of pins, and any placement of pins may be used to secure the frame (345) to the printed circuit board (340) without departing from the invention. Further, other mechanical mechanisms, e.g., screws, for affixing the heater apparatus to the frame may be used without departing from the invention.
  • In one or more embodiments of the invention, the heater component (e.g., 305A) may be made of polyimide film, silicon rubber, any other material, and/or any combination thereof that enables the heater component to perform the functions described herein. In one or more embodiments of the invention, the heater component (e.g., 305A) is disposed between the number of insulator components (e.g., 310A, 310B). Further, the heater apparatus (e.g., 300A) may have sufficient thickness and compliance such that it fits within the narrow gaps above and below the PCI card (e.g., 320A).
  • In one or more embodiments of the invention, the insulator component, e.g., 310A, 310B, provides electrical insulation characteristics such that it prevents shorting due to any sharp, protruding features on the PCI card. In one or more embodiments of the invention, the insulator component may be made of rigid, flame retardant, and electrically insulating polypropylene material, any type of electrical insulation material, and/or any combination thereof that enables the insulator component to perform the functions described herein.
  • Turning now to FIG. 3.2 , FIG. 3.2 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention. In one or more embodiments of the invention, the side-view of the portion of the computing device includes a heater apparatus (not shown) in which the heater apparatus includes a heater component (e.g., 305A) and a number of insulator components (e.g., 310A, 310B), a PCI card (e.g., 320A), a PCI card connector (e.g., 325A), a heat sink (e.g., 330A), a printed circuit board (340), a frame (345), a number of pins (e.g., 350A), a number of holes (e.g., 360A), a PCI card riser (365), and a PCI card cage (370).
  • In one or more embodiments of the invention, the PCI card (e.g., 320A) is oriented parallel to the printed circuit board (340) and is connected to the PCI card riser (365) via the PCI card connector (e.g., 325A). The heater apparatus is affixed to the frame (345) and the corresponding parts of the frame are affixed to the PCI card riser (365) via the number of pins (e.g., 350A). After applying an inward force (shown with an arrow), the number of pins passes through the number of holes (e.g., 350A) to secure the frame (345) to the PCI card riser (365). While FIG. 3.2 shows a set of pins, any number of pins, any configuration of pins, and any placement of pins maybe used to secure the frame (345) to the PCI card riser (365) without departing from the invention. Further, other mechanical mechanisms, e.g., screws, for affixing the frame to the PCI card riser may be used without departing from the invention.
  • In an embodiment of the invention shown in FIG. 3.2 , the PCI card cage (370) provides additional structural retention and/or protection to the PCI card riser (365) and the hardware components that are affixed to it (e.g., the PCI card (e.g., 320A), the heater apparatus, the heat sink (e.g., 330A), etc.). The PCI card cage (370) may be made of metallic film, any other rigid material, and/or any combination thereof that enables the PCI card cage to perform the functions described herein. In one or more embodiments of the invention, the PCI card riser (365) and the hardware components that are affixed to it can also be protected by the topside of the computing device (e.g., 200, FIG. 2 ) without departing from the invention.
  • Turning now to FIG. 3.3 , FIG. 3.3 shows a side-view of a portion of a computing device in accordance with one or more embodiments of the invention. In one or more embodiments of the invention, the side-view of the portion of the computing device includes a heater apparatus (not shown) in which the heater apparatus includes a heater component (e.g., 305A) and a number of insulator components (e.g., 310A, 310B), a PCI card (e.g., 320A), a PCI card connector (e.g., 325A), a heat sink (e.g., 330A), a printed circuit board (340), a frame (345), a number of pins (e.g., 350A), a number of holes (e.g., 360A), a PCI card riser (365), a PCI card cage (370), a heater component connector (375), a heater control component (380), a plurality temperature sensors (e.g., 385A), and a plurality of heater component wires (e.g., 390A).
  • In one or more embodiments of the invention, the heater control component (380) is configured to control the heater component (e.g., 305A) and it may provide heating control services. The heating control services may include (i) obtaining information regarding the temperature of one or more hardware components within the computing device (e.g., 200, FIG. 2 ), where the information may be obtained through the plurality of temperature sensors (e.g., 385A) in the computing device, (ii) determining a heating condition, e.g., determining whether the temperature within the computing device is below the appropriate operating temperature range (e.g., whether the temperature is below 0° C.), (iii) initiating a heating process to bring the PCI card(s) to their designed operating temperature, and (iv) preventing damage (e.g., thermal runaway) to the heater component (e.g., 305A) in the event of overheating.
  • While described as a physical structure, the heater control component (380) may be implemented as a logical entity (e.g., a program executing using a number of printed circuit board components (not shown)). For example, the computing device (e.g., 200, FIG. 2 ) may host a program that provides the functionality of the heater control component.
  • Continuing the discussion of FIG. 3.3 , in an embodiment of the invention shown in FIG. 3.3 , one end of the plurality of temperature sensors (e.g., 385A) is operatively connected to the heater control component (380), while the other end of the plurality of temperature sensors is operatively connected to at least one hardware component (e.g., the PCI card (e.g., 320A), the PCI card riser (365), etc.) within the computing device (e.g., 200, FIG. 2 ).
  • In one or more embodiments of the invention, the heater control component (380) is configured to determine whether to activate the heater component (e.g., 305A). The heater control component (380) uses input from the plurality of temperature sensors (e.g., 385A) to determine whether to activate the heater component (e.g., 305A). When the heater component (e.g., 305A) needs to be activated, the heater component connector (375) provides power to the heater component (e.g., 305A).
  • Those skilled in the art will appreciate that while the heater component connector (375) and the heater control component (380) are shown that they are located on top of the printed circuit board (340), they may be placed at any location within the computing device without departing from the invention.
  • In one or more embodiments of the invention, one end of the plurality of heater component wires (e.g., 390A) is operatively connected to the heater component connector (375), while the other end of the plurality of heater component wires (e.g., 390A) is operatively connected to the heater component (e.g., 305A).
  • While FIG. 3.3 shows a power connector mechanism, any configuration of power connector mechanism at any location within the computing device may be used to provide the required power to the heater component to initiate the heating process without departing from the invention. Those skilled in the art will appreciate that the heater component (e.g., 305A) may be supplied with power, directly or indirectly (e.g., via the heater component connector, the printed circuit board, etc.), via one or more power supplies (not shown) within the computing device.
  • The problems discussed above should be understood as being examples of problems solved by embodiments of the invention disclosed herein and the invention should not be limited to solving the same/similar problems. The disclosed invention is broadly applicable to address a range of problems beyond those discussed herein.
  • While the invention has been described above with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.

Claims (20)

What is claimed is:
1. A computing device, comprising:
a peripheral component interconnect (PCI) card; and
a heater apparatus located proximate to the PCI card and configured to heat the PCI card.
2. The computing device of claim 1, wherein the heater apparatus comprises a heater component that is parallel to the PCI card.
3. The computing device of claim 2, wherein the heater apparatus comprises a second heater component that is parallel to the PCI card, wherein the heater component is proximate to a first side of the PCI card and the second heater component is proximate to a second side of the PCI card.
4. The computing device of claim 2, wherein the heater component is a polyimide film heater.
5. The computing device of claim 1, further comprising:
a printed circuit board, wherein the PCI card is connected to the printed circuit board; and
a frame affixed to the printed circuit board, wherein the heater apparatus is affixed to the frame.
6. The computing device of claim 5, wherein the printed circuit board comprises a heater control component and a heater component connector, wherein the heater control component is configured to determine whether to activate the heater component, wherein the heater component connector is configured to provide power to the heater component when the heater control component determines to activate the heater component.
7. The computing device of claim 6, further comprising:
a plurality of temperature sensors, wherein a first end of the plurality of temperature sensors is affixed to the heater control component and a second end of the plurality of temperature sensors is affixed to at least one hardware component in the computing device, wherein the heater control component uses input from the plurality of temperature sensors to determine whether to activate the heater component.
8. The computing device of claim 6, wherein a first end of a plurality of heater component wires is affixed to the heater component connector and a second end of the plurality of heater component wires is operatively connected to the heater component.
9. The computing device of claim 1, wherein the heater apparatus comprises a first insulator component, a second insulator component, and a heater component, wherein the heater component is disposed between the first insulator component and the second insulator component.
10. The computing device of claim 1, further comprising:
a PCI card riser, wherein the PCI card is connected to the PCI card riser,
a frame, wherein the frame is affixed to the PCI card riser, wherein the heater apparatus is affixed to the frame.
11. An information handling system, comprising:
a cabinet housing a plurality of computing devices;
the plurality of computing devices, wherein each of the computing devices comprises:
a peripheral component interconnect (PCI) card; and
a heater apparatus located proximate to the PCI card and configured to heat the PCI card.
12. The information handling system of claim 11, wherein the heater apparatus comprises a heater component that is parallel to the PCI card.
13. The information handling system of claim 12, wherein the heater apparatus comprises a second heater component that is parallel to the PCI card, wherein the heater component is proximate to a first side of the PCI card and the second heater component is proximate to a second side of the PCI card.
14. The information handling system of claim 12, wherein the heater component is a polyimide film heater.
15. The information handling system of claim 11, wherein each of the computing devices further comprises:
a printed circuit board, wherein the PCI card is connected to the printed circuit board; and
a frame affixed to the printed circuit board, wherein the heater apparatus is affixed to the frame.
16. The information handling system of claim 15, wherein the printed circuit board comprises a heater control component and a heater component connector, wherein the heater control component is configured to determine whether to activate the heater component, wherein the heater component connector is configured to provide power to the heater component when the heater control component determines to activate the heater component.
17. The information handling system of claim 16, wherein each of the computing devices further comprises:
a plurality of temperature sensors, wherein a first end of the plurality of temperature sensors is affixed to the heater control component and a second end of the plurality of temperature sensors is affixed to at least one hardware component in the computing device, wherein the heater control component uses input from the plurality of temperature sensors to determine whether to activate the heater apparatus.
18. The information handling system of claim 16, wherein a first end of a plurality of heater component wires is affixed to the heater component connector and a second end of the plurality of heater component wires is operatively connected to the heater component.
19. A method for heating a peripheral component interconnect (PCI) card in a computing device, comprising:
determining a heating condition of the computing device; and
in response to determination, initiating heating of the PCI card in the computing device using a heater component that is parallel to the PCI card, wherein the heater component is proximate to a first side of the PCI card.
20. The method of claim 19, further comprising:
in response to the determination:
initiating heating of a second heater component that is parallel to the PCI card, wherein the second heater component is proximate to a second side of the PCI card.
US17/576,658 2022-01-14 2022-01-14 Heater apparatus-integrated peripheral component interconnect card for a computing device Active 2042-03-11 US11687130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/576,658 US11687130B1 (en) 2022-01-14 2022-01-14 Heater apparatus-integrated peripheral component interconnect card for a computing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/576,658 US11687130B1 (en) 2022-01-14 2022-01-14 Heater apparatus-integrated peripheral component interconnect card for a computing device

Publications (2)

Publication Number Publication Date
US11687130B1 US11687130B1 (en) 2023-06-27
US20230229206A1 true US20230229206A1 (en) 2023-07-20

Family

ID=86898984

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/576,658 Active 2042-03-11 US11687130B1 (en) 2022-01-14 2022-01-14 Heater apparatus-integrated peripheral component interconnect card for a computing device

Country Status (1)

Country Link
US (1) US11687130B1 (en)

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142444A (en) * 1989-08-31 1992-08-25 Hewlett-Packard Company Demountable tape-automated bonding system
US5930115A (en) * 1996-08-26 1999-07-27 Compaq Computer Corp. Apparatus, method and system for thermal management of a semiconductor device
US20050061477A1 (en) * 2003-09-24 2005-03-24 Heatscape, Inc. Fan sink heat dissipation device
US6937474B2 (en) * 2002-04-06 2005-08-30 Zalman Tech Co. Ltd. Chipset cooling device of video graphic adapter card
US7019974B2 (en) * 2004-07-16 2006-03-28 Hon Hai Precision Industry Co., Ltd. Heat dissipation device
US20060109636A1 (en) * 2004-11-24 2006-05-25 Dell Products L.P. Method and apparatus for mounting a card in an information handling system
US7436667B2 (en) * 2006-03-15 2008-10-14 Asustek Computer, Inc. Electronic device
US7515423B2 (en) * 2006-09-22 2009-04-07 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US7885063B2 (en) * 2007-08-20 2011-02-08 Nvidia Corporation Circuit board heat exchanger carrier system and method
US7933125B2 (en) * 2008-03-24 2011-04-26 Fujitsu Limited Board unit and electronic apparatus
US8004841B2 (en) * 2008-05-06 2011-08-23 International Business Machines Corporation Method and apparatus of water cooling several parallel circuit cards each containing several chip packages
US8018721B2 (en) * 2008-12-10 2011-09-13 Asustek Computer Inc. Electronic device and heat dissipating module thereof
US20110286179A1 (en) * 2010-05-24 2011-11-24 International Business Machines Corporation Memory module connector having memory module cooling structures
US20120033370A1 (en) * 2010-08-06 2012-02-09 Ocz Technology Group Inc. PCIe BUS EXTENSION SYSTEM, METHOD AND INTERFACES THEREFOR
US8208251B2 (en) * 2010-08-12 2012-06-26 Hon Hai Precision Industry Co., Ltd. Electronic device and heat dissipation apparatus of the same
US20130107454A1 (en) * 2011-10-31 2013-05-02 Radisys Corporation Compact network server or appliance
US20130138935A1 (en) * 2010-05-28 2013-05-30 Microsoft Corporation Automatically starting servers at low temperatures
US8570744B2 (en) * 2009-10-30 2013-10-29 Hewlett-Packard Development Company, L.P. Cold plate having blades that interleave with memory modules
US8767403B2 (en) * 2009-10-30 2014-07-01 Hewlett-Packard Development Company, L.P. Frame having frame blades that participate in cooling memory modules
US20150003004A1 (en) * 2013-06-26 2015-01-01 Ioi Technology Corporation Peripheral component interconnect express slot expansion system
US20150177779A1 (en) * 2012-10-17 2015-06-25 James E. Clayton Rigid circuit board with flexibly attached module
US20160033212A1 (en) * 2014-07-29 2016-02-04 Massachusetts Institute Of Technology Enhanced flow boiling heat transfer in microchannels with structured surfaces
US9470567B2 (en) * 2013-04-10 2016-10-18 International Business Machines Corporation Techniques for calibrating an air-flow sensor for adapter slots in a data processing system
US9798902B2 (en) * 2012-10-25 2017-10-24 Mide Technology Corporation Self-powered anti-tamper sensors
US10485113B2 (en) * 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
US10516474B1 (en) * 2018-12-11 2019-12-24 Hamilton Sundstrand Corporation Embedded environmental control and life support system using compact form factor
US10624226B1 (en) * 2018-12-10 2020-04-14 Dell Products, L.P. Printed circuit board retention bracket
US10705578B2 (en) * 2018-11-15 2020-07-07 Hewlett Packard Enterprise Development Lp Heat removal from memory modules
US10734756B2 (en) * 2018-08-10 2020-08-04 Crystal Group Inc. DIMM/expansion card retention method for highly kinematic environments
US10869381B2 (en) * 2018-04-28 2020-12-15 EMC IP Holding Company LLC Heat sink for plug-in card, plug-in card including heat sink, and associated manufacturing method
US11144100B2 (en) * 2020-01-23 2021-10-12 Quanta Computer Inc. Removable BMC carrier module
US11166366B2 (en) * 2020-02-13 2021-11-02 Tri-Tech International Heat sink for a printed circuit board
US11617284B2 (en) * 2017-10-27 2023-03-28 Micron Technology, Inc. Assemblies including heat dispersing elements and related systems and methods

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142444A (en) * 1989-08-31 1992-08-25 Hewlett-Packard Company Demountable tape-automated bonding system
US5930115A (en) * 1996-08-26 1999-07-27 Compaq Computer Corp. Apparatus, method and system for thermal management of a semiconductor device
US6937474B2 (en) * 2002-04-06 2005-08-30 Zalman Tech Co. Ltd. Chipset cooling device of video graphic adapter card
US20050061477A1 (en) * 2003-09-24 2005-03-24 Heatscape, Inc. Fan sink heat dissipation device
US7019974B2 (en) * 2004-07-16 2006-03-28 Hon Hai Precision Industry Co., Ltd. Heat dissipation device
US20060109636A1 (en) * 2004-11-24 2006-05-25 Dell Products L.P. Method and apparatus for mounting a card in an information handling system
US7436667B2 (en) * 2006-03-15 2008-10-14 Asustek Computer, Inc. Electronic device
US7515423B2 (en) * 2006-09-22 2009-04-07 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US7885063B2 (en) * 2007-08-20 2011-02-08 Nvidia Corporation Circuit board heat exchanger carrier system and method
US7933125B2 (en) * 2008-03-24 2011-04-26 Fujitsu Limited Board unit and electronic apparatus
US8004841B2 (en) * 2008-05-06 2011-08-23 International Business Machines Corporation Method and apparatus of water cooling several parallel circuit cards each containing several chip packages
US8018721B2 (en) * 2008-12-10 2011-09-13 Asustek Computer Inc. Electronic device and heat dissipating module thereof
US8767403B2 (en) * 2009-10-30 2014-07-01 Hewlett-Packard Development Company, L.P. Frame having frame blades that participate in cooling memory modules
US8570744B2 (en) * 2009-10-30 2013-10-29 Hewlett-Packard Development Company, L.P. Cold plate having blades that interleave with memory modules
US20110286179A1 (en) * 2010-05-24 2011-11-24 International Business Machines Corporation Memory module connector having memory module cooling structures
US20130138935A1 (en) * 2010-05-28 2013-05-30 Microsoft Corporation Automatically starting servers at low temperatures
US20120033370A1 (en) * 2010-08-06 2012-02-09 Ocz Technology Group Inc. PCIe BUS EXTENSION SYSTEM, METHOD AND INTERFACES THEREFOR
US8208251B2 (en) * 2010-08-12 2012-06-26 Hon Hai Precision Industry Co., Ltd. Electronic device and heat dissipation apparatus of the same
US20130107454A1 (en) * 2011-10-31 2013-05-02 Radisys Corporation Compact network server or appliance
US20150177779A1 (en) * 2012-10-17 2015-06-25 James E. Clayton Rigid circuit board with flexibly attached module
US9798902B2 (en) * 2012-10-25 2017-10-24 Mide Technology Corporation Self-powered anti-tamper sensors
US9470567B2 (en) * 2013-04-10 2016-10-18 International Business Machines Corporation Techniques for calibrating an air-flow sensor for adapter slots in a data processing system
US20150003004A1 (en) * 2013-06-26 2015-01-01 Ioi Technology Corporation Peripheral component interconnect express slot expansion system
US9292055B2 (en) * 2013-06-26 2016-03-22 Ioi Technology Corporation Peripheral component interconnect express slot expansion system
US20160033212A1 (en) * 2014-07-29 2016-02-04 Massachusetts Institute Of Technology Enhanced flow boiling heat transfer in microchannels with structured surfaces
US10485113B2 (en) * 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
US11617284B2 (en) * 2017-10-27 2023-03-28 Micron Technology, Inc. Assemblies including heat dispersing elements and related systems and methods
US10869381B2 (en) * 2018-04-28 2020-12-15 EMC IP Holding Company LLC Heat sink for plug-in card, plug-in card including heat sink, and associated manufacturing method
US10998671B2 (en) * 2018-08-10 2021-05-04 Crystal Group, Inc. DIMM/expansion card retention method for highly kinematic environments
US10734756B2 (en) * 2018-08-10 2020-08-04 Crystal Group Inc. DIMM/expansion card retention method for highly kinematic environments
US10705578B2 (en) * 2018-11-15 2020-07-07 Hewlett Packard Enterprise Development Lp Heat removal from memory modules
US10624226B1 (en) * 2018-12-10 2020-04-14 Dell Products, L.P. Printed circuit board retention bracket
US10516474B1 (en) * 2018-12-11 2019-12-24 Hamilton Sundstrand Corporation Embedded environmental control and life support system using compact form factor
US11144100B2 (en) * 2020-01-23 2021-10-12 Quanta Computer Inc. Removable BMC carrier module
US11166366B2 (en) * 2020-02-13 2021-11-02 Tri-Tech International Heat sink for a printed circuit board
US11570885B2 (en) * 2020-02-13 2023-01-31 Tri-Tech International Heat sink for a printed circuit board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EPEC Engineered Technologies, Polyimide/Kapton Flexible Heaters, https://www.epectec.com/flexible-heaters/polyimide-kapton-heaters.html, 06-2019 (wayback machine dated) *

Also Published As

Publication number Publication date
US11687130B1 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
US10595439B2 (en) Movable heatsink utilizing flexible heat pipes
US7609523B1 (en) Memory module assembly including heat sink attached to integrated circuits by adhesive and clips
US7768785B2 (en) Memory module assembly including heat-sink plates with heat-exchange fins attached to integrated circuits by adhesive
US9823691B2 (en) Semiconductor storage device
JP5797329B2 (en) Electronic computer with cooling system
US20150300750A1 (en) Electronic device and heat dissipation plate
US11687130B1 (en) Heater apparatus-integrated peripheral component interconnect card for a computing device
TWM541686U (en) Electronic device
CN101620459A (en) Electronic equipment and supporting piece thereof
US20230232525A1 (en) Heater apparatus for a computing device
US11925003B2 (en) Heating or cooling apparatus-integrated heat sink for a computing device
US11937396B2 (en) Heater apparatus-integrated top cover for a computing device
US11968808B2 (en) Heater apparatus-integrated bezel for a computing device
JP2016071269A (en) Electronic apparatus and system
US10481658B1 (en) Under-motherboard air cooling plenum
US9231357B1 (en) Mid-plane assembly
US11968807B2 (en) Heater apparatus and air circulation component-integrated bezel for a computing device
US11521908B2 (en) Heater elements for processor devices
US11706900B1 (en) Passive and active environmental management of an information handling system
US20070217164A1 (en) Heat sink mounting device and mounting method, and server blade using the same
US20230229207A1 (en) Internal air circulation component for a computing device
US20230232593A1 (en) Method and system for thermal excursion monitor and control
KR101550437B1 (en) Card type cooler
CN103176563A (en) Electronic device
TWI357802B (en) Fixing cooling unit and electronic device having f

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TUNKS, ERIC MICHAEL;STUEWE, JOHN RANDOLPH;NIKAZM, AYEDIN;SIGNING DATES FROM 20220107 TO 20220113;REEL/FRAME:058759/0755

STCF Information on status: patent grant

Free format text: PATENTED CASE