US20230156400A1 - Glasses - Google Patents

Glasses Download PDF

Info

Publication number
US20230156400A1
US20230156400A1 US18/150,180 US202318150180A US2023156400A1 US 20230156400 A1 US20230156400 A1 US 20230156400A1 US 202318150180 A US202318150180 A US 202318150180A US 2023156400 A1 US2023156400 A1 US 2023156400A1
Authority
US
United States
Prior art keywords
glasses
bone conduction
conduction microphone
user
temple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/150,180
Other languages
English (en)
Inventor
Jinbo ZHENG
Haofeng Zhang
Fengyun LIAO
Xin Qi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Shokz Co Ltd
Original Assignee
Shenzhen Shokz Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Shokz Co Ltd filed Critical Shenzhen Shokz Co Ltd
Publication of US20230156400A1 publication Critical patent/US20230156400A1/en
Assigned to Shenzhen Shokz Co., Ltd. reassignment Shenzhen Shokz Co., Ltd. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SHENZHEN VOXTECH CO., LTD.
Assigned to SHENZHEN VOXTECH CO., LTD. reassignment SHENZHEN VOXTECH CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIAO, Fengyun, QI, XIN, ZHANG, HAOFENG, ZHENG, Jinbo
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/06Hearing aids
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the present disclosure relates to the field of acoustics, and in particular, to glasses including a bone conduction microphone.
  • a microphone is generally an open-ear microphone based on air conduction. Although good sound quality can be obtained using the microphone, the external background sound source cannot be isolated, and in a conversation in a noisy environment, the ambient noise cannot be filtered, which may cause an inconvenience to a user.
  • a bone conduction microphone has stronger anti-noise ability because it can detect the vibration of the user's voice through bone conduction due to a direct or indirect contact with the human body.
  • most bone conduction microphones have a limited range of application and are inconvenient to wear. Therefore, the present disclosure provides glasses integrated with the bone conduction microphone.
  • the glasses may include a glasses body including a glasses frame and two glasses temples, wherein the two glasses temples may be physically connected to the glasses frame, respectively; and at least one bone conduction microphone configured to convert a vibration signal into an electric signal, wherein the at least one bone conduction microphone may be physically connected to the glasses frame or at least one glasses temple of the two glasses temples, and the at least one bone conduction microphone may be configured to receive vibration signals from the glasses frame, the at least one glasses temple or a user's body.
  • the at least one bone conduction microphone may not be in contact with the user's body.
  • the at least one bone conduction microphone may be disposed near a position of the glasses frame that is in contact with the user's body.
  • the at least one bone conduction microphone may be disposed near a position of the at least one glasses temple that is in contact with the user's body.
  • the at least one bone conduction microphone may be disposed near a connection between the glasses frame and the at least one glasses temple.
  • the at least one bone conduction microphone may include a vibration unit, the vibration unit may be disposed parallel to a contact surface of the glasses frame or the at least one glasses temple that is in contact with the user's body.
  • the vibration unit of the bone conduction microphone may be a single-axis acceleration sensor or a multi-axis acceleration sensor.
  • the two glasses temple may include a first glasses temple and a second glasses temple
  • the at least one bone conduction microphone may include at least one first bone conduction microphone and at least one second bone conduction microphone; wherein the at least one first bone conduction microphone may be disposed on the first glasses temple, and the at least one second bone conduction microphone may be disposed on the second glasses temple.
  • the at least one first bone conduction microphone and the at least one second bone conduction microphone may be both wireless bone conduction microphones.
  • the two glasses temple may include a contact surface that is in direct contact with the user, and a pressure of the contact surface to the user's body may be larger than 0.1 N.
  • the pressure of the contact surface to the user's body may be larger than 0.2 N.
  • the pressure of the contact surface to the user's body may be larger than 0.6 N.
  • the at least one bone conduction microphone may be elastically connected to the at least one glasses temple or the glasses frame.
  • the at least one bone conduction microphone when the user wears the glasses, the at least one bone conduction microphone may be in contact with the user's body such that the at least one bone conduction microphone receives the vibration signal of the user's body.
  • a vibration unit of the at least one bone conduction microphone may be disposed parallel to a contact surface between the glasses frame or the at least one glasses temple and the user's body.
  • the at least one glasses temple or the glasses frame may include an installation cavity for accommodating the at least one bone conduction microphone.
  • the at least one bone conduction microphone may be connected to a side wall of the installation cavity through an elastic element.
  • an elastic layer may be disposed between the at least one bone conduction microphone and the installation cavity.
  • FIG. 1 is a schematic diagram illustrating an exemplary structure of glasses provided according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating exemplary frequency response curves corresponding to different installation positions of a bone conduction microphone according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating an exemplary installation position of a bone conduction microphone according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram illustrating an exemplary installation position of a bone conduction microphone according to some other embodiments of the present disclosure
  • FIG. 5 is a schematic diagram illustrating an exemplary installation position of a bone conduction microphone according to some other embodiments of the present disclosure
  • FIG. 6 is a schematic diagram illustrating an exemplary structure of a bone conduction microphone according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram illustrating exemplary frequency response curves of a bone conduction microphone under different pressures according to some embodiments of the present disclosure
  • FIG. 8 is a schematic diagram illustrating an exemplary frequency response curve of a bone conduction microphone according to some embodiments of the present disclosure
  • FIG. 9 is a schematic diagram illustrating exemplary frequency response curves of a noise signal and a voice signal received by a bone conduction microphone according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating an exemplary bone conduction microphone in contact with a user's body according to some embodiments of the present disclosure
  • FIG. 11 is a flowchart illustrating an exemplary processing process of the voice signal of the bone conduction microphone according to some embodiments of the present disclosure.
  • FIG. 12 is a flowchart illustrating an exemplary process for training a voice model according to some embodiments of the present disclosure.
  • system is one method to distinguish different components, elements, parts, sections, or assemblies of different levels in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
  • the flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments of the present disclosure. It is to be expressly understood, the operations of the flowcharts may be implemented not in order. Conversely, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
  • FIG. 1 is a schematic diagram illustrating an exemplary structure of glasses according to some embodiments of the present disclosure.
  • the glasses may include a glasses body 10 and at least one bone conduction microphone 20 .
  • the glasses body 10 may include components such as a glasses frame 11 , glasses temple(s) 12 , etc.
  • the glasses body 10 may include various types of glasses such as nearsighted glasses, farsighted glasses, sunglasses, 3D glasses, virtual reality (VR)/augmented reality (AR) glasses, etc., which are not limited herein.
  • the glasses frame 11 may be physically connected to the glasses temple(s) 12 .
  • Exemplary physical connections may include a hinged connection, a snap-fit connection, a welded connection, an integrated molding, etc.
  • the glasses temple(s) 12 may rotate around a connection between the glasses frame 11 and the glasses temple(s) 12 such that the glasses temple(s) 12 may be folded or unfolded relative to the glasses frame 11 .
  • the glasses temple(s) 12 when the glasses temple(s) 12 is connected to the glasses frame 11 through the hinged connection or the snap-fit connection, the glasses temple(s) 12 may be detachable relative to the glasses frame 11 such that a user may repair or replace the glasses temple(s) 12 .
  • the glasses frame 11 when the glasses frame 11 is connected to the glasses temple(s) 12 through the welded connection or the integrated molding, the glasses temple(s) 12 may be fixed relative to the glasses frame 11 without being folded or unfolded.
  • the glasses temple(s) 12 may further include a telescopic structure (not shown in FIG. 1 ).
  • the user may adjust a length of the glasses temple(s) 12 through the telescopic structure such that the glasses temple(s) 12 may adapt to different head shapes of different users.
  • the telescopic structure may refer to a structure capable of adjusting a length.
  • the telescopic structure may include a telescopic rod structure.
  • the bone conduction microphone 20 may be a sound pickup device (i.e., a voice collection device) capable of converting a vibration signal into an electric signal.
  • the vibration signal may refer to a signal generated by a vibration of the user's body part when the user speaks.
  • the bone conduction microphone may be understood as a microphone device that is sensitive to a bone conduction sound transmitted by the vibration, but is insensitive to an air conduction sound transmitted by air.
  • the bone conduction microphone 20 may be disposed on the glasses body 10 , for example, on a portion of the glasses temple(s) 12 or the glasses frame 11 . In some embodiments, when the user wears the glasses, the bone conduction microphone 20 may not be in direct contact with the user's body.
  • a vibration signal (e.g., vibrations of the user's face) generated when the user speaks may be transmitted to the glasses frame 11 and/or the glasses temple(s) 12 . Then the glasses frame 11 and/or the glasses temple(s) 12 may transmit the vibration signal to the bone conduction microphone 20 , and the bone conduction microphone may further convert the vibration signal of the user's body into the electric signal containing voice information.
  • the bone conduction microphone 20 when the user wears the glasses, the bone conduction microphone 20 may be in direct contact with the human body, and the vibration signal generated when the user speaks may be directly transmitted to the bone conduction microphone 20 .
  • an inside of the glasses temple(s) 12 or the glasses frame 11 may include a hollow structure, and a control circuit or a signal transmission circuit relating to the bone conduction microphone 20 may be disposed in the hollow structure.
  • the glasses may further include a speaker assembly 30 .
  • the speaker assembly 30 may be configured to convert the electric signal with sound information into a sound.
  • the speaker assembly 30 may be a bone conduction speaker connected to the glasses temple(s) 12 through a hinge assembly 40 .
  • the bone conduction speaker may be connected to an end of the glasses temple(s) 12 (i.e., an end away from the glasses frame 11 ).
  • the hinge assembly 40 may further include a connecting wire 41 .
  • the connecting wire 41 may be a connecting piece having an electrical connection and/or a mechanical connection.
  • the speaker assembly 30 may be an air conduction speaker disposed at any position on the glasses temple(s) 12 .
  • the air conduction speaker may be disposed in a middle part of the glasses temple(s) 12 .
  • the air conduction speaker may transmit the sound to the user by air conduction through one or more sound guiding holes facing the user's ear canal.
  • a control circuit or a signal transmission circuit relating to the speaker assembly 30 may be disposed within the hollow structure inside the glasses temple(s) 12 .
  • the user's body may be usually in direct contact with the glasses temple(s) 12 or the glasses frame 11 when the user wears the glasses. While when the glasses body 10 is rigidly connected to the bone conduction microphone 20 , the vibration signal when the user speaks may be effectively transmitted to the bone conduction microphone 20 through the glasses body 10 (e.g., the glasses frame 11 , the glasses temple(s) 12 ) without through a direct connection between the bone conduction microphone 20 and the user's body. In such cases, the bone conduction microphone 20 may be disposed on the glasses body 10 at a position not in contact with the user's body, and the bone conduction microphone 20 may be rigidly connected to the glasses body 10 .
  • Exemplary rigid connections may include a fixed connection such as a bonded connection, a welded connection, an integrated molding, etc., or may include a detachable connection such as a snap-fit connection, a bolted connection, etc.
  • a connection manner between the bone conduction microphone 20 and the glasses body 10 may be adjusted adaptively according to the specific situation, which is not limited herein.
  • the bone conduction microphone 20 may be disposed on an outer surface or inside of the glasses frame 11 or the glasses temple(s) 12 .
  • the bone conduction microphone 20 when the bone conduction microphone 20 is disposed on the outer surface of the glasses frame 11 , the bone conduction microphone 20 may be disposed on a side wall of the glasses frame 11 or the glasses temple(s) 12 that is away from the user's body. As another example, the bone conduction microphone 20 may be disposed on a side wall of the glasses frame 11 or the glasses temple(s) 12 facing the user's body, and a distance between the side wall and the user's body may be larger than a height (or a thickness) of the bone conduction microphone 20 . As a further example, in some embodiments, the glasses frame 11 or the glasses temple(s) 12 may include an installation cavity (not shown in FIG.
  • the installation cavity may be configured to accommodate the bone conduction microphone 20 .
  • the bone conduction microphone 20 may extend or not extend out of the installation cavity. In such cases, the bone conduction microphone 20 may not be in contact with the user's body when the user wears the glasses.
  • FIG. 2 is a schematic diagram illustrating exemplary frequency response curves corresponding to different installation positions of a bone conduction microphone according to some embodiments of the present disclosure.
  • the bone conduction microphone may be obviously larger than the vibration signal received by the bone conduction microphone when the bone conduction microphone is disposed far from the position of the glasses body that is in contact with the user's body (e.g., the “away from the contact position” shown in FIG. 2 ).
  • the bone conduction microphone may be disposed near the position of the glasses body that is in contact with the user's body.
  • At least one bone conduction microphone may be disposed near a position of the glasses frame that is in contact with the user's body.
  • the glasses frame 11 may include a nose pad 111 that is in contact with the human body.
  • the nose pad 111 may refer to a structure of the glasses frame 11 that abuts against the user's nose when the user wears the glasses.
  • the bone conduction microphone 20 may be disposed near the nose pad 111 .
  • the vibration signal generated when the user speaks or the user's body vibrates may be directly transmitted to the bone conduction microphone 20 through the nose pad of the glasses frame.
  • the glasses frame 11 when the user wears the glasses, the glasses frame 11 may be attached to the user's body (e.g., around the eyes), and the glasses frame 11 may cover the skin around the user's eyes.
  • the bone conduction microphone 20 may be directly disposed on the glasses frame 11 , and the vibration signal generated when the user speaks or the user's body vibrates may be directly transmitted to the bone conduction microphone 20 through the glasses frame 11 .
  • the at least one bone conduction microphone 20 may be disposed near a position of the glasses temple that is in contact with the user's body.
  • a position of the glasses temple(s) 12 that is away from the glasses frame 11 may be usually in direct contact with the human body.
  • the position of the glasses temple(s) 12 that is in contact with the user's body may refer to a partial region 121 of the glasses temple near a region from the temple to the ear.
  • the position of the glasses temple(s) 12 that is in contact with the user's body may refer to a bending region 122 of the glasses temple that is away from the glasses frame 11 .
  • the bending region 122 may be located above the user's auricle.
  • the at least one bone conduction microphone 20 may be disposed on the partial region 121 of the glasses temple near the region from the temple to the ear, or a position near the bending region 122 .
  • the bone conduction microphone 20 may receive the vibration signal from the glasses frame 11 and the glasses temple(s) 12 at the same time when the bone conduction microphone 20 is disposed near a connection between the glasses frame 11 and the glasses temple(s) 12 .
  • the bone conduction microphone 20 may be disposed near the connection between the glasses frame 11 and the glasses temple(s) 12 .
  • the installation position of the bone conduction microphone 20 may also be determined according to a connection manner between the glasses frame 11 and the glasses temple(s) 12 , and an elastic strength of the glasses frame 11 or the glasses temple(s) 12 .
  • the bone conduction microphone 20 may be disposed near the position of glasses frame 11 that is in contact with the user's body or the position of the glasses temple(s) 12 that is in contact with the user's body, thereby improving the quality of the vibration signal of the user's body transmitted to the bone conduction microphone 20 .
  • the connection strength between the glasses frame 11 and the glasses temple(s) 12 may refer to properties such as a tensile strength, a bending load, a compressive load, a torsional load, etc. that the glasses frame and the glasses temple(s) may bear when the glasses frame is connected to the glasses temple.
  • the above-mentioned installation position of the bone conduction microphone 20 are merely provided for the purposes of illustration, and the installation position of the bone conduction microphone is not limited to the positions shown in FIGS. 3 - 5 .
  • the installation position of the microphone may include, but is not limited to the several situations listed above.
  • the bone conduction microphone may be arbitrarily disposed to ensure that the bone conduction microphone may receive vibration signals with good quality.
  • FIG. 6 is a schematic diagram illustrating an exemplary structure of a bone conduction microphone according to some embodiments of the present disclosure.
  • the bone conduction microphone 20 may include a housing structure 210 , an acoustic transducer 240 , and a vibration unit 220 .
  • a shape of the bone conduction microphone 20 may include regular shapes such as a cuboid, a cylinder, etc., or irregular shapes.
  • the housing structure 210 may be physically connected to the acoustic transducer 240 .
  • the housing structure 210 and the acoustic transducer 240 may be used as a package structure of the bone conduction microphone 20 .
  • the physical connection may include a hinged connection, a snap-fit connection, a welded connection, an integrated molding, etc.
  • the housing structure 210 and the acoustic transducer 240 may constitute a package structure with a first acoustic cavity 230 .
  • the vibration unit 220 may be disposed within the first acoustic cavity 230 of the package structure.
  • the vibration unit 220 may divide the first acoustic cavity 230 into a second acoustic cavity 231 and a third acoustic cavity 232 .
  • the third acoustic cavity 232 may be in an acoustic communication with the acoustic transducer 240 .
  • the second acoustic cavity 231 may be an acoustically sealed cavity.
  • the vibration unit 220 may include a quality element 222 and an elastic element 221 .
  • the quality element 222 may be connected to the housing structure 210 through the elastic element 221 .
  • the elastic element 221 may be disposed on a side of the quality element 222 that is away from the acoustic transducer 240 .
  • One end of the elastic element 221 may be connected to the housing structure 210 , and the other end of the elastic element 221 may be connected to the quality element 222 .
  • the elastic element 221 may be disposed on a peripheral side of the quality element 222 .
  • An inner side of the elastic element 221 may be connected to the peripheral side of the quality element 222 , and an outer side of the elastic element 221 or a side away from the acoustic transducer 240 may be connected to the housing structure 210 .
  • the quality element 222 may be connected to the acoustic transducer 240 through the elastic element 221 .
  • the elastic element 221 may have a shape of a round tube, a square tube, a special-shaped tube, a ring, a flat plate, etc.
  • a material of the elastic element may be a material capable of elastic deformation, such as a silica gel, a metal, a rubber, etc.
  • the elastic element 221 may be more likely to be elastically deformed than the housing structure 210 , such that the vibration unit 220 may move relative to the housing structure 210 .
  • the bone conduction microphone 20 may convert an external vibration signal into an electric signal.
  • the external vibration signal may include a vibration signal when a person speaks, a vibration signal generated by a skin moving along with the human body, and a vibration signal generated by an object in contact with the bone conduction microphone 20 (e.g., a glasses frame or a glasses temple), etc., or any combination thereof.
  • the external vibration signal may be transmitted to the vibration unit 220 through the housing structure 210 , and the vibration unit 220 may vibrate in response to the vibration of the housing structure 210 . Since a vibration phase of the vibration unit 220 is different from a vibration phase of the housing structure 210 and a vibration phase of the acoustic transducer 240 , the vibrations of the vibration unit 220 may cause a change of a volume of the third acoustic cavity 232 , thereby causing a change of a sound pressure of the third acoustic cavity 232 .
  • the acoustic transducer 240 may detect the change of the sound pressure of the third acoustic cavity 232 and convert the change of the sound pressure into the electric signal.
  • the acoustic transducer 240 may include a diaphragm (not shown in FIG. 6 ). When the sound pressure of the third acoustic cavity 232 changes, the air inside the third acoustic cavity 232 may vibrate. The vibrations of the air may act on the diaphragm such that the diaphragm may deform, and the acoustic transducer 240 may convert the vibration signal of the diaphragm into the electric signal.
  • the vibration unit 220 of the above-mentioned bone conduction microphone 20 may be disposed in parallel with a contact surface between the glasses frame or the glasses temple(s) and a user's body.
  • the vibration unit 220 may vibrate in a direction perpendicular to the user's body (skin).
  • the vibration unit 220 of the bone conduction microphone 20 may be disposed parallel to the contact surface between the glasses frame or the glasses temple(s) and the user's body. In such cases, the vibration signal may be effectively collected from the user's body, thereby improving the sensitivity of the bone conduction microphone. In some embodiments, the vibration unit 220 of the bone conduction microphone 20 may not be disposed in parallel with the contact surface between the glasses frame or the glasses temple(s) and the user's body.
  • the side of the bone conduction microphone 20 with the vibration unit 220 may be connected to the glasses frame or the glasses temple(s), such that the bone conduction microphone 20 may better receive the vibration signal at the glasses frame or the glasses temple(s).
  • the vibration unit 220 of the bone conduction microphone 20 may include a single-axis acceleration sensor or a multi-axis acceleration sensor (e.g., a three-axis acceleration sensor).
  • the strongest vibration signal in a plurality of directions collected by the multi-axis acceleration sensor may be selected as an input signal of the bone conduction microphone.
  • a stronger input signal may be obtained by performing a weighted sum operation on the vibration signals collected in the plurality of directions by the multi-axis acceleration sensor.
  • the glasses may include a plurality of bone conduction microphones 20 .
  • the plurality of bone conduction microphones 20 may be respectively disposed at different positions of the glasses body 10 (e.g., the glasses frame or the glasses temple(s)).
  • the glasses body 10 may include a first glasses temple and a second glasses temple, and the plurality of bone conduction microphones may include at least one first bone conduction microphone and at least one second bone conduction microphone.
  • the at least one first bone conduction microphone may be disposed on the first glasses temple, and the at least one second bone conduction microphone may be disposed on the second glasses temple.
  • a plurality of first bone conduction microphones disposed on the first glasses temple and a plurality of second bone conduction microphones disposed on the second glasses temple may be disposed in an array, respectively. It should be noted that, the counts and types of the first bone conduction microphone and the second bone conduction microphone may be the same or different.
  • the first bone conduction microphone(s) disposed on the first glasses temple and the second bone conduction microphone(s) disposed on the second glasses temple may have different orientations.
  • the vibration direction of the vibration units in some of the bone conduction microphones may be along a direction perpendicular to the user's body (skin), and the vibration direction of the vibration units in some bone conduction microphones may form a certain angle with the direction perpendicular to the user's body.
  • different bone conduction microphones may collect vibration signals in different directions.
  • the signal with the greatest signal-to-noise ratio (SNR) may be selected as the target signal from the signals collected by the plurality of bone conduction microphones.
  • the positions of the plurality of bone conduction microphones are not limited to the above-mentioned positions on the first glasses temple and second glasses temple, but may also include position(s) on the glasses frame or positions respectively on the glasses frame and the glasses temple.
  • the plurality of bone conduction microphones may be wireless bone conduction microphones, and voice signals collected by the bone conduction microphones may be transmitted to other electronic devices through a wireless communication network.
  • the wireless communication network may include any one of wireless communication manner such as a Bluetooth, infrared, a UWB (ultra-wide band), etc.
  • FIG. 7 is a schematic diagram illustrating exemplary frequency response curves of a bone conduction microphone under different pressures according to some embodiments of the present disclosure.
  • a glasses body may include a contact surface that is in direct contact with a user, such as an inner wall of a glasses temple, an inner wall of a glasses frame, an inner wall of a nose pad, etc.
  • a vibration transmission efficiency between the glasses body and the user's body may be changed by adjusting a clamping force (also referred to as a pressure) between the contact surface of the glasses body and the user's body, thereby adjusting quality of a vibration signal received by the bone conduction microphone on the glasses body. As shown in FIG.
  • the vibration signal received by the bone conduction microphone may increase with an increase of the clamping force between the glasses body (e.g., the glasses frame or the glasses temple(s)) and the user's skin. That is, the vibration signal received by the bone conduction microphone may be positively correlated with the clamping force between the glasses body and the user's skin.
  • the specific frequency range here may include 100 Hz-1000 Hz, or 80 Hz-800 Hz.
  • the specific frequency range may be determined according to specific conditions, which is not limited herein. In some embodiments, the pressure between the contact surface and the human body may be larger than 0.1N.
  • the pressure between the contact surface and the human body may be larger than 0.2N. In some embodiments, the pressure between the contact surface and the human body may be larger than 0.4N. In some embodiments, the pressure between the contact surface and the human body may be larger than 0.6N. In some embodiments, the pressure between the contact surface and the human body may be larger than 1N. In some embodiments, the clamping force between the contact surface and the user's skin may be adjusted by adjusting a size of the glasses (e.g., a length of the glasses temple(s), a relative distance between two glasses temples), such that the glasses body may transmit the vibration signal of the human body to the bone conduction microphone effectively.
  • a size of the glasses e.g., a length of the glasses temple(s), a relative distance between two glasses temples
  • the contact surface may be a surface of a local region of the glasses frame or the glasses temple(s).
  • the contact surface may be a surface protruding from the surface of the glasses frame or the glasses temple(s) (also referred to as a “protruding structure”), and the protruding structure may be used as an independent component that contacts the user's body to better acquire the vibration signal of the user's body.
  • the component may be rigidly connected to the glasses temple(s) or the glasses frame, or may be integrally formed. In such cases, an energy loss caused by the vibration signal transmission between the component and the glasses temple(s) or the glasses frame may be reduced.
  • a height (or thickness) or an elastic coefficient of the protruding structure may be adjusted to adjust the clamping force between the contact surface and the user's body, thereby adjusting the signal quality of the vibration signal of the user's body transmitted to the bone conduction microphone.
  • the user when wearing the glasses, may adjust the clamping force between the contact surface between the glasses frame, the glasses temple(s), or the protruding structure and the user's skin by adjusting the relative position of the contact surface to the user's skin, thereby adjusting the signal quality of vibration signal transmitted to the bone conduction microphone, in other words, adjusting a signal collecting effect of the bone conduction microphone.
  • the clamping force between the contact surface and the user's skin may include, but are limited to, the above-mentioned values.
  • the clamping force may also be 0.3N, 0.5N, 0.7N, 0.8N, 1.2N, etc., which is not limited herein.
  • the bone conduction microphone may be disposed on a side of the glasses temple(s) or glasses frame of the glasses that is in contact with the user's body. When the user wears the glasses, the bone conduction microphone may be in contact with the user's body such that the vibration signal of the user's body, the glasses temple(s) or the glasses frame may be better received.
  • the bone conduction microphone may be disposed inside the glasses temple(s) or the glasses frame.
  • the glasses temple or the glasses frame may include an installation cavity for accommodating the bone conduction microphone, and the bone conduction microphone may be disposed in the installation cavity.
  • One end of the bone conduction microphone that is away from the glasses temple(s) or the glasses frame may protrude relative to the surface of the glasses temple(s) or the glasses frame. That is, one end of the bone conduction microphone may extend out of the installation cavity such that the user may contact the bone conduction microphone when wearing the glasses.
  • the vibrations of the glasses temple(s) or the glasses frame may include a noise signal (e.g., a noise signal generated by vibrations of the glasses temple(s) or the glasses driven by the noise in the outside air).
  • a noise signal e.g., a noise signal generated by vibrations of the glasses temple(s) or the glasses driven by the noise in the outside air.
  • one end of the bone conduction microphone may be elastically connected to the glasses temple(s) or the glasses frame, the other end of the bone conduction microphone may be in direct contact with the user's body when the user wears the glasses.
  • the bone conduction microphone may be in direct contact with the user's body such that the bone conduction microphone may directly collect the vibration signal generated by the user's body when the user speaks.
  • the bone conduction microphone may generate a corresponding electric signal based on the vibration signal.
  • the electric signal may be further processed and then transmitted to an electronic device.
  • the elastic connection between the bone conduction microphone and the glasses temple(s) or the glasses frame may reduce a connection strength between the bone conduction microphone and the glasses temple(s) or the glasses frame, which may reduce the noise signals transmitted by the glasses temple(s) or the glasses frame.
  • a relationship between the vibration of the glasses temple(s) or the glasses frame and the vibration received by the bone conduction microphone may be:
  • L 1 indicates the vibration received by the bone conduction microphone
  • L 2 indicates the vibration of the glasses temple(s) or the glasses frame
  • k indicates an elastic strength of the connection between the bone conduction microphone and the glasses temple(s) or the glasses frame
  • m indicates the quality of the bone conduction microphone
  • c indicates damping of the connection between the bone conduction microphone and the glasses frames
  • indicates an angular frequency
  • FIG. 8 is a schematic diagram illustrating an exemplary frequency response curve of a bone conduction microphone according to some embodiments of the present disclosure.
  • a resonance peak of the bone conduction microphone may be at a relatively low frequency (e.g., 400 Hz-800 Hz).
  • the bone conduction microphone may have a higher sensitivity to a vibration signal in a relatively low-frequency range (e.g., a frequency range including frequencies lower than a frequency of the resonance peak) than sensitivity to a vibration signal in a relatively high-frequency range (e.g., a frequency range including frequencies larger than 1000 Hz).
  • the bone conduction microphone may be not easily affected by a mid-high frequency vibration caused by external noise, but have a high response to the low-frequency signal (i.e., an effective voice signal) transmitted from the user's body to the bone conduction microphone, which may effectively improve an SNR of the bone conduction microphone.
  • the elastic layer or the elastic element may effectively reduce a value of the resonance peak of the bone conduction microphone, such that the frequency response curve of the bone conduction microphone may be relatively flat, thereby preventing the voice signal collected by the bone conduction microphone from being distorted.
  • the glasses temple(s) or the glasses frame may include an installation cavity for accommodating the bone conduction microphone.
  • the installation cavity may be disposed inside the glasses temple or the glasses frame.
  • the glasses temple or the glasses frame may include a protruding structure, and the installation cavity for accommodating the bone conduction microphone may be disposed in the protruding structure, such that when the user wears the glasses, the bone conduction microphone may be in contact with the user's body.
  • FIG. 9 is a schematic diagram illustrating exemplary frequency response curves of a noise signal and a voice signal received by a bone conduction microphone according to some embodiments of the present disclosure. As shown in FIG.
  • the voice signal received by the bone conduction microphone may include more mid-low frequency (e.g., 100 Hz-1000 Hz) components and less high frequency (e.g., 2000 Hz-8000 Hz) components. Distribution of the noise signal received by the bone conduction microphone may be relatively uniform without obvious frequency characteristics.
  • the voice signal may mainly transmit a vibration signal of the user's body.
  • the vibration signal of the user's body may have more components in the mid-low frequency, and may attenuate in the high frequency.
  • the vibration of the glasses frame may have some resonances such that the frequency response curve may include peaks and valleys in some high-frequency bands (e.g., 2500 Hz-4000 Hz).
  • the noise signal mainly transmits air conduction signals of external noise.
  • a receiver of the air conduction signals may be a structure of the glasses (e.g., the glasses frame, lens, the glasses temples, etc.).
  • a wavelength of the air conduction signal may be smaller than the wavelength of the vibration signal of the user's body.
  • the received noise signal may include more high-frequency components and less low-frequency components.
  • the installation cavity may isolate the bone conduction microphone from the external noise, thereby improving an SNR of the bone conduction microphone.
  • the voice signal received by the bone conduction microphone may have a high SNR relative to the noise signal. That is, the noise signal received by the bone conduction microphone in the low-frequency band may not affect the quality of the voice signal.
  • the installation cavity may be used for a physical noise isolation, which may isolate the mid-high frequency (e.g., larger than 1000 Hz-2000 Hz) noise signal and the high frequency (e.g., larger than 2000 Hz) noise signal transmitted by the glasses temple(s) or the glasses frame, thereby improving the SNR of the bone conduction microphone in the mid-high frequency.
  • the physical noise isolation may refer to reducing the noise signal in a specific frequency band (e.g., larger than 1000 Hz) received by the bone conduction microphone.
  • a specific frequency band e.g., larger than 1000 Hz
  • the user's body may be in a close contact with the glasses temple(s) or the glasses frame, thereby isolating the bone conduction microphone inside the installation cavity from the outside.
  • the bone conduction microphone By disposing the bone conduction microphone in the installation cavity, a contact between the bone conduction microphone and the air may be reduced, which may reduce the noise signal directly transmitted by the air.
  • the physical noise isolation requires the bone conduction microphone to be in direct contact with the user's body, and the bone conduction microphone to be elastically connected to the glasses temple(s) or glasses frame.
  • the glasses may have enough space to meet the requirements of the installation cavity used for a bone conduction microphone with an independent structure.
  • the bone conduction microphone may be disposed inside the glasses temple and in direct contact with the user's body.
  • the installation cavity may be applied to other scenarios, for example, an over-ear headphone.
  • the over-ear headphone may have a large space and have several parts in direct contact with the user's body, which enables the over-ear headphone to effectively isolate noise and collect better bone conduction signals.
  • an elastic layer may be disposed between the bone conduction microphone and the contact surface of the glasses temple or the glasses frame, or between the bone conduction microphone and a side wall of the installation cavity, so as to realize an elastic connection between the bone conduction microphone and the glasses temple, the glasses frame, or the side wall of the installation cavity.
  • one side of the elastic layer may be fixedly connected to the glasses temple, the glasses frame or the side wall of the installation cavity, and the other side of the elastic layer may be detachably connected to the bone conduction microphone, so as to facilitate the repair and replacement of the bone conduction microphone.
  • a fixed connection here may include, but not limited to, a bonded connection, a welded connection, an embedded connection, etc.
  • the detachable connection may include, but not limited to, a snap-fit connection, a bolted connection, etc.
  • the elastic layer may refer to a structure capable of elastic deformation under an action of an external force.
  • a material of the elastic layer may include, but is not limited to, sponge, rubber, silicone, plastic, foam, etc., or any combination thereof.
  • the plastic may include, but is not limited to, high molecular weight polyethylene, blow molded nylon, engineering plastics, etc., or any combination thereof.
  • the rubber may refer to other single or composite materials capable of implementing the same performance, including but not limited to general-purpose rubber and special-purpose rubber.
  • the general-purpose rubber may include, but is not limited to, natural rubber, isoprene rubber, styrene-butadiene rubber, cis-butadiene rubber, neoprene, etc., or any combination thereof.
  • the special-purpose rubber may include, but is not limited to, nitrile rubber, silicone rubber, fluor rubber, polysulfide rubber, urethane rubber, chlorohydrin rubber, acrylate rubber, propylene oxide rubber, etc., or any combination thereof.
  • the styrene-butadiene rubber may include, but is not limited to, emulsion-polymerized styrene-butadiene rubber and solution-polymerized styrene-butadiene rubber.
  • the composite materials may include, but are not limited to, reinforcing materials such as glass fiber, carbon fiber, boron fiber, graphite fiber, graphene fibers, silicon carbide fibers, aramid fibers, etc.
  • FIG. 10 is a schematic diagram illustrating an exemplary bone conduction microphone in contact with a user's body according to some embodiments of the present disclosure.
  • an installation cavity 1030 for accommodating a bone conduction microphone 1020 may be disposed inside a glasses body 1000 (e.g., a glasses frame or a glasses temple(s)).
  • the bone conduction microphone 1020 may be in direct contact with the user's body 1010 .
  • the bone conduction microphone 1020 may be elastically connected to a side wall of the cavity where the installation cavity 1030 is disposed through an elastic element (or an elastic layer) 1040 .
  • the elastic element (or the elastic layer) 1040 may press the bone conduction microphone 1020 such that the bone conduction microphone may be attached to the user's body.
  • a pressure between a contact surface of the bone conduction microphone and the user's body may be adjusted by adjusting the elastic element (or the elastic layer) 1040 .
  • the pressure between the contact surface and the user's body may be larger than 0.1N.
  • the pressure between the contact surface and the user's body may be larger than 0.2N.
  • the pressure between the contact surface and the user's body may be larger than 0.4N.
  • the pressure between the contact surface and the user's body may be larger than 0.6N.
  • the pressure between the contact surface and the user's body may be larger than 1N.
  • a vibration may be generated on the contact surface (e.g., the skin of the user's face) between the bone conduction microphone 1020 and the user's body.
  • the bone conduction microphone 1020 may receive a vibration signal from the contact surface and convert the vibration signal into a corresponding electric signal.
  • the elastic element (or the elastic layer) 1040 may provide a buffering effect between the bone conduction microphone 1020 and the glasses body 1000 , which can effectively reduce an impact of the vibration of the glasses body 1000 on the bone conduction microphone 1020 , that is, reduce an effect of a vibration noise of the glasses body 1000 on the bone conduction microphone 1020 .
  • a vibration unit of the bone conduction microphone 1020 may be disposed in parallel with the contact surface between the user's face and the glasses body 1000 (e.g., the glasses temple(s) or the glasses frame).
  • the user's face may mainly generate vibrations perpendicular to the surface of the skin.
  • a vibration direction of the vibration unit of the bone conduction microphone 1020 may be parallel to the vibration direction of the user's face, such that the vibration unit may better receive the vibration signal from the user's body. More descriptions regarding the vibration unit may be found elsewhere in the present disclosure. See, e.g., FIG. 6 and relevant descriptions thereof.
  • FIG. 11 is a flowchart illustrating an exemplary processing process of the voice signal of the bone conduction microphone according to some embodiments of the present disclosure.
  • a voice activity detection (VAD) operation may be performed on the voice signal of the bone conduction microphone, so as to facilitate a noise reduction process of an overall algorithm.
  • the VAD may accurately determine a start point and an end point of the voice signal from the voice signal including noise, and then remove the noise as an interference signal from original data.
  • an available frequency band of the voice signal collected by the bone conduction microphone may be about 20 Hz-5000 Hz.
  • the voice signal of the bone conduction microphone may provide more comprehensive VAD information for the overall algorithm of a voice signal processing, thereby improving a noise reduction performance of the overall algorithm.
  • the glasses may further include an air conduction microphone.
  • a lower frequency signal of the bone conduction microphone may be spliced with a higher frequency signal of the air conduction microphone, thereby improving the noise reduction performance of the overall algorithm.
  • the available frequency band of the voice signal collected by the traditional bone conduction microphone may be about 20 Hz-1200 Hz, thus a splicing point of the voice signal of the traditional bone conduction microphone and the voice signal of the air conduction microphone may be at about 1000 Hz.
  • the available frequency band of the voice signal collected by the bone conduction microphone may be about 20 Hz-5000 Hz.
  • the splicing point of the voice signal of the bone conduction microphone and the voice signal of the air conduction microphone may be at a higher frequency, which may improve the noise reduction performance of the overall algorithm.
  • the voice signal of the bone conduction microphone may be directly used as a final voice signal after being processed (e.g., a bone conduction voice quality processing).
  • a problem of the voice signal of the bone conduction microphone being directly used as the final voice signal may include that an available frequency band of the voice signal collected by the bone conduction microphone is narrow.
  • the available frequency band of the bone conduction voice signal collected by the true wireless stereo (TWS) may be about 20 Hz-1500 Hz.
  • the voice quality of the voice signal of the bone conduction microphone may be different from that of the voice signal of the air conduction microphone. Using the voice signal of the bone conduction microphone may seriously degrade the voice quality of the finally output sound.
  • the available frequency band of the voice signal collected by the bone conduction microphone may be expanded.
  • the available frequency band of the voice signal collected by the bone conduction microphone of the glasses may be 20 Hz-5000 Hz, which may include most of the frequency band of the voice signal.
  • a parameter (e.g., EQ) of the bone conduction voice quality processing may be adjusted, thereby improving the voice quality of the bone conduction microphone.
  • a neural network correlating the voice signal of the bone conduction microphone with the voice signal of the air conduction microphone may be used to “convert” the voice signal of the bone conduction microphone into a corresponding voice signal of the air conduction microphone, which may also solve the problem of voice quality degradation of the bone conduction microphone.
  • a training of the neural network may be performed individually based on a user.
  • the voice quality of the bone conduction microphone after the EQ adjustment or the neural network conversion may be closer to the voice quality of the air conduction microphone.
  • the noise reduction may be performed on both the voice signal of the bone conduction microphone and the voice signal of the air conduction microphone by a noise reduction module.
  • the voice signal of the bone conduction microphone and/or the voice signal of the air conduction microphone may be processed by a spectral mixer.
  • the voice signal of the bone conduction microphone of the glasses may be used as a recognition signal of a specific scene.
  • the voice signal of the bone conduction microphone of the glasses may be used as a switch signal for a keyword recognition. If the user is in an environment with constant noise, the microphone (e.g., the bone conduction microphone, the air conduction microphone) and the corresponding algorithm need to be kept on, which may result in high power consumption of the microphones.
  • the bone conduction microphone mainly receives the vibration signal of the vibrations of the user's body when the user speaks, and the noise of the external environment has little influence on the bone conduction microphone, using the voice signal of the bone conduction microphone as a switch signal for the voice recognition may reduce the effect of the external noise and make the switching function more accurate.
  • the voice signal of the bone conduction microphone of the glasses may also be used for a voiceprint recognition.
  • the bone conduction microphone of the glasses mainly receives the vibration signal of the vibrations of the user's body when the user speaks.
  • the available frequency band of the bone conduction microphone may be expanded to be 20 Hz-5000 Hz.
  • the frequency band may include most of the frequency bands of the voice.
  • the voice signal of the bone conduction microphone of the glasses may also be used for the voice recognition.
  • the voice signal of the bone conduction microphone may be used as the signal source for the voice recognition such that the external noise may be shielded to a certain extent, thereby obtaining a clearer voice signal.
  • the available frequency band of the bone conduction microphone may be expanded to be 20 Hz-5000 Hz, which may include most of the frequency bands of the voice. The accuracy of the voice recognition performed based on the voice signal of the bone conduction microphone may be improved accordingly.
  • the voice signal of the bone conduction microphone and the voice signal of the air conduction microphone may be combined and used as the signal source for the voice recognition.
  • a voice model relating to the voice signal of the bone conduction microphone may be separately trained.
  • the voice model relating to the voice signal of the bone conduction microphone may be trained separately, or the voice model relating to the voice signal of the air conduction microphone may be trained separately, or a voice model relating to the voice signal of the bone conduction microphone and the voice signal of the air conduction microphone may be trained simultaneously. As shown in FIG.
  • a corresponding voice model may be obtained according to a model training operation performed based on the voice signal of the bone conduction microphone (the “bone conduction signal” shown in FIG. 12 ).
  • the voice model may be used for a keyword training.
  • a recognition result corresponding to the bone conduction signal may be obtained by performing, based on the bone conduction signal, a keyword recognition.
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc.) or combining software and hardware implementation that may all generally be referred to herein as a “block,” “module,” “device,” “unit,” “component,” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer-readable media having computer-readable program code embodied thereon.
  • the numbers expressing quantities or properties used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about,” “approximate,” or “substantially.” For example, “about,” “approximate,” or “substantially” may indicate ⁇ 20% variation of the value it describes, unless otherwise stated. Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Eyeglasses (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
US18/150,180 2020-12-25 2023-01-04 Glasses Pending US20230156400A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139697 WO2022134103A1 (zh) 2020-12-25 2020-12-25 一种眼镜

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139697 Continuation WO2022134103A1 (zh) 2020-12-25 2020-12-25 一种眼镜

Publications (1)

Publication Number Publication Date
US20230156400A1 true US20230156400A1 (en) 2023-05-18

Family

ID=82157194

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/150,180 Pending US20230156400A1 (en) 2020-12-25 2023-01-04 Glasses

Country Status (6)

Country Link
US (1) US20230156400A1 (zh)
EP (1) EP4167023A4 (zh)
JP (1) JP2023538681A (zh)
KR (1) KR20230035360A (zh)
CN (1) CN115803672A (zh)
WO (1) WO2022134103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115662436B (zh) * 2022-11-14 2023-04-14 北京探境科技有限公司 音频处理方法、装置、存储介质及智能眼镜

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201035260Y (zh) * 2007-04-02 2008-03-12 严世熙 整合骨传导技术的眼镜
US9094749B2 (en) * 2012-07-25 2015-07-28 Nokia Technologies Oy Head-mounted sound capture device
CN103792683B (zh) * 2014-01-26 2015-04-08 杭州双弯月电子科技有限公司 骨传导蓝牙眼镜
WO2016129717A1 (ko) * 2015-02-11 2016-08-18 재단법인 다차원 스마트 아이티 융합시스템 연구단 골전도를 이용하는 착용형 장치
US9596536B2 (en) * 2015-07-22 2017-03-14 Google Inc. Microphone arranged in cavity for enhanced voice isolation
CN206863381U (zh) * 2017-06-28 2018-01-09 深圳创维数字技术有限公司 一种智能眼镜
US10699691B1 (en) * 2017-06-29 2020-06-30 Amazon Technologies, Inc. Active noise cancellation for bone conduction speaker of a head-mounted wearable device
CN208172380U (zh) * 2017-10-23 2018-11-30 北京京东尚科信息技术有限公司 用于快递员的智能眼镜
WO2019117806A1 (en) * 2017-12-11 2019-06-20 Rock Human Devices Pte. Ltd. Hearing aid spectacles
CN109960062A (zh) * 2017-12-22 2019-07-02 托普瑞德(无锡)设计顾问有限公司 一种佩戴方便的骨传动耳机式眼镜
US10455324B2 (en) * 2018-01-12 2019-10-22 Intel Corporation Apparatus and methods for bone conduction context detection
US11163156B2 (en) * 2018-03-15 2021-11-02 Sphairos, Inc. Modular display and sensor system for attaching to eyeglass frames and capturing physiological data
JP2020036207A (ja) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 骨伝導ヘッドセット
WO2020111606A1 (ko) * 2018-11-27 2020-06-04 박태수 착탈 모듈이 결합된 안경
US11069368B2 (en) * 2018-12-18 2021-07-20 Colquitt Partners, Ltd. Glasses with closed captioning, voice recognition, volume of speech detection, and translation capabilities
CN109765699A (zh) * 2019-03-08 2019-05-17 申瓯通信设备有限公司 一种骨传导眼镜
CN210442589U (zh) * 2019-08-20 2020-05-01 科大讯飞股份有限公司 一种用于角色分离语音采集的眼镜框及眼镜
CN111142274B (zh) * 2019-12-27 2021-08-20 武汉裕众信息科技有限公司 警用骨传导智能眼镜
CN111935573B (zh) * 2020-08-11 2022-06-14 Oppo广东移动通信有限公司 音频增强方法、装置、存储介质及可穿戴设备

Also Published As

Publication number Publication date
JP2023538681A (ja) 2023-09-08
KR20230035360A (ko) 2023-03-13
EP4167023A1 (en) 2023-04-19
CN115803672A (zh) 2023-03-14
WO2022134103A1 (zh) 2022-06-30
EP4167023A4 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
US11438689B2 (en) Loudspeaker apparatus
KR102414292B1 (ko) 골전도 스피커 및 그의 테스트 방법
JP2018530205A (ja) 骨伝導スピーカーのためのシステム
US20230156400A1 (en) Glasses
CN218162856U (zh) 一种振动传感器
US20230269550A1 (en) Hearing aid devices
CN205864675U (zh) 降噪耳机
US20230319463A1 (en) Acoustic input-output devices
JP7360358B2 (ja) 骨伝導スピーカーのためのシステム
US20230199360A1 (en) Vibration sensors
RU2809947C1 (ru) Очки
JP6724078B2 (ja) 骨伝導スピーカーのためのシステム
EP4167596A1 (en) Vibration sensor
EP4203511A1 (en) Vibration sensor
CN114765715A (zh) 一种骨传导扬声器
EP4203507A1 (en) Bone conduction speaker
JP2023547160A (ja) 振動センサ
JP2022017466A (ja) 骨伝導スピーカーのためのシステム
CN118044223A (zh) 一种耳机
KR20230058316A (ko) 누설음감소장치 및 음향출력장치
CN116389961A (zh) 一种骨传导扬声器及耳机
CN115250395A (zh) 声学输入输出设备
CN115250392A (zh) 声学输入输出设备
JP2018198445A (ja) 骨伝導スピーカーのためのシステム

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: SHENZHEN VOXTECH CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHENG, JINBO;ZHANG, HAOFENG;LIAO, FENGYUN;AND OTHERS;REEL/FRAME:065674/0985

Effective date: 20210202

Owner name: SHENZHEN SHOKZ CO., LTD., CHINA

Free format text: CHANGE OF NAME;ASSIGNOR:SHENZHEN VOXTECH CO., LTD.;REEL/FRAME:065675/0001

Effective date: 20210701