US20230179279A1 - Improved transmission configuration indicator state for channel state information report in full-duplex systems - Google Patents

Improved transmission configuration indicator state for channel state information report in full-duplex systems Download PDF

Info

Publication number
US20230179279A1
US20230179279A1 US17/996,993 US202017996993A US2023179279A1 US 20230179279 A1 US20230179279 A1 US 20230179279A1 US 202017996993 A US202017996993 A US 202017996993A US 2023179279 A1 US2023179279 A1 US 2023179279A1
Authority
US
United States
Prior art keywords
reference signal
csi
computer
resource
downlink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/996,993
Other languages
English (en)
Inventor
Min Huang
Yu Zhang
Chao Wei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEI, CHAO, ZHANG, YU, HUANG, MIN
Publication of US20230179279A1 publication Critical patent/US20230179279A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to improved transmission configuration indicator (TCI) states for channel state information (CSI) reporting in full-duplex systems.
  • TCI transmission configuration indicator
  • CSI channel state information
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • UTRAN Universal Terrestrial Radio Access Network
  • the UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS), a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP).
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs).
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless communication includes receiving, at a user equipment (UE), a channel state information (CSI) report configuration message including at least a transmission configuration indicator (TCI) state and a quasi-colocation (QCL) type indicator, wherein the TCI state includes identification of at least a downlink reference signal resource and an uplink reference signal resource and the QCL type indicator indicates a spatial relationship between the downlink reference signal resource and the uplink reference signal resource, determining, by the UE, a receive beam for receipt of a downlink reference signal via the downlink reference signal resource, wherein the receive beam is determined based on the QCL type indicator, determining, by the UE, CSI based on the receipt of the downlink reference signal using the receive beam and an interference measurement of the uplink reference signal resource, and transmitting, by the UE, a CSI report including the CSI to a serving base station.
  • CSI channel state information
  • QCL quasi-colocation
  • an apparatus configured for wireless communication includes means for receiving, at a UE, a CSI report configuration message including at least a TCI state and a QCL type indicator, wherein the TCI state includes identification of at least a downlink reference signal resource and an uplink reference signal resource and the QCL type indicator indicates a spatial relationship between the downlink reference signal resource and the uplink reference signal resource, means for determining, by the UE, a receive beam for receipt of a downlink reference signal via the downlink reference signal resource, wherein the receive beam is determined based on the QCL type indicator, means for determining, by the UE, CSI based on the receipt of the downlink reference signal using the receive beam and an interference measurement of the uplink reference signal resource, and means for transmitting, by the UE, a CSI report including the CSI to a serving base station.
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to receive, at a UE, a CSI report configuration message including at least a TCI state and a QCL type indicator, wherein the TCI state includes identification of at least a downlink reference signal resource and an uplink reference signal resource and the QCL type indicator indicates a spatial relationship between the downlink reference signal resource and the uplink reference signal resource, code to determine, by the UE, a receive beam for receipt of a downlink reference signal via the downlink reference signal resource, wherein the receive beam is determined based on the QCL type indicator, code to determine, by the UE, CSI based on the receipt of the downlink reference signal using the receive beam and an interference measurement of the uplink reference signal resource, and code to transmit, by the UE, a CSI report including the CSI to a serving base station.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to receive, at a UE, a CSI report configuration message including at least a TCI state and a QCL type indicator, wherein the TCI state includes identification of at least a downlink reference signal resource and an uplink reference signal resource and the QCL type indicator indicates a spatial relationship between the downlink reference signal resource and the uplink reference signal resource, to determine, by the UE, a receive beam for receipt of a downlink reference signal via the downlink reference signal resource, wherein the receive beam is determined based on the QCL type indicator, to determine, by the UE, CSI based on the receipt of the downlink reference signal using the receive beam and an interference measurement of the uplink reference signal resource, and to transmit, by the UE, a CSI report including the CSI to a serving base station.
  • FIG. 1 is a block diagram illustrating details of a wireless communication system.
  • FIG. 2 is a block diagram illustrating a design of a base station and a UE configured according to one aspect of the present disclosure.
  • FIGS. 3 A- 3 C are block diagrams illustrating a typical portion of a wireless communication network configured using a legacy full-duplex operations.
  • FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure.
  • FIG. 5 is a call flow diagram between a base station and a downlink UE and an uplink UE operating with full-duplex according to one aspect of the present disclosure.
  • FIG. 6 is a block diagram illustrating a portion of a wireless communication network implementing for full-duplex capabilities according to one aspect of the present disclosure.
  • FIG. 7 is a block diagram illustrating a UE configured according to one aspect of the present disclosure.
  • wireless communications networks This disclosure relates generally to providing or participating in authorized shared access between two or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP), and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2).
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ), ultra-low complexity (e.g., ⁇ 10 s of bits/sec), ultra-low energy (e.g., ⁇ 10+ years of battery life), and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999% reliability), ultra-low latency (e.g., ⁇ 1 ms), and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ), extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates), and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • ultra-high density e.g., ⁇ 1M nodes/
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI); having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD)/frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO), robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI numerology and transmission time interval
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500 MHz bandwidth.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • FIG. 1 is a block diagram illustrating an example of a wireless communications system 100 that supports an improved TCI state that identifies both downlink and uplink reference signal resources and a new QCL type that defines a spatial relationship between the two in accordance with aspects of the present disclosure.
  • the new TCI state and QCL type allows a UE to determine a receive beam that accounts for both a downlink reference signal resource identifying the data transmission and an uplink reference signal resource identifying the interfering transmission.
  • the UE may select a receive beam that represents a highest signal-to-interference plus noise ratio (SINR) of the candidate beams considering the interference.
  • SINR signal-to-interference plus noise ratio
  • the wireless communications system 100 includes base stations 105 , UEs 115 , and a core network 130 .
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or NR network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR NR network.
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB), a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB), a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations).
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125 , and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105 , or downlink transmissions from a base station 105 to a UE 115 . Downlink transmissions may also be referred to as forward link transmissions while uplink transmissions may also be referred to as reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110 , and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and, therefore, provide communication coverage for a moving geographic coverage area 110 .
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105 .
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110 .
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier), and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID), a virtual cell identifier (VCID)) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC), narrowband Internet-of-things (NB-IoT), enhanced mobile broadband (eMBB), or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100 , and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone (UE 115 a ), a personal digital assistant (PDA), a wearable device (UE 115 d ), a tablet computer, a laptop computer (UE 115 g ), or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet-of-things (IoT) device, an Internet-of-everything (IoE) device, an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles (UE 115 e and UE 115 f ), meters (UE 115 b and UE 115 c ), or the like.
  • WLL wireless local loop
  • IoT Internet-of-things
  • IoE Internet-of-everything
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via machine-to-machine (M2M) communication).
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously). In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications). In other cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions), and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol).
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105 .
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 , or be otherwise unable to receive transmissions from a base station 105 .
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1:M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 may facilitate the scheduling of resources for D2D communications.
  • D2D communications may be carried out between UEs 115 without the involvement of a base station 105 .
  • Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface). Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105 ) or indirectly (e.g., via core network 130 ).
  • backhaul links 132 e.g., via an S1, N2, N3, or other interface
  • backhaul links 134 e.g., via an X2, Xn, or other interface
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC), which may include at least one mobility management entity (MME), at least one serving gateway (S-GW), and at least one packet data network (PDN) gateway (P-GW).
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet(s), an IP multimedia subsystem (IMS), or a packet-switched (PS) streaming service.
  • IMS IP multimedia subsystem
  • PS packet-switched
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC).
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP).
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105 ).
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz).
  • MHz megahertz
  • GHz gigahertz
  • UHF ultra-high frequency
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz), also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105 , and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115 .
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • Wireless communications system 100 may include operations by different network operating entities (e.g., network operators), in which each network operator may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • wireless communications system 100 may use both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ license assisted access (LAA), LTE-unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band (NR-U), such as the 5 GHz ISM band.
  • LAA license assisted access
  • LTE-U LTE-unlicensed
  • NR-U unlicensed band
  • UE 115 and base station 105 of the wireless communications system 100 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum.
  • UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen before talk
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions on the shared channel. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter.
  • RSSI received signal strength indicator
  • a CCA also may include message detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • a first category no LBT or CCA is applied to detect occupancy of the shared channel.
  • a second category which may also be referred to as an abbreviated LBT, a single-shot LBT, or a 25- ⁇ s LBT, provides for the node to perform a CCA to detect energy above a predetermined threshold or detect a message or preamble occupying the shared channel.
  • the CAT 2 LBT performs the CCA without using a random back-off operation, which results in its abbreviated length, relative to the next categories.
  • a third category performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the node may proceed to transmit. However, if the first CCA detects a signal occupying the shared channel, the node selects a random back-off based on the fixed contention window size and performs an extended CCA. If the shared channel is detected to be idle during the extended CCA and the random number has been decremented to 0, then the node may begin transmission on the shared channel.
  • CAT 3 LBT performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the no
  • the node decrements the random number and performs another extended CCA.
  • the node would continue performing extended CCA until the random number reaches 0. If the random number reaches 0 without any of the extended CCAs detecting channel occupancy, the node may then transmit on the shared channel. If at any of the extended CCA, the node detects channel occupancy, the node may re-select a new random back-off based on the fixed contention window size to begin the countdown again.
  • a fourth category (CAT 4 LBT), which may also be referred to as a full LBT procedure, performs the CCA with energy or message detection using a random back-off and variable contention window size.
  • the sequence of CCA detection proceeds similarly to the process of the CAT 3 LBT, except that the contention window size is variable for the CAT 4 LBT procedure.
  • base stations 105 and UEs 115 may be operated by the same or different network operating entities. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 115 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA).
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD), time division duplexing (TDD), or a combination of both.
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105 ) and a receiving device (e.g., a UE 115 ), where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115 ) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation).
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115 .
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115 ).
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115 ), or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device).
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105 , such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal).
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions).
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115 .
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125 .
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC)), forward error correction (FEC), and retransmission (e.g., automatic repeat request (ARQ)).
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions).
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot, while in other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period). Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100 , and may be referred to as a transmission time interval (TTI).
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs).
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105 .
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125 .
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN)), and may be positioned according to a channel raster for discovery by UEs 115 .
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode), or be configured to carry downlink and uplink communications (e.g., in a TDD mode).
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM)).
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR). For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc.) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces).
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100 .
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz).
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type).
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme). Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115 .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers), and the use of multiple spatial layers may further increase the data rate for communications with a UE 115 .
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs).
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link).
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum, such as NR-shared spectrum (NR-SS)).
  • NR-SS NR-shared spectrum
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power).
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105 , utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc.) at reduced symbol durations (e.g., 16.67 microseconds).
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115 , which may be one of the base station and one of the UEs in FIG. 1 .
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240 .
  • the control information may be for the PBCH, PCFICH, PHICH, PDCCH, EPDCCH, MPDCCH etc.
  • the data may be for the PDSCH, etc.
  • the transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232 a through 232 t .
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232 a through 232 t may be transmitted via the antennas 234 a through 234 t , respectively.
  • the antennas 252 a through 252 r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254 a through 254 r , respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc.) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254 a through 254 r , perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260 , and provide decoded control information to a controller/processor 280 .
  • a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the controller/processor 280 .
  • the transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254 a through 254 r (e.g., for SC-FDM, etc.), and transmitted to the base station 105 .
  • the uplink signals from the UE 115 may be received by the antennas 234 , processed by the demodulators 232 , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115 .
  • the processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240 .
  • the controllers/processors 240 and 280 may direct the operation at the base station 105 and the UE 115 , respectively.
  • the controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein.
  • the controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIG. 4 , and/or other processes for the techniques described herein.
  • the memories 242 and 282 may store data and program codes for the base station 105 and the UE 115 , respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Wireless full duplex (FD) communications technology is an emerging technique and may be capable of increasing the link capacity.
  • the main idea behind wireless full-duplex is to enable radio network nodes to transmit and receive simultaneously via the same time-frequency resource or the same time resource.
  • a full-duplex network node such as a base station in the cellular network, can communicate simultaneously in uplink and downlink with other half-duplex terminals using the same radio resources.
  • Another typical wireless full-duplex application scenario includes a relay node (e.g.
  • an integrated access and backhaul (IAB) node can communicate simultaneously with the anchor node and the mobile terminal in a one-hop scenario, or with the other two relay nodes in a multi-hop scenario. It is expected that, by increasing the capacity of each single-link, full duplexing can significantly increase the overall system throughput in various different applications in wireless communication networks and also reduce the transfer latency for time critical services.
  • One element to enabling full-duplex transmissions is the capability of canceling strong self-interference from downlink-to-uplink.
  • Current full-duplex radio designs have the capability to suppress such self-interference by combining the technologies of beamforming, analog cancellation, digital cancellation and antenna cancellation.
  • FIG. 3 A is a block diagram illustrating a typical portion of a wireless communication network 30 configured using a legacy full-duplex configuration.
  • a full-duplex network node such as base station 105 in wireless communication network 30 , can communicate simultaneously in uplink and downlink with two user equipment (UE), UE 115 a and UE 115 h , using the same radio resources.
  • UE user equipment
  • the legacy full-duplex capabilities the downlink data signals received by UE 115 a and the uplink data signals transmitted by UE 115 h can coexist at the same radio spectrum simultaneously in a cell, such as the portion of wireless communication network 30 illustrated in FIG. 3 A .
  • the uplink data signals from UE 115 h would generate UE-to-UE interference for UE 115 a attempting to receive the downlink data signals from base station 105 .
  • FIGS. 3 B and 3 C are block diagrams illustrating portions of wireless communications networks 31 and 32 including relay node 105 b and base station 105 wherein at least base station 105 and relay node 105 may operate with full-duplex capabilities.
  • Wireless communication networks 31 and 32 illustrate systems of IAB nodes having full-duplex capabilities.
  • One IAB node, relay node 105 b relays data between UE 115 a and base station 105 , which may be referred to as the IAB donor node.
  • Wireless network 31 illustrates downlink data transmitted from base station 105 (IAB donor node) to relay node 105 b , via transmission 300 , and from relay node 105 b to UE 115 a , via transmission 301
  • wireless communication network 32 illustrates uplink data transmitted from UE 115 to relay node 105 b , via transmission 303 , and from relay node 105 b to base station 105 (IAB donor node), via transmission 304 .
  • the IAB node, relay node 105 b can receive the downlink data from the IAB donor, base station 105 , via transmission 300 , and transmit the downlink data via transmission 301 to UE 115 a , as depicted in wireless communication network 31 , or the IAB node, relay node 105 b , can receive uplink data via transmission 303 from UE 115 a and transmit the uplink data to IAB donor, base station 105 , via transmission 304 by using the same time-frequency radio resource in wireless communication network 32 .
  • the Uu interface such as, between UE 115 and the radio access network (RAN) at the IAB node, relay node 105 b , would experience interference from the originating transmissions. For example, transmission of the downlink data at transmission 300 on the backhaul link would cause interference 302 on the access link of transmission 301 between relay node 105 b and UE 115 a . Similarly, transmission of the uplink data at transmission 303 to relay node 105 b on the access link would cause interference 305 on the backhaul link of transmission 304 between relay node 105 b and base station 105 , the IAB donor. Such interference (e.g., interference 302 and 305 ) would cause data reception performance deterioration within wireless communication networks 31 and 32 .
  • interference 302 and 305 would cause data reception performance deterioration within wireless communication networks 31 and 32 .
  • UE 115 a can be configured as another IAB node.
  • the backhaul link between the IAB donor, base station 105 , and the IAB node, relay node 105 b may be referred to as the parent link
  • the access link between that IAB node, relay node 105 b , and the other IAB node, UE 115 a may be referred to as the child link.
  • the parent link (between base station 105 and relay node 105 b ) and the child link (between relay node 105 b and UE 115 a ) may interfere each other (e.g., interference 302 and 305 ).
  • wireless communication network 30 also represents a cell that has activated full-duplex capabilities.
  • the downlink UE, UE 115 a may suffer from co-channel interference from the paired uplink UE, UE 115 h (e.g., UE-to-UE interference).
  • the interference strength may depend on the distance between these two UEs and also may depend on the uplink transmission beamforming by the uplink UE, UE 115 h . If the downlink UE, UE 115 a , has more than one receive antenna and performs coherent antenna reception, the interference strength also may depend on the receive beamforming and the spatial direction of the interference signal.
  • NR Rel-16 introduced a feature called Cross-Link Interference (CLI) handling that provides for a UE in one cell to measure the interference from the UEs in other cells.
  • CLI Cross-Link Interference
  • the CLI technique includes the network configuring a set of sounding reference signal (SRS) resources for both the victim UE and the aggressor UE. Within these SRS resources, the victim UE would be configured to measure the strength of the SRS signal transmitted by the aggressor UEs in neighboring cells.
  • SRS sounding reference signal
  • the victim UE can report the Layer-3 measurement results, such as the values of SRS-reference signal receive power (RSRP) or CLI-received signal strength indicator (RSSI), which are calculated based on the results of long-term measurements (e.g., in a duration that may be in the tens or even hundreds of slots).
  • RSRP SRS-reference signal receive power
  • RSSI CLI-received signal strength indicator
  • the information on SRS configuration should be transferred via the backhaul between the base stations of the victim cell and the aggressor cell. Again, considering the restrictions of backhaul transfer latency, such information transfer would likely adopt either a static or semi-static mode.
  • the SRS measurements could be configured in a static or semi-static pattern. Therefore, the legacy CLI techniques would be used for long-term interference management, such as by allocating non-overlapping radio resources for the aggressor UE and victim UE, which may suffer system capacity compared with radio resource reuse.
  • a UE can be configured with a number of transmission configuration indicator (TCI) state configurations that may be used to decode downlink transmissions (e.g., PDSCH, etc.).
  • TCI transmission configuration indicator
  • Each TCI state contains parameters for configuring a quasi-colocation (QCL) assumption between one or two downlink reference signals and the DMRS ports of the downlink data transmission, the DMRS port of the downlink control transmission, or the CSI-RS port(s) of a CSI-RS resource.
  • the downlink reference signals can be configured as a synchronization signal block (SSB) or a CSI-RS.
  • the QCL assumption is configured by a first higher layer parameter (e.g., RRC signaling) for the first downlink reference signal and a second higher layer parameter (e.g., RRC signaling) for the second downlink reference signal, if configured.
  • the current QCL types corresponding to each downlink reference signal are given via a QCL indicator in a higher layer parameter and may take one of the following values: QCL-TypeA (Doppler shift, Doppler spread, average delay, delay spread); QCL-TypeB (Doppler shift, Doppler spread); QCL-TypeC (Doppler shift, average delay); QCL-TypeD (Spatial Rx parameter).
  • a base station when a base station sends a CSI report configuration message to a UE, it may indicate a TCI state associated with the configured CSI-RS resource(s).
  • a TCI state parameter is configured for the non-zero-power CSI-RS (NZP-CSI-RS) resource in Layer-3 signaling (e.g., RRC signaling).
  • NZP-CSI-RS non-zero-power CSI-RS
  • a list of trigger states may also be configured for the NZP-CSI-RS resource in Layer-3 signaling. Each such trigger state has an associated TCI state parameter.
  • the base station can then indicate one of the trigger states to the UE in a downlink control information (DCI) (e.g., DCI format 0-1, 0-2, etc.).
  • DCI downlink control information
  • the UE may then receive the aperiodic CSI-RS based on its associated TCI state parameter, e.g., using a receive beam indicated by the QCL assumption associated with the TCI state therein, if the QCL type is QCL-Type D.
  • DCI signaling is a dynamic control signal and has a much shorter transmission and processing latency than Layer-3 signaling
  • the base station can configure the UE with multiple aperiodic CSI reports to measure CSI-RS with different TCI state parameters. This procedure may correspond to the scenarios where the UE is requested to report CSI with various signal parameters, such as where the desired signal comes from different transmission-reception points (TRPs) of the base station.
  • TRPs transmission-reception points
  • a trigger state may also contain configuration information for interference measurement, such as CSI-interference measurement (CSI-IM) information and NZP-CSI-RS for interference information.
  • CSI-IM CSI-interference measurement
  • NZP-CSI-RS NZP-CSI-RS for interference information.
  • this interference measurement information is used to indicate the resources for measurement of interference after the receive beam is determined, rather than to determine the receive beam.
  • the UE is expected to receive the downlink reference signal (e.g., SSB, CSI-RS) based on the associated TCI state. For example, when the QCL type indicated in the TCI state is QCL-Type D, the UE may use the receive beam identified by the indicated QCL assumption to receive the downlink reference signal.
  • a UE determines the beam to receive a downlink reference signal (e.g., SSB, CSI-RS), it takes the beam that is used to receive the downlink reference signal of the TCI state, as indicated in the CSI report configuration message.
  • the CSI report configuration message may be communicated to the UE via one or a combination of RRC-layer signaling, a medium access control-control element (MAC CE), and/or a DCI.
  • the receive beam is determined by the spatial direction of the data signal, regardless of any potential or existing interference.
  • the downlink UE may observe the interference from the uplink UE (e.g., the aggressor UE) in the form of UE-to-UE interference or co-channel interference.
  • the interference may further come from different directions, and, thus, with the same receive beam, the downlink UE (e.g., the victim UE) may suffer from different interference strengths.
  • the base station informs the downlink UE (e.g., victim UE) to report CSI (e.g., rank indicator (RI)/precoding matrix indicator (PMI)/channel quality indicator (CQI)) based on the legacy TCI state information
  • the UE would determine the receive beam based on the downlink reference signal in the indicated QCL information, e.g., a receive beam that can maximize the beamforming gain of that downlink reference signal, without consideration of potentially interfering signals. Because this receive beam does not take this interference into account, the downlink reference signal maybe received with a higher UE-to-UE interference strength and a low receive signal-to-interference plus noise ratio (SINR).
  • SINR receive signal-to-interference plus noise ratio
  • the various aspects of the present disclosure are directed to an improved TCI state that identifies both downlink and uplink reference signal resources, and a new QCL type that defines a spatial relationship between the two.
  • FIG. 4 is a block diagram illustrating example blocks executed to implement one aspect of the present disclosure. The example blocks will also be described with respect to UE 115 as illustrated in FIGS. 2 and 7 .
  • FIG. 7 is a block diagram illustrating UE 115 configured according to one aspect of the present disclosure.
  • UE 115 includes the structure, hardware, and components as illustrated for UE 115 of FIG. 2 .
  • UE 115 includes controller/processor 280 , which operates to execute logic or computer instructions stored in memory 282 , as well as controlling the components of UE 115 that provide the features and functionality of UE 115 .
  • Wireless radios 700 a - r includes various components and hardware, as illustrated in FIG. 2 for UE 115 , including modulator/demodulators 254 a - r , MIMO detector 256 , receive processor 258 , transmit processor 264 , and TX MIMO processor 266 .
  • a UE receives a CSI report configuration message including at least a TCI state and a QCL type indicator, wherein the TCI state includes identification of at least a downlink reference signal resource and an uplink reference signal resource and the QCL type indicator indicates a spatial relationship between the downlink reference signal resource and the uplink reference signal resource.
  • a UE such as UE 115 , receives the CSI report setting configuration message from a base station via antennas 252 a - r and wireless radios 700 a - r .
  • the CSI report setting configuration message may be signaled from the base station via one or a combination of RRC signaling, medium access control control elements (MAC CEs), and downlink control information (DCI) messages, depending on whether the CSI reporting is configured to be periodic, aperiodic, or semi-persistent.
  • the CSI report setting includes the setting configuration for the CSI reporting for UE 115 .
  • the CSI report setting configuration configures the type of CSI report for UE 115 .
  • the type of CSI report may include configuration of the resource and type of measurement to be performed, such as a non-zero power CSI-reference signal (NZP CSI-RS) configuration for channel measurement, a NZP CSI-RS configuration for interference measurement, or a CSI-IM configuration for interference measurement.
  • the type configuration may also configured whether the CSI report is to be periodic, semi-persistent, or aperiodic.
  • This resource and report type configuration information may then be stored in memory 282 at CSI report setting 601
  • the CSI report configuration message also includes at least one TCI state and a QCL type indicator.
  • the TCI state may be used by UE 115 to identify the QCL assumption in QCL table 702 , stored in memory 282 .
  • UE 115 uses the TCI state ID to index the associated QCL assumption in QCL table 702 .
  • the TCI state further identifies a downlink reference signal resource and an uplink reference signal resource, while the QCL type identifies a spatial relationship between the downlink and uplink reference signal resources.
  • the UE determines a receive beam for receipt of a downlink reference signal via the downlink reference signal resource, wherein the receive beam is determined based on the QCL type indicator.
  • UE 115 under control of controller/processor 280 , executes receive beam logic 703 .
  • the functionality enabled by executing the steps and instructions of code of receive beam logic (referred to herein as the “execution environment” of receive beam logic 703 ) allow UE 115 to select a receive beam for receiving the downlink and uplink reference signals.
  • UE 115 under control of controller/processor 280 , further executes measurement logic 704 , in memory 282 .
  • the execution environment of measurement logic 704 provides UE 115 with the capability to measure various properties of signals, channels, and the like.
  • UE 115 sweeps each of the candidate receive beams to measure the respective signal power of the data channel of the downlink reference signal (e.g., SSB, CSI-RS) at the downlink reference signal resource.
  • UE 115 also sweeps the candidate receive beams to measure the respective signal power of the interference channel of the uplink reference signal (e.g., SRS, DMRS, PTRS) at the uplink reference signal resource.
  • the candidate receive beam that results in the highest SINR.
  • the UE determines CSI based on the receipt of the downlink reference signal using the receive beam and an interference measurement of the uplink reference signal resource.
  • UE 115 measures the appropriate CSI parameters (RI, PMI, CQI) for reporting to the serving base station.
  • the CSI parameters are measured on the data channel on which the downlink reference signal was received.
  • the CSI parameters may further take into account the interference observed from the interference channel of the uplink reference signal.
  • the UE transmits a CSI report including the CSI to a serving base station.
  • UE 115 under control of controller/processor 280 , executes CSI report generator 705 .
  • the execution environment of CSI report generator 705 provides UE 115 with the functionality of preparing the CSI report for the measured CSI parameters.
  • UE 115 Upon generating the CSI report, UE 115 transmits the CSI report to the serving base station via wireless radios 700 a - r and antennas 252 a - r.
  • a base station indicates the TCI state to the UE in the CSI report configuration message, where the TCI state comprises of at least a downlink reference signal resource and an uplink reference signal resource.
  • This TCI state contains a new-type QCL relationship.
  • the new QCL type, QCL Type-E (Spatial Rx parameter), defines the spatial receive beam direction should maximize the SINR, where the signal power is based on the reception of the downlink reference signal and the interference power is based on the reception of the uplink reference signal.
  • the UE would determine a receive beam based on the new-type QCL relationship in the TCI state.
  • the UE determines CSI based on receiving the CSI-RS and measuring UE-to-UE interference in full-duplex by using the determined receive beam.
  • the UE reports the determined CSI to base station.
  • FIG. 5 is a call flow diagram between base station 105 and UEs 115 a (the downlink UE) and 115 h (the uplink UE) operating with full-duplex according to one aspect of the present disclosure.
  • base station 105 transmits the CSI report configuration message to the downlink/victim UE, UE 115 a .
  • the CSI report configuration message would include the new TCI state, which is associated with the new QCL type (e.g., QCL-Type E).
  • the new TCI state configures UE 115 a to determine the receive beam based on both a downlink reference signal resource and an uplink reference signal resource.
  • the new QCL type provides the spatial QCL assumption that defines the spatial relationship between the downlink and uplink reference signal resources.
  • the CSI report configuration message may be transferred from base station 105 to UE 115 a using a combination of Layer-3 (e.g., RRC layer), MAC CE, or DCI signaling.
  • Layer-3 e.g., RRC layer
  • MAC CE e.g., MAC CE
  • DCI signaling e.g., DCI signaling.
  • the combination of different transmission mechanisms may depend on whether the CSI reporting is configured to be periodic, semi-persistent, or a periodic.
  • base station 105 configures UE 115 a for periodic or semi-persistent CSI reporting
  • base station 105 would send the CSI report configuration messaging to UE 115 a via RRC-layer signaling, wherein the new TCI state, associated with the new QCL type, is contained.
  • the QCL assumption would be associated with a periodic, semi-persistent downlink, or aperiodic reference signal resource (e.g., SSB, CSI-RS resource) and a periodic, semi-persistent, or aperiodic uplink reference signal (e.g., SRS, demodulation reference signal (DMRS), or phase tracking reference signal (PTRS) resource).
  • aperiodic reference signal resource e.g., SSB, CSI-RS resource
  • a periodic, semi-persistent, or aperiodic uplink reference signal e.g., SRS, demodulation reference signal (DMRS), or phase tracking reference signal (PTRS) resource.
  • the Layer-3 CSI reporting configuration includes configuration of multiple available triggers states (e.g., up to 128 trigger states). Each trigger state may be associated with up to a sub-set of report settings (e.g., up to 16 report settings), which are linked through a CSI report configuration identifier (ID) configuring a downlink reference signal resource set. Each downlink reference signal resource set includes multiple downlink reference signal resources. At least one TCI state may be indicated for each such downlink reference signal resource in the resource set, which may be indicated as part of the trigger state configuration. The new TCI state, which is associated with the new QCL type, also defines corresponding uplink reference signal resources for consideration of interference.
  • triggers states e.g., up to 128 trigger states.
  • Each trigger state may be associated with up to a sub-set of report settings (e.g., up to 16 report settings), which are linked through a CSI report configuration identifier (ID) configuring a downlink reference signal resource set.
  • Each downlink reference signal resource set includes multiple downlink reference signal
  • base station 105 further transmits a MAC-CE as a part of the CSI report configuration messaging.
  • the MAC-CE activates a subset of the total number of available triggers states configured in the Layer-3 messaging.
  • UE 115 a may select one of the activated trigger states based on the MAC-CE or base station 105 may further provide a selection via DCI, which selects the trigger state for UE 115 a . With this selected trigger state, UE 115 a identifies the new TCI state which configures the downlink and uplink reference signal resource where the associated new QCL type defines the spatial relationship between the two reference signals.
  • base station 105 When base station 105 configures aperiodic CSI reporting, base station 105 sends a DCI aperiodic CSI report configuration message to UE 115 a identifying the TCI state associated with the new QCL type.
  • the QCL assumption may be associated with a periodic, semi-persistent, or aperiodic downlink reference signal resource (e.g., SSB, CSI-RS resource) and an aperiodic uplink reference signal (e.g., SRS, DMRS, PTRS resource).
  • aperiodic downlink reference signal resource e.g., SSB, CSI-RS resource
  • an aperiodic uplink reference signal e.g., SRS, DMRS, PTRS resource
  • base station 105 transmits the downlink reference signal identified for the downlink reference signal resource in the CSI report configuration message.
  • the uplink reference signal identified in the new TCI state may be transmitted by another UE, such as UE 115 h .
  • UE 115 h transmits the uplink reference signal (e.g., SRS, DMRS, PTRS, etc.).
  • UE 115 a may sweep the available, candidate receive beams to measure the respective interference strength of the uplink reference signal transmitted at 502 via the identified uplink reference signal resource.
  • UE 115 a may also sweep the available, candidate receive beams to measure the respective signal power of the downlink reference signal (e.g., SSB or CSI-RS) transmitted at 501 via the identified downlink reference signal resource.
  • the downlink reference signal e.g., SSB or CSI-RS
  • UE 115 a can store the measurement results in memory for future CSI reporting.
  • the measurements stored previously for those resources to determine the CSI for reporting.
  • UE 115 a uses the measured signal powers of the downlink data and uplink interference signals in order to identify the corresponding receive beam that results in a highest SINR among the available, candidate receive beams. UE 115 a would then use that selected receive beam to receive the downlink reference signal at 501 and the uplink reference signal at 502 .
  • UE 115 a may then perform downlink channel estimation by using the receive beam for the downlink reference signal to derive the channel gain or channel matrix of the downlink reference signal resource.
  • UE 115 a may further, at 504 , perform interference channel estimation by using the receive beam for the uplink reference signal to derive the interference strength or interference matrix of the uplink reference signal resource.
  • UE 115 a may derive the interference strength or covariance matrix by using the receive beam at the time-frequency resource for the configured CSI-IM and NZP-CSI-RS for interference resources. Based on the above results, UE 115 a further calculates the SINR value and determine the CSI values at 504 (e.g., RI/PMI/CQI) for reporting to base station 105 at 505 .
  • the SINR value e.g., RI/PMI/CQI
  • UE 115 a would also determine a CSI-RS resource indicator (CRI) value to include with the CSI report to identify the particular CSI-RS resource used. UE 115 a may then report the determined CSI values to base station 105 in a CSI report at 505 .
  • CRI CSI-RS resource indicator
  • FIG. 6 is a block diagram illustrating a portion of a wireless communication network 60 implementing for full-duplex capabilities according to one aspect of the present disclosure.
  • UE 115 a receives downlink data from base station 105 via downlink transmission 600 . Over the same set of time-frequency resources, base station 105 simultaneously receives uplink data from UE 115 h via uplink transmission 601 . Uplink transmission 601 causes interference 602 to UE 115 a receiving downlink transmission 600 .
  • Base station 105 has provided CSI report configuration messaging to UE 115 a that includes identification of a new TCI state which configures at least downlink reference signal resources and uplink reference signal resources. The new TCI state is associated with the new QCL assumption that includes a spatial relationship between the downlink and uplink reference signal resources.
  • UE 115 a has four available candidate receive beams, receive beams 601 - a - 603 - d .
  • UE 115 a sweeps through each of receive beams 603 - a - 603 - d measuring the signal strength of a downlink reference signal transmitted via downlink transmission 600 and then measuring the signal strength of an uplink reference signal transmitted via uplink transmission 601 .
  • the resulting signal strength of the uplink reference signal represents the signal strength observed from interference 602 .
  • UE 115 a uses the measured signal strengths of the data channel (downlink transmission 600 ) and the interference channel (interference 602 ), UE 115 a calculates a SINR for each of receive beams 603 - a - 603 - d . Based on the calculated SINR for each candidate beam, UE 115 a may select receive beam 603 - b as the preferred receive beam. UE 115 a would then use receive beam 603 - b to receive and determine the CSI parameters (RI, PMI, CQI) to include in the CSI report. UE 115 a will then transmit CSI Report 604 to base station 105 .
  • CSI parameters RI, PMI, CQI
  • a downlink UE e.g., the victim UE
  • this receive beam can yield high SINR regarding the UE-to-UE interference caused by the described full-duplex operations. This may then improve the UE throughput and, more generally, the cell throughput of the full-duplex system.
  • the functional blocks and modules in FIG. 4 may comprise processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • a first aspect of wireless communication may include receiving, at a UE, a CSI report configuration message including at least a TCI state and a QCL type indicator, wherein the TCI state includes identification of at least a downlink reference signal resource and an uplink reference signal resource and the QCL type indicator indicates a spatial relationship between the downlink reference signal resource and the uplink reference signal resource, determining, by the UE, a receive beam for receipt of a downlink reference signal via the downlink reference signal resource, wherein the receive beam is determined based on the QCL type indicator, determining, by the UE, CSI based on the receipt of the downlink reference signal using the receive beam and an interference measurement of the uplink reference signal resource, and transmitting, by the UE, a CSI report including the CSI to a serving base
  • a second aspect based on the first aspect, wherein the receiving the CSI report configuration message includes one or more of: a RRC message; a MAC CE; and a DCI message.
  • the determining the receive beam includes measuring an interference signal power of an uplink reference signal detected on the uplink reference signal resource; measuring a data signal power of the downlink reference signal detected on the downlink reference signal resource; determining a signal quality of a plurality of candidate receive beams, wherein the signal quality is determined using the data signal power and the interference signal power; and identifying the receive beam as a selected beam of the plurality of candidate receive beams, wherein the selected beam results in a highest signal quality relative to remaining beams of the plurality of candidate receive beams.
  • the downlink reference signal includes one of: a CSI-RS; or a SSB
  • the uplink reference signal includes one of: a SRS; a DMRS; or a PTRS.
  • a fifth aspect based on the third aspect, further including: storing, at the UE, at least one of the interference signal power and the data signal power; and using, by the UE, the at least one of the stored interference signal power and the stored data signal power for subsequent CSI reporting.
  • determining the CSI includes: determining a first channel estimate using the receive beam for the downlink reference signal; deriving a data channel power using the first channel estimate; determining a second channel estimate using the receive beam for an uplink reference signal on the uplink reference signal resource; deriving an interference channel strength using the second channel estimate; and calculating the CSI based on the data channel power and the interference channel strength.
  • the CSI report configuration message further includes identification of CSI-IM resources and NZP-CSI-RS resources for aperiodic CSI reporting, and wherein the determining the second channel estimate includes determining the second channel estimate using the receive beam for the CSI-IM resources and the NZP-CSI-RS resources.
  • An eighth aspect based on the sixth aspect, further including identifying a CSI-RS resource of a plurality of CSI-RS resources on which the downlink reference signal is received, wherein the downlink reference signal resource includes configuration of a plurality of CSI-RS resources, and wherein the CSI report further includes a CRI identifying the CSI-RS resource.
  • a ninth aspect based on the first aspect, further including detecting, by the UE, an uplink reference signal from a neighboring UE, wherein the uplink reference signal is detected via the uplink reference signal resource identified in the CSI report configuration message.
  • a tenth aspect including any combination of the first aspect through the ninth aspect.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL), then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
US17/996,993 2020-05-05 2020-05-05 Improved transmission configuration indicator state for channel state information report in full-duplex systems Pending US20230179279A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088588 WO2021223059A1 (fr) 2020-05-05 2020-05-05 État d'indicateur de configuration de transmission amélioré pour un rapport d'informations d'état de canal dans des systèmes en duplex intégral

Publications (1)

Publication Number Publication Date
US20230179279A1 true US20230179279A1 (en) 2023-06-08

Family

ID=78467745

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/996,993 Pending US20230179279A1 (en) 2020-05-05 2020-05-05 Improved transmission configuration indicator state for channel state information report in full-duplex systems

Country Status (4)

Country Link
US (1) US20230179279A1 (fr)
EP (1) EP4147396A4 (fr)
CN (1) CN115485999A (fr)
WO (1) WO2021223059A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220104043A1 (en) * 2020-09-29 2022-03-31 Samsung Electronics Co., Ltd. Method and apparatus for fast beam measurement and reporting
US20220141852A1 (en) * 2020-11-04 2022-05-05 Huawei Technologies Co., Ltd. Methods and systems for channel state acquisition with self-interference in full duplex systems
US20220150945A1 (en) * 2020-11-10 2022-05-12 Qualcomm Incorporated Downlink control information for indicating a transmission configuration indication state associated with a common beam
US20220278725A1 (en) * 2019-07-11 2022-09-01 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for channel state indication on unlicensed spectrum
US20220286214A1 (en) * 2019-09-11 2022-09-08 Sony Group Corporation Electronic device, wireless communication method and computer-readable storage medium
US20220303090A1 (en) * 2020-05-15 2022-09-22 Apple Inc. Quasi Co-Located Framework for Beam Reception in a Single Frequency Network
US20230224977A1 (en) * 2022-01-13 2023-07-13 Qualcomm Incorporated Facilitating the use of random access channel occasions for full-duplex communication

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117121426A (zh) * 2021-04-07 2023-11-24 联想(新加坡)私人有限公司 针对全双工通信配置信道状态信息报告
US20230388837A1 (en) * 2022-05-27 2023-11-30 Qualcomm Incorporated Enhanced channel state feedback reporting
US20230421324A1 (en) * 2022-06-24 2023-12-28 Qualcomm Incorporated Combined reference signal configuration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9008585B2 (en) * 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
US20130258954A1 (en) * 2012-03-30 2013-10-03 Sharp Laboratories Of America, Inc. Devices for selecting a channel state information report
KR102310974B1 (ko) * 2015-07-08 2021-10-12 삼성전자주식회사 전이중 통신 시스템에서 자기 간섭 제거 방법 및 장치
CN110089044B (zh) * 2016-11-02 2024-02-23 交互数字专利控股公司 基于群组的波束管理
CN110326243B (zh) * 2017-01-05 2022-04-12 Lg电子株式会社 用于在无线通信系统中发送和接收上行链路信道的方法及其装置
EP3469725B1 (fr) * 2017-06-05 2021-04-14 Telefonaktiebolaget LM Ericsson (PUBL) Systèmes et procédés de gestion de faisceau
US11343037B2 (en) * 2018-02-16 2022-05-24 Qualcomm Incorporated Transmission configuration indication states with quasi-collocation groups

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220278725A1 (en) * 2019-07-11 2022-09-01 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for channel state indication on unlicensed spectrum
US20220286214A1 (en) * 2019-09-11 2022-09-08 Sony Group Corporation Electronic device, wireless communication method and computer-readable storage medium
US20220303090A1 (en) * 2020-05-15 2022-09-22 Apple Inc. Quasi Co-Located Framework for Beam Reception in a Single Frequency Network
US20220104043A1 (en) * 2020-09-29 2022-03-31 Samsung Electronics Co., Ltd. Method and apparatus for fast beam measurement and reporting
US11937107B2 (en) * 2020-09-29 2024-03-19 Samsung Electronics Co., Ltd. Method and apparatus for fast beam measurement and reporting
US20220141852A1 (en) * 2020-11-04 2022-05-05 Huawei Technologies Co., Ltd. Methods and systems for channel state acquisition with self-interference in full duplex systems
US20220150945A1 (en) * 2020-11-10 2022-05-12 Qualcomm Incorporated Downlink control information for indicating a transmission configuration indication state associated with a common beam
US20230224977A1 (en) * 2022-01-13 2023-07-13 Qualcomm Incorporated Facilitating the use of random access channel occasions for full-duplex communication

Also Published As

Publication number Publication date
CN115485999A (zh) 2022-12-16
EP4147396A1 (fr) 2023-03-15
EP4147396A4 (fr) 2024-02-07
WO2021223059A1 (fr) 2021-11-11

Similar Documents

Publication Publication Date Title
US20220095144A1 (en) Measurement and reporting for ue-to-ue interference
US20220060265A1 (en) Sounding reference signal transmission for ue-to-ue cross-link interference measurement
US11277213B2 (en) Cross-link interference measurement transmission schemes
US20230179279A1 (en) Improved transmission configuration indicator state for channel state information report in full-duplex systems
CN111771342B (zh) 用于针对活动波束的波束报告的方法、装置和介质
US11051276B2 (en) Spatial quasi co-location conflict handling
US20230171062A1 (en) Channel state information-reference signal resources with multiple transmission configuration indication states
US11601978B2 (en) Accessing a shared communication channel using a common clock-triggered (CCT) listen before talk (LBT) procedure
WO2021007833A1 (fr) Détermination de formation de faisceaux pour système iab avec duplex intégral
WO2021253207A1 (fr) Autorisation configurée améliorée pour transmission en liaison montante à réalité augmentée
US11722278B2 (en) Quasi-colocation indication after downlink transmission
WO2021138884A1 (fr) Conception de signalisation pour précodage de liaison montante avec puissance de transmission en liaison montante restreinte
US20220361210A1 (en) Additional details for sub-slot based type-1 hybrid automatic repeat request (harq)-acknowledgement (ack) codebook generation
US11706804B2 (en) Technology-specific listen before talk parameter adjustments for common energy detection thresholds
US11696280B2 (en) On-demand scheduling request design
US11419078B2 (en) Indication of globally synchronous communications mode
US20230268968A1 (en) Configuration of cross-carrier channel state information reporting
US20230171032A1 (en) Network coding in automatic receipt request
CN114600411A (zh) 用于增强型探通的参考信号资源关联选项
US11641672B2 (en) Adaptive energy detection threshold medium access based on deployment and traffic type
US20210076331A1 (en) Network-controlled power control on side-link communications
WO2021212502A1 (fr) Amélioration de la configuration de ressources de gestion d'interférence d'informations d'état de canal
US11849482B2 (en) Synchronization of listen before talk back-off for synchronous access in unlicensed spectrum
WO2022147810A1 (fr) Transmission répétée (re) déclenchée par ue d'un pusch msg3
WO2022147808A1 (fr) Limite de tailles dci et règle de dépôt pour équipement utilisateur à capacité réduite

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, MIN;ZHANG, YU;WEI, CHAO;SIGNING DATES FROM 20210105 TO 20210122;REEL/FRAME:061566/0615

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION