US20230160316A1 - Abrasive material, a method for manufacturing an abrasive material and a substrate coated with an abrasive material - Google Patents
Abrasive material, a method for manufacturing an abrasive material and a substrate coated with an abrasive material Download PDFInfo
- Publication number
- US20230160316A1 US20230160316A1 US17/917,489 US202117917489A US2023160316A1 US 20230160316 A1 US20230160316 A1 US 20230160316A1 US 202117917489 A US202117917489 A US 202117917489A US 2023160316 A1 US2023160316 A1 US 2023160316A1
- Authority
- US
- United States
- Prior art keywords
- abrasive material
- abrasive
- material according
- abrasive particles
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003082 abrasive agent Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 title claims description 15
- 239000002245 particle Substances 0.000 claims abstract description 51
- 239000011159 matrix material Substances 0.000 claims abstract description 24
- 229910001068 laves phase Inorganic materials 0.000 claims abstract description 23
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910000943 NiAl Inorganic materials 0.000 claims abstract description 15
- 229910000907 nickel aluminide Inorganic materials 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052582 BN Inorganic materials 0.000 claims description 9
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 238000007792 addition Methods 0.000 description 10
- 238000000576 coating method Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 229910017141 AlTa Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910001005 Ni3Al Inorganic materials 0.000 description 1
- 229910000624 NiAl3 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- -1 rare earth silicate Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/005—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2303/00—Functional details of metal or compound in the powder or product
- B22F2303/15—Intermetallic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/307—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present disclosure relates to an abrasive material with the features of claim 1 , a method for manufacturing an abrasive material with the features of claim 11 , and a substrate coated with an abrasive material with the features of claim 14 .
- Turbine sealing systems in aircraft engines comprise an abradable material which is generally applied to a static component (e.g. a seal segment) and an abrasive material which is applied to a rotating component (e.g. a turbine blade or a compressor blade).
- the abrasive material cuts into the abradable material in a defined way and is used e.g. for turbine blade tip clearance control (i.e. minimizing the blade tip clearance) and which is important for the efficiency of the turbine.
- Known abrasive materials (U.S. Pat. No. 6,355,086 B2 and U.S. Pat. No. 8,266,801 B2) use either cubic boron nitride particles held within a CoNiCrAlY metal matrix or within a superalloy matrix to cut into abradable material.
- U.S. Pat. No. 8,266,801 B2 mentions a directed laser deposition process to deposit polycrystalline nickel superalloys.
- Abradable material is e.g. known from U.S. Pat. No. 7,479,328 B2 as a coating system used on segments or e.g. from U.S. Pat. No. 8,124,252 B2 using a rare earth silicate as a porous abradable coating for ceramic matrix composite seal segments.
- an abrasive material comprising a nickel aluminide intermetallic phase, in particular a beta nickel aluminide ( ⁇ -NiAl) intermetallic phase with a Laves phase.
- a nickel aluminide intermetallic phase in particular a beta nickel aluminide ( ⁇ -NiAl) intermetallic phase with a Laves phase.
- ⁇ -NiAl beta nickel aluminide
- the Laves phase comprises Ta, in particular in the form of ⁇ 1 NiAlTa.
- the intermetallic phase with the Laves phase form a matrix for abrasive particles which are part of the abrasive material.
- the overall content of Ta in the abrasive material is between 1 at. % and 20 at. %, in particular between 1, 5 to 3 at. % or 6 and 9 at. %
- NiAlTa alloy such as Cr, Mo, Nb, and/or V.
- the NiAlTa and Beta-NiAl phases can comprise up to 7.5 at. % Cr.
- the abrasive particles comprise cubic boron nitride, silicon nitride, silicon carbide, zirconia and/or alumina-based oxides.
- the abrasive particles can be coated, in particular with Ti and/or Ni.
- the abrasive particles are vertically distributed in the matrix, in particular in the form of layers. This will ensure that abrasive particles will available if the top layer has been removed during operation.
- the abrasive particles can also be stacked in a direction essentially perpendicular to the surface.
- the substrate is heated or pre-heated for the deposition of the matrix and/or the abrasive particles. This prevents cracks in the materials.
- the heating can e.g. be effected by induction or high temperature lamps.
- a substrate in particular a blade in turbomachine with a tip coated with an abrasive material of at least one of claims 1 to 10 .
- FIG. 1 shows a graph indicating the yield strength in dependence of the temperature
- FIG. 2 schematically shows a cross-sectional view of an embodiment of an abrasive material on top of a substrate before a mechanical rub;
- FIG. 3 schematically shows the cross-sectional view of the embodiment of FIG. 2 after a mechanical rub
- FIG. 4 schematically shows a cross-sectional view of an embodiment in which the metal matrix is deposited first and subsequently the abrasive particles;
- FIG. 5 schematically shows a cross-sectional view of an embodiment
- FIG. 6 schematically shows a cross-sectional view of an embodiment with tapered sides
- FIG. 7 shows a cross-sectional view of substrate with a an abrasive material with low stacking of abrasive particles
- FIG. 8 shows a cross-sectional view of substrate with a an abrasive material with stacking of abrasive particles.
- abrasive materials 10 with a NiAl intermetallic phase in particular a beta nickel aluminide ( ⁇ -NiAl) intermetallic phase with a Laves phase addition, is described.
- the NiAl phase with the Laves phase is used as a matrix 1 for abrasive particles 2 , as will be shown in connection with FIGS. 2 to 6 .
- An Mg spinel abradable system is a high thermal conductivity abradable coating system which does not use a dislocator phase in the abradable portion of the coating system. This makes it more difficult to cut with an abrasive tip of a blade using known abrasive materials at operating with elevated temperatures. Hence, the abradable system requires a higher strength abrasive material at elevated operating temperatures.
- an abrasive material 10 with a NiAl intermetallic phase in particular a beta nickel aluminide ( ⁇ -NiAl) intermetallic phase with a Laves phase addition.
- NiAl intermetallic phase are e.g. NiAl 3 or Ni 3 Al.
- the continuity of the Laves phase that forms is dependent on the Tantalum content of the alloy. Below 3 at. % Tantalum the Laves phase precipitates out discontinuously on NiAl grain boundaries. Above 3 at. % Tantalum, the NiTaAl completely covers the grain boundaries and forms a continuous skeleton required to produce a continuous Laves phase. Material with additions above 20 at. % Tantalum was found to have inferior oxidation performance.
- FIG. 1 shows the benefit of a NiAl-33 vol % NiAlTa alloy (diamond symbol) having a yield strength of over 250 MPa at 1200° C. while prior art materials are significantly lower than that. In particular close to the 35 MPa threshold. Analysis has determined that 35 MPa is the minimum yield strength required to anchor the abrasive material.
- Quaternary additions of elements to the NiAlTa phase could be made to optimise individual properties.
- Examples of quaternary elemental additions are Chromium, Molybdenum, Niobium and/or Vanadium.
- Quaternary additions of Chromium to the NiAlTa system improved ductility relative to the NiAlTa system but had reduced high temperature creep strength. This addition is considered to have potential for the application in blades of a gas turbine engine.
- a matrix 1 using a NiAlTa Laves phase along with cubic boron nitride as abrasive particles 2 are used.
- the application of the materials can be effected by a blown powder directed Laser Deposition process, a composite electroplating, diffusion bonding or a thermal spray method.
- the baseline sequence is that the metal matrix 1 and abrasive particles 2 will be co-deposited using a technique such as directed laser deposition, thermal spray or diffusion bonding.
- approximately three abrasive particles 2 are stacked upon each other.
- FIGS. 3 and 4 show that by tailoring the manufacturing process conditions, the amount of abrasive particle stacking can be controlled.
- FIG. 7 The cross-sectional view of a substrate according to FIG. 7 was produced using parameters show very little stacking of the abrasive particles 2
- FIG. 8 was produced with parameters which promote the stacking of abrasive particles 2 . As can be seen, some material removed from the top would expose abrasive particles 2 vertically below.
- FIGS. 7 and 8 also show the shape of the abrasive particles 2 in a cross-section.
- the particles are on average not rounded and comprise flat surfaces forming edges where the meet. This gives the abrasive particles an angular shape.
- This stacking of abrasive particles has the advantage of sustained cutting performance by which the cubic boron nitride particles at the top of the stack are removed due to a heavy rub/incursion of the blade into the abradable material (not shown here). As shown in FIG. 3 , there are multiple abrasive particles 2 below which will be exposed for additional ability to cut into the high temperature abradable capacity.
- the abrasive particles can, but do not have to be deposited in discrete layers to enable this behaviour.
- An alternative sequence of manufacture would be to deposit the metal matrix 1 first followed by deposition/embedding of the abrasive particles 2 which is shown in FIG. 4 .
- the matrix 1 and the abrasive particles 2 may be applied by directed laser deposition, electroplate or thermal spray.
- a bond coat/bond layer 4 may be applied onto the substrate 3 .
- the bond coat layer 4 is a layer of metallic material deposited directly on to the substrate 3 , this is typically the same composition as the matrix material 1 mentioned earlier although other compositions may also have satisfactory properties in particular oxidation resistance, tensile strength and co-efficient of thermal expansion.
- This sequence may yield improvements in the oxidation resistance of the metal matrix 1 by leaving a continuous layer of nickel aluminium tantalum below the abrasive particles 2 .
- the particles 2 such as cubic boron nitride can introduce short-circuit diffusion paths for oxygen below the particles compromising oxidation life of the abrasive.
- This sequence might also yield an improvement in cutting performance, as it leaves the abrasive particles 2 anchored in the outer region and protruding out of the metal matrix 2 .
- cubic boron nitride is used for the abrasive particles 2 but other ceramics, such as silicon nitride and alumina can also be used. It is also possible to use mixtures of different ceramic types.
- the average size of the abrasive particles 2 can be in the range of 125 to 600 microns in particular between 125 and 250 microns.
- the form of the deposition of the Laves phase comprising the NiAlTa can be optimized to maximise coverage at a similar height across the tip of the turbine blade (see FIG. 5 ).
- a sub-optimal case is shown in FIG. 6 which has tapered sides resulting with less abrasive particles 2 towards the tip of the abrasive material 10 .
- the abrasive material 10 will be deposited in a metastable microstructural condition where post-deposition heat treatments and service temperatures and times result in microstructural equilibrium to the nickel aluminide plus Laves phase microstructure.
- heat treatment at 1100° C. caused some of the Laves phases to transform to L2 Ni2AlTa Heusler phase.
- the materials proposed are compatible with current single crystal superalloy, coatings and other treatments applied to state-of-the-art turbine blades. This is similar to prior art materials.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020205248 | 2020-04-24 | ||
DE102020205248.4 | 2020-04-24 | ||
PCT/EP2021/056552 WO2021213735A1 (fr) | 2020-04-24 | 2021-03-15 | Matériau abrasif, procédé de fabrication d'un matériau abrasif et substrat revêtu d'un matériau abrasif |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230160316A1 true US20230160316A1 (en) | 2023-05-25 |
Family
ID=74947399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/917,489 Pending US20230160316A1 (en) | 2020-04-24 | 2021-03-15 | Abrasive material, a method for manufacturing an abrasive material and a substrate coated with an abrasive material |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230160316A1 (fr) |
EP (1) | EP4139561A1 (fr) |
WO (1) | WO2021213735A1 (fr) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6355086B2 (en) | 1997-08-12 | 2002-03-12 | Rolls-Royce Corporation | Method and apparatus for making components by direct laser processing |
DE10334698A1 (de) | 2003-07-25 | 2005-02-10 | Rolls-Royce Deutschland Ltd & Co Kg | Deckbandsegment für eine Strömungsmaschine |
US7357958B2 (en) * | 2004-10-29 | 2008-04-15 | General Electric Company | Methods for depositing gamma-prime nickel aluminide coatings |
GB2449862B (en) | 2007-06-05 | 2009-09-16 | Rolls Royce Plc | Method for producing abrasive tips for gas turbine blades |
US8124252B2 (en) | 2008-11-25 | 2012-02-28 | Rolls-Royce Corporation | Abradable layer including a rare earth silicate |
US10018056B2 (en) * | 2014-07-02 | 2018-07-10 | United Technologies Corporation | Abrasive coating and manufacture and use methods |
DE102015222141A1 (de) | 2015-11-10 | 2017-05-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Halterungsvorrichtung für ein Substrat und Verfahren zur Beschichtung einer Oberseite eines Substrats |
-
2021
- 2021-03-15 US US17/917,489 patent/US20230160316A1/en active Pending
- 2021-03-15 EP EP21712782.8A patent/EP4139561A1/fr active Pending
- 2021-03-15 WO PCT/EP2021/056552 patent/WO2021213735A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
WO2021213735A1 (fr) | 2021-10-28 |
EP4139561A1 (fr) | 2023-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4916022A (en) | Titania doped ceramic thermal barrier coatings | |
US5780110A (en) | Method for manufacturing thermal barrier coated articles | |
EP1079073B1 (fr) | Revêtement par diffusion d'aluminure modifié pour les surfaces internes de composants de turbine à gaz | |
EP1076116B1 (fr) | Composants ayant un recouvrement partiel et leurs préparations | |
US5015502A (en) | Ceramic thermal barrier coating with alumina interlayer | |
EP1791989B1 (fr) | Revêtements d'aluminiure de platine modifiés avec du chrome et des éléments actifs | |
EP0844368B2 (fr) | Revêtissement partiel des aubes de turbine à gaz pour améliorer la résistance à la fatigue | |
US5514482A (en) | Thermal barrier coating system for superalloy components | |
US6335105B1 (en) | Ceramic superalloy articles | |
EP1953252B1 (fr) | Compositions d'alliages du type MCrAlY et articles les utilisant | |
EP0366924A2 (fr) | Rêvetement céramique en tant que barrière thermique comportant une couche intermédiaire en alumine | |
EP3252277B1 (fr) | Bande de frottement abradable de joint externe | |
EP1340833B1 (fr) | Revêtement hybride formant barrière thermique et méthode pour sa fabrication | |
JPS6136061B2 (fr) | ||
US6720088B2 (en) | Materials for protection of substrates at high temperature, articles made therefrom, and method for protecting substrates | |
US20020192491A1 (en) | Oxidation resistant coatings for niobium-based silicide composites | |
US20100330295A1 (en) | Method for providing ductile environmental coating having fatigue and corrosion resistance | |
EP3255254A1 (fr) | Bande de frottement abradable de joint externe | |
US20020119340A1 (en) | Oxidation resistant coatings for molybdenum silicide-based composite articles | |
EP1666629A2 (fr) | Pièce protégée par une barrière de diffusion et une couche de groupe platine | |
EP0992614A1 (fr) | Revêtement pour éléments d'une turbine | |
US20100330393A1 (en) | Ductile environmental coating and coated article having fatigue and corrosion resistance | |
GB2285632A (en) | Thermal barrier coating system for superalloy components | |
US20230160316A1 (en) | Abrasive material, a method for manufacturing an abrasive material and a substrate coated with an abrasive material | |
CN113242913A (zh) | 由包含铼和/或钌的超合金制成的涡轮部件以及相关的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROLLS-ROYCE PLC, GREAT BRITAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHRUEFER, SUSANNE;HANCOCK, MATTHEW;LONG, KEVIN;SIGNING DATES FROM 20200505 TO 20200602;REEL/FRAME:061339/0728 Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHRUEFER, SUSANNE;HANCOCK, MATTHEW;LONG, KEVIN;SIGNING DATES FROM 20200505 TO 20200602;REEL/FRAME:061339/0728 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |