US20230203694A1 - Alkaline composition for copper electroplating comprising a grain refiner - Google Patents

Alkaline composition for copper electroplating comprising a grain refiner Download PDF

Info

Publication number
US20230203694A1
US20230203694A1 US17/564,979 US202117564979A US2023203694A1 US 20230203694 A1 US20230203694 A1 US 20230203694A1 US 202117564979 A US202117564979 A US 202117564979A US 2023203694 A1 US2023203694 A1 US 2023203694A1
Authority
US
United States
Prior art keywords
copper
group
alkyl
composition
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/564,979
Inventor
Charlotte Emnet
Lucas Benjamin HENDERSON
Alexander Fluegel
Sathana Kitayaporn
Nadine ENGELHARDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to US17/564,979 priority Critical patent/US20230203694A1/en
Priority to PCT/EP2022/087097 priority patent/WO2023126257A1/en
Priority to IL313878A priority patent/IL313878A/en
Priority to KR1020247021444A priority patent/KR20240128849A/en
Priority to CN202280086454.8A priority patent/CN118451219A/en
Priority to TW111150107A priority patent/TW202344717A/en
Publication of US20230203694A1 publication Critical patent/US20230203694A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Definitions

  • the present invention relates to an alkaline composition for depositing a copper layer onto a semiconductor substrate, its use and a deposition process by using such composition.
  • Void-free bottom-up filling of submicrometer-sized interconnect features by using acidic copper electroplating baths on a copper seed is well known in the art.
  • the filling of the interconnects with copper becomes especially challenging, also since the copper seed deposition prior to the copper electrodeposition might exhibit inhomogeneity and non-conformity and thus further decreases the aperture sizes particularly at the top of the apertures.
  • An acidic electroplating solution for plating copper on a non-copper liner layer includes a low copper concentration, acidic pH, organic additives, and bromide ions as a copper complexing agent.
  • unpublished international patent application No. PCT/EP2021/068001 discloses an acidic bromide containing copper electroplating bath.
  • cobalt is a less noble metal compared to copper and quickly corrodes in the presence of an acid and oxygen, particularly if copper is present, too.
  • alkaline electroplating baths that would show less cobalt corrosion provide bad filling and dirty copper fillings due to the use of complexings agents that are required to keep copper in solution.
  • WO 2015/086180 discloses a copper electroplating bath comprising copper ions and a promoter of nucleation of metallic copper on said substrate, characterized in that the promoter of nucleation of copper is a combination of 2,2′-bipyridine, imidazole and an electrochemically inert cation selected from the group consisting of cesium (Cs 2+ ), alkylammonium and mixtures thereof to improve the nucleation of copper on the most resistive materials that are a barrier to the diffusion of copper such as ruthenium or cobalt.
  • cesium Cs 2+
  • alkylammonium alkylammonium
  • the copper layer deposited on the cobalt seed layer exhibits a low resistivity.
  • a low resistivity of the copper deposit is supported by a low impurity level in the deposited copper film which means that little C, N, S, O, H, Cl, P or other elements than copper are incorporated in the copper film during the copper electrodeposition.
  • the present invention provides a copper electroplating bath that may generally be used in two ways:
  • the present invention provides a composition for depositing copper on a semiconductor substrate, the composition comprising
  • pH of the composition is from 7 to 13.
  • the invention further relates to the use of a metal plating bath comprising a composition as defined herein for depositing copper on substrates comprising recessed features having an aperture size of 50 nanometers or less, 15 nm or less, 10 nm or less or even 5 nm or less essentially without forming voids, preferably by bottom. up fill.
  • the invention further relates to a process for depositing copper on a semiconductor substrate comprising a recessed feature having an aperture size of 50 nm or less, preferably 15 nm or less, the recessed feature comprising a metal seed, the process comprising
  • the alkaline copper electroplating composition according to the invention provides a substantially void-free filling of features on the nanometer and/or on the micrometer scale with copper on a non-copper metal seed, particularly a cobalt seed. It also allows depositing a homogenous, smooth and void-free seed layer on a non-copper metal seed, particularly a cobalt seed.
  • a further advantage of the present invention is that the deposited copper, e.g. a completely filled recessed feature or a continuous seed, has a much lower impurity level.
  • FIG. 1 shows a FIB/SEM inspected wafer that was used for electrodepositing copper in examples 2c and 3e;
  • FIG. 2 shows a FIB/SEM inspected wafer that was used for electrodepositing copper in comparative example 3c and examples 3b and 3d;
  • FIG. 3 shows a FIB/SEM inspected wafer that was electroplated with copper according to comparative example 2a;
  • FIG. 4 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 2b;
  • FIG. 5 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 2c;
  • FIG. 6 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3a
  • FIG. 7 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3b;
  • FIG. 8 shows a FIB/SEM inspected wafer that was electroplated with copper according to comparative example 3c
  • FIG. 9 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3d
  • FIG. 10 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3e;
  • the alkaline compositions according to the inventions comprise copper ions, a complexing agent, and an additive of formula G1 as described below.
  • additives for alkaline electroplating of copper on semiconductor substrates particularly those comprising submicrometer-sized recessed features, most particularly those having aperture sizes having nanometer or micrometer scale, preferably aperture sizes having 50 nanometers or less, 15 nm or less, 10 nm or less or even 5 nm or less.
  • R G1 or R G2 must comprise (a) at least one C 1 to C 4 carboxyl group, or (b) group X G1 is —X G11 —C(O)—O—)—X G12 —. This means that a carboxyl group is present in the grain refiner according to the invention.
  • the grain refiner is a compound of formula G1 or a salt thereof, wherein
  • R G1 or R G2 comprises at least one C 1 to C 4 carboxyl group.
  • Particularly preferred grain refiners of the first embodiment are those of formula G2a or G2b or a salt thereof
  • a particularly preferred grain refiner of formula G2b is 3-carboxy-1-penylmethylpyridinium (inner salt).
  • the grain refiner is a compound of formula G1 or a salt thereof, wherein
  • Particularly preferred grain refiners of the second embodiment are those of formula G3a, G3b, G3c, or a salt thereof
  • Particularly preferred grain refiners of formula G3b are 4-(Methoxycarbonyl)benzyl pyridine-3-carboxylate and benzyl pyridine-3-carboxylate.
  • the total amount of the grain refiners in the electroplating bath is from 0.5 ppm to 10000 ppm based on the total weight of the plating bath.
  • the grain refiners according to the present invention are typically used in a total amount of from about 0.1 ppm to about 1000 ppm based on the total weight of the plating bath and more typically from 1 to 100 ppm, although greater or lesser amounts may be used.
  • SIMS measurements of copper films plated with a grain refiner in the plating bath exhibit that the amount of C, N, S, O, H, Cl, P or other elements than copper incorporated in the copper film during the copper electrodeposition is smaller than in copper films plated without grain refiner in the plating bath.
  • the copper electroplating composition also comprises a complexing agent to keep the copper ions in solution and to avoid their precipitation.
  • the complexing agent may particularly be selected from polyamines, aminocarboxylic acids, aminophosphonic acids, aminoalcohols, polyalcohols, hydroxycarboxylic acids, hydroxyphosphonic acids, thioureas, and polycarboxylic acids.
  • useful polymines are methylenediamine, ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenehexamine, or hexaethyleneheptamine, or combinations thereof.
  • useful amino carboxylic acids are ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraaminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), Iminodipropionic acid (IDP), metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid, diaminopropionic acid, combinations thereof, or salts thereof
  • useful amino alcohols are monoethanolamine, diethanolamine, triethanolamine, monopropanolamine; Dipropanolamine, tripropanolamine, or combinations thereof.
  • useful hydroxycarboxylic acids are tartaric acid, citric acid, malic acid, gluconic acid, glycolic acid, lactic acid, glucoheptonic acid, combinations thereof, or salts thereof.
  • useful hydroxyphosphonic acids are 1-Hydroxyethylidene-1,1-diphosphonic acid (etidronic acid), combinations thereof, or salts thereof.
  • Thioureas are thiourea and thiourea derivatives.
  • a useful polyalcohol is sorbitol.
  • Preferred complexing agents are hydroxycarboxylic acids such as but not limited to citric acid, tartaric acid and hydroxyphosphonic acids such as but not limited to etidronic acid.
  • the complexing agent may be used alone or in any combination, and the content of the complexing agent in the plating bath is usually from 0.01 to 2 mol/l, preferably from 0.1 to 0.6 mol/l.
  • the composition optionally comprises a buffer or a base (also referred to as “pH adjustor”) that is capable of adjusting the pH to a pH of from 7 to 13.
  • a buffer or a base also referred to as “pH adjustor”
  • typical bases are metal, preferably alkaline or alkaline earth metal hydroxides, carbonates, NH 4 OH, alkyl ammonium hydroxides, and the like.
  • Preferred bases are NaOH, KOH, and combinations thereof.
  • the alkylammonium ions may for example be compounds of formula (N—R B1 R B2 R B3 R B4 ) + in which R B1 ; R B2 ; R B3 ; and R B4 independently selected from H and a C 1 -C 4 alkyl, provided that at least one of R B1 ; R B2 ; R B3 ; and R B4 is a C 1 -C 4 alkyl.
  • a C 1 -C 4 alkyl may be for example methyl, ethyl, n-propyl or n-butyl.
  • Preferred alkylammonium ions are tetra-alkylammonium, for example tetramethylammonium, tetraethylammonium, tetrapropyl-ammonium or tetrabutylammonium, methyltriethylammonium and ethyltrimethylammonium.
  • the cations are supplied in the form of salts, for example a sulfate salt.
  • the counter-ion of the cation in the salt is preferably the same counter-ion than the counter-ion of the copper(II) salt.
  • the copper electroplating composition may optionally comprise a defect reducing agent.
  • Preferred defect reducing agents are those of formula S1
  • SIMS measurements of copper films plated with a defect reducing agent in the plating bath exhibit that the amount of C, N, S, O, H, Cl, P or other elements than copper incorporated in the copper film during the copper electrodeposition is smaller than in copper films plated without defect reducing agent in the plating bath.
  • R S1 is selected from X S —Y S , wherein X S is a divalent spacer group selected from linear or branched C 1 to C 10 alkanediyl, linear or branched C 2 to C 10 alkenediyl, linear or branched C 2 to C 10 alkynediyl, and —X S6 —(O—C 2 H 3 R S6 ) m —.
  • m is an integer selected from 1 to 30, preferably from 1 to 15, even more preferably from 1 to 10, most preferably from 1 to 5.
  • the spacer X S6 is C 1 to C 6 alkanediyl, preferably methanediyl, ethandiyl, propanediyl or butanediyl, most preferably methanediyl or ethandiyl.
  • X S is selected from linear or branched C 1 to C 6 alkanediyl, preferably from C 1 to C 4 alkanediyl.
  • X S is selected from methanediyl, ethane-1,1-diyl and ethane-1,2-diyl.
  • X S is selected from propan-1,1-diyl, butane-1,1-diyl, pentane-1,1-diyl, and hexane-1,1-diyl.
  • X S is selected from propane-2-2-diyl, butane-2,2-diyl, pentane-2,2-diyl, and hexane-2,2-diyl.
  • X S is selected from propane-1-2-diyl, butane-1,2-diyl, pentane-1,2-diyl, and hexane-1,2-diyl.
  • X S is selected from propane-1-3-diyl, butane-1,3-diyl, pentane-1,3-diyl, and hexane-1,3-diyl.
  • Y S is a monovalent group and may be selected from OR S3 , with R S3 being selected from (i) H, (ii) C 5 to C 20 aryl, preferably C 5 , C 6 , and C 10 aryl, (iii) C 1 to C 10 alkyl, preferably C 1 to C 6 alkyl, most preferably C 1 to C 4 alkyl (iv) C 6 to C 20 arylalkyl, preferably C 6 to C 10 arylalkyl, (v) C 6 to C 20 alkylaryl, all of which may be substituted by OH, SO 3 H, COOH or a combination thereof, and (vi) —(C 2 H 3 R S6 —O) n —R S6 .
  • R S3 may be C 1 to C 6 alkyl or H.
  • R S6 may independently be selected from H and C 1 to C 5 alkyl, preferably from H and C 1 to C 4 alkyl, most preferably H, methyl or ethyl.
  • aryl comprises carbocyclic aromatic groups as well as heterocyclic aromatic groups in which one or more carbon atoms are exchanged by one or more N or O atoms.
  • arylalkyl means an alkyl group substituted with one or more aryl groups, such as but not limited to benzyl and methylpyridine.
  • alkylaryl means an aryl group substituted with one or more alkyl groups, such as but not limited to toluyl.
  • R S3 is selected from H to form a hydroxy group.
  • R S3 is selected from polyoxyalkylene groups of formula —(C 2 H 3 R S6 —O) n —R S6 .
  • R S6 is selected from H and C 1 to C 5 alkyl, preferably from H and C 1 to C 4 alkyl, most preferably from H, methyl or ethyl.
  • n may be an integer from 1 to 30, preferably from 1 to 15, most preferably from 1 to 10.
  • polyoxymethylene, polyoxypropylene or a poly(oxymethylene-co-oxypropylene) may be used.
  • R S3 may be selected from C 1 to C 10 alkyl, preferably from C 1 to C 6 alkyl, most preferably methyl and ethyl.
  • Y S may be an amine group NR S3 R S4 , wherein R S3 and R S4 are the same or different and may have the meanings of R S3 described for OR S3 above.
  • R S3 and R S4 are selected from H to form an NH 2 group.
  • at least one of R S3 and R S4 preferably both are selected from polyoxyalkylene groups of formula —(C 2 H 3 R S6 —O) n —R S6 .
  • R S6 is independently selected from H and C, to C 5 alkyl, preferably from H and C 1 to C 4 alkyl, most preferably H, methyl or ethyl.
  • at least one of R S3 and R S4 preferably both are selected from C 1 to C 10 alkyl, preferably from C 1 to C 6 alkyl, most preferably methyl and ethyl.
  • R S3 and R S4 may also together form a ring system, which may be interrupted by O or NR S7 .
  • R S7 may be selected from R S6 and
  • the ring system is formed by two substituents R S3 and R S4 which are bound to the same N atom.
  • Such ring system may preferably comprise 4 or 5 carbon atoms to form a 5 or 6 membered carbocyclic system.
  • one or two of the carbon atoms may be substituted by oxygen atoms.
  • Y S may be a positively charged ammonium group N + R S3 R S4 R S5 .
  • R S3 , R S4 , R S5 are the same or different and may have the meanings of R S3 described for OR S3 and NR S3 R S4 above.
  • R S3 , R S4 and R S5 are independently selected from H, methyl or ethyl.
  • at least one of R S3 , R S4 and R S5 preferably two, most preferably all, are selected from polyoxyalkylene groups of formula —(C 2 H 3 R S6 —O) n —R S6 .
  • m may be an integer selected from 1 to 30, preferably from 1 to 15, even more preferably from 1 to 10, most preferably from 1 to 5.
  • R S2 may be either R S1 or R S3 as described above. If R S2 is R S1 , R S1 may be selected to form a symmetric compound (both R S1 s are the same) or an asymmetric compound (the two R S1 s are different).
  • R S2 is H.
  • aminoalkynes are those in which
  • Particularly preferred hydroxyalkynes or alkoxyalkynes are those in which
  • Particularly preferred alkynes comprising an amino and a hydroxy group are those in which R S1 is X S —OR S3 , particularly X S —OH, and R S2 is X S — NR S3 R S4 with X S being independently selected from linear C 1 to C 4 alkanediyl and branched C 3 to C 6 alkanediyl.
  • the amine groups in the defect reducing agents may be selected from primary (R S3 , R S4 is H), secondary (R S3 or R S4 is H) and tertiary amine groups (R S3 and R S4 are both not H).
  • the alkynes may comprise one or more terminal triple bonds or one or more non-terminal triple bonds (alkyne functionalities).
  • the alkynes comprise one or more terminal triple bonds, particularly from 1 to 3 triple bonds, most preferably one terminal triple bond.
  • Particularly preferred specific primary aminoalkynes are:
  • Particularly preferred specific secondary aminoalkynes are:
  • the rests R S3 and R S4 may together form a ring system, which is optionally interrupted by O or NR S3 .
  • the rests R S3 and R S4 together form a C 5 or C 6 bivalent group in which one or two, preferably one, carbon atoms may be exchanged by O or NR S7 , with R S7 being selected from hydrogen, methyl or ethyl.
  • Another preferred defect reducing agent comprising a saturated heterocyclic system is:
  • R S3 and R S4 together form a ring system which is interrupted by two NR S3 groups, in which R S3 is selected from CH 2 —C ⁇ C—H.
  • This defect reducing agent comprises three terminal triple bonds.
  • the amino groups in the defect reducing agents may further be quaternized by reaction with alkylating agents such as but not limited to dialkyl sulphates like DMS, DES or DPS, benzyl chloride or chlormethylpyridine.
  • alkylating agents such as but not limited to dialkyl sulphates like DMS, DES or DPS, benzyl chloride or chlormethylpyridine.
  • Particularly preferred quaternized defect reducing agents are:
  • Particularly preferred specific pure hydroxyalkynes are:
  • Particularly preferred specific aminoalkynes comprising OH groups are:
  • the rests R S3 and R S4 may together form a ring system, which is optionally interrupted by O or NR S3 .
  • the rests R S3 and R S4 together form a C 5 or C 6 bivalent group in which one or two, preferably one, carbon atoms may be exchanged by O or NR S7 , with R S7 being selected from hydrogen, methyl or ethyl.
  • mixtures of defect reducing agents may be formed.
  • such mixtures may be received by reaction of 1 mole diethylaminopropyne and 0.5 mole epichlorohydrin, 1 mole diethylaminopropyne and 0.5 mole benzylchloride, 1 mole diethylaminopropyne with 0.9 mole dimethyl sulphate, 1 mole dimethyl propyne amine and 0.33 mole dimethyl sulphate, or 1 mole dimethyl propyne amine and 0.66 mole dimethyl sulphate.
  • such mixtures may be received by reaction of 1 mole dimethyl propyne amine and 1.5, 1.9, or 2.85 mole dimethyl sulphate, 1 mole dimethyl propyne amine and 0.5 mole epichlorohydrin, 1 mole dimethyl propyne amine and 2.85 diethyl sulphate, or 1 mole dimethyl propyne amine and 1.9 mole dipropyl sulphate.
  • the defect reducing agents may be substituted by SO 3 H (sulfonate) groups or COOH (carboxy) groups.
  • Specific sulfonated defect reducing agents may be but are not limited to butynoxy ethane sulfonic acid, propynoxy ethane sulfonic acid, 1,4-di-( ⁇ -sulfoethoxy)-2-butyne, 3-( ⁇ -sulfoethoxy)-propyne.
  • a single defect reducing agent may be used in the copper electroplating baths. In another embodiment two or more of the defect reducing agents are used in combination.
  • the defect reducing agents are typically used in an amount of about 0.1 ppm to about 30000 ppm, based on the total weight of the plating bath.
  • Particularly suitable amounts of defect reducing agent useful in the present invention are 1 to 10000 ppm, and more particularly 10 to 1000 ppm.
  • a large variety of further additives may typically be used in the bath to provide desired surface finishes for the copper plated metal. Usually more than one additive is used with each additive forming a desired function.
  • the electroplating baths may contain one or more of wetting agents or surfactants like Lutensol®, Plurafac® or Pluronic® (available from BASF) to get rid of trapped air or hydrogen bubbles and the like. Further components to be added are stress reducers, levelers and mixtures thereof.
  • surfactants may be present in the electroplating composition in order to improve wetting.
  • Wetting agents may be selected from nonionic surfactants, anionic surfactants and cationic surfactants.
  • non-ionic surfactants are used.
  • Typical non-ionic surfactants are fluorinated surfactants, polyglycols, or poly oxyethylene and/or oxypropylene containing molecules.
  • Metal electroplating baths typically comprise or essentially consist of a copper ion source, an electrolyte, a grain refiner, a complexing agent, optionally a defect reducing agent, optionally a base or a buffer, and optionally further additives as described above.
  • the plating baths are typically aqueous.
  • aqueous means that the plating bath is water based.
  • the water may be present in a wide range of amounts. Any type of water may be used, such as distilled, deionized or tap.
  • the plating bath is a solution of the compounds described herein in water.
  • the water is electronic grade deionized water.
  • Other solvents besides water may be present in minor amounts but preferably water is the only solvent.
  • the metal ion source may be any compound capable of releasing copper ions to be deposited in the electroplating bath in sufficient amount, i.e. is at least partially soluble in the electroplating bath.
  • the metal comprises copper and comprise tin in amount of below 0.1 g/l, preferably below 0.01 g/l, most preferably no tin. Most preferably there is no other metal than copper present in the composition.
  • the copper ion source is soluble in the plating bath to release 100% of the metal ions.
  • Suitable copper ion sources are metal salts and include, but are not limited to, metal sulfates, metal halides, metal acetates, metal nitrates, metal fluoroborates, metal alkylsulfonates, metal arylsulfonates, metal sulfamates, metal gluconates and the like. It is preferred that the metal is copper.
  • the source of copper ions is copper sulfate, copper chloride, copper acetate, copper citrate, copper nitrate, copper fluoroborate, copper methane sulfonate, copper phenyl sulfonate and copper p-toluene sulfonate. Copper sulfate pentahydrate and copper methane sulfonate are particularly preferred. Such metal salts are generally commercially available and may be used without further purification.
  • the copper ion source may be used in the present invention in any amount that provides sufficient metal ions for electroplating on a substrate.
  • Copper is typically present in an amount in the range of from about 0.2 to about 300 g/l of the plating solution.
  • the defect reducing agent is useful in low copper, medium copper and high copper baths.
  • Low copper means a copper concentration from about 0.3 to about 20 g/l.
  • the pH of the electroplating composition is in the range of from about 7 to about 13, preferably from about 8 to about 13, more preferably from about 8 to about 12, most preferably from about 9 to about 11.
  • the electroplating composition is free of any cyanide ions.
  • the composition is essentially free of chloride ions.
  • Essentially free from chloride means that the chloride content is below 1 ppm, particularly below 0.1 ppm.
  • an alkaline copper electroplating bath comprising a composition as described herein may be used for depositing copper on substrates comprising recessed features having an aperture size of 50 nanometers or less, which features preferably comprise a seed of cobalt, iridium, osmium, palladium, platinum, rhodium, ruthenium, molybdenum, and alloys thereof, most preferably of cobalt.
  • An electrolytic bath comprising copper ions, a complexing agent, and at least one grain refiner according to the invention.
  • a dielectric substrate having the seed layer is placed into the electrolytic bath where the electrolytic bath contacts the at least one outer surface and the three dimensional pattern having a seed layer in the case of a dielectric substrate.
  • a counter electrode is placed into the electrolytic bath and an electrical current is passed through the electrolytic bath between the seed layer on the substrate and the counter electrode. At least a portion of copper is deposited into at least a portion of the three dimensional pattern wherein the deposited copper is substantially void-free.
  • the present invention is useful for depositing a layer comprising copper on a variety of substrates, particularly those having nanometer and variously sized apertures.
  • the present invention is particularly suitable for depositing copper on integrated circuit substrates, such as semiconductor devices, with small diameter vias, trenches or other recessed features.
  • semiconductor devices are plated according to the present invention.
  • semiconductor devices include, but are not limited to, wafers used in the manufacture of integrated circuits.
  • seed layer In order to allow a deposition of copper on a substrate comprising a dielectric surface a seed layer needs to be applied to the surface.
  • Such seed layer may consist of cobalt, iridium, osmium, palladium, platinum, rhodium, and ruthenium or alloys comprising such metals.
  • Preferred is the deposition of copper on a cobalt seed.
  • the seed layers are described in detail e.g. in US20140183738 A.
  • the underlying seed layer may be deposited or grown by chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), electroplating, electro less plating or other suitable process that deposits conformal thin films.
  • the cobalt seed layer is deposited to form a high quality conformal layer that sufficiently and evenly covers all exposed surfaces within the openings and top surfaces.
  • the high quality seed layer may be formed, in one embodiment, by depositing the cobalt seed material at a slow deposition rate to evenly and consistently deposit the conformal seed layer.
  • the seed layer can assist a deposition process by providing appropriate surface energetics for deposition thereon.
  • the substrate comprises submicrometer sized features and the copper deposition is performed to fill the submicrometer sized features.
  • the submicrometer-sized features have an (effective) aperture size of 10 nm or below and/or an aspect ratio of 4 or more. More preferably the features have an aperture size of 7 nanometers or below, most preferably of 5 nanometers or below.
  • the features bear a cobalt seed layer on which copper is electrodeposited.
  • a seed of copper is deposited onto the seeded surface of the substrate.
  • this substrate comprises recessed features having an aperture size of 50 nm or below and/or an aspect ratio of 4 or more.
  • the substrate bears a cobalt seed layer on which the copper seed layer is electrodeposited.
  • seed of copper means a continuous thin layer of copper having a thickness of about 5 nm to about 15 nm.
  • the aperture size according to the present invention means the smallest diameter or free distance of a feature before plating, i.e. after seed deposition.
  • the terms “aperture” and “opening” are used herein synonymously.
  • the electrodeposition current density should be chosen to promote the void-free filling behavior.
  • a range of 0.1 to 40 mA/cm 2 is useful for this purpose.
  • the current density can range from 1 to 10 mA/cm 2 .
  • the current density can range from 0.5 to 5 mA/cm 2 .
  • substrates are electroplated by contacting the substrate with the plating baths of the present invention.
  • the substrate typically functions as the cathode.
  • the plating bath contains an anode, which may be soluble or insoluble.
  • cathode and anode may be separated by a membrane.
  • Potential is typically applied to the cathode.
  • Sufficient current density is applied and plating performed for a period of time sufficient to deposit a metal layer, such as a copper layer, having a desired thickness on the substrate.
  • Suitable current densities include, but are not limited to, the range of 1 to 250 mA/cm 2 .
  • the current density is in the range of 1 to 60 mA/cm 2 when used to deposit copper in the manufacture of integrated circuits.
  • the specific current density depends on the substrate to be plated, the agents and additives selected and the like. Such current density choice is within the abilities of those skilled in the art.
  • the applied current may be a direct current (DC), a pulse current (PC), a pulse reverse current (PRC) or other suitable current.
  • Typical temperatures used for the copper electroplating are from 10° C. to 50° C., preferably 20° C. to 40° C., most preferably from 20° C. to 35° C.
  • the plating baths are agitated during use.
  • Any suitable agitation method may be used with the present invention and such methods are well-known in the art. Suitable agitation methods include, but are not limited to, inert gas or air sparging, work piece agitation, impingement and the like. Such methods are known to those skilled in the art.
  • the wafer may be rotated such as from 1 to 300 RPM and the plating solution contacts the rotating wafer, such as by pumping or spraying. In the alternative, the wafer need not be rotated where the flow of the plating bath is sufficient to provide the desired metal deposit.
  • copper is deposited in recessed features according to the present invention without substantially forming voids within the metal deposit.
  • void-free fill may either be ensured by an extraordinarily pronounced bottom-up copper growth while perfectly suppressing the sidewall copper growth, both leading to a flat growth front and thus providing substantially defect free trench/via fill (so-called bottom-up-fill) or may be ensured by a so-called V-shaped filling.
  • the term “substantially void-free”, means that at least 95% of the plated apertures are void-free. Preferably that at least 98% of the plated apertures are void-free, mostly preferably all plated apertures are void-free.
  • the term “substantially seam-free”, means that at least 95% of the plated apertures are seam-free. Preferably that at least 98% of the plated apertures are seam-free, mostly preferably all plated apertures are seam-free.
  • Plating equipment for plating semiconductor substrates are well known.
  • Plating equipment comprises an electroplating tank which holds Cu electrolyte and which is made of a suitable material such as plastic or other material inert to the electrolytic plating solution.
  • the tank may be cylindrical, especially for wafer plating.
  • a cathode is horizontally disposed at the upper part of tank and may be any type substrate such as a silicon wafer having openings such as trenches and vias.
  • the wafer substrate is typically coated with a seed layer of Cu or other metal or a metal containing layer to initiate plating thereon.
  • An anode is also preferably circular for wafer plating and is horizontally disposed at the lower part of tank forming a space between the anode and cathode.
  • the anode is typically a soluble anode.
  • the anode may be isolated from the organic bath additives by a membrane.
  • the purpose of the separation of the anode and the organic bath additives is to minimize the oxidation of the organic bath additives.
  • the cathode substrate and anode are electrically connected by wiring and, respectively, to a rectifier (power supply).
  • the cathode substrate for direct or pulse current has a net negative charge so that Cu ions in the solution are reduced at the cathode substrate forming plated Cu metal on the cathode surface.
  • An oxidation reaction takes place at the anode.
  • the cathode and anode may be horizontally or vertically disposed in the tank.
  • the present invention may be useful in any electrolytic process where a substantially void-free copper deposit is desired.
  • Such processes include printed wiring board manufacture.
  • the present plating baths may be useful for the plating of vias, pads or traces on a printed wiring board, as well as for bump plating on wafers.
  • Other suitable processes include packaging and interconnect manufacture.
  • suitable substrates include lead frames, interconnects, printed wiring boards, and the like.
  • 3-Carboxy-1-phenylmethylpyridinium (inner salt with Na + and Cl ⁇ ) used in the examples is available from BASF SE.
  • Propargyl alcohol (280.3 g) and triphenylphosphine (2.0 g) were placed into a 3.5 l autoclave. After nitrogen neutralization, the pressure was adjusted to 1.5 bar and the mixture was homogenized at 60° C. for 1 h. Then ethylene oxide (220.3 g) was added at 60° C. over a period of 4 h, reaching a maximum pressure of 3.5 bar. The reaction mixture was then heated up over 30 min to 80° C., reaching a maximum pressure of 4 bar. To complete the reaction, the mixture post-react for 6 h at 80° C. Then, the temperature was decreased to 40° C. Volatile compounds were re-moved in vacuum at 60° C. Defect Reducing agent 1 was obtained as yellowish liquid (494.4 g), having a hydroxy value of 569 mg/g.
  • 3-Hexin-2,5-diol (456.6 g) and Imidazol (2.5 g) were placed into a 3.5 l autoclave. After nitrogen neutralization, the pressure was adjusted to 1.0 bar and the mixture was homogenized at 70° C. for 1 h. Then ethylene oxide (176.2 g) was added at 70° C. over a period of 1 h, reaching a maximum pressure of 3.5 bar. To complete the reaction, the mixture post-react for 6 h at 70° C. Then, the temperature was decreased to 60° C. Volatile compounds were removed in vacuum at 60° C. Defect Reducing agent 2 was obtained as orange liquid (630.8 g), having a hydroxy value of 709 mg/g.
  • 3-Carboxy-1-phenylmethylpyridinium was used as grain refiner either alone or in combination with a defect reducing agent in alkaline Cu electroplating baths.
  • the grain refiner helps to reduce the roughness of the electrodeposited copper layer and thus also prevents the formation of defects in the electrodeposited Cu film.
  • a blanket wafer substrate was used bearing a 100 A CVD Co seed on a 30 A TaN layer.
  • FIG. 1 For some plating experiments a patterned wafer substrate was used as shown in FIG. 1 .
  • the wafer substrate was bearing a 100 A Co seed on a 30 A TaN layer and having features with a diameter of 24 nm at the top of the opening, a diameter of 20 nm at half height of the feature.
  • the feature height was about 105 nm which results in an aspect ratio of about 5.25.
  • a patterned wafer substrate was used as shown in FIG. 2 .
  • the wafer substrate was bearing a 50 A Co seed on a 30 A TaN layer and having features with a diameter of 18 nm at half height of the feature.
  • the feature height was about 110 nm which results in an aspect ratio of about 6.
  • a plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9.
  • a copper layer was electroplated onto a blanket wafer substrate bearing a cobalt seed layer by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of ⁇ 1.0 mA/cm2 for 2000 s.
  • the thus electroplated copper layer was annealed at 400° C. for 5 minutes in forming gas and was investigated by FIB/SEM inspection.
  • FIG. 3 provides the SEM image of the electroplated copper film.
  • FIG. 3 shows that the electroplated copper exhibits defects like holes and voids and is uneven.
  • Example 2a The experiment as described in Example 2a was repeated with addition of 1 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium as grain refiner to the plating bath.
  • the result is shown in FIG. 4 which provides the SEM image of the electroplated copper film.
  • FIG. 4 shows significantly less defects in the electroplated copper film and exhibits a smooth Cu surface.
  • a plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 1 ml/l of a solution in DI water of 0.9 wt % 3-Carboxy-1-phenylmethylpyridinium was added to the plating bath.
  • a copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 1 by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of ⁇ 1.0 mA/cm2 for 250 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • FIG. 5 provides the SEM image of the electroplated copper film.
  • FIG. 5 shows features that are fully filled with Cu and are mainly free of defects.
  • a plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 1 and 0.5 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium were added to the electrolyte.
  • a copper layer was electroplated onto a blanket wafer substrate bearing a cobalt seed layer by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of ⁇ 2.0 mA/cm 2 for 1000 s. The thus electroplated copper layer was annealed at 400° C. for 5 minutes in forming gas and was investigated by FIB/SEM inspection.
  • FIG. 6 provides the SEM image of the electroplated copper film.
  • FIG. 6 shows that the electroplated copper film is mainly free of defects and exhibits a smooth Cu surface.
  • a plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 1 and 1.0 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium were added to the electrolyte.
  • a copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 2 by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of ⁇ 1.0 mA/cm 2 for 250 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • FIG. 7 provides the SEM image of the features filled with Cu.
  • FIG. 7 shows that the electroplated copper film is mainly free of defects.
  • a plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9.
  • a copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 2 by contacting the wafer substrate with the above described plating bath at 22° C. applying a direct current of ⁇ 1.0 mA/cm 2 for 50 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • FIG. 8 provides the SEM image of the electroplated copper film.
  • FIG. 8 shows a nonconformal and rough metal film inside the features.
  • Example 3d The experiment as described in Example 3c was repeated with addition of 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 2 and 1.0 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium to the plating bath.
  • a copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 2 by contacting the wafer substrate with the above described plating bath at 22° C. applying a direct current of ⁇ 1.0 mA/cm 2 for 100 s.
  • the thus electroplated copper layer was investigated by FIB/SEM inspection.
  • FIG. 9 provides the SEM image of the electroplated copper film.
  • FIG. 9 shows a continuous and smooth metal film inside the features.
  • a plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 3 and 1.0 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium were added to the plating bath.
  • a copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 1 by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of ⁇ 1.0 mA/cm 2 for 250 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • FIG. 10 provides the SEM image of the features filled with Cu.
  • FIG. 10 shows that the features are mainly free of defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Described herein is a composition for depositing copper on a semiconductor substrate, the composition including(a) copper ions;(b) a grain refiner of formula G1or salts thereof(c) a complexing agent; and(d) optionally a buffer or a base capable of adjusting the pH to a pH of from 7 to 13;where the variables are as defined herein; andwhere the pH of the composition is from 7 to 13.

Description

  • The present invention relates to an alkaline composition for depositing a copper layer onto a semiconductor substrate, its use and a deposition process by using such composition.
  • BACKGROUND OF THE INVENTION
  • Filling of small features, such as vias and trenches, by metal electroplating is an essential part of the semiconductor manufacture process. It is well known, that the presence of organic substances as additives in the electroplating bath can be crucial in achieving a uniform metal deposit on a substrate surface and in avoiding defects, such as voids and seams, within the metal lines.
  • Void-free bottom-up filling of submicrometer-sized interconnect features by using acidic copper electroplating baths on a copper seed is well known in the art.
  • With further decreasing aperture size of the features like vias or trenches to dimensions of below 5 nanometers and even below 3 nanometers, respectively, the filling of the interconnects with copper becomes especially challenging, also since the copper seed deposition prior to the copper electrodeposition might exhibit inhomogeneity and non-conformity and thus further decreases the aperture sizes particularly at the top of the apertures. The smaller the size of the feature and the higher the aspect ratio of the feature become the more difficult it is to get a continuous seed on the side walls of the feature without significant seed overhang.
  • To avoid these difficulties a non-copper seed such as cobalt or ruthenium was proposed in WO 2019/199614 A1. An acidic electroplating solution for plating copper on a non-copper liner layer includes a low copper concentration, acidic pH, organic additives, and bromide ions as a copper complexing agent. Also unpublished international patent application No. PCT/EP2021/068001 discloses an acidic bromide containing copper electroplating bath.
  • However, cobalt is a less noble metal compared to copper and quickly corrodes in the presence of an acid and oxygen, particularly if copper is present, too. On the other hand, alkaline electroplating baths that would show less cobalt corrosion provide bad filling and dirty copper fillings due to the use of complexings agents that are required to keep copper in solution.
  • Also alkaline compositions for copper electroplating copper on a copper or other metal seeds are generally known in the art. For example, WO 2015/086180 discloses a copper electroplating bath comprising copper ions and a promoter of nucleation of metallic copper on said substrate, characterized in that the promoter of nucleation of copper is a combination of 2,2′-bipyridine, imidazole and an electrochemically inert cation selected from the group consisting of cesium (Cs2+), alkylammonium and mixtures thereof to improve the nucleation of copper on the most resistive materials that are a barrier to the diffusion of copper such as ruthenium or cobalt.
  • There is still a need for a copper electroplating composition that allows a void-free deposition of copper in small recessed features, such as vias or trenches, of semiconductor substrates.
  • It is therefore an object of the present invention to provide an electroplating composition that is capable of providing a substantially void-free filling of features on the nanometer and/or on the micrometer scale with copper on a non-copper metal seed, particularly a cobalt seed. It is also an object of the present invention to provide an electroplating composition that is capable of depositing a homogeneous, smooth and void-free copper seed layer on a non-copper metal seed, particularly a cobalt seed. For resistivity reasons, this seed layer needs to have a low impurity level.
  • For resistivity reasons, it is also beneficial that the copper layer deposited on the cobalt seed layer exhibits a low resistivity. A low resistivity of the copper deposit is supported by a low impurity level in the deposited copper film which means that little C, N, S, O, H, Cl, P or other elements than copper are incorporated in the copper film during the copper electrodeposition.
  • SUMMARY OF THE INVENTION
  • The present invention provides a copper electroplating bath that may generally be used in two ways:
    • 1. With the bath a copper seed layer is deposited onto the semiconductor substrate to allow using a state-of-the art acidic copper on copper electroplating bath to fill the respective recessed features; and
    • 2. With the bath a direct void-free filling, ideally a bottom-up filling, of the recessed features may also be achieved.
  • Therefore the present invention provides a composition for depositing copper on a semiconductor substrate, the composition comprising
    • (a) copper ions;
    • (b) a grain refiner of formula G1
  • Figure US20230203694A1-20230629-C00002
      • or salts thereof
    • (c) a complexing agent; and
    • (d) optionally a buffer or a base capable of adjusting the pH to a pH of from 7 to 13;
  • wherein
    • RG1 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN;
    • RG2 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN; and
    • XG1 is selected from C1 to C6 alkanediyl or a group —XG11—C(O)—O—XG12—;
    • XG11 is selected from a chemical bond or C1 to C4 alkandiyl;
    • XG12 is selected from a chemical bond or C1 to C4 alkandiyl; and
      • wherein RG1 or RG2, comprises at least one C1 to C4 carboxyl group, or group XG1 is —XG11—C(O)—O—)—XG12—;
  • wherein the pH of the composition is from 7 to 13.
  • The invention further relates to the use of a metal plating bath comprising a composition as defined herein for depositing copper on substrates comprising recessed features having an aperture size of 50 nanometers or less, 15 nm or less, 10 nm or less or even 5 nm or less essentially without forming voids, preferably by bottom. up fill.
  • The invention further relates to a process for depositing copper on a semiconductor substrate comprising a recessed feature having an aperture size of 50 nm or less, preferably 15 nm or less, the recessed feature comprising a metal seed, the process comprising
    • (a) bringing a composition as described herein into contact with the metal seed,
    • (b) applying a current for a time sufficient to deposit a continuous seed of copper onto the surface of the recessed feature or to completely fill the recessed feature with copper.
  • The alkaline copper electroplating composition according to the invention provides a substantially void-free filling of features on the nanometer and/or on the micrometer scale with copper on a non-copper metal seed, particularly a cobalt seed. It also allows depositing a homogenous, smooth and void-free seed layer on a non-copper metal seed, particularly a cobalt seed. A further advantage of the present invention is that the deposited copper, e.g. a completely filled recessed feature or a continuous seed, has a much lower impurity level.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a FIB/SEM inspected wafer that was used for electrodepositing copper in examples 2c and 3e;
  • FIG. 2 shows a FIB/SEM inspected wafer that was used for electrodepositing copper in comparative example 3c and examples 3b and 3d;
  • FIG. 3 shows a FIB/SEM inspected wafer that was electroplated with copper according to comparative example 2a;
  • FIG. 4 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 2b;
  • FIG. 5 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 2c;
  • FIG. 6 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3a;
  • FIG. 7 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3b;
  • FIG. 8 shows a FIB/SEM inspected wafer that was electroplated with copper according to comparative example 3c;
  • FIG. 9 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3d;
  • FIG. 10 shows a FIB/SEM inspected wafer that was electroplated with copper according to example 3e;
  • DETAILED DESCRIPTION OF THE INVENTION
  • The alkaline compositions according to the inventions comprise copper ions, a complexing agent, and an additive of formula G1 as described below.
  • Grain Refiner
  • It has been found that the grain refiner of formula G1
  • Figure US20230203694A1-20230629-C00003
  • or salts thereof are particularly useful additives for alkaline electroplating of copper on semiconductor substrates, particularly those comprising submicrometer-sized recessed features, most particularly those having aperture sizes having nanometer or micrometer scale, preferably aperture sizes having 50 nanometers or less, 15 nm or less, 10 nm or less or even 5 nm or less.
  • Herein
    • RG1 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN;
    • RG2 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN; and
    • XG1 is selected from C1 to C6 alkanediyl or a group —XG11—C(O)—O—XG12—;
    • XG11 is selected from a chemical bond or C1 to C4 alkandiyl; and
    • XG12 is selected from a chemical bond or C1 to C4 alkandiyl.
  • Either RG1 or RG2 must comprise (a) at least one C1 to C4 carboxyl group, or (b) group XG1 is —XG11—C(O)—O—)—XG12—. This means that a carboxyl group is present in the grain refiner according to the invention.
  • In a first preferred embodiment the grain refiner is a compound of formula G1 or a salt thereof, wherein
    • RG1 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN;
    • RG2 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, H and CN; and
    • XG1 is a C1 to C4 alkanediyl;
  • and wherein RG1 or RG2 comprises at least one C1 to C4 carboxyl group.
  • Particularly preferred grain refiners of the first embodiment are those of formula G2a or G2b or a salt thereof
  • Figure US20230203694A1-20230629-C00004
  • wherein
    • RG21 is selected from one or more H, C1 to C3 alkyl, C1 to C4 alkoxy, halogen, and CN;
    • RG22 is selected from one or more H, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN; and
    • XG1 is methandiyl, ethanediyl, propanediyl or butanediyl.
  • A particularly preferred grain refiner of formula G2b is 3-carboxy-1-penylmethylpyridinium (inner salt).
  • In a second preferred embodiment the grain refiner is a compound of formula G1 or a salt thereof, wherein
    • RG1 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN;
    • RG2 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN; and
    • XG1 is a group —XG11—C(O)—O—)—XG12—;
    • XG11, XG12 are independently selected from C1 to C4 alkandiyl.
  • Particularly preferred grain refiners of the second embodiment are those of formula G3a, G3b, G3c, or a salt thereof
  • Figure US20230203694A1-20230629-C00005
  • wherein
    • RG31 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN;
    • RG32 is selected from one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, C1 to C6 carboxy, halogen, and CN; and
    • XG32 is selected from a chemical bond or C1 to C4 alkandiyl.
  • Particularly preferred grain refiners of formula G3b are 4-(Methoxycarbonyl)benzyl pyridine-3-carboxylate and benzyl pyridine-3-carboxylate.
  • In general, the total amount of the grain refiners in the electroplating bath is from 0.5 ppm to 10000 ppm based on the total weight of the plating bath. The grain refiners according to the present invention are typically used in a total amount of from about 0.1 ppm to about 1000 ppm based on the total weight of the plating bath and more typically from 1 to 100 ppm, although greater or lesser amounts may be used.
  • SIMS measurements of copper films plated with a grain refiner in the plating bath exhibit that the amount of C, N, S, O, H, Cl, P or other elements than copper incorporated in the copper film during the copper electrodeposition is smaller than in copper films plated without grain refiner in the plating bath.
  • Complexing Agent
  • The copper electroplating composition also comprises a complexing agent to keep the copper ions in solution and to avoid their precipitation.
  • The complexing agent may particularly be selected from polyamines, aminocarboxylic acids, aminophosphonic acids, aminoalcohols, polyalcohols, hydroxycarboxylic acids, hydroxyphosphonic acids, thioureas, and polycarboxylic acids.
  • Without limitation, useful polymines are methylenediamine, ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenehexamine, or hexaethyleneheptamine, or combinations thereof.
  • Without limitation, useful amino carboxylic acids are ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraaminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), Iminodipropionic acid (IDP), metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid, diaminopropionic acid, combinations thereof, or salts thereof
  • Without limitation, useful amino alcohols are monoethanolamine, diethanolamine, triethanolamine, monopropanolamine; Dipropanolamine, tripropanolamine, or combinations thereof.
  • Without limitation, useful hydroxycarboxylic acids are tartaric acid, citric acid, malic acid, gluconic acid, glycolic acid, lactic acid, glucoheptonic acid, combinations thereof, or salts thereof.
  • Without limitation, useful hydroxyphosphonic acids are 1-Hydroxyethylidene-1,1-diphosphonic acid (etidronic acid), combinations thereof, or salts thereof.
  • Thioureas are thiourea and thiourea derivatives.
  • Without limitation, a useful polyalcohol is sorbitol.
  • Preferred complexing agents are hydroxycarboxylic acids such as but not limited to citric acid, tartaric acid and hydroxyphosphonic acids such as but not limited to etidronic acid.
  • The complexing agent may be used alone or in any combination, and the content of the complexing agent in the plating bath is usually from 0.01 to 2 mol/l, preferably from 0.1 to 0.6 mol/l.
  • Buffer/Base
  • The composition optionally comprises a buffer or a base (also referred to as “pH adjustor”) that is capable of adjusting the pH to a pH of from 7 to 13.
  • Without limitation, typical bases are metal, preferably alkaline or alkaline earth metal hydroxides, carbonates, NH4OH, alkyl ammonium hydroxides, and the like.
  • Preferred bases are NaOH, KOH, and combinations thereof.
  • The alkylammonium ions may for example be compounds of formula (N—RB1RB2RB3RB4)+ in which RB1; RB2; RB3; and RB4 independently selected from H and a C1-C4 alkyl, provided that at least one of RB1; RB2; RB3; and RB4 is a C1-C4 alkyl.
  • A C1-C4 alkyl may be for example methyl, ethyl, n-propyl or n-butyl. Preferred alkylammonium ions are tetra-alkylammonium, for example tetramethylammonium, tetraethylammonium, tetrapropyl-ammonium or tetrabutylammonium, methyltriethylammonium and ethyltrimethylammonium.
  • The cations are supplied in the form of salts, for example a sulfate salt. The counter-ion of the cation in the salt is preferably the same counter-ion than the counter-ion of the copper(II) salt.
  • Defect Reducing Agent
  • The copper electroplating composition may optionally comprise a defect reducing agent.
  • Preferred defect reducing agents are those of formula S1
  • Figure US20230203694A1-20230629-C00006
  • or salts thereof,
  • wherein
    • RS1 is selected from XS—YS;
    • RS2 is selected from RS1 and RS3;
    • XS is selected from linear or branched C1 to C10 alkanediyl, linear or branched C2 to C10 alkenediyl, linear or branched C2 to C10 alkynediyl, and —XS6—(O—C2H3RS6)m;
    • YS is selected from ORS3, NRS3RS4, N+RS3RS4RS5 and NH—(C═O)—RS3;
    • RS3, RS4, RS5 are the same or different and are selected from (i) H, (ii) C5 to C20 aryl, (iii) C1 to C10 alkyl (iv) C6 to C20 arylalkyl, (v) C6 to C20 alkylaryl, which may be substituted by OH, SO3H, COOH or a combination thereof, and
      • (vi) —(C2H3RS6—O)n—RS6, and wherein RS3 and RS4 may together form a ring system, which may be interrupted by O or NRS7;
    • XS6 is C1 to C6 alkanediyl;
    • m, n are integers independently selected from 1 to 30;
    • RS6 is selected from H and C1 to C5 alkyl;
    • RS7 is selected from RS6 and
  • Figure US20230203694A1-20230629-C00007
  • SIMS measurements of copper films plated with a defect reducing agent in the plating bath exhibit that the amount of C, N, S, O, H, Cl, P or other elements than copper incorporated in the copper film during the copper electrodeposition is smaller than in copper films plated without defect reducing agent in the plating bath.
  • In the defect reducing agents of formula S1, RS1 is selected from XS—YS, wherein XS is a divalent spacer group selected from linear or branched C1 to C10 alkanediyl, linear or branched C2 to C10 alkenediyl, linear or branched C2 to C10 alkynediyl, and —XS6—(O—C2H3RS6)m—. m is an integer selected from 1 to 30, preferably from 1 to 15, even more preferably from 1 to 10, most preferably from 1 to 5. The spacer XS6 is C1 to C6 alkanediyl, preferably methanediyl, ethandiyl, propanediyl or butanediyl, most preferably methanediyl or ethandiyl.
  • In a first preferred embodiment XS is selected from linear or branched C1 to C6 alkanediyl, preferably from C1 to C4 alkanediyl.
  • In a second preferred embodiment XS is selected from methanediyl, ethane-1,1-diyl and ethane-1,2-diyl. In a third preferred embodiment XS is selected from propan-1,1-diyl, butane-1,1-diyl, pentane-1,1-diyl, and hexane-1,1-diyl. In a fourth preferred embodiment XS is selected from propane-2-2-diyl, butane-2,2-diyl, pentane-2,2-diyl, and hexane-2,2-diyl.
  • In a fifth preferred embodiment XS is selected from propane-1-2-diyl, butane-1,2-diyl, pentane-1,2-diyl, and hexane-1,2-diyl. In a sixth preferred embodiment XS is selected from propane-1-3-diyl, butane-1,3-diyl, pentane-1,3-diyl, and hexane-1,3-diyl.
  • YS is a monovalent group and may be selected from ORS3, with RS3 being selected from (i) H, (ii) C5 to C20 aryl, preferably C5, C6, and C10 aryl, (iii) C1 to C10 alkyl, preferably C1 to C6 alkyl, most preferably C1 to C4 alkyl (iv) C6 to C20 arylalkyl, preferably C6 to C10 arylalkyl, (v) C6 to C20 alkylaryl, all of which may be substituted by OH, SO3H, COOH or a combination thereof, and (vi) —(C2H3RS6—O)n—RS6. In a preferred embodiment, RS3 may be C1 to C6 alkyl or H. RS6 may independently be selected from H and C1 to C5 alkyl, preferably from H and C1 to C4 alkyl, most preferably H, methyl or ethyl.
  • As used herein, aryl comprises carbocyclic aromatic groups as well as heterocyclic aromatic groups in which one or more carbon atoms are exchanged by one or more N or O atoms. As used herein, arylalkyl means an alkyl group substituted with one or more aryl groups, such as but not limited to benzyl and methylpyridine. As used herein, alkylaryl means an aryl group substituted with one or more alkyl groups, such as but not limited to toluyl.
  • In another preferred embodiment, RS3 is selected from H to form a hydroxy group. In another preferred embodiment, RS3 is selected from polyoxyalkylene groups of formula —(C2H3RS6—O)n—RS6. RS6 is selected from H and C1 to C5 alkyl, preferably from H and C1 to C4 alkyl, most preferably from H, methyl or ethyl. Generally, n may be an integer from 1 to 30, preferably from 1 to 15, most preferably from 1 to 10. In a particular embodiment polyoxymethylene, polyoxypropylene or a poly(oxymethylene-co-oxypropylene) may be used. In another preferred embodiment, RS3 may be selected from C1 to C10 alkyl, preferably from C1 to C6 alkyl, most preferably methyl and ethyl.
  • Furthermore, YS may be an amine group NRS3RS4, wherein RS3 and RS4 are the same or different and may have the meanings of RS3 described for ORS3 above.
  • In a preferred embodiment, RS3 and RS4 are selected from H to form an NH2 group. In another preferred embodiment, at least one of RS3 and RS4, preferably both are selected from polyoxyalkylene groups of formula —(C2H3RS6—O)n—RS6. RS6 is independently selected from H and C, to C5 alkyl, preferably from H and C1 to C4 alkyl, most preferably H, methyl or ethyl. In yet another preferred embodiment, at least one of RS3 and RS4, preferably both are selected from C1 to C10 alkyl, preferably from C1 to C6 alkyl, most preferably methyl and ethyl.
  • RS3 and RS4 may also together form a ring system, which may be interrupted by O or NRS7. RS7 may be selected from RS6 and
  • Figure US20230203694A1-20230629-C00008
  • Preferably the ring system is formed by two substituents RS3 and RS4 which are bound to the same N atom. Such ring system may preferably comprise 4 or 5 carbon atoms to form a 5 or 6 membered carbocyclic system. In such carbocyclic system one or two of the carbon atoms may be substituted by oxygen atoms.
  • Furthermore, YS may be a positively charged ammonium group N+RS3RS4RS5. RS3, RS4, RS5 are the same or different and may have the meanings of RS3 described for ORS3 and NRS3RS4 above. In a preferred embodiment RS3, RS4 and RS5 are independently selected from H, methyl or ethyl. In one embodiment at least one of RS3, RS4 and RS5, preferably two, most preferably all, are selected from polyoxyalkylene groups of formula —(C2H3RS6—O)n—RS6.
  • m may be an integer selected from 1 to 30, preferably from 1 to 15, even more preferably from 1 to 10, most preferably from 1 to 5.
  • In the defect reducing agents of formula S1 RS2 may be either RS1 or RS3 as described above. If RS2 is RS1, RS1 may be selected to form a symmetric compound (both RS1s are the same) or an asymmetric compound (the two RS1s are different).
  • In a preferred embodiment RS2 is H.
  • Particularly preferred aminoalkynes are those in which
    • (a) RS1 is XS—NRS3RS4 and RS2 is H;
    • (b) RS1 is XS—NRS3RS4 and RS2 is XS— NRS3RS4 with XS being selected from linear C1 to C4 alkanediyl and branched C3 to C6 alkanediyl.
  • Particularly preferred hydroxyalkynes or alkoxyalkynes are those in which
    • (a) RS1 is XS—ORS3 and RS2 is H;
    • (b) RS1 is XS—ORS3 and RS2 is XS—ORS3 with XS being selected from linear C1 to C4 alkanediyl and branched C3 to C6 alkanediyl.
  • Particularly preferred alkynes comprising an amino and a hydroxy group are those in which RS1 is XS—ORS3, particularly XS—OH, and RS2 is XS— NRS3RS4 with XS being independently selected from linear C1 to C4 alkanediyl and branched C3 to C6 alkanediyl.
  • The amine groups in the defect reducing agents may be selected from primary (RS3, RS4 is H), secondary (RS3 or RS4 is H) and tertiary amine groups (RS3 and RS4 are both not H).
  • The alkynes may comprise one or more terminal triple bonds or one or more non-terminal triple bonds (alkyne functionalities). Preferably, the alkynes comprise one or more terminal triple bonds, particularly from 1 to 3 triple bonds, most preferably one terminal triple bond.
  • Particularly preferred specific primary aminoalkynes are:
  • Figure US20230203694A1-20230629-C00009
  • Figure US20230203694A1-20230629-C00010
  • Particularly preferred specific secondary aminoalkynes are:
  • Figure US20230203694A1-20230629-C00011
  • Particularly preferred specific tertiary aminoalkynes are:
  • Figure US20230203694A1-20230629-C00012
  • Other preferred defect reducing agents are those in which the rests RS3 and RS4 may together form a ring system, which is optionally interrupted by O or NRS3. Preferably, the rests RS3 and RS4 together form a C5 or C6 bivalent group in which one or two, preferably one, carbon atoms may be exchanged by O or NRS7, with RS7 being selected from hydrogen, methyl or ethyl.
  • An example of such compounds is:
  • Figure US20230203694A1-20230629-C00013
  • It may be received by reaction of propargyl amine with formaldehyde and morpholine.
  • Another preferred defect reducing agent comprising a saturated heterocyclic system is:
  • Figure US20230203694A1-20230629-C00014
  • In this case RS3 and RS4 together form a ring system which is interrupted by two NRS3 groups, in which RS3 is selected from CH2—C≡C—H. This defect reducing agent comprises three terminal triple bonds.
  • The amino groups in the defect reducing agents may further be quaternized by reaction with alkylating agents such as but not limited to dialkyl sulphates like DMS, DES or DPS, benzyl chloride or chlormethylpyridine. Particularly preferred quaternized defect reducing agents are:
  • Figure US20230203694A1-20230629-C00015
  • Particularly preferred specific pure hydroxyalkynes are:
  • Figure US20230203694A1-20230629-C00016
  • Particularly preferred specific aminoalkynes comprising OH groups are:
  • Figure US20230203694A1-20230629-C00017
  • Also in this case the rests RS3 and RS4 may together form a ring system, which is optionally interrupted by O or NRS3. Preferably, the rests RS3 and RS4 together form a C5 or C6 bivalent group in which one or two, preferably one, carbon atoms may be exchanged by O or NRS7, with RS7 being selected from hydrogen, methyl or ethyl.
  • Examples for such compounds are:
  • Figure US20230203694A1-20230629-C00018
  • These may be received by reaction of propargyl alcohol with formaldehyde and piperidine or morpholine, respectively.
  • By partial reaction with alkylating agents mixtures of defect reducing agents may be formed. In one embodiment, such mixtures may be received by reaction of 1 mole diethylaminopropyne and 0.5 mole epichlorohydrin, 1 mole diethylaminopropyne and 0.5 mole benzylchloride, 1 mole diethylaminopropyne with 0.9 mole dimethyl sulphate, 1 mole dimethyl propyne amine and 0.33 mole dimethyl sulphate, or 1 mole dimethyl propyne amine and 0.66 mole dimethyl sulphate. In another embodiment such mixtures may be received by reaction of 1 mole dimethyl propyne amine and 1.5, 1.9, or 2.85 mole dimethyl sulphate, 1 mole dimethyl propyne amine and 0.5 mole epichlorohydrin, 1 mole dimethyl propyne amine and 2.85 diethyl sulphate, or 1 mole dimethyl propyne amine and 1.9 mole dipropyl sulphate.
  • In a further embodiment, the defect reducing agents may be substituted by SO3H (sulfonate) groups or COOH (carboxy) groups. Specific sulfonated defect reducing agents may be but are not limited to butynoxy ethane sulfonic acid, propynoxy ethane sulfonic acid, 1,4-di-(β-sulfoethoxy)-2-butyne, 3-(β-sulfoethoxy)-propyne.
  • In one embodiment a single defect reducing agent may be used in the copper electroplating baths. In another embodiment two or more of the defect reducing agents are used in combination.
  • In general, the defect reducing agents are typically used in an amount of about 0.1 ppm to about 30000 ppm, based on the total weight of the plating bath. Particularly suitable amounts of defect reducing agent useful in the present invention are 1 to 10000 ppm, and more particularly 10 to 1000 ppm.
  • Other Additives
  • A large variety of further additives may typically be used in the bath to provide desired surface finishes for the copper plated metal. Usually more than one additive is used with each additive forming a desired function. Advantageously, the electroplating baths may contain one or more of wetting agents or surfactants like Lutensol®, Plurafac® or Pluronic® (available from BASF) to get rid of trapped air or hydrogen bubbles and the like. Further components to be added are stress reducers, levelers and mixtures thereof.
  • In a further embodiment, surfactants may be present in the electroplating composition in order to improve wetting. Wetting agents may be selected from nonionic surfactants, anionic surfactants and cationic surfactants.
  • In a preferred embodiment non-ionic surfactants are used. Typical non-ionic surfactants are fluorinated surfactants, polyglycols, or poly oxyethylene and/or oxypropylene containing molecules.
  • Electrolyte
  • A wide variety of metal plating baths may be used with the present invention. Metal electroplating baths typically comprise or essentially consist of a copper ion source, an electrolyte, a grain refiner, a complexing agent, optionally a defect reducing agent, optionally a base or a buffer, and optionally further additives as described above.
  • The plating baths are typically aqueous. The term “aqueous” means that the plating bath is water based. The water may be present in a wide range of amounts. Any type of water may be used, such as distilled, deionized or tap. Preferably the plating bath is a solution of the compounds described herein in water. Preferably the water is electronic grade deionized water. Other solvents besides water may be present in minor amounts but preferably water is the only solvent.
  • The metal ion source may be any compound capable of releasing copper ions to be deposited in the electroplating bath in sufficient amount, i.e. is at least partially soluble in the electroplating bath.
  • In a preferred embodiment, no further metals besides copper are present in the electroplating bath. In other preferred embodiment the metal comprises copper and comprise tin in amount of below 0.1 g/l, preferably below 0.01 g/l, most preferably no tin. Most preferably there is no other metal than copper present in the composition.
  • It is preferred that the copper ion source is soluble in the plating bath to release 100% of the metal ions. Suitable copper ion sources are metal salts and include, but are not limited to, metal sulfates, metal halides, metal acetates, metal nitrates, metal fluoroborates, metal alkylsulfonates, metal arylsulfonates, metal sulfamates, metal gluconates and the like. It is preferred that the metal is copper. It is further preferred that the source of copper ions is copper sulfate, copper chloride, copper acetate, copper citrate, copper nitrate, copper fluoroborate, copper methane sulfonate, copper phenyl sulfonate and copper p-toluene sulfonate. Copper sulfate pentahydrate and copper methane sulfonate are particularly preferred. Such metal salts are generally commercially available and may be used without further purification.
  • The copper ion source may be used in the present invention in any amount that provides sufficient metal ions for electroplating on a substrate.
  • Copper is typically present in an amount in the range of from about 0.2 to about 300 g/l of the plating solution. Generally, the defect reducing agent is useful in low copper, medium copper and high copper baths. Low copper means a copper concentration from about 0.3 to about 20 g/l.
  • The pH of the electroplating composition is in the range of from about 7 to about 13, preferably from about 8 to about 13, more preferably from about 8 to about 12, most preferably from about 9 to about 11.
  • The electroplating composition is free of any cyanide ions.
  • In a preferred embodiment the composition is essentially free of chloride ions. Essentially free from chloride means that the chloride content is below 1 ppm, particularly below 0.1 ppm.
  • Process
  • According to one embodiment of the present invention an alkaline copper electroplating bath comprising a composition as described herein may be used for depositing copper on substrates comprising recessed features having an aperture size of 50 nanometers or less, which features preferably comprise a seed of cobalt, iridium, osmium, palladium, platinum, rhodium, ruthenium, molybdenum, and alloys thereof, most preferably of cobalt.
  • An electrolytic bath is prepared comprising copper ions, a complexing agent, and at least one grain refiner according to the invention. A dielectric substrate having the seed layer is placed into the electrolytic bath where the electrolytic bath contacts the at least one outer surface and the three dimensional pattern having a seed layer in the case of a dielectric substrate. A counter electrode is placed into the electrolytic bath and an electrical current is passed through the electrolytic bath between the seed layer on the substrate and the counter electrode. At least a portion of copper is deposited into at least a portion of the three dimensional pattern wherein the deposited copper is substantially void-free.
  • The present invention is useful for depositing a layer comprising copper on a variety of substrates, particularly those having nanometer and variously sized apertures. For example, the present invention is particularly suitable for depositing copper on integrated circuit substrates, such as semiconductor devices, with small diameter vias, trenches or other recessed features. In one embodiment, semiconductor devices are plated according to the present invention. Such semiconductor devices include, but are not limited to, wafers used in the manufacture of integrated circuits.
  • In order to allow a deposition of copper on a substrate comprising a dielectric surface a seed layer needs to be applied to the surface. Such seed layer may consist of cobalt, iridium, osmium, palladium, platinum, rhodium, and ruthenium or alloys comprising such metals. Preferred is the deposition of copper on a cobalt seed. The seed layers are described in detail e.g. in US20140183738 A.
  • The underlying seed layer may be deposited or grown by chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), electroplating, electro less plating or other suitable process that deposits conformal thin films. In an embodiment, the cobalt seed layer is deposited to form a high quality conformal layer that sufficiently and evenly covers all exposed surfaces within the openings and top surfaces. The high quality seed layer may be formed, in one embodiment, by depositing the cobalt seed material at a slow deposition rate to evenly and consistently deposit the conformal seed layer. By forming the seed layer in a conformal manner, compatibility of a subsequently formed fill material with the underlying structure may be improved. Specifically, the seed layer can assist a deposition process by providing appropriate surface energetics for deposition thereon.
  • In one embodiment the substrate comprises submicrometer sized features and the copper deposition is performed to fill the submicrometer sized features. Most preferably the submicrometer-sized features have an (effective) aperture size of 10 nm or below and/or an aspect ratio of 4 or more. More preferably the features have an aperture size of 7 nanometers or below, most preferably of 5 nanometers or below. Preferably the features bear a cobalt seed layer on which copper is electrodeposited.
  • In another embodiment a seed of copper is deposited onto the seeded surface of the substrate. Preferably this substrate comprises recessed features having an aperture size of 50 nm or below and/or an aspect ratio of 4 or more. Preferably the substrate bears a cobalt seed layer on which the copper seed layer is electrodeposited.
  • As used herein, “seed of copper” means a continuous thin layer of copper having a thickness of about 5 nm to about 15 nm.
  • The aperture size according to the present invention means the smallest diameter or free distance of a feature before plating, i.e. after seed deposition. The terms “aperture” and “opening” are used herein synonymously.
  • The electrodeposition current density should be chosen to promote the void-free filling behavior. A range of 0.1 to 40 mA/cm2 is useful for this purpose. In a particular example, the current density can range from 1 to 10 mA/cm2. In another particular example, the current density can range from 0.5 to 5 mA/cm2.
  • Typically, substrates are electroplated by contacting the substrate with the plating baths of the present invention. The substrate typically functions as the cathode. The plating bath contains an anode, which may be soluble or insoluble. Optionally, cathode and anode may be separated by a membrane. Potential is typically applied to the cathode. Sufficient current density is applied and plating performed for a period of time sufficient to deposit a metal layer, such as a copper layer, having a desired thickness on the substrate. Suitable current densities include, but are not limited to, the range of 1 to 250 mA/cm2. Typically, the current density is in the range of 1 to 60 mA/cm2 when used to deposit copper in the manufacture of integrated circuits. The specific current density depends on the substrate to be plated, the agents and additives selected and the like. Such current density choice is within the abilities of those skilled in the art. The applied current may be a direct current (DC), a pulse current (PC), a pulse reverse current (PRC) or other suitable current. Typical temperatures used for the copper electroplating are from 10° C. to 50° C., preferably 20° C. to 40° C., most preferably from 20° C. to 35° C.
  • In general, when the present invention is used to deposit metal on a substrate such as a wafer used in the manufacture of an integrated circuit, the plating baths are agitated during use. Any suitable agitation method may be used with the present invention and such methods are well-known in the art. Suitable agitation methods include, but are not limited to, inert gas or air sparging, work piece agitation, impingement and the like. Such methods are known to those skilled in the art. When the present invention is used to plate an integrated circuit substrate, such as a wafer, the wafer may be rotated such as from 1 to 300 RPM and the plating solution contacts the rotating wafer, such as by pumping or spraying. In the alternative, the wafer need not be rotated where the flow of the plating bath is sufficient to provide the desired metal deposit.
  • In one embodiment copper is deposited in recessed features according to the present invention without substantially forming voids within the metal deposit.
  • As used herein, void-free fill may either be ensured by an extraordinarily pronounced bottom-up copper growth while perfectly suppressing the sidewall copper growth, both leading to a flat growth front and thus providing substantially defect free trench/via fill (so-called bottom-up-fill) or may be ensured by a so-called V-shaped filling.
  • As used herein, the term “substantially void-free”, means that at least 95% of the plated apertures are void-free. Preferably that at least 98% of the plated apertures are void-free, mostly preferably all plated apertures are void-free. As used herein, the term “substantially seam-free”, means that at least 95% of the plated apertures are seam-free. Preferably that at least 98% of the plated apertures are seam-free, mostly preferably all plated apertures are seam-free.
  • Plating equipment for plating semiconductor substrates are well known. Plating equipment comprises an electroplating tank which holds Cu electrolyte and which is made of a suitable material such as plastic or other material inert to the electrolytic plating solution. The tank may be cylindrical, especially for wafer plating. A cathode is horizontally disposed at the upper part of tank and may be any type substrate such as a silicon wafer having openings such as trenches and vias. The wafer substrate is typically coated with a seed layer of Cu or other metal or a metal containing layer to initiate plating thereon. An anode is also preferably circular for wafer plating and is horizontally disposed at the lower part of tank forming a space between the anode and cathode. The anode is typically a soluble anode.
  • These bath additives are useful in combination with membrane technology being developed by various tool manufacturers. In this system, the anode may be isolated from the organic bath additives by a membrane. The purpose of the separation of the anode and the organic bath additives is to minimize the oxidation of the organic bath additives.
  • The cathode substrate and anode are electrically connected by wiring and, respectively, to a rectifier (power supply). The cathode substrate for direct or pulse current has a net negative charge so that Cu ions in the solution are reduced at the cathode substrate forming plated Cu metal on the cathode surface. An oxidation reaction takes place at the anode. The cathode and anode may be horizontally or vertically disposed in the tank.
  • While the process of the present invention has been generally described with reference to semiconductor manufacture, it will be appreciated that the present invention may be useful in any electrolytic process where a substantially void-free copper deposit is desired. Such processes include printed wiring board manufacture. For example, the present plating baths may be useful for the plating of vias, pads or traces on a printed wiring board, as well as for bump plating on wafers. Other suitable processes include packaging and interconnect manufacture. Accordingly, suitable substrates include lead frames, interconnects, printed wiring boards, and the like.
  • All percent, ppm or comparable values refer to the weight with respect to the total weight of the respective composition except where otherwise indicated. All cited documents are incorporated herein by reference.
  • The following examples shall further illustrate the present invention without restricting the scope of this invention.
  • EXAMPLES
  • 3-Carboxy-1-phenylmethylpyridinium (inner salt with Na+ and Cl) used in the examples is available from BASF SE.
  • Example 1a: Synthesis of Defect Reducing Agent 1
  • Figure US20230203694A1-20230629-C00019
  • Propargyl alcohol (280.3 g) and triphenylphosphine (2.0 g) were placed into a 3.5 l autoclave. After nitrogen neutralization, the pressure was adjusted to 1.5 bar and the mixture was homogenized at 60° C. for 1 h. Then ethylene oxide (220.3 g) was added at 60° C. over a period of 4 h, reaching a maximum pressure of 3.5 bar. The reaction mixture was then heated up over 30 min to 80° C., reaching a maximum pressure of 4 bar. To complete the reaction, the mixture post-react for 6 h at 80° C. Then, the temperature was decreased to 40° C. Volatile compounds were re-moved in vacuum at 60° C. Defect Reducing agent 1 was obtained as yellowish liquid (494.4 g), having a hydroxy value of 569 mg/g.
  • Example 1b: Synthesis of Defect Reducing Agent 2
  • Figure US20230203694A1-20230629-C00020
  • 3-Hexin-2,5-diol (456.6 g) and Imidazol (2.5 g) were placed into a 3.5 l autoclave. After nitrogen neutralization, the pressure was adjusted to 1.0 bar and the mixture was homogenized at 70° C. for 1 h. Then ethylene oxide (176.2 g) was added at 70° C. over a period of 1 h, reaching a maximum pressure of 3.5 bar. To complete the reaction, the mixture post-react for 6 h at 70° C. Then, the temperature was decreased to 60° C. Volatile compounds were removed in vacuum at 60° C. Defect Reducing agent 2 was obtained as orange liquid (630.8 g), having a hydroxy value of 709 mg/g.
  • Example 1c: Synthesis of Defect Reducing Agent 3
  • Figure US20230203694A1-20230629-C00021
  • 2-Methyl-3-butin-2-ol (420.6 g) and Imidazol (3.4 g) were placed into a 3.5 l autoclave. After nitrogen neutralization, the pressure was adjusted to 1.5 bar and the mixture was homogenized at 70° C. for 1 h. Then ethylene oxide (440.5 g) was added at 70° C. over a period of 8 h, reaching a maximum pressure of 3.5 bar. To complete the reaction, the mixture post-react for 6 h at 70° C. Then, the temperature was decreased to 60° C. Volatile compounds were removed in vacuum at 60° C. Intermediate 1 (=2-Methyl-3-butin-2-ol+2 EO) was obtained as orange liquid (835.3 g), having a hydroxy value of 325 mg/g.
  • Intermediate 1 (300 g) and Imidazol (0.7 g) were placed into a 3.5 l autoclave. After nitrogen neutralization, the pressure was adjusted to 2.2 bar and the mixture was homogenized at 70° C. for 1 h. Then propylene oxide (202.4 g) was added at 70° C. over a period of 7 h, reaching a maximum pressure of 3.2 bar. To complete the reaction, the mixture post-react for 6 h at 70° C. Then, the temperature was decreased to 60° C. Volatile compounds were removed in vacuum at 60° C. Defect Reducing agent 3 was obtained as dark orange liquid (488.5 g).
  • Copper Electroplating Experiments
  • 3-Carboxy-1-phenylmethylpyridinium was used as grain refiner either alone or in combination with a defect reducing agent in alkaline Cu electroplating baths. The grain refiner helps to reduce the roughness of the electrodeposited copper layer and thus also prevents the formation of defects in the electrodeposited Cu film.
  • For some plating experiments a blanket wafer substrate was used bearing a 100 A CVD Co seed on a 30 A TaN layer.
  • For some plating experiments a patterned wafer substrate was used as shown in FIG. 1 . The wafer substrate was bearing a 100 A Co seed on a 30 A TaN layer and having features with a diameter of 24 nm at the top of the opening, a diameter of 20 nm at half height of the feature. The feature height was about 105 nm which results in an aspect ratio of about 5.25.
  • For some plating experiments a patterned wafer substrate was used as shown in FIG. 2 . The wafer substrate was bearing a 50 A Co seed on a 30 A TaN layer and having features with a diameter of 18 nm at half height of the feature. The feature height was about 110 nm which results in an aspect ratio of about 6.
  • Example 2: Cu Electrodeposition with Grain Refiner Comparative Example 2a
  • A plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. A copper layer was electroplated onto a blanket wafer substrate bearing a cobalt seed layer by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of −1.0 mA/cm2 for 2000 s. The thus electroplated copper layer was annealed at 400° C. for 5 minutes in forming gas and was investigated by FIB/SEM inspection.
  • The result is shown in FIG. 3 which provides the SEM image of the electroplated copper film. FIG. 3 shows that the electroplated copper exhibits defects like holes and voids and is uneven.
  • Example 2b
  • The experiment as described in Example 2a was repeated with addition of 1 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium as grain refiner to the plating bath. The result is shown in FIG. 4 which provides the SEM image of the electroplated copper film. FIG. 4 shows significantly less defects in the electroplated copper film and exhibits a smooth Cu surface.
  • Example 2c
  • A plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 1 ml/l of a solution in DI water of 0.9 wt % 3-Carboxy-1-phenylmethylpyridinium was added to the plating bath. A copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 1 by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of −1.0 mA/cm2 for 250 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • The result is shown in FIG. 5 which provides the SEM image of the electroplated copper film. FIG. 5 shows features that are fully filled with Cu and are mainly free of defects.
  • Example 3: Cu Electrodeposition with Grain Refiner and Defect Reducing Agent Example 3a
  • A plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 1 and 0.5 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium were added to the electrolyte. A copper layer was electroplated onto a blanket wafer substrate bearing a cobalt seed layer by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of −2.0 mA/cm2 for 1000 s. The thus electroplated copper layer was annealed at 400° C. for 5 minutes in forming gas and was investigated by FIB/SEM inspection.
  • The result is shown in FIG. 6 which provides the SEM image of the electroplated copper film. FIG. 6 shows that the electroplated copper film is mainly free of defects and exhibits a smooth Cu surface.
  • Example 3b
  • A plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 1 and 1.0 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium were added to the electrolyte. A copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 2 by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of −1.0 mA/cm2 for 250 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • The result is shown in FIG. 7 which provides the SEM image of the features filled with Cu. FIG. 7 shows that the electroplated copper film is mainly free of defects.
  • Comparative Example 3c
  • A plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. A copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 2 by contacting the wafer substrate with the above described plating bath at 22° C. applying a direct current of −1.0 mA/cm2 for 50 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • The result is shown in FIG. 8 which provides the SEM image of the electroplated copper film. FIG. 8 shows a nonconformal and rough metal film inside the features.
  • Example 3d
  • Example 3d: The experiment as described in Example 3c was repeated with addition of 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 2 and 1.0 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium to the plating bath. A copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 2 by contacting the wafer substrate with the above described plating bath at 22° C. applying a direct current of −1.0 mA/cm2 for 100 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • The result is shown in FIG. 9 which provides the SEM image of the electroplated copper film. FIG. 9 shows a continuous and smooth metal film inside the features.
  • Example 3e
  • A plating bath was prepared by combining DI water, 0.5 g/l copper as copper sulfate, citric acid in a molar ratio of 2:1 to Cu, and a solution of sodium hydroxide or potassium hydroxide to adjust a pH of 9. 10 ml/l of a solution in DI water of 0.9 wt % of defect reducing agent 3 and 1.0 ml/l of a solution in DI water of 0.9 wt % 3-carboxy-1-phenylmethylpyridinium were added to the plating bath. A copper layer was electroplated onto a patterned wafer substrate as shown in FIG. 1 by contacting the wafer substrate with the above described plating bath at 25° C. applying a direct current of −1.0 mA/cm2 for 250 s. The thus electroplated copper layer was investigated by FIB/SEM inspection.
  • The result is shown in FIG. 10 which provides the SEM image of the features filled with Cu. FIG. 10 shows that the features are mainly free of defects.

Claims (18)

1. A composition for depositing copper on a semiconductor substrate, the composition comprising:
(a) copper ions;
(b) a grain refiner of formula G2a, G2b, or salts thereof:
Figure US20230203694A1-20230629-C00022
wherein
RG21 is selected from the group consisting of one or more H, C1 to C3 alkyl, C1 to C4 alkoxy, halogen, and CN;
RG22 is selected from the group consisting of one or more H, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN; and
XG1 is methandiyl, ethanediyl, propanediyl or butanediyl;
(c) a complexing agent; and
(d) optionally a buffer or a base capable of adjusting the pH to a pH of from 7 to 13;
wherein the pH of the composition is from 7 to 13;
wherein the composition further comprises a defect reducing agent of formula S1:
Figure US20230203694A1-20230629-C00023
or salts thereof,
wherein
RS1 is XS—YS;
RS2 is selected from the group consisting of RS1 and RS3;
XS is selected from the group consisting of linear or branched C1 to C10 alkanediyl, linear or branched C2 to C10 alkenediyl, linear or branched C2 to C10 alkynediyl, and —XS6—(O—C2H3RS6)m—;
YS is selected from the group consisting of ORS3, NRS3RS4, N+RS3RS4RS5 and NH—(C═O)—RS3;
RS3, RS4, RS5 are the same or different and are selected from the group consisting of (i) H, (ii) C5 to C20 aryl, (iii) C1 to C10 alkyl (iv) C6 to C20 arylalkyl, (v) C6 to C20 alkylaryl, which may be substituted by OH, SO3H, COOH or a combination thereof, and
(vi) —(C2H3RS6—O)n—RS6, and wherein RS3 and RS4 may together form a ring system, which may be interrupted by O or NRS7;
XS6 is C1 to C6 alkanediyl;
m, n are integers independently selected from the group consisting of 1 to 30;
RS6 is selected from the group consisting of H and C1 to C5 alkyl;
RS7 is selected from the group consisting of RS6 and
Figure US20230203694A1-20230629-C00024
2. (canceled)
3. (canceled)
4. The composition according to claim 1, wherein the grain refiner is 3-carboxy-1-phenylmethylpyridinium.
5. The composition according to claim 1, wherein
RG1 is selected from the group consisting of one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN;
RG2 is selected from the group consisting of one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN; and
XG1 is a group —XG11—C(O)—O—)—XG12;
XG11, XG12 are independently selected from the group consisting of C1 to C4 alkandiyl.
6. The composition according to claim 1, wherein the grain refiners are compounds of formula G3a, G3b, G3c, or salts thereof
Figure US20230203694A1-20230629-C00025
wherein
RG31 is selected from the group consisting of one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, halogen, and CN;
RG32 is selected from the group consisting of one or more H, C1 to C4 carboxyl, C1 to C4 alkyl, C1 to C6 alkoxy, C1 to C6 carboxy, halogen, and CN; and
XG32 is selected from the group consisting of a chemical bond or C1 to C4 alkandiyl.
7. The composition according to claim 6, wherein the grain refiners are 4-(Methoxycarbonyl)benzyl pyridine-3-carboxylate and benzyl pyridine-3-carboxylate.
8. (canceled)
9. The composition according to claim 1, wherein the composition is free of any cyanide ions.
10. The composition according to claim 1, which has a pH of 8 to 12.
11. A method of using a composition according to claim 1, the method comprising using the composition for depositing copper on a semiconductor substrate comprising recessed features having an aperture size 50 nanometers or less.
12. The method of use according to claim 11, wherein the recessed features have an aspect ratio of 4 or more.
13. The method of use according to claim 11, wherein the semiconductor substrate is a dielectric substrate onto which a conducting seed layer is placed, wherein the seed layer consists of cobalt, iridium, osmium, palladium, platinum, rhodium, ruthenium, and alloys thereof.
14. A process for depositing copper on a semiconductor substrate comprising a recessed feature having an aperture size of 50 nm or less, the recessed feature comprising a metal seed, the process comprising
(a) bringing a composition according to claim 1 into contact with the metal seed, and
(b) applying a current for a time sufficient to deposit a continuous seed of copper onto the metal seed of the recessed feature or to completely fill the recessed feature.
15. The process according to claim 14, wherein the seed layer consists of cobalt, iridium, osmium, palladium, platinum, rhodium, ruthenium, molybdenum, and alloys thereof.
16. The method of use according to claim 11, wherein the recessed features have an aperture size of 15 nm or less.
17. The process according to claim 14, wherein the recessed feature has an aperture size of 15 nm or less.
18. The process according to claim 14, wherein the seed layer consists of cobalt.
US17/564,979 2021-12-29 2021-12-29 Alkaline composition for copper electroplating comprising a grain refiner Abandoned US20230203694A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/564,979 US20230203694A1 (en) 2021-12-29 2021-12-29 Alkaline composition for copper electroplating comprising a grain refiner
PCT/EP2022/087097 WO2023126257A1 (en) 2021-12-29 2022-12-20 Alkaline composition for copper electroplating comprising a grain refiner
IL313878A IL313878A (en) 2021-12-29 2022-12-20 Alkaline composition for copper electroplating comprising a grain refiner
KR1020247021444A KR20240128849A (en) 2021-12-29 2022-12-20 Alkaline composition for copper electroplating containing grain refiner
CN202280086454.8A CN118451219A (en) 2021-12-29 2022-12-20 Alkaline composition for copper electroplating comprising a grain refiner
TW111150107A TW202344717A (en) 2021-12-29 2022-12-27 Alkaline composition for copper electroplating comprising a grain refiner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/564,979 US20230203694A1 (en) 2021-12-29 2021-12-29 Alkaline composition for copper electroplating comprising a grain refiner

Publications (1)

Publication Number Publication Date
US20230203694A1 true US20230203694A1 (en) 2023-06-29

Family

ID=86898425

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/564,979 Abandoned US20230203694A1 (en) 2021-12-29 2021-12-29 Alkaline composition for copper electroplating comprising a grain refiner

Country Status (2)

Country Link
US (1) US20230203694A1 (en)
CN (1) CN118451219A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881121A (en) * 1957-03-14 1959-04-07 Hanson Van Winkle Munning Co Electroplating
FR2187935A1 (en) * 1972-06-01 1974-01-18 Du Pont Bright white brass electrodeposition - from alkaline cyanide baths contg substd pyridinium ions
US4009087A (en) * 1974-11-21 1977-02-22 M&T Chemicals Inc. Electrodeposition of copper
US4036206A (en) * 1976-07-30 1977-07-19 E. I. Du Pont De Nemours And Company Selective solar energy absorption
US4605474A (en) * 1983-11-02 1986-08-12 Gerd Hoffacker Alkaline cyanide bath for electrolytic deposition of copper-tin-alloy coatings
DE4221970A1 (en) * 1992-06-30 1994-01-05 Schering Ag Sodium alkenyl or alkynyl salt use in metal electroplating bath to bind halogen - useful for preventing toxic halogen gas emission, esp. from zinc@, nickel@ or copper@ plating bath e.g. fluorine@, chlorine@, bromine@ or iodine@ at inert anode
WO2007086454A1 (en) * 2006-01-27 2007-08-02 Okuno Chemical Industries Co., Ltd. Additive added to solution for electrolytic copper plating using anode of phosphorated copper, solution for electrolytic copper plating and method of electrolytic copper plating
CN105951138B (en) * 2016-06-15 2018-03-30 苏州禾川化学技术服务有限公司 A kind of environmentally friendly alkali copper electroplating liquid and its electro-plating method
WO2018114985A1 (en) * 2016-12-20 2018-06-28 Basf Se Composition for metal plating comprising suppressing agent for void free filling
CN110592626A (en) * 2019-10-21 2019-12-20 广州三孚新材料科技股份有限公司 Cyanide-free electroplating brass liquid and use method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881121A (en) * 1957-03-14 1959-04-07 Hanson Van Winkle Munning Co Electroplating
FR2187935A1 (en) * 1972-06-01 1974-01-18 Du Pont Bright white brass electrodeposition - from alkaline cyanide baths contg substd pyridinium ions
US4009087A (en) * 1974-11-21 1977-02-22 M&T Chemicals Inc. Electrodeposition of copper
US4036206A (en) * 1976-07-30 1977-07-19 E. I. Du Pont De Nemours And Company Selective solar energy absorption
US4605474A (en) * 1983-11-02 1986-08-12 Gerd Hoffacker Alkaline cyanide bath for electrolytic deposition of copper-tin-alloy coatings
DE4221970A1 (en) * 1992-06-30 1994-01-05 Schering Ag Sodium alkenyl or alkynyl salt use in metal electroplating bath to bind halogen - useful for preventing toxic halogen gas emission, esp. from zinc@, nickel@ or copper@ plating bath e.g. fluorine@, chlorine@, bromine@ or iodine@ at inert anode
WO2007086454A1 (en) * 2006-01-27 2007-08-02 Okuno Chemical Industries Co., Ltd. Additive added to solution for electrolytic copper plating using anode of phosphorated copper, solution for electrolytic copper plating and method of electrolytic copper plating
CN105951138B (en) * 2016-06-15 2018-03-30 苏州禾川化学技术服务有限公司 A kind of environmentally friendly alkali copper electroplating liquid and its electro-plating method
WO2018114985A1 (en) * 2016-12-20 2018-06-28 Basf Se Composition for metal plating comprising suppressing agent for void free filling
CN110592626A (en) * 2019-10-21 2019-12-20 广州三孚新材料科技股份有限公司 Cyanide-free electroplating brass liquid and use method thereof

Also Published As

Publication number Publication date
CN118451219A (en) 2024-08-06

Similar Documents

Publication Publication Date Title
US20210040635A1 (en) Composition for cobalt plating comprising additive for void-free submicron feature filling
US11926918B2 (en) Composition for metal plating comprising suppressing agent for void free filing
JP5380113B2 (en) Plating bath and method for depositing a metal layer on a substrate
EP2417285B1 (en) Composition for metal plating comprising suppressing agent for void free submicron feature filling
US20030155247A1 (en) Process for electroplating silicon wafers
US20220298664A1 (en) Composition for Cobalt Electroplating Comprising Leveling Agent
US11585004B2 (en) Composition for cobalt or cobalt alloy electroplating
US20230265576A1 (en) Composition For Copper Electroplating On A Cobalt Seed
US12098473B2 (en) Composition for cobalt plating comprising additive for void-free submicron feature filling
US20230203694A1 (en) Alkaline composition for copper electroplating comprising a grain refiner
US20230203695A1 (en) Alkaline Composition For Copper Electroplating Comprising A Defect Reduction Agent
WO2023126257A1 (en) Alkaline composition for copper electroplating comprising a grain refiner
WO2023126259A1 (en) Alkaline composition for copper electroplating comprising a defect reduction agent

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION