US20230173321A1 - Pivoting/tilting multifunctional collapsible fitness system and associated software - Google Patents

Pivoting/tilting multifunctional collapsible fitness system and associated software Download PDF

Info

Publication number
US20230173321A1
US20230173321A1 US17/963,781 US202217963781A US2023173321A1 US 20230173321 A1 US20230173321 A1 US 20230173321A1 US 202217963781 A US202217963781 A US 202217963781A US 2023173321 A1 US2023173321 A1 US 2023173321A1
Authority
US
United States
Prior art keywords
frame
exercises
resistance
exercise
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/963,781
Inventor
Evans A. CARR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gymeni Fitness LLC
Original Assignee
Gymeni Fitness LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gymeni Fitness LLC filed Critical Gymeni Fitness LLC
Priority to US17/963,781 priority Critical patent/US20230173321A1/en
Publication of US20230173321A1 publication Critical patent/US20230173321A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/0615User-manipulated weights pivoting about a fixed horizontal fulcrum
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/28Devices for two persons operating in opposition or in cooperation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4033Handles, pedals, bars or platforms
    • A63B21/4035Handles, pedals, bars or platforms for operation by hand
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/02Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for large-room or outdoor sporting games
    • A63B71/023Supports, e.g. poles
    • A63B2071/025Supports, e.g. poles on rollers or wheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0625Emitting sound, noise or music
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0658Position or arrangement of display
    • A63B2071/0661Position or arrangement of display arranged on the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/055Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters extension element type
    • A63B21/0552Elastic ropes or bands
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/068User-manipulated weights using user's body weight
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/072Dumb-bells, bar-bells or the like, e.g. weight discs having an integral peripheral handle
    • A63B21/075Dumb-bells, bar-bells or the like, e.g. weight discs having an integral peripheral handle with variable weights, e.g. weight systems with weight selecting means for bar-bells or dumb-bells
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2210/00Space saving
    • A63B2210/50Size reducing arrangements for stowing or transport
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/17Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/51Force
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/12Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
    • A63B23/1209Involving a bending of elbow and shoulder joints simultaneously
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/12Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
    • A63B23/1209Involving a bending of elbow and shoulder joints simultaneously
    • A63B23/1218Chinning, pull-up, i.e. concentric movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/12Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
    • A63B23/1209Involving a bending of elbow and shoulder joints simultaneously
    • A63B23/1227Dips, i.e. push-ups in a vertical position, i.e. eccentric movement, e.g. between parallel bars
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/12Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
    • A63B23/1209Involving a bending of elbow and shoulder joints simultaneously
    • A63B23/1236Push-ups in horizontal position, i.e. eccentric movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance

Definitions

  • high-resistance training equipment make it inherently expensive, bulky, and difficult to transport. This leaves high-resistance training consumers with the options to (a) pay recurring fees to attend gyms, (b) buy expensive equipment themselves to place in a steadfast location, or (c) reduce the resistance and alter the methods with and by which they train. Time and time again, however, science has proven that there is no substitute for high-resistance training in regards to strength improvement, muscle development, and the efficiency of caloric depletion.
  • a multifunctional fitness system may provide high-resistance exercises through the distribution of weight upon a frame that pivots on the ground.
  • the weight of another person and/or conventional weights can be placed on the frame at various locations to produce the desired leverage and, thus, resistance felt by the lifter.
  • the frame may also have various axes upon which it can pivot and grip points, thus offering a broad range of exercises that can be conducted. Reorienting the frame to be resting on differing sides may result in additional feasible exercises.
  • Optional integrated electronics may use kinematics and/or structural flexing to calculate felt resistance and provide automated instruction to the various users. The may also collapse into a compact, rollable configuration for easy transport.
  • an exercise system in one general aspect, includes a frame having a multitude of linked members.
  • the frame may be configured to be reoriented onto various sides thereof to provide a user with different groups of exercises for each orientation, with at least some of a first group of exercises involving the pivoting of the frame about an end.
  • the first group of exercises may also involve pivoting the frame about a second end.
  • the frame has three orientations in which exercises may be performed, each with its own group of exercises.
  • a second group of exercises may, for example, involve pivoting the frame about a different end than the first group of exercises. Additionally, at least some of the second group of exercises may involve sliding of the frame on the ground.
  • the frame may be configured to resist sliding on the ground for the first group of exercises and/or to assist sliding on the ground for at least some of the second group of exercises.
  • the frame has a bottom side, a back side, and a front side, and the orientations of the frame include upright, on its back, and on its front.
  • the frame may, for example, include a base, a vertical section, and a top section when in an upright orientation.
  • the vertical section may be hingedly attached to the base and/or hingedly attached to the top section.
  • the base may include two portions that are hinged to each other.
  • the frame may be configured to support a person such that the person acts as a weight for a number of exercises. In certain implementations, the frame may be configured to support a person at multiple locations such that the resistance felt by a user is altered.
  • the frame may also be configured to collapse along a single degree of freedom. In certain implementations, the frame may collapse to less than one-half of its expand volume, and in some implementations, the frame may collapse to less than one-third of its expanded volume.
  • the system may also include a mechanical overload indicator coupled to the frame. Additionally, the system may include a mechanical exertion level indicator coupled to the frame.
  • the system may further include integrated electronics coupled to the frame to detect strain thereon and a transmitter to wirelessly send the detected strain to a remote computing device.
  • the computing device may be configured to receive the strain indications and determine an exertion level for the exercise being performed.
  • the compute device may also be configured to provide exercise instructions to a user.
  • the computing device may be attached to the frame.
  • the system includes light emitting electronics integrated into the frame to provide instruction and safety features for the exercise being performed.
  • the system may also include audio electronics integrated into the frame to provide instruction and safety features for the exercise being performed.
  • an exercise system may provide a multitude of strength building exercises of varying resistance for both arms and legs without having to rely on conventional weights. Among other things, this may allow the exercise system to be used by users of varying strength and make the exercise system more portable. As another example, an exercise system may provide an indication of exerted effort (e.g., force) even if conventional weights are not being used. As an additional example, an exercise system may be collapsible into an easily storable and/or transportable configuration. Additional features will be evident to those skilled in the art in light of the following written description and figures.
  • FIG. 1 is a line drawing illustrating an example exercise system in accordance with one implementation of the invention.
  • FIG. 2 illustrates different orientations in which the exercise system of FIG. 1 may be used.
  • FIG. 3 illustrates the exercise system being used for squats.
  • FIG. 4 illustrates the exercise system being used for leg presses.
  • FIG. 5 illustrates the exercise system being used for shoulder presses.
  • FIG. 6 illustrates the exercise system being used for deadlifts.
  • FIG. 7 illustrates the exercise system being used for bent-over rows.
  • FIG. 8 illustrates the exercise system being used for upright rows.
  • FIG. 9 illustrates the exercise system being used for bicep curls.
  • FIG. 10 illustrates the exercise system being used for overhead tricep extensions.
  • FIG. 11 illustrates the exercise system being used for shoulder shrugs.
  • FIG. 12 illustrates the exercise system being used for dips.
  • FIG. 13 illustrates the exercise system being used for pull-ups.
  • FIG. 14 illustrates the exercise system being used for leg-assisted pull-ups.
  • FIG. 15 illustrates the exercise system being used for sled pushes.
  • FIG. 16 illustrates the exercise system being used for sled pulls.
  • FIG. 17 illustrates the exercise system being used for hanging rows.
  • FIG. 18 illustrates the exercise system being used for bench press.
  • FIG. 19 illustrates the grip optionality when the exercise system is being used for deadlifts.
  • FIG. 20 illustrates the grip optionality when the exercise system is being used for different types of pull-ups.
  • FIG. 21 illustrates the exercise system being used for deadlifts utilizing multiple people for resistance.
  • FIG. 22 illustrates the exercise system being used for deadlifts utilizing weighted plates for resistance.
  • FIG. 23 illustrates the exercise system being used for squats utilizing weighted plates for resistance.
  • FIG. 24 illustrates the exercise system being used for sled pushes utilizing weighted plates for resistance.
  • FIG. 25 illustrates the exercise system being used for deadlifts utilizing both weighted plates and a person for resistance.
  • FIG. 26 illustrates the collapsibility of the exercise system of FIG. 1 .
  • FIG. 27 illustrates the portability of the exercise system of FIG. 1 .
  • FIG. 28 illustrates a load determination assembly for an exercise system similar to that in FIG. 1 .
  • FIG. 29 is a block diagram illustrating a load determination system and software architecture for an exercise system.
  • FIG. 30 is a line drawing illustrating a virtual instructor for an exercise system.
  • FIG. 31 illustrates a user application for use with an exercise system in accordance with the present invention.
  • FIG. 32 highlights several components used when utilizing an exercise system in accordance with the present invention for deadlifts.
  • FIG. 33 highlights several components used when utilizing an exercise system in accordance with the present invention for sled pushes.
  • FIG. 34 highlights several components used when utilizing an exercise system in accordance with the present invention for squats.
  • FIG. 35 highlights several components used when utilizing an exercise system in accordance with the present invention for sled pushes.
  • FIG. 36 highlights a structural component for the system.
  • FIG. 37 highlights a structural component for collapse functionality.
  • FIG. 38 highlights a load determination assembly.
  • FIG. 39 illustrates example dimensions for an expanded and collapsed exercise system in accordance with the present invention.
  • FIG. 40 illustrates example electronics and their function for an exercise system similar to that in FIG. 1 .
  • FIG. 1 illustrates an example exercise system 1 .
  • system 1 allows for high-resistance exercises through the distribution of one's own body weight and/or that of another upon a frame 2 .
  • frame 2 is composed of a number of hinged linkage structures that allow the frame to collapse (to be discussed in more detail below) into a volume that is less than 50% of its expanded volume and, in some cases, less than 33%.
  • the linkage structures include a deadlift linkage assembly 10 , left and right sled linkage assemblies 20 a , 20 b , a dip standing linkage assembly 30 , a sled connector linkage assembly 40 , a squat linkage assembly 50 , left and right dip sled linkage assemblies 60 a , 60 b , a spanning rod assembly 70 , and left and right dip connector assemblies 80 a , 80 b.
  • frame 2 has three use orientations that are yielded from rotating the frame along its edges to rest on different faces as demonstrated in FIG. 2 .
  • Each of these orientations (labeled A, B, C) allow for a different group of feasible exercises to be performed by a user.
  • Orientation B squat linkage assembly 50 and dip sled linkage assemblies 60 provide a base for frame 2
  • dip standing linkage assembly 30 provides a vertical section for frame 2
  • deadlift linkage assembly 10 provides a top section for frame 2 .
  • These assemblies serve different roles in Orientation A and Orientation C.
  • Orientation A provides two pivot axes 19 , 34 , on the far left and far right of the system as viewed in FIG. 2 .
  • the user lifts the opposite end of the frame, lifting the leverage weight thereof.
  • the weight of another person (“liftee”) or one or more weighted plates may be placed on the structure in a location yielding the desired leverage and, thus, resistance felt by the lifter.
  • the resistance offered by a liftee or weight plate may be adjustable by varying the location of the frame—the further the liftee is from the pivot axis, the greater the felt resistance by the lifter.
  • Orientation B is yielded from rotating the frame about pivot 34 so that it rests on the side/face of the height-adjustable bar as seen in FIG. 2 , resulting in a taller structure.
  • the bar previously at shin height in Orientation A is elevated higher in Orientation B, thus allowing for variations of the following exercises:
  • the bar onto which the user holds for these exercises is configured in a manner in which various grip orientations are permitted as seen in FIG. 20 .
  • Orientation C is yielded from rotating the mechanism about pivot 66 in Orientation B so that the Orientation A pivots 19 , 34 are pointed upward as seen in FIG. 15 .
  • pivot 66 On one end of the mechanism in Orientation C, the left side as viewed in FIG. 2 , pivot 66 allows the opposite end to be functionally lifted.
  • the other linkages contacting the ground in Orientation C are angled as to allow the sliding of the mechanism in one direction (i.e., to the right in Orientation C).
  • a feature of system 1 is that a liftee may be positioned at different locations on frame 2 .
  • the liftee is shown as standing on an intermediate horizontal member in Orientation A.
  • the liftee could be positioned on the horizontal member immediately behind the lifter, thus increasing resistance, or positioned on the horizontal member farther from the lifter, thus decreasing resistance.
  • system 1 allows users of different sizes to work out with each other.
  • one liftee can provide varying resistance to a lifter.
  • the system allows for additional weight to be applied.
  • the frame may be designed and strengthened as to allow multiple persons to distribute their weight simultaneously on the frame for greater resistance, as illustrated in FIG. 21 .
  • plate mounts are also integrated to allow the use of weighted plated as the primary means of resistance, as seen in FIGS. 22 , 23 , and 24 . Weighted plates and liftee(s) can be used in conjunction if needed, as seen in FIG. 25 .
  • a feature of the system 1 is its ability to be transported easily.
  • the linkage system of frame 2 for example, has one degree of freedom when unlocked, allowing it to collapse into a closed/condensed configuration.
  • the linkage design can collapse into the closed configuration as illustrated in FIG. 26 , to allow for transport and/or storage in confined areas. Certain implementations, however, may use different locking mechanisms or may not collapse at all.
  • Step 1 To collapse frame 2 when it is fully expanded and locked, pins 84 a , 84 b are removed (Step 1 ). Then, sled linkage assemblies 20 (only one of which is viewable in FIG. 26 ) are swung outward relative to deadlift linkage assembly 10 (counterclockwise in FIG. 26 ), which causes sled connector linkage assembly 40 to pull dip sled linkage assemblies 60 , squat linkage assembly 50 , and dip connector assemblies 80 towards deadlift linkage assembly 10 (Step 2 ). Next, dip standing linkage assembly 30 is swung towards deadlift linkage assembly 10 (counterclockwise in FIG.
  • Step 4 moving dip sled linkage assemblies 60 , squat linkage assembly 50 , and dip connector assemblies 80 inside deadlift linkage assembly 10 (beginning in Step 3 and ending early in Step 4 ). Then, sled linkage assemblies 20 are swung back toward deadlift linkage assembly 10 , completing the collapse (Step 4 ).
  • frame 2 may be locked into place when collapsed.
  • most any of the linkage members that are close to each other may be coupled (e.g., pinned) together.
  • the members that were pinned in the expanded configuration may be pinned together in the collapsed configuration, Compare Step 1 with Step 4 FIG. 26 .
  • wheels 17 may emerge from one side of the frame allowing it to be easily rolled, as illustrated in FIG. 27 . (The wheels are present in FIG. 1 , but are hidden by various members due to the chosen perspective.)
  • a mechanical overload indicator 90 may be built into an exercise system, as illustrated in FIGS. 1 and 28 .
  • Overload indicator 90 includes a cable-spring assembly 91 placed on frame 2 so that flexion thereof under loads will place the cable and spring (connected in series) under tension.
  • a shroud 92 covers the spring and part of the cable in a manner such that an overload indicator 93 (e.g., a marked portion of the cable) is hidden in an unloaded condition. Under load, however, the flexion of the frame yields in the exposure of more of the cable.
  • Indicator marking 93 is placed on the cable so that the maximum allowed load will result in the marking's visibility from under shroud 92 , thus indicating applied force should be reduced (see FIG. 28 ). Utilizing the same principle, incremental ticks on the cable may allow for felt resistance estimations.
  • An exercise system may also have integrated electronics that allow for more functionally precise means of determining felt resistance.
  • a strain gauge 94 Placed in series with the cable/spring assembly 91 in FIG. 28 , for example, is a strain gauge 94 .
  • An instrumentation-driver/battery/transmitter assembly 95 gathers the strain measured by the strain gauge during the frame's flexion under load as seen in FIG. 28 .
  • onboard accelerometers may gather kinematic data. Gathered information is sent via a transmitter (e.g., via Bluetooth or Zigbee) to a user's smart device (e.g., a lifter's smart phone, smart watch, or tablet) where algorithms are used to calculate the maximum strain, felt resistance, cadence, etc.
  • a transmitter e.g., via Bluetooth or Zigbee
  • a user's smart device e.g., a lifter's smart phone, smart watch, or tablet
  • Smart devices may not only display the calculated data but store the data as well. Storing records of the conducted exercises, user's felt resistance, lifting cadences, and other available biometric data allows for a “virtual instructor” within software onboard the associated smart device to plan and guide the users' workouts through visual and auditory means, as shown in FIG. 30 .
  • FIG. 29 A general layout of example elements for a load determination system architecture 200 is seen in FIG. 29 .
  • the “virtual instructor” software may be onboard a computer integrated in the mechanism itself rather than utilizing a user's smart device as the software driver.
  • Load determination system architecture 200 includes a subsystem 210 onboard the frame and a remote subsystem 220 .
  • all or a portion of remote subsystem 220 may be onboard the frame.
  • Onboard subsystem 210 includes a number of strain gauges 212 .
  • Strain gauges 212 may be mounted on the same frame member and/or different frame members. If mounted on the same member, the strain gauges may measure strains in different axes.
  • Controller 214 is typically an electronic logic device (e.g., a microcontroller) and is responsible for receiving the readings from the strain gauges (usually in analog form) and preparing them for further analysis (e.g., by converting them to digital form).
  • the prepared data is sent via a transmitter 216 to remote subsystem 220 .
  • Transmitter 216 typically works by wireless techniques (e.g., radio frequency), but could use wired techniques in certain implementations.
  • Onboard subsystem 210 also includes an accelerometer 218 , which can measure the motion (e.g., acceleration) that frame 2 is subjected to. The data from accelerometer is also sent to transmitter 216 .
  • accelerometer 218 can measure the motion (e.g., acceleration) that frame 2 is subjected to.
  • the data from accelerometer is also sent to transmitter 216 .
  • Remote subsystem 220 may be a smartphone, a tablet, or any other appropriate electronic logic device (e.g., having an electronic processor, memory, and input/output capability). Remote subsystem 220 may only be remote in the aspect that it is connected to onboard subsystem 210 through a communication link, as opposed to being at some large geographic distance from it. In some operations, remote subsystem 220 may actually be on or inside the periphery of the frame.
  • Remote subsystem 220 includes a receiver 222 for receiving data from transmitter 216 .
  • the data is then fed to the appropriate calculator (e.g., an electronic logic device or a piece of code operating on an electronic logic device).
  • the appropriate calculator e.g., an electronic logic device or a piece of code operating on an electronic logic device.
  • data from the strain gauges may be fed to a strain calculator 224 , which may determine the actual strain occurring on the system. The actual strain may be compared to the maximum allowable strain via a comparator 230 to make sure the frame is not being overtaxed.
  • data from the strain gauges may be fed to a resistance calculator, which may determine how much resistance (e.g., weight) is being felt by the user.
  • the amount of axial strain on a linear member is, for example, proportionally related to the force axial applied thereto.
  • Kinematic data may be fed to a kinematic data calculator 228 , which may use the acceleration data from the accelerometer 218 to qualify the movement, orientation, and displacement of the mechanism.
  • a virtual instructor 232 may use software algorithms to combine, compare, reconcile, and analyze the incoming data (from 224 , 240 , 226 , 228 , 236 , 238 , and/or 240 ) to determine real-time instructions to optimize use of the system. Based on the analyzed data, the virtual instructor 232 may provide those determined instructions to the lifter (e.g., increase repetitions, decrease repetitions, reposition liftee, add weight plates, alter cadence, etc.). The instructions may be communicated via a user interface 234 , which may be visual, auditory, or a combination of both. The user may receive the instructions and make appropriate adjustments.
  • a user may be wearing a biometric tracker (e.g., an exercise monitor, whether wrist, torso, or otherwise attached). If so, biometrics (e.g., heart rate) may be provided to the virtual software instructor (e.g., via Bluetooth). The virtual software instructor may take the biometric readings into account when providing instructions (e.g., increase or decrease cadence).
  • a biometric tracker e.g., an exercise monitor, whether wrist, torso, or otherwise attached.
  • biometrics e.g., heart rate
  • the virtual software instructor may take the biometric readings into account when providing instructions (e.g., increase or decrease cadence).
  • remote subsystem 220 may include a weather data source 236 .
  • Current weather conditions e.g., temperature, humidity, etc.
  • the associated smart device application may also serve various functions in addition to that of a virtual instructor.
  • the application may, for example, allow for connection and data sharing between users in the mechanism's user community. Users can connect with others based on exercise styles, strength and ability, geographic location, schedule, and experiences. See FIGS. 31 .
  • An exercise system may also have additional integrated electronics (e.g., lights, lasers, and/or speakers) that provide both operational and instructional functionality.
  • FIG. 40 illustrates an example integrated electronics.
  • the electronics include laser light projectors 121 , single lights 122 , speakers 123 , and strip lights 124 .
  • Other implementations may include fewer, additional, and/or a different arrangement of electronics.
  • the lift point on which the “lifter” grabs and/or the member on which the “liftee” stands to yield the desired felt resistance can be further highlighted through the illumination of lighting elements (e.g., single light 122 or strip lights 124 ) mounted on or adjacent to the respective members and/or through laser light projectors 121 projecting onto those respective members or components.
  • Laser lights 121 would also allow for the projection of graphics and text onto mechanism members and/or the ground to provide more redundant instruction 125 and help mitigate unintentional misuse.
  • Lighting elements also can be incorporated into the load determination system to more redundantly alert users when the system is over strained.
  • Speakers 123 could provide verbal instruction, auditory warnings, and other audio material from the software application or of the user's choosing (e.g., music).
  • Frame 2 may be made of various materials.
  • the frame may be made of aluminum, polymer, or composite. Differing loads on frame members may result in these differing members being made from different materials to accommodate these higher or lower or different types of (e.g., compression, tension, torsion, shear, etc.) loads.
  • certain members may be replaced with I-beam members (e.g., composed of a light polymer, such as one with a metal exoskeleton or a glass-filled nylon with a metal endoskeleton).
  • the frame connectors and hinges may be made of aluminum or steel and may be made by machining (e.g., CNC) or cast.
  • frame connectors or hinges subjected to lower loads could be made of polymer.
  • the components can be integrated together as a single polymer hinge-member or connector-member part and may be made by injection molding.
  • High strength members e.g., the deadlift bar
  • steel e.g., stainless
  • Paint and finish may be applied to the mechanism as appropriate to mitigate corrosion.
  • frame 2 is made from various subassemblies. Considering the interconnected nature of the design, all major components are, to an extent, load bearing, have structural ramifications on other members, and impact joint paths during collapse. Detailed below are the aspects unique to each subassembly, for a particular implementation.
  • FIG. 32 illustrates an example of deadlift linkage assembly 10 .
  • Deadlift linkage assembly 10 includes a deadlift bar 11 , a subframe composed of side frame members 13 and cross members 16 , 17 , squat pivots 19 , plate posts 15 , and hinges 12 , 18 .
  • Deadlift bar 11 is typically made from steel bars that have been cut, welded, and textured. Deadlift bar 11 serves as a lift point in Orientation A ( FIG. 6 ), the pull-up bar in Orientation B ( FIG. 14 ), and a lift point in Orientation C ( FIG. 18 ).
  • the subframe composed of side frame members 13 and cross members 16 , 17 is typically made from aluminum tubing that is bent, cut, -welded, and affixed together.
  • Side frame members 13 and cross members 16 , 17 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Cross members 16 , 17 span the assembly and provide an area where a person or persons can stand in order to provide resistance for exercises when the frame is in Orientation A.
  • traction material e.g., rubber or polymer, possibly texturized
  • the texturized material may generally be any material that is fairly durable and has increased friction with a shoe sole.
  • Side frame members 13 provide part of the base for a frame when in Orientation A and the vertical spine of the frame when in Orientation B. Side frame members 13 also connect the other components in the deadlift linkage assembly. Side frame members 13 have a slight bend in them to establish a pivot point in Orientation A. Cross members 16 , 17 span the subframe, providing lateral support and an area on which a person or persons can stand to provide resistance to the lifter during Orientation A lifts.
  • Squat pivots 19 are typically made of hard polymer. They are designed to slightly impale the ground (e.g., dirt, sand, or grass) to serve as a stationary fulcrum when the entire mechanism is lifted from the opposite side (see FIG. 5 ).
  • ground e.g., dirt, sand, or grass
  • Plate posts 15 are typically made of hard polymer and secure weight plates to the mechanism when plates are being used for resistance.
  • the plate posts may also be used by a liftee to stabilize their foot placement.
  • Hinges 12 , 18 are typically made of solid aluminum and connect the deadlift linkage assembly to adjacent assemblies.
  • hinges 12 , 18 could be made of polymers, especially where stress (less thereof) allows.
  • Deadlift linkage assembly 10 may also include a load determination assembly 100 , an example of which is illustrated in FIG. 38 .
  • Load determination assembly 100 includes cable 102 , spring 104 , and strain gauges 106 , connected in series using chain links 108 , 110 , 112 .
  • Cable 102 and chain link 112 are secured to a frame member by plates 101 . Plates 101 may be screwed, riveted, welded, or otherwise attached to the frame member.
  • a wire 105 prevents spring 104 from being overstrained.
  • Strain gauges 106 , spring 104 , and a portion of cable 102 are located inside a shroud/housing 113 (shown in shadow line here). As the frame member is placed under load, spring 104 may expand, allowing more of cable 102 to be exposed from housing 113 . A section of cable 102 may be marked so that high loads may be visually indicated to a user.
  • Electrical wire 114 connects strain gauges 106 to a single instrumentation-driver/battery/transmitter assembly 115 , typically encapsulated in polymer packaging.
  • a wire 116 connects additional strain gauges integrated into the system to the instrumentation-driver/battery/transmitter assembly 115 .
  • the additional strain gauges are not necessary, however, for load determination.
  • Load determination assembly 100 serves to determine felt resistance (by the lifter) by both analog means and digital means (sending gathered data via the transmitter to a paired smart device for further interface with the user).
  • the instrumentation-driver/battery/transmitter assembly 115 can also serve as a centralized power source and controller for additional integrated electronics (e.g., lights, lasers, and speakers) via connection through wire 116 .
  • the controller may, for example, be a microcontroller, a microprocessor, or any other electronic logic device, and the power source may be a battery.
  • Additional strain gauges and accelerometers may be placed throughout the mechanism to allow for more refined calculations of applied forces or other strains on the frame.
  • FIG. 33 illustrates an example of sled linkage assemblies 20 and dip standing linkage assembly 30 .
  • Sled linkage assemblies 20 connect at one end to deadlift linkage assembly 10
  • dip standing linkage assemblies 30 also connect at one end to the deadlift linkage assembly.
  • Dip standing linkage assembly 30 includes side members 31 , 32 , cross member 37 , and connectors 39 .
  • Dip standing linkage assembly 30 is typically made from aluminum tubing that is bent, cut, welded, and affixed together with connectors 39 , which may be aluminum or steel.
  • Side members 31 , 32 and cross member 37 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Cross member 37 spans the assembly and provides an area on which a person or persons can stand to provide resistance to the lifter during Orientation A lifts. Traction material may be added to cross member to prevent slipping when a user is standing on it Side members 31 , 32 connect the other components in the dip standing linkage assembly.
  • Deadlift pivots 34 are typically made of hard polymer, but could be made of any other relatively hard material. Deadlift pivots 34 are designed to slightly impale the ground (e.g., dirt, grass, or sand) to serve as a stationary fulcrum when the entire frame is lifted from the opposite side ( FIG. 6 ).
  • Plate posts 38 are Connected to cross member 37 (and possibly connectors 39 ) are plate posts 38 .
  • Plate posts 38 are typically made of hard polymer and secure weight plates to the mechanism when plates are being used for resistance. Plate posts could also be made of any other relatively hard material. Plate posts 38 may also provide a location for a liftee to stabilize their feet when being lifted.
  • Hinges 35 , 33 connect dip standing linkage assembly 30 to adjacent assemblies.
  • Hinges 35 , 33 are typically made of solid aluminum.
  • Hinges 35 , 33 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Dip standing linkage assembly 30 also includes wheels 36 .
  • Wheels 36 are typically made of a dense rubber and ball bearings, but any material that is relatively impact resistant may be used. Upon collapse of the frame, the wheels assume an ejected position to allow the user to transport the mechanism via rolling ( FIG. 27 ).
  • Sled linkage assemblies 20 includes sub-frames 22 , which are typically made from aluminum tubing that is cut, bent, welded, and affixed together.
  • Sub-frames 22 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Sub-frames 22 act as sled “skis” when the mechanism is in Orientation C ( FIG. 2 ).
  • hinges 21 , 25 are typically made of solid aluminum and connect the sled linkage assembly to adjacent assemblies.
  • Hinges 21 , 25 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Sub-frames 22 also include plate posts 23 .
  • Plate posts 23 are typically made of hard polymer and, in operation, secure weighted plates to the mechanism when plates are being used for resistance (see FIG. 24 ). Plate posts could be made of any other relative hard material.
  • Sub-frames 22 further include frame guards 24 on their outer surfaces.
  • Frame guards 24 are typically made from a hard polymer, but could be made of any other relatively hard material. Frame guards serve to prevent damage to the frame while it is in Orientation C (see FIG. 2 ).
  • Locking arms 26 serve to hold the frame in the expanded configuration.
  • locking arms 26 may be homogenous pieces with sub-frames 22 .
  • FIG. 34 illustrates an example of squat linkage assembly 50 and sled connector linkage assembly 40 .
  • Squat linkage assembly 50 connects at one end to dip standing linkage assembly 30
  • sled connector linkage assembly 40 connects at one end to sled linkage assemblies 20 .
  • Squat linkage assembly 50 includes side frames 51 and a cross member 56 .
  • Side frames 51 and cross member 56 are typically made from aluminum tubing that is bent, cut, welded, and affixed together.
  • Side frames 51 and cross member 56 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Cross member 56 spans the assembly and provides structural support and a potential lift point.
  • Side frames 51 connect the other components in the squat linkage assembly.
  • Squat linkage assembly 50 also includes a height-adjustable squat bar assembly 53 composed of a bar 54 , plates 57 , and a pin 58 .
  • Bar 54 is typically made from a textured steel, but could be made of any other relatively hard material as long as it has the necessary strength.
  • Plates 57 are typically made of metal (e.g., steel) and are elongated with holes therein.
  • Side frames 51 include a jog (e.g., an S bend) to accommodate plates 57 so that they do not contact the ground. In some uses cases (e.g., on loose soil), there may, of course, be some contact with the ground, but if the forces carried by the plates are relatively low, this should not cause a problem.
  • Bar 54 serves as a lift point during manipulation of the frame. Depending on the height of the lifter, bar 54 can be placed in higher or lower holes in plates 57 to yield the proper rest height. Pin 58 keeps the bar secure at the desired level.
  • Hinges 53 , 55 are typically made of solid aluminum and connect the squat linkage assembly to adjacent assemblies. Hinges 53 , 55 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • each side frame 51 On the exterior of each side frame 51 are frame guards 52 .
  • Frame guards 52 are typically made from a hard polymer, but could be made of any other relatively hard material. Frame guards 52 prevent damage to the frame while it is in Orientation B (see FIG. 2 ).
  • Sled connector linkage assembly 40 includes side frames 41 and a cross member 44 .
  • Side frames 41 and cross member 44 are typically made from aluminum tubing that is cut and affixed together.
  • Side frames 41 and/or cross member 44 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Cross member 44 spans the assembly and provides an area where a person or persons can stand in order to provide resistance in Orientation C exercises. Traction material may be added to cross member to prevent slipping when a user is standing on it. Side frames 41 connect the other components in the sled connector linkage assembly.
  • Hinges 42 , 43 are typically made of solid aluminum and connect the sled connector linkage assembly to adjacent assemblies. Hinges 42 , 43 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • FIG. 35 illustrates an example of dip sled linkage assemblies 60 .
  • Each dip sled linkage assembly 60 includes members 62 , 63 , 64 .
  • Members 62 are coupled at one end to squat linkage assembly 50
  • members 64 are coupled at one end to dip connector assemblies 80
  • each pair of members 62 , 64 are coupled together by a connector 61 .
  • Members 62 serve as sled “skis” when the mechanism is in Orientation C ( FIG. 2 ).
  • Also coupled to each connector 65 is a member 63 , which is generally orthogonal to adjacent member 62 .
  • Each member 63 is adapted to receive an end of spanning bar assembly 70 .
  • Members 62 , 64 are typically made from aluminum tubing that is bent, cut, welded, and affixed together with connectors 65 , which are typically made of solid aluminum.
  • Member 63 is typically made from aluminum tubing that is cut and affixed together to connectors 65 , but may be integrated into connectors 65 as a homogenous piece in certain implementations.
  • Members 62 , 63 , 64 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Hinges 66 , 67 are typically made of solid aluminum and connect the dip sled linkage assemblies to adjacent assemblies. Hinges 66 , 67 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Each member 62 includes a frame guard 61 on the exterior thereof.
  • Frame guards 61 are typically made from a hard polymer, but could be made of any other relatively hard material. Frame guards 61 prevent damage to the frame and serve as a pivot axis while the mechanism is in Orientation C (see FIG. 2 ). Frame guards 61 also prevent damage to the frame while the mechanism is in the Orientation B (see FIG. 3 ).
  • FIG. 36 illustrates an example spanning hinge bar assembly 70 .
  • spanning hinge bar assembly 70 includes a metal (e.g., steel) bar 71 and spacers 72 , 73 .
  • Spanning hinge bar assembly 70 connects the sled connector linkage assembly and the dip sled linkage assembly while still allowing rotational freedom from one another.
  • Bar 71 provides structural support and a hinge point.
  • FIG. 37 illustrates example dip connector assemblies 80 .
  • Each dip connector assembly 80 include a side frame 81 and hinges 82 , 83 .
  • Side frames 81 are typically made from aluminum tubing that is bent and cut to size and serve to limit the degrees of freedom allowed while collapsing (See FIG. 26 ). In particular, connecting the dip sled assembly and the deadlift assembly with a link/member yields a one degree of freedom mechanism.
  • Hinges 82 , 83 are typically made of solid aluminum and connect the dip connector linkage assembly to adjacent assemblies.
  • Side frame 81 and hinges 82 , 83 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • each side frame 81 On the inside of each side frame 81 is a female portion of a collapse hinge 85 .
  • Hinge portions 85 are typically made of bent metal (e.g., steel) and receive one of pins 84 to connect the dip connector linkage assembly to sled linkage assembly 20 , resulting in zero degrees of freedom in the frame when expanded.
  • pins 84 Upon removal of pins 84 , the dip connector linkage assembly and the sled linkage assembly are no longer fixed together, thus, allowing the frame to collapse (see FIG. 26 ) with one degree of freedom.
  • FIG. 39 illustrates the expanded and collapsed dimensions for system 1 for an example implementation.
  • system 1 is about 90 inches tall and 55 inches deep, in Orientation B, when expanded and about 46 inches tall and 31 inches deep when collapsed.
  • System 1 is about 45 inches wide.
  • system 1 may be transported in a van or larger SUV when collapsed.
  • system 1 collapses to less than about one-third of its volume.

Abstract

A multifunctional fitness system may allow for high-resistance exercises through the distribution of weight upon a frame pivoting on the ground. In particular implementations, while a user lifts one end of the frame, the opposite end pivots. The weight of another person (and/or that of conventional weighted plates) can be placed on the frame in locations yielding the desired leverage and, thus, resistance felt by the lifter. The frame may have various axes upon which it can pivot and grip points, thus offering a broad range of exercises that can be conducted. Reorienting the frame to be resting on differing sides results in additional feasible exercises. Optional integrated electronics (typically in conjunction with existing smart devices) may use kinematics and/or structural flexing to calculate felt resistance and provide automated instruction to the various users. The may also collapse into a compact, rollable configuration for easy transport.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Patent Application No. 63/262,372, which was filed on Oct. 11, 2021. This prior application is herein incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • The size and weight of high-resistance training equipment make it inherently expensive, bulky, and difficult to transport. This leaves high-resistance training consumers with the options to (a) pay recurring fees to attend gyms, (b) buy expensive equipment themselves to place in a steadfast location, or (c) reduce the resistance and alter the methods with and by which they train. Time and time again, however, science has proven that there is no substitute for high-resistance training in regards to strength improvement, muscle development, and the efficiency of caloric depletion.
  • Where heavy, bulky equipment is not available, users typically use their own body weight for exercises (i.e., push-ups, pull-ups, lunges, etc.). But body weight exercises typically result in relatively low-resistance/high-repetition workouts. Ideally, a means would exist that would allow users to utilize their and other's body weight to perform both low-resistance/high-repetition and high-resistance/low-repetition exercises, all while allowing for collaborative and team building workouts.
  • SUMMARY
  • A multifunctional fitness system may provide high-resistance exercises through the distribution of weight upon a frame that pivots on the ground. In particular implementations, while a user lifts one end of the frame, the opposite end pivots. The weight of another person and/or conventional weights can be placed on the frame at various locations to produce the desired leverage and, thus, resistance felt by the lifter. The frame may also have various axes upon which it can pivot and grip points, thus offering a broad range of exercises that can be conducted. Reorienting the frame to be resting on differing sides may result in additional feasible exercises. Optional integrated electronics (typically in conjunction with existing smart devices) may use kinematics and/or structural flexing to calculate felt resistance and provide automated instruction to the various users. The may also collapse into a compact, rollable configuration for easy transport.
  • In one general aspect, an exercise system includes a frame having a multitude of linked members. The frame may be configured to be reoriented onto various sides thereof to provide a user with different groups of exercises for each orientation, with at least some of a first group of exercises involving the pivoting of the frame about an end. In some implementations, the first group of exercises may also involve pivoting the frame about a second end.
  • In particular implementations, the frame has three orientations in which exercises may be performed, each with its own group of exercises. A second group of exercises may, for example, involve pivoting the frame about a different end than the first group of exercises. Additionally, at least some of the second group of exercises may involve sliding of the frame on the ground. The frame may be configured to resist sliding on the ground for the first group of exercises and/or to assist sliding on the ground for at least some of the second group of exercises. In certain implementations, the frame has a bottom side, a back side, and a front side, and the orientations of the frame include upright, on its back, and on its front.
  • The frame may, for example, include a base, a vertical section, and a top section when in an upright orientation. The vertical section may be hingedly attached to the base and/or hingedly attached to the top section. In particular, implementations, the base may include two portions that are hinged to each other.
  • The frame may be configured to support a person such that the person acts as a weight for a number of exercises. In certain implementations, the frame may be configured to support a person at multiple locations such that the resistance felt by a user is altered.
  • The frame may also be configured to collapse along a single degree of freedom. In certain implementations, the frame may collapse to less than one-half of its expand volume, and in some implementations, the frame may collapse to less than one-third of its expanded volume.
  • The system may also include a mechanical overload indicator coupled to the frame. Additionally, the system may include a mechanical exertion level indicator coupled to the frame.
  • The system may further include integrated electronics coupled to the frame to detect strain thereon and a transmitter to wirelessly send the detected strain to a remote computing device. The computing device may be configured to receive the strain indications and determine an exertion level for the exercise being performed. The compute device may also be configured to provide exercise instructions to a user. In some implementations, the computing device may be attached to the frame.
  • In certain implementations, the system includes light emitting electronics integrated into the frame to provide instruction and safety features for the exercise being performed. The system may also include audio electronics integrated into the frame to provide instruction and safety features for the exercise being performed.
  • Various implementations may include one or more features. For example, an exercise system may provide a multitude of strength building exercises of varying resistance for both arms and legs without having to rely on conventional weights. Among other things, this may allow the exercise system to be used by users of varying strength and make the exercise system more portable. As another example, an exercise system may provide an indication of exerted effort (e.g., force) even if conventional weights are not being used. As an additional example, an exercise system may be collapsible into an easily storable and/or transportable configuration. Additional features will be evident to those skilled in the art in light of the following written description and figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention and its implementations, and the features thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a line drawing illustrating an example exercise system in accordance with one implementation of the invention.
  • FIG. 2 illustrates different orientations in which the exercise system of FIG. 1 may be used.
  • FIG. 3 illustrates the exercise system being used for squats.
  • FIG. 4 illustrates the exercise system being used for leg presses.
  • FIG. 5 illustrates the exercise system being used for shoulder presses.
  • FIG. 6 illustrates the exercise system being used for deadlifts.
  • FIG. 7 illustrates the exercise system being used for bent-over rows.
  • FIG. 8 illustrates the exercise system being used for upright rows.
  • FIG. 9 illustrates the exercise system being used for bicep curls.
  • FIG. 10 illustrates the exercise system being used for overhead tricep extensions.
  • FIG. 11 illustrates the exercise system being used for shoulder shrugs.
  • FIG. 12 illustrates the exercise system being used for dips.
  • FIG. 13 illustrates the exercise system being used for pull-ups.
  • FIG. 14 illustrates the exercise system being used for leg-assisted pull-ups.
  • FIG. 15 illustrates the exercise system being used for sled pushes.
  • FIG. 16 illustrates the exercise system being used for sled pulls.
  • FIG. 17 illustrates the exercise system being used for hanging rows.
  • FIG. 18 illustrates the exercise system being used for bench press.
  • FIG. 19 illustrates the grip optionality when the exercise system is being used for deadlifts.
  • FIG. 20 illustrates the grip optionality when the exercise system is being used for different types of pull-ups.
  • FIG. 21 illustrates the exercise system being used for deadlifts utilizing multiple people for resistance.
  • FIG. 22 illustrates the exercise system being used for deadlifts utilizing weighted plates for resistance.
  • FIG. 23 illustrates the exercise system being used for squats utilizing weighted plates for resistance.
  • FIG. 24 illustrates the exercise system being used for sled pushes utilizing weighted plates for resistance.
  • FIG. 25 illustrates the exercise system being used for deadlifts utilizing both weighted plates and a person for resistance.
  • FIG. 26 illustrates the collapsibility of the exercise system of FIG. 1 .
  • FIG. 27 illustrates the portability of the exercise system of FIG. 1 .
  • FIG. 28 illustrates a load determination assembly for an exercise system similar to that in FIG. 1 .
  • FIG. 29 is a block diagram illustrating a load determination system and software architecture for an exercise system.
  • FIG. 30 is a line drawing illustrating a virtual instructor for an exercise system.
  • FIG. 31 illustrates a user application for use with an exercise system in accordance with the present invention.
  • FIG. 32 highlights several components used when utilizing an exercise system in accordance with the present invention for deadlifts.
  • FIG. 33 highlights several components used when utilizing an exercise system in accordance with the present invention for sled pushes.
  • FIG. 34 highlights several components used when utilizing an exercise system in accordance with the present invention for squats.
  • FIG. 35 highlights several components used when utilizing an exercise system in accordance with the present invention for sled pushes.
  • FIG. 36 highlights a structural component for the system.
  • FIG. 37 highlights a structural component for collapse functionality.
  • FIG. 38 highlights a load determination assembly.
  • FIG. 39 illustrates example dimensions for an expanded and collapsed exercise system in accordance with the present invention.
  • FIG. 40 illustrates example electronics and their function for an exercise system similar to that in FIG. 1 .
  • DETAILED DESCRIPTION
  • While the inventive concepts are much more basic than any particular implementation, those skilled in the art can gather a partial appreciation for some of the possible benefits of the broader concepts and possible interplay between various elements of the concepts in the course of considering example implementations, some of which are described in detail below.
  • FIG. 1 illustrates an example exercise system 1. In one aspect, system 1 allows for high-resistance exercises through the distribution of one's own body weight and/or that of another upon a frame 2.
  • As shown, frame 2 is composed of a number of hinged linkage structures that allow the frame to collapse (to be discussed in more detail below) into a volume that is less than 50% of its expanded volume and, in some cases, less than 33%. The linkage structures include a deadlift linkage assembly 10, left and right sled linkage assemblies 20 a, 20 b, a dip standing linkage assembly 30, a sled connector linkage assembly 40, a squat linkage assembly 50, left and right dip sled linkage assemblies 60 a, 60 b, a spanning rod assembly 70, and left and right dip connector assemblies 80 a, 80 b.
  • In operation, frame 2 has three use orientations that are yielded from rotating the frame along its edges to rest on different faces as demonstrated in FIG. 2 . Each of these orientations (labeled A, B, C) allow for a different group of feasible exercises to be performed by a user. In Orientation B, squat linkage assembly 50 and dip sled linkage assemblies 60 provide a base for frame 2, dip standing linkage assembly 30 provides a vertical section for frame 2, and deadlift linkage assembly 10 provides a top section for frame 2. These assemblies serve different roles in Orientation A and Orientation C.
  • Orientation A provides two pivot axes 19, 34, on the far left and far right of the system as viewed in FIG. 2 . As a pivot axis is stationary on the ground, the user (lifter) lifts the opposite end of the frame, lifting the leverage weight thereof. Between the lifter and the pivot axis, the weight of another person (“liftee”) or one or more weighted plates may be placed on the structure in a location yielding the desired leverage and, thus, resistance felt by the lifter. Additionally, the resistance offered by a liftee or weight plate may be adjustable by varying the location of the frame—the further the liftee is from the pivot axis, the greater the felt resistance by the lifter.
  • On the end where pivot 19 is located in Orientation A is a bar (not viewable here) at about shin height for conventional “over-the-bar” lifts whose design allows for both straight and parallel grips (see FIG. 19 ). And on the end where pivot 34 is located in Orientation A is a height-adjustable bar (not viewable here) for “under-the-bar” lifts. Given these two bars, their respective pivot axes, and the general location of linkage members in this orientation, variations of the following exercises can be conducted:
  • Squats (FIG. 3 )
  • Leg Press (FIG. 4 )
  • Shoulder Press (FIG. 5 )
  • Deadlifts (FIG. 6 )
  • Bent-Over Rows (FIG. 7 )
  • Upright Rows (FIG. 8 ), utilizing a strap fixed to the frame
  • Biceps Curls (FIG. 9 ), utilizing a strap fixed to the frame
  • Over-Head Tricep Extensions (FIG. 10 ), utilizing a strap fixed to the frame
  • Shrugs (FIG. 11 )
  • Dips (FIG. 12 ), utilizing removable load-bearing members (e.g., bars)
  • Orientation B is yielded from rotating the frame about pivot 34 so that it rests on the side/face of the height-adjustable bar as seen in FIG. 2 , resulting in a taller structure. The bar previously at shin height in Orientation A is elevated higher in Orientation B, thus allowing for variations of the following exercises:
  • Pull-Ups (FIG. 13 )
  • Leg-Assisted Pull-Ups (FIG. 14 )
  • The bar onto which the user holds for these exercises is configured in a manner in which various grip orientations are permitted as seen in FIG. 20 .
  • Orientation C is yielded from rotating the mechanism about pivot 66 in Orientation B so that the Orientation A pivots 19, 34 are pointed upward as seen in FIG. 15 . On one end of the mechanism in Orientation C, the left side as viewed in FIG. 2 , pivot 66 allows the opposite end to be functionally lifted. However, the other linkages contacting the ground in Orientation C are angled as to allow the sliding of the mechanism in one direction (i.e., to the right in Orientation C). These features and the general location of the linkage members in this orientation allow variations of the following lifts to be conducted:
  • Sled Push (FIG. 15 )
  • Sled Pull (FIG. 16 ), utilizing a large strap
  • Hanging Rows (FIG. 17 )
  • Bench Press (FIG. 18 ), utilizing a narrow elevated surface
  • A feature of system 1 is that a liftee may be positioned at different locations on frame 2. For example, in FIG. 3 , the liftee is shown as standing on an intermediate horizontal member in Orientation A. However, the liftee could be positioned on the horizontal member immediately behind the lifter, thus increasing resistance, or positioned on the horizontal member farther from the lifter, thus decreasing resistance. Thus, system 1 allows users of different sizes to work out with each other. Moreover, one liftee can provide varying resistance to a lifter.
  • When placement of the liftee at maximum distance from the pivot axis for an exercise still yields an inadequate amount of resistance felt by the lifter, the system allows for additional weight to be applied. For example, the frame may be designed and strengthened as to allow multiple persons to distribute their weight simultaneously on the frame for greater resistance, as illustrated in FIG. 21 . When persons are not available to serve as the liftee, plate mounts are also integrated to allow the use of weighted plated as the primary means of resistance, as seen in FIGS. 22, 23 , and 24. Weighted plates and liftee(s) can be used in conjunction if needed, as seen in FIG. 25 .
  • A feature of the system 1 is its ability to be transported easily. The linkage system of frame 2, for example, has one degree of freedom when unlocked, allowing it to collapse into a closed/condensed configuration. In particular, with the removal of just two pins 84 a, 84 b, the linkage design can collapse into the closed configuration as illustrated in FIG. 26 , to allow for transport and/or storage in confined areas. Certain implementations, however, may use different locking mechanisms or may not collapse at all.
  • To collapse frame 2 when it is fully expanded and locked, pins 84 a, 84 b are removed (Step 1). Then, sled linkage assemblies 20 (only one of which is viewable in FIG. 26 ) are swung outward relative to deadlift linkage assembly 10 (counterclockwise in FIG. 26 ), which causes sled connector linkage assembly 40 to pull dip sled linkage assemblies 60, squat linkage assembly 50, and dip connector assemblies 80 towards deadlift linkage assembly 10 (Step 2). Next, dip standing linkage assembly 30 is swung towards deadlift linkage assembly 10 (counterclockwise in FIG. 26 ), moving dip sled linkage assemblies 60, squat linkage assembly 50, and dip connector assemblies 80 inside deadlift linkage assembly 10 (beginning in Step 3 and ending early in Step 4). Then, sled linkage assemblies 20 are swung back toward deadlift linkage assembly 10, completing the collapse (Step 4).
  • In particular implementations, frame 2 may be locked into place when collapsed. For example, most any of the linkage members that are close to each other may be coupled (e.g., pinned) together. In certain implementations, the members that were pinned in the expanded configuration may be pinned together in the collapsed configuration, Compare Step 1 with Step 4 FIG. 26 .
  • During the collapse process, wheels 17 may emerge from one side of the frame allowing it to be easily rolled, as illustrated in FIG. 27 . (The wheels are present in FIG. 1 , but are hidden by various members due to the chosen perspective.)
  • As a safety measure, a mechanical overload indicator 90 may be built into an exercise system, as illustrated in FIGS. 1 and 28 . Overload indicator 90 includes a cable-spring assembly 91 placed on frame 2 so that flexion thereof under loads will place the cable and spring (connected in series) under tension. A shroud 92 covers the spring and part of the cable in a manner such that an overload indicator 93 (e.g., a marked portion of the cable) is hidden in an unloaded condition. Under load, however, the flexion of the frame yields in the exposure of more of the cable. Indicator marking 93 is placed on the cable so that the maximum allowed load will result in the marking's visibility from under shroud 92, thus indicating applied force should be reduced (see FIG. 28 ). Utilizing the same principle, incremental ticks on the cable may allow for felt resistance estimations.
  • An exercise system may also have integrated electronics that allow for more functionally precise means of determining felt resistance. Placed in series with the cable/spring assembly 91 in FIG. 28 , for example, is a strain gauge 94. An instrumentation-driver/battery/transmitter assembly 95 gathers the strain measured by the strain gauge during the frame's flexion under load as seen in FIG. 28 . Additionally, in certain embodiments, onboard accelerometers may gather kinematic data. Gathered information is sent via a transmitter (e.g., via Bluetooth or Zigbee) to a user's smart device (e.g., a lifter's smart phone, smart watch, or tablet) where algorithms are used to calculate the maximum strain, felt resistance, cadence, etc. Smart devices may not only display the calculated data but store the data as well. Storing records of the conducted exercises, user's felt resistance, lifting cadences, and other available biometric data allows for a “virtual instructor” within software onboard the associated smart device to plan and guide the users' workouts through visual and auditory means, as shown in FIG. 30 .
  • A general layout of example elements for a load determination system architecture 200 is seen in FIG. 29 . In particular implementations, the “virtual instructor” software may be onboard a computer integrated in the mechanism itself rather than utilizing a user's smart device as the software driver.
  • Load determination system architecture 200 includes a subsystem 210 onboard the frame and a remote subsystem 220. In particular implementations, all or a portion of remote subsystem 220 may be onboard the frame.
  • Onboard subsystem 210 includes a number of strain gauges 212. Strain gauges 212 may be mounted on the same frame member and/or different frame members. If mounted on the same member, the strain gauges may measure strains in different axes.
  • Coupled to strain gauges 212 is a controller 214. Controller 214 is typically an electronic logic device (e.g., a microcontroller) and is responsible for receiving the readings from the strain gauges (usually in analog form) and preparing them for further analysis (e.g., by converting them to digital form).
  • The prepared data is sent via a transmitter 216 to remote subsystem 220. Transmitter 216 typically works by wireless techniques (e.g., radio frequency), but could use wired techniques in certain implementations.
  • Onboard subsystem 210 also includes an accelerometer 218, which can measure the motion (e.g., acceleration) that frame 2 is subjected to. The data from accelerometer is also sent to transmitter 216.
  • Remote subsystem 220 may be a smartphone, a tablet, or any other appropriate electronic logic device (e.g., having an electronic processor, memory, and input/output capability). Remote subsystem 220 may only be remote in the aspect that it is connected to onboard subsystem 210 through a communication link, as opposed to being at some large geographic distance from it. In some operations, remote subsystem 220 may actually be on or inside the periphery of the frame.
  • Remote subsystem 220 includes a receiver 222 for receiving data from transmitter 216. The data is then fed to the appropriate calculator (e.g., an electronic logic device or a piece of code operating on an electronic logic device). For example, data from the strain gauges may be fed to a strain calculator 224, which may determine the actual strain occurring on the system. The actual strain may be compared to the maximum allowable strain via a comparator 230 to make sure the frame is not being overtaxed. As another example, data from the strain gauges may be fed to a resistance calculator, which may determine how much resistance (e.g., weight) is being felt by the user. The amount of axial strain on a linear member is, for example, proportionally related to the force axial applied thereto. Depending on the size and location of a liftee, the resistance felt by a lifter can vary greatly. Thus, being able to determine the effective resistance, provides the lifter with some idea of what and how they are doing with the particular exercises. Kinematic data may be fed to a kinematic data calculator 228, which may use the acceleration data from the accelerometer 218 to qualify the movement, orientation, and displacement of the mechanism.
  • A virtual instructor 232 may use software algorithms to combine, compare, reconcile, and analyze the incoming data (from 224, 240, 226, 228, 236, 238, and/or 240) to determine real-time instructions to optimize use of the system. Based on the analyzed data, the virtual instructor 232 may provide those determined instructions to the lifter (e.g., increase repetitions, decrease repetitions, reposition liftee, add weight plates, alter cadence, etc.). The instructions may be communicated via a user interface 234, which may be visual, auditory, or a combination of both. The user may receive the instructions and make appropriate adjustments.
  • In some implementations, a user may be wearing a biometric tracker (e.g., an exercise monitor, whether wrist, torso, or otherwise attached). If so, biometrics (e.g., heart rate) may be provided to the virtual software instructor (e.g., via Bluetooth). The virtual software instructor may take the biometric readings into account when providing instructions (e.g., increase or decrease cadence).
  • Additionally, remote subsystem 220 may include a weather data source 236. Current weather conditions (e.g., temperature, humidity, etc.) may be taken into account by the virtual instructor software in providing instructions to the user.
  • The associated smart device application may also serve various functions in addition to that of a virtual instructor. The application may, for example, allow for connection and data sharing between users in the mechanism's user community. Users can connect with others based on exercise styles, strength and ability, geographic location, schedule, and experiences. See FIGS. 31 .
  • An exercise system may also have additional integrated electronics (e.g., lights, lasers, and/or speakers) that provide both operational and instructional functionality. FIG. 40 illustrates an example integrated electronics. In this implementation, the electronics include laser light projectors 121, single lights 122, speakers 123, and strip lights 124. Other implementations may include fewer, additional, and/or a different arrangement of electronics.
  • During use of the mechanism, the lift point on which the “lifter” grabs and/or the member on which the “liftee” stands to yield the desired felt resistance can be further highlighted through the illumination of lighting elements (e.g., single light 122 or strip lights 124) mounted on or adjacent to the respective members and/or through laser light projectors 121 projecting onto those respective members or components. Laser lights 121 would also allow for the projection of graphics and text onto mechanism members and/or the ground to provide more redundant instruction 125 and help mitigate unintentional misuse. Lighting elements also can be incorporated into the load determination system to more redundantly alert users when the system is over strained. Speakers 123 could provide verbal instruction, auditory warnings, and other audio material from the software application or of the user's choosing (e.g., music).
  • Frame 2, shown in FIG. 1 , may be made of various materials. For example, the frame may be made of aluminum, polymer, or composite. Differing loads on frame members may result in these differing members being made from different materials to accommodate these higher or lower or different types of (e.g., compression, tension, torsion, shear, etc.) loads. In particular implementations, certain members may be replaced with I-beam members (e.g., composed of a light polymer, such as one with a metal exoskeleton or a glass-filled nylon with a metal endoskeleton). The frame connectors and hinges may be made of aluminum or steel and may be made by machining (e.g., CNC) or cast. It is possible that frame connectors or hinges subjected to lower loads could be made of polymer. Under circumstances where polymer is a satisfactory material for both the connector or hinge and the associated member onto which it is mounted, the components can be integrated together as a single polymer hinge-member or connector-member part and may be made by injection molding. High strength members (e.g., the deadlift bar) may be made of steel (e.g., stainless). Paint and finish may be applied to the mechanism as appropriate to mitigate corrosion.
  • As mentioned above, frame 2 is made from various subassemblies. Considering the interconnected nature of the design, all major components are, to an extent, load bearing, have structural ramifications on other members, and impact joint paths during collapse. Detailed below are the aspects unique to each subassembly, for a particular implementation.
  • FIG. 32 illustrates an example of deadlift linkage assembly 10. Deadlift linkage assembly 10 includes a deadlift bar 11, a subframe composed of side frame members 13 and cross members 16, 17, squat pivots 19, plate posts 15, and hinges 12, 18.
  • Deadlift bar 11 is typically made from steel bars that have been cut, welded, and textured. Deadlift bar 11 serves as a lift point in Orientation A (FIG. 6 ), the pull-up bar in Orientation B (FIG. 14 ), and a lift point in Orientation C (FIG. 18 ).
  • The subframe composed of side frame members 13 and cross members 16, 17 is typically made from aluminum tubing that is bent, cut, -welded, and affixed together. Side frame members 13 and cross members 16, 17 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors. Cross members 16, 17 span the assembly and provide an area where a person or persons can stand in order to provide resistance for exercises when the frame is in Orientation A.
  • In certain implementations, traction material (e.g., rubber or polymer, possibly texturized) may be added to the cross members to prevent slipping when a user is standing on them. The texturized material may generally be any material that is fairly durable and has increased friction with a shoe sole.
  • Side frame members 13 provide part of the base for a frame when in Orientation A and the vertical spine of the frame when in Orientation B. Side frame members 13 also connect the other components in the deadlift linkage assembly. Side frame members 13 have a slight bend in them to establish a pivot point in Orientation A. Cross members 16, 17 span the subframe, providing lateral support and an area on which a person or persons can stand to provide resistance to the lifter during Orientation A lifts.
  • Squat pivots 19 are typically made of hard polymer. They are designed to slightly impale the ground (e.g., dirt, sand, or grass) to serve as a stationary fulcrum when the entire mechanism is lifted from the opposite side (see FIG. 5 ).
  • Plate posts 15 are typically made of hard polymer and secure weight plates to the mechanism when plates are being used for resistance. The plate posts may also be used by a liftee to stabilize their foot placement.
  • Hinges 12, 18 are typically made of solid aluminum and connect the deadlift linkage assembly to adjacent assemblies. In particular implementations, hinges 12, 18 could be made of polymers, especially where stress (less thereof) allows.
  • Deadlift linkage assembly 10 may also include a load determination assembly 100, an example of which is illustrated in FIG. 38 . Load determination assembly 100 includes cable 102, spring 104, and strain gauges 106, connected in series using chain links 108, 110, 112. Cable 102 and chain link 112 are secured to a frame member by plates 101. Plates 101 may be screwed, riveted, welded, or otherwise attached to the frame member. A wire 105 prevents spring 104 from being overstrained.
  • Strain gauges 106, spring 104, and a portion of cable 102 are located inside a shroud/housing 113 (shown in shadow line here). As the frame member is placed under load, spring 104 may expand, allowing more of cable 102 to be exposed from housing 113. A section of cable 102 may be marked so that high loads may be visually indicated to a user.
  • Electrical wire 114 connects strain gauges 106 to a single instrumentation-driver/battery/transmitter assembly 115, typically encapsulated in polymer packaging. A wire 116 connects additional strain gauges integrated into the system to the instrumentation-driver/battery/transmitter assembly 115. The additional strain gauges are not necessary, however, for load determination.
  • Load determination assembly 100 as a whole serves to determine felt resistance (by the lifter) by both analog means and digital means (sending gathered data via the transmitter to a paired smart device for further interface with the user). The instrumentation-driver/battery/transmitter assembly 115 can also serve as a centralized power source and controller for additional integrated electronics (e.g., lights, lasers, and speakers) via connection through wire 116. The controller may, for example, be a microcontroller, a microprocessor, or any other electronic logic device, and the power source may be a battery.
  • Additional strain gauges and accelerometers may be placed throughout the mechanism to allow for more refined calculations of applied forces or other strains on the frame.
  • FIG. 33 illustrates an example of sled linkage assemblies 20 and dip standing linkage assembly 30. Sled linkage assemblies 20 connect at one end to deadlift linkage assembly 10, and dip standing linkage assemblies 30 also connect at one end to the deadlift linkage assembly.
  • Dip standing linkage assembly 30 includes side members 31, 32, cross member 37, and connectors 39. Dip standing linkage assembly 30 is typically made from aluminum tubing that is bent, cut, welded, and affixed together with connectors 39, which may be aluminum or steel. Side members 31, 32 and cross member 37 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Cross member 37 spans the assembly and provides an area on which a person or persons can stand to provide resistance to the lifter during Orientation A lifts. Traction material may be added to cross member to prevent slipping when a user is standing on it Side members 31, 32 connect the other components in the dip standing linkage assembly.
  • At one end of side members 31 are deadlift pivots 34. Deadlift pivots 34 are typically made of hard polymer, but could be made of any other relatively hard material. Deadlift pivots 34 are designed to slightly impale the ground (e.g., dirt, grass, or sand) to serve as a stationary fulcrum when the entire frame is lifted from the opposite side (FIG. 6 ).
  • Connected to cross member 37 (and possibly connectors 39) are plate posts 38. Plate posts 38 are typically made of hard polymer and secure weight plates to the mechanism when plates are being used for resistance. Plate posts could also be made of any other relatively hard material. Plate posts 38 may also provide a location for a liftee to stabilize their feet when being lifted.
  • Hinges 35, 33 connect dip standing linkage assembly 30 to adjacent assemblies. Hinges 35, 33 are typically made of solid aluminum. Hinges 35, 33 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Dip standing linkage assembly 30 also includes wheels 36. Wheels 36 are typically made of a dense rubber and ball bearings, but any material that is relatively impact resistant may be used. Upon collapse of the frame, the wheels assume an ejected position to allow the user to transport the mechanism via rolling (FIG. 27 ).
  • Sled linkage assemblies 20 includes sub-frames 22, which are typically made from aluminum tubing that is cut, bent, welded, and affixed together. Sub-frames 22 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors. Sub-frames 22 act as sled “skis” when the mechanism is in Orientation C (FIG. 2 ).
  • At each end of sub-frames 22 are hinges 21, 25. These are typically made of solid aluminum and connect the sled linkage assembly to adjacent assemblies. Hinges 21, 25 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Sub-frames 22 also include plate posts 23. Plate posts 23 are typically made of hard polymer and, in operation, secure weighted plates to the mechanism when plates are being used for resistance (see FIG. 24 ). Plate posts could be made of any other relative hard material.
  • Sub-frames 22 further include frame guards 24 on their outer surfaces. Frame guards 24 are typically made from a hard polymer, but could be made of any other relatively hard material. Frame guards serve to prevent damage to the frame while it is in Orientation C (see FIG. 2 ).
  • Connected to each sub-frame 22 is a locking arm 26. Locking arms 26 serve to hold the frame in the expanded configuration. In particular implementations, locking arms 26 may be homogenous pieces with sub-frames 22.
  • FIG. 34 illustrates an example of squat linkage assembly 50 and sled connector linkage assembly 40. Squat linkage assembly 50 connects at one end to dip standing linkage assembly 30, and sled connector linkage assembly 40 connects at one end to sled linkage assemblies 20.
  • Squat linkage assembly 50 includes side frames 51 and a cross member 56. Side frames 51 and cross member 56 are typically made from aluminum tubing that is bent, cut, welded, and affixed together. Side frames 51 and cross member 56 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors. Cross member 56 spans the assembly and provides structural support and a potential lift point. Side frames 51 connect the other components in the squat linkage assembly.
  • Squat linkage assembly 50 also includes a height-adjustable squat bar assembly 53 composed of a bar 54, plates 57, and a pin 58. Bar 54 is typically made from a textured steel, but could be made of any other relatively hard material as long as it has the necessary strength. Plates 57 are typically made of metal (e.g., steel) and are elongated with holes therein. Side frames 51 include a jog (e.g., an S bend) to accommodate plates 57 so that they do not contact the ground. In some uses cases (e.g., on loose soil), there may, of course, be some contact with the ground, but if the forces carried by the plates are relatively low, this should not cause a problem.
  • Bar 54 serves as a lift point during manipulation of the frame. Depending on the height of the lifter, bar 54 can be placed in higher or lower holes in plates 57 to yield the proper rest height. Pin 58 keeps the bar secure at the desired level.
  • At each end of side frames 51 are hinges 53, 55. Hinges 53, 55 are typically made of solid aluminum and connect the squat linkage assembly to adjacent assemblies. Hinges 53, 55 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • On the exterior of each side frame 51 are frame guards 52. Frame guards 52 are typically made from a hard polymer, but could be made of any other relatively hard material. Frame guards 52 prevent damage to the frame while it is in Orientation B (see FIG. 2 ).
  • Sled connector linkage assembly 40 includes side frames 41 and a cross member 44. Side frames 41 and cross member 44 are typically made from aluminum tubing that is cut and affixed together. Side frames 41 and/or cross member 44 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Cross member 44 spans the assembly and provides an area where a person or persons can stand in order to provide resistance in Orientation C exercises. Traction material may be added to cross member to prevent slipping when a user is standing on it. Side frames 41 connect the other components in the sled connector linkage assembly.
  • At each end of side frames 41 are hinges 42, 43. Hinges 42, 43 are typically made of solid aluminum and connect the sled connector linkage assembly to adjacent assemblies. Hinges 42, 43 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • FIG. 35 illustrates an example of dip sled linkage assemblies 60. Each dip sled linkage assembly 60 includes members 62, 63, 64. Members 62 are coupled at one end to squat linkage assembly 50, members 64 are coupled at one end to dip connector assemblies 80, and each pair of members 62, 64 are coupled together by a connector 61. Members 62 serve as sled “skis” when the mechanism is in Orientation C (FIG. 2 ). Also coupled to each connector 65 is a member 63, which is generally orthogonal to adjacent member 62. Each member 63 is adapted to receive an end of spanning bar assembly 70.
  • Members 62, 64 are typically made from aluminum tubing that is bent, cut, welded, and affixed together with connectors 65, which are typically made of solid aluminum. Member 63 is typically made from aluminum tubing that is cut and affixed together to connectors 65, but may be integrated into connectors 65 as a homogenous piece in certain implementations. Members 62, 63, 64 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Hinges 66, 67 are typically made of solid aluminum and connect the dip sled linkage assemblies to adjacent assemblies. Hinges 66, 67 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • Each member 62 includes a frame guard 61 on the exterior thereof. Frame guards 61 are typically made from a hard polymer, but could be made of any other relatively hard material. Frame guards 61 prevent damage to the frame and serve as a pivot axis while the mechanism is in Orientation C (see FIG. 2 ). Frame guards 61 also prevent damage to the frame while the mechanism is in the Orientation B (see FIG. 3 ).
  • FIG. 36 illustrates an example spanning hinge bar assembly 70. As illustrated, spanning hinge bar assembly 70 includes a metal (e.g., steel) bar 71 and spacers 72, 73. Spanning hinge bar assembly 70 connects the sled connector linkage assembly and the dip sled linkage assembly while still allowing rotational freedom from one another. Bar 71 provides structural support and a hinge point.
  • FIG. 37 illustrates example dip connector assemblies 80. Each dip connector assembly 80 include a side frame 81 and hinges 82, 83. Side frames 81 are typically made from aluminum tubing that is bent and cut to size and serve to limit the degrees of freedom allowed while collapsing (See FIG. 26 ). In particular, connecting the dip sled assembly and the deadlift assembly with a link/member yields a one degree of freedom mechanism. Hinges 82, 83 are typically made of solid aluminum and connect the dip connector linkage assembly to adjacent assemblies. Side frame 81 and hinges 82, 83 could be made of other suitable materials (e.g., polymers) in other implementations as long as they satisfied the loading requirements, although weight and cost would be additional factors.
  • On the inside of each side frame 81 is a female portion of a collapse hinge 85. Hinge portions 85 are typically made of bent metal (e.g., steel) and receive one of pins 84 to connect the dip connector linkage assembly to sled linkage assembly 20, resulting in zero degrees of freedom in the frame when expanded. Upon removal of pins 84, the dip connector linkage assembly and the sled linkage assembly are no longer fixed together, thus, allowing the frame to collapse (see FIG. 26 ) with one degree of freedom.
  • FIG. 39 illustrates the expanded and collapsed dimensions for system 1 for an example implementation. As illustrated, system 1 is about 90 inches tall and 55 inches deep, in Orientation B, when expanded and about 46 inches tall and 31 inches deep when collapsed. System 1 is about 45 inches wide. Thus, system 1 may be transported in a van or larger SUV when collapsed. In terms of volume, system 1 collapses to less than about one-third of its volume.
  • The drawings shown herein are believed to provide fairly accurate representations of the illustrated implementations. Thus, lengths, angles, relative sizes, positioning of parts, orientation of parts, and like information can be readily extracted therefrom by one of skill in the art. However, the invention is not limited to the exact dimensions/sizes shown (e.g., bend radiuses, angles, etc. may need to be adjusted for various implementations).
  • A number of implementations have been shown and discussed, and several others have been suggested. Moreover, those of skill in the art will readily recognize that a variety of additions, deletions, substitutions, and transformations may be made while still achieving a multifunction, reorientable, collapsible exercise system. Thus, the scope of protected matter should be judged based on the claims, which may encompass one of more aspects of one of more implementations.

Claims (19)

1. An exercise system comprising a frame having a multitude of linked members, the frame configured to be reoriented onto various sides thereof to provide a user with different groups of exercises for each orientation, at least some of a first group of exercises involving the pivoting of the frame about an end.
2. The system of claim 1, wherein at least one of the first group of exercises involves pivoting the frame about a second end.
3. The system of claim 1, wherein the frame has three orientations in which exercises may be performed, at least some of a second group of exercises involving sliding of the frame on the ground.
4. The system of claim 3, wherein the frame is configured to resist sliding on the ground for the first group of exercises and to assist sliding on the ground for at least some of the second group of exercises.
5. The system of claim 3, wherein the frame has a bottom side, a back side, and a front side, and the orientations of the frame include upright, on its back, and on its front.
6. The system of claim 1, wherein a second group of exercises involve pivoting the frame about a different end.
7. The system of claim 1, wherein the frame comprises a base, a vertical section, and a top section when in an upright orientation, the vertical section being hingedly attached to the base and hingedly attached to the top section.
8. The system of claim 7, wherein the base comprises two portions that are hinged to each other.
9. The system of claim 1, wherein the frame is configured to support a person such that the person acts as a weight for a number of exercises.
10. The system of claim 7, wherein the frame is configured to support a person at multiple locations such that the resistance felt by a user is altered.
11. The system of claim 1, wherein the frame is configured to collapse along a single degree of freedom to less than one-half of its expand volume.
12. The system of claim 10, wherein the frame is configured to collapse along a single degree of freedom to less than one-third of its expanded volume.
13. The system of claim 1, wherein the system includes a mechanical overload indicator coupled to the frame.
14. The system of claim 1, wherein the system includes a mechanical exertion level indicator coupled to the frame.
15. The system of claim 1, wherein the system includes integrated electronics coupled to the frame to detect strain thereon and a transmitter to wirelessly send the detected strain to a remote computing device.
16. The system of claim 15, wherein the computing device is configured to receive the strain indications and determine an exertion level for the exercise being performed.
17. The system of claim 16, wherein the computing device is programmed to provide exercise instructions to a user.
18. The system of claim 1, wherein the system includes light emitting electronics integrated into the frame to provide instruction and safety features for the exercise being performed.
19. The system of claim 1, wherein the system includes audio electronics integrated into the frame to provide instruction and safety features for the exercise being performed.
US17/963,781 2021-10-11 2022-10-11 Pivoting/tilting multifunctional collapsible fitness system and associated software Pending US20230173321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/963,781 US20230173321A1 (en) 2021-10-11 2022-10-11 Pivoting/tilting multifunctional collapsible fitness system and associated software

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163262372P 2021-10-11 2021-10-11
US17/963,781 US20230173321A1 (en) 2021-10-11 2022-10-11 Pivoting/tilting multifunctional collapsible fitness system and associated software

Publications (1)

Publication Number Publication Date
US20230173321A1 true US20230173321A1 (en) 2023-06-08

Family

ID=85987744

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/963,781 Pending US20230173321A1 (en) 2021-10-11 2022-10-11 Pivoting/tilting multifunctional collapsible fitness system and associated software

Country Status (3)

Country Link
US (1) US20230173321A1 (en)
CA (1) CA3235135A1 (en)
WO (1) WO2023064283A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634118A (en) * 1984-02-16 1987-01-06 Jensen Peter A Cooperative exercising apparatus
US7556589B1 (en) * 2000-10-06 2009-07-07 Stearns Kenneth W Total body exercise methods and apparatus
US9446285B1 (en) * 2013-03-01 2016-09-20 Thomas Walter Drath Unsupported pelvic/spine exercise system and method
US11065506B2 (en) * 2018-08-30 2021-07-20 Industrial Technology Research Institute Muscle training equipment, muscle training system and muscle training method

Also Published As

Publication number Publication date
CA3235135A1 (en) 2023-04-20
WO2023064283A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US8523741B2 (en) Method and system for monitoring sport related fitness by estimating muscle power and joint force of limbs
US20110152045A1 (en) Apparatus and method for counter-resistance exercise
US10500430B2 (en) Portable exercise apparatus
US8641587B2 (en) Progressive resistance exercise device
WO2014120042A1 (en) Exercise machine
US8540610B2 (en) Exercise machine
US20210178217A1 (en) Physical fitness hand grip for dynamic resistance exercises
US20170014663A1 (en) Exercise Apparatus and Method for Using Same
US9039585B2 (en) Exercise machine
US20060205576A1 (en) Exercise machine with leverage arm
US20200222760A1 (en) Exercise management and reporting system
US20170239508A1 (en) Workout devices and methods
Jay daWeS et al. Aerobic fitness, upper-body strength and agility predict performance on an occupational physical ability test among police officers while wearing personal protective equipment
KR20180122440A (en) Sports training device for variable load generation
US20230173321A1 (en) Pivoting/tilting multifunctional collapsible fitness system and associated software
Berning et al. Using chains for strength and conditioning
CN108785995A (en) Multifunctional leg training airplane
CN211885123U (en) Training inclined plate
US20240100393A1 (en) Athletic or Rehabilitative Force Registering Device
US20050020415A1 (en) Isometric exercise equipment with portable feedback device
US20220007979A1 (en) Apparatus For Measuring Isometric Muscle Strength
CN105854221B (en) Multi-gym
US20230256291A1 (en) A Device For Hip Extension Assessment Or Exercises
US20190105529A1 (en) Exercise machine
US20240058636A1 (en) Isometric exercise devices

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION