US20230205482A1 - Stereo Playback Configuration and Control - Google Patents
Stereo Playback Configuration and Control Download PDFInfo
- Publication number
- US20230205482A1 US20230205482A1 US17/822,887 US202217822887A US2023205482A1 US 20230205482 A1 US20230205482 A1 US 20230205482A1 US 202217822887 A US202217822887 A US 202217822887A US 2023205482 A1 US2023205482 A1 US 2023205482A1
- Authority
- US
- United States
- Prior art keywords
- group
- audio information
- computing device
- devices
- play
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 claims description 20
- 230000006870 function Effects 0.000 claims description 18
- 230000006855 networking Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 abstract description 32
- 230000008569 process Effects 0.000 abstract description 23
- 238000012545 processing Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 208000031361 Hiccup Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
- G06F3/165—Management of the audio stream, e.g. setting of volume, audio stream path
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/04842—Selection of displayed objects or displayed text elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
- G06F3/162—Interface to dedicated audio devices, e.g. audio drivers, interface to CODECs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B19/00—Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
- G11B19/02—Control of operating function, e.g. switching from recording to reproducing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/4302—Content synchronisation processes, e.g. decoder synchronisation
- H04N21/4307—Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/436—Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
- H04N21/43615—Interfacing a Home Network, e.g. for connecting the client to a plurality of peripherals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/436—Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
- H04N21/4363—Adapting the video stream to a specific local network, e.g. a Bluetooth® network
- H04N21/43637—Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wireless protocol, e.g. Bluetooth, RF or wireless LAN [IEEE 802.11]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/485—End-user interface for client configuration
- H04N21/4852—End-user interface for client configuration for modifying audio parameters, e.g. switching between mono and stereo
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/81—Monomedia components thereof
- H04N21/8106—Monomedia components thereof involving special audio data, e.g. different tracks for different languages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/81—Monomedia components thereof
- H04N21/8106—Monomedia components thereof involving special audio data, e.g. different tracks for different languages
- H04N21/8113—Monomedia components thereof involving special audio data, e.g. different tracks for different languages comprising music, e.g. song in MP3 format
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R27/00—Public address systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/008—Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
- H04S7/30—Control circuits for electronic adaptation of the sound field
- H04S7/308—Electronic adaptation dependent on speaker or headphone connection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
- G06F16/43—Querying
- G06F16/432—Query formulation
- G06F16/433—Query formulation using audio data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2227/00—Details of public address [PA] systems covered by H04R27/00 but not provided for in any of its subgroups
- H04R2227/005—Audio distribution systems for home, i.e. multi-room use
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2430/00—Signal processing covered by H04R, not provided for in its groups
- H04R2430/01—Aspects of volume control, not necessarily automatic, in sound systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/01—Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/13—Aspects of volume control, not necessarily automatic, in stereophonic sound systems
Definitions
- U.S. application Ser. No. 15/228,812 is a continuation of application Ser. No. 14/806,070, titled “Pair Volume Control,” filed on Jul. 22, 2015, and issued as U.S. Pat. No. 9,766,853 on Sep. 19, 2017; and U.S. application Ser. No. 14/806,070 is a continuation of U.S. application Ser. No. 13/013,740, titled “Controlling and grouping in a multi-zone media system,” filed on Jan. 25, 2011, and issued as U.S. Pat. No. 9,202,509 on Dec. 1, 2015.
- the entire contents of the Ser. No. 17/511,811; 16/297,991; 15/228,812; 14/806,070; and 13/013,740 applications are incorporated herein by reference.
- the invention is generally related to the area of consumer electronics and human-computer interaction.
- the invention is related to method and apparatus for controlling or manipulating a plurality of multimedia players in a multi-zone system.
- An enduring passion for quality audio reproduction or system is continuing to drive demands from users.
- One of the demands includes an audio system in a house in which, for example, one could grill to classic rock on a patio while another one may cook up his/her own music selections in a kitchen. This is all at the same time while a teenager catches a ballgame in a family room, and another one blasts pop in a bedroom.
- the best part of such audio system is that each family member does not need his or her own stereo system—one system gives everyone access to all the music sources.
- a conventional multi-zone audio system that usually includes a number of audio players.
- Each of the audio players has its own amplifier(s) and a set of speakers and typically installed in one place (e.g., a room).
- the audio source In order to play an audio source at one location, the audio source must be provided locally or from a centralized location.
- the multi-zone audio system functions as a collection of many stereo systems, making source sharing difficult.
- the centralized location may include a juke box, many compact discs, an AM or FM radio, tapes, or others.
- a cross-bar type of device is used to prevent the audio source from going to other audio players that may be playing other audio sources.
- the traditional multi-zone audio system is generally either hard-wired or controlled by a pre-configured and pre-programmed controller. While the pre-programmed configuration may be satisfactory in one situation, it may not be suitable for another situation. For example, a person would like to listen to broadcast news from his/her favorite radio station in a bedroom, a bathroom and a den while preparing to go to work in the morning. The same person may wish to listen in the den and the living room to music from a compact disc in the evening. In order to satisfy such requirements, two groups of audio players must be established. In the morning, the audio players in the bedroom, the bathroom and the den need to be grouped for the broadcast news.
- the audio players in the den and the living room are grouped for the music. Over the weekend, the audio players in the den, the living room, and a kitchen are grouped for party music. Because the morning group, the evening group and the weekend group contain the den, it can be difficult for the traditional system to accommodate the requirement of dynamically managing the ad hoc creation and deletion of groups.
- the audio players may be readily grouped.
- the audio players In a traditional multi-zone audio system, the audio players have to be adjusted one at a time, resulting in an inconvenient and non-homogenous audio environment.
- the audio players When the audio players are grouped, there is a need to individually or systematically adjust the sound (e.g., volume) of the audio players.
- the maximum capable sound output e.g., a sound pressure level.
- the present invention pertains to controlling a plurality of multimedia players, or simply players, in groups.
- a mechanism is provided to allow a user to group some of the players according to a theme or scene, where each of the players is located in a zone.
- the players in the scene react in a synchronized manner.
- the players in the scene are all caused to play an audio source or music in a playlist, wherein the audio source may be located anywhere on a network.
- the scene may be activated at any time or a specific time.
- a user may activate the scene at any time so that only some selected zones in an entertainment system facilitate a playback of an audio source.
- the scene may be used as an alarm or buzzer.
- a controlling device also referred to herein as controller
- controller to facilitate a user to select any of the players in the system to form respective groups each of which is set up per a scene.
- commands are preferably sent from the controller to the rest of the members when one of the scenes is executed.
- the commands include parameters pertaining to identifiers of the players, volumes settings, audio source and etc.
- a configurable module is implemented in the controlling device that provides interactive graphic user interface for forming, managing and controlling groups in the system, de-grouping a group or adjusting audio volume of individual players or a group of players.
- individual players may be paired or grouped to stimulate a multi-channel listening environment.
- a user is allowed to activate one of the players to process the data of the audio item, essentially separating the data into individual streams, each of the streams representing a single-sound track and being played back in one of the players, thus creating a multi-channel listening environment with the selected players.
- the present invention may be implemented in many forms including software, hardware or a combination of both.
- the present invention is a method for simulating a multi-channel listening environment, the method comprises: grouping a set of players to simulate the multi-channel listening environment, the players capable of communicating over a data network; designating which of the players to reproduce which one of audio channels in a title selected on a controller with a display screen; causing to process data representing the selected title into streams, each of the streams representing one of audio channels; causing to distribute the streams respectively to the players; and causing the players to play back the streams in synchronization.
- the present invention is directed to a system for a stereo listening environment, the system comprises: a plurality of players, at least a first one and a second one of the players located in one place; and a controller providing a mechanism to allow a user to select the first and second players to be paired to simulate the stereo listening environment, the first player being configured to process data for a selected title into two streams respectively for left and right sound channels, wherein the controller provides a user interface to allow the user to determine which one of the first and second players to reproduce the left sound channel or the right sound channel, the controller is further configured to display a playlist from which the title is selected.
- the present invention is an apparatus for a stereo listening environment.
- the apparatus may be a smart phone with a display screen.
- the apparatus comprises a network interface to facilitate the apparatus to communicate with the Internet; a phone networking interface to facilitate the apparatus to communicate with a cell phone network provided by a service provider; a user interface to enable the network interface and the phone networking interface; a display screen to allow a user to control a plurality of audio players being coupled to an ad-hoc network, select first and second audio players to be paired to simulate a stereo listening environment, both of the first and second audio players being configured to process a data stream for a selected title into two streams respectively for left and right sound channels, wherein the user determines which one of the first and second audio players to reproduce the left sound channel or the right sound channel, and configures to display a playlist from which the title is selected to be played in the stereo listening environment.
- FIG. 1 shows an exemplary configuration in which the present invention may be practiced
- FIG. 2 A shows an exemplary functional block diagram of a player in accordance with the present invention
- FIG. 2 B shows an example of a controller that may be used to remotely control one of more players of FIG. 2 A ;
- FIG. 2 C shows an example of a controller that may be used to remotely control one of more players of FIG. 2 A
- FIG. 2 D shows an exemplary internal functional block diagram of a controller in accordance with one embodiment of the present invention
- FIG. 3 A provides an illustration of one zone scene, where the left column shows the starting zone grouping—all zones are separate, the column on the right shows the effects of grouping the zones to make a group of 3 zones named after “Morning”;
- FIG. 3 B shows that a user defines multiple groups to be gathered at the same time
- FIG. 4 shows an exemplary user interface that may be displayed on a controller or a computer of FIG. 1 ;
- FIG. 5 A shows a user interface to allow a user to form a scene
- FIG. 5 B shows another user interface 520 to allow a user to form a scene
- FIG. 5 C shows a user interface to allow a user to adjust a volume level of the zone players in a zone scene individually or collectively;
- FIG. 6 shows a flowchart or process of providing a player theme or a zone scene for a plurality of players, where one or more of the players are placed in a zone;
- FIG. 7 shows a configuration in which an audio source is played back on two players and, according to one embodiment of the present invention.
- FIG. 8 shows a flowchart or process of grouping a plurality of audio products to play separated sound tracks in synchronization to simulate a multi-channel listening environment.
- FIGS. 9 A- 9 F show example user interfaces for stereo pair configuration.
- references herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention.
- the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
- FIG. 1 shows an exemplary configuration 100 in which the present invention may be practiced.
- the configuration may represent, but not be limited to, a part of a residential home, a business building or a complex with multiple zones.
- multimedia players of which three examples 102 , 104 and 106 are shown as audio devices.
- Each of the audio devices may be installed or provided in one particular area or zone and hence referred to as a zone player herein.
- an audio source or audio sources are in digital format and can be transported or streamed over a data network.
- the configuration 100 represents a home.
- the zone player 102 and 104 may be located in one or two of the bedrooms while the zone player 106 may be installed in a living room. All of the zone players 102 , 104 and 106 are coupled directly or indirectly to a data network 108 .
- a computing device 110 is shown to be coupled on the network 108 . In reality, any other devices such as a home gateway device, a storage device, or an MP3 player may be coupled to the network 108 as well.
- the network 108 may be a wired network, a wireless network or a combination of both.
- all devices including the zone players 102 , 104 and 106 are coupled to the network 108 by wireless means based on an industry standard such as IEEE 802.11.
- all devices including the zone players 102 , 104 and 106 are part of a local area network that communicates with a wide area network (e.g., the Internet).
- all devices including the zone players 102 , 104 and 106 and a controller 412 forms an ad-hoc network and may be specifically named, e.g., a household identifier: Smith Family, to be differentiated from a similar neighboring setup with a household identifier, e.g., Kallai Family.
- the computing device 110 can download audio sources from the Internet and store the downloaded sources locally for sharing with other devices on the Internet or the network 108 .
- the computing device 110 or any of the zone players can also be configured to receive streaming audio.
- the device 112 is configured to receive an analog audio source (e.g., from broadcasting) or retrieve a digital audio source (e.g., from a compact disk).
- the analog audio sources can be converted to digital audio sources.
- the audio source may be shared among the devices on the network 108 .
- Two or more zone players may be grouped together to form a new zone group. Any combinations of zone players and an existing zone group may be grouped together. In one instance, a new zone group is formed by adding one zone player to another zone player or an existing zone group. In one application, there are two zone players in one environment (e.g., a living room in a house). In one embodiment, instead of grouping these two zone players to play back the same audio source, one can configure these two zone players to play two separate sounds in left and right channels. In other words, the stereo effects of a sound are reproduced through these two zone players, one for the left sound and the other for the right sound.
- zone players may be reconfigured as if there are three speakers: left and right speakers and a subwoofer to form a stereo sound.
- the details of the reconfiguring the zone players and operating these audio products will be described below. Similar configurations with multiple channels (greater than 3) also apply.
- the zone player 200 includes a network interface 202 , a processor 204 , a memory 206 , an audio processing circuit 210 , a module 212 , and optionally, an audio amplifier 214 that may be internal or external.
- the network interface 202 facilitates a data flow between a data network (i.e., the data network 108 of FIG. 1 ) and the zone player 200 and typically executes a special set of rules (i.e., a protocol) to send data back and forth.
- a protocol i.e., a protocol
- One of the common protocols used in the Internet is TCP/IP (Transmission Control Protocol/Internet Protocol).
- a network interface manages the assembling of an audio source or file into smaller packets that are to be transmitted over the data network or reassembles received packets into the original source or file.
- the network interface 202 handles the address part of each packet so that it gets to the right destination or intercepts packets destined for the zone player 200 . Accordingly, each of the packets includes an IP-based source address as well as an IP-based destination address.
- the network interface 202 may include one or both of a wireless interface 216 and a wired interface 217 .
- the wireless interface 216 also referred to as a RF interface, provides network interface functions by a wireless means for the zone player 200 to communicate with other devices in accordance with a communication protocol (such as the wireless standard IEEE 802.11a, 802.11b, 802.11g, 802.11n, or 802.15.1).
- the wired interface 217 provides network interface functions by a wired means (e.g., an Ethernet cable).
- a zone player includes both of the interfaces 216 and 217 , and other zone players include only a RF or wired interface. Thus these other zone players communicate with other devices on a network or retrieve audio sources via the zone player.
- the processor 204 is configured to control the operation of other parts in the zone player 200 .
- the memory 206 may be loaded with one or more software modules that can be executed by the processor 204 to achieve desired tasks.
- a software module implementing one embodiment of the present invention is executed, the processor 204 operates in accordance with the software module in reference to a saved zone group configuration characterizing a zone group created by a user, the zone player 200 is caused to retrieve an audio source from another zone player or a device on the network and synchronize the players in the zone group to play back the audio source as desired.
- the memory 206 is used to save one or more saved zone configuration files that may be retrieved for modification at any time.
- a saved zone group configuration file is transmitted to a controller (e.g., the controlling device 140 or 142 of FIG. 1 , a computer, a portable device, or a TV) when a user operates the controlling device.
- the zone group configuration provides an interactive user interface so that various manipulations or control of the zone players may be performed.
- the audio processing circuit 210 resembles most of the circuitry in an audio playback device and includes one or more digital-to-analog converters (DAC), an audio preprocessing part, an audio enhancement part or a digital signal processor and others.
- DAC digital-to-analog converters
- the audio processing circuit 210 may include necessary circuitry to process analog signals as inputs to produce digital signals for sharing with other devices on a network.
- the module 212 may be implemented as a combination of hardware and software. In one embodiment, the module 212 is used to save a scene.
- the audio amplifier 214 is typically an analog circuit that powers the provided analog audio signals to drive one or more speakers.
- the controller 240 may be used to facilitate the control of multi-media applications, automation and others in a complex.
- the controller 240 is configured to facilitate a selection of a plurality of audio sources available on the network, controlling operations of one or more zone players (e.g., the zone player 200 ) through a RF interface corresponding to the RF interface 216 of FIG. 2 A .
- the wireless means is based on an industry standard (e.g., infrared, radio, wireless standard IEEE 802.11a, 802.11b 802.11g, 802.11n, or 802.15.1).
- a picture, if there is any, associated with the audio source may be transmitted from the zone player 200 to the controller 240 for display.
- the controller 240 is used to synchronize more than one zone players by grouping the zone players in a group. In another embodiment, the controller 240 is used to control the volume of each of the zone players in a zone group individually or together.
- the user interface for the controller 240 includes a screen 242 (e.g., a LCD screen) and a set of functional buttons as follows: a “zones” button 244 , a “back” button 246 , a “music” button 248 , a scroll wheel 250 , “ok” button 252 , a set of transport control buttons 254 , a mute button 262 , a volume up/down button 264 , a set of soft buttons 266 corresponding to the labels 268 displayed on the screen 242 .
- a screen 242 e.g., a LCD screen
- a set of functional buttons as follows: a “zones” button 244 , a “back” button 246 , a “music” button 248 , a scroll wheel 250 , “ok” button 252 , a set of transport control buttons 254 , a mute button 262 , a volume up/down button 264 , a set of soft buttons 266 corresponding to the
- the screen 242 displays various screen menus in response to a user's selection.
- the “zones” button 244 activates a zone management screen or “Zone Menu”, which is described in more details below.
- the “back” button 246 may lead to different actions depending on the current screen.
- the “back” button triggers the current screen display to go back to a previous one.
- the ‘back” button negates the user's erroneous selection.
- the “music” button 248 activates a music menu, which allows the selection of an audio source (e.g., a song) to be added to a zone player's music queue for playback.
- an audio source e.g., a song
- the scroll wheel 250 is used for selecting an item within a list, whenever a list is presented on the screen 242 .
- a scroll indicator such as a scroll bar or a scroll arrow is displayed beside the list.
- a user may rotate the scroll wheel 250 to either choose a displayed item or display a hidden item in the list.
- the “ok” button 252 is used to confirm the user selection on the screen 242 .
- buttons 254 which are used to control the effect of the currently playing song.
- the functions of the transport buttons may include play/pause and forward/rewind a song, move forward to a next song track, or move backward to a previous track.
- pressing one of the volume control buttons such as the mute button 262 or the volume up/down button 264 activates a volume panel.
- FIG. 2 C shows an exemplary controller 260 which may correspond to the controlling device 140 or 142 of FIG. 1 .
- the controller 260 is provided with a touch screen that allows a user to interact with the controller, for example, to navigate a playlist of many items, to control operations of one or more players.
- a user may interact with the controller to make a stereo pair and separate a stereo pair.
- other network-enabled portable devices such as iPhone, iPad or a smart phone may be used as a controller to interact or control multiple zone players in an environment.
- an application may be downloaded into a network enabled device.
- Such an application may implement most of the functions discussed above for the controller 240 using a navigating mechanism or touch screen in the device.
- Those skilled in the art shall know a possible modification of such an application when porting it to a new type of portable device given the detailed description herein.
- FIG. 2 D illustrates an internal functional block diagram of an exemplary controller 270 , which may correspond to the controller 240 of FIG. 2 B , a computing device or a smart phone.
- the screen 272 on the controller 270 may be a LCD screen.
- the screen 272 communicates with and is commanded by a screen driver 274 that is controlled by a microcontroller (e.g., a processor) 276 .
- the memory 282 may be loaded with one or more application modules 284 that can be executed by the microcontroller 276 with or without a user input via the user interface 278 to achieve desired tasks.
- an application module is configured to facilitate grouping a number of selected zone players into a zone group and synchronizing the zone players for one audio source.
- an application module is configured to control together the audio sounds (e.g., volume) of the zone players in a zone group.
- the screen driver 274 when the microcontroller 276 executes one or more of the application modules 284 , the screen driver 274 generates control signals to drive the screen 272 to display an application specific user interface accordingly, more of which will be described below.
- the controller 270 includes a network interface 280 referred to as a RF interface 280 that facilitates wireless communication with a zone player via a corresponding RF interface thereof.
- the commands such as volume control and audio playback synchronization are sent via the RF interfaces.
- a saved zone group configuration is transmitted between a zone player and a controller via the RF interfaces.
- the controller 270 may control one or more zone players, such as 102 , 104 and 106 of FIG. 1 . Nevertheless, there may be more than one controllers, each preferably in a zone (e.g., a room) and configured to control any one and all of the zone players.
- a user creates a zone group including at least two zone players from the controller 240 that sends signals or data to one of the zone players.
- the received signals in one zone player can cause other zone players in the group to be synchronized so that all the zone players in the group playback an identical audio source or a list of identical audio sources in a timely synchronized manner such that no audible delays or hiccups could be heard.
- the signals or data of increasing the audio volume for the group are sent to one of the zone players and causes other zone players in the group to be increased together in volume and in scale.
- an application module is loaded in memory 282 for zone group management.
- a predetermined key e.g. the “zones” button 244
- the application module is executed in the microcontroller 276 .
- the input interface 278 coupled to and controlled by the microcontroller 276 receives inputs from a user.
- a “Zone Menu” is then displayed on the screen 272 .
- the user may start grouping zone players into a zone group by activating a “Link Zones” or “Add Zone” soft button, or de-grouping a zone group by activating an “Unlink Zones” or “Drop Zone” button. The detail of the zone group manipulation will be further discussed below.
- the input interface 278 includes a number of function buttons as well as a screen graphical user interface.
- the controller 240 in FIG. 2 B is not the only controlling device that may practice the present invention.
- Other devices that provide the equivalent control functions e.g., a computing device, a hand-held device
- keys or buttons are generally referred to as either the physical buttons or soft buttons, enabling a user to enter a command or data.
- One mechanism for ‘joining’ zone players together for music playback is to link a number of zone players together to form a group.
- a user may manually link each zone player or room one after the other.
- there is a multi-zone system that includes the following zones.
- a set of zones can be dynamically linked together using one command.
- zones can be configured in a particular scene (e.g., morning, afternoon, or garden), where a predefined zone grouping and setting of attributes for the grouping are automatically effectuated.
- FIG. 3 A provides an illustration of one zone scene, where the left column shows the starting zone grouping—all zones are separate, the column on the right shows the effects of grouping the zones to make a group of 3 zones named after “Morning”.
- a Zone Scene can be set to create multiple sets of linked zones. For example, a scene creates 3 separate groups of zones, the downstairs zones would be linked together, the upstairs zones would be linked together in their own group, and the outside zones (in this case the patio) would move into a group of its own.
- a user defines multiple groups to be gathered at the same time. For example: an “Evening Scene” is desired to link the following zones:
- a command is provided and links all zones in one step, if invoked.
- the command is in a form of a zone scene. After linking the appropriate zones, a zone scene command could apply the following attributes:
- a further extension of this embodiment is to trigger a zone scene command as an alarm clock function.
- the zone scene is set to apply at 8:00 am. It could link appropriate zones automatically, set specific music to play and then stop the music after a defined duration.
- a scene set as an alarm clock provides a synchronized alarm, allowing any zones linked in the scene to play a predefined audio (e.g., a favorable song, a predefined playlist) at a specific time or for a specific duration. If, for any reason, the scheduled music failed to be played (e.g., an empty playlist, no connection to a share, failed UPnP, no Internet connection for an Internet Radio station), a backup buzzer will sound. This buzzer will be a sound file that is stored in a zone player.
- FIG. 4 shows an exemplary user interface 400 that may be displayed on a controller 142 or a computer 110 of FIG. 1 .
- the interface 400 shows a list of items that may be set up by a user to cause a scene to function at a specific time.
- the list of items includes “Alarm”, “Time”, “Zone”, “Music”, “Frequency” and “Alarm length”.
- “Alarm” can be set on or off. When “Alarm” is set on, “Time” is a specific time to set off the alarm. “Zone” shows which zone players are being set to play a specified audio at the specific time. “Music” shows what to be played when the specific time arrives.
- “Frequency” allows the user to define a frequency of the alarm.
- “Alarm length” defines how long the audio is to be played. It should be noted that the user interface 400 is provided herein to show some of the functions associated with setting up an alarm. Depending on an exact implementation, other functions, such as time zone, daylight savings, time synchronization, and time/date format for display may also be provided without departing from the present invention.
- each zone player in a scene may be set up for different alarms.
- a “Morning” scene includes three zone players, each in a bedroom, a den, and a dining room. After selecting the scene, the user may set up an alarm for the scene as whole. As a result, each of the zone players will be activated at a specific time.
- FIG. 5 A shows a user interface 500 to allow a user to form a scene.
- the panel on the left shows the available zones in a household.
- the panel on the right shows the zones that have been selected and be grouped as part of this scene.
- Add/Remove buttons may be provided to move zones between the panels, or zones may be dragged along between panels.
- FIG. 5 B shows another user interface 520 to allow a user to form a scene.
- the user interface 520 that may be displayed on a controller or a computing device, lists available zones in a system. A checkbox is provided next to each of the zones so that a user may check in the zones to be associated with the scene.
- FIG. 5 C shows a user interface 510 to allow a user to adjust a volume level of the zone players in a zone scene individually or collectively.
- the ‘Volumes . . . ’ button shown as sliders, other forms are possible) allows the user to affect the volumes of the associated zone players when a zone scene is invoked.
- the zone players can be set to retain whatever volume that they currently have when the scene is invoked. Additionally the user can decide if the volumes should be unmuted or muted when the scene is invoked.
- FIG. 6 shows a flowchart or process 600 of providing a player theme or a zone scene for a plurality of players, where one or more of the players are placed in a zone.
- the process 600 is presented in accordance with one embodiment of the present invention and may be implemented in a module to be located in the memory 282 of FIG. 2 C .
- the process 600 is initiated only when a user decides to proceed with a zone scene at 602 .
- the process 600 then moves to 604 where it allows a user to decide which zone players to be associated with the scene. For example, there are ten players in a household, and the scene is named after “Morning”. The user may be given an interface to select four of the ten players to be associated with the scene.
- the scene is saved.
- the scene may be saved in any one of the members in the scene. In the example of FIG. 1 , the scene is saved in one of the zone players and displayed on the controller 142 .
- a set of data pertaining to the scene includes a plurality of parameters.
- the parameters include, but may not be limited to, identifiers (e.g., IP address) of the associated players and a playlist.
- the parameters may also include volume/tone settings for the associated players in the scene. The user may go back to 602 to configure another scene if desired.
- a user may activate the scene at any time or set up a timer to activate the scene at 610 .
- the process 600 can continue when a saved scene is activated at 610 .
- the process 600 checks the status of the players associated with the scene.
- the status of the players means that each of the players shall be in condition to react in a synchronized manner.
- the interconnections of the players are checked to make sure that the players communicate among themselves and/or with a controller if there is such a controller in the scene.
- commands are executed with the parameters (e.g., pertaining to a playlist and volumes).
- data including the parameters is transported from a member (e.g., a controller) to other members in the scene so that the players are caused to synchronize an operation configured in the scene.
- the operation may cause all players to play back a song in identical or different volumes or to play back a pre-stored file.
- FIG. 7 shows a configuration in which an audio source is played back on two players 702 and 704 , according to one embodiment of the present invention.
- These two players 702 and 704 may be located in one place (e.g., a hall or a room) and are designated to play two sound tracks respectively.
- an audio source has left and right sound channels or tracks, a typical stereo sound.
- a user can group or pair the players 702 and 704 (e.g., through a designated interface) and cause the players 702 and 704 to play the two sound tracks respectively.
- the stereo sound effects can be simulated.
- a controller 706 (e.g., a controller 142 of FIG. 1 or 240 of FIG. 2 B or a portable device) is used to initiate the operation.
- the controller 706 causes a player 702 to retrieve the audio source, provided the audio source is on a network 708 (e.g., the Internet or a local area network).
- the controller 706 may also cause a designated device (e.g., another networked device) to establish a communication session with the player 702 to deliver the requested audio source.
- a designated device e.g., another networked device
- either one or both of the players 702 and 704 shall have an access to the data representing the audio source.
- An appropriate module in the player 702 is activated to process the data.
- the right and left sound tracks are separated.
- One sound track is retained locally in one player and the other sound track is pushed or uploaded to the other device (e.g., via an ad-hoc network).
- the stereo sound effect can be appreciated.
- the time delay may be measured.
- a test message may be initiated from one device to another that is also activated to send back an acknowledgement.
- the time delay in transporting data from one device to another can be measured.
- the time delay will be considered when synchronizing the two players to play back the two separated sound tracks.
- the locally retained sound track data is delayed to start with a latency determined by the time delay.
- such a time delay may be measured from time to time to ensure that the two sound tracks are simultaneously played back. Details of synchronizing operations of two or more players are provided in commonly assigned U.S. application Ser. No. 10/816,217, filed Apr. 1, 2004, entitled “System and Method For Synchronizing Operations Among A Plurality Of Independently Clocked Digital Data Processing Devices” which is hereby incorporated by reference.
- FIG. 8 shows a flowchart or process 800 of grouping a plurality of audio products to play separated sound tracks in synchronization to simulate a multi-channel listening environment.
- the process 800 is presented in accordance with one embodiment of the present invention and may be implemented in a module to be located in the memory 282 of FIG. 2 C .
- a listening environment of stereo sound with left and right channels is described. Those skilled in the art can appreciate that the description can be equally applied to other forms of multi-channel listening environment.
- a plurality of players being controlled by one or more controllers, where these players are disposed in various locations. For example, there are five players in a house, three of them are respectively disposed in three rooms while two players are disposed in a larger room. Accordingly, these two players would be candidates to be paired to simulate a stereo listening environment. In another example, there are four players in a large space, two pairs of the players may be paired to simulate a stereo listening environment, in which two players in one pair can be grouped to play back one (left) sound track and the other two in the other pair can be grouped to play back one (right) sound track.
- two groups of players or two players are decided to be paired at 802 . If no players are paired, the process 800 will not be activated. It is assumed that two players from a group of players being controlled by a controller are selected to be paired at 802 . The process 800 proceeds.
- a user needs to decide which player is to play back which sound track. Depending on the location of the user or listener(s) with respect to the selected players, it is assumed that a player or unit A is chosen to play back a left sound track and another player or unit B is chosen to play back a right sound track.
- a time delay in transporting data between the two units A and B is measured at 806 .
- This time delay may facilitate sound synchronization between the two units as one of the units will receive a processed sound track from the other.
- the user may continue to operate on a controller to select a title (e.g., an audio source or an item from a playlist) for playback on the two units at 810 .
- a title e.g., an audio source or an item from a playlist
- the controller may be configured to cause one of the two units to obtain or stream in the data.
- the controller or unit A initiates a request to a remotely-networked device storing the data. Assuming an authentication procedure, if any, completes successfully, the remote device starts to upload the data to the unit A. Likewise, if the data is locally stored in the unit A, the data can be accessed locally without requesting the same from the network. As the data is being received or accessed in the unit A, a processing module is activated in the unit A to process the data, essentially separating the data into two streams of sound tracks at 814 .
- one of the streams is uploaded from the unit A to unit B via a local network (e.g., the ad-hoc network formed by all the players being controlled by the controller).
- a local network e.g., the ad-hoc network formed by all the players being controlled by the controller.
- the two units are configured to play back the streams respectively, each reproducing the sound of a single sound track at 818 . Together, the two units create a stereo sound listening environment.
- the delay time may be incorporated into the unit A to delay the consumption of the stream by the delay time to synchronize with the unit B.
- a non-selected player may be used to process a streaming data of the title and configured to supply two streams to the pair of players, thus equalizing the delay time that would be otherwise experienced by the unit B.
- FIGS. 9 A- 9 F are provided according to one embodiment of the present invention.
- FIGS. 9 A- 9 F are snapshots from a computing device (e.g., a laptop) used as a controller.
- a computing device e.g., a laptop
- FIGS. 9 A- 9 F may be readily modified to be used in a portable device with network capability, such as iPhone or iTouch or other smart phones.
- FIG. 9 A shows a graphic interface 900 that is caused to be displayed when a user desires to make a stereo pair with two players in a system, where there are more than two players in the system.
- a list of the players in the system may be displayed (not shown), from which the user selects two or more players to make the stereo pair. It is assumed that the user has chosen two players respectively named as “ZPS5-Black” and “S5” to the stereo pair as shown in FIG. 9 B .
- FIG. 9 C shows an exemplary display 930 to allow the user to choose another play to be paired with the “ZPS5-Black” player.
- FIG. 9 D shows a display 930 that one of the two channels is being muted.
- FIG. 9 E shows a display 940 that reminds the user of what name the stereo pair is named after.
- a graphic display is provided to show to the user all the players in a system and how they are grouped or named.
- a nickname for the stereo pair in the display 940 is highlighted and would be in FIG. 3 A if FIG. 3 A is modified after the stereo pair is done, provided the two players are in one place so that the stereo sound effect can be experienced.
- FIG. 9 F provides an interface to allow the user to separate the stereo pair when needed.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Stereophonic System (AREA)
- Selective Calling Equipment (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
An example method includes, based on an adjustment to a first displayed volume control, instructing the first playback device to adjust playback volume level; based on an adjustment to a second displayed volume control, instructing the second playback device to adjust playback volume level; after sending the commands, instructing the first and/or second playback device to process an audio stream into a first and/or second channel and to reproduce a respective one of the first and second channel, wherein the grouped first and second playback devices provide multi-channel sound; and based on an adjustment to a third displayed volume control, instructing the first and/or second playback device to adjust a group volume level for both the first and second playback devices.
Description
- This application is a continuation of U.S. application Ser. No. 17/511,811, titled “Stereo Playback Configuration and Control,” filed on Oct. 27, 2021 and currently pending; U.S. application Ser. No. 17/511,811 is a continuation of U.S. application Ser. No. 16/297,991 titled “Predefined Multi-Channel Listening Environment,” filed Mar. 11, 2019, and issued as U.S. Pat. No. 11,385,858 on Jul. 12, 2022; U.S. application Ser. No. 16/297,991 is a continuation of U.S. application Ser. No. 15/228,812, titled “Identification of Playback Device and Stereo Pair Names,” filed Aug. 4, 2016, and issued as U.S. Pat. No. 10,228,898 on Mar. 12, 2019; U.S. application Ser. No. 15/228,812 is a continuation of application Ser. No. 14/806,070, titled “Pair Volume Control,” filed on Jul. 22, 2015, and issued as U.S. Pat. No. 9,766,853 on Sep. 19, 2017; and U.S. application Ser. No. 14/806,070 is a continuation of U.S. application Ser. No. 13/013,740, titled “Controlling and grouping in a multi-zone media system,” filed on Jan. 25, 2011, and issued as U.S. Pat. No. 9,202,509 on Dec. 1, 2015. The entire contents of the Ser. No. 17/511,811; 16/297,991; 15/228,812; 14/806,070; and 13/013,740 applications are incorporated herein by reference.
- This application also incorporates by reference the entire contents of (i) U.S. application Ser. No. 11/853,790, titled “Controlling and manipulating groupings in a multi-zone media system,” filed on Sep. 11, 2007 and issued as U.S. Pat. No. 8,483,853 on Jul. 9, 2013, and (ii) U.S. Prov. App. 60/825,407 titled “Controlling and manipulating groupings in a multi-zone music or media system,” filed on Sep. 12, 2006, and now expired.
- The invention is generally related to the area of consumer electronics and human-computer interaction. In particular, the invention is related to method and apparatus for controlling or manipulating a plurality of multimedia players in a multi-zone system.
- An enduring passion for quality audio reproduction or system is continuing to drive demands from users. One of the demands includes an audio system in a house in which, for example, one could grill to classic rock on a patio while another one may cook up his/her own music selections in a kitchen. This is all at the same time while a teenager catches a ballgame in a family room, and another one blasts pop in a bedroom. And the best part of such audio system is that each family member does not need his or her own stereo system—one system gives everyone access to all the music sources.
- Currently, one of the systems that can meet part of such demand is a conventional multi-zone audio system that usually includes a number of audio players. Each of the audio players has its own amplifier(s) and a set of speakers and typically installed in one place (e.g., a room). In order to play an audio source at one location, the audio source must be provided locally or from a centralized location. When the audio source is provided locally, the multi-zone audio system functions as a collection of many stereo systems, making source sharing difficult. When the audio source is provided centrally, the centralized location may include a juke box, many compact discs, an AM or FM radio, tapes, or others. To send an audio source to an audio player demanding such source, a cross-bar type of device is used to prevent the audio source from going to other audio players that may be playing other audio sources.
- In order to achieve playing different audio sources in different audio players, the traditional multi-zone audio system is generally either hard-wired or controlled by a pre-configured and pre-programmed controller. While the pre-programmed configuration may be satisfactory in one situation, it may not be suitable for another situation. For example, a person would like to listen to broadcast news from his/her favorite radio station in a bedroom, a bathroom and a den while preparing to go to work in the morning. The same person may wish to listen in the den and the living room to music from a compact disc in the evening. In order to satisfy such requirements, two groups of audio players must be established. In the morning, the audio players in the bedroom, the bathroom and the den need to be grouped for the broadcast news. In the evening, the audio players in the den and the living room are grouped for the music. Over the weekend, the audio players in the den, the living room, and a kitchen are grouped for party music. Because the morning group, the evening group and the weekend group contain the den, it can be difficult for the traditional system to accommodate the requirement of dynamically managing the ad hoc creation and deletion of groups.
- There is a need for dynamic control of the audio players as a group. With a minimum manipulation, the audio players may be readily grouped. In a traditional multi-zone audio system, the audio players have to be adjusted one at a time, resulting in an inconvenient and non-homogenous audio environment. When the audio players are grouped, there is a need to individually or systematically adjust the sound (e.g., volume) of the audio players. In a situation in which two or more audio players are separately in one environment, there is a need to reconfigure these audio players dynamically to create a more pleasant listening environment to increase the maximum capable sound output (e.g., a sound pressure level).
- This section is for the purpose of summarizing some aspects of the present invention and to briefly introduce some preferred embodiments. Simplifications or omissions in this section as well as in the abstract or the title of this description may be made to avoid obscuring the purpose of this section, the abstract and the title. Such simplifications or omissions are not intended to limit the scope of the present invention.
- In general, the present invention pertains to controlling a plurality of multimedia players, or simply players, in groups. According to one aspect of the present invention, a mechanism is provided to allow a user to group some of the players according to a theme or scene, where each of the players is located in a zone. When the scene is activated, the players in the scene react in a synchronized manner. For example, the players in the scene are all caused to play an audio source or music in a playlist, wherein the audio source may be located anywhere on a network.
- According to another aspect of the present invention, the scene may be activated at any time or a specific time. A user may activate the scene at any time so that only some selected zones in an entertainment system facilitate a playback of an audio source. When the scene is activated at a specific time, the scene may be used as an alarm or buzzer.
- According to still another aspect of the present invention, a controlling device (also referred to herein as controller) is provided to facilitate a user to select any of the players in the system to form respective groups each of which is set up per a scene. Although various scenes may be saved in any of the members in a group, commands are preferably sent from the controller to the rest of the members when one of the scenes is executed. Depending on implementation, the commands include parameters pertaining to identifiers of the players, volumes settings, audio source and etc.
- According to still another aspect of the present invention, a configurable module is implemented in the controlling device that provides interactive graphic user interface for forming, managing and controlling groups in the system, de-grouping a group or adjusting audio volume of individual players or a group of players.
- According to still another aspect of the present invention, individual players may be paired or grouped to stimulate a multi-channel listening environment. In instead of grouping selected players to play back an audio item, a user is allowed to activate one of the players to process the data of the audio item, essentially separating the data into individual streams, each of the streams representing a single-sound track and being played back in one of the players, thus creating a multi-channel listening environment with the selected players.
- The present invention may be implemented in many forms including software, hardware or a combination of both. According to one embodiment, the present invention is a method for simulating a multi-channel listening environment, the method comprises: grouping a set of players to simulate the multi-channel listening environment, the players capable of communicating over a data network; designating which of the players to reproduce which one of audio channels in a title selected on a controller with a display screen; causing to process data representing the selected title into streams, each of the streams representing one of audio channels; causing to distribute the streams respectively to the players; and causing the players to play back the streams in synchronization.
- According to another embodiment, the present invention is directed to a system for a stereo listening environment, the system comprises: a plurality of players, at least a first one and a second one of the players located in one place; and a controller providing a mechanism to allow a user to select the first and second players to be paired to simulate the stereo listening environment, the first player being configured to process data for a selected title into two streams respectively for left and right sound channels, wherein the controller provides a user interface to allow the user to determine which one of the first and second players to reproduce the left sound channel or the right sound channel, the controller is further configured to display a playlist from which the title is selected.
- According to still another embodiment, the present invention is an apparatus for a stereo listening environment. The apparatus may be a smart phone with a display screen. The apparatus comprises a network interface to facilitate the apparatus to communicate with the Internet; a phone networking interface to facilitate the apparatus to communicate with a cell phone network provided by a service provider; a user interface to enable the network interface and the phone networking interface; a display screen to allow a user to control a plurality of audio players being coupled to an ad-hoc network, select first and second audio players to be paired to simulate a stereo listening environment, both of the first and second audio players being configured to process a data stream for a selected title into two streams respectively for left and right sound channels, wherein the user determines which one of the first and second audio players to reproduce the left sound channel or the right sound channel, and configures to display a playlist from which the title is selected to be played in the stereo listening environment.
- One of the objects, features, and advantages of the present invention is to stimulate a multi-channel listening environment. Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.
- These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
-
FIG. 1 shows an exemplary configuration in which the present invention may be practiced; -
FIG. 2A shows an exemplary functional block diagram of a player in accordance with the present invention; -
FIG. 2B shows an example of a controller that may be used to remotely control one of more players ofFIG. 2A ; -
FIG. 2C shows an example of a controller that may be used to remotely control one of more players ofFIG. 2A -
FIG. 2D shows an exemplary internal functional block diagram of a controller in accordance with one embodiment of the present invention; -
FIG. 3A provides an illustration of one zone scene, where the left column shows the starting zone grouping—all zones are separate, the column on the right shows the effects of grouping the zones to make a group of 3 zones named after “Morning”; -
FIG. 3B shows that a user defines multiple groups to be gathered at the same time; -
FIG. 4 shows an exemplary user interface that may be displayed on a controller or a computer ofFIG. 1 ; -
FIG. 5A shows a user interface to allow a user to form a scene; -
FIG. 5B shows anotheruser interface 520 to allow a user to form a scene; -
FIG. 5C shows a user interface to allow a user to adjust a volume level of the zone players in a zone scene individually or collectively; -
FIG. 6 shows a flowchart or process of providing a player theme or a zone scene for a plurality of players, where one or more of the players are placed in a zone; -
FIG. 7 shows a configuration in which an audio source is played back on two players and, according to one embodiment of the present invention; and -
FIG. 8 shows a flowchart or process of grouping a plurality of audio products to play separated sound tracks in synchronization to simulate a multi-channel listening environment. -
FIGS. 9A-9F show example user interfaces for stereo pair configuration. - The detailed description of the invention is presented largely in terms of procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.
- Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.
- Referring now to the drawings, in which like numerals refer to like parts throughout the several views.
FIG. 1 shows anexemplary configuration 100 in which the present invention may be practiced. The configuration may represent, but not be limited to, a part of a residential home, a business building or a complex with multiple zones. There are a number of multimedia players of which three examples 102, 104 and 106 are shown as audio devices. Each of the audio devices may be installed or provided in one particular area or zone and hence referred to as a zone player herein. - As used herein, unless explicitly stated otherwise, an audio source or audio sources are in digital format and can be transported or streamed over a data network. To facilitate the understanding of the present invention, it is assumed that the
configuration 100 represents a home. Thus, thezone player zone player 106 may be installed in a living room. All of thezone players data network 108. In addition, acomputing device 110 is shown to be coupled on thenetwork 108. In reality, any other devices such as a home gateway device, a storage device, or an MP3 player may be coupled to thenetwork 108 as well. - The
network 108 may be a wired network, a wireless network or a combination of both. In one example, all devices including thezone players network 108 by wireless means based on an industry standard such as IEEE 802.11. In yet another example, all devices including thezone players zone players - Many devices on the
network 108 are configured to download and store audio sources. For example, thecomputing device 110 can download audio sources from the Internet and store the downloaded sources locally for sharing with other devices on the Internet or thenetwork 108. Thecomputing device 110 or any of the zone players can also be configured to receive streaming audio. Shown as a stereo system, thedevice 112 is configured to receive an analog audio source (e.g., from broadcasting) or retrieve a digital audio source (e.g., from a compact disk). The analog audio sources can be converted to digital audio sources. In accordance with the present invention, the audio source may be shared among the devices on thenetwork 108. - Two or more zone players may be grouped together to form a new zone group. Any combinations of zone players and an existing zone group may be grouped together. In one instance, a new zone group is formed by adding one zone player to another zone player or an existing zone group. In one application, there are two zone players in one environment (e.g., a living room in a house). In one embodiment, instead of grouping these two zone players to play back the same audio source, one can configure these two zone players to play two separate sounds in left and right channels. In other words, the stereo effects of a sound are reproduced through these two zone players, one for the left sound and the other for the right sound. Likewise, for a 3-channel (or 2.1 sound effects) sound, three such zone players may be reconfigured as if there are three speakers: left and right speakers and a subwoofer to form a stereo sound. The details of the reconfiguring the zone players and operating these audio products will be described below. Similar configurations with multiple channels (greater than 3) also apply.
- Referring now to
FIG. 2A , there is shown an exemplary functional block diagram of azone player 200 in accordance with the present invention. Thezone player 200 includes anetwork interface 202, aprocessor 204, amemory 206, anaudio processing circuit 210, amodule 212, and optionally, anaudio amplifier 214 that may be internal or external. Thenetwork interface 202 facilitates a data flow between a data network (i.e., thedata network 108 ofFIG. 1 ) and thezone player 200 and typically executes a special set of rules (i.e., a protocol) to send data back and forth. One of the common protocols used in the Internet is TCP/IP (Transmission Control Protocol/Internet Protocol). In general, a network interface manages the assembling of an audio source or file into smaller packets that are to be transmitted over the data network or reassembles received packets into the original source or file. In addition, thenetwork interface 202 handles the address part of each packet so that it gets to the right destination or intercepts packets destined for thezone player 200. Accordingly, each of the packets includes an IP-based source address as well as an IP-based destination address. - The
network interface 202 may include one or both of awireless interface 216 and awired interface 217. Thewireless interface 216, also referred to as a RF interface, provides network interface functions by a wireless means for thezone player 200 to communicate with other devices in accordance with a communication protocol (such as the wireless standard IEEE 802.11a, 802.11b, 802.11g, 802.11n, or 802.15.1). Thewired interface 217 provides network interface functions by a wired means (e.g., an Ethernet cable). In one embodiment, a zone player includes both of theinterfaces processor 204 is configured to control the operation of other parts in thezone player 200. Thememory 206 may be loaded with one or more software modules that can be executed by theprocessor 204 to achieve desired tasks. According to one aspect of the present invention, a software module implementing one embodiment of the present invention is executed, theprocessor 204 operates in accordance with the software module in reference to a saved zone group configuration characterizing a zone group created by a user, thezone player 200 is caused to retrieve an audio source from another zone player or a device on the network and synchronize the players in the zone group to play back the audio source as desired. - According to one embodiment of the present invention, the
memory 206 is used to save one or more saved zone configuration files that may be retrieved for modification at any time. Typically, a saved zone group configuration file is transmitted to a controller (e.g., the controllingdevice FIG. 1 , a computer, a portable device, or a TV) when a user operates the controlling device. The zone group configuration provides an interactive user interface so that various manipulations or control of the zone players may be performed. - The
audio processing circuit 210 resembles most of the circuitry in an audio playback device and includes one or more digital-to-analog converters (DAC), an audio preprocessing part, an audio enhancement part or a digital signal processor and others. In operation, when an audio source is retrieved via thenetwork interface 202, the audio source is processed in theaudio processing circuit 210 to produce analog audio signals. The processed analog audio signals are then provided to theaudio amplifier 214 for playback on speakers. In addition, theaudio processing circuit 210 may include necessary circuitry to process analog signals as inputs to produce digital signals for sharing with other devices on a network. - Depending on an exact implementation, the
module 212 may be implemented as a combination of hardware and software. In one embodiment, themodule 212 is used to save a scene. Theaudio amplifier 214 is typically an analog circuit that powers the provided analog audio signals to drive one or more speakers. - Referring now to
FIG. 2B , there is shown anexemplary controller 240, which may correspond to the controllingdevice FIG. 1 . Thecontroller 240 may be used to facilitate the control of multi-media applications, automation and others in a complex. In particular, thecontroller 240 is configured to facilitate a selection of a plurality of audio sources available on the network, controlling operations of one or more zone players (e.g., the zone player 200) through a RF interface corresponding to theRF interface 216 ofFIG. 2A . According to one embodiment, the wireless means is based on an industry standard (e.g., infrared, radio, wireless standard IEEE 802.11a, 802.11b 802.11g, 802.11n, or 802.15.1). When a particular audio source is being played in thezone player 200, a picture, if there is any, associated with the audio source may be transmitted from thezone player 200 to thecontroller 240 for display. In one embodiment, thecontroller 240 is used to synchronize more than one zone players by grouping the zone players in a group. In another embodiment, thecontroller 240 is used to control the volume of each of the zone players in a zone group individually or together. - The user interface for the
controller 240 includes a screen 242 (e.g., a LCD screen) and a set of functional buttons as follows: a “zones”button 244, a “back”button 246, a “music”button 248, ascroll wheel 250, “ok”button 252, a set oftransport control buttons 254, amute button 262, a volume up/downbutton 264, a set ofsoft buttons 266 corresponding to thelabels 268 displayed on thescreen 242. - The
screen 242 displays various screen menus in response to a user's selection. In one embodiment, the “zones”button 244 activates a zone management screen or “Zone Menu”, which is described in more details below. The “back”button 246 may lead to different actions depending on the current screen. In one embodiment, the “back” button triggers the current screen display to go back to a previous one. In another embodiment, the ‘back” button negates the user's erroneous selection. The “music”button 248 activates a music menu, which allows the selection of an audio source (e.g., a song) to be added to a zone player's music queue for playback. - The
scroll wheel 250 is used for selecting an item within a list, whenever a list is presented on thescreen 242. When the items in the list are too many to be accommodated in one screen display, a scroll indicator such as a scroll bar or a scroll arrow is displayed beside the list. When the scroll indicator is displayed, a user may rotate thescroll wheel 250 to either choose a displayed item or display a hidden item in the list. The “ok”button 252 is used to confirm the user selection on thescreen 242. - There are three
transport buttons 254, which are used to control the effect of the currently playing song. For example, the functions of the transport buttons may include play/pause and forward/rewind a song, move forward to a next song track, or move backward to a previous track. According to one embodiment, pressing one of the volume control buttons such as themute button 262 or the volume up/downbutton 264 activates a volume panel. In addition, there are threesoft buttons 266 that can be activated in accordance with thelabels 268 on thescreen 242. It can be understood that, in a multi-zone system, there may be multiple audio sources being played respectively in more than one zone players. The music transport functions described herein shall apply selectively to one of the sources when a corresponding one of the zone players or zone groups is selected. -
FIG. 2C shows anexemplary controller 260 which may correspond to the controllingdevice FIG. 1 . Thecontroller 260 is provided with a touch screen that allows a user to interact with the controller, for example, to navigate a playlist of many items, to control operations of one or more players. In one embodiment as it will be further shown inFIG. 9 s , a user may interact with the controller to make a stereo pair and separate a stereo pair. It should be noted that other network-enabled portable devices such as iPhone, iPad or a smart phone may be used as a controller to interact or control multiple zone players in an environment. According on one embodiment, an application may be downloaded into a network enabled device. Such an application may implement most of the functions discussed above for thecontroller 240 using a navigating mechanism or touch screen in the device. Those skilled in the art shall know a possible modification of such an application when porting it to a new type of portable device given the detailed description herein. -
FIG. 2D illustrates an internal functional block diagram of anexemplary controller 270, which may correspond to thecontroller 240 ofFIG. 2B , a computing device or a smart phone. Thescreen 272 on thecontroller 270 may be a LCD screen. Thescreen 272 communicates with and is commanded by ascreen driver 274 that is controlled by a microcontroller (e.g., a processor) 276. Thememory 282 may be loaded with one ormore application modules 284 that can be executed by themicrocontroller 276 with or without a user input via theuser interface 278 to achieve desired tasks. In one embodiment, an application module is configured to facilitate grouping a number of selected zone players into a zone group and synchronizing the zone players for one audio source. In another embodiment, an application module is configured to control together the audio sounds (e.g., volume) of the zone players in a zone group. In operation, when themicrocontroller 276 executes one or more of theapplication modules 284, thescreen driver 274 generates control signals to drive thescreen 272 to display an application specific user interface accordingly, more of which will be described below. - The
controller 270 includes anetwork interface 280 referred to as aRF interface 280 that facilitates wireless communication with a zone player via a corresponding RF interface thereof. In one embodiment, the commands such as volume control and audio playback synchronization are sent via the RF interfaces. In another embodiment, a saved zone group configuration is transmitted between a zone player and a controller via the RF interfaces. Thecontroller 270 may control one or more zone players, such as 102, 104 and 106 ofFIG. 1 . Nevertheless, there may be more than one controllers, each preferably in a zone (e.g., a room) and configured to control any one and all of the zone players. - In one embodiment, a user creates a zone group including at least two zone players from the
controller 240 that sends signals or data to one of the zone players. As all the zone players are coupled on a network, the received signals in one zone player can cause other zone players in the group to be synchronized so that all the zone players in the group playback an identical audio source or a list of identical audio sources in a timely synchronized manner such that no audible delays or hiccups could be heard. Similarly, when a user increases the audio volume of the group from the controller, the signals or data of increasing the audio volume for the group are sent to one of the zone players and causes other zone players in the group to be increased together in volume and in scale. - According to one implementation, an application module is loaded in
memory 282 for zone group management. When a predetermined key (e.g. the “zones” button 244) is activated on thecontroller 240, the application module is executed in themicrocontroller 276. Theinput interface 278 coupled to and controlled by themicrocontroller 276 receives inputs from a user. A “Zone Menu” is then displayed on thescreen 272. The user may start grouping zone players into a zone group by activating a “Link Zones” or “Add Zone” soft button, or de-grouping a zone group by activating an “Unlink Zones” or “Drop Zone” button. The detail of the zone group manipulation will be further discussed below. - As described above, the
input interface 278 includes a number of function buttons as well as a screen graphical user interface. It should be pointed out that thecontroller 240 inFIG. 2B is not the only controlling device that may practice the present invention. Other devices that provide the equivalent control functions (e.g., a computing device, a hand-held device) may also be configured to practice the present invention. In the above description, unless otherwise specifically described, it is clear that keys or buttons are generally referred to as either the physical buttons or soft buttons, enabling a user to enter a command or data. - One mechanism for ‘joining’ zone players together for music playback is to link a number of zone players together to form a group. To link a number of zone players together, a user may manually link each zone player or room one after the other. For example, there is a multi-zone system that includes the following zones.
- Bathroom
- Bedroom
- Den
- Dining Room
- Family Room
- Foyer
- If the user wishes to link 5 of the 6 zone players using the current mechanism, he/she must start with a single zone and then manually link each zone to that zone. This mechanism may be sometimes quite time consuming. According to one embodiment, a set of zones can be dynamically linked together using one command. Using what is referred to herein as a theme or a zone scene, zones can be configured in a particular scene (e.g., morning, afternoon, or garden), where a predefined zone grouping and setting of attributes for the grouping are automatically effectuated.
- For instance, a “Morning” zone scene/configuration command would link the Bedroom, Den and Dining Room together in one action. Without this single command, the user would need to manually and individually link each zone.
FIG. 3A provides an illustration of one zone scene, where the left column shows the starting zone grouping—all zones are separate, the column on the right shows the effects of grouping the zones to make a group of 3 zones named after “Morning”. - Expanding this idea further, a Zone Scene can be set to create multiple sets of linked zones. For example, a scene creates 3 separate groups of zones, the downstairs zones would be linked together, the upstairs zones would be linked together in their own group, and the outside zones (in this case the patio) would move into a group of its own.
- In one embodiment as shown in
FIG. 3B , a user defines multiple groups to be gathered at the same time. For example: an “Evening Scene” is desired to link the following zones: -
- Group1
- Bedroom
- Den
- Dining Room
- Group 2
- Garage
- Garden
where Bathroom, Family Room and Foyer should be separated from any group if they were part of a group before the Zone Scene was invoked.
- One important of the features, benefits and objects in the present invention is that that zones do not need to be separated before a zone scene is invoked. In one embodiment, a command is provided and links all zones in one step, if invoked. The command is in a form of a zone scene. After linking the appropriate zones, a zone scene command could apply the following attributes:
-
- Set volumes levels in each zones (each zone can have a different volume) Mute/Unmute zones.
- Select and play specific music in the zones.
- Set the play mode of the music (Shuffle, Repeat, Shuffle-repeat)
- Set the music playback equalization of each zone (e.g., bass treble).
- A further extension of this embodiment is to trigger a zone scene command as an alarm clock function. For instance the zone scene is set to apply at 8:00 am. It could link appropriate zones automatically, set specific music to play and then stop the music after a defined duration. Although a single zone may be assigned to an alarm, a scene set as an alarm clock provides a synchronized alarm, allowing any zones linked in the scene to play a predefined audio (e.g., a favorable song, a predefined playlist) at a specific time or for a specific duration. If, for any reason, the scheduled music failed to be played (e.g., an empty playlist, no connection to a share, failed UPnP, no Internet connection for an Internet Radio station), a backup buzzer will sound. This buzzer will be a sound file that is stored in a zone player.
-
FIG. 4 shows anexemplary user interface 400 that may be displayed on acontroller 142 or acomputer 110 ofFIG. 1 . Theinterface 400 shows a list of items that may be set up by a user to cause a scene to function at a specific time. In the embodiment shown inFIG. 4 , the list of items includes “Alarm”, “Time”, “Zone”, “Music”, “Frequency” and “Alarm length”. “Alarm” can be set on or off. When “Alarm” is set on, “Time” is a specific time to set off the alarm. “Zone” shows which zone players are being set to play a specified audio at the specific time. “Music” shows what to be played when the specific time arrives. “Frequency” allows the user to define a frequency of the alarm. “Alarm length” defines how long the audio is to be played. It should be noted that theuser interface 400 is provided herein to show some of the functions associated with setting up an alarm. Depending on an exact implementation, other functions, such as time zone, daylight savings, time synchronization, and time/date format for display may also be provided without departing from the present invention. - According to one embodiment, each zone player in a scene may be set up for different alarms. For example, a “Morning” scene includes three zone players, each in a bedroom, a den, and a dining room. After selecting the scene, the user may set up an alarm for the scene as whole. As a result, each of the zone players will be activated at a specific time.
-
FIG. 5A shows auser interface 500 to allow a user to form a scene. The panel on the left shows the available zones in a household. The panel on the right shows the zones that have been selected and be grouped as part of this scene. Depending on an exact implementation of a user interface, Add/Remove buttons may be provided to move zones between the panels, or zones may be dragged along between panels. -
FIG. 5B shows anotheruser interface 520 to allow a user to form a scene. Theuser interface 520 that may be displayed on a controller or a computing device, lists available zones in a system. A checkbox is provided next to each of the zones so that a user may check in the zones to be associated with the scene. -
FIG. 5C shows auser interface 510 to allow a user to adjust a volume level of the zone players in a zone scene individually or collectively. As shown in theuser interface 510, the ‘Volumes . . . ’ button (shown as sliders, other forms are possible) allows the user to affect the volumes of the associated zone players when a zone scene is invoked. In one embodiment, the zone players can be set to retain whatever volume that they currently have when the scene is invoked. Additionally the user can decide if the volumes should be unmuted or muted when the scene is invoked. -
FIG. 6 shows a flowchart orprocess 600 of providing a player theme or a zone scene for a plurality of players, where one or more of the players are placed in a zone. Theprocess 600 is presented in accordance with one embodiment of the present invention and may be implemented in a module to be located in thememory 282 ofFIG. 2C . - The
process 600 is initiated only when a user decides to proceed with a zone scene at 602. Theprocess 600 then moves to 604 where it allows a user to decide which zone players to be associated with the scene. For example, there are ten players in a household, and the scene is named after “Morning”. The user may be given an interface to select four of the ten players to be associated with the scene. At 606, the scene is saved. The scene may be saved in any one of the members in the scene. In the example ofFIG. 1 , the scene is saved in one of the zone players and displayed on thecontroller 142. In operation, a set of data pertaining to the scene includes a plurality of parameters. In one embodiment, the parameters include, but may not be limited to, identifiers (e.g., IP address) of the associated players and a playlist. The parameters may also include volume/tone settings for the associated players in the scene. The user may go back to 602 to configure another scene if desired. - Given a saved scene, a user may activate the scene at any time or set up a timer to activate the scene at 610. The
process 600 can continue when a saved scene is activated at 610. At 612, upon the activation of a saved scene, theprocess 600 checks the status of the players associated with the scene. The status of the players means that each of the players shall be in condition to react in a synchronized manner. In one embodiment, the interconnections of the players are checked to make sure that the players communicate among themselves and/or with a controller if there is such a controller in the scene. - It is assumed that all players associated with the scene are in good condition. At 614, commands are executed with the parameters (e.g., pertaining to a playlist and volumes). In one embodiment, data including the parameters is transported from a member (e.g., a controller) to other members in the scene so that the players are caused to synchronize an operation configured in the scene. The operation may cause all players to play back a song in identical or different volumes or to play back a pre-stored file.
-
FIG. 7 shows a configuration in which an audio source is played back on twoplayers players players players 702 and 704 (e.g., through a designated interface) and cause theplayers - In operation, a controller 706 (e.g., a
controller 142 ofFIG. 1 or 240 ofFIG. 2B or a portable device) is used to initiate the operation. Through a proper user interface, thecontroller 706 causes aplayer 702 to retrieve the audio source, provided the audio source is on a network 708 (e.g., the Internet or a local area network). Similarly, thecontroller 706 may also cause a designated device (e.g., another networked device) to establish a communication session with theplayer 702 to deliver the requested audio source. In any case, either one or both of theplayers - An appropriate module in the
player 702 is activated to process the data. According to one embodiment, the right and left sound tracks are separated. One sound track is retained locally in one player and the other sound track is pushed or uploaded to the other device (e.g., via an ad-hoc network). When the right and left sound tracks are played back simultaneously, the stereo sound effect can be appreciated. - To avoid a time delay in delivering a single sound track to the other device, the time delay may be measured. According to another embodiment, a test message may be initiated from one device to another that is also activated to send back an acknowledgement. Upon receiving the acknowledgement, the time delay in transporting data from one device to another can be measured. The time delay will be considered when synchronizing the two players to play back the two separated sound tracks. In one embodiment, the locally retained sound track data is delayed to start with a latency determined by the time delay. Depending on implementation, such a time delay may be measured from time to time to ensure that the two sound tracks are simultaneously played back. Details of synchronizing operations of two or more players are provided in commonly assigned U.S. application Ser. No. 10/816,217, filed Apr. 1, 2004, entitled “System and Method For Synchronizing Operations Among A Plurality Of Independently Clocked Digital Data Processing Devices” which is hereby incorporated by reference.
-
FIG. 8 shows a flowchart orprocess 800 of grouping a plurality of audio products to play separated sound tracks in synchronization to simulate a multi-channel listening environment. Theprocess 800 is presented in accordance with one embodiment of the present invention and may be implemented in a module to be located in thememory 282 ofFIG. 2C . To facilitate the description of the present invention, a listening environment of stereo sound with left and right channels is described. Those skilled in the art can appreciate that the description can be equally applied to other forms of multi-channel listening environment. - Typically, there is a plurality of players being controlled by one or more controllers, where these players are disposed in various locations. For example, there are five players in a house, three of them are respectively disposed in three rooms while two players are disposed in a larger room. Accordingly, these two players would be candidates to be paired to simulate a stereo listening environment. In another example, there are four players in a large space, two pairs of the players may be paired to simulate a stereo listening environment, in which two players in one pair can be grouped to play back one (left) sound track and the other two in the other pair can be grouped to play back one (right) sound track.
- In any case, two groups of players or two players are decided to be paired at 802. If no players are paired, the
process 800 will not be activated. It is assumed that two players from a group of players being controlled by a controller are selected to be paired at 802. Theprocess 800 proceeds. - At 804, a user needs to decide which player is to play back which sound track. Depending on the location of the user or listener(s) with respect to the selected players, it is assumed that a player or unit A is chosen to play back a left sound track and another player or unit B is chosen to play back a right sound track.
- Accordingly to one embodiment, a time delay in transporting data between the two units A and B is measured at 806. This time delay may facilitate sound synchronization between the two units as one of the units will receive a processed sound track from the other. The user may continue to operate on a controller to select a title (e.g., an audio source or an item from a playlist) for playback on the two units at 810.
- Once the title is determined at 812, the data for the title needs to be accessed. Depending on where the data is located, the controller may be configured to cause one of the two units to obtain or stream in the data. In one embodiment, the controller or unit A initiates a request to a remotely-networked device storing the data. Assuming an authentication procedure, if any, completes successfully, the remote device starts to upload the data to the unit A. Likewise, if the data is locally stored in the unit A, the data can be accessed locally without requesting the same from the network. As the data is being received or accessed in the unit A, a processing module is activated in the unit A to process the data, essentially separating the data into two streams of sound tracks at 814.
- At 816, one of the streams is uploaded from the unit A to unit B via a local network (e.g., the ad-hoc network formed by all the players being controlled by the controller). As the streams are being distributed, the two units are configured to play back the streams respectively, each reproducing the sound of a single sound track at 818. Together, the two units create a stereo sound listening environment.
- It should be noted that the delay time, if noticeable, may be incorporated into the unit A to delay the consumption of the stream by the delay time to synchronize with the unit B. Alternatively, a non-selected player may be used to process a streaming data of the title and configured to supply two streams to the pair of players, thus equalizing the delay time that would be otherwise experienced by the unit B.
- To further under the operations of making a stereo pair,
FIGS. 9A-9F are provided according to one embodiment of the present invention.FIGS. 9A-9F are snapshots from a computing device (e.g., a laptop) used as a controller. Those skilled in the art can appreciate thatFIGS. 9A-9F may be readily modified to be used in a portable device with network capability, such as iPhone or iTouch or other smart phones. -
FIG. 9A shows agraphic interface 900 that is caused to be displayed when a user desires to make a stereo pair with two players in a system, where there are more than two players in the system. Once theinterface 900 is displayed, a list of the players in the system may be displayed (not shown), from which the user selects two or more players to make the stereo pair. It is assumed that the user has chosen two players respectively named as “ZPS5-Black” and “S5” to the stereo pair as shown inFIG. 9B .FIG. 9C shows anexemplary display 930 to allow the user to choose another play to be paired with the “ZPS5-Black” player. - As the stereo pair is playing back various audio items, the user is provided with an option to control either one or both of the sound channels.
FIG. 9D shows adisplay 930 that one of the two channels is being muted.FIG. 9E shows adisplay 940 that reminds the user of what name the stereo pair is named after. In one embodiment and as shown inFIG. 3A or 3B , a graphic display is provided to show to the user all the players in a system and how they are grouped or named. A nickname for the stereo pair in thedisplay 940 is highlighted and would be inFIG. 3A ifFIG. 3A is modified after the stereo pair is done, provided the two players are in one place so that the stereo sound effect can be experienced.FIG. 9F provides an interface to allow the user to separate the stereo pair when needed. - The present invention has been described in sufficient detail with a certain degree of particularity. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of examples only and that numerous changes in the arrangement and combination of parts may be resorted without departing from the spirit and scope of the invention as claimed. While the embodiments discussed herein may appear to include some limitations as to the presentation of the information units, in terms of the format and arrangement, the invention has applicability well beyond such embodiment, which can be appreciated by those skilled in the art. Accordingly, the scope of the present invention is defined by the appended claims rather than the forgoing description of embodiments.
Claims (32)
1. A computing device comprising:
one or more processors;
a tangible, non-transitory computer-readable medium; and
program instructions stored on the tangible, non-transitory computer-readable medium that are executable by the one or more processors such that the computing device is configured to:
assign a first name to a first group of two or more devices;
at a first time when the computing device is configured to control the first group of two or more devices, after obtaining first audio information (i) transmit the first audio information from the computing device to one or more devices in the first group, and (ii) cause the first group to play the first audio information in a groupwise manner with a stereo effect; and
at a second time when the computing device is configured to control a second group of two or more devices to play second audio information from a first source, transmit one or more commands that cause at least one device in the second group to (i) obtain the second audio information from the first source, (ii) provide at least a portion of the second audio information to at least one other device in the second group, and (iii) coordinate with the at least one other device in the second group to cause the second group to play the first audio information in a groupwise manner with a stereo effect where the at least one device in the second group plays a first channel of the second audio information while the at least one other device in the second group plays a second channel of the second audio information, wherein the first channel and the second channel are different.
2. The computing device of claim 1 , wherein the program instructions stored on the tangible, non-transitory computer-readable medium comprise further program instructions that are executable by the one or more processors such that the computing device is further configured to, at a third time when the computing device is configured to control the second group of two or more devices to play third audio information from a second source, transmit one or more commands that cause at least one device in the second group to (i) obtain the second audio information from the second source, (ii) transmit at least a portion of the second audio information to one or more devices in the second group, and (iii) cause the second group to play the second audio information in a groupwise manner with a stereo effect.
3. The computing device of claim 1 , wherein the first audio information comprises first stereo audio information, wherein the first group of two or more devices comprises a first device and a second device configured in a first stereo playback configuration, and wherein the program instructions that are executable by the one or more processors such that the computing device is configured to cause the first group to play the first audio information in a groupwise manner with a stereo effect comprise program instructions that are executable by the one or more processors such that the computing device is configured to:
cause the first device to play a first channel of the first stereo audio information, and cause the second device to play a second channel of the first stereo audio information in synchrony with the first device playing the first channel of the first stereo audio information.
4. The computing device of claim 2 , wherein the second audio information comprises second stereo audio information, wherein the second group of two or more devices comprises a third device and a fourth device configured in a second stereo playback configuration, and wherein the program instructions that are executable by the one or more processors such that the computing device is configured to cause the second group to play the second audio information in a groupwise manner with a stereo effect comprise program instructions that are executable by the one or more processors such that the computing device is configured to:
cause the third device to play a first channel of the second stereo audio information, and cause the fourth device to play a second channel of the second stereo audio information in synchrony with the third device playing the first channel of the second stereo audio information.
5. The computing device of claim 1 , wherein the second group of two or more devices comprises a third device and a fourth device, and wherein the program instructions stored on the tangible, non-transitory computer-readable medium comprise further program instructions that are executable by the one or more processors such that the computing device is further configured to:
after receiving a selection of the third device and the fourth device via a graphical user interface, group the third device and the fourth device into the second group of two or more devices.
6. The computing device of claim 5 , wherein the program instructions stored on the tangible, non-transitory computer-readable medium comprise further program instructions that are executable by the one or more processors such that the computing device is further configured to:
after receiving one or more inputs corresponding to a name for the second group of two or more devices, store the name for the second group of two or more devices.
7. The computing device of claim 2 , wherein the program instructions that are executable by the one or more processors such that the computing device is configured to control the second group of two or more devices to play third audio information from the second source comprise program instructions executable by the one or more processors such that the computing device is further configured to coordinate with the second source to provide the third audio information to the at least one device in the second group.
8. The computing device of claim 1 , wherein the program instructions that are executable by the one or more processors such that the computing device is configured to transmit the first audio information from the computing device to one or more devices in the first group comprise program instructions that are executable by the one or more processors such that the computing device is configured to transmit the first audio information from the computing device to one or more devices in the first group via a first wireless networking protocol; and
wherein the program instructions that are executable by the one or more processors such that the computing device is configured to transmit one or more commands that cause at least one device in the second group to (i) obtain the second audio information from the first source, (ii) transmit at least a portion of the second audio information to one or more devices in the second group, and (iii) cause the second group to play the second audio information in a groupwise manner with a stereo effect comprise program instructions that are executable by the one or more processors such that the computing device is configured to transmit the one or more commands via a second wireless networking protocol.
9. The computing device of claim 8 , wherein the first wireless networking protocol comprises a Personal Area Network (PAN) protocol.
10. The computing device of claim 8 , wherein the second wireless networking protocol comprises a Wireless Local Area Network (WLAN) protocol.
11. The computing device of claim 8 , wherein the first wireless networking protocol comprises an IEEE 802.15 protocol, and wherein the second wireless networking protocol comprises an IEEE 802.11 protocol.
12. The computing device of claim 8 , wherein the first wireless networking protocol comprises a Bluetooth protocol and wherein the second wireless networking protocol comprises a WiFi protocol.
13. The computing device of claim 1 , wherein the program instructions stored on the tangible, non-transitory computer-readable medium comprise further program instructions that are executable by the one or more processors such that the computing device is further configured to one or more of:
control a volume of each of the two or more devices in the first group individually;
control a volume of all the two or more devices in the first group collectively as the first group;
control a volume of each of the two or more devices in the second group individually; or
control a volume of all the two or more devices in the second group collectively as the second group.
14. The computing device of claim 1 , wherein the computing device comprises one of a smart phone or a tablet computer with a display screen.
15. The computing device of claim 1 , wherein the computing device comprises an iPhone.
16. The computing device of claim 1 , wherein the program instructions stored on the tangible, non-transitory computer-readable medium comprise further program instructions that are executable by the one or more processors such that the computing device is further configured to:
after assigning the first name to the first group of two or more devices, storing the first name.
17. Tangible, non-transitory computer-readable medium comprising program instructions executable one or more processors such that a computing device is configured to perform functions comprising:
assigning a first name to a first group of two or more devices;
at a first time when the computing device is configured to control the first group of two or more devices, after obtaining first audio information, (i) transmitting the first audio information from the computing device to one or more devices in the first group, and (ii) causing the first group to play the first audio information in a groupwise manner with a stereo effect; and
at a second time when the computing device is configured to control a second group of two or more devices to play second audio information from a first source, transmit one or more commands that cause at least one device in the second group to (i) obtain the second audio information from the first source, (ii) provide at least a portion of the second audio information to at least one other device in the second group, and (iii) coordinate with the at least one other device in the second group to cause the second group to play the first audio information in a groupwise manner with a stereo effect where the at least one device in the second group plays a first channel of the second audio information while the at least one other device in the second group plays a second channel of the second audio information, wherein the first channel and the second channel are different.
18. The tangible, non-transitory computer-readable medium of claim 17 , wherein the functions further comprise:
at a third time when the computing device is configured to control the second group of two or more devices to play third audio information from a second source, transmitting one or more commands that cause at least one device in the second group to (i) obtain the second audio information from the second source, (ii) transmit at least a portion of the second audio information to one or more devices in the second group, and (iii) cause the second group to play the second audio information in a groupwise manner with a stereo effect.
19. The tangible, non-transitory computer-readable medium of claim 17 , wherein the first audio information comprises first stereo audio information, wherein the first group of two or more devices comprises a first device and a second device configured in a first stereo playback configuration, and wherein causing the first group to play the first audio information in a groupwise manner with a stereo effect comprises:
causing the first device to play a first channel of the first stereo audio information, and causing the second device to play a second channel of the first stereo audio information in synchrony with the first device playing the first channel of the first stereo audio information.
20. The tangible, non-transitory computer-readable medium of claim 18 , wherein the second audio information comprises second stereo audio information, wherein the second group of two or more devices comprises a third device and a fourth device configured in a second stereo playback configuration, and wherein the causing the second group to play the second audio information in a groupwise manner with a stereo effect comprises:
causing the third device to play a first channel of the second stereo audio information, and causing the fourth device to play a second channel of the second stereo audio information in synchrony with the third device playing the first channel of the second stereo audio information.
21. The tangible, non-transitory computer-readable medium of claim 17 , wherein the second group of two or more devices comprises a third device and a fourth device, and wherein the functions further comprise:
after receiving a selection of the third device and the fourth device via a graphical user interface, grouping the third device and the fourth device into the second group of two or more devices.
22. The tangible, non-transitory computer-readable medium of claim 21 , wherein the functions further comprise:
after receiving one or more inputs corresponding to a name for the second group of two or more devices, storing the name for the second group of two or more devices.
23. The tangible, non-transitory computer-readable medium of claim 18 , wherein controlling the second group of two or more devices to play third audio information from a second source comprises coordinating with the second source to provide the third audio information to the at least one device in the second group.
24. The tangible, non-transitory computer-readable medium of claim 17 , wherein transmitting the first audio information from the computing device to one or more devices in the first group comprises transmitting the first audio information from the computing device to one or more devices in the first group via a first wireless networking protocol; and
wherein transmitting one or more commands that cause at least one device in the second group to (i) obtain the second audio information from the first source, (ii) transmit at least a portion of the second audio information to one or more devices in the second group, and (iii) cause the second group to play the second audio information in a groupwise manner with a stereo effect comprises transmitting the one or more commands via a second wireless networking protocol.
25. The tangible, non-transitory computer-readable medium of claim 24 , wherein the first wireless networking protocol comprises a Personal Area Network (PAN) protocol.
26. The tangible, non-transitory computer-readable medium of claim 24 , wherein the second wireless networking protocol comprises a Wireless Local Area Network (WLAN) protocol.
27. The tangible, non-transitory computer-readable medium of claim 24 , wherein the first wireless networking protocol comprises an IEEE 802.15 protocol, and wherein the second wireless networking protocol comprises an IEEE 802.11 protocol.
28. The tangible, non-transitory computer-readable medium of claim 24 , wherein the first wireless networking protocol comprises a Bluetooth protocol and wherein the second wireless networking protocol comprises a WiFi protocol.
29. The tangible, non-transitory computer-readable medium of claim 17 , wherein the functions further comprise one or more of:
controlling a volume of each of the two or more devices in the first group individually;
controlling a volume of all the two or more devices in the first group collectively as the first group;
controlling a volume of each of the two or more devices in the second group individually; or
controlling a volume of all the two or more devices in the second group collectively as the second group.
30. The tangible, non-transitory computer-readable medium of claim 17 , wherein the computing device comprises one of a smart phone or a tablet computer with a display screen.
31. The tangible, non-transitory computer-readable medium of claim 17 , wherein the computing device comprises an iPhone.
32. The tangible, non-transitory computer-readable medium of claim 17 , wherein the functions further comprise:
after assigning the first name to the first group of two or more devices, storing the first name.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/822,887 US20230205482A1 (en) | 2011-01-25 | 2022-08-29 | Stereo Playback Configuration and Control |
US18/442,295 US20240184512A1 (en) | 2011-01-25 | 2024-02-15 | Playback Device Configuration and Control |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/013,740 US9202509B2 (en) | 2006-09-12 | 2011-01-25 | Controlling and grouping in a multi-zone media system |
US14/806,070 US9766853B2 (en) | 2006-09-12 | 2015-07-22 | Pair volume control |
US15/228,812 US10228898B2 (en) | 2006-09-12 | 2016-08-04 | Identification of playback device and stereo pair names |
US16/297,991 US11385858B2 (en) | 2006-09-12 | 2019-03-11 | Predefined multi-channel listening environment |
US17/511,811 US11429343B2 (en) | 2011-01-25 | 2021-10-27 | Stereo playback configuration and control |
US17/822,887 US20230205482A1 (en) | 2011-01-25 | 2022-08-29 | Stereo Playback Configuration and Control |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/511,811 Continuation US11429343B2 (en) | 2011-01-25 | 2021-10-27 | Stereo playback configuration and control |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/442,295 Continuation US20240184512A1 (en) | 2011-01-25 | 2024-02-15 | Playback Device Configuration and Control |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230205482A1 true US20230205482A1 (en) | 2023-06-29 |
Family
ID=80224160
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/511,811 Active US11429343B2 (en) | 2011-01-25 | 2021-10-27 | Stereo playback configuration and control |
US17/822,887 Pending US20230205482A1 (en) | 2011-01-25 | 2022-08-29 | Stereo Playback Configuration and Control |
US18/442,295 Pending US20240184512A1 (en) | 2011-01-25 | 2024-02-15 | Playback Device Configuration and Control |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/511,811 Active US11429343B2 (en) | 2011-01-25 | 2021-10-27 | Stereo playback configuration and control |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/442,295 Pending US20240184512A1 (en) | 2011-01-25 | 2024-02-15 | Playback Device Configuration and Control |
Country Status (1)
Country | Link |
---|---|
US (3) | US11429343B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070038999A1 (en) * | 2003-07-28 | 2007-02-15 | Rincon Networks, Inc. | System and method for synchronizing operations among a plurality of independently clocked digital data processing devices |
US20080280654A1 (en) * | 2007-05-10 | 2008-11-13 | Texas Instruments Incorporated | System and method for wirelessly providing multimedia |
US20090234479A1 (en) * | 2005-03-31 | 2009-09-17 | Yamaha Corporation | Control apparatus for music system comprising a plurality of equipments connected together via network, and integrated software for controlling the music system |
Family Cites Families (1160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3956591A (en) | 1974-12-18 | 1976-05-11 | Gates Jr William A | Two-input automatic source selector for stereo entertainment center |
US4105974A (en) | 1975-10-14 | 1978-08-08 | Rogers Edwin F | Priority interrupt circuit |
US4296278A (en) | 1979-01-05 | 1981-10-20 | Altec Corporation | Loudspeaker overload protection circuit |
USD260764S (en) | 1979-10-15 | 1981-09-15 | Sparkomatic Corporation | Control unit for a combined automobile cassette player and radio |
US4306114A (en) | 1980-01-21 | 1981-12-15 | Summa-Nova Corporation | Automatic audio mixing selector device |
JPS56132804A (en) | 1980-03-22 | 1981-10-17 | Sharp Corp | Operational tone quality control circuit |
NL8300011A (en) | 1983-01-04 | 1984-08-01 | Philips Nv | SPEAKER DEVICE WITH ONE OR MORE FLAT MEMBRANES. |
USD279779S (en) | 1983-03-21 | 1985-07-23 | Motorola, Inc. | Control unit for a two-way radio or similar article |
US4509211A (en) | 1983-05-16 | 1985-04-02 | Xantech Corporation | Infrared extension system |
US4530091A (en) | 1983-07-08 | 1985-07-16 | At&T Bell Laboratories | Synchronization of real-time clocks in a packet switching system |
NL8500690A (en) | 1985-03-12 | 1986-10-01 | Philips Nv | REMOTE CONTROL UNIT FOR OPERATING VARIOUS MODULES. |
US4661902A (en) | 1985-03-21 | 1987-04-28 | Apple Computer, Inc. | Local area network with carrier sense collision avoidance |
US4689786A (en) | 1985-03-21 | 1987-08-25 | Apple Computer, Inc. | Local area network with self assigned address method |
FR2580240B1 (en) | 1985-04-10 | 1987-07-10 | Citroen Maxime | GROUPING DEVICE CONSTITUTING A KEYBOARD OF CONTACTORS FOR CONTROLLING EQUIPMENT INSTALLED IN A MOTOR VEHICLE |
USD293671S (en) | 1985-09-26 | 1988-01-12 | Motorola, Inc. | Radio control unit or similar article |
US4731814A (en) | 1986-02-21 | 1988-03-15 | AT&T Information Systems Inc. American Telephone & Telegraph Company | Computer-controlled cordless telephone |
USD304443S (en) | 1986-04-17 | 1989-11-07 | Ford Motor Company | Front control panel for a vehicular combined tape player and radio or the like |
USD301037S (en) | 1986-04-28 | 1989-05-09 | Multivision Products, Inc. | Hand-held remote control |
CA1253971A (en) | 1986-06-26 | 1989-05-09 | Pierre Goyer | Synchronization service for a distributed operating system or the like |
US4914657A (en) | 1987-04-15 | 1990-04-03 | Allied-Signal Inc. | Operations controller for a fault tolerant multiple node processing system |
JPS63269633A (en) | 1987-04-28 | 1988-11-07 | Mazda Motor Corp | Automobile telephone set |
US4824059A (en) | 1988-02-01 | 1989-04-25 | Butler Les I | Cushioning device for remote control television equipment, and assembly thereof |
USD313398S (en) | 1988-03-03 | 1991-01-01 | Gilchrist Thomas L | Electronic window remote-control |
US4845751A (en) | 1988-03-16 | 1989-07-04 | Schwab Brian H | Wireless stereo headphone |
USD313023S (en) | 1988-06-06 | 1990-12-18 | Ford Motor Company | Front control panel for a vehicular compact disc player |
USD313600S (en) | 1988-06-23 | 1991-01-08 | Contel Ipc, Inc. | Telephone control module |
US4994908A (en) | 1988-12-23 | 1991-02-19 | Scientific-Atlanta, Inc. | Interactive room status/time information system |
DE3900342A1 (en) | 1989-01-07 | 1990-07-12 | Krupp Maschinentechnik | GRIP DEVICE FOR CARRYING A STICKY MATERIAL RAIL |
US5086385A (en) | 1989-01-31 | 1992-02-04 | Custom Command Systems | Expandable home automation system |
USD322609S (en) | 1989-05-05 | 1991-12-24 | Mitsubishi Electric Sales America, Inc. | Remote controller |
JPH0734531B2 (en) | 1989-07-26 | 1995-04-12 | ヤマハ株式会社 | Fader device |
US5153579A (en) | 1989-08-02 | 1992-10-06 | Motorola, Inc. | Method of fast-forwarding and reversing through digitally stored voice messages |
US5182552A (en) | 1989-08-24 | 1993-01-26 | Bose Corporation | Multiple zone audio system |
JP2555743B2 (en) | 1989-10-03 | 1996-11-20 | ヤマハ株式会社 | Recording / reproducing apparatus synchronization method |
DE4030121C2 (en) | 1989-10-11 | 1999-05-12 | Mitsubishi Electric Corp | Multi-channel audio player |
USD320598S (en) | 1989-11-02 | 1991-10-08 | Mitsubishi Electric Sales America, Inc. | Portable keyboard for remote controller |
USD331388S (en) | 1990-02-12 | 1992-12-01 | Spacesaver Corporation | Electrical control panel for mobile storage units |
JP2840691B2 (en) | 1990-03-20 | 1998-12-24 | ソニー株式会社 | Audio player |
US5272757A (en) | 1990-09-12 | 1993-12-21 | Sonics Associates, Inc. | Multi-dimensional reproduction system |
US5151922A (en) | 1990-09-24 | 1992-09-29 | Motorola, Inc. | Variable speaker muting based on received data |
USD326450S (en) | 1990-10-05 | 1992-05-26 | Oki Electric Industry Co., Ltd. | Automotive telephone control unit |
US5361381A (en) | 1990-10-23 | 1994-11-01 | Bose Corporation | Dynamic equalizing of powered loudspeaker systems |
JP3219761B2 (en) | 1990-11-19 | 2001-10-15 | ソニー株式会社 | Remote commander |
USD327060S (en) | 1991-01-07 | 1992-06-16 | General Instrument Corporation | Combined remote control and cordless telephone handset and its base with an antenna |
US5440644A (en) | 1991-01-09 | 1995-08-08 | Square D Company | Audio distribution system having programmable zoning features |
WO1992015083A1 (en) | 1991-02-21 | 1992-09-03 | Typeright Keyboard Corp. | Membrane keyboard and method of using same |
USD333135S (en) | 1991-06-13 | 1993-02-09 | General Instrument Corporation | Combined remote control and cordless telephone |
US5491839A (en) | 1991-08-21 | 1996-02-13 | L. S. Research, Inc. | System for short range transmission of a plurality of signals simultaneously over the air using high frequency carriers |
TW218062B (en) | 1991-11-12 | 1993-12-21 | Philips Nv | |
JP2791243B2 (en) | 1992-03-13 | 1998-08-27 | 株式会社東芝 | Hierarchical synchronization system and large scale integrated circuit using the same |
US5299266A (en) | 1992-03-20 | 1994-03-29 | Sony Electronics Inc. | Multi machine monitor for TV post production |
DE69322393T2 (en) | 1992-07-30 | 1999-05-27 | Clair Bros. Audio Enterprises, Inc., Lititz, Pa. | CONCERT SOUND SYSTEM |
USD354059S (en) | 1992-12-03 | 1995-01-03 | Discovery Communications, Inc. | Remote control unit |
USD350962S (en) | 1992-12-04 | 1994-09-27 | Zing Systems, L.P. | Hand held television controller |
USD354751S (en) | 1992-12-31 | 1995-01-24 | Hersh Joseph B | TV remote control for the manually handicapped |
USD357024S (en) | 1993-03-15 | 1995-04-04 | Motorola, Inc. | Mobile radio control head |
US5406634A (en) | 1993-03-16 | 1995-04-11 | Peak Audio, Inc. | Intelligent speaker unit for speaker system network |
DE69405388T2 (en) | 1993-05-10 | 1998-03-19 | Taligent Inc | MULTIMEDIA SYNCHRONIZATION SYSTEM |
US5596696A (en) | 1993-05-10 | 1997-01-21 | Object Technology Licensing Corp. | Method and apparatus for synchronizing graphical presentations |
US5553147A (en) | 1993-05-11 | 1996-09-03 | One Inc. | Stereophonic reproduction method and apparatus |
USD365102S (en) | 1993-06-01 | 1995-12-12 | Sony Electronics Inc. | Universal remote control unit |
USD356093S (en) | 1993-07-26 | 1995-03-07 | Chrysler Corporation | Control Panel for a combined vehicular radio receiver, cassette player, compact disc player and digital clock |
US5457448A (en) | 1993-08-03 | 1995-10-10 | Sony Electronics, Inc. | Self-standing mini remote commander |
SG48940A1 (en) | 1993-09-10 | 1998-05-18 | Intel Corp | Audio record and playback through a standard telephone in a computer system |
US5430485A (en) | 1993-09-30 | 1995-07-04 | Thomson Consumer Electronics, Inc. | Audio/video synchronization in a digital transmission system |
US6594688B2 (en) | 1993-10-01 | 2003-07-15 | Collaboration Properties, Inc. | Dedicated echo canceler for a workstation |
USD350531S (en) | 1993-10-29 | 1994-09-13 | Hunter Fan Company | Remote control for a ceiling fan |
US5602992A (en) | 1993-11-29 | 1997-02-11 | Intel Corporation | System for synchronizing data stream transferred from server to client by initializing clock when first packet is received and comparing packet time information with clock |
US5481251A (en) | 1993-11-29 | 1996-01-02 | Universal Electronics Inc. | Minimal function remote control without digit keys and with a power toggle program and with a channel rotation program |
US5625350A (en) | 1993-12-27 | 1997-04-29 | Alpine Electronics, Inc. | Audio/video communication system and method |
USD356312S (en) | 1993-12-27 | 1995-03-14 | Zenith Electronics Corporation | Remote control unit |
JP3807754B2 (en) | 1993-12-30 | 2006-08-09 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Self-timed real-time data transfer in video RAM |
US5467342A (en) | 1994-01-12 | 1995-11-14 | Scientific-Atlanta, Inc. | Methods and apparatus for time stamp correction in an asynchronous transfer mode network |
USD368093S (en) | 1994-02-04 | 1996-03-19 | Thomson Consumer Electronics (Societe Anonyme) | Radio apparatus |
US5740235A (en) | 1994-02-09 | 1998-04-14 | Harris Corporation | User-programmable paging system controller having priority-based, multiple input paging access capability for selectively activating one or more audio/visual paging output devices |
US5621662A (en) | 1994-02-15 | 1997-04-15 | Intellinet, Inc. | Home automation system |
KR0128271B1 (en) | 1994-02-22 | 1998-04-15 | 윌리암 티. 엘리스 | Remote data duplexing |
USD366044S (en) | 1994-03-16 | 1996-01-09 | Matsushita Electric Industrial Co., Ltd. | Remote controller for television receiver |
US6195701B1 (en) | 1994-03-16 | 2001-02-27 | International Business Machines Corporation | Method and apparatus for synchronization and scheduling of multiple data streams and real time tasks |
USD364877S (en) | 1994-03-21 | 1995-12-05 | Motorola, Inc. | Control head for a mobile radio |
US5553314A (en) | 1994-04-12 | 1996-09-03 | Motorola, Inc. | Method of configuring a communication unit using a wireless portable configuration device |
US7630500B1 (en) | 1994-04-15 | 2009-12-08 | Bose Corporation | Spatial disassembly processor |
US5519641A (en) | 1994-05-20 | 1996-05-21 | International Business Machines Corporation | Method and apparatus for configuring plural multimedia audio cards as a local area network |
US5642171A (en) | 1994-06-08 | 1997-06-24 | Dell Usa, L.P. | Method and apparatus for synchronizing audio and video data streams in a multimedia system |
USD362446S (en) | 1994-07-29 | 1995-09-19 | Chrysler Corporation | Front panel for a combined radio receiver, cassette tape player and CD changer control |
US5984512A (en) | 1994-07-29 | 1999-11-16 | Discovision Associates | Method for storing video information |
US5515345A (en) | 1994-08-23 | 1996-05-07 | Jeane K. Barreira | Control unit for automobile audio system |
USD364878S (en) | 1994-08-30 | 1995-12-05 | Chrysler Corporation | Control panel for a combined vehicular radio receiver, cassette player and digital clock |
US5559999A (en) | 1994-09-09 | 1996-09-24 | Lsi Logic Corporation | MPEG decoding system including tag list for associating presentation time stamps with encoded data units |
USD377651S (en) | 1994-10-26 | 1997-01-28 | Lucent Technologies Inc. | Remote controller |
US5905768A (en) | 1994-12-13 | 1999-05-18 | Lsi Logic Corporation | MPEG audio synchronization system using subframe skip and repeat |
US5652749A (en) | 1995-02-03 | 1997-07-29 | International Business Machines Corporation | Apparatus and method for segmentation and time synchronization of the transmission of a multiple program multimedia data stream |
US5533021A (en) | 1995-02-03 | 1996-07-02 | International Business Machines Corporation | Apparatus and method for segmentation and time synchronization of the transmission of multimedia data |
USD379816S (en) | 1995-02-08 | 1997-06-10 | Apple Computer, Inc. | Multimedia remote control |
KR0152916B1 (en) | 1995-04-11 | 1998-10-15 | 문정환 | Data synchronization apparatus and method thereof |
US5673323A (en) | 1995-04-12 | 1997-09-30 | L. S. Research, Inc. | Analog spread spectrum wireless speaker system |
USD372716S (en) | 1995-04-24 | 1996-08-13 | Microsoft Corporation | Remote control |
US5612900A (en) | 1995-05-08 | 1997-03-18 | Kabushiki Kaisha Toshiba | Video encoding method and system which encodes using a rate-quantizer model |
US5623483A (en) | 1995-05-11 | 1997-04-22 | Lucent Technologies Inc. | Synchronization system for networked multimedia streams |
US5852744A (en) | 1995-07-14 | 1998-12-22 | Oki America, Inc. | Method for discovering a network printer by assigning dedicated sockets to different printer types and polling the dedicated sockets to learn the corresponding state |
US5751819A (en) | 1995-07-24 | 1998-05-12 | Dorrough; Michael L. | Level meter for digitally-encoded audio |
US5742623A (en) | 1995-08-04 | 1998-04-21 | General Instrument Corporation Of Delaware | Error detection and recovery for high rate isochronous data in MPEG-2 data streams |
WO1997009756A2 (en) | 1995-08-31 | 1997-03-13 | Bucalo Brian D | Method and apparatus for automatic shut off of electronic equipment |
US5790543A (en) | 1995-09-25 | 1998-08-04 | Bell Atlantic Network Services, Inc. | Apparatus and method for correcting jitter in data packets |
US5848152A (en) | 1995-09-26 | 1998-12-08 | Motorola, Inc. | Communication device having interchangeable faceplates and active keypad cover |
TW436777B (en) | 1995-09-29 | 2001-05-28 | Matsushita Electric Ind Co Ltd | A method and an apparatus for reproducing bitstream having non-sequential system clock data seamlessly therebetween |
US5887143A (en) | 1995-10-26 | 1999-03-23 | Hitachi, Ltd. | Apparatus and method for synchronizing execution of programs in a distributed real-time computing system |
US6122668A (en) | 1995-11-02 | 2000-09-19 | Starlight Networks | Synchronization of audio and video signals in a live multicast in a LAN |
JP4392513B2 (en) | 1995-11-02 | 2010-01-06 | バン アンド オルフセン アクティー ゼルスカブ | Method and apparatus for controlling an indoor speaker system |
DE69637704D1 (en) | 1995-11-02 | 2008-11-20 | Bang & Olufsen As | Method and device for power control of a loudspeaker in a room |
US20020002562A1 (en) | 1995-11-03 | 2002-01-03 | Thomas P. Moran | Computer controlled display system using a graphical replay device to control playback of temporal data representing collaborative activities |
US5726989A (en) | 1995-11-06 | 1998-03-10 | Stellar One Corporation | Method for ensuring synchronization of MPEG-1 data carried in an MPEG-2 transport stream |
US5808662A (en) | 1995-11-08 | 1998-09-15 | Silicon Graphics, Inc. | Synchronized, interactive playback of digital movies across a network |
US5956088A (en) | 1995-11-21 | 1999-09-21 | Imedia Corporation | Method and apparatus for modifying encoded digital video for improved channel utilization |
US5640388A (en) | 1995-12-21 | 1997-06-17 | Scientific-Atlanta, Inc. | Method and apparatus for removing jitter and correcting timestamps in a packet stream |
JP3130464B2 (en) | 1996-02-02 | 2001-01-31 | ローム株式会社 | Data decryption device |
EP0880827A1 (en) | 1996-02-07 | 1998-12-02 | L.S. Research, Inc. | Digital wireless speaker system |
JP3094900B2 (en) | 1996-02-20 | 2000-10-03 | ヤマハ株式会社 | Network device and data transmission / reception method |
USD396861S (en) | 1996-02-28 | 1998-08-11 | Sony Corporation | Remote controller |
US5826000A (en) | 1996-02-29 | 1998-10-20 | Sun Microsystems, Inc. | System and method for automatic configuration of home network computers |
US5875354A (en) | 1996-03-01 | 1999-02-23 | Apple Computer, Inc. | System for synchronization by modifying the rate of conversion by difference of rate between first clock and audio clock during a second time period |
USD394659S (en) | 1996-03-11 | 1998-05-26 | Lucent Technologies Inc. | Remote controller |
USD387352S (en) | 1996-03-19 | 1997-12-09 | Microsoft Corporation | Remote control |
US6240555B1 (en) | 1996-03-29 | 2001-05-29 | Microsoft Corporation | Interactive entertainment system for presenting supplemental interactive content together with continuous video programs |
USD401587S (en) | 1996-04-01 | 1998-11-24 | Echostar Communications Corporation | Satellite receiver remote control |
US6009457A (en) | 1996-04-01 | 1999-12-28 | Rocket Network, Inc. | Distributed real-time communications system |
JP3687188B2 (en) | 1996-04-05 | 2005-08-24 | ソニー株式会社 | Packet transmission method |
US5774016A (en) | 1996-04-09 | 1998-06-30 | Bogen Corporation | Amplifier system having prioritized connections between inputs and outputs |
USD389143S (en) | 1996-04-25 | 1998-01-13 | Sony Corporation | Interactive display controller and telephone handset unit |
US5787249A (en) | 1996-04-30 | 1998-07-28 | International Business Machines Coporation | Method for managing membership of a group of processors in a distributed computing environment |
US5696896A (en) | 1996-04-30 | 1997-12-09 | International Business Machines Corporation | Program product for group leader recovery in a distributed computing environment |
US6404811B1 (en) | 1996-05-13 | 2002-06-11 | Tektronix, Inc. | Interactive multimedia system |
USD382271S (en) | 1996-05-15 | 1997-08-12 | Ndukwe Akwiwu | Luminous remote control |
USD380752S (en) | 1996-05-28 | 1997-07-08 | Hanson Bruce D | Combined telephone and remote control |
US6181383B1 (en) | 1996-05-29 | 2001-01-30 | Sarnoff Corporation | Method and apparatus for preserving synchronization of audio and video presentation when splicing transport streams |
US6385734B2 (en) | 1996-06-03 | 2002-05-07 | Compaq Information Technologies Group, L.P. | Portable computer with low power audio CD-player |
USD384940S (en) | 1996-06-03 | 1997-10-14 | Sony Corporation | Remote controller |
USD388792S (en) | 1996-06-24 | 1998-01-06 | Michael Nykerk | Television remote control |
US5661665A (en) | 1996-06-26 | 1997-08-26 | Microsoft Corporation | Multi-media synchronization |
US5910991A (en) | 1996-08-02 | 1999-06-08 | Apple Computer, Inc. | Method and apparatus for a speaker for a personal computer for selective use as a conventional speaker or as a sub-woofer |
USD393628S (en) | 1996-08-19 | 1998-04-21 | Microsoft Corporation | Hand-held remote control unit |
JP3698376B2 (en) | 1996-08-19 | 2005-09-21 | 松下電器産業株式会社 | Synchronous playback device |
US6031842A (en) | 1996-09-11 | 2000-02-29 | Mcdata Corporation | Low latency shared memory switch architecture |
JP2001034952A (en) | 1996-09-26 | 2001-02-09 | Sanyo Electric Co Ltd | Optical disk and recording-playback device thereof |
GB9620082D0 (en) | 1996-09-26 | 1996-11-13 | Eyretel Ltd | Signal monitoring apparatus |
USD397996S (en) | 1996-09-30 | 1998-09-08 | Smith Michael A | Remote control with charger |
US5818948A (en) | 1996-10-23 | 1998-10-06 | Advanced Micro Devices, Inc. | Architecture for a universal serial bus-based PC speaker controller |
USD420006S (en) | 1996-10-23 | 2000-02-01 | U.S. Philips Corporation | Remote control unit |
US6122749A (en) | 1996-10-23 | 2000-09-19 | Advanced Micro Devices, Inc. | Audio peripheral device having controller for power management |
USD392641S (en) | 1996-11-15 | 1998-03-24 | Sony Corporation | Remote control |
KR0185021B1 (en) | 1996-11-20 | 1999-04-15 | 한국전기통신공사 | Auto regulating apparatus and method for multi-channel sound system |
JP3039624B2 (en) | 1996-12-02 | 2000-05-08 | 日本電気株式会社 | Audio / video synchronous playback device |
JP2001509907A (en) | 1996-12-04 | 2001-07-24 | アドヴァンスト・コミュニケイション・デザイン・インコーポレーテッド | Multi-station audio distribution device |
US5987611A (en) | 1996-12-31 | 1999-11-16 | Zone Labs, Inc. | System and methodology for managing internet access on a per application basis for client computers connected to the internet |
US6469633B1 (en) | 1997-01-06 | 2002-10-22 | Openglobe Inc. | Remote control of electronic devices |
JPH10198743A (en) | 1997-01-07 | 1998-07-31 | Ibm Japan Ltd | Method and device for identifying and displaying operator input position, and storage medium for storing program for identifying and displaying operator input position |
JP3106987B2 (en) | 1997-01-09 | 2000-11-06 | 日本電気株式会社 | Audio / video synchronous playback device |
US6823225B1 (en) | 1997-02-12 | 2004-11-23 | Im Networks, Inc. | Apparatus for distributing and playing audio information |
US6031818A (en) | 1997-03-19 | 2000-02-29 | Lucent Technologies Inc. | Error correction system for packet switching networks |
US6803964B1 (en) | 1997-03-21 | 2004-10-12 | International Business Machines Corporation | Method and apparatus for processing digital data |
US5960167A (en) | 1997-03-24 | 1999-09-28 | Xerox Corporation | Printer configuration system |
USD406847S (en) | 1997-03-25 | 1999-03-16 | Corporate Media Partners | Two sided remote control |
USD395889S (en) | 1997-03-25 | 1998-07-07 | Corporate Media Partners | Remote control |
US6449653B2 (en) | 1997-03-25 | 2002-09-10 | Microsoft Corporation | Interleaved multiple multimedia stream for synchronized transmission over a computer network |
US5815689A (en) | 1997-04-04 | 1998-09-29 | Microsoft Corporation | Method and computer program product for synchronizing the processing of multiple data streams and matching disparate processing rates using a standardized clock mechanism |
USD429246S (en) | 1997-04-09 | 2000-08-08 | Timberjack Oy | Arm support with control panel |
US6081266A (en) | 1997-04-21 | 2000-06-27 | Sony Corporation | Interactive control of audio outputs on a display screen |
KR100240328B1 (en) | 1997-04-30 | 2000-01-15 | 전주범 | Audio reproduction clock signal generator of a dvcr |
US5990884A (en) | 1997-05-02 | 1999-11-23 | Sony Corporation | Control of multimedia information with interface specification stored on multimedia component |
US6310652B1 (en) | 1997-05-02 | 2001-10-30 | Texas Instruments Incorporated | Fine-grained synchronization of a decompressed audio stream by skipping or repeating a variable number of samples from a frame |
US6101195A (en) | 1997-05-28 | 2000-08-08 | Sarnoff Corporation | Timing correction method and apparatus |
US6611537B1 (en) | 1997-05-30 | 2003-08-26 | Centillium Communications, Inc. | Synchronous network for digital media streams |
US5956025A (en) | 1997-06-09 | 1999-09-21 | Philips Electronics North America Corporation | Remote with 3D organized GUI for a home entertainment system |
US6029196A (en) | 1997-06-18 | 2000-02-22 | Netscape Communications Corporation | Automatic client configuration system |
US7240094B2 (en) | 1997-07-03 | 2007-07-03 | Centra Software Inc. | Method and system for synchronizing and serving multimedia in a distributed network |
JPH1139769A (en) | 1997-07-17 | 1999-02-12 | Internatl Business Mach Corp <Ibm> | Information processor and power saving device |
US6704421B1 (en) | 1997-07-24 | 2004-03-09 | Ati Technologies, Inc. | Automatic multichannel equalization control system for a multimedia computer |
US5959684A (en) | 1997-07-28 | 1999-09-28 | Sony Corporation | Method and apparatus for audio-video synchronizing |
JP3453498B2 (en) | 1997-08-27 | 2003-10-06 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Information processing device and power saving device |
US6308207B1 (en) | 1997-09-09 | 2001-10-23 | Ncr Corporation | Distributed service subsystem architecture for distributed network management |
US6026297A (en) | 1997-09-17 | 2000-02-15 | Telefonaktiebolaget Lm Ericsson | Contemporaneous connectivity to multiple piconets |
US5999906A (en) | 1997-09-24 | 1999-12-07 | Sony Corporation | Sample accurate audio state update |
JP3418966B2 (en) | 1997-10-09 | 2003-06-23 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Synchronization method and decoder |
US6327418B1 (en) | 1997-10-10 | 2001-12-04 | Tivo Inc. | Method and apparatus implementing random access and time-based functions on a continuous stream of formatted digital data |
USD405071S (en) | 1997-10-17 | 1999-02-02 | Gambaro Thomas L | Cursor control--data entry device |
US6026150A (en) | 1997-10-30 | 2000-02-15 | Epigram | Network protocol--based home entertainment network |
US6212282B1 (en) | 1997-10-31 | 2001-04-03 | Stuart Mershon | Wireless speaker system |
AU1451599A (en) | 1997-11-04 | 1999-05-24 | Collaboration Properties, Inc. | Scalable networked multimedia system and applications |
US6816904B1 (en) | 1997-11-04 | 2004-11-09 | Collaboration Properties, Inc. | Networked video multimedia storage server environment |
US6385704B1 (en) | 1997-11-14 | 2002-05-07 | Cirrus Logic, Inc. | Accessing shared memory using token bit held by default by a single processor |
AU1702199A (en) | 1997-11-25 | 1999-06-15 | Motorola, Inc. | Audio content player methods, systems, and articles of manufacture |
US6131130A (en) | 1997-12-10 | 2000-10-10 | Sony Corporation | System for convergence of a personal computer with wireless audio/video devices wherein the audio/video devices are remotely controlled by a wireless peripheral |
US6175872B1 (en) | 1997-12-12 | 2001-01-16 | Gte Internetworking Incorporated | Collaborative environment for syncronizing audio from remote devices |
US6038614A (en) | 1998-01-05 | 2000-03-14 | Gateway 2000, Inc. | Active volume control with hot key |
US6085236A (en) | 1998-01-06 | 2000-07-04 | Sony Corporation Of Japan | Home audio video network with device control modules for incorporating legacy devices |
US6349352B1 (en) | 1998-01-06 | 2002-02-19 | Sony Corporation Of Japan | Home audio/video network with both generic and parameterized device control |
US6032202A (en) | 1998-01-06 | 2000-02-29 | Sony Corporation Of Japan | Home audio/video network with two level device control |
US6246701B1 (en) | 1998-01-14 | 2001-06-12 | Skystream Corporation | Reference time clock locking in a remultiplexer for video program bearing transport streams |
USD404741S (en) | 1998-01-20 | 1999-01-26 | Ford Global Technologies, Inc. | Control panel for an automotive audio system and climate control |
US6157957A (en) | 1998-01-22 | 2000-12-05 | Cisco Technology, Inc. | Clock synchronization system and method using a continuous conversion function for a communication network |
US20020002039A1 (en) | 1998-06-12 | 2002-01-03 | Safi Qureshey | Network-enabled audio device |
US6128318A (en) | 1998-01-23 | 2000-10-03 | Philips Electronics North America Corporation | Method for synchronizing a cycle master node to a cycle slave node using synchronization information from an external network or sub-network which is supplied to the cycle slave node |
US6127941A (en) | 1998-02-03 | 2000-10-03 | Sony Corporation | Remote control device with a graphical user interface |
US6081299A (en) | 1998-02-20 | 2000-06-27 | International Business Machines Corporation | Methods and systems for encoding real time multimedia data |
US6418150B1 (en) | 1998-02-20 | 2002-07-09 | Apple Computer, Inc. | Method and apparatus for calibrating an IEEE-1394 cycle master |
WO1999043000A1 (en) | 1998-02-23 | 1999-08-26 | Kabushiki Kaisha Toshiba | Information storage medium and information recording/reproducing system |
US6108686A (en) | 1998-03-02 | 2000-08-22 | Williams, Jr.; Henry R. | Agent-based on-line information retrieval and viewing system |
USD412337S (en) | 1998-03-02 | 1999-07-27 | Star Micronics Co., Ltd. | Controller for a monitor camera |
USD430143S (en) | 1998-03-05 | 2000-08-29 | Thomson Consumer Electronics, Inc. | Remote control |
USD407071S (en) | 1998-03-09 | 1999-03-23 | General Instrument Corporation | 4-in-1 remote control unit |
USD415496S (en) | 1998-03-12 | 1999-10-19 | Corporate Media Partners | Remote control |
US6199169B1 (en) | 1998-03-31 | 2001-03-06 | Compaq Computer Corporation | System and method for synchronizing time across a computer cluster |
US6301012B1 (en) | 1998-04-24 | 2001-10-09 | Hewlett-Packard Company | Automatic configuration of a network printer |
US6195435B1 (en) | 1998-05-01 | 2001-02-27 | Ati Technologies | Method and system for channel balancing and room tuning for a multichannel audio surround sound speaker system |
US6255961B1 (en) | 1998-05-08 | 2001-07-03 | Sony Corporation | Two-way communications between a remote control unit and one or more devices in an audio/visual environment |
ATE245833T1 (en) | 1998-05-26 | 2003-08-15 | Dow Global Technologies Inc | DISTRIBUTED COMPUTING ENVIRONMENT WITH REAL-TIME SEQUENCE LOGIC AND TIME-DETERMINISTIC ARCHITECTURE |
GB2338374A (en) | 1998-06-10 | 1999-12-15 | Motorola Ltd | Locating a mobile telephone using time of arrival measurements |
US6046550A (en) | 1998-06-22 | 2000-04-04 | Lutron Electronics Co., Inc. | Multi-zone lighting control system |
US6185737B1 (en) | 1998-06-30 | 2001-02-06 | Sun Microsystems, Inc. | Method and apparatus for providing multi media network interface |
US6148205A (en) | 1998-06-30 | 2000-11-14 | Motorola, Inc. | Method and apparatus for secure registration within an in-home wireless network |
JP2000020187A (en) | 1998-07-07 | 2000-01-21 | Fujitsu Ltd | Information processor, power controlling method and recording medium |
US6321252B1 (en) | 1998-07-17 | 2001-11-20 | International Business Machines Corporation | System and method for data streaming and synchronization in multimedia groupware applications |
FR2781591B1 (en) | 1998-07-22 | 2000-09-22 | Technical Maintenance Corp | AUDIOVISUAL REPRODUCTION SYSTEM |
US7831930B2 (en) | 2001-11-20 | 2010-11-09 | Universal Electronics Inc. | System and method for displaying a user interface for a remote control application |
USD416021S (en) | 1998-07-27 | 1999-11-02 | L&P Property Management Company | Remote controller |
US6931134B1 (en) | 1998-07-28 | 2005-08-16 | James K. Waller, Jr. | Multi-dimensional processor and multi-dimensional audio processor system |
US20050058149A1 (en) | 1998-08-19 | 2005-03-17 | Howe Wayne Richard | Time-scheduled and time-reservation packet switching |
US20040208158A1 (en) | 1998-08-19 | 2004-10-21 | Fellman Ronald D. | Methods and apparatus for providing quality-of-service guarantees in computer networks |
US6466832B1 (en) | 1998-08-24 | 2002-10-15 | Altec Lansing R & D Center Israel | High quality wireless audio speakers |
US6449642B2 (en) | 1998-09-15 | 2002-09-10 | Microsoft Corporation | Method and system for integrating a client computer into a computer network |
US6324586B1 (en) | 1998-09-17 | 2001-11-27 | Jennifer Wallace | System for synchronizing multiple computers with a common timing reference |
JP2000101658A (en) | 1998-09-24 | 2000-04-07 | Victor Co Of Japan Ltd | Interface circuit |
EP1116376A1 (en) | 1998-09-25 | 2001-07-18 | Soma Networks, Inc. | Method and system of teleconferencing |
US6487296B1 (en) | 1998-09-30 | 2002-11-26 | Steven W. Allen | Wireless surround sound speaker system |
DK199901256A (en) | 1998-10-06 | 1999-10-05 | Bang & Olufsen As | Multimedia System |
US6269406B1 (en) | 1998-10-19 | 2001-07-31 | International Business Machines Corporation | User group synchronization to manage capabilities in heterogeneous networks |
US6169725B1 (en) | 1998-10-30 | 2001-01-02 | Sony Corporation Of Japan | Apparatus and method for restoration of internal connections in a home audio/video system |
JP2000149391A (en) | 1998-11-04 | 2000-05-30 | Victor Co Of Japan Ltd | Disk reproducing device |
DK1135969T3 (en) | 1998-12-03 | 2004-08-02 | Cirrus Logic Inc | Digital wireless speaker system |
US6763274B1 (en) | 1998-12-18 | 2004-07-13 | Placeware, Incorporated | Digital audio compensation |
US6452612B1 (en) | 1998-12-18 | 2002-09-17 | Parkervision, Inc. | Real time video production system and method |
US7966388B1 (en) | 1998-12-31 | 2011-06-21 | Qwest Communications International Inc | Network management system and graphical user interface |
EP1021048A3 (en) | 1999-01-14 | 2002-10-02 | Kabushiki Kaisha Toshiba | Digital video recording system and its recording medium |
CA2325494A1 (en) | 1999-01-22 | 2000-07-27 | Leviton Manufacturing Co., Inc. | Method of adding a device to a network |
US6353172B1 (en) | 1999-02-02 | 2002-03-05 | Microsoft Corporation | Music event timing and delivery in a non-realtime environment |
US6061457A (en) | 1999-02-22 | 2000-05-09 | Stockhamer; Lee | Waterproof microphone and speaker |
US7130616B2 (en) | 2000-04-25 | 2006-10-31 | Simple Devices | System and method for providing content, management, and interactivity for client devices |
US6493832B1 (en) | 1999-03-17 | 2002-12-10 | Sony Corporation | Communication apparatus which handles a time stamp |
US6859538B1 (en) | 1999-03-17 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Plug and play compatible speakers |
US6535121B2 (en) | 1999-04-09 | 2003-03-18 | Richard K. Matheny | Fire department station zoned alerting control system |
US6256554B1 (en) | 1999-04-14 | 2001-07-03 | Dilorenzo Mark | Multi-room entertainment system with in-room media player/dispenser |
US20050198574A1 (en) | 1999-04-21 | 2005-09-08 | Interactual Technologies, Inc. | Storyboard |
US20060041639A1 (en) | 1999-04-21 | 2006-02-23 | Interactual Technologies, Inc. | Platform detection |
WO2000068946A1 (en) | 1999-05-07 | 2000-11-16 | Kabushiki Kaisha Toshiba | Data structure of stream data, and method of recording and reproducing stream data |
TW501354B (en) | 1999-05-25 | 2002-09-01 | Sony Corp | Digital signal processing device and method, digital signal processing system |
US6788938B1 (en) | 1999-05-31 | 2004-09-07 | Sony Corporation | Construction method of radio network system and radio transmission device |
US6356871B1 (en) | 1999-06-14 | 2002-03-12 | Cirrus Logic, Inc. | Methods and circuits for synchronizing streaming data and systems using the same |
US6703940B1 (en) | 1999-06-15 | 2004-03-09 | Bose Corporation | Transceiving remote controlling |
US6993570B1 (en) | 1999-06-15 | 2006-01-31 | Sun Microsystems, Inc. | System and method for pushing personalized content to small footprint devices |
US7330875B1 (en) | 1999-06-15 | 2008-02-12 | Microsoft Corporation | System and method for recording a presentation for on-demand viewing over a computer network |
US6349285B1 (en) | 1999-06-28 | 2002-02-19 | Cirrus Logic, Inc. | Audio bass management methods and circuits and systems using the same |
US6463474B1 (en) | 1999-07-02 | 2002-10-08 | Cisco Technology, Inc. | Local authentication of a client at a network device |
US9607041B2 (en) | 1999-07-15 | 2017-03-28 | Gula Consulting Limited Liability Company | System and method for efficiently accessing internet resources |
US7657910B1 (en) | 1999-07-26 | 2010-02-02 | E-Cast Inc. | Distributed electronic entertainment method and apparatus |
JP2003506765A (en) | 1999-08-02 | 2003-02-18 | チュン,ランダル・エム | Method and apparatus for distributing data using a distributed storage system |
US6636269B1 (en) | 1999-08-18 | 2003-10-21 | Webtv Networks, Inc. | Video timing system and method |
USD444475S1 (en) | 1999-08-23 | 2001-07-03 | Keith P. Levey | Set of keys for a computer keyboard |
US7702403B1 (en) | 1999-08-31 | 2010-04-20 | Stephen Christopher Gladwin | Structure and method for selecting, controlling and sending internet-based or local digital audio to an AM/FM radio or analog amplifier |
CA2320451A1 (en) | 1999-09-23 | 2001-03-23 | Marc Etienne Bonneville | Transmission of power and/or signalling between an audio distribution unit and a plurality of remote audio transducers |
DE19946022A1 (en) | 1999-09-25 | 2001-04-26 | Bosch Gmbh Robert | Control device and method for determining an information output ranking of several information sources, in particular audio sources |
US7031474B1 (en) | 1999-10-04 | 2006-04-18 | Srs Labs, Inc. | Acoustic correction apparatus |
AU2018201A (en) | 1999-10-12 | 2001-04-23 | Perception Digital Technology (Bvi) Limited | Digital multimedia jukebox |
US6526325B1 (en) | 1999-10-15 | 2003-02-25 | Creative Technology Ltd. | Pitch-Preserved digital audio playback synchronized to asynchronous clock |
US6687664B1 (en) | 1999-10-15 | 2004-02-03 | Creative Technology, Ltd. | Audio-visual scrubbing system |
US6859460B1 (en) | 1999-10-22 | 2005-02-22 | Cisco Technology, Inc. | System and method for providing multimedia jitter buffer adjustment for packet-switched networks |
JP2001127712A (en) | 1999-10-29 | 2001-05-11 | Yazaki Corp | Audio system |
US6598172B1 (en) | 1999-10-29 | 2003-07-22 | Intel Corporation | System and method for clock skew compensation between encoder and decoder clocks by calculating drift metric, and using it to modify time-stamps of data packets |
US6757573B1 (en) | 1999-11-02 | 2004-06-29 | Microsoft Corporation | Method and system for authoring a soundscape for a media application |
US6571221B1 (en) | 1999-11-03 | 2003-05-27 | Wayport, Inc. | Network communication service with an improved subscriber model using digital certificates |
EP1100243A3 (en) | 1999-11-12 | 2004-03-17 | Sony Corporation | Telephone set, communication adaptor, home appliance control method, and program recording medium |
US6965948B1 (en) | 1999-11-12 | 2005-11-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for selective network access |
JP3963417B2 (en) | 1999-11-19 | 2007-08-22 | 株式会社東芝 | Communication method and electronic device for data synchronization processing |
US6522886B1 (en) | 1999-11-22 | 2003-02-18 | Qwest Communications International Inc. | Method and system for simultaneously sharing wireless communications among multiple wireless handsets |
US20040223622A1 (en) | 1999-12-01 | 2004-11-11 | Lindemann Eric Lee | Digital wireless loudspeaker system |
EP1104968B1 (en) | 1999-12-03 | 2007-02-14 | Telefonaktiebolaget LM Ericsson (publ) | A method of simultaneously playing back audio files in two telephones |
JP4083361B2 (en) | 1999-12-21 | 2008-04-30 | パイオニア株式会社 | Information reproduction system |
USD432525S (en) | 1999-12-23 | 2000-10-24 | Qwest Communications International Inc. | Handheld remote control |
US6678215B1 (en) | 1999-12-28 | 2004-01-13 | G. Victor Treyz | Digital audio devices |
US7392481B2 (en) | 2001-07-02 | 2008-06-24 | Sonic Solutions, A California Corporation | Method and apparatus for providing content-owner control in a networked device |
US20010042107A1 (en) | 2000-01-06 | 2001-11-15 | Palm Stephen R. | Networked audio player transport protocol and architecture |
JP2004500651A (en) | 2000-01-24 | 2004-01-08 | フリスキット インコーポレイテッド | Streaming media search and playback system |
AU2001231115A1 (en) | 2000-01-24 | 2001-07-31 | Zapmedia, Inc. | System and method for the distribution and sharing of media assets between mediaplayers devices |
US7143141B1 (en) | 2000-01-25 | 2006-11-28 | Hewlett-Packard Development Company, L.P. | System for providing internet-related services in response to a handheld device that is not required to be internet-enabled |
US7133407B2 (en) | 2000-01-25 | 2006-11-07 | Fujitsu Limited | Data communications system |
AU2001233320C1 (en) | 2000-02-04 | 2009-07-02 | Intel Corporation | System for distributed media network and meta data server |
US6778493B1 (en) | 2000-02-07 | 2004-08-17 | Sharp Laboratories Of America, Inc. | Real-time media content synchronization and transmission in packet network apparatus and method |
GB2359177A (en) | 2000-02-08 | 2001-08-15 | Nokia Corp | Orientation sensitive display and selection mechanism |
US6816510B1 (en) | 2000-02-09 | 2004-11-09 | Koninklijke Philips Electronics N.V. | Method for clock synchronization between nodes in a packet network |
US20020137505A1 (en) | 2000-02-18 | 2002-09-26 | Eiche Steven A. | Audio detection for hands-free wireless |
EP1256207B1 (en) | 2000-02-18 | 2007-09-05 | Bridgeco AG | Multi-portal bridge for providing network connectivity |
US20010032188A1 (en) | 2000-02-25 | 2001-10-18 | Yoshiyuki Miyabe | Information distribution system |
US6928329B1 (en) | 2000-02-29 | 2005-08-09 | Microsoft Corporation | Enabling separate chat and selective enablement of microphone |
USD431552S (en) | 2000-03-03 | 2000-10-03 | Tivo, Inc. | Remote control |
JP4712934B2 (en) | 2000-03-06 | 2011-06-29 | ソニー株式会社 | Information signal reproduction device |
IL134979A (en) | 2000-03-09 | 2004-02-19 | Be4 Ltd | System and method for optimization of three-dimensional audio |
US7246374B1 (en) | 2000-03-13 | 2007-07-17 | Microsoft Corporation | Enhancing computer system security via multiple user desktops |
US6631410B1 (en) | 2000-03-16 | 2003-10-07 | Sharp Laboratories Of America, Inc. | Multimedia wired/wireless content synchronization system and method |
CA2301436A1 (en) | 2000-03-20 | 2001-09-20 | Peter Renaud | Method and system for multi-protocol clock recovery and generation |
US7187947B1 (en) | 2000-03-28 | 2007-03-06 | Affinity Labs, Llc | System and method for communicating selected information to an electronic device |
WO2001076170A2 (en) | 2000-03-31 | 2001-10-11 | Classwave Wireless Inc. | Dynamic routing of content to mobile devices |
TW510134B (en) | 2000-04-04 | 2002-11-11 | Koninkl Philips Electronics Nv | Communication system, controlling device and controlled device |
US6654956B1 (en) | 2000-04-10 | 2003-11-25 | Sigma Designs, Inc. | Method, apparatus and computer program product for synchronizing presentation of digital video data with serving of digital video data |
US6684060B1 (en) | 2000-04-11 | 2004-01-27 | Agere Systems Inc. | Digital wireless premises audio system and method of operation thereof |
US6898642B2 (en) | 2000-04-17 | 2005-05-24 | International Business Machines Corporation | Synchronous collaboration based on peer-to-peer communication |
US7080160B2 (en) | 2000-04-27 | 2006-07-18 | Qosmetrics, Inc. | Method for creating accurate time-stamped frames sent between computers via a network |
US6604023B1 (en) | 2000-04-28 | 2003-08-05 | International Business Machines Corporation | Managing an environment utilizing a portable data processing system |
US6654720B1 (en) | 2000-05-09 | 2003-11-25 | International Business Machines Corporation | Method and system for voice control enabling device in a service discovery network |
KR100867760B1 (en) | 2000-05-15 | 2008-11-10 | 소니 가부시끼 가이샤 | Reproducing apparatus, reproducing method and recording medium |
US7286652B1 (en) | 2000-05-31 | 2007-10-23 | 3Com Corporation | Four channel audio recording in a packet based network |
GB2363036B (en) | 2000-05-31 | 2004-05-12 | Nokia Mobile Phones Ltd | Conference call method and apparatus therefor |
GB0014328D0 (en) | 2000-06-12 | 2000-08-02 | Koninkl Philips Electronics Nv | Portable audio devices |
US20020095460A1 (en) | 2000-06-13 | 2002-07-18 | Michael Benson | System and method for serving integrated streams of multimedia information |
US6653899B2 (en) | 2000-06-16 | 2003-11-25 | Niles Audio Corporation | Audio amplifier power and temperature controller having network detecting and associated methods |
US6664891B2 (en) | 2000-06-26 | 2003-12-16 | Koninklijke Philips Electronics N.V. | Data delivery through portable devices |
GB2364203B (en) | 2000-06-27 | 2004-03-17 | Nokia Mobile Phones Ltd | Synchronisation |
JP4481444B2 (en) | 2000-06-30 | 2010-06-16 | 株式会社東芝 | Image encoding device |
FI20001570A (en) | 2000-06-30 | 2001-12-31 | Nokia Corp | Synchronized provision of services over a telecommunications network |
GB2364457B (en) | 2000-07-03 | 2003-08-06 | John Quentin Phillipps | Wireless communication |
US7068596B1 (en) | 2000-07-07 | 2006-06-27 | Nevco Technology, Inc. | Interactive data transmission system having staged servers |
EP1172721A1 (en) | 2000-07-10 | 2002-01-16 | Sony International (Europe) GmbH | Method for controlling network devices via a MMI |
KR100749070B1 (en) | 2000-07-14 | 2007-08-13 | 삼성전자주식회사 | System for de-multiplexing TS |
BRPI0112741B1 (en) | 2000-07-26 | 2016-02-10 | Thomson Licensing Sa | removal of multimedia delay variation in an asynchronous digital home network |
US6826283B1 (en) | 2000-07-27 | 2004-11-30 | 3Com Corporation | Method and system for allowing multiple nodes in a small environment to play audio signals independent of other nodes |
US20020042844A1 (en) | 2000-08-04 | 2002-04-11 | Giovanni Chiazzese | Synchronized sampling on a multiprocessor backplane via a broadcast timestamp |
US20020015003A1 (en) | 2000-08-07 | 2002-02-07 | Masami Kato | Virtual space system structured by plural user terminals and server device |
KR20020014534A (en) | 2000-08-18 | 2002-02-25 | 박종섭 | Low Power Audio Processor |
EP1312188B1 (en) | 2000-08-25 | 2007-09-26 | BRITISH TELECOMMUNICATIONS public limited company | Audio data processing |
EP1320994B1 (en) | 2000-08-31 | 2011-03-30 | Ericsson Television Inc. | Systems and method for interacting with users over a communications network |
US6985694B1 (en) | 2000-09-07 | 2006-01-10 | Clix Network, Inc. | Method and system for providing an audio element cache in a customized personal radio broadcast |
AU2001292738A1 (en) | 2000-09-19 | 2002-04-02 | Phatnoise, Inc. | Device-to-device network |
JP4716238B2 (en) | 2000-09-27 | 2011-07-06 | 日本電気株式会社 | Sound reproduction system and method for portable terminal device |
US7457948B1 (en) | 2000-09-29 | 2008-11-25 | Lucent Technologies Inc. | Automated authentication handling system |
US7688306B2 (en) | 2000-10-02 | 2010-03-30 | Apple Inc. | Methods and apparatuses for operating a portable device based on an accelerometer |
US7277765B1 (en) | 2000-10-12 | 2007-10-02 | Bose Corporation | Interactive sound reproducing |
JP4385511B2 (en) | 2000-10-12 | 2009-12-16 | ソニー株式会社 | Information processing apparatus and method, and program storage medium |
US7230939B2 (en) | 2000-10-13 | 2007-06-12 | Sony Corporation | Home network using wireless module |
US6907301B2 (en) | 2000-10-16 | 2005-06-14 | Sony Corporation | Method and system for selecting and controlling devices in a home network |
US6915347B2 (en) | 2000-10-17 | 2005-07-05 | Sun Microsystems, Inc. | Associating multiple display units in a grouped server environment |
US7313593B1 (en) | 2000-10-24 | 2007-12-25 | International Business Machines Corporation | Method and apparatus for providing full duplex and multipoint IP audio streaming |
US7904322B2 (en) | 2000-10-24 | 2011-03-08 | Gauger Derek K | Network based, interactive project management apparatus and method |
US6839752B1 (en) | 2000-10-27 | 2005-01-04 | International Business Machines Corporation | Group data sharing during membership change in clustered computer system |
JP3584873B2 (en) | 2000-10-31 | 2004-11-04 | ヤマハ株式会社 | Communication control device and communication system |
US9965233B2 (en) | 2000-11-20 | 2018-05-08 | Flexiworld Technologies, Inc. | Digital content services or stores over the internet that transmit or stream protected or encrypted digital content to connected devices and applications that access the digital content services or stores |
USD478069S1 (en) | 2000-11-01 | 2003-08-05 | Gn Netcom, Inc. | Communication interface with external controls |
US6934766B1 (en) | 2000-11-02 | 2005-08-23 | Cisco Technology, Inc. | Method and apparatus for exchanging event information between computer systems that reduce perceived lag times by subtracting actual lag times from event playback time |
US6640144B1 (en) | 2000-11-20 | 2003-10-28 | Universal Electronics Inc. | System and method for creating a controlling device |
KR100752038B1 (en) | 2000-11-28 | 2007-08-23 | 주식회사 케이티 | A Method of RTP Element Selection for Multimedia Conference in Dynamic Multicast Tree |
US20020072816A1 (en) | 2000-12-07 | 2002-06-13 | Yoav Shdema | Audio system |
US6778869B2 (en) | 2000-12-11 | 2004-08-17 | Sony Corporation | System and method for request, delivery and use of multimedia files for audiovisual entertainment in the home environment |
US20020078161A1 (en) | 2000-12-19 | 2002-06-20 | Philips Electronics North America Corporation | UPnP enabling device for heterogeneous networks of slave devices |
US7143939B2 (en) | 2000-12-19 | 2006-12-05 | Intel Corporation | Wireless music device and method therefor |
US20020112244A1 (en) | 2000-12-19 | 2002-08-15 | Shih-Ping Liou | Collaborative video delivery over heterogeneous networks |
US7047435B2 (en) | 2000-12-19 | 2006-05-16 | Siemens Corporate Research, Inc. | System and method for clock-synchronization in distributed systems |
US20020083172A1 (en) | 2000-12-21 | 2002-06-27 | Knowles Gregory T. | Systems, methods and computer program products for responding to client requests directed to networked embedded devices via proxy services |
US20020083342A1 (en) | 2000-12-21 | 2002-06-27 | Webb Brian T. | Systems, methods and computer program products for accessing devices on private networks via clients on a public network |
USD462339S1 (en) | 2000-12-22 | 2002-09-03 | Digeo, Inc. | Remote control |
US6407680B1 (en) | 2000-12-22 | 2002-06-18 | Generic Media, Inc. | Distributed on-demand media transcoding system and method |
DE10064928A1 (en) | 2000-12-23 | 2002-07-04 | Alcatel Sa | Method, clock module and receiver module for synchronizing a receiver module |
US20020112084A1 (en) | 2000-12-29 | 2002-08-15 | Deen Gary D. | Methods, systems, and computer program products for controlling devices through a network via a network translation device |
US20020124097A1 (en) | 2000-12-29 | 2002-09-05 | Isely Larson J. | Methods, systems and computer program products for zone based distribution of audio signals |
EP1358549B1 (en) | 2001-01-05 | 2008-11-26 | Harman International Industries, Incorporated | System for transmitting control commands to electronic devices |
KR100781373B1 (en) | 2001-01-05 | 2007-11-30 | 삼성전자주식회사 | Wireless communication apparatus, wireless communication system employing the same and the method thereof |
TW509887B (en) | 2001-01-12 | 2002-11-11 | Integrated Technology Express | Display device with adjusting clock and the method thereof |
EP1223696A3 (en) | 2001-01-12 | 2003-12-17 | Matsushita Electric Industrial Co., Ltd. | System for transmitting digital audio data according to the MOST method |
US20020131761A1 (en) | 2001-01-16 | 2002-09-19 | Kojiro Kawasaki | Information recording medium, apparatus and method for recording/reproducing information to/from the medium |
USD462340S1 (en) | 2001-01-18 | 2002-09-03 | Digeo, Inc. | Remote control |
WO2002057917A2 (en) | 2001-01-22 | 2002-07-25 | Sun Microsystems, Inc. | Peer-to-peer network computing platform |
US6917592B1 (en) | 2001-01-22 | 2005-07-12 | 3Com Corporation | LNS high availability and load balancing with LNS-to-LNS state offloading |
CA2332140A1 (en) | 2001-01-23 | 2002-07-23 | Ibm Canada Limited-Ibm Canada Limitee | Apparatus and methods for reducing noise audible from a speaker |
US8086287B2 (en) | 2001-01-24 | 2011-12-27 | Alcatel Lucent | System and method for switching between audio sources |
US6885992B2 (en) | 2001-01-26 | 2005-04-26 | Cirrus Logic, Inc. | Efficient PCM buffer |
US7665115B2 (en) | 2001-02-02 | 2010-02-16 | Microsoft Corporation | Integration of media playback components with an independent timing specification |
JP2002232807A (en) | 2001-02-07 | 2002-08-16 | Nec Corp | System and method for linking a plurality of media |
ATE390823T1 (en) | 2001-02-07 | 2008-04-15 | Dolby Lab Licensing Corp | AUDIO CHANNEL TRANSLATION |
US6944188B2 (en) | 2001-02-21 | 2005-09-13 | Wi-Lan, Inc. | Synchronizing clocks across a communication link |
US8477958B2 (en) | 2001-02-26 | 2013-07-02 | 777388 Ontario Limited | Networked sound masking system |
DE10110422A1 (en) | 2001-03-05 | 2002-09-19 | Harman Becker Automotive Sys | Method for controlling a multi-channel sound reproduction system and multi-channel sound reproduction system |
US6738318B1 (en) | 2001-03-05 | 2004-05-18 | Scott C. Harris | Audio reproduction system which adaptively assigns different sound parts to different reproduction parts |
US6970822B2 (en) | 2001-03-07 | 2005-11-29 | Microsoft Corporation | Accessing audio processing components in an audio generation system |
US20020129128A1 (en) | 2001-03-07 | 2002-09-12 | Stephen Gold | Aggregation of multiple headless computer entities into a single computer entity group |
USD452520S1 (en) | 2001-03-13 | 2001-12-25 | Eastman Kodak Company | Remote control for a vertical digital projector |
US7035246B2 (en) | 2001-03-13 | 2006-04-25 | Pulse-Link, Inc. | Maintaining a global time reference among a group of networked devices |
USD471526S1 (en) | 2001-03-16 | 2003-03-11 | Patientline Plc | Communication center |
US6526491B2 (en) | 2001-03-22 | 2003-02-25 | Sony Corporation Entertainment Inc. | Memory protection system and method for computer architecture for broadband networks |
US7058889B2 (en) | 2001-03-23 | 2006-06-06 | Koninklijke Philips Electronics N.V. | Synchronizing text/visual information with audio playback |
US7483958B1 (en) | 2001-03-26 | 2009-01-27 | Microsoft Corporation | Methods and apparatuses for sharing media content, libraries and playlists |
US6809635B1 (en) | 2001-03-30 | 2004-10-26 | Nokia Corporation | Mobile terminal using a vibration motor as a loudspeaker and method of use thereof |
US7194556B2 (en) | 2001-03-30 | 2007-03-20 | Intel Corporation | Method and apparatus for high accuracy distributed time synchronization using processor tick counters |
US7577451B2 (en) | 2001-04-04 | 2009-08-18 | Intel Corporation | Extending personal area networks |
US7130316B2 (en) | 2001-04-11 | 2006-10-31 | Ati Technologies, Inc. | System for frame based audio synchronization and method thereof |
US6920373B2 (en) | 2001-04-13 | 2005-07-19 | Board Of Trusstees Operating Michigan State University | Synchronization and task control of real-time internet based super-media |
US6970481B2 (en) | 2001-04-17 | 2005-11-29 | Microsoft Corporation | Methods and systems for distributing multimedia data over heterogeneous networks |
US20030023411A1 (en) | 2001-04-23 | 2003-01-30 | Don Witmer | Methods for facilitating the design and installation of custom home networking systems |
US7519667B1 (en) | 2001-04-23 | 2009-04-14 | Microsoft Corporation | Method and system for integrating instant messaging, streaming audio and audio playback |
US7146260B2 (en) | 2001-04-24 | 2006-12-05 | Medius, Inc. | Method and apparatus for dynamic configuration of multiprocessor system |
WO2002088911A2 (en) | 2001-04-30 | 2002-11-07 | Nokia Corporation | Protection of content reproduction using digital rights |
US7574513B2 (en) | 2001-04-30 | 2009-08-11 | Yahoo! Inc. | Controllable track-skipping |
US20020165921A1 (en) | 2001-05-02 | 2002-11-07 | Jerzy Sapieyevski | Method of multiple computers synchronization and control for guiding spatially dispersed live music/multimedia performances and guiding simultaneous multi-content presentations and system therefor |
US7690017B2 (en) | 2001-05-03 | 2010-03-30 | Mitsubishi Digital Electronics America, Inc. | Control system and user interface for network of input devices |
US6930730B2 (en) | 2001-05-03 | 2005-08-16 | Mitsubishi Digital Electronics America, Inc. | Control system and user interface for network of input devices |
US6907458B2 (en) | 2001-05-04 | 2005-06-14 | M&S Systems, L.P. | Digital multi-room, multi-source entertainment and communications network |
US20020188762A1 (en) | 2001-05-04 | 2002-12-12 | Tomassetti Stephen Robert | Data structure for an entertainment and communications network |
US7047201B2 (en) | 2001-05-04 | 2006-05-16 | Ssi Corporation | Real-time control of playback rates in presentations |
US20020163361A1 (en) | 2001-05-07 | 2002-11-07 | Parkin Michael W. | Source synchronous I/O without synchronizers using temporal delay queues |
US7120693B2 (en) | 2001-05-08 | 2006-10-10 | International Business Machines Corporation | Method using two different programs to determine state of a network node to eliminate message response delays in system processing |
US6757517B2 (en) | 2001-05-10 | 2004-06-29 | Chin-Chi Chang | Apparatus and method for coordinated music playback in wireless ad-hoc networks |
US7620363B2 (en) | 2001-05-16 | 2009-11-17 | Aol Llc | Proximity synchronization of audio content among multiple playback and storage devices |
US8732232B2 (en) | 2001-05-16 | 2014-05-20 | Facebook, Inc. | Proximity synchronizing audio playback device |
US7962482B2 (en) | 2001-05-16 | 2011-06-14 | Pandora Media, Inc. | Methods and systems for utilizing contextual feedback to generate and modify playlists |
US7007106B1 (en) | 2001-05-22 | 2006-02-28 | Rockwell Automation Technologies, Inc. | Protocol and method for multi-chassis configurable time synchronization |
JP2002353978A (en) | 2001-05-25 | 2002-12-06 | Pioneer Electronic Corp | Wireless communication terminal having main station or subordinate station function |
US7668317B2 (en) | 2001-05-30 | 2010-02-23 | Sony Corporation | Audio post processing in DVD, DTV and other audio visual products |
CN1189824C (en) | 2001-05-31 | 2005-02-16 | 日本胜利株式会社 | Content copying management method, record replay device and replay device |
JP2002358241A (en) | 2001-05-31 | 2002-12-13 | Victor Co Of Japan Ltd | Copy management method for content, recording/ reproducing unit and reproducing unit |
DE50200454D1 (en) | 2001-06-07 | 2004-06-24 | Siemens Ag | Method for transmitting time information over a data packet network |
US7139981B2 (en) | 2001-06-13 | 2006-11-21 | Panoram Technologies, Inc. | Media management system |
USD466108S1 (en) | 2001-06-15 | 2002-11-26 | U.S. Electronics, Inc. | Remote control |
DE10129108A1 (en) | 2001-06-16 | 2003-01-02 | Harman Becker Automotive Sys | Method and circuit arrangement for data transmission |
US7136934B2 (en) | 2001-06-19 | 2006-11-14 | Request, Inc. | Multimedia synchronization method and device |
JP2004521564A (en) | 2001-06-19 | 2004-07-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Wireless communication system |
US7164768B2 (en) | 2001-06-21 | 2007-01-16 | Bose Corporation | Audio signal processing |
US6778073B2 (en) | 2001-06-26 | 2004-08-17 | Medius, Inc. | Method and apparatus for managing audio devices |
US20020196951A1 (en) | 2001-06-26 | 2002-12-26 | Kuo-Liang Tsai | System for automatically performing a frequency response equalization tuning on speaker of electronic device |
WO2003003659A1 (en) | 2001-06-27 | 2003-01-09 | Sony Corporation | Radio communication control apparatus, radio communication control method, recording medium, and program |
US7114172B2 (en) | 2001-06-28 | 2006-09-26 | Koninklijke Philips Electronics N.V. | Synchronized personal video recorders |
US7161939B2 (en) | 2001-06-29 | 2007-01-09 | Ip Unity | Method and system for switching among independent packetized audio streams |
US7460629B2 (en) | 2001-06-29 | 2008-12-02 | Agere Systems Inc. | Method and apparatus for frame-based buffer control in a communication system |
US20030002689A1 (en) | 2001-06-29 | 2003-01-02 | Harris Corporation | Supplemental audio content system with wireless communication for a cinema and related methods |
US20030008616A1 (en) | 2001-07-09 | 2003-01-09 | Anderson Lelan S. | Method and system for FM stereo broadcasting |
US7206367B1 (en) | 2001-07-10 | 2007-04-17 | Sigmatel, Inc. | Apparatus and method to synchronize multimedia playback over a network using out-of-band signaling |
US20030014486A1 (en) | 2001-07-16 | 2003-01-16 | May Gregory J. | Distributed audio network using networked computing devices |
DE10135463A1 (en) | 2001-07-20 | 2003-03-13 | Klotz Digital Ag | Device for the transmission, reception and processing of audio signals and control signals in loudspeaker systems |
US6873862B2 (en) | 2001-07-24 | 2005-03-29 | Marc Alan Reshefsky | Wireless headphones with selective connection to auxiliary audio devices and a cellular telephone |
JP3591493B2 (en) | 2001-07-25 | 2004-11-17 | ソニー株式会社 | Network system and network system synchronization method |
DE60138182D1 (en) | 2001-07-26 | 2009-05-14 | Bayerische Motoren Werke Ag | Clock synchronization in a distributed system |
JP4766440B2 (en) | 2001-07-27 | 2011-09-07 | 日本電気株式会社 | Portable terminal device and sound reproduction system for portable terminal device |
USD468297S1 (en) | 2001-07-27 | 2003-01-07 | Takara Co., Ltd. | Karaoke controller with microphone |
US6981259B2 (en) | 2001-08-02 | 2005-12-27 | Hewlett-Packard Development Company, L.P. | System and method for generating a virtual device |
EP1283611A3 (en) | 2001-08-09 | 2006-02-15 | Siemens Aktiengesellschaft | Method for synchronization of a communication system via a packet oriented data network |
US7058948B2 (en) | 2001-08-10 | 2006-06-06 | Hewlett-Packard Development Company, L.P. | Synchronization objects for multi-computer systems |
US6937988B1 (en) | 2001-08-10 | 2005-08-30 | Cirrus Logic, Inc. | Methods and systems for prefilling a buffer in streaming data applications |
US7260616B1 (en) | 2001-08-13 | 2007-08-21 | Sprint Communications Company L.P. | Communication hub with automatic device registration |
US7113999B2 (en) | 2001-08-14 | 2006-09-26 | International Business Machines Corporation | Method, computer readable media and apparatus for the selection and rendering of audio files in a networked environment |
US6950666B2 (en) | 2001-08-14 | 2005-09-27 | Hewlett-Packard Development Company, L.P. | Wireless mobile device network |
EP1286484B1 (en) | 2001-08-17 | 2007-04-04 | Sony Deutschland GmbH | Method for reproducing data streams |
US20030041174A1 (en) | 2001-08-24 | 2003-02-27 | Inventec Corporation | Data exchange for two software systems co-existing on a computer |
US20030046703A1 (en) | 2001-08-29 | 2003-03-06 | Knowles Gregory T. | Systems and methods for facilitating user access to content stored on private networks |
US7047308B2 (en) | 2001-08-31 | 2006-05-16 | Sharp Laboratories Of America, Inc. | System and method for simultaneous media playout |
US6931071B2 (en) | 2001-08-31 | 2005-08-16 | Stmicroelectronics, Inc. | Apparatus and method for synchronizing video and audio MPEG streams in a video playback device |
US7319703B2 (en) | 2001-09-04 | 2008-01-15 | Nokia Corporation | Method and apparatus for reducing synchronization delay in packet-based voice terminals by resynchronizing during talk spurts |
US6965770B2 (en) | 2001-09-13 | 2005-11-15 | Nokia Corporation | Dynamic content delivery responsive to user requests |
US7574474B2 (en) | 2001-09-14 | 2009-08-11 | Xerox Corporation | System and method for sharing and controlling multiple audio and video streams |
US7043651B2 (en) | 2001-09-18 | 2006-05-09 | Nortel Networks Limited | Technique for synchronizing clocks in a network |
US7493363B2 (en) | 2001-09-19 | 2009-02-17 | Microsoft Corporation | Peer-to-peer group management and method for maintaining peer-to-peer graphs |
JP3544963B2 (en) | 2001-09-20 | 2004-07-21 | 株式会社東芝 | Method and apparatus for synchronous playback |
US7152125B2 (en) | 2001-09-25 | 2006-12-19 | Intel Corporation | Dynamic master/slave configuration for multiple expansion modules |
DE10147422A1 (en) | 2001-09-26 | 2003-04-24 | Siemens Ag | Communication system and method for synchronizing a communication cycle |
US7197148B2 (en) | 2001-09-28 | 2007-03-27 | Hubbell Incorporated | System for controlling remote speakers using centralized amplifiers, centralized monitoring and master/slave communication protocol |
US20030066094A1 (en) | 2001-09-29 | 2003-04-03 | Koninklijke Philips Electronics N.V. | Robust method for recovering a program time base in MPEG-2 transport streams and achieving audio/video sychronization |
US6956545B2 (en) | 2001-10-08 | 2005-10-18 | Imagearray, Ltd. | Digital playback device |
US20030097478A1 (en) | 2001-10-08 | 2003-05-22 | Imagearray, Ltd. | Method and system for synchronizing a presentation |
US20030073432A1 (en) | 2001-10-16 | 2003-04-17 | Meade, William K. | Mobile computing device with method and system for interrupting content performance among appliances |
US7312785B2 (en) | 2001-10-22 | 2007-12-25 | Apple Inc. | Method and apparatus for accelerated scrolling |
US6987947B2 (en) | 2001-10-30 | 2006-01-17 | Unwired Technology Llc | Multiple channel wireless communication system |
US7184774B2 (en) | 2001-10-30 | 2007-02-27 | Motorola, Inc. | Coordination among mobile stations servicing terminal equipment |
US7076204B2 (en) | 2001-10-30 | 2006-07-11 | Unwired Technology Llc | Multiple channel wireless communication system |
US20040032421A1 (en) | 2001-11-01 | 2004-02-19 | Williamson Charles G. | Remote programming of CD players over a network |
JP3878508B2 (en) | 2001-11-08 | 2007-02-07 | 松下電器産業株式会社 | Circuit group control system |
USD462945S1 (en) | 2001-11-13 | 2002-09-17 | Plantronics, Inc. | Volume control for a communications headset |
US7095947B2 (en) | 2001-11-13 | 2006-08-22 | Koninklijke Philips Electronics N.V. | System for synchronizing the playback of two or more connected playback devices using closed captioning |
JP3915481B2 (en) | 2001-11-14 | 2007-05-16 | セイコーエプソン株式会社 | Wireless communication device |
US7120168B2 (en) | 2001-11-20 | 2006-10-10 | Sony Corporation | System and method for effectively performing an audio/video synchronization procedure |
US7711774B1 (en) | 2001-11-20 | 2010-05-04 | Reagan Inventions Llc | Interactive, multi-user media delivery system |
JP3937820B2 (en) | 2001-11-27 | 2007-06-27 | セイコーエプソン株式会社 | Wireless network adapter |
AU2002340690A1 (en) | 2001-11-28 | 2003-06-10 | Bridgeco Ag | Method for synchronization in networks |
US7788396B2 (en) | 2001-11-28 | 2010-08-31 | Interactive Content Engines, Llc | Synchronized data transfer system |
JP2005510956A (en) | 2001-11-28 | 2005-04-21 | ミレニアル・ネット | Network protocol for ad hoc wireless networks |
US6892167B2 (en) | 2001-11-28 | 2005-05-10 | Sypris Data Systems, Inc. | Real-time data acquisition and storage network |
US20030101253A1 (en) | 2001-11-29 | 2003-05-29 | Takayuki Saito | Method and system for distributing data in a network |
JP3955989B2 (en) | 2001-11-29 | 2007-08-08 | 株式会社 アンクル | Stream data distributed delivery method and system |
US7496065B2 (en) | 2001-11-29 | 2009-02-24 | Telcordia Technologies, Inc. | Efficient piconet formation and maintenance in a Bluetooth wireless network |
US7072326B2 (en) | 2001-11-30 | 2006-07-04 | Palm, Inc. | Network connectivity system and method |
WO2003048948A1 (en) | 2001-12-04 | 2003-06-12 | Yahoo!Inc. | Method and system for providing listener-requested music over a network |
US7269338B2 (en) | 2001-12-11 | 2007-09-11 | Koninklijke Philips Electronics N.V. | Apparatus and method for synchronizing presentation from bit streams based on their content |
USD476643S1 (en) | 2001-12-12 | 2003-07-01 | Smk Corporation | Remote controller |
US8417827B2 (en) | 2001-12-12 | 2013-04-09 | Nokia Corporation | Synchronous media playback and messaging system |
JP4168714B2 (en) | 2001-12-17 | 2008-10-22 | ソニー株式会社 | COMMUNICATION DEVICE AND METHOD, RECORDING MEDIUM, AND PROGRAM |
AU2002361767A1 (en) | 2001-12-17 | 2003-07-09 | Becomm Corporation | Method and system for synchronization of content rendering |
US7206618B2 (en) | 2002-01-11 | 2007-04-17 | Intel Corporation | Removable customizable inserts and faceplate for electronic devices |
US6930620B2 (en) | 2002-01-15 | 2005-08-16 | Microsoft Corporation | Methods and systems for synchronizing data streams |
USD478051S1 (en) | 2002-01-17 | 2003-08-05 | Kabushiki Kaisha Toshiba | Remote controller for household electric/electronic appliances |
US7346332B2 (en) | 2002-01-25 | 2008-03-18 | Ksc Industries Incorporated | Wired, wireless, infrared, and powerline audio entertainment systems |
US8103009B2 (en) | 2002-01-25 | 2012-01-24 | Ksc Industries, Inc. | Wired, wireless, infrared, and powerline audio entertainment systems |
US7853341B2 (en) | 2002-01-25 | 2010-12-14 | Ksc Industries, Inc. | Wired, wireless, infrared, and powerline audio entertainment systems |
US6658091B1 (en) | 2002-02-01 | 2003-12-02 | @Security Broadband Corp. | LIfestyle multimedia security system |
US7937089B2 (en) | 2002-02-06 | 2011-05-03 | Palo Alto Research Center Incorporated | Method, apparatus, and program product for provisioning secure wireless sensors |
US20030149874A1 (en) | 2002-02-06 | 2003-08-07 | Xerox Corporation | Systems and methods for authenticating communications in a network medium |
US8131389B1 (en) | 2002-02-08 | 2012-03-06 | Digital Voice Systems, Inc. | Digital audio server |
AU2003216319A1 (en) | 2002-02-20 | 2003-09-09 | Meshnetworks, Inc. | A system and method for routing 802.11 data traffic across channels to increase ad-hoc network capacity |
US7209874B2 (en) | 2002-02-25 | 2007-04-24 | Zoran Corporation | Emulator-enabled network connectivity to a device |
US20030165154A1 (en) | 2002-03-04 | 2003-09-04 | Lindsey Steven R. | Digital media networking and arbitration system and method |
US20030167335A1 (en) | 2002-03-04 | 2003-09-04 | Vigilos, Inc. | System and method for network-based communication |
DE60234654D1 (en) | 2002-03-05 | 2010-01-14 | D & M Holdings Inc | Audio playback device |
US7747338B2 (en) | 2006-08-18 | 2010-06-29 | Xerox Corporation | Audio system employing multiple mobile devices in concert |
US9998321B2 (en) | 2002-03-19 | 2018-06-12 | Apple Inc. | Method and apparatus for supporting duplicate suppression when issuing multicast queries using DNS-format message packets |
US7532862B2 (en) | 2002-03-19 | 2009-05-12 | Apple Inc. | Method and apparatus for configuring a wireless device through reverse advertising |
JP3867596B2 (en) | 2002-03-19 | 2007-01-10 | ヤマハ株式会社 | Performance sound providing apparatus, communication terminal, performance sound providing method, program, and recording medium |
US20030179780A1 (en) | 2002-03-20 | 2003-09-25 | Zarlink Semiconductor V.N. Inc. | Method of detecting drift between two clocks |
USD475993S1 (en) | 2002-03-21 | 2003-06-17 | Robert K. Meyer | TV remote control |
US7483540B2 (en) | 2002-03-25 | 2009-01-27 | Bose Corporation | Automatic audio system equalizing |
USD481056S1 (en) | 2002-03-28 | 2003-10-21 | Seiko Epson Corporation | Control panel for projector |
US20030185400A1 (en) | 2002-03-29 | 2003-10-02 | Hitachi, Ltd. | Sound processing unit, sound processing system, audio output unit and display device |
US8150937B2 (en) | 2004-10-25 | 2012-04-03 | Apple Inc. | Wireless synchronization between media player and host device |
US7827259B2 (en) | 2004-04-27 | 2010-11-02 | Apple Inc. | Method and system for configurable automatic media selection |
USD477310S1 (en) | 2002-04-08 | 2003-07-15 | Charles Moransais | Remote control |
US20030195964A1 (en) | 2002-04-10 | 2003-10-16 | Mane Pravin D. | Managing multicast sessions |
US7324857B2 (en) | 2002-04-19 | 2008-01-29 | Gateway Inc. | Method to synchronize playback of multicast audio streams on a local network |
JP3929817B2 (en) | 2002-04-23 | 2007-06-13 | 株式会社河合楽器製作所 | Electronic musical instrument acoustic control device |
US7209795B2 (en) | 2002-04-23 | 2007-04-24 | Gateway Inc. | Method of synchronizing the playback of a digital audio broadcast by inserting a control track pulse |
US7333519B2 (en) | 2002-04-23 | 2008-02-19 | Gateway Inc. | Method of manually fine tuning audio synchronization of a home network |
US7392102B2 (en) | 2002-04-23 | 2008-06-24 | Gateway Inc. | Method of synchronizing the playback of a digital audio broadcast using an audio waveform sample |
US7024483B2 (en) | 2002-04-29 | 2006-04-04 | Sun Microsystems, Inc. | System and method for topology manager employing finite state automata for dynamic cluster formation |
US7035858B2 (en) | 2002-04-29 | 2006-04-25 | Sun Microsystems, Inc. | System and method dynamic cluster membership in a distributed data system |
US7310334B1 (en) | 2002-04-30 | 2007-12-18 | Cisco Technology, Inc. | Method and apparatus for media stream monitoring |
CA2485100C (en) | 2002-05-06 | 2012-10-09 | David Goldberg | Localized audio networks and associated digital accessories |
ES2317966T3 (en) | 2002-05-08 | 2009-05-01 | Ipoc Technologies Ag | MULTIMEDIA VISUALIZATION DEVICE WITHOUT CABLES. |
US20030212802A1 (en) | 2002-05-09 | 2003-11-13 | Gateway, Inc. | Proximity network encryption and setup |
CA2485104A1 (en) | 2002-05-09 | 2003-11-20 | Herman Cardenas | Audio network distribution system |
US7899915B2 (en) | 2002-05-10 | 2011-03-01 | Richard Reisman | Method and apparatus for browsing using multiple coordinated device sets |
US7657644B1 (en) | 2002-05-10 | 2010-02-02 | Netapp, Inc. | Methods and apparatus for streaming media multicast |
US7340770B2 (en) | 2002-05-15 | 2008-03-04 | Check Point Software Technologies, Inc. | System and methodology for providing community-based security policies |
US7945636B2 (en) | 2002-05-15 | 2011-05-17 | In-Store Broadcasting Network, Llc | Providing a multi-tier enterprise level application |
US7096169B2 (en) | 2002-05-16 | 2006-08-22 | Crutchfield Corporation | Virtual speaker demonstration system and virtual noise simulation |
US7363363B2 (en) | 2002-05-17 | 2008-04-22 | Xds, Inc. | System and method for provisioning universal stateless digital and computing services |
US7293060B2 (en) | 2002-05-22 | 2007-11-06 | Nokia Siemens Networks Oy | Electronic disc jockey service |
US20030219007A1 (en) | 2002-05-23 | 2003-11-27 | Craig Barrack | Reusable multi-protocol meta-architecture for Voice-over-IP playback |
US20030220705A1 (en) | 2002-05-24 | 2003-11-27 | Ibey Jarry A. | Audio distribution system with remote control |
USD474763S1 (en) | 2002-05-30 | 2003-05-20 | Pioneer Digital Technologies, Inc. | Handheld remote control |
US7426537B2 (en) | 2002-05-31 | 2008-09-16 | Microsoft Corporation | Systems and methods for sharing dynamic content among a plurality of online co-users |
JP3629253B2 (en) | 2002-05-31 | 2005-03-16 | 株式会社東芝 | Audio reproduction device and audio reproduction control method used in the same |
US7283566B2 (en) | 2002-06-14 | 2007-10-16 | Silicon Image, Inc. | Method and circuit for generating time stamp data from an embedded-clock audio data stream and a video clock |
US20030227478A1 (en) | 2002-06-05 | 2003-12-11 | Chatfield Keith M. | Systems and methods for a group directed media experience |
US7676142B1 (en) | 2002-06-07 | 2010-03-09 | Corel Inc. | Systems and methods for multimedia time stretching |
WO2003107164A2 (en) | 2002-06-13 | 2003-12-24 | Panasonic Automotive Systems Company Of America | Multimode interface |
US7039698B2 (en) | 2002-06-18 | 2006-05-02 | Bellsouth Intellectual Property Corporation | Notification device interaction |
US6795404B2 (en) | 2002-06-18 | 2004-09-21 | Bellsouth Intellectual Property Corporation | Device for aggregating, translating, and disseminating communications within a multiple device environment |
US6889207B2 (en) | 2002-06-18 | 2005-05-03 | Bellsouth Intellectual Property Corporation | Content control in a device environment |
US7206940B2 (en) | 2002-06-24 | 2007-04-17 | Microsoft Corporation | Methods and systems providing per pixel security and functionality |
US7170422B2 (en) | 2002-06-24 | 2007-01-30 | Matsushita Electric Industrial Co., Ltd. | Personal programmable universal remote control |
US8111132B2 (en) | 2004-01-06 | 2012-02-07 | Bose Corporation | Remote controlling |
US20050021470A1 (en) | 2002-06-25 | 2005-01-27 | Bose Corporation | Intelligent music track selection |
US20040001106A1 (en) | 2002-06-26 | 2004-01-01 | John Deutscher | System and process for creating an interactive presentation employing multi-media components |
JP2004032552A (en) | 2002-06-27 | 2004-01-29 | Uniden Corp | Communication terminal device, communication system, and program |
US7315622B2 (en) | 2002-06-27 | 2008-01-01 | Nxp B.V. | Robust method for achieving audio/video synchronization in MPEG decoders in personal video recording applications |
US7239635B2 (en) | 2002-06-27 | 2007-07-03 | International Business Machines Corporation | Method and apparatus for implementing alterations on multiple concurrent frames |
US7366843B2 (en) | 2002-06-28 | 2008-04-29 | Sun Microsystems, Inc. | Computer system implementing synchronized broadcast using timestamps |
USD478896S1 (en) | 2002-06-28 | 2003-08-26 | Kim Renee Summers | Remote control |
US20040203354A1 (en) | 2002-06-29 | 2004-10-14 | Lin Yue | Bluetooth remote access device |
US7072477B1 (en) | 2002-07-09 | 2006-07-04 | Apple Computer, Inc. | Method and apparatus for automatically normalizing a perceived volume level in a digitally encoded file |
JP3882190B2 (en) | 2002-07-15 | 2007-02-14 | ヤマハ株式会社 | Level adjustment device |
US6870934B2 (en) | 2002-07-15 | 2005-03-22 | Visteon Global Technologies, Inc. | Audio loudspeaker detection using back-EMF sensing |
JP4448647B2 (en) | 2002-07-18 | 2010-04-14 | ヤマハ株式会社 | Acoustic signal processing device |
JP4257079B2 (en) | 2002-07-19 | 2009-04-22 | パイオニア株式会社 | Frequency characteristic adjusting device and frequency characteristic adjusting method |
US7006645B2 (en) | 2002-07-19 | 2006-02-28 | Yamaha Corporation | Audio reproduction apparatus |
US7295809B2 (en) | 2002-07-19 | 2007-11-13 | Sony Ericsson Mobile Communications Ab | Portable audio playback device with bass enhancement |
US7313313B2 (en) | 2002-07-25 | 2007-12-25 | Microsoft Corporation | Audio/video synchronization with no clean points |
US7400732B2 (en) | 2002-07-25 | 2008-07-15 | Xerox Corporation | Systems and methods for non-interactive session key distribution with revocation |
US8060225B2 (en) | 2002-07-31 | 2011-11-15 | Hewlett-Packard Development Company, L. P. | Digital audio device |
US7328399B2 (en) | 2002-08-06 | 2008-02-05 | Network Equipment Technologies, Inc. | Synchronous serial data communication bus |
US6744285B2 (en) | 2002-08-08 | 2004-06-01 | Agilent Technologies, Inc. | Method and apparatus for synchronously transferring data across multiple clock domains |
US7739584B2 (en) | 2002-08-08 | 2010-06-15 | Zane Vella | Electronic messaging synchronized to media presentation |
US8090798B2 (en) | 2002-08-12 | 2012-01-03 | Morganstein | System and methods for direct targeted media advertising over peer-to-peer networks |
EP1389853B1 (en) | 2002-08-14 | 2006-03-29 | Sony Deutschland GmbH | Bandwidth oriented reconfiguration of wireless ad hoc networks |
US20040037433A1 (en) | 2002-08-21 | 2004-02-26 | Heng-Chien Chen | Multi-channel wireless professional audio system |
US7234117B2 (en) | 2002-08-28 | 2007-06-19 | Microsoft Corporation | System and method for shared integrated online social interaction |
US7373414B2 (en) | 2002-08-29 | 2008-05-13 | Amx Llc | Multi-media system and method for simultaneously delivering multi-media data to multiple destinations |
US7581096B2 (en) | 2002-08-30 | 2009-08-25 | Xerox Corporation | Method, apparatus, and program product for automatically provisioning secure network elements |
US7275156B2 (en) | 2002-08-30 | 2007-09-25 | Xerox Corporation | Method and apparatus for establishing and using a secure credential infrastructure |
US7185199B2 (en) | 2002-08-30 | 2007-02-27 | Xerox Corporation | Apparatus and methods for providing secured communication |
US20040042629A1 (en) | 2002-08-30 | 2004-03-04 | Mellone Charles M. | Automatic earpiece sensing |
EP1398931B1 (en) | 2002-09-06 | 2006-05-03 | Sony Deutschland GmbH | Synchronous play-out of media data packets |
US20040203590A1 (en) | 2002-09-11 | 2004-10-14 | Koninklijke Philips Electronics N.V. | Set-up of wireless consumer electronics device using a learning remote control |
US7822687B2 (en) | 2002-09-16 | 2010-10-26 | Francois Brillon | Jukebox with customizable avatar |
US20040059842A1 (en) | 2002-09-19 | 2004-03-25 | Xerox Corporation | Network device installation |
US7130368B1 (en) | 2002-09-19 | 2006-10-31 | Nortel Network Limited | Clock recovery using a direct smoothing process |
US7020791B1 (en) | 2002-09-19 | 2006-03-28 | Nortel Networks Limited | Clock recovery using a double-exponential smoothing process |
WO2004030356A1 (en) | 2002-09-25 | 2004-04-08 | Matsushita Electric Industrial Co., Ltd. | Reproduction device, optical disc, recording medium, program, and reproduction method |
JP2004120440A (en) | 2002-09-26 | 2004-04-15 | Toshiba Corp | Server device and client device |
US7234115B1 (en) | 2002-09-26 | 2007-06-19 | Home Director, Inc. | Home entertainment system and method |
US7551675B2 (en) | 2002-09-27 | 2009-06-23 | Ibiquity Digital Corporation | Method and apparatus for synchronized transmission and reception of data in a digital audio broadcasting system |
JP2004180255A (en) | 2002-09-30 | 2004-06-24 | Denon Ltd | Network system |
EP1547257A4 (en) | 2002-09-30 | 2006-12-06 | Verax Technologies Inc | System and method for integral transference of acoustical events |
US7996588B2 (en) | 2002-10-04 | 2011-08-09 | Hewlett-Packard Company | Method and apparatus for real-time transport of multi-media information in a network |
US7054888B2 (en) | 2002-10-16 | 2006-05-30 | Microsoft Corporation | Optimizing media player memory during rendering |
US7043477B2 (en) | 2002-10-16 | 2006-05-09 | Microsoft Corporation | Navigating media content via groups within a playlist |
US9432719B2 (en) | 2002-10-22 | 2016-08-30 | Broadcom Corporation | A/V System and method supporting a pull data flow scheme |
US7277547B1 (en) | 2002-10-23 | 2007-10-02 | Sprint Spectrum L.P. | Method for automated security configuration in a wireless network |
US7313384B1 (en) | 2002-10-31 | 2007-12-25 | Aol Llc, A Delaware Limited Liability Company | Configuring wireless devices |
US7752329B1 (en) | 2002-10-31 | 2010-07-06 | Aol Inc. | Migrating configuration information based on user identity information |
US7949777B2 (en) | 2002-11-01 | 2011-05-24 | Avid Technology, Inc. | Communication protocol for controlling transfer of temporal data over a bus between devices in synchronization with a periodic reference signal |
USD493148S1 (en) | 2002-11-01 | 2004-07-20 | Mitsubishi Heavy Industries, Ltd. | Remote controller for air conditioner |
US7904720B2 (en) | 2002-11-06 | 2011-03-08 | Palo Alto Research Center Incorporated | System and method for providing secure resource management |
CH704101B1 (en) | 2002-11-06 | 2012-05-31 | Barix Ag | Method and apparatus for synchronized playback of data streams. |
US20050100174A1 (en) | 2002-11-08 | 2005-05-12 | Damian Howard | Automobile audio system |
US7549047B2 (en) | 2002-11-21 | 2009-06-16 | Xerox Corporation | Method and system for securely sharing files |
US7295548B2 (en) | 2002-11-27 | 2007-11-13 | Microsoft Corporation | Method and system for disaggregating audio/visual components |
EP1568208A4 (en) | 2002-11-27 | 2010-06-23 | Rgb Networks Inc | Method and apparatus for time-multiplexed processing of multiple digital video programs |
US7676047B2 (en) | 2002-12-03 | 2010-03-09 | Bose Corporation | Electroacoustical transducing with low frequency augmenting devices |
US7089319B2 (en) | 2002-12-09 | 2006-08-08 | Anton Lysenko | Method and system for instantaneous on-demand delivery of multimedia content over a communication network with aid of content capturing component, delivery-on-demand client and dynamically mapped resource locator server |
JP2004193868A (en) | 2002-12-10 | 2004-07-08 | Alps Electric Co Ltd | Wireless transmission and reception system and wireless transmission and reception method |
USD504885S1 (en) | 2002-12-11 | 2005-05-10 | Huawei Technologies Co., Ltd. | Remote control |
US20040117462A1 (en) | 2002-12-12 | 2004-06-17 | International Business Machines Corporation | Client device configuration with user entry of configuration parameters |
US20040114771A1 (en) | 2002-12-12 | 2004-06-17 | Mitchell Vaughan | Multimedia system with pre-stored equalization sets for multiple vehicle environments |
US7440810B2 (en) | 2002-12-13 | 2008-10-21 | Dell Products L.P. | Multi-channel media applications support with channel-to-connector mapping |
US7167678B2 (en) | 2002-12-18 | 2007-01-23 | Microsoft Corporation | Persistent peer-to-peer networking over a piconet network |
US7356011B1 (en) | 2002-12-18 | 2008-04-08 | Mayfield Xi | Simplified configuration and security for networked wireless devices |
KR100555381B1 (en) | 2002-12-19 | 2006-02-24 | 멜코 인코포레이티드 | Encryption key setup system, access point, encryption key setup method, and authentication code setup system |
AU2003297433A1 (en) | 2002-12-24 | 2004-07-22 | Samrat Vasisht | Method, system and device for automatically configuring a communications network |
KR100905966B1 (en) | 2002-12-31 | 2009-07-06 | 엘지전자 주식회사 | Audio output adjusting device of home theater and method thereof |
US7761176B2 (en) | 2003-01-02 | 2010-07-20 | Catch Media, Inc. | Promotional portable music players |
US8666524B2 (en) | 2003-01-02 | 2014-03-04 | Catch Media, Inc. | Portable music player and transmitter |
US7319764B1 (en) | 2003-01-06 | 2008-01-15 | Apple Inc. | Method and apparatus for controlling volume |
JP2004214998A (en) | 2003-01-06 | 2004-07-29 | Denon Ltd | Digital amplifier |
US7610288B2 (en) | 2003-01-07 | 2009-10-27 | At&T Intellectual Property I, L.P. | Performance management system and method |
KR100505535B1 (en) | 2003-01-08 | 2005-08-05 | 조갑훈 | Device for controlling the output of speakers |
US20040143852A1 (en) | 2003-01-08 | 2004-07-22 | Meyers Philip G. | Systems and methods for massively multi-player online role playing games |
EP1584157B1 (en) | 2003-01-16 | 2006-11-02 | Sony United Kingdom Limited | Video/audio network |
US20040143368A1 (en) | 2003-01-21 | 2004-07-22 | May Robert E. | Operating utility devices in a master-agent network environment |
CN1701520B (en) | 2003-01-23 | 2011-09-28 | 哈曼贝克自动系统股份有限公司 | Audio system with balance setting and method for controlling balance setting |
US20040148237A1 (en) | 2003-01-29 | 2004-07-29 | Msafe Ltd. | Real time management of a communication network account |
JP2004234603A (en) | 2003-01-29 | 2004-08-19 | Mitac Technology Corp | Computer device having radio sound signal emission module |
JP3800626B2 (en) | 2003-01-30 | 2006-07-26 | ソニー株式会社 | Control device and method, information processing device and method, recording medium, and program |
US20040176025A1 (en) | 2003-02-07 | 2004-09-09 | Nokia Corporation | Playing music with mobile phones |
JP3804615B2 (en) | 2003-02-07 | 2006-08-02 | ソニー株式会社 | Sound reproduction apparatus, sound reproduction method, and program |
US7424209B2 (en) | 2003-02-13 | 2008-09-09 | Microsoft Corporation | System and method for real-time data archival |
US20040168081A1 (en) | 2003-02-20 | 2004-08-26 | Microsoft Corporation | Apparatus and method simplifying an encrypted network |
FR2851713B1 (en) | 2003-02-25 | 2005-06-24 | Cit Alcatel | DEVICE FOR MANAGING MULTIMEDIA COMMUNICATIONS VIA AN ASYNCHRONOUS NETWORK AND A TELEPHONY NETWORK COMPRISING A TRANSMISSION DELAY COMPENSATION |
USD486145S1 (en) | 2003-02-28 | 2004-02-03 | Scientific-Atlanta, Inc. | Remote control keypad |
US20040177167A1 (en) | 2003-03-04 | 2004-09-09 | Ryuichi Iwamura | Network audio systems |
US20060265571A1 (en) | 2003-03-05 | 2006-11-23 | Thomas Bosch | Processor with different types of control units for jointly used resources |
US20070047712A1 (en) | 2003-03-07 | 2007-03-01 | Cirrus Logic, Inc. | Scalable, distributed architecture for fully connected network intercom system |
TW589892B (en) | 2003-03-12 | 2004-06-01 | Asustek Comp Inc | Instant video conferencing method, system and storage medium implemented in web game using A/V synchronization technology |
KR20050116820A (en) | 2003-03-14 | 2005-12-13 | 톰슨 라이센싱 | Automatic configuration of client terminal in public hot spot |
US7668990B2 (en) | 2003-03-14 | 2010-02-23 | Openpeak Inc. | Method of controlling a device to perform an activity-based or an experience-based operation |
US7213228B2 (en) | 2003-03-17 | 2007-05-01 | Macrovision Corporation | Methods and apparatus for implementing a remote application over a network |
EP1460769B1 (en) | 2003-03-18 | 2007-04-04 | Phonak Communications Ag | Mobile Transceiver and Electronic Module for Controlling the Transceiver |
KR100514601B1 (en) | 2003-03-18 | 2005-09-13 | 한국스프라이트 주식회사 | Wiring method and apparatus for the multi-channel speakers system |
USD500015S1 (en) | 2003-03-25 | 2004-12-21 | Robert Bosch Gmbh | Remote control device |
US6912610B2 (en) | 2003-03-28 | 2005-06-28 | Emulex Design & Manufacturing Corporation | Hardware assisted firmware task scheduling and management |
KR100494854B1 (en) | 2003-04-04 | 2005-06-14 | 주식회사 팬택앤큐리텔 | Method of Setting Network Information Using Smart Card In Wireless Communication Terminal |
US7519685B2 (en) | 2003-04-04 | 2009-04-14 | Panasonic Corporation | Contents linkage information delivery system |
US7984127B2 (en) | 2003-04-08 | 2011-07-19 | Sprint Spectrum L.P. | Data matrix method and system for distribution of data |
US20040171346A1 (en) | 2003-04-14 | 2004-09-02 | Ten Ventures Inc. | Method of Adding Wireless Remote Control to Audio Playback Devices Equipped for Wired Remote Control |
JP4136771B2 (en) | 2003-04-23 | 2008-08-20 | キヤノン株式会社 | COMMUNICATION SYSTEM, COMMUNICATION DEVICE, ITS CONTROL METHOD, AND COMPUTER PROGRAM |
US7627343B2 (en) | 2003-04-25 | 2009-12-01 | Apple Inc. | Media player system |
US7426271B2 (en) | 2003-04-25 | 2008-09-16 | Palo Alto Research Center Incorporated | System and method for establishing secondary channels |
US20040249965A1 (en) | 2003-05-05 | 2004-12-09 | Huggins Guy Dwayne | Node caching system for streaming media applications |
EP1482664A3 (en) | 2003-05-20 | 2005-04-13 | Yamaha Corporation | Signal transmission apparatus |
US7359006B1 (en) | 2003-05-20 | 2008-04-15 | Micronas Usa, Inc. | Audio module supporting audio signature |
US7308489B2 (en) | 2003-05-29 | 2007-12-11 | Intel Corporation | Visibility of media contents of UPnP media servers and initiating rendering via file system user interface |
US20040253969A1 (en) | 2003-06-06 | 2004-12-16 | Microsoft Corporation | Technique for discovery using a wireless network |
JP2004364171A (en) | 2003-06-06 | 2004-12-24 | Mitsubishi Electric Corp | Multichannel audio system, as well as head unit and slave unit used in same |
US7627808B2 (en) | 2003-06-13 | 2009-12-01 | Microsoft Corporation | Computer media synchronization player |
US7454619B2 (en) | 2003-06-24 | 2008-11-18 | Palo Alto Research Center Incorporated | Method, apparatus, and program product for securely presenting situation information |
US8190722B2 (en) | 2003-06-30 | 2012-05-29 | Randy Oyadomari | Synchronization of timestamps to compensate for communication latency between devices |
US8126155B2 (en) | 2003-07-02 | 2012-02-28 | Fuji Xerox Co., Ltd. | Remote audio device management system |
USD491925S1 (en) | 2003-07-02 | 2004-06-22 | Contec Corporation | Remote control |
US20050071879A1 (en) | 2003-07-10 | 2005-03-31 | University Of Florida Research Foundation, Inc. | Smart space appliance control using a mobile communications device |
EP1652059A4 (en) | 2003-07-11 | 2007-12-19 | Computer Ass Think Inc | Direct point-to-point communications between applications using a single port |
US7613767B2 (en) | 2003-07-11 | 2009-11-03 | Microsoft Corporation | Resolving a distributed topology to stream data |
US7017494B2 (en) | 2003-07-15 | 2006-03-28 | Special Devices, Inc. | Method of identifying an unknown or unmarked slave device such as in an electronic blasting system |
US7313591B2 (en) | 2003-07-18 | 2007-12-25 | Microsoft Corporation | Methods, computer readable mediums and systems for requesting, retrieving and delivering metadata pages |
US7376834B2 (en) | 2003-07-18 | 2008-05-20 | Palo Alto Research Center Incorporated | System and method for securely controlling communications |
US7571014B1 (en) * | 2004-04-01 | 2009-08-04 | Sonos, Inc. | Method and apparatus for controlling multimedia players in a multi-zone system |
US8290603B1 (en) | 2004-06-05 | 2012-10-16 | Sonos, Inc. | User interfaces for controlling and manipulating groupings in a multi-zone media system |
US8086752B2 (en) | 2006-11-22 | 2011-12-27 | Sonos, Inc. | Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data |
US8020023B2 (en) | 2003-07-28 | 2011-09-13 | Sonos, Inc. | Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices without a voltage controlled crystal oscillator |
US7668964B2 (en) | 2005-04-23 | 2010-02-23 | Sonos, Inc. | System and method for synchronizing channel handoff as among a plurality of devices |
US7558224B1 (en) | 2003-07-29 | 2009-07-07 | Cisco Technology, Inc. | Management of packet-based audio devices within acoustic spaces |
US8705755B2 (en) | 2003-08-04 | 2014-04-22 | Harman International Industries, Inc. | Statistical analysis of potential audio system configurations |
USD501477S1 (en) | 2003-08-11 | 2005-02-01 | Baxall Limited | Keyboard control device |
US7474677B2 (en) | 2003-08-12 | 2009-01-06 | Bose Corporation | Wireless communicating |
USD497363S1 (en) | 2003-08-14 | 2004-10-19 | Hannspree, Inc. | Liquid crystal display |
US7561932B1 (en) | 2003-08-19 | 2009-07-14 | Nvidia Corporation | System and method for processing multi-channel audio |
US7107442B2 (en) | 2003-08-20 | 2006-09-12 | Apple Computer, Inc. | Method and apparatus for implementing a sleep proxy for services on a network |
US8401197B2 (en) | 2003-09-03 | 2013-03-19 | Monster, Llc | Audio power monitoring system |
EP1517464A2 (en) | 2003-09-03 | 2005-03-23 | Phoenix Gold International, Inc. | Digital audio distribution system |
US7305694B2 (en) | 2003-09-04 | 2007-12-04 | Digital Networks North America, Inc. | Method and apparatus for remotely controlling a receiver according to content and user selection |
US7171010B2 (en) | 2003-09-11 | 2007-01-30 | Boston Acoustics, Inc. | Dynamic bass boost apparatus and method |
USD515557S1 (en) | 2003-09-16 | 2006-02-21 | Intel Corporation | Remote control |
US7925790B2 (en) | 2003-09-17 | 2011-04-12 | Sony Corporation | Middleware filter agent between server and PDA |
US7519188B2 (en) | 2003-09-18 | 2009-04-14 | Bose Corporation | Electroacoustical transducing |
MXPA06003134A (en) | 2003-09-24 | 2006-08-25 | Thomson Licensing | Wireless digital transmission of low frequency effects and surround channels for surround sound system. |
US6992604B2 (en) | 2003-09-24 | 2006-01-31 | Broadcom Corporation | Method and system for converting digital samples to an analog signal |
US20050069153A1 (en) | 2003-09-26 | 2005-03-31 | Hall David S. | Adjustable speaker systems and methods |
USD527375S1 (en) | 2003-09-30 | 2006-08-29 | Microsoft Corporation | Remote control device |
US20130097302A9 (en) | 2003-10-01 | 2013-04-18 | Robert Khedouri | Audio visual player apparatus and system and method of content distribution using the same |
KR101124826B1 (en) | 2003-10-22 | 2012-03-26 | 교세라 가부시키가이샤 | Mobile telephone apparatus, display method, and computer readable recording medium having program |
US20050130647A1 (en) | 2003-10-22 | 2005-06-16 | Brother Kogyo Kabushiki Kaisha | Wireless lan system, communication terminal and communication program |
JP2005136457A (en) | 2003-10-28 | 2005-05-26 | Sanyo Electric Co Ltd | Mobile phone, reproducing method, and program |
WO2005041618A1 (en) | 2003-10-24 | 2005-05-06 | Koninklijke Philips Electronics N.V. | Adaptive sound reproduction |
USD506463S1 (en) | 2003-11-05 | 2005-06-21 | Koninklijke Philips Electronics, N.V. | Remote control unit |
USD496335S1 (en) | 2003-11-10 | 2004-09-21 | Lutron Electronics, Co. Inc. | Remote control |
US20050100166A1 (en) | 2003-11-10 | 2005-05-12 | Parc Inc. | Systems and methods for authenticating communications in a network medium |
US6972829B2 (en) | 2003-11-17 | 2005-12-06 | Nt Audio Visual Supply, Inc. | Film soundtrack reviewing system |
KR100544460B1 (en) | 2003-11-21 | 2006-01-24 | 삼성전자주식회사 | Method and Apparatus for volume control using volume key in remote controller in ?? device |
USD504872S1 (en) | 2003-11-24 | 2005-05-10 | Sony Corporation | Remote controller |
US7430181B1 (en) | 2003-11-26 | 2008-09-30 | Cisco Technology, Inc. | Method and apparatus for automatically configuring devices on a wireless network |
USD518475S1 (en) | 2003-12-02 | 2006-04-04 | Acer Inc. | Remote controller |
USD515072S1 (en) | 2003-12-02 | 2006-02-14 | Koninklijke Philips Electronics N.V. | Remote control unit |
US20050120128A1 (en) | 2003-12-02 | 2005-06-02 | Wilife, Inc. | Method and system of bandwidth management for streaming data |
JP4574338B2 (en) | 2003-12-04 | 2010-11-04 | キヤノン株式会社 | Setting method for wireless communication, peripheral device for performing wireless communication, and information processing device |
US7515873B2 (en) | 2003-12-04 | 2009-04-07 | International Business Machines Corporation | Responding to recipient rated wirelessly broadcast electronic works |
US7757076B2 (en) | 2003-12-08 | 2010-07-13 | Palo Alto Research Center Incorporated | Method and apparatus for using a secure credential infrastructure to access vehicle components |
CA2489999A1 (en) | 2003-12-09 | 2005-06-09 | Lorne M. Trottier | A secure integrated media center |
USD499086S1 (en) | 2003-12-10 | 2004-11-30 | Plantronics, Inc. | Inline control module for communications headset adapter |
JP4765289B2 (en) | 2003-12-10 | 2011-09-07 | ソニー株式会社 | Method for detecting positional relationship of speaker device in acoustic system, acoustic system, server device, and speaker device |
USD524296S1 (en) | 2003-12-11 | 2006-07-04 | Sharp Kabushiki Kaisha | Remote controller for television set |
US20050129240A1 (en) | 2003-12-15 | 2005-06-16 | Palo Alto Research Center Incorporated | Method and apparatus for establishing a secure ad hoc command structure |
USD496003S1 (en) | 2003-12-16 | 2004-09-14 | Lutron Electronics Co., Inc. | Hand-held remote control |
US7548744B2 (en) | 2003-12-19 | 2009-06-16 | General Motors Corporation | WIFI authentication method |
USD499395S1 (en) | 2003-12-25 | 2004-12-07 | Hannspree, Inc. | Remote control |
TWI257816B (en) | 2003-12-26 | 2006-07-01 | Mediatek Inc | Audio/video display system capable of auto-detecting/selecting audio/video signals and method of the same |
US20050147261A1 (en) | 2003-12-30 | 2005-07-07 | Chiang Yeh | Head relational transfer function virtualizer |
US20050166135A1 (en) | 2004-01-05 | 2005-07-28 | Burke David G. | Apparatus, system and method for synchronized playback of data transmitted over an asynchronous network |
US20050149732A1 (en) | 2004-01-07 | 2005-07-07 | Microsoft Corporation | Use of static Diffie-Hellman key with IPSec for authentication |
JP4251077B2 (en) | 2004-01-07 | 2009-04-08 | ヤマハ株式会社 | Speaker device |
TWI231131B (en) | 2004-01-08 | 2005-04-11 | Via Tech Inc | Method and system of completing bluetooth for the pairing procedure by wired interface |
US7742832B1 (en) | 2004-01-09 | 2010-06-22 | Neosonik | Method and apparatus for wireless digital audio playback for player piano applications |
USD495333S1 (en) | 2004-01-13 | 2004-08-31 | Hannspree, Inc. | Liquid crystal display |
TWD102014S1 (en) | 2004-01-15 | 2004-12-21 | 瀚斯寶麗股份有限公司 | Remote control |
USD499718S1 (en) | 2004-01-19 | 2004-12-14 | Hannspree, Inc | Remote control |
US7669113B1 (en) | 2004-01-30 | 2010-02-23 | Apple Inc. | Media stream synchronization using device and host clocks |
JP4977950B2 (en) | 2004-02-04 | 2012-07-18 | セイコーエプソン株式会社 | Multi-screen video playback system, video playback method and display device |
US7657645B2 (en) | 2004-02-05 | 2010-02-02 | Sharp Laboratories Of America, Inc. | System and method for transporting MPEG2TS in RTP/UDP/IP |
US20050177256A1 (en) | 2004-02-06 | 2005-08-11 | Peter Shintani | Addressable loudspeaker |
US7206967B1 (en) | 2004-02-09 | 2007-04-17 | Altera Corporation | Chip debugging using incremental recompilation and register insertion |
US20050181348A1 (en) | 2004-02-17 | 2005-08-18 | Carey Tadhg M. | E-learning system and method |
JP2005236502A (en) | 2004-02-18 | 2005-09-02 | Yamaha Corp | Sound system |
US20050197725A1 (en) | 2004-02-20 | 2005-09-08 | Qsonix | Music management system |
JP2005234929A (en) | 2004-02-20 | 2005-09-02 | Sony Corp | Server device, acoustic control system and acoustic control method |
US7483538B2 (en) | 2004-03-02 | 2009-01-27 | Ksc Industries, Inc. | Wireless and wired speaker hub for a home theater system |
US20050195205A1 (en) | 2004-03-03 | 2005-09-08 | Microsoft Corporation | Method and apparatus to decode a streaming file directly to display drivers |
US7617012B2 (en) | 2004-03-04 | 2009-11-10 | Yamaha Corporation | Audio signal processing system |
JP4059214B2 (en) | 2004-03-04 | 2008-03-12 | ソニー株式会社 | Information reproducing system control method, information reproducing system, information providing apparatus, and information providing program |
GB2412034A (en) | 2004-03-10 | 2005-09-14 | Mitel Networks Corp | Optimising speakerphone performance based on tilt angle |
US7218708B2 (en) | 2004-03-12 | 2007-05-15 | Honeywell International, Inc. | Internet facilitated emergency and general paging system |
US7454465B2 (en) | 2004-03-26 | 2008-11-18 | Microsoft Corporation | Real-time collaboration and communication in a peer-to-peer networking infrastructure |
US7689305B2 (en) | 2004-03-26 | 2010-03-30 | Harman International Industries, Incorporated | System for audio-related device communication |
US9374607B2 (en) | 2012-06-26 | 2016-06-21 | Sonos, Inc. | Media playback system with guest access |
US7574274B2 (en) | 2004-04-14 | 2009-08-11 | Nvidia Corporation | Method and system for synchronizing audio processing modules |
US7587254B2 (en) | 2004-04-23 | 2009-09-08 | Nokia Corporation | Dynamic range control and equalization of digital audio using warped processing |
US8028038B2 (en) | 2004-05-05 | 2011-09-27 | Dryden Enterprises, Llc | Obtaining a playlist based on user profile matching |
US8028323B2 (en) | 2004-05-05 | 2011-09-27 | Dryden Enterprises, Llc | Method and system for employing a first device to direct a networked audio device to obtain a media item |
EP1745677B1 (en) | 2004-05-06 | 2017-12-27 | Bang & Olufsen A/S | A method and system for adapting a loudspeaker to a listening position in a room |
US7636365B2 (en) | 2004-05-13 | 2009-12-22 | Korea Advanced Institute Of Science And Technology (Kaist) | Smart digital modules and smart digital wall surfaces combining the same, and context aware interactive multimedia system using the same and operation method thereof |
US7630501B2 (en) | 2004-05-14 | 2009-12-08 | Microsoft Corporation | System and method for calibration of an acoustic system |
US8024055B1 (en) | 2004-05-15 | 2011-09-20 | Sonos, Inc. | Method and system for controlling amplifiers |
US7792311B1 (en) | 2004-05-15 | 2010-09-07 | Sonos, Inc., | Method and apparatus for automatically enabling subwoofer channel audio based on detection of subwoofer device |
AU2004320207A1 (en) | 2004-05-25 | 2005-12-08 | Huonlabs Pty Ltd | Audio apparatus and method |
US20050266798A1 (en) | 2004-05-31 | 2005-12-01 | Seamus Moloney | Linking security association to entries in a contact directory of a wireless device |
US20050266826A1 (en) | 2004-06-01 | 2005-12-01 | Nokia Corporation | Method for establishing a security association between a wireless access point and a wireless node in a UPnP environment |
US8797926B2 (en) | 2004-06-04 | 2014-08-05 | Apple Inc. | Networked media station |
US7490044B2 (en) | 2004-06-08 | 2009-02-10 | Bose Corporation | Audio signal processing |
US8214447B2 (en) | 2004-06-08 | 2012-07-03 | Bose Corporation | Managing an audio network |
US7400653B2 (en) | 2004-06-18 | 2008-07-15 | Dolby Laboratories Licensing Corporation | Maintaining synchronization of streaming audio and video using internet protocol |
US7448061B2 (en) | 2004-06-21 | 2008-11-04 | Dolby Laboratories Licensing Corporation | Frame synchronization in an ethernet NTP time-keeping digital cinema playback system |
US7631119B2 (en) | 2004-06-25 | 2009-12-08 | Apple Inc. | Techniques for providing audio for synchronized playback by multiple devices |
US20050289244A1 (en) | 2004-06-28 | 2005-12-29 | Himansu Sahu | Method for service chaining in a communication network |
US20060045281A1 (en) | 2004-08-27 | 2006-03-02 | Motorola, Inc. | Parameter adjustment in audio devices |
KR20060022968A (en) | 2004-09-08 | 2006-03-13 | 삼성전자주식회사 | Sound reproducing apparatus and sound reproducing method |
US7155214B2 (en) | 2004-09-09 | 2006-12-26 | Dana Innovations | I-port controller |
CN1292345C (en) | 2004-09-15 | 2006-12-27 | 萧学文 | Method and system for synchronous playing audio-video at BREW platform |
KR20060030713A (en) | 2004-10-06 | 2006-04-11 | 주식회사 대우일렉트로닉스 | Transmitter/receiver of wireless headphone's signal of the home theater |
US7634092B2 (en) | 2004-10-14 | 2009-12-15 | Dolby Laboratories Licensing Corporation | Head related transfer functions for panned stereo audio content |
US20060090021A1 (en) | 2004-10-27 | 2006-04-27 | Weidig Terry D | PC managed networked audio bell/intercom system |
US7885622B2 (en) | 2004-10-27 | 2011-02-08 | Chestnut Hill Sound Inc. | Entertainment system with bandless tuning |
US7302468B2 (en) | 2004-11-01 | 2007-11-27 | Motorola Inc. | Local area preference determination system and method |
US8600084B1 (en) | 2004-11-09 | 2013-12-03 | Motion Computing, Inc. | Methods and systems for altering the speaker orientation of a portable system |
CN101057291B (en) | 2004-11-12 | 2012-05-09 | 皇家飞利浦电子股份有限公司 | Apparatus and method for sharing content via headphone device |
ATE402587T1 (en) | 2004-11-18 | 2008-08-15 | Nat Univ Ireland | SYNCHRONIZING MULTI-CHANNEL SPEAKERS OVER A NETWORK |
WO2006054270A1 (en) | 2004-11-22 | 2006-05-26 | Bang & Olufsen A/S | A method and apparatus for multichannel upmixing and downmixing |
KR100512473B1 (en) | 2004-11-30 | 2005-09-02 | 이종성 | Network audio speaker system |
JP3910986B2 (en) | 2004-12-08 | 2007-04-25 | 株式会社リコー | Optical disk device |
JP2006174277A (en) | 2004-12-17 | 2006-06-29 | Casio Hitachi Mobile Communications Co Ltd | Mobile terminal, stereo reproducing method, and stereo reproducing program |
US8050203B2 (en) | 2004-12-22 | 2011-11-01 | Eleven Engineering Inc. | Multi-channel digital wireless audio system |
US7472058B2 (en) | 2004-12-28 | 2008-12-30 | Cyberlink Corp. | Automatic audio source detection for capture devices |
US20060143236A1 (en) | 2004-12-29 | 2006-06-29 | Bandwidth Productions Inc. | Interactive music playlist sharing system and methods |
US8880205B2 (en) | 2004-12-30 | 2014-11-04 | Mondo Systems, Inc. | Integrated multimedia signal processing system using centralized processing of signals |
US7921369B2 (en) | 2004-12-30 | 2011-04-05 | Aol Inc. | Mood-based organization and display of instant messenger buddy lists |
US8015590B2 (en) | 2004-12-30 | 2011-09-06 | Mondo Systems, Inc. | Integrated multimedia signal processing system using centralized processing of signals |
US7653447B2 (en) | 2004-12-30 | 2010-01-26 | Mondo Systems, Inc. | Integrated audio video signal processing system using centralized processing of signals |
US8015306B2 (en) | 2005-01-05 | 2011-09-06 | Control4 Corporation | Method and apparatus for synchronizing playback of streaming media in multiple output devices |
US7958441B2 (en) | 2005-01-07 | 2011-06-07 | Apple Inc. | Media management for groups of media items |
US8788674B2 (en) | 2005-01-12 | 2014-07-22 | Blue Coat Systems, Inc. | Buffering proxy for telnet access |
US7876921B2 (en) | 2005-01-12 | 2011-01-25 | Logitech International, S.A. | Active crossover and wireless interface for use with multi-driver headphones |
US20070189544A1 (en) | 2005-01-15 | 2007-08-16 | Outland Research, Llc | Ambient sound responsive media player |
US20060179160A1 (en) | 2005-02-08 | 2006-08-10 | Motorola, Inc. | Orchestral rendering of data content based on synchronization of multiple communications devices |
US7463861B2 (en) | 2005-03-07 | 2008-12-09 | Broadcom Corporation | Automatic data encryption and access control based on bluetooth device proximity |
US7424267B2 (en) | 2005-03-07 | 2008-09-09 | Broadcom Corporation | Automatic resource availability using Bluetooth |
US20060205349A1 (en) | 2005-03-08 | 2006-09-14 | Enq Semiconductor, Inc. | Apparatus and method for wireless audio network management |
EP2030420A4 (en) | 2005-03-28 | 2009-06-03 | Sound Id | Personal sound system |
RU2411594C2 (en) | 2005-03-30 | 2011-02-10 | Конинклейке Филипс Электроникс Н.В. | Audio coding and decoding |
US20060222186A1 (en) | 2005-04-05 | 2006-10-05 | Paige Robert F | Multi-channel audio switch |
JP2006295313A (en) | 2005-04-06 | 2006-10-26 | Sony Corp | Information processor and processing method, recording medium, and program |
US7669219B2 (en) | 2005-04-15 | 2010-02-23 | Microsoft Corporation | Synchronized media experience |
US8244179B2 (en) | 2005-05-12 | 2012-08-14 | Robin Dua | Wireless inter-device data processing configured through inter-device transmitted data |
CN1862651B (en) | 2005-05-13 | 2010-05-26 | 鸿富锦精密工业(深圳)有限公司 | Signal converting apparatus and automatic interface switching method |
US7865140B2 (en) | 2005-06-14 | 2011-01-04 | The Invention Science Fund I, Llc | Device pairing via intermediary device |
US7516078B2 (en) | 2005-05-25 | 2009-04-07 | Microsoft Corporation | Personal shared playback |
KR101253799B1 (en) | 2005-06-05 | 2013-04-12 | 스타키 러보러토리즈 인코포레이티드 | Communication system for wireless audio devices |
EP1737265A1 (en) | 2005-06-23 | 2006-12-27 | AKG Acoustics GmbH | Determination of the position of sound sources |
US7657255B2 (en) | 2005-06-23 | 2010-02-02 | Microsoft Corporation | Provisioning of wireless connectivity for devices using NFC |
US7831054B2 (en) | 2005-06-28 | 2010-11-09 | Microsoft Corporation | Volume control |
US8238576B2 (en) | 2005-06-30 | 2012-08-07 | Cirrus Logic, Inc. | Level dependent bass management |
US20080152165A1 (en) | 2005-07-01 | 2008-06-26 | Luca Zacchi | Ad-hoc proximity multi-speaker entertainment |
DE102005033239A1 (en) | 2005-07-15 | 2007-01-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for controlling a plurality of loudspeakers by means of a graphical user interface |
US20070048713A1 (en) | 2005-08-12 | 2007-03-01 | Microsoft Corporation | Media player service library |
US8700730B2 (en) | 2005-08-18 | 2014-04-15 | Microsoft Corporation | Aggregated audio/video crossbar connections |
US7454218B2 (en) | 2005-08-19 | 2008-11-18 | Panasonic Corporation | Method of band multiplexing to improve system capacity for a multi-band communication system |
US7555291B2 (en) | 2005-08-26 | 2009-06-30 | Sony Ericsson Mobile Communications Ab | Mobile wireless communication terminals, systems, methods, and computer program products for providing a song play list |
US20080303947A1 (en) | 2005-08-26 | 2008-12-11 | Sharp Kabushiki Kaisha | Audio Processing Apparatus and Display Apparatus with Same |
JP4216834B2 (en) | 2005-08-31 | 2009-01-28 | パナソニック株式会社 | Playback apparatus and system |
WO2007028094A1 (en) | 2005-09-02 | 2007-03-08 | Harman International Industries, Incorporated | Self-calibrating loudspeaker |
US7720096B2 (en) | 2005-10-13 | 2010-05-18 | Microsoft Corporation | RTP payload format for VC-1 |
US20070087686A1 (en) | 2005-10-18 | 2007-04-19 | Nokia Corporation | Audio playback device and method of its operation |
US7793206B2 (en) | 2005-11-02 | 2010-09-07 | Creative Technology Ltd | System for downloading digital content published in a media channel |
US8042048B2 (en) | 2005-11-17 | 2011-10-18 | Att Knowledge Ventures, L.P. | System and method for home automation |
EP1958420A2 (en) | 2005-12-04 | 2008-08-20 | Turner Broadcast System, Inc (TBS, Inc.) | System and method for delivering video and audio content over a network |
US9153125B2 (en) | 2005-12-20 | 2015-10-06 | Savant Systems, Llc | Programmable multimedia controller with programmable services |
US7702279B2 (en) | 2005-12-20 | 2010-04-20 | Apple Inc. | Portable media player as a low power remote control and method thereof |
FR2895869B1 (en) | 2005-12-29 | 2008-05-23 | Henri Seydoux | WIRELESS DISTRIBUTION SYSTEM OF AN AUDIO SIGNAL BETWEEN A PLURALITY OF ACTICAL SPEAKERS |
US8677002B2 (en) | 2006-01-28 | 2014-03-18 | Blackfire Research Corp | Streaming media system and method |
KR20100090312A (en) | 2006-02-10 | 2010-08-13 | 스트랜즈, 아이엔씨. | Systems and methods for prioritizing mobile media player files |
US20070220150A1 (en) | 2006-03-01 | 2007-09-20 | Cypress Semiconductor Corp. | Source Switching Method for Multimedia Interface |
US8073137B2 (en) | 2006-03-06 | 2011-12-06 | Sony Ericsson Mobile Communications Ab | Audio headset |
KR100754210B1 (en) | 2006-03-08 | 2007-09-03 | 삼성전자주식회사 | Method and apparatus for reproducing multi channel sound using cable/wireless device |
JP2007241652A (en) | 2006-03-08 | 2007-09-20 | Core Colors Inc | Content distribution system |
EP1995939A4 (en) | 2006-03-10 | 2010-01-20 | Nec Corp | Mobile telephone |
US20070217400A1 (en) | 2006-03-17 | 2007-09-20 | Staples Mathew L | Audio distribution over internet protocol |
US20070223725A1 (en) | 2006-03-24 | 2007-09-27 | Neumann John C | Method and apparatus for wirelessly streaming multi-channel content |
FI20060295L (en) | 2006-03-28 | 2008-01-08 | Genelec Oy | Method and device in a sound reproduction system |
US8285595B2 (en) | 2006-03-29 | 2012-10-09 | Napo Enterprises, Llc | System and method for refining media recommendations |
US7115017B1 (en) | 2006-03-31 | 2006-10-03 | Novellus Systems, Inc. | Methods for controlling the pressures of adjustable pressure zones of a work piece carrier during chemical mechanical planarization |
JP2007288405A (en) | 2006-04-14 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Video sound output system, video sound processing method, and program |
US7874007B2 (en) | 2006-04-28 | 2011-01-18 | Microsoft Corporation | Providing guest users access to network resources through an enterprise network |
US7804972B2 (en) | 2006-05-12 | 2010-09-28 | Cirrus Logic, Inc. | Method and apparatus for calibrating a sound beam-forming system |
CN101484889B (en) | 2006-05-03 | 2011-12-28 | 克劳德系统有限公司 | System and method for managing, routing, and controlling devices and inter-device connections |
GB0702600D0 (en) | 2006-05-05 | 2007-03-21 | Omnifone Ltd | Loader |
ATE527810T1 (en) | 2006-05-11 | 2011-10-15 | Global Ip Solutions Gips Ab | SOUND MIXING |
US7546144B2 (en) | 2006-05-16 | 2009-06-09 | Sony Ericsson Mobile Communications Ab | Mobile wireless communication terminals, systems, methods, and computer program products for managing playback of song files |
WO2007135581A2 (en) | 2006-05-16 | 2007-11-29 | Koninklijke Philips Electronics N.V. | A device for and a method of processing audio data |
US7890985B2 (en) | 2006-05-22 | 2011-02-15 | Microsoft Corporation | Server-side media stream manipulation for emulation of media playback functions |
US7953315B2 (en) | 2006-05-22 | 2011-05-31 | Broadcom Corporation | Adaptive video processing circuitry and player using sub-frame metadata |
US20070299778A1 (en) | 2006-06-22 | 2007-12-27 | Microsoft Corporation | Local peer-to-peer digital content distribution |
US20080007649A1 (en) | 2006-06-23 | 2008-01-10 | Broadcom Corporation, A California Corporation | Adaptive video processing using sub-frame metadata |
US20080007651A1 (en) | 2006-06-23 | 2008-01-10 | Broadcom Corporation, A California Corporation | Sub-frame metadata distribution server |
US20080007650A1 (en) | 2006-06-23 | 2008-01-10 | Broadcom Corporation, A California Corporation | Processing of removable media that stores full frame video & sub-frame metadata |
US8107639B2 (en) | 2006-06-29 | 2012-01-31 | 777388 Ontario Limited | System and method for a sound masking system for networked workstations or offices |
US20080022320A1 (en) | 2006-06-30 | 2008-01-24 | Scientific-Atlanta, Inc. | Systems and Methods of Synchronizing Media Streams |
US8239559B2 (en) | 2006-07-15 | 2012-08-07 | Blackfire Research Corp. | Provisioning and streaming media to wireless speakers from fixed and mobile media sources and clients |
US8068622B2 (en) | 2006-12-13 | 2011-11-29 | Cirrus Logic, Inc. | Method and apparatus for controlling a selectable voltage audio power output stage |
US20080077261A1 (en) | 2006-08-29 | 2008-03-27 | Motorola, Inc. | Method and system for sharing an audio experience |
US10013381B2 (en) | 2006-08-31 | 2018-07-03 | Bose Corporation | Media playing from a docked handheld media device |
US8607281B2 (en) | 2006-09-07 | 2013-12-10 | Porto Vinci Ltd. Limited Liability Company | Control of data presentation in multiple zones using a wireless home entertainment hub |
US9386269B2 (en) | 2006-09-07 | 2016-07-05 | Rateze Remote Mgmt Llc | Presentation of data on multiple display devices using a wireless hub |
US20080061578A1 (en) | 2006-09-07 | 2008-03-13 | Technology, Patents & Licensing, Inc. | Data presentation in multiple zones using a wireless home entertainment hub |
US8935733B2 (en) | 2006-09-07 | 2015-01-13 | Porto Vinci Ltd. Limited Liability Company | Data presentation using a wireless home entertainment hub |
JP2008072206A (en) | 2006-09-12 | 2008-03-27 | Onkyo Corp | Multichannel audio amplification device |
US8788080B1 (en) | 2006-09-12 | 2014-07-22 | Sonos, Inc. | Multi-channel pairing in a media system |
US8483853B1 (en) | 2006-09-12 | 2013-07-09 | Sonos, Inc. | Controlling and manipulating groupings in a multi-zone media system |
US9202509B2 (en) | 2006-09-12 | 2015-12-01 | Sonos, Inc. | Controlling and grouping in a multi-zone media system |
US8429223B2 (en) | 2006-09-21 | 2013-04-23 | Apple Inc. | Systems and methods for facilitating group activities |
US8956290B2 (en) | 2006-09-21 | 2015-02-17 | Apple Inc. | Lifestyle companion system |
US8001472B2 (en) | 2006-09-21 | 2011-08-16 | Apple Inc. | Systems and methods for providing audio and visual cues via a portable electronic device |
US7686886B2 (en) | 2006-09-26 | 2010-03-30 | International Business Machines Corporation | Controlled shape semiconductor layer by selective epitaxy under seed structure |
US20080091771A1 (en) | 2006-10-13 | 2008-04-17 | Microsoft Corporation | Visual representations of profiles for community interaction |
EP2082397B1 (en) | 2006-10-16 | 2011-12-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for multi -channel parameter transformation |
JP2010507295A (en) | 2006-10-17 | 2010-03-04 | アベガ システムズ ピーティーワイ リミテッド | Media wireless network setup and connection |
AU2007312942A1 (en) | 2006-10-17 | 2008-04-24 | Altec Lansing Australia Pty Ltd | Unification of multimedia devices |
US9318152B2 (en) | 2006-10-20 | 2016-04-19 | Sony Corporation | Super share |
US20080109867A1 (en) | 2006-11-07 | 2008-05-08 | Microsoft Corporation | Service and policies for coordinating behaviors and connectivity of a mesh of heterogeneous devices |
US8984442B2 (en) | 2006-11-17 | 2015-03-17 | Apple Inc. | Method and system for upgrading a previously purchased media asset |
US20080263010A1 (en) | 2006-12-12 | 2008-10-23 | Microsoft Corporation | Techniques to selectively access meeting content |
US8006002B2 (en) | 2006-12-12 | 2011-08-23 | Apple Inc. | Methods and systems for automatic configuration of peripherals |
US8391501B2 (en) | 2006-12-13 | 2013-03-05 | Motorola Mobility Llc | Method and apparatus for mixing priority and non-priority audio signals |
US20080146289A1 (en) | 2006-12-14 | 2008-06-19 | Motorola, Inc. | Automatic audio transducer adjustments based upon orientation of a mobile communication device |
US8045721B2 (en) | 2006-12-14 | 2011-10-25 | Motorola Mobility, Inc. | Dynamic distortion elimination for output audio |
US8571111B2 (en) | 2006-12-20 | 2013-10-29 | Intel Corporation | Method and apparatus for switching program streams using a fixed speed program stream buffer coupled to a decoder |
JP4935345B2 (en) | 2006-12-25 | 2012-05-23 | ソニー株式会社 | Content reproduction system, reproduction apparatus, reproduction control method, and program |
US20080162668A1 (en) | 2006-12-29 | 2008-07-03 | John David Miller | Method and apparatus for mutually-shared media experiences |
SE531528C2 (en) | 2006-12-29 | 2009-05-12 | Scania Cv Abp | Device and method for prioritizing sound in a single vehicle |
US7765315B2 (en) | 2007-01-08 | 2010-07-27 | Apple Inc. | Time synchronization of multiple time-based data streams with independent clocks |
US8942395B2 (en) | 2007-01-17 | 2015-01-27 | Harman International Industries, Incorporated | Pointing element enhanced speaker system |
US7817960B2 (en) | 2007-01-22 | 2010-10-19 | Jook, Inc. | Wireless audio sharing |
US7840563B2 (en) | 2007-02-03 | 2010-11-23 | Google Inc. | Collective ranking of digital content |
US20090228919A1 (en) | 2007-11-16 | 2009-09-10 | Zott Joseph A | Media playlist management and viewing remote control |
JP2008206094A (en) | 2007-02-22 | 2008-09-04 | Sony Corp | Cradle |
US20080215169A1 (en) | 2007-03-02 | 2008-09-04 | Lisa Debettencourt | Audio System |
KR101336237B1 (en) | 2007-03-02 | 2013-12-03 | 삼성전자주식회사 | Method and apparatus for reproducing multi-channel audio signal in multi-channel speaker system |
US8155335B2 (en) | 2007-03-14 | 2012-04-10 | Phillip Rutschman | Headset having wirelessly linked earpieces |
US8654995B2 (en) | 2007-03-16 | 2014-02-18 | Harman International Industries, Incorporated | Audio control system for a vehicle |
JP4955055B2 (en) | 2007-03-19 | 2012-06-20 | パイオニア株式会社 | Content reproduction system and control method thereof |
EP2323289A3 (en) | 2007-03-28 | 2011-12-07 | Yamaha Corporation | Mixing signal processing apparatus and mixing signal processing integrated circuit |
FR2915041A1 (en) | 2007-04-13 | 2008-10-17 | Canon Kk | METHOD OF ALLOCATING A PLURALITY OF AUDIO CHANNELS TO A PLURALITY OF SPEAKERS, COMPUTER PROGRAM PRODUCT, STORAGE MEDIUM AND CORRESPONDING MANAGEMENT NODE. |
US9560448B2 (en) | 2007-05-04 | 2017-01-31 | Bose Corporation | System and method for directionally radiating sound |
US8194874B2 (en) | 2007-05-22 | 2012-06-05 | Polk Audio, Inc. | In-room acoustic magnitude response smoothing via summation of correction signals |
US8320410B2 (en) | 2007-05-23 | 2012-11-27 | Broadcom Corporation | Synchronization of media data streams with separate sinks using a relay |
JP2009003882A (en) | 2007-06-25 | 2009-01-08 | Toshiba Corp | Data receiver and data transmitting/receiving method |
US7721032B2 (en) | 2007-06-28 | 2010-05-18 | Apple Inc. | Method and apparatus for mediating among media applications |
US20090017868A1 (en) | 2007-07-13 | 2009-01-15 | Joji Ueda | Point-to-Point Wireless Audio Transmission |
US8306235B2 (en) | 2007-07-17 | 2012-11-06 | Apple Inc. | Method and apparatus for using a sound sensor to adjust the audio output for a device |
US8279709B2 (en) | 2007-07-18 | 2012-10-02 | Bang & Olufsen A/S | Loudspeaker position estimation |
US20090031336A1 (en) | 2007-07-24 | 2009-01-29 | Chavez Timothy R | Group preference control system |
EP2028882B1 (en) | 2007-08-01 | 2018-10-10 | Yamaha Corporation | Remote audio monitoring system for amplifiers in a network |
WO2009025705A1 (en) | 2007-08-16 | 2009-02-26 | Thomson Licensing | Network audio processor |
JP5040528B2 (en) | 2007-08-28 | 2012-10-03 | ソニー株式会社 | Audio signal transmitting apparatus, audio signal receiving apparatus, and audio signal transmission method |
JP4983485B2 (en) | 2007-08-31 | 2012-07-25 | ソニー株式会社 | Audio signal receiving apparatus, audio signal transmitting apparatus, audio signal transmission system, audio signal transmission method and program |
JP4442662B2 (en) | 2007-08-31 | 2010-03-31 | ソニー株式会社 | Audio signal transmission system and audio signal transmission method |
KR20090027101A (en) | 2007-09-11 | 2009-03-16 | 삼성전자주식회사 | Method for equalizing audio and video apparatus using the same |
US9324064B2 (en) | 2007-09-24 | 2016-04-26 | Touchtunes Music Corporation | Digital jukebox device with karaoke and/or photo booth features, and associated methods |
GB2453117B (en) | 2007-09-25 | 2012-05-23 | Motorola Mobility Inc | Apparatus and method for encoding a multi channel audio signal |
US20090089327A1 (en) | 2007-09-28 | 2009-04-02 | Chris Kalaboukis | System and method for social programming of media sources |
EP2043381A3 (en) | 2007-09-28 | 2010-07-21 | Bang & Olufsen A/S | A method and a system to adjust the acoustical performance of a loudspeaker |
KR101292206B1 (en) | 2007-10-01 | 2013-08-01 | 삼성전자주식회사 | Array speaker system and the implementing method thereof |
EP2045971B1 (en) | 2007-10-04 | 2011-12-07 | Harman Becker Automotive Systems GmbH | Data network with time synchronization mechanism |
US7995732B2 (en) | 2007-10-04 | 2011-08-09 | At&T Intellectual Property I, Lp | Managing audio in a multi-source audio environment |
KR100821501B1 (en) | 2007-10-17 | 2008-04-14 | 김영언 | Bi-directional broadcasting system for a small space |
US9009603B2 (en) | 2007-10-24 | 2015-04-14 | Social Communications Company | Web browser interface for spatial communication environments |
US8509463B2 (en) | 2007-11-09 | 2013-08-13 | Creative Technology Ltd | Multi-mode sound reproduction system and a corresponding method thereof |
JP4569842B2 (en) | 2007-11-12 | 2010-10-27 | ソニー株式会社 | Audio device and external adapter used for the audio device |
JP2009135750A (en) | 2007-11-30 | 2009-06-18 | Kyocera Corp | Reproduction system, reproduction control device, reproduction control method and reproduction control program |
US8126172B2 (en) | 2007-12-06 | 2012-02-28 | Harman International Industries, Incorporated | Spatial processing stereo system |
EP2232365A4 (en) | 2007-12-10 | 2013-07-31 | Deluxe Digital Studios Inc | Method and system for use in coordinating multimedia devices |
US8095680B2 (en) | 2007-12-20 | 2012-01-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Real-time network transport protocol interface method and apparatus |
US8498946B1 (en) | 2007-12-21 | 2013-07-30 | Jelli, Inc. | Social broadcasting user experience |
JP4561825B2 (en) | 2007-12-27 | 2010-10-13 | ソニー株式会社 | Audio signal receiving apparatus, audio signal receiving method, program, and audio signal transmission system |
WO2009086597A1 (en) | 2008-01-07 | 2009-07-16 | Avega Systems Pty Ltd. | Systems and methods for providing zone functionality in networked media systems |
US8423893B2 (en) | 2008-01-07 | 2013-04-16 | Altec Lansing Australia Pty Limited | User interface for managing the operation of networked media playback devices |
WO2009086602A1 (en) | 2008-01-07 | 2009-07-16 | Avega Systems Pty Ltd | Systems and methods for providing media playback in a networked environment |
KR20090077480A (en) | 2008-01-11 | 2009-07-15 | 삼성전자주식회사 | Method for providing ui to display operation guide and multimedia apparatus thereof |
US20090193345A1 (en) | 2008-01-28 | 2009-07-30 | Apeer Inc. | Collaborative interface |
KR101460060B1 (en) | 2008-01-31 | 2014-11-20 | 삼성전자주식회사 | Method for compensating audio frequency characteristic and AV apparatus using the same |
US8885851B2 (en) | 2008-02-05 | 2014-11-11 | Sony Corporation | Portable device that performs an action in response to magnitude of force, method of operating the portable device, and computer program |
US8996145B2 (en) | 2008-02-29 | 2015-03-31 | Red Hat, Inc. | Album playback in a random mode |
US20090228897A1 (en) | 2008-03-04 | 2009-09-10 | Murray Frank H | Bidirectional Control of Media Players |
JP5332243B2 (en) | 2008-03-11 | 2013-11-06 | ヤマハ株式会社 | Sound emission system |
JP2009217551A (en) | 2008-03-11 | 2009-09-24 | Funai Electric Co Ltd | Media player and play method |
US20110015769A1 (en) | 2008-03-12 | 2011-01-20 | Genelec Oy | Data transfer method and system for loudspeakers in a digital sound reproduction system |
US8175289B2 (en) | 2008-03-13 | 2012-05-08 | Gordon Raymond L | Digital audio distribution network |
KR20090102089A (en) | 2008-03-25 | 2009-09-30 | 삼성전자주식회사 | Audio apparatus to transfer audio signal wirelessly and method thereof |
US9654718B2 (en) | 2008-04-02 | 2017-05-16 | Bose Corporation | Method and apparatus for selecting a signal source |
US8170222B2 (en) | 2008-04-18 | 2012-05-01 | Sony Mobile Communications Ab | Augmented reality enhanced audio |
US8325931B2 (en) | 2008-05-02 | 2012-12-04 | Bose Corporation | Detecting a loudspeaker configuration |
US8063698B2 (en) | 2008-05-02 | 2011-11-22 | Bose Corporation | Bypassing amplification |
JP5141390B2 (en) | 2008-06-19 | 2013-02-13 | ヤマハ株式会社 | Speaker device and speaker system |
TWI382737B (en) | 2008-07-08 | 2013-01-11 | Htc Corp | Handheld electronic device and operating method thereof |
US20100017714A1 (en) | 2008-07-16 | 2010-01-21 | Anjili Agarwal | Web based collaborative multimedia event planning, hosting and deployment system and web based personal multimedia portable system |
US8639830B2 (en) | 2008-07-22 | 2014-01-28 | Control4 Corporation | System and method for streaming audio |
US8090317B2 (en) | 2008-08-01 | 2012-01-03 | Bose Corporation | Personal wireless network user behavior based topology |
US8233648B2 (en) | 2008-08-06 | 2012-07-31 | Samsung Electronics Co., Ltd. | Ad-hoc adaptive wireless mobile sound system |
US8452020B2 (en) | 2008-08-20 | 2013-05-28 | Apple Inc. | Adjustment of acoustic properties based on proximity detection |
US8218790B2 (en) | 2008-08-26 | 2012-07-10 | Apple Inc. | Techniques for customizing control of volume level in device playback |
US8519820B2 (en) | 2008-09-02 | 2013-08-27 | Apple Inc. | Systems and methods for saving and restoring scenes in a multimedia system |
US8966394B2 (en) | 2008-09-08 | 2015-02-24 | Apple Inc. | System and method for playlist generation based on similarity data |
EP2161950B1 (en) | 2008-09-08 | 2019-01-23 | Harman Becker Gépkocsirendszer Gyártó Korlátolt Felelösségü Társaság | Configuring a sound field |
JP5266995B2 (en) | 2008-09-12 | 2013-08-21 | ヤマハ株式会社 | Sound emission device |
US8850052B2 (en) | 2008-09-30 | 2014-09-30 | Apple Inc. | System and method for simplified resource sharing |
US8285404B1 (en) | 2008-10-27 | 2012-10-09 | Adobe Systems Incorporated | Slightly varying shuffling of content items in playlists |
JP2010114478A (en) | 2008-11-04 | 2010-05-20 | Sony Corp | Audio system and main box |
US8861739B2 (en) | 2008-11-10 | 2014-10-14 | Nokia Corporation | Apparatus and method for generating a multichannel signal |
US9014833B2 (en) | 2008-11-12 | 2015-04-21 | Creative Technology Ltd | System for reproduction of media content |
US7934239B1 (en) | 2008-11-14 | 2011-04-26 | Monsoon Multimedia | Method and system to daisy-chain access to video resources |
US8977974B2 (en) | 2008-12-08 | 2015-03-10 | Apple Inc. | Ambient noise based augmentation of media playback |
KR20100066949A (en) | 2008-12-10 | 2010-06-18 | 삼성전자주식회사 | Audio apparatus and method for auto sound calibration |
US7996566B1 (en) | 2008-12-23 | 2011-08-09 | Genband Us Llc | Media sharing |
US8819554B2 (en) | 2008-12-23 | 2014-08-26 | At&T Intellectual Property I, L.P. | System and method for playing media |
US8565455B2 (en) | 2008-12-31 | 2013-10-22 | Intel Corporation | Multiple display systems with enhanced acoustics experience |
US8229125B2 (en) | 2009-02-06 | 2012-07-24 | Bose Corporation | Adjusting dynamic range of an audio system |
US20100228740A1 (en) | 2009-03-09 | 2010-09-09 | Apple Inc. | Community playlist management |
US8620006B2 (en) | 2009-05-13 | 2013-12-31 | Bose Corporation | Center channel rendering |
JP5421376B2 (en) | 2009-05-18 | 2014-02-19 | ハーマン インターナショナル インダストリーズ インコーポレイテッド | Audio system optimized for efficiency |
JP5444863B2 (en) | 2009-06-11 | 2014-03-19 | ソニー株式会社 | Communication device |
US8509211B2 (en) | 2009-06-25 | 2013-08-13 | Bose Corporation | Wireless audio communicating method and component |
US8407623B2 (en) | 2009-06-25 | 2013-03-26 | Apple Inc. | Playback control using a touch interface |
JP2011010183A (en) | 2009-06-29 | 2011-01-13 | Yamaha Corp | Music reproduction system, mobile terminal device and music reproduction program |
US8148622B2 (en) | 2009-07-01 | 2012-04-03 | Apple Inc. | Media playback queuing for playback management |
US20110001632A1 (en) | 2009-07-01 | 2011-01-06 | Andrew Gordon Hohorst | Method and System for Changing an Input Source for an Electronic Device |
US20110002487A1 (en) | 2009-07-06 | 2011-01-06 | Apple Inc. | Audio Channel Assignment for Audio Output in a Movable Device |
GB2471871B (en) | 2009-07-15 | 2011-12-14 | Sony Comp Entertainment Europe | Apparatus and method for a virtual dance floor |
WO2011020100A1 (en) | 2009-08-14 | 2011-02-17 | Emo Labs, Inc | System to generate electrical signals for a loudspeaker |
US8463875B2 (en) | 2009-08-20 | 2013-06-11 | Google Inc. | Synchronized playback of media players |
US8842848B2 (en) | 2009-09-18 | 2014-09-23 | Aliphcom | Multi-modal audio system with automatic usage mode detection and configuration capability |
US9706241B2 (en) | 2009-09-29 | 2017-07-11 | Verizon Patent And Licensing Inc. | Systems and methods for casting a graphical user interface display of a mobile device to a display screen associated with a set-top-box device |
US8972860B2 (en) | 2009-09-30 | 2015-03-03 | Adobe Systems Incorporated | Player instance management |
CN102035639B (en) | 2009-09-30 | 2014-09-17 | 华为技术有限公司 | Time synchronization method, device and system |
US8214740B2 (en) | 2009-10-30 | 2012-07-03 | Apple Inc. | Song flow methodology in random playback |
US8601394B2 (en) | 2009-11-06 | 2013-12-03 | Bose Corporation | Graphical user interface user customization |
US8600076B2 (en) | 2009-11-09 | 2013-12-03 | Neofidelity, Inc. | Multiband DRC system and method for controlling the same |
KR20110072650A (en) | 2009-12-23 | 2011-06-29 | 삼성전자주식회사 | Audio apparatus and method for transmitting audio signal and audio system |
KR20110082840A (en) | 2010-01-12 | 2011-07-20 | 삼성전자주식회사 | Method and apparatus for adjusting volume |
JP2011176581A (en) | 2010-02-24 | 2011-09-08 | Sanyo Electric Co Ltd | Speaker device, speaker system, and acoustic system |
US8265310B2 (en) | 2010-03-03 | 2012-09-11 | Bose Corporation | Multi-element directional acoustic arrays |
US8139774B2 (en) | 2010-03-03 | 2012-03-20 | Bose Corporation | Multi-element directional acoustic arrays |
JP5454248B2 (en) | 2010-03-12 | 2014-03-26 | ソニー株式会社 | Transmission device and transmission method |
US8428045B2 (en) | 2010-03-16 | 2013-04-23 | Harman International Industries, Incorporated | Media clock recovery |
US9426574B2 (en) | 2010-03-19 | 2016-08-23 | Bose Corporation | Automatic audio source switching |
CN102804814B (en) | 2010-03-26 | 2015-09-23 | 邦及欧路夫森有限公司 | Multichannel sound reproduction method and equipment |
US9300696B2 (en) | 2010-04-22 | 2016-03-29 | Lg Electronics Inc. | Method of sharing one or more media in a session between terminals |
EP2986034B1 (en) | 2010-05-06 | 2017-05-31 | Dolby Laboratories Licensing Corporation | Audio system equalization for portable media playback devices |
US8300845B2 (en) | 2010-06-23 | 2012-10-30 | Motorola Mobility Llc | Electronic apparatus having microphones with controllable front-side gain and rear-side gain |
US20110316768A1 (en) | 2010-06-28 | 2011-12-29 | Vizio, Inc. | System, method and apparatus for speaker configuration |
EP2591617B1 (en) | 2010-07-09 | 2014-06-18 | Bang & Olufsen A/S | Adaptive sound field control |
US8965546B2 (en) | 2010-07-26 | 2015-02-24 | Qualcomm Incorporated | Systems, methods, and apparatus for enhanced acoustic imaging |
US8433076B2 (en) | 2010-07-26 | 2013-04-30 | Motorola Mobility Llc | Electronic apparatus for generating beamformed audio signals with steerable nulls |
US8672744B1 (en) | 2010-08-16 | 2014-03-18 | Wms Gaming, Inc. | Adjustable wagering game system social interactivity configuration |
US9661428B2 (en) | 2010-08-17 | 2017-05-23 | Harman International Industries, Inc. | System for configuration and management of live sound system |
WO2012027577A2 (en) | 2010-08-26 | 2012-03-01 | Tarik Taleb | System and method for creating multimedia content channel customized for social network |
US8611559B2 (en) | 2010-08-31 | 2013-12-17 | Apple Inc. | Dynamic adjustment of master and individual volume controls |
US8965014B2 (en) | 2010-08-31 | 2015-02-24 | Cypress Semiconductor Corporation | Adapting audio signals to a change in device orientation |
US20120051558A1 (en) | 2010-09-01 | 2012-03-01 | Samsung Electronics Co., Ltd. | Method and apparatus for reproducing audio signal by adaptively controlling filter coefficient |
US8768252B2 (en) | 2010-09-02 | 2014-07-01 | Apple Inc. | Un-tethered wireless audio system |
US8615091B2 (en) | 2010-09-23 | 2013-12-24 | Bose Corporation | System for accomplishing bi-directional audio data and control communications |
US20120226536A1 (en) | 2010-09-28 | 2012-09-06 | Adam Kidron | Encryption-Free Content Purchase Platform Apparatuses, Methods And Systems |
US8923997B2 (en) | 2010-10-13 | 2014-12-30 | Sonos, Inc | Method and apparatus for adjusting a speaker system |
US20130031475A1 (en) | 2010-10-18 | 2013-01-31 | Scene 53 Inc. | Social network based virtual assembly places |
US9316717B2 (en) | 2010-11-24 | 2016-04-19 | Samsung Electronics Co., Ltd. | Position determination of devices using stereo audio |
GB2486183A (en) | 2010-12-03 | 2012-06-13 | Cambridge Silicon Radio Ltd | Time stamps are added to data transmitted via Bluetooth® connections to facilitate synchronised output of the data from a plurality of devices. |
US20120148075A1 (en) | 2010-12-08 | 2012-06-14 | Creative Technology Ltd | Method for optimizing reproduction of audio signals from an apparatus for audio reproduction |
US20130051572A1 (en) | 2010-12-08 | 2013-02-28 | Creative Technology Ltd | Method for optimizing reproduction of audio signals from an apparatus for audio reproduction |
JP2011130496A (en) | 2011-02-22 | 2011-06-30 | Toshiba Corp | Sound output device and method |
US9602851B2 (en) | 2011-03-01 | 2017-03-21 | Sony Corporation | Method and apparatus for switching between a native application and a second application |
US8688431B2 (en) | 2011-04-05 | 2014-04-01 | Bose Corporation | Computer system audio device switching |
US8934655B2 (en) | 2011-04-14 | 2015-01-13 | Bose Corporation | Orientation-responsive use of acoustic reflection |
US8934647B2 (en) | 2011-04-14 | 2015-01-13 | Bose Corporation | Orientation-responsive acoustic driver selection |
US9253561B2 (en) | 2011-04-14 | 2016-02-02 | Bose Corporation | Orientation-responsive acoustic array control |
US8648894B2 (en) | 2011-05-04 | 2014-02-11 | Eyconix, Llc | Virtual inmate visitation |
US10055493B2 (en) | 2011-05-09 | 2018-08-21 | Google Llc | Generating a playlist |
US8320577B1 (en) | 2011-05-20 | 2012-11-27 | Google Inc. | Method and apparatus for multi-channel audio processing using single-channel components |
US8855319B2 (en) | 2011-05-25 | 2014-10-07 | Mediatek Inc. | Audio signal processing apparatus and audio signal processing method |
US8683064B2 (en) | 2011-05-30 | 2014-03-25 | Curtis E. Quady | Interactive property communication system |
US8681953B2 (en) | 2011-05-30 | 2014-03-25 | Curtis E. Quady | Interactive property communication system |
US8954177B2 (en) | 2011-06-01 | 2015-02-10 | Apple Inc. | Controlling operation of a media device based upon whether a presentation device is currently being worn by a user |
US8843586B2 (en) | 2011-06-03 | 2014-09-23 | Apple Inc. | Playlists for real-time or near real-time streaming |
US8588434B1 (en) | 2011-06-27 | 2013-11-19 | Google Inc. | Controlling microphones and speakers of a computing device |
US8175297B1 (en) | 2011-07-06 | 2012-05-08 | Google Inc. | Ad hoc sensor arrays |
US9154185B2 (en) | 2011-07-14 | 2015-10-06 | Vivint, Inc. | Managing audio output through an intermediary |
WO2013010177A2 (en) | 2011-07-14 | 2013-01-17 | Surfari Inc. | Online groups interacting around common content |
US9042556B2 (en) | 2011-07-19 | 2015-05-26 | Sonos, Inc | Shaping sound responsive to speaker orientation |
US9245514B2 (en) | 2011-07-28 | 2016-01-26 | Aliphcom | Speaker with multiple independent audio streams |
US20130028443A1 (en) | 2011-07-28 | 2013-01-31 | Apple Inc. | Devices with enhanced audio |
EP2740266A1 (en) | 2011-08-01 | 2014-06-11 | Thomson Licensing | Telepresence communications system and method |
KR20130016906A (en) | 2011-08-09 | 2013-02-19 | 삼성전자주식회사 | Electronic apparatus, method for providing of stereo sound |
US10706096B2 (en) | 2011-08-18 | 2020-07-07 | Apple Inc. | Management of local and remote media items |
US8929807B2 (en) | 2011-08-30 | 2015-01-06 | International Business Machines Corporation | Transmission of broadcasts based on recipient location |
US8204890B1 (en) | 2011-09-26 | 2012-06-19 | Google Inc. | Media content voting, ranking and playing system |
US9052810B2 (en) | 2011-09-28 | 2015-06-09 | Sonos, Inc. | Methods and apparatus to manage zones of a multi-zone media playback system |
US8917877B2 (en) | 2011-10-12 | 2014-12-23 | Sony Corporation | Distance-based rendering of media files |
US8971546B2 (en) | 2011-10-14 | 2015-03-03 | Sonos, Inc. | Systems, methods, apparatus, and articles of manufacture to control audio playback devices |
US9460631B2 (en) | 2011-11-02 | 2016-10-04 | Sonos, Inc. | Systems, methods, apparatus, and articles of manufacture for playback demonstration at a point of sale display |
US20140310058A1 (en) | 2011-11-07 | 2014-10-16 | New York University | Identifying Influential and Susceptible Members of Social Networks |
US20130124664A1 (en) | 2011-11-16 | 2013-05-16 | Motorola Mobility, Inc | Coordinating media presentations among peer devices |
US8879761B2 (en) | 2011-11-22 | 2014-11-04 | Apple Inc. | Orientation-based audio |
WO2013083840A1 (en) | 2011-12-09 | 2013-06-13 | Cinemo Gmbh | Media playback component comprising playback queue and queue bypass |
US20130159126A1 (en) | 2011-12-16 | 2013-06-20 | Amr Elkady | With-me social interactivity platform |
US9361942B2 (en) | 2011-12-22 | 2016-06-07 | Apple Inc. | Playlist configuration and preview |
US8812994B2 (en) | 2011-12-29 | 2014-08-19 | Apple Inc. | Device, method, and graphical user interface for configuring restricted interaction with a user interface |
US9009794B2 (en) | 2011-12-30 | 2015-04-14 | Rovi Guides, Inc. | Systems and methods for temporary assignment and exchange of digital access rights |
US9641934B2 (en) | 2012-01-10 | 2017-05-02 | Nuance Communications, Inc. | In-car communication system for multiple acoustic zones |
US9436929B2 (en) | 2012-01-24 | 2016-09-06 | Verizon Patent And Licensing Inc. | Collaborative event playlist systems and methods |
US9277322B2 (en) | 2012-03-02 | 2016-03-01 | Bang & Olufsen A/S | System for optimizing the perceived sound quality in virtual sound zones |
EP2823642B1 (en) | 2012-03-09 | 2024-04-24 | InterDigital Madison Patent Holdings, SAS | Distributed control of synchronized content |
EP2826264A1 (en) | 2012-03-14 | 2015-01-21 | Bang & Olufsen A/S | A method of applying a combined or hybrid sound -field control strategy |
US9356917B2 (en) | 2012-03-23 | 2016-05-31 | Avaya Inc. | System and method for end-to-end encryption and security indication at an endpoint |
US20130259254A1 (en) | 2012-03-28 | 2013-10-03 | Qualcomm Incorporated | Systems, methods, and apparatus for producing a directional sound field |
US10075334B1 (en) | 2012-04-11 | 2018-09-11 | Google Llc | Systems and methods for commissioning a smart hub device |
US20130279706A1 (en) | 2012-04-23 | 2013-10-24 | Stefan J. Marti | Controlling individual audio output devices based on detected inputs |
US9524098B2 (en) | 2012-05-08 | 2016-12-20 | Sonos, Inc. | Methods and systems for subwoofer calibration |
US8908879B2 (en) | 2012-05-23 | 2014-12-09 | Sonos, Inc. | Audio content auditioning |
WO2013180599A2 (en) | 2012-05-28 | 2013-12-05 | Ikonomov Artashes Valeryevich | Video-karaoke system |
US8903526B2 (en) | 2012-06-06 | 2014-12-02 | Sonos, Inc. | Device playback failure recovery and redistribution |
US8738660B2 (en) | 2012-06-13 | 2014-05-27 | Vasyl Herasymchuk | Method and system for multilevel creation of consolidated dynamic playlist and utilization thereof |
US8843500B2 (en) | 2012-06-19 | 2014-09-23 | Microsoft Corporation | Automatically generating music marketplace editorial content |
WO2014001608A1 (en) | 2012-06-29 | 2014-01-03 | Nokia Corporation | Method and apparatus for access parameter sharing |
US9031244B2 (en) | 2012-06-29 | 2015-05-12 | Sonos, Inc. | Smart audio settings |
US9195383B2 (en) | 2012-06-29 | 2015-11-24 | Spotify Ab | Systems and methods for multi-path control signals for media presentation devices |
US9288603B2 (en) | 2012-07-15 | 2016-03-15 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for backward-compatible audio coding |
US9190065B2 (en) | 2012-07-15 | 2015-11-17 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for three-dimensional audio coding using basis function coefficients |
US9473870B2 (en) | 2012-07-16 | 2016-10-18 | Qualcomm Incorporated | Loudspeaker position compensation with 3D-audio hierarchical coding |
US9516446B2 (en) | 2012-07-20 | 2016-12-06 | Qualcomm Incorporated | Scalable downmix design for object-based surround codec with cluster analysis by synthesis |
US9094768B2 (en) | 2012-08-02 | 2015-07-28 | Crestron Electronics Inc. | Loudspeaker calibration using multiple wireless microphones |
US9532153B2 (en) | 2012-08-29 | 2016-12-27 | Bang & Olufsen A/S | Method and a system of providing information to a user |
US20140075308A1 (en) | 2012-09-10 | 2014-03-13 | Apple Inc. | Intelligent media queue |
US20140075311A1 (en) | 2012-09-11 | 2014-03-13 | Jesse William Boettcher | Methods and apparatus for controlling audio volume on an electronic device |
US9078055B2 (en) | 2012-09-17 | 2015-07-07 | Blackberry Limited | Localization of a wireless user equipment (UE) device based on single beep per channel signatures |
US8731206B1 (en) | 2012-10-10 | 2014-05-20 | Google Inc. | Measuring sound quality using relative comparison |
US8588432B1 (en) | 2012-10-12 | 2013-11-19 | Jeffrey Franklin Simon | Apparatus and method for authorizing reproduction and controlling of program transmissions at locations distant from the program source |
US9246967B2 (en) | 2012-10-12 | 2016-01-26 | Spotify Ab | Systems, methods, and user interfaces for previewing media content |
US20140123005A1 (en) | 2012-10-25 | 2014-05-01 | Apple Inc. | User interface for streaming media stations with virtual playback |
US9396732B2 (en) | 2012-10-18 | 2016-07-19 | Google Inc. | Hierarchical deccorelation of multichannel audio |
US9020153B2 (en) | 2012-10-24 | 2015-04-28 | Google Inc. | Automatic detection of loudspeaker characteristics |
US20140122590A1 (en) | 2012-11-01 | 2014-05-01 | Lemi Technology, Llc | Systems, methods, and computer readable media for selecting a playhead in social media playback |
CN104854552B (en) | 2012-11-06 | 2019-04-30 | 天龙马兰士集团有限公司 | Selectively coordinated audio player system |
US9729211B2 (en) | 2012-11-19 | 2017-08-08 | Bose Corporation | Proximity based wireless audio connection |
US9246866B1 (en) | 2012-12-06 | 2016-01-26 | Amazon Technologies, Inc. | Item recommendation |
US20140242913A1 (en) | 2013-01-01 | 2014-08-28 | Aliphcom | Mobile device speaker control |
US9736609B2 (en) | 2013-02-07 | 2017-08-15 | Qualcomm Incorporated | Determining renderers for spherical harmonic coefficients |
US10178489B2 (en) | 2013-02-08 | 2019-01-08 | Qualcomm Incorporated | Signaling audio rendering information in a bitstream |
US9319409B2 (en) | 2013-02-14 | 2016-04-19 | Sonos, Inc. | Automatic configuration of household playback devices |
US9602918B2 (en) | 2013-02-28 | 2017-03-21 | Google Inc. | Stream caching for audio mixers |
US20140256260A1 (en) | 2013-03-07 | 2014-09-11 | Bose Corporation | Wireless Device Pairing |
US9351091B2 (en) | 2013-03-12 | 2016-05-24 | Google Technology Holdings LLC | Apparatus with adaptive microphone configuration based on surface proximity, surface type and motion |
US20140279889A1 (en) | 2013-03-14 | 2014-09-18 | Aliphcom | Intelligent device connection for wireless media ecosystem |
US20140267148A1 (en) | 2013-03-14 | 2014-09-18 | Aliphcom | Proximity and interface controls of media devices for media presentations |
US10212534B2 (en) | 2013-03-14 | 2019-02-19 | Michael Edward Smith Luna | Intelligent device connection for wireless media ecosystem |
US9330169B2 (en) | 2013-03-15 | 2016-05-03 | Bose Corporation | Audio systems and related devices and methods |
US9349282B2 (en) | 2013-03-15 | 2016-05-24 | Aliphcom | Proximity sensing device control architecture and data communication protocol |
US20140286496A1 (en) | 2013-03-15 | 2014-09-25 | Aliphcom | Proximity sensing device control architecture and data communication protocol |
US9559651B2 (en) | 2013-03-29 | 2017-01-31 | Apple Inc. | Metadata for loudness and dynamic range control |
US9325286B1 (en) | 2013-04-08 | 2016-04-26 | Amazon Technologies, Inc. | Audio clipping prevention |
US9307508B2 (en) | 2013-04-29 | 2016-04-05 | Google Technology Holdings LLC | Systems and methods for syncronizing multiple electronic devices |
US10031647B2 (en) | 2013-05-14 | 2018-07-24 | Google Llc | System for universal remote media control in a multi-user, multi-platform, multi-device environment |
US9412385B2 (en) | 2013-05-28 | 2016-08-09 | Qualcomm Incorporated | Performing spatial masking with respect to spherical harmonic coefficients |
US9420393B2 (en) | 2013-05-29 | 2016-08-16 | Qualcomm Incorporated | Binaural rendering of spherical harmonic coefficients |
US9066327B2 (en) | 2013-06-21 | 2015-06-23 | Bose Corporation | Low energy wireless proximity pairing |
US9285886B2 (en) | 2013-06-24 | 2016-03-15 | Sonos, Inc. | Intelligent amplifier activation |
US9372922B2 (en) | 2013-07-11 | 2016-06-21 | Neura, Inc. | Data consolidation mechanisms for internet of things integration platform |
KR102179056B1 (en) | 2013-07-19 | 2020-11-16 | 엘지전자 주식회사 | Mobile terminal and control method for the mobile terminal |
US9336113B2 (en) | 2013-07-29 | 2016-05-10 | Bose Corporation | Method and device for selecting a networked media device |
US9300713B2 (en) | 2013-08-16 | 2016-03-29 | Qualcomm Incorporated | Clock synchronization for multi-processor/multi-chipset solution |
WO2015024881A1 (en) | 2013-08-20 | 2015-02-26 | Bang & Olufsen A/S | A system for and a method of generating sound |
EP2842529A1 (en) | 2013-08-30 | 2015-03-04 | GN Store Nord A/S | Audio rendering system categorising geospatial objects |
US10372408B2 (en) | 2013-09-10 | 2019-08-06 | Bose Corporation | Remote control devices and related devices and systems |
US9201577B2 (en) | 2013-09-10 | 2015-12-01 | Bose Corporation | User interfaces for controlling audio playback devices and related systems and devices |
US9231545B2 (en) | 2013-09-27 | 2016-01-05 | Sonos, Inc. | Volume enhancements in a multi-zone media playback system |
JP6003862B2 (en) | 2013-09-30 | 2016-10-05 | ヤマハ株式会社 | Port control method, mixer system, and program |
US10028028B2 (en) | 2013-09-30 | 2018-07-17 | Sonos, Inc. | Accessing last-browsed information in a media playback system |
US9078072B2 (en) | 2013-10-07 | 2015-07-07 | Bose Corporation | Audio distribution |
KR102114219B1 (en) | 2013-10-10 | 2020-05-25 | 삼성전자주식회사 | Audio system, Method for outputting audio, and Speaker apparatus thereof |
US9240763B2 (en) | 2013-11-25 | 2016-01-19 | Apple Inc. | Loudness normalization based on user feedback |
US10078489B2 (en) | 2013-12-30 | 2018-09-18 | Microsoft Technology Licensing, Llc | Voice interface to a social networking service |
US9226073B2 (en) | 2014-02-06 | 2015-12-29 | Sonos, Inc. | Audio output balancing during synchronized playback |
US9420349B2 (en) | 2014-02-19 | 2016-08-16 | Ensequence, Inc. | Methods and systems for monitoring a media stream and selecting an action |
US9226072B2 (en) | 2014-02-21 | 2015-12-29 | Sonos, Inc. | Media content based on playback zone awareness |
US9232335B2 (en) | 2014-03-06 | 2016-01-05 | Sony Corporation | Networked speaker system with follow me |
US9554201B2 (en) | 2014-03-31 | 2017-01-24 | Bose Corporation | Multiple-orientation audio device and related apparatus |
US9671997B2 (en) | 2014-07-23 | 2017-06-06 | Sonos, Inc. | Zone grouping |
US20160180248A1 (en) | 2014-08-21 | 2016-06-23 | Peder Regan | Context based learning |
US10425811B2 (en) | 2015-08-24 | 2019-09-24 | Ayla Networks, Inc. | Linked user accounts for an internet-of-things platform |
US10127906B1 (en) | 2015-12-28 | 2018-11-13 | Amazon Technologies, Inc. | Naming devices via voice commands |
-
2021
- 2021-10-27 US US17/511,811 patent/US11429343B2/en active Active
-
2022
- 2022-08-29 US US17/822,887 patent/US20230205482A1/en active Pending
-
2024
- 2024-02-15 US US18/442,295 patent/US20240184512A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070038999A1 (en) * | 2003-07-28 | 2007-02-15 | Rincon Networks, Inc. | System and method for synchronizing operations among a plurality of independently clocked digital data processing devices |
US20090234479A1 (en) * | 2005-03-31 | 2009-09-17 | Yamaha Corporation | Control apparatus for music system comprising a plurality of equipments connected together via network, and integrated software for controlling the music system |
US20080280654A1 (en) * | 2007-05-10 | 2008-11-13 | Texas Instruments Incorporated | System and method for wirelessly providing multimedia |
Also Published As
Publication number | Publication date |
---|---|
US20240184512A1 (en) | 2024-06-06 |
US11429343B2 (en) | 2022-08-30 |
US20220050660A1 (en) | 2022-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11385858B2 (en) | Predefined multi-channel listening environment | |
US11758327B2 (en) | Playback device pairing | |
US10848885B2 (en) | Zone scene management | |
US10555082B2 (en) | Playback device pairing | |
US20180293045A1 (en) | Adjusting Volume Levels | |
US11429343B2 (en) | Stereo playback configuration and control | |
US20230283953A1 (en) | Playback Device Pairing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SONOS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALLAI, CHRISTOPHER;ERICSON, MICHAEL DARRELL ANDREW;LAMBOURNE, ROBERT A.;REEL/FRAME:060925/0699 Effective date: 20110124 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |