US20230201294A1 - Aqueous extraction process of plants, method thereof, and product by process - Google Patents

Aqueous extraction process of plants, method thereof, and product by process Download PDF

Info

Publication number
US20230201294A1
US20230201294A1 US18/115,927 US202318115927A US2023201294A1 US 20230201294 A1 US20230201294 A1 US 20230201294A1 US 202318115927 A US202318115927 A US 202318115927A US 2023201294 A1 US2023201294 A1 US 2023201294A1
Authority
US
United States
Prior art keywords
extraction
cells
epe001
mixture
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/115,927
Inventor
William P. Duncan
Lauren S. Gollahon
William C. Putnam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eir Pharmaceuticals LLC
Original Assignee
Eir Pharmaceuticals LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eir Pharmaceuticals LLC filed Critical Eir Pharmaceuticals LLC
Priority to US18/115,927 priority Critical patent/US20230201294A1/en
Assigned to Eir Pharmaceuticals, LLC reassignment Eir Pharmaceuticals, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLLAHON, LAUREN S, DUNCAN, WILLIAM P, PUTNAM, WILLIAM C
Publication of US20230201294A1 publication Critical patent/US20230201294A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/54Lauraceae (Laurel family), e.g. cinnamon or sassafras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/25Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
    • A61K36/254Acanthopanax or Eleutherococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/31Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/35Caprifoliaceae (Honeysuckle family)
    • A61K36/355Lonicera (honeysuckle)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • A61K36/481Astragalus (milkvetch)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • A61K36/8998Hordeum (barley)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/37Extraction at elevated pressure or temperature, e.g. pressurized solvent extraction [PSE], supercritical carbon dioxide extraction or subcritical water extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/39Complex extraction schemes, e.g. fractionation or repeated extraction steps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/50Methods involving additional extraction steps
    • A61K2236/53Liquid-solid separation, e.g. centrifugation, sedimentation or crystallization

Definitions

  • the present invention relates generally to an aqueous extraction process and method for use thereof, and more specifically to an aqueous extraction process of specific plants for the chemical composition thereof.
  • the present invention generally provides for the preparation of an aqueous extract resulting from an aqueous extraction of individual or mixtures of Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare and the chemical composition comprising said extracts or fractions thereof, and the use of said compositions or fractions thereof for treating or preventing cancers and inflammation related diseases, hair loss, stimulating hair growth, increasing energy production, and boosting immunity.
  • the resulting extracts include a mixture of naturally occurring biologically active phytochemical compounds that possess a variety of beneficial animal and human health effects.
  • FIG. 1 is a diagram of a preferred embodiment static (batch) aqueous extraction system.
  • FIG. 2 is a diagram of an alternative embodiment dynamic (semi-continuous flow) aqueous extraction system.
  • FIG. 3 is a LC-MS chromatogram depicting the components of an exemplary product (EPE001) of an extraction process utilizing one of the embodiments of the extraction systems of FIGS. 1 and 2 .
  • FIG. 4 is a bar graph depicting results of a treatment of human breast cancer cells utilizing a product produced by the process resulting from the embodiments of either FIG. 1 or FIG. 2 .
  • FIG. 5 shows a series of cells taken through a microscope on day 5 of the bar graph of FIG. 4 .
  • FIG. 6 is a bar graph depicting results of a treatment of human epithelial cells utilizing a product produced by the process resulting from the embodiments of either FIG. 1 or FIG. 2 .
  • FIG. 7 shows a series of cells taken through a microscope on day 5 of the bar graph of FIG. 6 .
  • FIG. 8 is a bar graph depicting results of a treatment of fibroblast cells utilizing a product produced by the process resulting from the embodiments of either FIG. 1 or FIG. 2 .
  • FIG. 9 shows a series of cells taken through a microscope on day 5 of the bar graph of FIG. 8 .
  • FIG. 10 is a table including a summary of gene expression changes in the presence of an exemplary product of the extraction process (EPE001) using RNA-Seq analysis.
  • FIG. 11 is a table including a summary of diseases and associated networks that are affected as a result in upregulation or downregulation of the summary from the RNA-Seq analysis.
  • FIG. 1 shows a static aqueous extraction system 2 .
  • a process utilizing this static system 2 results in a product capable of producing desired results as described in more detail and in specific examples below.
  • Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare are combined in equal or various amounts by dry weight and placed in a spunbond nonwoven fabric container 14 .
  • the fabric container may be placed upon a pedestal 16 within the extraction apparatus 8 for optimal results.
  • the spunbond nonwoven fabric container 14 is sealed and then fixed within the extraction apparatus 8 containing reverse-osmosis membrane filtered purified or distilled water 10 as shown in FIG. 1 .
  • the extraction apparatus may be made of a stainless steel or glass vessel.
  • the extraction apparatus 8 is contained within a heating element 6 .
  • the extraction apparatus is closed and sealed with a seal 12 and then heated such that the water 10 is boiling for 3-6 hrs. Some of the vapor is discharged through the water-cooled condenser outlet 4 affixed to the top of the extraction apparatus 8 allowing some volatiles to escape while retaining a portion that are condensed and returned to the extraction apparatus.
  • the seal retains the condenser unit 4 in connection with the extraction apparatus 8 .
  • the resulting extraction mixture is then filtered in succession using a membrane filter with a pore size not bigger than 10-6 m (1 micron) and purified water at 90-100° C., 70-85° C., 40-60° C., 15-30° C., and 5-15° C., providing the final product filtrate (extract) that contains ⁇ 370 mg of biologically active solid ingredients per liter of aqueous extract.
  • Example compounds identified in the aqueous extract include acids such a chlorogenic and cinnamic acid, aldehydes, e.g. cinnamaldehyde and lignans, e.g. archin.
  • Cinnamomum cassia for each liter of water, 220 mg of Cinnamomum cassia, 110 mg Arctium lappa, 220 mg Vitex agnus castus, 110 mg Lonicera japonica, 110 mg Acanthopanax gracilistylis, 110 mg Raphanus sativus, 110 mg Astragalus membranaceus and 220 mg Hordeum vulgare are combined and placed in a spunbond nonwoven fabric, and the spunbond nonwoven fabric sealed and then fixed within the extraction apparatus filled with reverse-osmosis membrane filter purified or distilled water. The extraction vessel is closed and then heated to boiling for 3 hrs.
  • EPE001 hot extraction mixture, of these ingredients is referred to as, EPE001, from this point onward, is then filtered in succession via simple vacuum assisted filtration using membrane filters with a pore size not bigger than 10-6 m (1 micron) at 90-100° C., 70-85° C., 40-60° C., 15-30° C., and 5-15° C. providing the final product extract that contains ⁇ 370 mg of biologically active solid ingredients per liter of aqueous extract.
  • FIG. 2 presents an alternative system for producing a chemical compound from an aqueous extraction process utilizing a dynamic system 52 .
  • a dynamic system 52 In the same manner as the static system 2 , an individual herb or a desired mixture of Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare, are combined in equal or various amounts by dry weight and placed in a spunbond nonwoven fabric container 14 , and the spunbond nonwoven fabric container 14 is sealed and then fixed within the extraction vessel 8 .
  • Reverse-osmosis membrane filter purified, or distilled water 10 is then pumped into the extraction vessel 8 via a pump 20 .
  • the extraction apparatus 8 is contained within a heating element 6 .
  • the extraction apparatus is closed and sealed with a seal 12 and heated to boiling for 4-6 hrs. Some of the vapor is discharged through the water-cooled condenser outlet 4 affixed to the top of the extraction vessel allowing some volatiles to escape while retaining some that are condensed and returned to the extraction vessel.
  • the resulting extraction mixture, EPE001 is then filtered in succession by pressure driven filtration using filters with a pore size not bigger than 10-6 m (1 micron) utilizing a system of appropriately connected pumps and valves that allow for efficient transfer of the purified water extract at 70-95° C., followed by filtering the extract using purified water at 70-95° C., 40-60° C., 15-30° C., and 5-15° C., providing the final product extract that contains ⁇ 350 mg of active solid ingredients per liter of aqueous extract.
  • This extraction process allows for a dynamic semi-continuous flow production of biologically active extract by pausing the process, recharging the spunbond nonwoven fabric with selected amounts of dried herbs and initiating the process by pumping purified water 10 into the extraction vessel 8 and restarting the heating device.
  • This process is made dynamic through the use of a large vessel of purified water 18 which is pumped using a pump 20 into the extraction vessel 8 . It is then pulled out of the extraction vessel 8 using a series of valves 22 , filters 24 , and pumps 20 as shown in FIG. 2 into one or more storage containers 26 , 26 . 1 , 26 . 2 , 26 . 3 .
  • the system can be run dynamically until all storage containers are filled, and as soon as there is volume in one storage container as shown, the aqueous extraction can pass onto the next pump and filter set.
  • Purified water can be pumped into the vessel 8 from the reservoir 18 through an inlet in the reservoir near the top of the vessel.
  • the aqueous extract can be pumped out through an outlet near the bottom of the vessel and through a single or series of decreasing pore-size filters with the final filter being a 0.2 ⁇ m filter.
  • the filtrate would then be dispensed into a collection vessel as a finished product for a number of various uses.
  • a first use of the extract would be as a potential cancer therapeutic. This would provide an application to a broad range of solid cancers (neoplasias) due to effects of the extract chemical composition on mitochondrial function in cancer cells (e.g. apoptosis, autophagy, and mitochondrial membrane potential changes) as well as changes in transcriptional activation (promote or inhibit) of key genes associated with cancer progression or suppression.
  • the benefits include a reduction or elimination of side effects common in existing cancer therapeutics.
  • the preparation of the extract as presented herein provides for the delivery of biologically active compounds topically or as an aqueous oral dose. It has a bioactivation and bioavailability increase upon digestion associated with changes in pH. It causes a decrease in the proliferation of cancer cells and an inhibition of genes related to cancer cell growth.
  • a second use of the extract as presented herein would be an anti-inflammatory therapeutic. It provides a reduction in reactive oxygen species formation in normal cells. It reduces production of inflammatory cytokines. It also provides increased mobility with concurrent decrease in joint pain.
  • a third use is as an energy supplement.
  • the extract provides an increase in beta-oxidation utilizing fatty acids as a substrate for generation of ATP. It provides increased energy production (e.g. mitochondrial efficiency). It also provides a decrease in glucose dependency as a metabolic substrate, while also reducing inflammation as described above.
  • a fourth use is as a weight loss supplement.
  • the extract has been shown to increase beta-oxidation utilizing fatty acids as a substrate for generation of ATP. and a decrease in glucose dependency as a metabolic substrate.
  • the extract has also been shown to decrease glucose dependency as a metabolic substrate. These metabolic changes are expected to cause weight loss.
  • the extract has also been shown to provide an inhibition of some known obesity related gene expression.
  • a fifth use is for its antiviral effectiveness due to increased potential cell membrane resistance and decreased replication capabilities against clinically relevant viral strains including HIV, Influenza Virus, West Nile Virus, Adenovirus, and Polymavirus.
  • a sixth use is for its antimicrobial effectiveness due to its effectiveness against pathogenic bacterial infections including, Streptococcus sp., Staphylococcus sp., and Listeria sp.
  • a seventh use is for dermatological stem cell activity, such as for use for hair growth or other uses against skin conditions such as atopic dermatitis, psoriasis, and eczema.
  • An eighth use is for boosting the immune system. Specifically, inducing pluripotent stem cells to replace depleted populations of T-cell lymphocytes. This population replenishment has direct positive benefits in the mechanism of action and is described in [0027] and [0028].
  • FIGS. 3 - 9 show several examples and results thereof utilizing a product produced by the processes described above. Other examples are not explicitly shown, but the results are described below.
  • Typical treatments for cancer involve chemicals that are not only toxic to infected cells but also other surrounding cells, tissues and systems. Because of this there is a growing need and interest for utilizing natural products for treatment of a variety of human diseases and conditions. Using the herein described process, a reproducible, aqueous extract of a combination of plants has been shown to be toxic to human cultured cancer cells but does not harm healthy cells.
  • each of the eight herbs Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare ) were milled to a powder then passed through a 0.21 mm mesh sieve to exclude any large particulates.
  • the powders were combined and placed into a spunbond nonwoven fabric bag and sealed then placed into a vessel containing reverse-osmosis purified water utilizing the static system 2 shown in FIG. 1 and alternatively the dynamic continuous system 52 shown in FIG. 2 . After the vessel was sealed, the water was brought to a boil for 3 hours.
  • the aqueous extract (EPE001) was split into four aliquots. Two aliquots were cooled to 80° C. before passing through either a qualitative filter (11 ⁇ m) or a 0.2 ⁇ m filter. The other two aliquots were allowed to cool to room temperature before being passed through either a qualitative filter (11 ⁇ m) or a 0.2 ⁇ m filter. A portion of each aliquot was lyophilized to dryness before being diluted with purified water to a final concentration of 3.6 mg extract residue per milliliter. Each of these samples were then utilized in analytical experimentation and bioassays to determine chemical composition and biological activity
  • FIG. 3 shows a graph wherein each of the four samples were analyzed using a Waters ACQUITY UPLC-PDA-MS system.
  • Major components were identified by mass, then verified through comparison to a prepared standard of the isolated molecule to confirm the identity.
  • Major components of the extract are: arctigenin, cholorgenic acid, neocholorgenic acid, isochlorogenic acid A, arctiin, quercetin 3-O- ⁇ -D glucoside, cyanarin and casticin. Other components of the extract have not yet been identified.
  • Sample collected from the extraction process was lyophilized to dryness and resuspended to a final concentration of 3.6 mg/mL in 0.1% formic acid (pH 4.2).
  • Chromatography was achieved using a 20 ⁇ L injection volume and a Waters ACQUITY UPLC HSS T3, 100 ⁇ , 2.1 ⁇ 100 mm, column. A gradient elution was used with Mobile Phase A of 0.1% formic acid (pH 4.2) and Mobile Phase B of 80:20 acetonitrile: water. The linear chromatographic gradient started with 95% Mobile Phase A and concluded with 5% Mobile Phase A over 19.1 minutes with a flow rate of 0.4 mL/min. Chromatograms were collected monitoring the column effluent at 236 nm with a UV/Vis detector and with a Single-Quadrapole (QDa) mass spectrometer set to monitor a mass range of 50-1200 Da.
  • QDa Single-Quadrapole
  • Samples were: EPE001 filtered at ⁇ 80° C. through an 11 ⁇ m qualitative filter (H3a), EPE001 filtered at ⁇ 80° C. through a 0.2 ⁇ m filter (H3b), EPE001 cooled to room temperature before filtration through an 11 ⁇ m qualitative filter (A3a), and EPE001 cooled to room temperature before filtration through a 0.2 ⁇ m filter (A3b).
  • FIGS. 4 and 5 are treatments of human breast cancer cells treated with an exemplary product of the extraction process (EPE001).
  • EPE001 20,000 MCF7 (human breast adenocarcinoma) cells were seeded in 48 well plates in triplicate, allowed to adhere for 24 hours before treatment commenced (Day 0).
  • Treatment groups were each performed in triplicate and include: untreated control group (UNT), treated with EPE001 filtered at ⁇ 80° C. through an 11 ⁇ m qualitative filter (HQ), treated with EPE001 filtered at ⁇ 80° C.
  • FIG. 4 shows the results in the form of a bar graph of applying each of the four filtered versions of EPE001 to MCF7 cells which are cultured human breast cancer cells.
  • Control group samples that received no treatment rose from 20,000 cells at day 0 to nearly 300,000 cells by the end of day 5.
  • All applications of the example extract have a statistically significant (ANOVA p-value ⁇ 0.05) impact on the growth of the cancer cells.
  • EPE001 filtered with the qualitative (11 ⁇ M) filter at 80° C. had the greatest cytotoxic effect, decreasing the original cell count by 28-fold in comparison to a 14 ⁇ increase in cell count for the control group. Extract treated cancer cells not only showed strong cytotoxic effects, but also displayed an effect on the morphology of the cells as shown in FIG.
  • Treated cancer cells show changes in cell membrane permeability, diameter, volume and shape (rounder) as well as becoming less adherent to the microplate surface—suggesting multiple mechanisms of action resulting in cytotoxicity. Arrows indicate condensed cytoplasmic constituents, loss of membrane integrity and cell-cell as well as cell-substrate adhesion. When comparing the UNT cells to EPE001 treated samples, it is evident that there is significant cell loss. Furthermore, where the UNT cells look smooth and very confluent, cytoplasmic extension, stress and cell death features such as vacuolization and membrane blebbing.
  • FIG. 6 and FIG. 7 are treatments of healthy human epithelial cells with an exemplary product of the extraction process (EPE001).
  • EPE001 exemplary product of the extraction process
  • 20,000 MCF10A normal, human mammary epithelial cells were seeded in 48 well plates in triplicate, allowed to adhere for 24 hours before treatment commenced (Day 0).
  • Treatment groups were each performed in triplicate and include: untreated control group (UNT), treated with EPE001 filtered at ⁇ 80° C. through an 11 ⁇ m qualitative filter (HQ), treated with EPE001 filtered at ⁇ 80° C.
  • UNT untreated control group
  • HQ 11 ⁇ m qualitative filter
  • FIG. 6 shows the results in the form of a bar graph of applying each of the four filtered versions of EPE001 were applied to MCF10A cells which are cultured human normal epithelial breast cells. Control group samples that received no treatment rose from 20,000 cells at Day 0 to ⁇ 40,000 cells by the end of day 5. It should be noted that normal mammary epithelial cells grow more slowly and are constrained by area and cell-cell interactions whereas cancer cells grow much faster and are not constrained either by confluence or cell-cell boundaries. EPE001 filtered with the 0.2 ⁇ m filter at 80° C. did not have a statistically significant change in cell count by the end of day 5 (ANOVA p-value >0.05, meaning there is no statistical significance in the comparison).
  • FIG. 8 shows the results in the form of a bar graph of applying each of the four filtered versions of EPE001 were applied to HFF1 cells which are cultured human normal foreskin fibroblast cells. Control group samples that received no treatment proliferated from 20,000 cells at day 0 to ⁇ 45,000 cells by the end of day 5. It should be noted that normal fibroblast cells grow more slowly and are constrained by area and cell-cell interactions whereas cancer cells grow much faster and are not constrained either by confluence or cell-cell boundaries. EPE001 filtered with the 0.2 ⁇ m filter at 80° C. did not have a statistically significant change in cell count by the end of day 5 (ANOVA p-value >0.05, meaning there is no statistical significance in the comparison).
  • RNA-Seq analysis or Whole Transcriptome Shotgun Sequencing uses a Next-Generation Sequencing (NGS) method to catalog and count the number of RNA transcripts produced in a selected cell culture.
  • NGS Next-Generation Sequencing
  • This technique can be used as a comparative tool to determine which genes are activated or suppressed and to what degree in different environments—in this example, with and without the presence of the Extract Product.
  • Data collected from RNA-Seq analysis is analyzed utilizing a web-based software application, Ingenuity Pathway Analysis (IPA), produced by QIAGEN Bioinformatics.
  • IPA Ingenuity Pathway Analysis
  • FIG. 10 is a summary of gene expression changes in the presence of an exemplary product of the extraction process (EPE001) using RNA-Seq analysis.
  • MCF7 human breast adenocarcinoma
  • MCF7 human breast adenocarcinoma
  • Cells were seeded at 1 ⁇ 10 ⁇ circumflex over ( ) ⁇ 6 cells in T25 flasks and incubated at 37° C., 5% C02 for 24 hours. Cells were allowed to adhere for 24 hours before treatment commenced. Cells were treated with medium only (reference sample) or treated with EPE001 and allowed to incubate for 24 hours. Cells were harvested and RNA was isolated using a Qiagen RNeasy Mini Kit as per manufacturer instruction. RNA transcriptome was sequenced using an Illumina MiSeq system.
  • FASTQ files were generated by the Illumina CASAVA v1.8.2 and the quality of reads was evaluated by NGSQC Toolkit v2.3. High-quality reads were mapped, annotated to exons, and normalized to FPKM values for all 25,278 human RNA references in NCBI RefSeq database. Differential gene expression analysis was determined using DNAstar software. Biological pathway analyses were carried out using Ingenuity Pathway Analysis (Qiagen).
  • FIG. 10 represents the IPA software output of genes upregulated (increase in the physical number of RNA transcripts produced for a particular gene) or downregulated (decrease in the physical number of RNA transcripts produced for a particular gene) in the presence of the Extract Product.
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • HSPG2 heparan sulfate proteoglycan 2
  • TP53 tumor protein 53
  • TP53 tumor protein 53
  • NUPR1 nuclear protein 1
  • TP53 a tumor suppressor gene. This gene is upregulated in the presence of EPE001.
  • RNA-Seq analysis coincides with the physical results seen in FIGS. 4 and 5 .
  • FIG. 11 is a summary of diseases and associated networks that are affected as a result in upregulation or downregulation of the summary from the RNA-Seq analysis. This output represents the top scoring diseases and networks as determined by the Ingenuity Pathway Analysis (Qiagen) software package.
  • Qiagen Ingenuity Pathway Analysis
  • EPE001 Treatment of cancer cells with EPE001 resulted in over 2000 molecules that were upregulated or downregulated, many of which are involved in tumor suppression and inhibition of cell growth. Outside of cancer related networks, EPE001 also had an effect on genes associated with DNA replication, recombination and repair, embryonic development, nervous system development and function. These results would suggest an increase in stimulation of healing, stem cell activity, as well as stimulation of hair growth.

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The preparation of an aqueous extract resulting from an aqueous extraction process of Cinnamomum aromaticum, Arctium lappa, Viticis fructus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare and the chemical composition comprising said extract or fraction thereof, and the use of said composition or fraction thereof for treating or preventing cancers and inflammation related diseases, hair loss, stimulating hair growth, increasing energy production, and boosting immunity.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a Continuation of and claims priority in U.S. Non-Provisional patent application Ser. No. 16/590,807 Filed Oct. 2, 2019, which is a Non-Provisional of U.S. Provisional Patent Application 62/740,047 Filed Oct. 2, 2018 and is related to U.S. Non-Provisional patent application Ser. No. 16/686,535, filed Nov. 18, 2019, all of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates generally to an aqueous extraction process and method for use thereof, and more specifically to an aqueous extraction process of specific plants for the chemical composition thereof.
  • 2. Description of the Related Art
  • Existing methods for extracting key compounds or components for generating a chemical composition comprised of an extract thereof do exist. However, these processes have failed to adequately and reliably produce a chemical composition having the results of the present invention.
  • Heretofore there has not been available a system or method for an aqueous extraction process and resulting extract with the advantages and features of the present invention.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention generally provides for the preparation of an aqueous extract resulting from an aqueous extraction of individual or mixtures of Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare and the chemical composition comprising said extracts or fractions thereof, and the use of said compositions or fractions thereof for treating or preventing cancers and inflammation related diseases, hair loss, stimulating hair growth, increasing energy production, and boosting immunity.
  • The resulting extracts include a mixture of naturally occurring biologically active phytochemical compounds that possess a variety of beneficial animal and human health effects.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings constitute a part of this specification and include exemplary embodiments of the present invention illustrating various objects and features thereof.
  • FIG. 1 is a diagram of a preferred embodiment static (batch) aqueous extraction system.
  • FIG. 2 is a diagram of an alternative embodiment dynamic (semi-continuous flow) aqueous extraction system.
  • FIG. 3 is a LC-MS chromatogram depicting the components of an exemplary product (EPE001) of an extraction process utilizing one of the embodiments of the extraction systems of FIGS. 1 and 2 .
  • FIG. 4 is a bar graph depicting results of a treatment of human breast cancer cells utilizing a product produced by the process resulting from the embodiments of either FIG. 1 or FIG. 2 .
  • FIG. 5 shows a series of cells taken through a microscope on day 5 of the bar graph of FIG. 4 .
  • FIG. 6 is a bar graph depicting results of a treatment of human epithelial cells utilizing a product produced by the process resulting from the embodiments of either FIG. 1 or FIG. 2 .
  • FIG. 7 shows a series of cells taken through a microscope on day 5 of the bar graph of FIG. 6 .
  • FIG. 8 is a bar graph depicting results of a treatment of fibroblast cells utilizing a product produced by the process resulting from the embodiments of either FIG. 1 or FIG. 2 .
  • FIG. 9 shows a series of cells taken through a microscope on day 5 of the bar graph of FIG. 8 .
  • FIG. 10 is a table including a summary of gene expression changes in the presence of an exemplary product of the extraction process (EPE001) using RNA-Seq analysis.
  • FIG. 11 is a table including a summary of diseases and associated networks that are affected as a result in upregulation or downregulation of the summary from the RNA-Seq analysis.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS I. INTRODUCTION AND ENVIRONMENT
  • As required, detailed aspects of the present invention are disclosed herein, however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately detailed manifestation.
  • Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as orientated in the view being referred to which the referral is directed. The words, “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the aspect being described and designated parts thereof. Forwardly and rearwardly are generally in reference to the direction of travel, if appropriate. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
  • II. PREFERRED EMBODIMENT STATIC (BATCH) SYSTEM AND AQUEOUS EXTRACTION PROCESS
  • FIG. 1 shows a static aqueous extraction system 2. A process utilizing this static system 2 results in a product capable of producing desired results as described in more detail and in specific examples below.
  • Individual or a desired mixture of Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare are combined in equal or various amounts by dry weight and placed in a spunbond nonwoven fabric container 14. The fabric container may be placed upon a pedestal 16 within the extraction apparatus 8 for optimal results. The spunbond nonwoven fabric container 14 is sealed and then fixed within the extraction apparatus 8 containing reverse-osmosis membrane filtered purified or distilled water 10 as shown in FIG. 1 . The extraction apparatus may be made of a stainless steel or glass vessel. The extraction apparatus 8 is contained within a heating element 6. The extraction apparatus is closed and sealed with a seal 12 and then heated such that the water 10 is boiling for 3-6 hrs. Some of the vapor is discharged through the water-cooled condenser outlet 4 affixed to the top of the extraction apparatus 8 allowing some volatiles to escape while retaining a portion that are condensed and returned to the extraction apparatus. The seal retains the condenser unit 4 in connection with the extraction apparatus 8. The resulting extraction mixture is then filtered in succession using a membrane filter with a pore size not bigger than 10-6 m (1 micron) and purified water at 90-100° C., 70-85° C., 40-60° C., 15-30° C., and 5-15° C., providing the final product filtrate (extract) that contains ˜370 mg of biologically active solid ingredients per liter of aqueous extract. Example compounds identified in the aqueous extract include acids such a chlorogenic and cinnamic acid, aldehydes, e.g. cinnamaldehyde and lignans, e.g. archin.
  • For example, by dry weight, for each liter of water, 220 mg of Cinnamomum cassia, 110 mg Arctium lappa, 220 mg Vitex agnus castus, 110 mg Lonicera japonica, 110 mg Acanthopanax gracilistylis, 110 mg Raphanus sativus, 110 mg Astragalus membranaceus and 220 mg Hordeum vulgare are combined and placed in a spunbond nonwoven fabric, and the spunbond nonwoven fabric sealed and then fixed within the extraction apparatus filled with reverse-osmosis membrane filter purified or distilled water. The extraction vessel is closed and then heated to boiling for 3 hrs. Some of vapor is discharged through the water-cooled condenser outlet affixed to the top of the extraction vessel allowing a portion of volatiles to escape while retaining some that are condensed and returned to the extraction vessel. The resulting hot extraction mixture, of these ingredients is referred to as, EPE001, from this point onward, is then filtered in succession via simple vacuum assisted filtration using membrane filters with a pore size not bigger than 10-6 m (1 micron) at 90-100° C., 70-85° C., 40-60° C., 15-30° C., and 5-15° C. providing the final product extract that contains ˜370 mg of biologically active solid ingredients per liter of aqueous extract.
  • III. ALTERNATIVE EMBODIMENT DYNAMIC (SEMI-CONTINUOUS FLOW) SYSTEM AND AQUEOUS EXTRACTION PROCESS 52
  • FIG. 2 presents an alternative system for producing a chemical compound from an aqueous extraction process utilizing a dynamic system 52. In the same manner as the static system 2, an individual herb or a desired mixture of Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare, are combined in equal or various amounts by dry weight and placed in a spunbond nonwoven fabric container 14, and the spunbond nonwoven fabric container 14 is sealed and then fixed within the extraction vessel 8. Reverse-osmosis membrane filter purified, or distilled water 10 is then pumped into the extraction vessel 8 via a pump 20. The extraction apparatus 8 is contained within a heating element 6. The extraction apparatus is closed and sealed with a seal 12 and heated to boiling for 4-6 hrs. Some of the vapor is discharged through the water-cooled condenser outlet 4 affixed to the top of the extraction vessel allowing some volatiles to escape while retaining some that are condensed and returned to the extraction vessel. The resulting extraction mixture, EPE001, is then filtered in succession by pressure driven filtration using filters with a pore size not bigger than 10-6 m (1 micron) utilizing a system of appropriately connected pumps and valves that allow for efficient transfer of the purified water extract at 70-95° C., followed by filtering the extract using purified water at 70-95° C., 40-60° C., 15-30° C., and 5-15° C., providing the final product extract that contains ˜350 mg of active solid ingredients per liter of aqueous extract. This extraction process allows for a dynamic semi-continuous flow production of biologically active extract by pausing the process, recharging the spunbond nonwoven fabric with selected amounts of dried herbs and initiating the process by pumping purified water 10 into the extraction vessel 8 and restarting the heating device.
  • This process is made dynamic through the use of a large vessel of purified water 18 which is pumped using a pump 20 into the extraction vessel 8. It is then pulled out of the extraction vessel 8 using a series of valves 22, filters 24, and pumps 20 as shown in FIG. 2 into one or more storage containers 26, 26.1, 26.2, 26.3. The system can be run dynamically until all storage containers are filled, and as soon as there is volume in one storage container as shown, the aqueous extraction can pass onto the next pump and filter set. Purified water can be pumped into the vessel 8 from the reservoir 18 through an inlet in the reservoir near the top of the vessel. After the boiling step is complete, the aqueous extract can be pumped out through an outlet near the bottom of the vessel and through a single or series of decreasing pore-size filters with the final filter being a 0.2 μm filter. The filtrate would then be dispensed into a collection vessel as a finished product for a number of various uses.
  • The use of the extract resulting from the aqueous extraction processes as described herein are varied. A first use of the extract would be as a potential cancer therapeutic. This would provide an application to a broad range of solid cancers (neoplasias) due to effects of the extract chemical composition on mitochondrial function in cancer cells (e.g. apoptosis, autophagy, and mitochondrial membrane potential changes) as well as changes in transcriptional activation (promote or inhibit) of key genes associated with cancer progression or suppression. The benefits include a reduction or elimination of side effects common in existing cancer therapeutics. The preparation of the extract as presented herein provides for the delivery of biologically active compounds topically or as an aqueous oral dose. It has a bioactivation and bioavailability increase upon digestion associated with changes in pH. It causes a decrease in the proliferation of cancer cells and an inhibition of genes related to cancer cell growth.
  • A second use of the extract as presented herein would be an anti-inflammatory therapeutic. It provides a reduction in reactive oxygen species formation in normal cells. It reduces production of inflammatory cytokines. It also provides increased mobility with concurrent decrease in joint pain.
  • A third use is as an energy supplement. The extract provides an increase in beta-oxidation utilizing fatty acids as a substrate for generation of ATP. It provides increased energy production (e.g. mitochondrial efficiency). It also provides a decrease in glucose dependency as a metabolic substrate, while also reducing inflammation as described above.
  • A fourth use is as a weight loss supplement. The extract has been shown to increase beta-oxidation utilizing fatty acids as a substrate for generation of ATP. and a decrease in glucose dependency as a metabolic substrate. The extract has also been shown to decrease glucose dependency as a metabolic substrate. These metabolic changes are expected to cause weight loss. The extract has also been shown to provide an inhibition of some known obesity related gene expression.
  • A fifth use is for its antiviral effectiveness due to increased potential cell membrane resistance and decreased replication capabilities against clinically relevant viral strains including HIV, Influenza Virus, West Nile Virus, Adenovirus, and Polymavirus.
  • A sixth use is for its antimicrobial effectiveness due to its effectiveness against pathogenic bacterial infections including, Streptococcus sp., Staphylococcus sp., and Listeria sp.
  • A seventh use is for dermatological stem cell activity, such as for use for hair growth or other uses against skin conditions such as atopic dermatitis, psoriasis, and eczema.
  • An eighth use is for boosting the immune system. Specifically, inducing pluripotent stem cells to replace depleted populations of T-cell lymphocytes. This population replenishment has direct positive benefits in the mechanism of action and is described in [0027] and [0028].
  • IV. EXAMPLES AND RESULTS UTILIZING A PRODUCT BY PROCESS OF STATIC (BATCH) SYSTEM AND AQUEOUS EXTRACTION PROCESS 2 OR DYNAMIC (SEMI-CONTINUOUS FLOW) SYSTEM AND AQUEOUS EXTRACTION PROCESS 52
  • FIGS. 3-9 show several examples and results thereof utilizing a product produced by the processes described above. Other examples are not explicitly shown, but the results are described below. Typical treatments for cancer involve chemicals that are not only toxic to infected cells but also other surrounding cells, tissues and systems. Because of this there is a growing need and interest for utilizing natural products for treatment of a variety of human diseases and conditions. Using the herein described process, a reproducible, aqueous extract of a combination of plants has been shown to be toxic to human cultured cancer cells but does not harm healthy cells.
  • In these examples, each of the eight herbs (Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare) were milled to a powder then passed through a 0.21 mm mesh sieve to exclude any large particulates. The powders were combined and placed into a spunbond nonwoven fabric bag and sealed then placed into a vessel containing reverse-osmosis purified water utilizing the static system 2 shown in FIG. 1 and alternatively the dynamic continuous system 52 shown in FIG. 2 . After the vessel was sealed, the water was brought to a boil for 3 hours. The aqueous extract (EPE001) was split into four aliquots. Two aliquots were cooled to 80° C. before passing through either a qualitative filter (11 μm) or a 0.2 μm filter. The other two aliquots were allowed to cool to room temperature before being passed through either a qualitative filter (11 μm) or a 0.2 μm filter. A portion of each aliquot was lyophilized to dryness before being diluted with purified water to a final concentration of 3.6 mg extract residue per milliliter. Each of these samples were then utilized in analytical experimentation and bioassays to determine chemical composition and biological activity
  • FIG. 3 shows a graph wherein each of the four samples were analyzed using a Waters ACQUITY UPLC-PDA-MS system. Major components were identified by mass, then verified through comparison to a prepared standard of the isolated molecule to confirm the identity. Major components of the extract are: arctigenin, cholorgenic acid, neocholorgenic acid, isochlorogenic acid A, arctiin, quercetin 3-O-β-D glucoside, cyanarin and casticin. Other components of the extract have not yet been identified. Sample collected from the extraction process was lyophilized to dryness and resuspended to a final concentration of 3.6 mg/mL in 0.1% formic acid (pH 4.2). Chromatography was achieved using a 20 μL injection volume and a Waters ACQUITY UPLC HSS T3, 100 Å, 2.1×100 mm, column. A gradient elution was used with Mobile Phase A of 0.1% formic acid (pH 4.2) and Mobile Phase B of 80:20 acetonitrile: water. The linear chromatographic gradient started with 95% Mobile Phase A and concluded with 5% Mobile Phase A over 19.1 minutes with a flow rate of 0.4 mL/min. Chromatograms were collected monitoring the column effluent at 236 nm with a UV/Vis detector and with a Single-Quadrapole (QDa) mass spectrometer set to monitor a mass range of 50-1200 Da. Samples were: EPE001 filtered at ˜80° C. through an 11 μm qualitative filter (H3a), EPE001 filtered at ˜80° C. through a 0.2 μm filter (H3b), EPE001 cooled to room temperature before filtration through an 11 μm qualitative filter (A3a), and EPE001 cooled to room temperature before filtration through a 0.2 μm filter (A3b).
  • V. ADDITIONAL EXAMPLES
  • FIGS. 4 and 5 are treatments of human breast cancer cells treated with an exemplary product of the extraction process (EPE001). 20,000 MCF7 (human breast adenocarcinoma) cells were seeded in 48 well plates in triplicate, allowed to adhere for 24 hours before treatment commenced (Day 0). Treatment groups were each performed in triplicate and include: untreated control group (UNT), treated with EPE001 filtered at ˜80° C. through an 11 μm qualitative filter (HQ), treated with EPE001 filtered at ˜80° C. through a 0.2 μm filter (H.2), treated with EPE001 cooled to room temperature before filtration through an 11 μm qualitative filter (CQ), and treated with EPE001 cooled to room temperature before filtration through a 0.2 μm filter (C.2). Cells were photographed and counted every 24 hours for 5 days. Images at Day 5 are represented in FIG. 5 .
  • FIG. 4 shows the results in the form of a bar graph of applying each of the four filtered versions of EPE001 to MCF7 cells which are cultured human breast cancer cells. Control group samples that received no treatment (UNT) rose from 20,000 cells at day 0 to nearly 300,000 cells by the end of day 5. All applications of the example extract have a statistically significant (ANOVA p-value <0.05) impact on the growth of the cancer cells. By day 5, EPE001 filtered with the qualitative (11 μM) filter at 80° C. had the greatest cytotoxic effect, decreasing the original cell count by 28-fold in comparison to a 14× increase in cell count for the control group. Extract treated cancer cells not only showed strong cytotoxic effects, but also displayed an effect on the morphology of the cells as shown in FIG. 5 . Treated cancer cells show changes in cell membrane permeability, diameter, volume and shape (rounder) as well as becoming less adherent to the microplate surface—suggesting multiple mechanisms of action resulting in cytotoxicity. Arrows indicate condensed cytoplasmic constituents, loss of membrane integrity and cell-cell as well as cell-substrate adhesion. When comparing the UNT cells to EPE001 treated samples, it is evident that there is significant cell loss. Furthermore, where the UNT cells look smooth and very confluent, cytoplasmic extension, stress and cell death features such as vacuolization and membrane blebbing.
  • Similarly, FIG. 6 and FIG. 7 are treatments of healthy human epithelial cells with an exemplary product of the extraction process (EPE001). 20,000 MCF10A (normal, human mammary epithelial) cells were seeded in 48 well plates in triplicate, allowed to adhere for 24 hours before treatment commenced (Day 0). Treatment groups were each performed in triplicate and include: untreated control group (UNT), treated with EPE001 filtered at ˜80° C. through an 11 μm qualitative filter (HQ), treated with EPE001 filtered at ˜80° C. through a 0.2 μm filter (H.2), treated with EPE001 cooled to room temperature before filtration through an 11 μm qualitative filter (CQ), and treated with EPE001 cooled to room temperature before filtration through a 0.2 μm filter (C.2). Cells were photographed and counted every 24 hours for 5 days Images at Day 5 are represented in FIG. 7 .
  • FIG. 6 shows the results in the form of a bar graph of applying each of the four filtered versions of EPE001 were applied to MCF10A cells which are cultured human normal epithelial breast cells. Control group samples that received no treatment rose from 20,000 cells at Day 0 to ˜40,000 cells by the end of day 5. It should be noted that normal mammary epithelial cells grow more slowly and are constrained by area and cell-cell interactions whereas cancer cells grow much faster and are not constrained either by confluence or cell-cell boundaries. EPE001 filtered with the 0.2 μm filter at 80° C. did not have a statistically significant change in cell count by the end of day 5 (ANOVA p-value >0.05, meaning there is no statistical significance in the comparison).
  • Cells treated with the 0.2 μm filtered EPE001 did not show morphological differences, as shown in FIG. 7 , from untreated cells. Cells treated with the qualitative filter (11 μM) EPE001 did show slight morphological differences with some cytotoxicity. Additionally, cells treated with EPE001 became more adherent to the walls of the microplate, which may account for some of the cell count differences between treated cells and the untreated control samples. Given that epithelial cells serve as barriers for the body, this adherent property was considered beneficial
  • FIG. 8 shows the results in the form of a bar graph of applying each of the four filtered versions of EPE001 were applied to HFF1 cells which are cultured human normal foreskin fibroblast cells. Control group samples that received no treatment proliferated from 20,000 cells at day 0 to ˜45,000 cells by the end of day 5. It should be noted that normal fibroblast cells grow more slowly and are constrained by area and cell-cell interactions whereas cancer cells grow much faster and are not constrained either by confluence or cell-cell boundaries. EPE001 filtered with the 0.2 μm filter at 80° C. did not have a statistically significant change in cell count by the end of day 5 (ANOVA p-value >0.05, meaning there is no statistical significance in the comparison).
  • Cells treated with EPE001 filtered with the 0.2 μm filter at 80° C. did not show morphological differences in comparison to the untreated control group as shown in FIG. 9 . However, the other filtration versions of EPE001 showed loss of cells, increased cell size and more strongly delineated boundaries. As with the epithelial cells, fibroblast cells treated with EPE001 became more adherent to the walls of the microplate, which may account for some of the cell count differences between treated cells and the untreated control samples. In this case, stronger adherence is positive attribute, especially since fibroblast cells comprise the structural framework of connective tissues and play key roles in wound healing.
  • VI. RNA-SEQ ANALYSIS OF CHANGES IN GENE REGULATION DUE TO EXTRACT
  • RNA-Seq analysis or Whole Transcriptome Shotgun Sequencing (WTSS) uses a Next-Generation Sequencing (NGS) method to catalog and count the number of RNA transcripts produced in a selected cell culture. This technique can be used as a comparative tool to determine which genes are activated or suppressed and to what degree in different environments—in this example, with and without the presence of the Extract Product. Data collected from RNA-Seq analysis is analyzed utilizing a web-based software application, Ingenuity Pathway Analysis (IPA), produced by QIAGEN Bioinformatics.
  • FIG. 10 is a summary of gene expression changes in the presence of an exemplary product of the extraction process (EPE001) using RNA-Seq analysis. MCF7 (human breast adenocarcinoma) cells were seeded at 1×10{circumflex over ( )}6 cells in T25 flasks and incubated at 37° C., 5% C02 for 24 hours. Cells were allowed to adhere for 24 hours before treatment commenced. Cells were treated with medium only (reference sample) or treated with EPE001 and allowed to incubate for 24 hours. Cells were harvested and RNA was isolated using a Qiagen RNeasy Mini Kit as per manufacturer instruction. RNA transcriptome was sequenced using an Illumina MiSeq system. FASTQ files were generated by the Illumina CASAVA v1.8.2 and the quality of reads was evaluated by NGSQC Toolkit v2.3. High-quality reads were mapped, annotated to exons, and normalized to FPKM values for all 25,278 human RNA references in NCBI RefSeq database. Differential gene expression analysis was determined using DNAstar software. Biological pathway analyses were carried out using Ingenuity Pathway Analysis (Qiagen).
  • For this example, untreated MCF7 breast cancer cells were used as a control. The differences between this control and the MCF7 breast cancer cells treated with EPE001 (filtered at 80° C. with a 0.2 μm filter) using RNA-Seq analysis. FIG. 10 above represents the IPA software output of genes upregulated (increase in the physical number of RNA transcripts produced for a particular gene) or downregulated (decrease in the physical number of RNA transcripts produced for a particular gene) in the presence of the Extract Product.
  • The gene, HGF (hepatocyte growth factor), is involved in cell growth and has higher expression in cancer cells. This gene is downregulated in the presence of EPE001.
  • The gene, VEGF (vascular endothelial growth factor), has been implicated in promoting blood supply to cancer cells and the metastatic cascade. This gene is downregulated in the presence of EPE001.
  • The gene, HSPG2 (heparan sulfate proteoglycan 2), is involved in angiogenesis, β-amyloid binding, abnormal morphology and cell proliferation. This gene is also downregulated in the presence of EPE001.
  • The gene, TP53 (tumor protein 53), is a well-studied tumor suppressor gene that is involved in regulation of cell death and prevention of proliferation. This gene is upregulated in the presence of EPE001.
  • The gene, NUPR1 (nuclear protein 1), regulates cell death and signals TP53, which is a tumor suppressor gene. This gene is upregulated in the presence of EPE001.
  • In summary, important upstream regulator genes associated with cancer proliferation are downregulated in the presence of the Extract Product. Important upstream master tumor suppressor genes are upregulated in the presence of EPE001. The RNA-Seq analysis coincides with the physical results seen in FIGS. 4 and 5 .
  • FIG. 11 is a summary of diseases and associated networks that are affected as a result in upregulation or downregulation of the summary from the RNA-Seq analysis. This output represents the top scoring diseases and networks as determined by the Ingenuity Pathway Analysis (Qiagen) software package.
  • Additionally, treatment of cancer cells with EPE001 resulted in over 2000 molecules that were upregulated or downregulated, many of which are involved in tumor suppression and inhibition of cell growth. Outside of cancer related networks, EPE001 also had an effect on genes associated with DNA replication, recombination and repair, embryonic development, nervous system development and function. These results would suggest an increase in stimulation of healing, stem cell activity, as well as stimulation of hair growth.
  • There was also an upregulation in genes associated with lipid metabolism which would suggest EPE001 would increase lipid metabolism. This has negative effects on cancer cells because they rely on carbohydrate metabolism for proliferation. This phenomenon also suggests that energy output would increase in healthy cells when using lipid substrates rather than carbohydrates because the process of β-oxidation yields ˜4× as much energy as aerobic respiration (glucose-dependent).
  • It is to be understood that while certain embodiments and/or aspects of the invention have been shown and described, the invention is not limited therein and encompasses various other embodiments and aspects.

Claims (8)

Having thus described the invention, what is claimed as new and desired to be secured by Letters Patent is:
1. A method of producing an aqueous extract for treatments, the method comprising the steps:
a) placing a dry mixture within a fibrous container, said dry mixture consisting of: Cinnamomum cassia, Arctium lappa, Vitex agnus castus, Lonicera japonica, Acanthopanax gracilistylis, Raphanus sativus, Astragalus membranaceus and Hordeum vulgare;
b) placing said fibrous container within an extraction vessel;
c) filling said extraction vessel with a volume of water;
c) heating said volume of water with a heating element about said extraction vessel such that draw volatiles, water vapor, and an extraction mixture are generated from said dry mixture within said volume of water;
e) removing said water vapor with a condensing unit connected to said extraction vessel; and
f) filtering said extraction mixture out of said extraction vessel.
2. The method of claim 1, further comprising the step:
mixing 220 mg of Cinnamomum cassia, 110 mg Arctium lappa, 220 mg Vitex agnus castus, 110 mg Lonicera japonica, 110 mg Acanthopanax gracilistylis, 110 mg Raphanus sativus, 110 mg Astragalus membranaceus and 220 mg Hordeum vulgare for each liter of said volume of water to create said dry mixture.
3. The method of claim 2, further comprising the step of treating human breast cancer cells with said extraction mixture.
4. The method of claim 2, further comprising the step of treating human epithelial cells with said extraction mixture.
5. The method of claim 2, further comprising the step of treating human fibroblast cells with said extraction mixture.
6. The method of claim 2, further comprising the step treating a condition selected from a list consisting of cancer; inflammation; fatigue; obesity; viral infections; microbial infections; hair loss; stimulation of dermatological stem cell activity for skin conditions; and boosting the immune system, comprising administering an effective amount of the composition produced through the method of claim 1.
7. The method of claim 6, wherein said treatment is presented in a form selected from a list consisting of: topical; ingestible; and intravenously.
8. A method of treating a condition selected from a list consisting of: wounds, scarring, burns, itching, rashes or irritations, and cosmetic purposes, comprising administering an effective amount of the composition of claim 1.
US18/115,927 2018-10-02 2023-03-01 Aqueous extraction process of plants, method thereof, and product by process Pending US20230201294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/115,927 US20230201294A1 (en) 2018-10-02 2023-03-01 Aqueous extraction process of plants, method thereof, and product by process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862740047P 2018-10-02 2018-10-02
US16/590,807 US11622987B2 (en) 2018-10-02 2019-10-02 Aqueous extraction process of plants, method thereof, and product by process
US18/115,927 US20230201294A1 (en) 2018-10-02 2023-03-01 Aqueous extraction process of plants, method thereof, and product by process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/590,807 Continuation US11622987B2 (en) 2018-10-02 2019-10-02 Aqueous extraction process of plants, method thereof, and product by process

Publications (1)

Publication Number Publication Date
US20230201294A1 true US20230201294A1 (en) 2023-06-29

Family

ID=69946990

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/590,807 Active US11622987B2 (en) 2018-10-02 2019-10-02 Aqueous extraction process of plants, method thereof, and product by process
US18/115,927 Pending US20230201294A1 (en) 2018-10-02 2023-03-01 Aqueous extraction process of plants, method thereof, and product by process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/590,807 Active US11622987B2 (en) 2018-10-02 2019-10-02 Aqueous extraction process of plants, method thereof, and product by process

Country Status (1)

Country Link
US (2) US11622987B2 (en)

Also Published As

Publication number Publication date
US20200101126A1 (en) 2020-04-02
US11622987B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
Xu et al. Cordyceps cicadae polysaccharides inhibit human cervical cancer hela cells proliferation via apoptosis and cell cycle arrest
CN103768534A (en) Traditional Chinese medicinal composition with anti-tumor activity
Kim et al. Panax notoginseng inhibits tumor growth through activating macrophage to M1 polarization
WO2023065860A1 (en) Method for extracting phenolic glycosides from lamiophlomis rotata and use of phenolic glycosides in preparation of drugs for preventing and treating hepatic fibrosis or in health care products
CN103751279A (en) Preparation method of anti-bacteria schisandra chinensis extractive
Welch et al. Investigation of Moringa oleifera leaf extract and its cancer-selective antiproliferative properties
CN104472363B (en) Promote rosmarinic acid and the revulsion of salvianolic acid B accumulation in Hairy Root Cultures of Salvia miltiorrhiza
US20230201294A1 (en) Aqueous extraction process of plants, method thereof, and product by process
Han et al. In vitro anti-tumor activity in SGC-7901 human gastric cancer cells treated with dandelion extract
Afolayan et al. Ultrastructure and elemental analysis of Hypoxis hemerocallidea: a multipurpose medicinal plant
Yang et al. Nephroprotective effects of Isaria felina in rats with adenine-induced chronic renal failure
CN1126539C (en) Application of tanshinone in preparing medicine for treating tumor
CN102100737A (en) Medicinal composition containing general ginsenoside and total salvianolic acid and preparation method thereof
TWI555529B (en) A use of an herbal extract for manufacturing drugs against liver cancer
CN103330781A (en) Traditional Chinese medicine composite with anti-tumor effect and preparation method of injection of same
Larypoor Investigation of HER-3 gene expression under the influence of carbohydrate biopolymers extract of shiitake and reishi in MCF-7 cell line
CN108969580B (en) Preparation method and application of blue cloth total tannin
Lee et al. Anti-cancer Activities of Ginseng Extract Fermented with Phettinus linteus
CN101953857A (en) Compound fermented cordyceps sinensis bacterium powder (paecilomyces hepiali Cs-4 bacterium powder) composite medicine
CN102119956A (en) Application of lignum dalbergiae odoriferae oil in preparing medicament for resisting human pathogenic bacteria and lignum dalbergiae odoriferae perfume
CN100518802C (en) Extraction of effective parts for Danshen root and rhizoma chuanxiong
Kang et al. Porphyra tenera extracts have immune stimulation activity via increasing cytokines in mouse primary splenocytes and RAW264. 7 macrophages
US20230201296A1 (en) Topical cream-based cosmetic and wound healing formulations and methods of use
US20200197475A1 (en) Topical cream-based cosmetic and wound healing formulations and methods of use
CN109820879A (en) Antrodia camphorata extract, the preparation method of Antrodia camphorata composition and medical composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: EIR PHARMACEUTICALS, LLC, KANSAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUNCAN, WILLIAM P;GOLLAHON, LAUREN S;PUTNAM, WILLIAM C;SIGNING DATES FROM 20191003 TO 20191015;REEL/FRAME:062842/0284

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED