US20230145207A1 - Pharmaceutical compositions comprising poh derivatives and methods of use - Google Patents

Pharmaceutical compositions comprising poh derivatives and methods of use Download PDF

Info

Publication number
US20230145207A1
US20230145207A1 US18/150,933 US202318150933A US2023145207A1 US 20230145207 A1 US20230145207 A1 US 20230145207A1 US 202318150933 A US202318150933 A US 202318150933A US 2023145207 A1 US2023145207 A1 US 2023145207A1
Authority
US
United States
Prior art keywords
cancer
monoterpene
sesquiterpene
alcohol
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/150,933
Inventor
Thomas Chen
Daniel Levin
Satish Puppali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Southern California USC
Original Assignee
University of Southern California USC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Southern California USC filed Critical University of Southern California USC
Priority to US18/150,933 priority Critical patent/US20230145207A1/en
Assigned to Neonc Technologies, Inc. reassignment Neonc Technologies, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, THOMAS, PUPPALI, SATISH, LEVIN, DANIEL
Publication of US20230145207A1 publication Critical patent/US20230145207A1/en
Assigned to UNIVERSITY OF SOUTHERN CALIFORNIA reassignment UNIVERSITY OF SOUTHERN CALIFORNIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEONC TECHNOLOGIES INC.
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears

Definitions

  • the present invention relates to perillyl alcohol (POH) derivatives and isoperillyl alcohol (iso-POH) derivatives.
  • the present invention further relates to methods of using perillyl alcohol derivatives (such as perillyl alcohol esters and isoperillyl alcohol derivatives (such as isoperillyl alcohol esters) to treat cancer.
  • Malignant gliomas the most common form of central nervous system (CNS) cancers, are currently considered essentially incurable.
  • CNS central nervous system
  • anaplastic astrocytomas Grade III
  • GBM glioblastoma multiforme
  • the present standard of care for malignant gliomas consists of surgery, ionizing radiation, and chemotherapy.
  • the poor response of tumors, including malignant gliomas, to various types of chemotherapeutic agents are often due to intrinsic drug resistance. Additionally, acquired resistance of initially well-responding tumors and unwanted side effects are other problems that frequently thwart long-term treatment using chemotherapeutic agents.
  • various analogues of chemotherapeutic agents have been prepared in an effort to overcome these problems.
  • the analogues include novel therapeutic agents which are hybrid molecules of at least two existing therapeutic agents. For example, cisplatin has been conjugated with cytotoxic codrugs, or conjugated with bioactive shuttle components such as porphyrins, bile acids, hormones, or modulators that expedite the transmembrane transport or the drug accumulation within the cell.
  • Perillyl alcohol a naturally occurring monoterpene, has been suggested to be an effective agent against a variety of cancers, including CNS cancer, breast cancer, pancreatic cancer, lung cancer, melanomas and colon cancer. Gould, M. Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect. 1997 June; 105 (Suppl 4): 977-979. Hybrid molecules containing both perillyl alcohol and retinoids were prepared to increase apoptosis-inducing activity. Das et al. Design and synthesis of potential new apoptosis agents: hybrid compounds containing perillyl alcohol and new constrained retinoids. Tetrahedron Letters 2010, 51, 1462-1466.
  • perillyl alcohol derivatives including perillyl alcohol conjugated with other therapeutic agents, and use this material in the treatment of cancers such as malignant gliomas, as well as other brain disorders such as Parkinson's and Alzheimer's disease.
  • isomers or analogs including isoperillyl alcohol conjugated with other therapeutic agents, and use this material in the treatment of various conditions.
  • These compounds may be administered alone or in combination with other treatment methods including radiation, standard chemotherapy, and surgery.
  • the administration can also be through various routes including intranasal, oral, oral-tracheal for pulmonary delivery, and transdermal.
  • the present disclosure provides for a pharmaceutical composition
  • a pharmaceutical composition comprising a perillyl alcohol conjugated with valproic acid.
  • the perillyl alcohol conjugated with valproic acid is an ester of perillyl alcohol with valproic acid.
  • the ester is 2-Propylpentanoic acid 4-isopropenyl-cyclohex-1-enylmethyl ester.
  • the present disclosure also provides for a pharmaceutical composition
  • a pharmaceutical composition comprising an isoperillyl alcohol conjugated with valproic acid.
  • the isoperillyl alcohol conjugated with valproic acid is an ester of isoperillyl alcohol with valproic acid.
  • the ester is 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester.
  • the present disclosure provides for a method for treating a disease in a mammal, comprising the step of administering to the mammal a therapeutically effective amount of an isoperillyl alcohol conjugated with valproic acid.
  • the isoperillyl alcohol conjugated with valproic acid is an ester of isoperillyl alcohol with valproic acid.
  • the ester is 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester.
  • the present method flintier comprises the step of treating the mammal with radiation. In certain embodiments, the present method further comprises the step of administering to the mammal a chemotherapeutic agent.
  • the present pharmaceutical composition or agent may be administered by inhalation, intranasally, orally, intravenously, subcutaneously or intramuscularly.
  • the present disclosure provides for a method for treating a disease in a mammal, comprising the step of administering to the mammal a therapeutically effective amount of a perillyl alcohol conjugated with valproic acid or an isoperillyl alcohol conjugated with valproic acid using a nasal delivery device.
  • the nasal delivery device is selected from the group consisting of an intranasal inhaler, an intranasal spray device, an atomizer, a nebulizer, a metered dose inhaler (MDI), a pressurized dose inhaler, an insufflator, a unit dose container, a pump, a dropper, a squeeze bottle and a bi-directional device.
  • the present disclosure provides for derivatives of monoterpene or sesquiterpene, such as perillyl alcohol derivatives.
  • the present disclosure also provides for a pharmaceutical composition comprising a derivative of monoterpene or sesquiterpene such as a perillyl alcohol derivative.
  • the perillyl alcohol derivative may be a perillyl alcohol ester.
  • the perillyl alcohol ester may be perillyl alcohol conjugated with valproic acid (or valproate).
  • the present disclosure provides for derivatives of isomers or analogs of monoterpene or sesquiterpene, such as isoperillyl alcohol derivatives.
  • the present disclosure also provides for a pharmaceutical composition comprising a derivative of isomers or analogs of monoterpene or sesquiterpene, such as an isoperillyl alcohol derivative.
  • the isoperillyl alcohol derivative may be an isoperillyl alcohol ester.
  • the isoperillyl alcohol ester may be isoperillyl alcohol conjugated with valproic acid (or valproate).
  • the derivatives of monoterpene (or sesquiterpene) include, but are not limited to, esters, carbamates, ethers, alcohols and aldehydes of the monoterpene (or sesquiterpene).
  • Monoterpene (or sesquiterpene) alcohols may be derivatized to esters, carbamates ethers, aldehydes or acids.
  • perillyl alcohol (commonly abbreviated as POH).
  • the derivatives of perillyl alcohol include, perillyl alcohol esters, perillyl alcohol carbamates, perillic aldehydes, dihydroperillic acid, perillic acid perillic aldehyde derivatives, dihydroperillic acid esters and perillic acid esters.
  • the derivatives of perillyl alcohol may also include its oxidative and nucleophilic/electrophilic addition derivatives.
  • Monoterpenes include terpenes that consist of two isoprene units. Monoterpenes may be linear (acyclic) or contain rings. Derivatives of monoterpenoids are also encompassed by the present invention. Monoterpenoids may be produced by biochemical modifications such as oxidation or rearrangement of monoterpenes.
  • monoterpenes and monoterpenoids examples include, perillyl alcohol (S( ⁇ )) and (R(+)), ocimene, myrcene, geraniol, citral, citronellol, citronellal, linalool, pinene, terpineol, terpinen, limonene, terpinenes, phellandrenes, terpinolene, terpinen-4-ol (or tea tree oil), pinene, terpineol, terpinen; the terpenoids such as p-cymene which is derived from monocyclic terpenes such as menthol, thymol and carvacrol; bicyclic monoterpenoids such as camphor, borneol and encalyptol.
  • Sesquiterpenes include terpenes that consist of three isoprene units. Sesquiterpenes may be linear (acyclic) or contain rings. Derivatives of sesquiterpenoids are also encompassed by the present invention. Sesquiterpenoids may be produced by biochemical modifications such as oxidation or rearrangement of sesquiterpenes. Examples of sesquiterpenes include farnesol, farnesal, farnesylic acid and nerolidol.
  • U.S. Provisional Application No. 61/310,231 (filed on Mar. 3, 2010), 61/377,747 (filed on Aug. 27, 2010), 61/471,402 (filed on Apr.
  • a derivative of an isomer or analog of monoterpene or sesquiterpene such as an isoperillyl alcohol derivative.
  • the isoperillyl alcohol derivative may be an isoperillyl alcohol ester, carbamate, or ether.
  • the derivative of an isomer or analog of monoterpene or sesquiterpene may be an isomer or analog of monoterpene or sesquiterpene conjugated with a therapeutic agent such as valproic acid (or valproate).
  • the isoperillyl alcohol derivative may be isoperillyl alcohol conjugated with a therapeutic agent such as valproic acid (or valproate).
  • the derivatives of isoperillyl alcohol include isoperillyl alcohol esters, isoperillyl alcohol carbamates, isoperillic aldehydes, isoperillic acid, isoperillic aldehyde derivatives, and isoperillic acid esters.
  • the derivatives of isoperillyl alcohol may also include its oxidative and nucleophilic electrophilic addition derivatives. U.S. Pat. No. 5,994,598.
  • esters of alcohols include, but are not limited to, carboxylic acid esters (such as valproic acid esters, benzoate esters, fatty acid esters (e.g., palmitate ester, linoleate ester, stearate ester, butyryl ester and oleate ester), acetates, propionates (or propanoates), and formates), phosphates, sulfates, and carbamates (e.g., N,N-dimethylaminocarbonyl).
  • carboxylic acid esters such as valproic acid esters, benzoate esters, fatty acid esters (e.g., palmitate ester, linoleate ester, stearate ester, butyryl ester and oleate ester), acetates, propionates (or propanoates), and formates), phosphates, sulfates, and carbamates (e.g., N,N-dimethyla
  • R 1 , R 2 and R 3 can be a group such as alkyl, aryl, etc., which can be substituted.
  • the R groups on the nitrogen and the oxygen may form a ring.
  • R 1 —OH may be a monoterpene, e.g., POH, or isomers or analogs of monoterpene or sesquiterpene, e.g., iso-POH.
  • the R 2 —N—R 3 moiety may be a therapeutic agent.
  • Carbamates may be synthesized by reacting isocyanate and alcohol, or by reacting chloroformate with amine. Carbamates may be synthesized by reactions making use of phosgene or phosgene equivalents. For example, carbamates may be synthesized by reacting phosgene gas, diphosgene or a solid phosgene precursor such as triphosgene with two amines or an amine and an alcohol. Carbamates (also known as urethanes) can also be made from reaction of a urea intermediate with an alcohol. Dimethyl carbonate and diphenyl carbonate are also used for making carbamates.
  • carbamates may be synthesized through the reaction of alcohol and/or amine precursors with an ester-substituted diaryl carbonate, such as bismethylsalicylcarbonate (BMSC).
  • BMSC bismethylsalicylcarbonate
  • a POH carbamate is synthesized by a process comprising the step of reacting a first reactant of perillyl chloroformate with a second reactant such as dimethyl celocoxib (DMC), temozolomide (TMZ) and rolipram.
  • the reaction may be carried out in the presence of tetrahydrofuran and a base such as n-butyl lithium.
  • Perillyl chloroformate may be made by reacting POH with phosgene.
  • POH conjugated with temozolomide through a carbamate bond may be synthesized by reacting temozolomide with oxalyl chloride followed by reaction with perillyl alcohol.
  • the reaction may be carried out in the presence of 1,2-dichloroethane.
  • iso-perillyl alcohol derivatives may be isoperillyl alcohol fatty acid esters, such as palmitoyl ester of iso-POH and linoleoyl ester of iso-POH.
  • the present invention provides for methods of treating a disease such as cancer using a derivative of perillyl alcohol or a derivative of an isoperillyl alcohol.
  • Routes of administration include inhalation, intranasal, oral, transdermal, intravenous, subcutaneous and intramuscular injection.
  • a patient is administered a therapeutically effective amount of a derivative of perillyl alcohol or a derivative of an isoperillyl alcohol.
  • the present invention also provides for a method of treating a disease comprising the step of administering to a patient a therapeutically effective amount of a derivative of monoterpene or sesquiterpene, such as an perillyl alcohol ester.
  • the derivative may be perillyl alcohol conjugated with a therapeutic agent such as valproic acid.
  • the present invention also provides for a method of treating a disease comprising the step of administering to a patient a therapeutically effective amount of a derivative of an isomer or analog of monoterpene or sesquiterpene, such as an isoperillyl alcohol ester.
  • the derivative may be an isoperillyl alcohol conjugated with a therapeutic agent such as valproic acid.
  • the present compounds may be used for the treatment of nervous system cancers, such as a malignant glioma (e.g., astrocytoma, anaplastic astrocytoma, glioblastoma multiforme), retinoblastoma, pilocytic astrocytomas (grade I), meningiomas, metastatic brain tumors, neuroblastoma, pituitary adenomas, skull base meningiomas, and skull base cancer.
  • the present invention also provides methods of treating CNS (central nervous system) disorders, including, without limitation, primary degenerative neurological disorders such as Alzheimer's, Parkinson's, psychological disorders psychosis and depression.
  • the present compound may be formulated into a pharmaceutical composition, where the present compound is present in amounts ranging from about 0.01% (w/w) to about 100% (w/w), from about 0.1% (w/w) to about 80% (w/w), from about 1% (w/w) to about 70% (w/w), from about 10% (w/w) to about 60% (w/w), or from about 0.1% (w/w) to about 20% (w/w).
  • the present compositions can be administered alone, or may be co-administered together with radiation or another agent (e.g., a chemotherapeutic agent), to treat a disease such as cancer. Treatments may be sequential, with the present compounds/compositions being administered before or after the administration of other agents.
  • the derivative of a monoterpene or sesquiterpene may be a monoterpene or sesquiterpene conjugated with a therapeutic agent.
  • the derivative of an isomer or analog of monoterpene or sesquiterpene may be an isomer or analog of monoterpene or sesquiterpene conjugated with a therapeutic agent.
  • a conjugate encompassed by the present invention is a molecule having a monoterpene or sesquiterpene (or an isomer or analog of monoterpene or sesquiterpene) covalently bound via a chemical linking group to a therapeutic agent.
  • Also encompassed by the present invention are admixtures and/or coformulations of the present compound and at least one other therapeutic agent.
  • Non-limiting examples of DNA alkylating agents are nitrogen mustards, such as Cyclophosphamide (Ifosfamide, Trofosfamide), Chlorambucil (Melphalan, Prednimustine), Bendamustine, Uramustine and Estramustine; nitrosoureas, such as Carmustine (BCNU), Lomustine (Semustine), Fotemustine, Nimustine, Ranimustine and Streptozocin; alkyl sulfonates, such as Busulfan (Mannosulfan, Treosulfan); Aziridines, such as Carboquone, Triaziquone, Triethylenemelamine; Hydrazines (Procarbazine); Triazenes such as dacarbazine and Temozolomide; Altretamine and Mitobronitol.
  • nitrogen mustards such as Cyclophosphamide (Ifosfamide, Trofosfamide), Chlorambucil (Melphalan
  • Dual topoisomerase I and II inhibitors include, but are not limited to, Saintopin and other Naphthecenediones, DACA and other Acridine-4-Carboxamindes, Intoplicine and other Benzopyridoindoles, TAS-I03 and other 7H-indeno[2,1-c]Quinoline-7-ones, Pyrazoloacridine, XR 11576 and other Benzophenazines, XR 5944 and other Dimeric compounds, 7-oxo-7H-dibenz[f,ij]Isoquinolines and 7-oxo-7H-benzo[e]pyrimidines and Anthracenyl-amino Acid Conjugates as described in Denny and Baguley (2003) Curr.
  • Top. Med. Chem. 3(3):339-353 Some agents inhibit Topoisomerase II and have DNA intercalation activity such as, but not limited to, Anthracyclines (Aclarubicin, Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Amrubicin, Pirarubicin, Valrubicin, Zorubicin) and Antracenediones (Mitoxantrone and Pixantrone).
  • Anthracyclines Aclarubicin, Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Amrubicin, Pirarubicin, Valrubicin, Zorubicin
  • Antracenediones Mitoxantrone and Pixantrone
  • endoplasmic reticulum stress inducing agents include, but are not limited to, dimethyl-celecoxib (DMC), nelfinavir, celecoxib, and boron radiosensitizers (i.e. velcade (Bortezomib)).
  • DMC dimethyl-celecoxib
  • nelfinavir nelfinavir
  • celecoxib nelfinavir
  • boron radiosensitizers i.e. velcade (Bortezomib)
  • Platinum based compounds are a subclass of DNA alkylating agents.
  • Non-limiting examples of such agents include Cisplatin, Nedaplatin, Oxaliplatin, Triplatin tetranitrate, Satraplatin, Aroplatin, Lobaplatin, and JM-216. (see McKeage et al. (1997) J. Clin. Oncol. 201:1232-1237 and in general, CHEMOTHERAPY FOR GYNECOLOGICAL NEOPLASM, CURRENT THERAPY AND NOVEL APPROACHES, in the Series Basic and Clinical Oncology, Angioli et al. Eds., 2004).
  • FOLFOX is an abbreviation for a type of combination therapy that is used to treat colorectal cancer. It includes 5-FU, oxaliplatin and leucovorin. Information regarding this treatment is available on the National Cancer Institute's web site, cancer.gov, last accessed on Jan. 16, 2008.
  • FOLFOX/BV is an abbreviation for a type of combination therapy that is used to treat colorectal cancer. This therapy includes 5-FU, oxaliplatin, leucovorin and Bevacizumab.
  • XELOX/BV is another combination therapy used to treat colorectal cancer, which includes the prodrug to 5-FU, known as Capecitabine (Xeloda) in combination with oxaliplatin and bevacizumab. Information regarding these treatments are as on the National Cancer Institute's web site, cancer.gov or from 23 the National Comprehensive Cancer Network's web site, nccn.org, last accessed on May 27, 2008.
  • Non-limiting examples of antimetabolite agents include Folic acid based, i.e. dihydrofolate reductase inhibitors, such as Aminopterin, Methotrexate and Pemetrexed; thymidylate synthase inhibitors, such as Raltitrexed, Pemetrexed; Purine based, i.e.
  • cytosine/cytidine hypomethylating agent, such as Azacitidine and Decitabine, a DNA polymerase inhibitor, such as Cytarabine, a ribonucleotide reductase inhibitor, such as Gemcitabine, or a thymine/thymidine: thymidylate synthase inhibitor, such as a Fluorouracil (5-FU).
  • hypomethylating agent such as Azacitidine and Decitabine
  • a DNA polymerase inhibitor such as Cytarabine
  • a ribonucleotide reductase inhibitor such as Gemcitabine
  • thymine/thymidine thymidylate synthase inhibitor, such as a Fluorouracil (5-FU).
  • 5-FU Equivalents to 5-FU include prodrugs, analogs and derivative thereof such as 5′-deoxy-5-fluorouridine (doxifluroidine), 1-tetrahydrofuranyl-5-fluorouracil (ftorafur) Capecitabine (Xeloda), S-I (MBMS-247616, consisting of tegafur and two modulators, a 5-chloro-2,4-dihydroxypyridine and potassium oxonate), ralititrexed (tomudex), nolatrexed (Thymitaq, AG337), LY231514 and ZD9331, as described for example in Papamicheal (1999) The Oncologist 4:478-487.
  • doxifluroidine 1-tetrahydrofuranyl-5-fluorouracil
  • Xeloda Capecitabine
  • S-I MBMS-247616, consisting of tegafur and two modulators
  • vincalkaloids examples include, but are not limited to Vinblastine, Vincristine, Vinflunine, Vindesine and Vinorelbine.
  • enzyme inhibitors include, but are not limited to farnesyltransferase inhibitors (Tipifarnib); CDK inhibitor (Alvocidib, Seliciclib); proteasome inhibitor (Bortezomib); phosphodiesterase inhibitor (Anagrelide; rolipram); dehydrogenase inhibitor (Tiazofurine); and lipoxygenase inhibitor (Masoprocol).
  • receptor antagonists include, but are not limited to ERA (Atrasentan); retinoid X receptor (Bexarotene); and a sex steroid (Testolactone).
  • tyrosine kinase inhibitors include, but are not limited to inhibitors to ErbB: HER1/EGFR (Erlotinib, Gefitinib, Lapatinib, Vandetanib, Sunitinib, Neratinib); HER2/neu (Lapatinib, Neratinib); RTK class III: C-kit (Axitinib, Sunitinib, Sorafenib), FLT3 (Lestaurtinib), PDGFR (Axitinib, Sunitinib, Sorafenib), and VEGFR (Vandetanib, Semaxanib, Cediranib, Axitinib, Sorafenib); bcr-abl (Imatinib, Nilotinib, Dasatinib); Src (Bosutinib) and Janus kinase 2 (Lestaurtinib).
  • ErbB HER1/EG
  • Lapatinib (Tykerb®) is a dual EGFR and erbB-2 inhibitor. Lapatinib has been investigated as an anticancer monotherapy, as well as in combination with trastuzumab, capecitabine, letrozole, paclitaxel and FOLFIRI (irinotecan, 5-fluorouracil and leucovorin), in a number of clinical trials. It is currently in phase III testing for the oral treatment of metastatic breast, head and neck, lung, gastric, renal and bladder cancer.
  • lapatinib is a small molecule or compound that is a tyrosine kinase inhibitor (TKI) or alternatively a HER-1 inhibitor or a HER-2 inhibitor.
  • TKI tyrosine kinase inhibitor
  • HER-1 inhibitor HER-1 inhibitor
  • HER-2 inhibitor HER-2 inhibitor
  • Zactima ZD6474
  • Iressa gefitinib
  • imatinib mesylate STI571; Gleevec
  • erlotinib OSI-1774; Tarceva
  • canertinib CI 1033
  • semaxinib SU5416
  • vatalanib PTK787/ZK222584
  • sorafenib BAY 43-9006
  • sutent SUI 1248
  • lefltmomide SU101
  • PTK/ZK is a tyrosine kinase inhibitor with broad specificity that targets all VEGF receptors (VEGFR), the platelet-derived growth factor (PDGF) receptor, c-KIT and c-Fms. Drevs (2003) Idrugs 6(8):787-794. PTK/ZK is a targeted drug that blocks angiogenesis and lymphangiogenesis by inhibiting the activity of all known receptors that bind VEGF including VEGFR-I (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4).
  • VEGFR-I Flt-1
  • VEGFR-2 KDR/Flk-1
  • VEGFR-3 Flt-4
  • a monoterpene or sesquiterpene, or an isomer or analog of monoterpene or sesquiterpene may be conjugated and/or used in admixtures and/or coformulations with angiogenesis inhibitors.
  • angiogenesis inhibitors include, but are not limited to, angiostatin, angiozyme, antithrombin III, AG3340, VEGF inhibitors, batimastat, bevacizumab (avastin), BMS-275291, CAI, 2C3, HuMV833 Canstatin, Captopril, carboxyamidotriazole, cartilage derived inhibitor (CDI), CC-5013, 6-O-(chloroacetyl-carbonyl)-fumagillol, COL-3, combretastatin, combretastatin A4 Phosphate, Dalteparin, EMD 121974 (Cilengitide), endostatin, erlotinib, gefitinib (Iressa),
  • Non-limiting examples of angiogenesis inhibitors also include, tyrosine kinase inhibitors, such as inhibitors of the tyrosine kinase receptors Flt-1 (VEGFR1) and Flk-1/KDR (VEGFR2), inhibitors of epidermal-derived, fibroblast-derived, or platelet derived growth factors, MMP (matrix metalloprotease) inhibitors, integrin blockers, pentosan polysulfate, angiotensin II antagonists, cyclooxygenase inhibitors (including non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin and ibuprofen, as well as selective cyclooxygenase-2 inhibitors such as celecoxib and rofecoxib), and steroidal anti-inflammatories (such as corticosteroids, mineralocorticoids, dexamethasone, prednisone, prednisolone, methylpred, betamethasone).
  • therapeutic agents that may be conjugated, and/or admixed and/or coformulated, with monoterpene (or sesquiterpene), or with an isomer or analog of monoterpene or sesquiterpene, include, but are not limited to, Sertraline (Zoloft), Topiramate (Topamax), Duloxetine (Cymbalta), Sumatriptan (Imitrex), Pregabalin (Lyrica), Lamotrigine (Lamictal), Valacidovir (Valtrex), Tamsulosin (Flomax), Zidovudine (Combivir), Lamivudine (Combivir), Efavirenz (Sustiva), Abacavir (Epzicom), Lopinavir (Kaletra), Pioglitazone (Actos), Desloratidine (Clarinex), Cetirizine (Zyrtec), Pentoprazole (Protonix), Lansoprazole (Prevacid), Rebeprazole (
  • Table 1 lists pharmaceutical agents that can be conjugated with a monoterpene (or sesquiterpene), or with an isomer or analog of monoterpene or sesquiterpene, including the structure of the pharmaceutical agent and the preferred derivative for conjugation.
  • the purity of the monoterpene (or sesquiterpene) derivatives, or the derivatives of an isomer or analog of monoterpene or sesquiterpene may be assayed by gas chromatography (GC) or high pressure liquid chromatography (HPLC).
  • GC gas chromatography
  • HPLC high pressure liquid chromatography
  • Other techniques for assaying the purity of the compounds of the present invention and for determining the presence of impurities include, but are not limited to, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), GC-MS, infrared spectroscopy (IR), and thin layer chromatography (TLC). Chiral purity can be assessed by chiral GC or measurement of optical rotation.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • IR infrared spectroscopy
  • TLC thin layer chromatography
  • the monoterpene (or sesquiterpene) derivative, or the derivative of an isomer or analog of monoterpene or sesquiterpene can be separated by suitable separation techniques known in the art, such as preparative chromatography, (fractional) distillation, or (fractional) crystallization.
  • the invention also provides for methods of using monoterpenes (or sesquiterpenes) derivatives, and/or using a derivative of an isomer or analog of monoterpene or sesquiterpene, to treat a disease, such as cancer or other nervous system disorders.
  • the compounds of the present invention may be administered alone, or in combination with radiation, surgery or chemotherapeutic agents.
  • the present compound may be co-administered with antiviral agents, anti-inflammatory agents or antibiotics.
  • the agents may be administered concurrently or sequentially,
  • the present compounds can be administered before, during or after the administration of the other active agent(s).
  • the compounds and methods of the present invention may be used to inhibit the Ras protein.
  • the Ras family is a protein family of small GTPases that are involved in cellular signal transduction. Activation of Ras signaling causes cell growth, differentiation and survival. Mutations in ras genes can permanently activate it and cause inappropriate transmission inside the cell even in the absence of extracellular signals. Because these signals result in cell growth and division dysregulated Ras signaling can ultimately lead to oncogenesis and cancer. Activating mutations in Ras are found in 20-25% of all human tumors and up to 90% in specific tumor types. Goodsell D S (1999). Downward J., “The molecular perspective: the ras oncogene”. Oncologist 4 (3): 263-4. (January 2003). “Targeting RAS signaling pathways in cancer therapy”.
  • the present invention provides for a method of treating tumor cells, such as malignant glioma cells, with chemotherapy, where the cells are treated with an effective amount of a monoterpene derivative, such as a perillyl alcohol ester, and then exposed to chemotherapy.
  • the present invention provides for a method of treating tumor cells, such as malignant glioma cells, with chemotherapy, where the cells are treated with an effective amount of a derivative of the isomer or analog of monoterpene or sesquiterpene, such as an isoperillyl alcohol ester, and then exposed to chemotherapy.
  • Treatment by the present compounds may be before, during and/or after chemotherapy.
  • the present compounds may be used for the treatment of nervous system cancers, such as a malignant glioma (e.g., astrocytoma, anaplastic astrocytoma, glioblastoma multiforme), retinoblastoma, pilocytic astrocytomas (grade I), meningiomas, metastatic brain tumors, neuroblastoma, pituitary adenomas, skull base meningiomas, and skull base cancer.
  • a malignant glioma e.g., astrocytoma, anaplastic astrocytoma, glioblastoma multiforme
  • retinoblastoma pilocytic astrocytomas (grade I)
  • meningiomas e.g., metastatic brain tumors, neuroblastoma, pituitary adenomas, skull base meningiomas, and skull base cancer.
  • the term “nervous system tumors” refers to a
  • Cancers that can be treated by the present compounds include, but are not limited to, lung cancer, ear, nose and throat cancer, leukemia, colon cancer, melanoma, pancreatic cancer, mammary cancer, prostate cancer, breast cancer, hematopoietic cancer, ovarian cancer, basal cell carcinoma, biliary tract cancer; bladder cancer; bone cancer; breast cancer; cervical cancer; choriocarcinoma; colon and rectum cancer; connective tissue cancer; cancer of the digestive system; endometrial cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer; intra-epithelial neoplasm; kidney cancer; larynx cancer; leukemia including acute myeloid leukemia, acute lymphoid leukemia, chronic myeloid leukemia, chronic lymphoid leukemia; liver cancer; lymphoma including Hodgkin's and Non-Hodgkin's lymphoma; myeloma; fibroma, neuroblastom
  • the present invention also provides methods of treating CNS disorders, including, without limitation, primary degenerative neurological disorders such as Alzheimer's, Parkinson's, psychological disorders, psychosis and depression. Autism may also be treated by the present compositions and methods. Treatment may consist of the use of a compound of the present invention alone or in combination with current medications used in the treatment of Parkinson's, Alzheimer's, or psychological disorders.
  • the present invention also provides a method of improving immunomodulatory therapy responses comprising the steps of exposing cells to an effective amount of a compound of the present invention, before or during immunomodulatory treatment.
  • Preferred immunomodulatory agents are cytokines, such interleukins, lymphokines, monokines, interfereons and chemokines.
  • Topical formulation may be in the form of gel, ointment, cream, aerosol, etc; intranasal formulation can be delivered as a spray or in a drop; transdermal formulation may be administered via a transdermal patch or iontorphoresis; inhalation formulation can be delivered using a nebulizer or similar device.
  • Compositions can also take the form of tablets, pills, capsules, semisolids, powders, sustained release formulations, solutions, suspensions, elixirs, aerosols, or any other appropriate compositions.
  • one or more of compound of the present invention may be mixed with a pharmaceutical acceptable carrier, adjuvant and/or excipient, according to conventional pharmaceutical compounding techniques.
  • Pharmaceutically acceptable carriers that can be used in the present compositions encompass any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents.
  • compositions can additionally contain solid pharmaceutical excipients such as starch, cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk and the like.
  • Liquid and semisolid excipients may be selected from glycerol, propylene glycol, water, ethanol and various oils including those of petroleum, animal, vegetable or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, etc.
  • Liquid carriers, particularly for injectable solutions include water, saline, aqueous dextrose, and glycols. For examples of carriers, stabilizers and adjuvants, see Remington's Pharmaceutical Sciences, edited by E. W. Martin (Mack Publishing Company, 18th ed., 1990).
  • the compositions also can include stabilizers and preservatives.
  • compositions as described above for intranasal administration can further comprise a permeation enhancer.
  • a permeation enhancer Southall et al. Developments in Nasal Drug Delivery. 2000.
  • the present compound may be administered intranasally in a liquid form such as a solution, an emulsion, a suspension, drops, or in a solid form such as a powder, gel, or ointment.
  • Nasal drug delivery can be carried out using devices including, but not limited to, intranasal inhalers, intranasal spray devices, atomizers, nasal spray bottles, unit dose containers, pumps, droppers, squeeze bottles, nebulizers, metered dose inhalers (MDI), pressurized dose inhalers, insufflators, and bi-directional devices.
  • the nasal delivery device can be metered to administer an accurate effective dosage amount to the nasal cavity.
  • the nasal delivery device can be for single unit delivery or multiple unit delivery.
  • the ViaNase Electronic Atomizer from Kurve Technology (Bethell, Wash.) can be used in this invention (http://www.kurvetech.com).
  • the compound of the present invention may also be delivered through a tube, a catheter, a syringe, a packtail, a pledget, a nasal tampon or by submucosal infusion.
  • aerosol refers to a suspension of fine solid particles or liquid solution droplets in a gas.
  • aerosol includes a gas-borne suspension of droplets of a monoterpene (or sesquiterpene), as may be produced in any suitable device, such as an MDI, a nebulizer, or a mist sprayer. Aerosol also includes a dry powder composition of the composition of the instant invention suspended in air or other carrier gas.
  • DPI devices typically administer a therapeutic agent in the form of a free flowing powder that can be dispersed in a patient's air-stream during inspiration.
  • DPI devices which use an external energy source may also be used in the present invention.
  • the present compound can be formulated with a suitable excipient (e.g., lactose).
  • a dry powder formulation can be made, for example, by combining dry lactose having a particle size between about 1 ⁇ m and 100 ⁇ m with micronized particles of the present compound and dry blending.
  • the compound can be formulated without excipients.
  • the formulation is loaded into a dry powder dispenser, or into inhalation cartridges or capsules for use with a dry powder delivery device.
  • MDI devices typically discharge a measured amount of the stored composition using compressed propellant gas.
  • Formulations for MDI administration include a solution or suspension of an active ingredient in a liquefied propellant.
  • propellants include hydrofluoroalklanes (HFA), such as 1,1,1,2-tetrafluoroethane (HFA 134a) and 1,1,1,2,3,3,3-heptafluoro-n-propane (HFA 227), and chlorofluorocarbons, such as CCl 3 F.
  • HFA hydrofluoroalklanes
  • HFA 134a 1,1,1,2-tetrafluoroethane
  • HFA 227 1,1,1,2,3,3,3-heptafluoro-n-propane
  • chlorofluorocarbons such as CCl 3 F.
  • Additional components of HFA formulations for MDI administration include co-solvents, such as ethanol, pentane, water; and surfactants, such as sorbitan trioleate, ole
  • the present compound may be encapsulated in liposomes or microcapsules for delivery via inhalation.
  • a liposome is a vesicle composed of a lipid bilayer membrane and an aqueous interior.
  • the lipid membrane may be made of phospholipids, examples of which include phosphatidylcholine such as lecithin and lysolecithin; acidic phospholipids such as phosphatidylserine and phosphatidylglycerol; and sphingophospholipids such as phosphatidylethanolamine and sphingomyelin. Alternatively, cholesterol may be added.
  • a microcapsule is a particle coated with a coating material.
  • the coating material may consist of a mixture of a film-forming polymer, a hydrophobic plasticizer, a surface activating agent or/and a lubricant nitrogen-containing polymer.
  • the present compound may also be used alone or in combination with other chemotherapeutic agents via topical application for the treatment of localized cancers such as breast cancer or melanomas.
  • the present compound may also be used in combination with narcotics or analgesics for transdermal delivery of pain medication.
  • the present compound can be given alone or in combination with other drugs for the treatment of the above diseases for a short or prolonged period of time.
  • the present compositions can be administered to a mammal, preferably a human. Mammals include, but are not limited to, murines, rats, rabbit, simians, bovines, ovine, porcine, canines, feline, farm animals, sport animals, pets, equine, and primates.
  • the invention also provides a method for inhibiting the growth of a cell in vitro, ex vivo or in vivo, where a cell, such as a cancer cell, is contacted with an effective amount of the present compound as described herein.
  • Pathological cells or tissue such as hyperproliferative cells or tissue may be treated by contacting the cells or tissue with an effective amount of a composition of this invention.
  • the cells such as cancer cells, can be primary cancer cells or can be cultured cells available from tissue banks such as the American Type Culture Collection (ATCC).
  • the pathological cells can be cells of a systemic cancer, gliomas, meningiomas, pituitary adenomas, or a CNS metastasis from a systemic cancer, lung cancer, prostate cancer, breast cancer, hematopoietic cancer or ovarian cancer.
  • the cells can be from a vertebrate, preferably a mammal, more preferably a human.
  • the cytoxicity of the present compound may be studied by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] cytotoxicity assay.
  • MTT assay is based on the principle of uptake of MTT, a tetrazolium salt, by metabolically active cells where it is metabolized into a blue colored formazon product, which can be read spectrometrically. J. of Immunological Methods 65: 55 63, 1983.
  • the cytoxicity of the present compound may be studied by colony formation assay.
  • Functional assays for inhibition of VEGF secretion and IL-8 secretion may be performed via ELISA.
  • Cell cycle block by the present compound may be studied by standard propidium iodide (PI) staining and flow cytometry.
  • Invasion inhibition may be studied by Boyden chambers.
  • PI propidium iodide
  • Boyden chambers In this assay a layer of reconstituted basement membrane, Matrigel, is coated onto chemotaxis filters and acts as a barrier to the migration of cells in the Boyden chambers. Only cells with invasive capacity can cross the Matrigel barrier.
  • Other assays include, but are not limited to, cell viability assays, apoptosis assays, and morphological assays.
  • the reaction scheme is as follows.
  • Valproyl chloride (2, 11.08 g, 68.14 mmol) was added slowly to a mixture of Perillyl alcohol (POH 3, 8.0 g, 52.55 mmol), Triethylamine (8.5 g, 84 mmol) and dichloromethane (80 mL) while maintaining the temperature between 10-15° C. The mixture was stirred for 2.0 hours at RT and then quenched with water (40 mL). The separated organic layer was washed sequentially with sodium bicarbonate (5%, 40 mL), water (40 mL), and brine (5%, 40 mL).
  • the reaction scheme is as follows.
  • Valproyl chloride (2, 11.08 g, 68.14 mmol) will be added slowly to a mixture of Isoperillyl alcohol (IsoPOH 3, 8.0 g, 52.55 mmol), Triethylamine (8.5 g, 84 mmol), and dichloromethane (80 mL) while maintaining the temperature between 10-15° C.
  • the mixture will be stirred for 2.0 hours at RT and then will be quenched with water (40 mL).
  • the separated organic layer will be washed sequentially with sodium bicarbonate (5%, 40 mL), water (40 mL), and brine (5%, 40 mL).
  • the organic layer will be dried over sodium sulfate, filtered, and concentrated under vacuum to obtain the crude IsoPOH-Valproate as a liquid which will be purified on a Thomson single StEP column (50 g) and will be eluted with hexanes followed by 2.0% ethyl acetate/hexanes. The purified 2.0% ethyl acetate/hexanes fractions will be combined and concentrated under vacuum to obtain pure IsoPOH-Valproate (4) as a colorless liquid.

Abstract

The present invention provides for a method of treating a disease such as cancer, comprising the step of administering to a patient a therapeutically effective amount of a perillyl alcohol derivative such as a perillyl alcohol ester, or an isoperillyl alcohol derivative such as an isoperillyl alcohol ester. The derivative may be a perillyl alcohol or an isoperillyl alcohol conjugated with a therapeutic agent such as valproic acid. The route of administration may vary, including inhalation, intranasal, oral, transdermal, intravenous, subcutaneous or intramuscular injection.

Description

    FIELD OF THE INVENTION
  • The present invention relates to perillyl alcohol (POH) derivatives and isoperillyl alcohol (iso-POH) derivatives. The present invention further relates to methods of using perillyl alcohol derivatives (such as perillyl alcohol esters and isoperillyl alcohol derivatives (such as isoperillyl alcohol esters) to treat cancer.
  • BACKGROUND OF THE INVENTION
  • Malignant gliomas, the most common form of central nervous system (CNS) cancers, are currently considered essentially incurable. Among the various malignant gliomas, anaplastic astrocytomas (Grade III) and glioblastoma multiforme (GBM; Grade IV) have an especially poor prognosis due to their aggressive growth and resistance to currently available therapies. The present standard of care for malignant gliomas consists of surgery, ionizing radiation, and chemotherapy. Despite recent advances in medicine, the past 50 years have not seen any significant improvement in prognosis for malignant gliomas. Wen et al. Malignant gliomas in adults. New England J Med. 359: 492-507, 2008. Stupp et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England J Med. 352: 987-996, 2005.
  • The poor response of tumors, including malignant gliomas, to various types of chemotherapeutic agents are often due to intrinsic drug resistance. Additionally, acquired resistance of initially well-responding tumors and unwanted side effects are other problems that frequently thwart long-term treatment using chemotherapeutic agents. Hence, various analogues of chemotherapeutic agents have been prepared in an effort to overcome these problems. The analogues include novel therapeutic agents which are hybrid molecules of at least two existing therapeutic agents. For example, cisplatin has been conjugated with cytotoxic codrugs, or conjugated with bioactive shuttle components such as porphyrins, bile acids, hormones, or modulators that expedite the transmembrane transport or the drug accumulation within the cell. (6-Aminomethylnicotinate) dichloridoplatinum (II) complexes esterified with terpene alcohols were tested on a panel of human tumor cell lines. The terpenyl moieties in these complexes appeared to fulfill a transmembrane shuttle function and increased the rate and extent of the uptake of these conjugates into various tumor cell lines. Schobert et al. Monoterpenes as Drug Shuttles: Cytotoxic (6-aminomethylnicotinate) dichloridoplatinum(II) Complexes with Potential to Overcome Cisplatin Resistance. J. Med. Chem. 2007, 50, 1288-1293.
  • Perillyl alcohol (POH), a naturally occurring monoterpene, has been suggested to be an effective agent against a variety of cancers, including CNS cancer, breast cancer, pancreatic cancer, lung cancer, melanomas and colon cancer. Gould, M. Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect. 1997 June; 105 (Suppl 4): 977-979. Hybrid molecules containing both perillyl alcohol and retinoids were prepared to increase apoptosis-inducing activity. Das et al. Design and synthesis of potential new apoptosis agents: hybrid compounds containing perillyl alcohol and new constrained retinoids. Tetrahedron Letters 2010, 51, 1462-1466.
  • There is still a need to prepare perillyl alcohol derivatives including perillyl alcohol conjugated with other therapeutic agents, and use this material in the treatment of cancers such as malignant gliomas, as well as other brain disorders such as Parkinson's and Alzheimer's disease. There is also a need to prepare isomers or analogs including isoperillyl alcohol conjugated with other therapeutic agents, and use this material in the treatment of various conditions. These compounds may be administered alone or in combination with other treatment methods including radiation, standard chemotherapy, and surgery. The administration can also be through various routes including intranasal, oral, oral-tracheal for pulmonary delivery, and transdermal.
  • SUMMARY
  • The present disclosure provides for a pharmaceutical composition comprising a perillyl alcohol conjugated with valproic acid. In certain embodiments, the perillyl alcohol conjugated with valproic acid is an ester of perillyl alcohol with valproic acid. In one embodiment, the ester is 2-Propylpentanoic acid 4-isopropenyl-cyclohex-1-enylmethyl ester.
  • The present disclosure also provides for a pharmaceutical composition comprising an isoperillyl alcohol conjugated with valproic acid. In certain embodiments, the isoperillyl alcohol conjugated with valproic acid is an ester of isoperillyl alcohol with valproic acid. In one embodiment, the ester is 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester.
  • In certain embodiments, the isoperillyl alcohol is selected from the group consisting of (4-isopropylidene cyclohex-1-enyl)methanol, (4-isopropyl cyclohexa-1,3-dienyl)methanol, (4-isopropyl cyclohexa-1,4-dienyl)methanol, (4-isopropylphenyl)methanol and (4-isopropenylphenyl)methanol.
  • The present disclosure provides for a pharmaceutical composition comprising a therapeutically effective amount of 2-Propylpentanoic acid 4-isopropenyl-cyclohex-1-enylmethyl ester.
  • Also encompassed by the present disclosure is a pharmaceutical composition comprising a therapeutically effective amount of 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester.
  • The present disclosure also provides for a method for treating a disease in a mammal, comprising the step of administering to the mammal a therapeutically effective amount of a perillyl alcohol conjugated with valproic acid. In certain embodiments, the perillyl alcohol conjugated with valproic acid is an ester of perillyl alcohol with valproic acid. In one embodiment, the ester is 2-Propylpentanoic acid 4-isopropenyl-cyclohex-1-enylmethyl ester.
  • The present disclosure provides for a method for treating a disease in a mammal, comprising the step of administering to the mammal a therapeutically effective amount of an isoperillyl alcohol conjugated with valproic acid. In certain embodiments, the isoperillyl alcohol conjugated with valproic acid is an ester of isoperillyl alcohol with valproic acid. In one embodiment, the ester is 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester.
  • In certain embodiments, the disease is cancer. In certain embodiments, the cancer is a tumor of the nervous system. In certain embodiments, the tumor is a glioblastoma.
  • In certain embodiments, the present method flintier comprises the step of treating the mammal with radiation. In certain embodiments, the present method further comprises the step of administering to the mammal a chemotherapeutic agent.
  • The present pharmaceutical composition or agent may be administered by inhalation, intranasally, orally, intravenously, subcutaneously or intramuscularly.
  • In certain embodiments, the pharmaceutical composition or agent is admixed or coformulated with a therapeutic agent.
  • The present disclosure provides for a method for treating a disease in a mammal, comprising the step of administering to the mammal a therapeutically effective amount of a perillyl alcohol conjugated with valproic acid or an isoperillyl alcohol conjugated with valproic acid using a nasal delivery device. In certain embodiments, the nasal delivery device is selected from the group consisting of an intranasal inhaler, an intranasal spray device, an atomizer, a nebulizer, a metered dose inhaler (MDI), a pressurized dose inhaler, an insufflator, a unit dose container, a pump, a dropper, a squeeze bottle and a bi-directional device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present disclosure provides for derivatives of monoterpene or sesquiterpene, such as perillyl alcohol derivatives. The present disclosure also provides for a pharmaceutical composition comprising a derivative of monoterpene or sesquiterpene such as a perillyl alcohol derivative. For example, the perillyl alcohol derivative may be a perillyl alcohol ester. The perillyl alcohol ester may be perillyl alcohol conjugated with valproic acid (or valproate).
  • The present disclosure provides for derivatives of isomers or analogs of monoterpene or sesquiterpene, such as isoperillyl alcohol derivatives. The present disclosure also provides for a pharmaceutical composition comprising a derivative of isomers or analogs of monoterpene or sesquiterpene, such as an isoperillyl alcohol derivative. For example, the isoperillyl alcohol derivative may be an isoperillyl alcohol ester. The isoperillyl alcohol ester may be isoperillyl alcohol conjugated with valproic acid (or valproate).
  • The present compounds can be administered alone, or may be co-administered together with radiation or another agent (e.g., a chemotherapeutic agent), to treat a disease such as cancer. Treatments may be sequential, with the present compounds being administered before or after the administration of other agents. For example, a perillyl alcohol ester (or an isoperillyl alcohol ester) may be used to sensitize a cancer patient to radiation or chemotherapy. Alternatively, agents may be administered concurrently. The route of administration may vary, and can include, inhalation, intranasal, oral, transdermal, intravenous, subcutaneous or intramuscular injection. The present invention also provides for a method of treating a disease such as cancer, comprising the step of delivering to a patient a therapeutically of amount of a derivative of monoterpene (or sesquiterpene), or a derivative of isomers or analogs of monoterpene or sesquiterpene.
  • The present compositions may contain a derivative of monoterpene or sesquiterpene, and/or a derivative of isomers or analogs of monoterpene or sesquiterpene.
  • The derivatives of monoterpene (or sesquiterpene) include, but are not limited to, esters, carbamates, ethers, alcohols and aldehydes of the monoterpene (or sesquiterpene). Monoterpene (or sesquiterpene) alcohols may be derivatized to esters, carbamates ethers, aldehydes or acids.
  • A specific example of a monoterpene is perillyl alcohol (commonly abbreviated as POH). The derivatives of perillyl alcohol include, perillyl alcohol esters, perillyl alcohol carbamates, perillic aldehydes, dihydroperillic acid, perillic acid perillic aldehyde derivatives, dihydroperillic acid esters and perillic acid esters. The derivatives of perillyl alcohol may also include its oxidative and nucleophilic/electrophilic addition derivatives. U.S. Patent Publication No. 20090031455. U.S. Pat. Nos. 6,133,324 and 3,957,856.
  • The present disclosure provides for a derivative of a monoterpene or sesquiterpene, such as a perillyl alcohol derivative. For example, the perillyl alcohol derivative may be perillyl alcohol ester, carbamate, or ether. The derivative of a monoterpene or sesquiterpene may be a monoterpene or sesquiterpene conjugated with a therapeutic agent such as valproic acid (or valproate). The perillyl alcohol derivative may be perillyl alcohol conjugated with a therapeutic agent such as valproic acid (or valproate).
  • Monoterpenes include terpenes that consist of two isoprene units. Monoterpenes may be linear (acyclic) or contain rings. Derivatives of monoterpenoids are also encompassed by the present invention. Monoterpenoids may be produced by biochemical modifications such as oxidation or rearrangement of monoterpenes. Examples of monoterpenes and monoterpenoids include, perillyl alcohol (S(−)) and (R(+)), ocimene, myrcene, geraniol, citral, citronellol, citronellal, linalool, pinene, terpineol, terpinen, limonene, terpinenes, phellandrenes, terpinolene, terpinen-4-ol (or tea tree oil), pinene, terpineol, terpinen; the terpenoids such as p-cymene which is derived from monocyclic terpenes such as menthol, thymol and carvacrol; bicyclic monoterpenoids such as camphor, borneol and encalyptol.
  • Monoterpenes may be distinguished by the structure of a carbon skeleton and may be grouped into acyclic monoterpenes (e.g., myrcene, (Z)- and (E)-ocimene, linalool, geraniol, nerol, citronellol, myrcenol, geranial, citral a, neral, citral b, citronellal, etc.), monocyclic monoterpenes (e.g., limonene, terpinene, phellandrene, terpinolene, menthol, carveol, etc.), bicyclic monoterpenes (e.g., pinene, myrtenol, myrtenal, verbanol, verbanon, pinocarveol, carene, sabinene, camphene, thujene, etc.) and tricyclic monoterpenes (e.g. tricyclene). See Encyclopedia of Chemical Technology, Fourth Edition, Volume 23, page 834-835.
  • Sesquiterpenes include terpenes that consist of three isoprene units. Sesquiterpenes may be linear (acyclic) or contain rings. Derivatives of sesquiterpenoids are also encompassed by the present invention. Sesquiterpenoids may be produced by biochemical modifications such as oxidation or rearrangement of sesquiterpenes. Examples of sesquiterpenes include farnesol, farnesal, farnesylic acid and nerolidol. U.S. Provisional Application No. 61/310,231 (filed on Mar. 3, 2010), 61/377,747 (filed on Aug. 27, 2010), 61/471,402 (filed on Apr. 4, 2011) and 61/562,105 (filed on Nov. 21, 2011), PCT Application Nos. PCT/US2011/027051 (filed on Mar. 3, 2011) and PCT/US2011/049392 (filed on Aug. 26, 2011). U.S. application Ser. No. 13/040,059 (filed on Mar. 3, 2011). All these applications are incorporated herein by reference in their entirety.
  • The derivatives of isomers or analogs of monoterpene or sesquiterpene include, but are not limited to, esters, carbamates, ethers, alcohols and aldehydes of the isomers or analogs of monoterpene or sesquiterpene. Alcohols may be derivatized to esters, carbamates, ethers, aldehydes or acids.
  • The isomer or analog of monoterpene or sesquiterpene can be an isoperillyl alcohol (iso-POH). Isoperillyl alcohols include any isomers or analogs of perillyl alcohol. In one embodiment, the isoperillyl alcohol is (4-isopropylidene cyclohex-1-enyl)methanol. Other examples of isoperillyl alcohol include, but are not limited to, (4-isopropyl cyclohexa-1,3-dienyl)methanol, (4-isopropyl cyclohexa-1,4-dienyl)methanol, (4-isopropylphenyl)methanol and (4-isopropenylphenyl)methanol. An exemplary isoperillyl alcohol, (4-isopropylidene cyclohex-1-enyl)methanol, is shown below:
  • Figure US20230145207A1-20230511-C00001
  • Also encompassed by the present invention is a derivative of an isomer or analog of monoterpene or sesquiterpene, such as an isoperillyl alcohol derivative. For example, the isoperillyl alcohol derivative may be an isoperillyl alcohol ester, carbamate, or ether. The derivative of an isomer or analog of monoterpene or sesquiterpene may be an isomer or analog of monoterpene or sesquiterpene conjugated with a therapeutic agent such as valproic acid (or valproate). The isoperillyl alcohol derivative may be isoperillyl alcohol conjugated with a therapeutic agent such as valproic acid (or valproate). The derivatives of isoperillyl alcohol include isoperillyl alcohol esters, isoperillyl alcohol carbamates, isoperillic aldehydes, isoperillic acid, isoperillic aldehyde derivatives, and isoperillic acid esters. The derivatives of isoperillyl alcohol may also include its oxidative and nucleophilic electrophilic addition derivatives. U.S. Pat. No. 5,994,598.
  • Esters of the monoterpene (or sesquiterpene) alcohols of the present invention can be derived from an inorganic acid or an organic acid. Esters of the alcohols of the isomers or analogs of monoterpene or sesquiterpene can be derived from an inorganic acid or an organic acid. Inorganic acids include, but are not limited to, phosphoric acid, sulfuric acid, and nitric acid. Organic acids include, but are not limited to, carboxylic acid such as valproic acid, benzoic acid, fatty acid, acetic acid and propionic acid, and any therapeutic agent bearing at least one carboxylic acid functional group. Examples of the esters of alcohols include, but are not limited to, carboxylic acid esters (such as valproic acid esters, benzoate esters, fatty acid esters (e.g., palmitate ester, linoleate ester, stearate ester, butyryl ester and oleate ester), acetates, propionates (or propanoates), and formates), phosphates, sulfates, and carbamates (e.g., N,N-dimethylaminocarbonyl).
  • In certain embodiments, the perillyl alcohol derivative is perillyl alcohol conjugated with valproic, acid (or valproate). In one embodiment, the POH-valproate conjugate is 2-Propylpentanoic acid 4-isopropenyl-cyclohex-1-enylmethyl ester with the following structure:
  • Figure US20230145207A1-20230511-C00002
  • In certain embodiments, the isoperillyl alcohol derivative is isoperillyl alcohol conjugated with valproic acid (or valproate). In one embodiment, the iso-POH-valproate conjugate is 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester with the following structure:
  • Figure US20230145207A1-20230511-C00003
  • Carbamate refers to a class of chemical compounds sharing the functional group
  • Figure US20230145207A1-20230511-C00004
  • based on a carbonyl group flanked by an oxygen and a nitrogen. R1, R2 and R3 can be a group such as alkyl, aryl, etc., which can be substituted. The R groups on the nitrogen and the oxygen may form a ring. R1—OH may be a monoterpene, e.g., POH, or isomers or analogs of monoterpene or sesquiterpene, e.g., iso-POH. The R2—N—R3 moiety may be a therapeutic agent.
  • Carbamates may be synthesized by reacting isocyanate and alcohol, or by reacting chloroformate with amine. Carbamates may be synthesized by reactions making use of phosgene or phosgene equivalents. For example, carbamates may be synthesized by reacting phosgene gas, diphosgene or a solid phosgene precursor such as triphosgene with two amines or an amine and an alcohol. Carbamates (also known as urethanes) can also be made from reaction of a urea intermediate with an alcohol. Dimethyl carbonate and diphenyl carbonate are also used for making carbamates. Alternatively, carbamates may be synthesized through the reaction of alcohol and/or amine precursors with an ester-substituted diaryl carbonate, such as bismethylsalicylcarbonate (BMSC). U.S. Patent Publication No. 20100113819.
  • Carbamates may be synthesized by the following approach:
  • Figure US20230145207A1-20230511-C00005
  • Suitable reaction solvents include, but are not limited to, tetrahydrofuran, dichloromethane, dichloroethane, acetone, and diisopropyl ether. The reaction may be performed at a temperature ranging from about −70° C. to about 80° C., or from about −65° C. to about 50° C. The molar ratio of perillyl chloroformate (or isoperillyl chloroformate) to the substrate R—NH2 may range from about 1:1 to about 2:1, from about 1:1 to about 1.5:1, from about 2:1 to about 1:1, or from about 1.05:1 to about 1.1:1. Suitable bases include, but are not limited to, organic bases, such as triethylamine, potassium carbonate, N,N′-diisopropylethylamine, butyl lithium, and potassium-t-butoxide.
  • Alternatively, carbamates may be synthesized by the following approach:
  • Figure US20230145207A1-20230511-C00006
  • Suitable reaction solvents include, but are not limited to, dichloromethane, dichloroethane, toluene, diisopropyl ether, and tetrahydrofuran. The reaction may be performed at a temperature ranging from about 25° C. to about 110° C., or from about 30° C. to about 80° C., or about 50° C. The molar ratio of perillyl alcohol (or isoperillyl alcohol) to the substrate R—N═C═O may range from about 1:1 to about 2:1, from about 1:1 to about 1.5:1, from about 2:1 to about 1:1, or from about 1.05:1 to about 1.1:1.
  • In certain embodiments, a POH carbamate is synthesized by a process comprising the step of reacting a first reactant of perillyl chloroformate with a second reactant such as dimethyl celocoxib (DMC), temozolomide (TMZ) and rolipram. The reaction may be carried out in the presence of tetrahydrofuran and a base such as n-butyl lithium. Perillyl chloroformate may be made by reacting POH with phosgene. For example, POH conjugated with temozolomide through a carbamate bond may be synthesized by reacting temozolomide with oxalyl chloride followed by reaction with perillyl alcohol. The reaction may be carried out in the presence of 1,2-dichloroethane.
  • POH carbamates encompassed by the present invention include, but not limited to, 4-(bis-N,N′-4-isopropenyl cyclohex-1-enylmethyloxy carbonyl [5-(2,5-dimethyl phenyl)-3-trifluoromethyl pyrazol-1-yl]benzenesulfonamide, 4-(3-cyclopentyloxy-4-methoxy phenyl)-2-oxo-pyrrolidine-1-carboxylic acid 4-isopropenyl cyclohex-1-enylmethyl ester, and (3-methyl 4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carbanyl)carbamic acid-4-isopropenyl cyclohex-1-enylmethyl ester.
  • In certain embodiments, an iso-POH carbamate is synthesized by a process comprising the step of reacting a first reactant of isoperillyl chloroformate with a second reactant such as dimethyl celocoxib (DMC), temozolomide (TMZ) and rolipram. The reaction may be carried out in the presence of tetrahydrofuran and a base such as n-butyl lithium. Isoperillyl chloroformate may be made by reacting iso-POH with phosgene. For example, iso-POH conjugated with temozolomide through a carbamate bond may be synthesized by reacting temozolomide with oxalyl chloride followed by reaction with isoperillyl alcohol. The reaction may be carried out in the presence of 1,2-dichloroethane.
  • Iso-POH carbamates encompassed by the present invention include, but are not limited to, (3-Methyl 4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carbonyl)-carbamic acid-4-isopropylidene cyclohex-1-enylmethyl ester, 4-(3-Cyclopentyloxy-4-methoxyphenyl)-2-oxo-pyrrolidine-1-carboxylic acid 4-isopropylidene cyclohex-1-enylmethyl ester, 4-(Bis-N,N′-4-isopropylidene cyclohex-1-enylmethyloxy carbonyl [5-(2,5-dimethyl phenyl)-3-trifluoromethyl pyrazol-1-yl]benzenesulfonamide.
  • In certain embodiments, iso-perillyl alcohol derivatives may be isoperillyl alcohol fatty acid esters, such as palmitoyl ester of iso-POH and linoleoyl ester of iso-POH.
  • The monoterpene (or sesquiterpene) derivative may be a monoterpene (or sesquiterpene) conjugated with a therapeutic agent. A monoterpene (or sesquiterpene) conjugate encompassed by the present invention is a molecule having a monoterpene (or sesquiterpene) covalently bound is a chemical linking group to a therapeutic agent. The molar ratio of the monoterpene (or sesquiterpene) to the therapeutic agent in the monoterpene (or sesquiterpene) conjugate may be 1:1, 1:2, 1:3, 1:4, 2:1, 3:1, 4:1, or any other suitable molar ratios. The monoterpene (or sesquiterpene) and the therapeutic agent may be covalently linked through carbamate, ester, ether bonds, or any other suitable chemical functional groups. When the monoterpene (or sesquiterpene) and the therapeutic agent are conjugated through a carbamate bond, the therapeutic agent may be any agent bearing at least one carboxylic acid functional group, or any agent bearing at least one amine functional group. In a specific example, a perillyl alcohol conjugate is perillyl alcohol covalently bound via a chemical linking group to a chemotherapeutic agent.
  • The present invention provides for methods of treating a disease such as cancer using a derivative of perillyl alcohol or a derivative of an isoperillyl alcohol. Routes of administration include inhalation, intranasal, oral, transdermal, intravenous, subcutaneous and intramuscular injection.
  • In the present methods, a patient is administered a therapeutically effective amount of a derivative of perillyl alcohol or a derivative of an isoperillyl alcohol. The present invention also provides for a method of treating a disease comprising the step of administering to a patient a therapeutically effective amount of a derivative of monoterpene or sesquiterpene, such as an perillyl alcohol ester. The derivative may be perillyl alcohol conjugated with a therapeutic agent such as valproic acid. The present invention also provides for a method of treating a disease comprising the step of administering to a patient a therapeutically effective amount of a derivative of an isomer or analog of monoterpene or sesquiterpene, such as an isoperillyl alcohol ester. The derivative may be an isoperillyl alcohol conjugated with a therapeutic agent such as valproic acid.
  • The present compounds may be used for the treatment of nervous system cancers, such as a malignant glioma (e.g., astrocytoma, anaplastic astrocytoma, glioblastoma multiforme), retinoblastoma, pilocytic astrocytomas (grade I), meningiomas, metastatic brain tumors, neuroblastoma, pituitary adenomas, skull base meningiomas, and skull base cancer. The present invention also provides methods of treating CNS (central nervous system) disorders, including, without limitation, primary degenerative neurological disorders such as Alzheimer's, Parkinson's, psychological disorders psychosis and depression.
  • The present compound may be formulated into a pharmaceutical composition, where the present compound is present in amounts ranging from about 0.01% (w/w) to about 100% (w/w), from about 0.1% (w/w) to about 80% (w/w), from about 1% (w/w) to about 70% (w/w), from about 10% (w/w) to about 60% (w/w), or from about 0.1% (w/w) to about 20% (w/w). The present compositions can be administered alone, or may be co-administered together with radiation or another agent (e.g., a chemotherapeutic agent), to treat a disease such as cancer. Treatments may be sequential, with the present compounds/compositions being administered before or after the administration of other agents. For example, a perillyl alcohol derivative (and/or an isoperillyl alcohol derivative) may be used to sensitize a cancer patient to radiation or chemotherapy. Alternatively, agents may be administered concurrently. The route of administration may vary, and can include, inhalation, intranasal, oral, transdermal, intravenous, subcutaneous or intramuscular injection.
  • The derivative of a monoterpene or sesquiterpene may be a monoterpene or sesquiterpene conjugated with a therapeutic agent. The derivative of an isomer or analog of monoterpene or sesquiterpene may be an isomer or analog of monoterpene or sesquiterpene conjugated with a therapeutic agent. A conjugate encompassed by the present invention is a molecule having a monoterpene or sesquiterpene (or an isomer or analog of monoterpene or sesquiterpene) covalently bound via a chemical linking group to a therapeutic agent. The molar ratio of the monoterpene or sesquiterpene (or an isomer or analog of monoterpene or sesquiterpene) to the therapeutic agent in the conjugate may be 1:1, 1:2, 1:3, 1:4, 2:1, 3:1, 4:1, or any other suitable molar ratios. The monoterpene or sesquiterpene and the therapeutic agent may be covalently linked through ester, carbamate, ether bonds, or any other suitable chemical functional groups. The isomer or analog of monoterpene or sesquiterpene and the therapeutic agent may be covalently linked through ester, carbamate, ether bonds, or any other suitable chemical functional groups.
  • The therapeutic agents that may be conjugated with a monoterpene or sesquiterpene (or an isomer or analog of monoterpene or sesquiterpene) include, but are not limited to, chemotherapeutic agents, therapeutic agents for treatment of CNS disorders (including, without limitation, primary degenerative neurological disorders such as Alzheimer's, Parkinson's, multiple sclerosis, Attention-Deficit Hyperactivity Disorder or ADHD, psychological disorders, psychosis and depression), immunotherapeutic agents, angiogenesis inhibitors, and anti-hypertensive agents. Anti-cancer agents that may be conjugated with a monoterpene or sesquiterpene (or an isomer or analog of monoterpene or sesquiterpene) can have one or more of the following effects on cancer cells or the subject: cell death; decreased cell proliferation; decreased numbers of cells; inhibition of cell growth; apoptosis; necrosis; mitotic catastrophe; cell cycle arrest; decreased cell size; decreased cell division; decreased cell survival; decreased cell metabolism; markers of cell damage or cytotoxicity; indirect indicators of cell damage or cytotoxicity such as tumor shrinkage; improved survival of a subject; or disappearance of markers associated with undesirable, unwanted, or aberrant cell proliferation. U.S. Patent Publication No. 20080275057.
  • Also encompassed by the present invention are admixtures and/or coformulations of the present compound and at least one other therapeutic agent.
  • Chemotherapeutic agents include, but are not limited to, DNA alkylating agents, topoisomerase inhibitors, endoplasmic reticulum stress inducing agents, a platinum compound, antimetabolite, vincalkaloids, taxanes, epothilones, enzyme inhibitors, receptor antagonists, tyrosine kinase inhibitors, boron radiosensitizers (i.e. velcade), and chemotherapeutic combination therapies.
  • Non-limiting examples of DNA alkylating agents are nitrogen mustards, such as Cyclophosphamide (Ifosfamide, Trofosfamide), Chlorambucil (Melphalan, Prednimustine), Bendamustine, Uramustine and Estramustine; nitrosoureas, such as Carmustine (BCNU), Lomustine (Semustine), Fotemustine, Nimustine, Ranimustine and Streptozocin; alkyl sulfonates, such as Busulfan (Mannosulfan, Treosulfan); Aziridines, such as Carboquone, Triaziquone, Triethylenemelamine; Hydrazines (Procarbazine); Triazenes such as Dacarbazine and Temozolomide; Altretamine and Mitobronitol.
  • Non-limiting examples of Topoisomerase I inhibitors include Campothecin derivatives including SN-38, APC, NPC, campothecin, topotecan, exatecan mesylate, 9-nitrocamptothecin, 9-aminocamptothecin, lurtotecan, rubitecan, silatecan, gimatecan, diflomotecan, extatecan, BN-80927, DX-8951f, and MAG-CPT as described in Pommier Y. (2006) Nat. Rev. Cancer 6(10):789-802 and U.S. Patent Publication No. 200510250854; Protoberberine alkaloids and derivatives thereof including berberrubine and coralyne as described in Li et al. (2000) Biochemistry 39(24):7107-7116 and Gatto et al. (1996) Cancer Res. 15(12):2795-2800; Phenanthroline derivatives including Benzo[i]phenanthridine, Nitidine, and fagaronine as described in Makhey et al. (2003) Bioorg. Med. Chem. 11 (8): 1809-1820; Terbenzimidazole and derivatives thereof as described in Xu (1998) Biochemistry 37(10):3558-3566; and Anthracycline derivatives including Doxorubicin, Daunorubicin, and Mitoxantrone as described in Foglesong et al. (1992) Cancer Chemother. Pharmacol. 30(2):123-125, Crow et al. (1994) J. Med. Chem. 37(19):31913194, and Crespi et al. (1986) Biochem. Biophys. Res. Commun. 136(2):521-8. Topoisomerase II inhibitors include, but are not limited to Etoposide and Teniposide. Dual topoisomerase I and II inhibitors include, but are not limited to, Saintopin and other Naphthecenediones, DACA and other Acridine-4-Carboxamindes, Intoplicine and other Benzopyridoindoles, TAS-I03 and other 7H-indeno[2,1-c]Quinoline-7-ones, Pyrazoloacridine, XR 11576 and other Benzophenazines, XR 5944 and other Dimeric compounds, 7-oxo-7H-dibenz[f,ij]Isoquinolines and 7-oxo-7H-benzo[e]pyrimidines and Anthracenyl-amino Acid Conjugates as described in Denny and Baguley (2003) Curr. Top. Med. Chem. 3(3):339-353. Some agents inhibit Topoisomerase II and have DNA intercalation activity such as, but not limited to, Anthracyclines (Aclarubicin, Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Amrubicin, Pirarubicin, Valrubicin, Zorubicin) and Antracenediones (Mitoxantrone and Pixantrone).
  • Examples of endoplasmic reticulum stress inducing agents include, but are not limited to, dimethyl-celecoxib (DMC), nelfinavir, celecoxib, and boron radiosensitizers (i.e. velcade (Bortezomib)).
  • Platinum based compounds are a subclass of DNA alkylating agents. Non-limiting examples of such agents include Cisplatin, Nedaplatin, Oxaliplatin, Triplatin tetranitrate, Satraplatin, Aroplatin, Lobaplatin, and JM-216. (see McKeage et al. (1997) J. Clin. Oncol. 201:1232-1237 and in general, CHEMOTHERAPY FOR GYNECOLOGICAL NEOPLASM, CURRENT THERAPY AND NOVEL APPROACHES, in the Series Basic and Clinical Oncology, Angioli et al. Eds., 2004).
  • “FOLFOX” is an abbreviation for a type of combination therapy that is used to treat colorectal cancer. It includes 5-FU, oxaliplatin and leucovorin. Information regarding this treatment is available on the National Cancer Institute's web site, cancer.gov, last accessed on Jan. 16, 2008.
  • “FOLFOX/BV” is an abbreviation for a type of combination therapy that is used to treat colorectal cancer. This therapy includes 5-FU, oxaliplatin, leucovorin and Bevacizumab. Furthermore, “XELOX/BV” is another combination therapy used to treat colorectal cancer, which includes the prodrug to 5-FU, known as Capecitabine (Xeloda) in combination with oxaliplatin and bevacizumab. Information regarding these treatments are as on the National Cancer Institute's web site, cancer.gov or from 23 the National Comprehensive Cancer Network's web site, nccn.org, last accessed on May 27, 2008.
  • Non-limiting examples of antimetabolite agents include Folic acid based, i.e. dihydrofolate reductase inhibitors, such as Aminopterin, Methotrexate and Pemetrexed; thymidylate synthase inhibitors, such as Raltitrexed, Pemetrexed; Purine based, i.e. an adenosine deaminase inhibitor, such as Pemostatin, a thiopurine, such as Thioguanine and Mercaptopurine, a halogenated/ribonucleotide reductase inhibitor, such as Cladribine, Clofarabine, Fludarabine, or a guanine/guanosine: thiopurine, such as Thioguanine; or Pyrimidine based, i.e. cytosine/cytidine: hypomethylating agent, such as Azacitidine and Decitabine, a DNA polymerase inhibitor, such as Cytarabine, a ribonucleotide reductase inhibitor, such as Gemcitabine, or a thymine/thymidine: thymidylate synthase inhibitor, such as a Fluorouracil (5-FU). Equivalents to 5-FU include prodrugs, analogs and derivative thereof such as 5′-deoxy-5-fluorouridine (doxifluroidine), 1-tetrahydrofuranyl-5-fluorouracil (ftorafur) Capecitabine (Xeloda), S-I (MBMS-247616, consisting of tegafur and two modulators, a 5-chloro-2,4-dihydroxypyridine and potassium oxonate), ralititrexed (tomudex), nolatrexed (Thymitaq, AG337), LY231514 and ZD9331, as described for example in Papamicheal (1999) The Oncologist 4:478-487.
  • Examples of vincalkaloids, include, but are not limited to Vinblastine, Vincristine, Vinflunine, Vindesine and Vinorelbine.
  • Examples of taxanes include, but are not limited to docetaxel, Larotaxel, Ortataxel, Paclitaxel and Tesetaxel. An example of an epothilone is iabepilone.
  • Examples of enzyme inhibitors include, but are not limited to farnesyltransferase inhibitors (Tipifarnib); CDK inhibitor (Alvocidib, Seliciclib); proteasome inhibitor (Bortezomib); phosphodiesterase inhibitor (Anagrelide; rolipram); dehydrogenase inhibitor (Tiazofurine); and lipoxygenase inhibitor (Masoprocol). Examples of receptor antagonists include, but are not limited to ERA (Atrasentan); retinoid X receptor (Bexarotene); and a sex steroid (Testolactone).
  • Examples of tyrosine kinase inhibitors include, but are not limited to inhibitors to ErbB: HER1/EGFR (Erlotinib, Gefitinib, Lapatinib, Vandetanib, Sunitinib, Neratinib); HER2/neu (Lapatinib, Neratinib); RTK class III: C-kit (Axitinib, Sunitinib, Sorafenib), FLT3 (Lestaurtinib), PDGFR (Axitinib, Sunitinib, Sorafenib), and VEGFR (Vandetanib, Semaxanib, Cediranib, Axitinib, Sorafenib); bcr-abl (Imatinib, Nilotinib, Dasatinib); Src (Bosutinib) and Janus kinase 2 (Lestaurtinib).
  • “Lapatinib” (Tykerb®) is a dual EGFR and erbB-2 inhibitor. Lapatinib has been investigated as an anticancer monotherapy, as well as in combination with trastuzumab, capecitabine, letrozole, paclitaxel and FOLFIRI (irinotecan, 5-fluorouracil and leucovorin), in a number of clinical trials. It is currently in phase III testing for the oral treatment of metastatic breast, head and neck, lung, gastric, renal and bladder cancer.
  • A chemical equivalent of lapatinib is a small molecule or compound that is a tyrosine kinase inhibitor (TKI) or alternatively a HER-1 inhibitor or a HER-2 inhibitor. Several TKIs have been found to have effective antitumor activity and have been approved or are in clinical trials. Examples of such include, but are not limited to, Zactima (ZD6474), Iressa (gefitinib), imatinib mesylate (STI571; Gleevec), erlotinib (OSI-1774; Tarceva), canertinib (CI 1033), semaxinib (SU5416), vatalanib (PTK787/ZK222584), sorafenib (BAY 43-9006), sutent (SUI 1248) and lefltmomide (SU101).
  • PTK/ZK is a tyrosine kinase inhibitor with broad specificity that targets all VEGF receptors (VEGFR), the platelet-derived growth factor (PDGF) receptor, c-KIT and c-Fms. Drevs (2003) Idrugs 6(8):787-794. PTK/ZK is a targeted drug that blocks angiogenesis and lymphangiogenesis by inhibiting the activity of all known receptors that bind VEGF including VEGFR-I (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4). The chemical names of PTK/ZK are 1-[4-Chloroanilino]-4-[4-pyridylmethyl] phthalazine Succinate or 1-Phthalazinamine, N-(4-chlorophenyl)-4-(4-pyridinylmethyl)-butanedioate (1:1). Synonyms and analogs of PTK/TK are known as Vatalanib, CGP79787D, PTK787/ZK 222584, CGP-79787, DE-00268, PTK-787, PTK787A, VEGFR-TK inhibitor, ZK 222584 and ZK.
  • Chemotherapeutic agents that can be used in admixtures and/or coformulations, and/or conjugated with a monoterpene or sesquiterpene, and/or conjugated with an isomer or analog of monoterpene or sesquiterpene may also include amsacrine, Trabectedin, retinoids (Alitretinoin, Tretinoin), Arsenic trioxide, asparagine depleter Asparaginase/Pegaspargase), Celecoxib, Demecolcine, Elesclomol, Elsamitrucin, Etoglucid, Lonidamine, Lucanthone, Mitoguazone, Mitotane, Oblimersen, Temsirolimus, and Vorinostat.
  • A monoterpene or sesquiterpene, or an isomer or analog of monoterpene or sesquiterpene, may be conjugated and/or used in admixtures and/or coformulations with angiogenesis inhibitors. Examples of angiogenesis inhibitors include, but are not limited to, angiostatin, angiozyme, antithrombin III, AG3340, VEGF inhibitors, batimastat, bevacizumab (avastin), BMS-275291, CAI, 2C3, HuMV833 Canstatin, Captopril, carboxyamidotriazole, cartilage derived inhibitor (CDI), CC-5013, 6-O-(chloroacetyl-carbonyl)-fumagillol, COL-3, combretastatin, combretastatin A4 Phosphate, Dalteparin, EMD 121974 (Cilengitide), endostatin, erlotinib, gefitinib (Iressa), genistein, halofuginone hydrobromide, Id1, Id3, IM862, imatinib mesylate, IMC-IC11 Inducible protein 10, interferon-alpha, interleukin 12, lavendustin A, LY317615 or AE-941, marimastat, mspin, medroxpregesterone acetate, Meth-1, Meth-2, 2-methoxyestradiol (2-ME), neovastat, oteopontin cleaved product, PEX, pigment epithelium growth factor (PEGF), platelet factor 4, prolactin fragment, proliferin-related protein (PRP), PTK787/ZK 222584, ZD6474, recombinant human platelet factor 4 (rPF4), restin, squalamine, SU5416, SU6668, SU11248 suramin, Taxol, Tecogalan, thalidomide, thrombospondin, TNP-470, troponin-1, vasostatin, VEG1, VEGF-Trap, and ZD6474.
  • Non-limiting examples of angiogenesis inhibitors also include, tyrosine kinase inhibitors, such as inhibitors of the tyrosine kinase receptors Flt-1 (VEGFR1) and Flk-1/KDR (VEGFR2), inhibitors of epidermal-derived, fibroblast-derived, or platelet derived growth factors, MMP (matrix metalloprotease) inhibitors, integrin blockers, pentosan polysulfate, angiotensin II antagonists, cyclooxygenase inhibitors (including non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin and ibuprofen, as well as selective cyclooxygenase-2 inhibitors such as celecoxib and rofecoxib), and steroidal anti-inflammatories (such as corticosteroids, mineralocorticoids, dexamethasone, prednisone, prednisolone, methylpred, betamethasone).
  • Other therapeutic agents that modulate or inhibit angiogenesis and may also be conjugated and/or admixed and/or coformulated with a monoterpene or sesquiterpene (or an isomer or analog of monoterpene or sesquiterpene) include agents that modulate or inhibit the coagulation and fibrinolysis systems, including, but not limited to, heparin, low molecular weight heparins and carboxypeptidase U inhibitors (also known as inhibitors of active thrombin activatable fibrinolysis inhibitor [TAFIa]). U.S. Patent Publication No. 20090328239, U.S. Pat. No. 7,638,549.
  • Non-limiting examples of the anti-hypertensive agents include angiotensin converting enzyme inhibitors (e.g., captopril, enalapril, delapril etc.), angiotensin II antagonists (e.g., candesartan cilexetil, candesartan, losartan (or Cozaar), losartan potassium, eprosartan, valsartan (or Diovan), termisartan, irbesartan, tasosartan, olmesartan, olmesartan medoxomil etc.), calcium antagonists (e.g., manidipine, nifedipine, amlodipine (or Amlodin), efonidipine, nicardipine etc.), diuretics, renin inhibitor (e.g., aliskiren etc.), aldosterone antagonists (e.g., spironolactone, eplerenone etc.), beta-blockers (e.g., metoprolol (or Toporol), atenolol, propranolol, carvedilol, pindolol etc.), vasodilators (e.g., nitrate, soluble guanylate cyclase stimulator or activator, prostacycline etc.), angiotensin vaccine, clonidine and the like. U.S. Patent Publication No. 20100113780.
  • Other therapeutic agents that may be conjugated, and/or admixed and/or coformulated, with monoterpene (or sesquiterpene), or with an isomer or analog of monoterpene or sesquiterpene, include, but are not limited to, Sertraline (Zoloft), Topiramate (Topamax), Duloxetine (Cymbalta), Sumatriptan (Imitrex), Pregabalin (Lyrica), Lamotrigine (Lamictal), Valacidovir (Valtrex), Tamsulosin (Flomax), Zidovudine (Combivir), Lamivudine (Combivir), Efavirenz (Sustiva), Abacavir (Epzicom), Lopinavir (Kaletra), Pioglitazone (Actos), Desloratidine (Clarinex), Cetirizine (Zyrtec), Pentoprazole (Protonix), Lansoprazole (Prevacid), Rebeprazole (Aciphex), Moxifloxacin (Avelox), Meloxicam (Mobic), Dorzolamide (Truspot), Diclofenac (Voltaren), Enlapril (Vasotec), Montelukast (Singulair), Sildenafil (Viagra), Carvedilol (Coreg), Ramipril (Delix).
  • Table 1 lists pharmaceutical agents that can be conjugated with a monoterpene (or sesquiterpene), or with an isomer or analog of monoterpene or sesquiterpene, including the structure of the pharmaceutical agent and the preferred derivative for conjugation.
  • TABLE 1
    Brand Generic Preferred
    Name Name Activity Structure Derivative
    Zoloft Sertraline Depression
    Figure US20230145207A1-20230511-C00007
    Carbamate
    Topamax Topiramate Seizures
    Figure US20230145207A1-20230511-C00008
    Carbamate
    Cymbalta Duloxetine Depression
    Figure US20230145207A1-20230511-C00009
    Carbamate
    Imitrex Sumatriptan Migraine
    Figure US20230145207A1-20230511-C00010
    Carbamate
    Lyrica Pregabalin Neuropathic pain
    Figure US20230145207A1-20230511-C00011
    Carbamate or Ester
    Lamictal Lamotrigine Seizures
    Figure US20230145207A1-20230511-C00012
    Carbamate
    Valtrex Valaciclovir Herpes
    Figure US20230145207A1-20230511-C00013
    Carbamate
    Tarceva Erlotinib Non-small cell lung cancer
    Figure US20230145207A1-20230511-C00014
    Carbamate
    Flomax Tamsulosin Benign prostatic Cancer
    Figure US20230145207A1-20230511-C00015
    Carbamate
    Gleevec Imatinib Leukemia
    Figure US20230145207A1-20230511-C00016
    Carbamate
    Combivir Zidovudine HIV infection
    Figure US20230145207A1-20230511-C00017
    Carbamate
    Combivir Lamivudine HIV infection
    Figure US20230145207A1-20230511-C00018
    Carbamate
    Sustiva Efavirenz HIV infection
    Figure US20230145207A1-20230511-C00019
    Carbamate
    Epzicom Abacavir HIV infection
    Figure US20230145207A1-20230511-C00020
    Carbamate
    Kaletra Lopinavir HIV infection
    Figure US20230145207A1-20230511-C00021
    Carbamate
    Actos Pioglitazone Type-2 diabetes
    Figure US20230145207A1-20230511-C00022
    Carbamate
    Clarinex Desloratidine Allergic rhinitis
    Figure US20230145207A1-20230511-C00023
    Carbamate
    Zyrtec Cetirizine Allergic
    Figure US20230145207A1-20230511-C00024
    Ester
    Protonix Pentoprazole Gastrointestinal
    Figure US20230145207A1-20230511-C00025
    Carbamate
    Prevacid Lansoprazole Gastrointestinal
    Figure US20230145207A1-20230511-C00026
    Carbamate
    Aciphex Rebeprazole Gastrointestinal
    Figure US20230145207A1-20230511-C00027
    Carbamate
    Diovan Valsartan Hypertension
    Figure US20230145207A1-20230511-C00028
    Carbamate
    Cozaar Losartan Hypertension
    Figure US20230145207A1-20230511-C00029
    Carbamate
    Avelox Moxifloxacin Bacterial infection
    Figure US20230145207A1-20230511-C00030
    Carbamate or Ester
    Mobic Meloxicam Osteoarthritis
    Figure US20230145207A1-20230511-C00031
    Carbamate
    Truspot Dorzolamide Intraocular pressure
    Figure US20230145207A1-20230511-C00032
    Carbamate
    Voltaren Diclofenac Osteoarthritis & rheumatoid arthritis
    Figure US20230145207A1-20230511-C00033
    Carbamate or Ester
    Vasotec Enlapril Hypertension
    Figure US20230145207A1-20230511-C00034
    Carbamate or Ester
    Singulair Montelukast Asthma
    Figure US20230145207A1-20230511-C00035
    Ester
    Amlodin Amlodipine Hypertension
    Figure US20230145207A1-20230511-C00036
    Carbamate
    Toporol Metoprolol Hypertension
    Figure US20230145207A1-20230511-C00037
    Carbamate
    Viagra Sildenafil Erectile dysfunction
    Figure US20230145207A1-20230511-C00038
    Carbamate
    Coreg Carvedilol Hypertension
    Figure US20230145207A1-20230511-C00039
    Carbamate
    Delix Ramipril Hypertension
    Figure US20230145207A1-20230511-C00040
    Carbamate or Ester
    Sinemet (Parcopa, Atamet) L-DOPA Neurological disorders
    Figure US20230145207A1-20230511-C00041
  • The purity of the monoterpene (or sesquiterpene) derivatives, or the derivatives of an isomer or analog of monoterpene or sesquiterpene, may be assayed by gas chromatography (GC) or high pressure liquid chromatography (HPLC). Other techniques for assaying the purity of the compounds of the present invention and for determining the presence of impurities include, but are not limited to, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), GC-MS, infrared spectroscopy (IR), and thin layer chromatography (TLC). Chiral purity can be assessed by chiral GC or measurement of optical rotation.
  • The present compounds may be purified by methods such as crystallization, or by separating the monoterpene (or sesquiterpene) derivative from impurities according to the unique physicochemical properties (e.g., solubility or polarity) of the derivative, or by separating the isomer or analog of monoterpene or sesquiterpene (or its derivative), from impurities according to the unique physicochemical properties (e.g., solubility or polarity) of the isomer or analog of monoterpene or sesquiterpene (or its derivative). Accordingly, the monoterpene (or sesquiterpene) derivative, or the derivative of an isomer or analog of monoterpene or sesquiterpene can be separated by suitable separation techniques known in the art, such as preparative chromatography, (fractional) distillation, or (fractional) crystallization.
  • The invention also provides for methods of using monoterpenes (or sesquiterpenes) derivatives, and/or using a derivative of an isomer or analog of monoterpene or sesquiterpene, to treat a disease, such as cancer or other nervous system disorders. The compounds of the present invention may be administered alone, or in combination with radiation, surgery or chemotherapeutic agents. The present compound may be co-administered with antiviral agents, anti-inflammatory agents or antibiotics. The agents may be administered concurrently or sequentially, The present compounds can be administered before, during or after the administration of the other active agent(s).
  • The compounds and methods of the present invention may be used to inhibit the Ras protein. The Ras family is a protein family of small GTPases that are involved in cellular signal transduction. Activation of Ras signaling causes cell growth, differentiation and survival. Mutations in ras genes can permanently activate it and cause inappropriate transmission inside the cell even in the absence of extracellular signals. Because these signals result in cell growth and division dysregulated Ras signaling can ultimately lead to oncogenesis and cancer. Activating mutations in Ras are found in 20-25% of all human tumors and up to 90% in specific tumor types. Goodsell D S (1999). Downward J., “The molecular perspective: the ras oncogene”. Oncologist 4 (3): 263-4. (January 2003). “Targeting RAS signaling pathways in cancer therapy”. Nat. Rev. Cancer 3 (1): 11-22. Ras family members include, but are not limited to, HRAS; KRAS; NRAS; DIRAS1; DIRAS2; DIRAS3; ERAS; GEM; MRAS; NKIRAS1; NKIRAS2, NRAS; RALA; RALB; RAP1A; RAP1B; RAP2A; RAP2B; RAP2C; RASD1; RASD2; RASL10A; RASL10B; RASL11A; RASL11B; RASL12; REM1; REM2; RERG; RERGL; RRAD; RRAS; and RRAS. Wennerbera K, Rossman K L, Der C J (March 2005). “The Ras superfamily at a glance”. J. Cell. Sci. 118 (Pt 5): 843-6.
  • The present compound may be used in combination with radiation therapy. In one embodiment, the present invention provides for a method of treating tumor cells, such as malignant glioma cells, with radiation, where the cells are treated with an effective amount of a monoterpene derivative, such as a perillyl alcohol ester, and then exposed to radiation. In one embodiment, the present invention provides for a method of treating tumor cells, such as malignant glioma cells, with radiation, where the cells are treated with an effective amount of a derivative of an isomer or analog of monoterpene or sesquiterpene, such as an isoperillyl alcohol ester, and then exposed to radiation. Treatment by the compounds of the present invention may be before, during and/or after radiation. For example, the compounds of the present invention may be administered continuously beginning one week prior to the initiation of radiotherapy and continued for two weeks after the completion of radiotherapy. U.S. Pat. Nos. 5,587,402 and 5,602,184.
  • In one embodiment, the present invention provides for a method of treating tumor cells, such as malignant glioma cells, with chemotherapy, where the cells are treated with an effective amount of a monoterpene derivative, such as a perillyl alcohol ester, and then exposed to chemotherapy. In one embodiment, the present invention provides for a method of treating tumor cells, such as malignant glioma cells, with chemotherapy, where the cells are treated with an effective amount of a derivative of the isomer or analog of monoterpene or sesquiterpene, such as an isoperillyl alcohol ester, and then exposed to chemotherapy. Treatment by the present compounds may be before, during and/or after chemotherapy.
  • The present compounds may be used for the treatment of nervous system cancers, such as a malignant glioma (e.g., astrocytoma, anaplastic astrocytoma, glioblastoma multiforme), retinoblastoma, pilocytic astrocytomas (grade I), meningiomas, metastatic brain tumors, neuroblastoma, pituitary adenomas, skull base meningiomas, and skull base cancer. As used herein, the term “nervous system tumors” refers to a condition in which a subject has a malignant proliferation of nervous system cells.
  • Cancers that can be treated by the present compounds include, but are not limited to, lung cancer, ear, nose and throat cancer, leukemia, colon cancer, melanoma, pancreatic cancer, mammary cancer, prostate cancer, breast cancer, hematopoietic cancer, ovarian cancer, basal cell carcinoma, biliary tract cancer; bladder cancer; bone cancer; breast cancer; cervical cancer; choriocarcinoma; colon and rectum cancer; connective tissue cancer; cancer of the digestive system; endometrial cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer; intra-epithelial neoplasm; kidney cancer; larynx cancer; leukemia including acute myeloid leukemia, acute lymphoid leukemia, chronic myeloid leukemia, chronic lymphoid leukemia; liver cancer; lymphoma including Hodgkin's and Non-Hodgkin's lymphoma; myeloma; fibroma, neuroblastoma; oral cavity cancer (e.g., lip, tongue, mouth, and pharynx); ovarian cancer; pancreatic cancer; prostate cancer; retinoblastoma; rhabdomyosarcoma; rectal cancer; renal cancer; cancer of the respiratory system; sarcoma; skin cancer; stomach cancer; testicular cancer; thyroid cancer; uterine cancer; cancer of the urinary system, as well as other carcinomas and sarcomas. U.S. Pat. No. 7,601,355.
  • The present invention also provides methods of treating CNS disorders, including, without limitation, primary degenerative neurological disorders such as Alzheimer's, Parkinson's, psychological disorders, psychosis and depression. Autism may also be treated by the present compositions and methods. Treatment may consist of the use of a compound of the present invention alone or in combination with current medications used in the treatment of Parkinson's, Alzheimer's, or psychological disorders.
  • The present invention also provides a method of improving immunomodulatory therapy responses comprising the steps of exposing cells to an effective amount of a compound of the present invention, before or during immunomodulatory treatment. Preferred immunomodulatory agents are cytokines, such interleukins, lymphokines, monokines, interfereons and chemokines.
  • The present composition may be administered by any method known in the art, including, without limitation, intranasal, oral, transdermal, ocular, intraperitoneal, inhalation, intravenous, ICV, intracisternal injection or infusion, subcutaneous, implant, vaginal, sublingual, urethral (e.g., urethral suppository), subcutaneous, intramuscular, intravenous, rectal, sub-lingual, mucosal, ophthalmic, spinal, intrathecal, intra-articular, intra-arterial, sub-arachinoid, bronchial and lymphatic administration. Topical formulation may be in the form of gel, ointment, cream, aerosol, etc; intranasal formulation can be delivered as a spray or in a drop; transdermal formulation may be administered via a transdermal patch or iontorphoresis; inhalation formulation can be delivered using a nebulizer or similar device. Compositions can also take the form of tablets, pills, capsules, semisolids, powders, sustained release formulations, solutions, suspensions, elixirs, aerosols, or any other appropriate compositions.
  • To prepare such pharmaceutical compositions, one or more of compound of the present invention may be mixed with a pharmaceutical acceptable carrier, adjuvant and/or excipient, according to conventional pharmaceutical compounding techniques. Pharmaceutically acceptable carriers that can be used in the present compositions encompass any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents. The compositions can additionally contain solid pharmaceutical excipients such as starch, cellulose, talc, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk and the like. Liquid and semisolid excipients may be selected from glycerol, propylene glycol, water, ethanol and various oils including those of petroleum, animal, vegetable or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, etc. Liquid carriers, particularly for injectable solutions, include water, saline, aqueous dextrose, and glycols. For examples of carriers, stabilizers and adjuvants, see Remington's Pharmaceutical Sciences, edited by E. W. Martin (Mack Publishing Company, 18th ed., 1990). The compositions also can include stabilizers and preservatives.
  • As used herein, the term “therapeutically effective amount” is an amount sufficient to treat a specified disorder or disease or alternatively to obtain a pharmacological response treating a disorder or disease. Methods of determining the most effective means and dosage of administration can vary with the composition used for therapy, the purpose of the therapy, the target cell being treated, and the subject being treated. Treatment dosages generally may he titrated to optimize safety and efficacy. Single or multiple administrations can be carried out with the dose level and pattern being selected by the treating physician. Suitable dosage formulations and methods of administering the agents can be readily determined by those of skill in the art. For example, the composition are administered at about 0.01 mg/kg to about 200 mg/kg, about 0.1 mg/kg to about 100 mg/kg, or about 0.5 mg/kg to about 50 mg/kg. When the compounds described herein are co-administered with another agent or therapy, the effective amount may be less than when the agent is used alone.
  • Transdermal formulations may be prepared by incorporating the active agent in a thixotropic or gelatinous carrier such as a cellulosic medium, e.g., methyl cellulose or hydroxyethyl cellulose, with the resulting formulation then being packed in a transdermal device adapted to be secured in dermal contact with the skin of a wearer. If the composition is in the form of a gel, the composition may be rubbed onto a membrane of the patient, for example, the skin, preferably intact, clean, and dry skin, of the shoulder or upper arm and or the upper torso, and maintained thereon for a period of time sufficient for delivery of the present compound to the blood serum of the patient. The composition of the present invention in gel form may be contained in a tube, a sachet, or a metered pump. Such a tube or sachet may contain one unit dose, or more than one unit dose, of the composition. A metered pump may be capable of dispensing one metered dose of the composition.
  • This invention also provides the compositions as described above for intranasal administration. As such, the compositions can further comprise a permeation enhancer. Southall et al. Developments in Nasal Drug Delivery. 2000. The present compound may be administered intranasally in a liquid form such as a solution, an emulsion, a suspension, drops, or in a solid form such as a powder, gel, or ointment.
  • Devices to deliver intranasal medications are well known in the art. Nasal drug delivery can be carried out using devices including, but not limited to, intranasal inhalers, intranasal spray devices, atomizers, nasal spray bottles, unit dose containers, pumps, droppers, squeeze bottles, nebulizers, metered dose inhalers (MDI), pressurized dose inhalers, insufflators, and bi-directional devices. The nasal delivery device can be metered to administer an accurate effective dosage amount to the nasal cavity. The nasal delivery device can be for single unit delivery or multiple unit delivery. In a specific example, the ViaNase Electronic Atomizer from Kurve Technology (Bethell, Wash.) can be used in this invention (http://www.kurvetech.com). The compound of the present invention may also be delivered through a tube, a catheter, a syringe, a packtail, a pledget, a nasal tampon or by submucosal infusion. U.S. Patent Publication Nos. 200903261275, 20090291894, 20090281522 and 20090317377.
  • The present compound can be formulated as aerosols using standard procedures. The compound may be formulated with or without solvents, and formulated with or without carriers. The formulation may be a solution, or may be an aqueous emulsion with one or more surfactants. For example, an aerosol spray may be generated from pressurized container with a suitable propellant such as, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, hydrocarbons, compressed air, nitrogen, carbon dioxide, or other suitable gas. The dosage unit can be determined by providing a valve to deliver a metered amount. Pump spray dispensers can dispense a metered dose or a dose having a specific particle or droplet size. As used herein, the term “aerosol” refers to a suspension of fine solid particles or liquid solution droplets in a gas. Specifically, aerosol includes a gas-borne suspension of droplets of a monoterpene (or sesquiterpene), as may be produced in any suitable device, such as an MDI, a nebulizer, or a mist sprayer. Aerosol also includes a dry powder composition of the composition of the instant invention suspended in air or other carrier gas. Gonda (1990) Critical Reviews in Therapeutic Drug Carrier Systems 6:273-313. Raeburn et al., (1992) Pharmacol. Toxicol. Methods 27:143-159.
  • The present compound may be delivered to the nasal cavity as a powder in a form such as microspheres delivered by a nasal insufflator. The present compound may be absorbed to a solid surface, for example, a carrier. The powder or microspheres may be administered in a dry, air-dispensable form. The powder or microspheres may be stored in a container of the insufflator. Alternatively the powder or microspheres may be filled into a capsule, such as a gelatin capsule, or other single dose unit adapted for nasal administration.
  • The pharmaceutical composition can be delivered to the nasal cavity by direct placement of the composition in the nasal cavity, for example, in the form of a gel, an ointment, a nasal emulsion, a lotion, a cream, a nasal tampon, a dropper, or a bioadhesive strip. In certain embodiments, it can be desirable to prolong the residence time of the pharmaceutical composition in the nasal cavity, for example, to enhance absorption. Thus, the pharmaceutical composition can optionally be formulated with a bioadhesive polymer, a gum (e.g., xanthan gum), chitosan (e.g., highly purified cationic polysaccharide), pectin (or any carbohydrate that thickens like a gel or emulsifies when applied to nasal mucosa), a microsphere (e.g. starch, albumin, dextran, cyclodextrin), gelatin, a liposome, carbamer, polyvinyl alcohol, alginate, acacia, chitosans and/or cellulose (e.g., methyl or propyl; hydroxyl or carboxy; carboxymethyl or hydroxylpropyl).
  • The composition containing the present compound can be administered by oral inhalation into the respiratory tract, i.e., the lungs.
  • Typical delivery systems for inhalable agents include nebulizer inhalers, dry powder inhalers (DPI), and metered-dose inhalers (MDI).
  • Nebulizer devices produce a stream of high velocity air that causes a therapeutic agent in the form of liquid to spray as a mist. The therapeutic agent is formulated in a liquid form such as a solution or a suspension of particles of suitable size. In one embodiment, the particles are micronized. The term “micronized” is defined as having about 90% or more of the particles with a diameter of less than about 10 μm. Suitable nebulizer devices are provided commercially, for example, by PARI GmbH (Starnberg, Germany). Other nebulizer devices include Respimat (Boehringer Ingelheim) and those disclosed in, for example, U.S. Pat. Nos. 7,568,480 and 6,123,068, and WO 97/12687. The present compound can be formulated for use in a nebulizer device as an aqueous solution or as a liquid suspension.
  • DPI devices typically administer a therapeutic agent in the form of a free flowing powder that can be dispersed in a patient's air-stream during inspiration. DPI devices which use an external energy source may also be used in the present invention. In order to achieve a free flowing powder, the present compound can be formulated with a suitable excipient (e.g., lactose). A dry powder formulation can be made, for example, by combining dry lactose having a particle size between about 1 μm and 100 μm with micronized particles of the present compound and dry blending. Alternatively, the compound can be formulated without excipients. The formulation is loaded into a dry powder dispenser, or into inhalation cartridges or capsules for use with a dry powder delivery device. Examples of DPI devices provided commercially include Diskhaler (GlaxoSmithKline, Research Triangle Park, N.C.) (see, e.g., U.S. Pat. No. 5,035,237); Diskus (GlaxoSmithKline) (see, e.g., U.S. Pat. No. 6,378,519; Turbuhaler (AstraZeneca, Wilmington, Del.) (see, e.g., U.S. Pat. No. 4,524,769); and Rotahaler (GlaxoSmithKline) (see, e.g., U.S. Pat. No. 4,353,365). Further examples of suitable DPI devices are described in U.S. Pat. Nos. 5,415,162, 5,239,993, and 5,715,810 and references therein.
  • MDI devices typically discharge a measured amount of the stored composition using compressed propellant gas. Formulations for MDI administration include a solution or suspension of an active ingredient in a liquefied propellant. Examples of propellants include hydrofluoroalklanes (HFA), such as 1,1,1,2-tetrafluoroethane (HFA 134a) and 1,1,1,2,3,3,3-heptafluoro-n-propane (HFA 227), and chlorofluorocarbons, such as CCl3F. Additional components of HFA formulations for MDI administration include co-solvents, such as ethanol, pentane, water; and surfactants, such as sorbitan trioleate, oleic acid, lecithin, and glycerin. (See, for example, U.S. Pat. No. 5,225,183, EP 0717987, and WO 92/22286). The formulation is loaded into an aerosol canister, which forms a portion of an MDI device. Examples of MDI devices developed specifically for use with HFA propellants are provided in U.S. Pat. Nos. 6,006,745 and 6,143,227. For examples of processes of preparing suitable formulations and devices suitable for inhalation dosing see U.S. Pat. Nos. 6,268,533, 5,983,956, 5,874,063, and 6,221,398, and WO 99/53901, WO 00/61108, WO 99/55319 and WO 00/30614.
  • The present compound may be encapsulated in liposomes or microcapsules for delivery via inhalation. A liposome is a vesicle composed of a lipid bilayer membrane and an aqueous interior. The lipid membrane may be made of phospholipids, examples of which include phosphatidylcholine such as lecithin and lysolecithin; acidic phospholipids such as phosphatidylserine and phosphatidylglycerol; and sphingophospholipids such as phosphatidylethanolamine and sphingomyelin. Alternatively, cholesterol may be added. A microcapsule is a particle coated with a coating material. For example, the coating material may consist of a mixture of a film-forming polymer, a hydrophobic plasticizer, a surface activating agent or/and a lubricant nitrogen-containing polymer. U.S. Pat. Nos. 6,313,176 and 7,563,768.
  • The present compound may also be used alone or in combination with other chemotherapeutic agents via topical application for the treatment of localized cancers such as breast cancer or melanomas. The present compound may also be used in combination with narcotics or analgesics for transdermal delivery of pain medication.
  • This invention also provides the compositions as described above for ocular administration. As such, the compositions can further comprise a permeation enhancer. For ocular administration, the compositions described herein can be formulated as a solution, emulsion, suspension, etc. A variety of vehicles suitable for administering compounds to the eye are known in the art. Specific non-limiting examples are described in U.S. Pat. Nos. 6,261,547; 6,197,934; 6,056,950; 5,800,807; 5,776,445; 5,698,219; 5,521,222; 5,403,841; 5,077,033; 4,882,150; and 4,738,851.
  • The present compound can be given alone or in combination with other drugs for the treatment of the above diseases for a short or prolonged period of time. The present compositions can be administered to a mammal, preferably a human. Mammals include, but are not limited to, murines, rats, rabbit, simians, bovines, ovine, porcine, canines, feline, farm animals, sport animals, pets, equine, and primates.
  • The invention also provides a method for inhibiting the growth of a cell in vitro, ex vivo or in vivo, where a cell, such as a cancer cell, is contacted with an effective amount of the present compound as described herein.
  • Pathological cells or tissue such as hyperproliferative cells or tissue may be treated by contacting the cells or tissue with an effective amount of a composition of this invention. The cells, such as cancer cells, can be primary cancer cells or can be cultured cells available from tissue banks such as the American Type Culture Collection (ATCC). The pathological cells can be cells of a systemic cancer, gliomas, meningiomas, pituitary adenomas, or a CNS metastasis from a systemic cancer, lung cancer, prostate cancer, breast cancer, hematopoietic cancer or ovarian cancer. The cells can be from a vertebrate, preferably a mammal, more preferably a human. U.S. Patent Publication No. 2004/0087651. Balassiano et al. (2002) Intern. J. Mol. Med. 10:785-788. Thorne, et al. (2004) Neuroscience 127:481-496. Fernandes, et al. (2005) Oncology Reports 13:943-947. Da Fonseca, et al. (2008) Surgical Neurology 70:259267. Da Fonseca, et al. (2008) Arch. Immunol. Ther. Exp. 56:267-276. Hashizume, et al. (2008) Neuroncology 10:112-120.
  • In vitro efficacy of the present composition can be determined using methods well known in the art. For example, the cytoxicity of the present compound may be studied by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] cytotoxicity assay. MTT assay is based on the principle of uptake of MTT, a tetrazolium salt, by metabolically active cells where it is metabolized into a blue colored formazon product, which can be read spectrometrically. J. of Immunological Methods 65: 55 63, 1983. The cytoxicity of the present compound may be studied by colony formation assay. Functional assays for inhibition of VEGF secretion and IL-8 secretion may be performed via ELISA. Cell cycle block by the present compound may be studied by standard propidium iodide (PI) staining and flow cytometry. Invasion inhibition may be studied by Boyden chambers. In this assay a layer of reconstituted basement membrane, Matrigel, is coated onto chemotaxis filters and acts as a barrier to the migration of cells in the Boyden chambers. Only cells with invasive capacity can cross the Matrigel barrier. Other assays include, but are not limited to, cell viability assays, apoptosis assays, and morphological assays.
  • The following are examples of the present, invention and are not to be construed as limiting.
  • EXAMPLES Example 1 Synthesis of 2-Propyl pentanoic acid 4-isopropenyl cyclohex-1-enylmethyl ester (POH-Valproate conjugate)
  • The reaction scheme is as follows.
  • Figure US20230145207A1-20230511-C00042
  • Experimental procedure for the Synthesis of 2-Propyl pentanoic 4-isopropenyl cyclohex-1-enylmethyl ester (POH-Valproate)
  • Thionly chloride (39.6 g, 332 mmol) was added slowly to Valproic acid (1, 16.0 g, 110 mmol) while maintaining the internal temperature at 10° C. The resulting mixture was allowed to warm to room temperature (RT) and stirred for about 4.0 hours. The excess thionyl chloride was recovered by concentration under vacuum to obtain the Valproyl chloride (2) as a pale yellow liquid (16.8 g, Yield: 94%).
  • Valproyl chloride (2, 11.08 g, 68.14 mmol) was added slowly to a mixture of Perillyl alcohol (POH 3, 8.0 g, 52.55 mmol), Triethylamine (8.5 g, 84 mmol) and dichloromethane (80 mL) while maintaining the temperature between 10-15° C. The mixture was stirred for 2.0 hours at RT and then quenched with water (40 mL). The separated organic layer was washed sequentially with sodium bicarbonate (5%, 40 mL), water (40 mL), and brine (5%, 40 mL). The organic layer was dried over sodium sulfate, filtered, and concentrated under vacuum to obtain the crude POH-Valproate as an orange liquid which was then purified on a Thomson single StEP column (50 g) and eluting with hexanes followed by 2.0% ethyl acetate/hexanes. The purified 2.0% ethyl acetate/hexanes fractions were combined and concentrated under vacuum to give POH-Valproate (4) as a colorless liquid (purity greater than about 95%). Weight: 12.14 g; Yield: 83%. 1H-NMR (400 MHz, CDCl3): δ 0.89 (t, 6H), 1.30 (m, 4H), 1.38-1.53 (m, 3H), 1.57-1.65 (m, 2H), 1.74 (s, 3H), 1.82-1.90 (m, 1H), 1.94-2.30 (m, 1H), 2.04-2.20 (m, 4H), 2.34-2.42(m, 1H), 4.46 (q, 2H), 4.72 (dd, 2H), 5.77 (s, 1H). MS (APCI method): m/e: 279 (M+1 100%), 269 (60%), 261 (27%).
  • Example 2 Synthesis of 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester (IsoPOH-Valproate conjugate)
  • The reaction scheme is as follows.
  • Figure US20230145207A1-20230511-C00043
  • Experimental procedure for the Synthesis of 2-Propyl-pentanoic acid 4-isopropylidene-cyclohex-1-enylmethyl ester (IsoPOH-Valproate)
  • Thionly chloride (39.6 g, 332 mmol) was added slowly to Valproic acid (1, 16.0 g, 110 mmol) while maintaining the internal temperature at 10° C. The resulting mixture was allowed to warm to room temperature (RT) and stirred for about 4.0 hours. The excess thionyl chloride was removed by concentration under vacuum to obtain the Valproyl chloride (2) as a pale yellow liquid (16.8 g, Yield: 94%).
  • Valproyl chloride (2, 11.08 g, 68.14 mmol) will be added slowly to a mixture of Isoperillyl alcohol (IsoPOH 3, 8.0 g, 52.55 mmol), Triethylamine (8.5 g, 84 mmol), and dichloromethane (80 mL) while maintaining the temperature between 10-15° C. The mixture will be stirred for 2.0 hours at RT and then will be quenched with water (40 mL). The separated organic layer will be washed sequentially with sodium bicarbonate (5%, 40 mL), water (40 mL), and brine (5%, 40 mL). The organic layer will be dried over sodium sulfate, filtered, and concentrated under vacuum to obtain the crude IsoPOH-Valproate as a liquid which will be purified on a Thomson single StEP column (50 g) and will be eluted with hexanes followed by 2.0% ethyl acetate/hexanes. The purified 2.0% ethyl acetate/hexanes fractions will be combined and concentrated under vacuum to obtain pure IsoPOH-Valproate (4) as a colorless liquid.
  • The scope of the present invention is not limited by what has been specifically shown and described hereinabove. Those skilled in the art will recognize that there are suitable alternatives to the depicted examples of materials, configurations, constructions and dimensions. Numerous references, including patents and various publications, are cited and discussed in the description of this invention. The citation and discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any reference is prior art to the invention described herein. All references cited and discussed in this specification are incorporated herein by reference in their entirety. Variations, modifications and other implementations of what is described herein will occur to those of ordinary skill in the art without departing from the spirit and scope of the invention. While certain embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the spirit and scope of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation.

Claims (9)

What is claimed is:
1. A method for treating a disease in a mammal, the method comprising the step of administering to the mammal a therapeutically effective amount of a perillyl alcohol conjugated with valproic acid.
2. The method of claim 1, wherein the disease is cancer.
3. The method of claim 2, wherein the cancer is a tumor of the nervous system.
4. The method of claim 3, wherein the tumor is a glioblastoma.
5. The method of claim 1, further comprising the step of treating the mammal with radiation.
6. The method of claim 1, further comprising the step of administering to the mammal a chemotherapeutic agent.
7. The method of claim 1, wherein the perillyl alcohol conjugated with valproic acid is administered by inhalation, intranasally, orally, intravenously, subcutaneously or intramuscularly.
8. A method for treating a disease in a mammal, comprising the step of administering to the mammal a therapeutically effective amount of a perillyl alcohol conjugated with valproic acid conjugated with valproic acid using a nasal delivery device.
9. The method of claim 8, wherein the nasal delivery device is selected from the group consisting of an intranasal inhaler, an intranasal spray device, an atomizer, a nebulizer, a metered dose inhaler (MDI), a pressurized dose inhaler, an insufflator, a unit dose container, a pump, a dropper, a squeeze bottle and a bi-directional device.
US18/150,933 2017-04-19 2023-01-06 Pharmaceutical compositions comprising poh derivatives and methods of use Pending US20230145207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/150,933 US20230145207A1 (en) 2017-04-19 2023-01-06 Pharmaceutical compositions comprising poh derivatives and methods of use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762487339P 2017-04-19 2017-04-19
PCT/US2018/028081 WO2018195149A1 (en) 2017-04-19 2018-04-18 Pharmaceutical compositions comprising poh derivatives and methods of use
US202016606520A 2020-03-20 2020-03-20
US18/150,933 US20230145207A1 (en) 2017-04-19 2023-01-06 Pharmaceutical compositions comprising poh derivatives and methods of use

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2018/028081 Division WO2018195149A1 (en) 2017-04-19 2018-04-18 Pharmaceutical compositions comprising poh derivatives and methods of use
US16/606,520 Division US11559508B2 (en) 2017-04-19 2018-04-18 Pharmaceutical compositions comprising POH derivatives and methods of use

Publications (1)

Publication Number Publication Date
US20230145207A1 true US20230145207A1 (en) 2023-05-11

Family

ID=63856819

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/606,520 Active 2038-11-24 US11559508B2 (en) 2017-04-19 2018-04-18 Pharmaceutical compositions comprising POH derivatives and methods of use
US18/150,933 Pending US20230145207A1 (en) 2017-04-19 2023-01-06 Pharmaceutical compositions comprising poh derivatives and methods of use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/606,520 Active 2038-11-24 US11559508B2 (en) 2017-04-19 2018-04-18 Pharmaceutical compositions comprising POH derivatives and methods of use

Country Status (4)

Country Link
US (2) US11559508B2 (en)
EP (1) EP3612185A4 (en)
CN (1) CN110769831A (en)
WO (1) WO2018195149A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113082064B (en) * 2021-04-23 2022-04-29 青岛科技大学 Folium Platycladi gel absorbent for treating alopecia areata, preparation method thereof and external patch for treating alopecia areata
CN117460496A (en) * 2021-04-28 2024-01-26 尼昂克技术公司 Use of perillyl alcohol for enhancing levodopa delivery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054957A2 (en) * 2002-12-16 2004-07-01 The University Of British Columbia Valproic acid analogues and pharmaceutical compositions thereof
BR112013004698B1 (en) * 2010-08-27 2022-03-22 Neonc Technologies Inc. Pharmaceutical compositions comprising poh derivatives
CN103517892B (en) 2010-12-17 2016-01-27 尼昂克技术公司 Use the method and apparatus of different perillalcohol
CN107613768B (en) * 2015-02-12 2020-10-20 NeOnc技术股份有限公司 Pharmaceutical composition comprising perillyl alcohol derivative

Also Published As

Publication number Publication date
US20200237697A1 (en) 2020-07-30
EP3612185A4 (en) 2021-02-24
EP3612185A1 (en) 2020-02-26
US11559508B2 (en) 2023-01-24
WO2018195149A1 (en) 2018-10-25
CN110769831A (en) 2020-02-07

Similar Documents

Publication Publication Date Title
US20210283127A1 (en) Pharmaceutical compositions comprising poh derivatives
US20200170961A1 (en) Methods and devices for using isoperillyl alcohol
US11479554B2 (en) Pharmaceutical compositions comprising perillyl alcohol derivatives
US20230145207A1 (en) Pharmaceutical compositions comprising poh derivatives and methods of use
US20210244820A1 (en) Pharmaceutical compositions comprising poh derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEONC TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, THOMAS;LEVIN, DANIEL;PUPPALI, SATISH;SIGNING DATES FROM 20200320 TO 20200323;REEL/FRAME:062293/0990

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEONC TECHNOLOGIES INC.;REEL/FRAME:063726/0859

Effective date: 20230419