US20230142634A1 - Battery charging circuit integrated inside battery pack - Google Patents

Battery charging circuit integrated inside battery pack Download PDF

Info

Publication number
US20230142634A1
US20230142634A1 US18/093,399 US202318093399A US2023142634A1 US 20230142634 A1 US20230142634 A1 US 20230142634A1 US 202318093399 A US202318093399 A US 202318093399A US 2023142634 A1 US2023142634 A1 US 2023142634A1
Authority
US
United States
Prior art keywords
battery
battery pack
charging system
power
usb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/093,399
Inventor
Harald Krondorfer
Naga Penmetsa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ridge Tool Co
Original Assignee
Ridge Tool Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ridge Tool Co filed Critical Ridge Tool Co
Priority to US18/093,399 priority Critical patent/US20230142634A1/en
Assigned to RIDGE TOOL COMPANY reassignment RIDGE TOOL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Penmetsa, Naga, KRONDORFER, HARALD
Publication of US20230142634A1 publication Critical patent/US20230142634A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present subject matter relates to batteries and particularly lithium ion batteries and charging thereof. More particularly, the present subject matter relates to charging circuitry and battery packs, and enabling the battery pack to accept a charge without the need for a dedicated charger.
  • Many power tool batteries utilize a stand alone power source or charger capable of delivering a required charge to a battery.
  • These chargers comprise a power cord which is typically connected to an AC power source or, less commonly, connected to a car outlet capable of delivering 12V DC.
  • a charging circuit capable of converting the previously noted power source to a required charging power is disposed within a housing capable of direct engagement to the appropriate corresponding battery.
  • Known stand alone chargers are relatively large and require the exact corresponding charger circuit for proper charging. Therefore, a need remains for a battery that does not rely on a traditional charger and related charging method.
  • the present subject matter provides a battery pack charging system for a power tool.
  • the battery pack charging system comprises a battery pack including at least one battery cell and a housing.
  • the housing defines an interior region.
  • the system also comprises a battery charging circuit including a microcontroller.
  • the battery charging circuit is disposed within the interior region of the housing of the battery pack.
  • the system also comprises a USB charging port disposed on the housing of the battery pack.
  • the system further comprises a power source module including an AC/DC power circuit, and a USB power delivery controller for delivering DC power to the USB charging port of the battery pack.
  • the present subject matter provides a battery pack charging system for a power tool.
  • the battery pack charging system includes a battery pack including a housing defining an interior region, at least one battery cell disposed within the interior region of the housing, and a USB charging port accessible along an exterior region of the housing.
  • the system also includes a power source module separate from the battery pack.
  • the power source module includes an AC/DC power circuit, and a USB power delivery controller for delivering power to the USB charging port of the battery pack.
  • the system further includes a charging shoe including an interface for connection to the battery pack for charging the battery pack.
  • the present subject matter provides a battery pack charging system comprising a charging shoe housing including a battery terminal interface.
  • the housing defines an interior region.
  • the charging shoe further includes a battery charging circuit, a microcontroller, a memory, and a charging port.
  • the battery charging circuit is disposed in the interior region of the charging shoe housing.
  • the present subject matter provides a battery pack charging system comprising a battery pack including at least one battery cell, a tool charging port, and a USB connector. Only one of the port and the USB connector can be used at the same time.
  • FIG. 1 illustrates a battery charging system with a battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 2 illustrates another battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 3 illustrates still another battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 4 illustrates yet another battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 5 illustrates a block diagram of a battery charging system including a battery with an integrated charging circuit, in accordance with an embodiment of the present disclosure.
  • FIG. 6 illustrates a block diagram of a power source module in accordance with an embodiment of the present disclosure.
  • FIG. 7 illustrates a block diagram of a battery charging system including a battery with a charging circuit in an external shoe, in accordance with another embodiment of the present disclosure.
  • FIG. 8 illustrates a block diagram of a power source module in accordance with another embodiment of the present disclosure.
  • FIG. 9 illustrates a flowchart depicting discharging in accordance with an embodiment of the present disclosure.
  • FIG. 10 illustrates a flowchart depicting charging in accordance with an embodiment of the present disclosure.
  • FIG. 11 illustrates a flowchart depicting charging in accordance with another embodiment of the present disclosure.
  • FIG. 12 illustrates a block diagram of a battery charging system in accordance with embodiment of the present disclosure.
  • FIG. 13 illustrates a flowchart depicting charging in accordance with an embodiment of the present disclosure.
  • FIG. 14 illustrates a block diagram of a battery charging system in accordance with an embodiment of the present disclosure.
  • FIG. 15 illustrates a block diagram of a battery charging system in accordance with an embodiment of the present disclosure.
  • An object of the present disclosure is to provide a battery charging circuit integrated inside a battery pack.
  • Another object of the present disclosure is to provide a battery charging system which eliminates the use of traditional battery chargers in the market.
  • Still another object of the present disclosure is to provide a battery charging system that provides fast charging.
  • Still another object of the present disclosure is to provide a battery charging system which eliminates the use of traditional battery chargers to charge a battery.
  • Yet another object of the present disclosure is to provide a battery charging system that reduces the physical footprint of typical battery chargers that are in the market.
  • Still another object of the present disclosure is to provide a battery charging system that is convenient to use.
  • the present disclosure provides a system in which a battery charging circuit is integrated inside a battery pack or housing.
  • the charging circuit is integrated inside a battery charging shoe.
  • These systems eliminate the use of traditional battery chargers in the market.
  • the system reduces the physical footprint of typical battery chargers that are in the market.
  • the system enables smart batteries to transfer tool data from a battery to a charger.
  • the battery charging and/or data transmission is performed through a connector such as a USB connector and particularly a USB-Type C Connector that is incorporated inside the battery pack or the charging shoe.
  • An external wall outlet power adapter with a corresponding connector such as for example a USB-Type C Connector acts as the power source to the battery pack or the charging shoe.
  • the battery charging system typically has one or more of the following features:
  • the power source typically has a USB output connector.
  • USB controller power conversion, battery management system and battery charging circuit are integrated into the battery or the battery charging shoe.
  • the battery pack or the battery charging shoe has a battery management system which can monitor various aspects of the battery or charging shoe and in particular monitor safety features of the battery or charging shoe.
  • the safety features are monitored by a microprocessor including cycle life, state of charge, and cell balancing.
  • the battery and/or the battery charging shoe has an internal memory to collect tool information, when connected to a tool providing such information.
  • the battery and/or the battery charging shoe circuitry has a current sensing circuit, which samples the tool current information and stores that information in the internal memory.
  • the data collected from the tool is transferred to the external power source.
  • the external power source has wireless connectivity and sends data to one or more computers, servers, and/or to the cloud.
  • FIGS. 1 - 4 illustrate a battery charging system with several embodiments of a battery housing in accordance with the present disclosure.
  • FIG. 1 illustrates a battery charging system 10 comprising a battery and battery housing 20 , a power adapter or power source module 30 including a connector port 32 , and a cable 40 having corresponding connector ends 42 and 44 .
  • the battery 20 includes a connector port 22 along an exterior region of the battery 20 as described in greater detail herein.
  • the connector type is a USB-Type C Connector as known in the industry.
  • the present disclosure is not limited to such and includes other connector types.
  • the battery charging system 10 as described herein and illustrated in FIG.
  • FIGS. 2 - 4 illustrate representative potential locations for the connector port 22 located along an exterior region of the battery housing 20 . It will be understood that the present disclosure is not limited to any of these representative port locations and instead includes nearly any location along the battery at which the port can be accessed and engaged with a corresponding connector end of a charging cable.
  • FIG. 5 illustrates a block diagram of a battery charging system 100 in which a charging circuit 140 is integrated within a battery 101 in accordance with an embodiment of the present disclosure.
  • the battery 101 comprises a top housing and a bottom housing and defines an interior region. The interior region is sized and shaped for receiving and placement of the charging circuit assembly 140 , a battery management system 102 , at least one battery cell 104 , a USB power delivery controller 106 , and a charging port 130 .
  • the USB power delivery controller 106 may be included with the charging port 130 .
  • the battery 101 also comprises a microcontroller 126 and memory 128 disposed within the housing.
  • the battery management system 102 typically includes provisions for monitoring and/or performing cycle count, relative state of charge (RSOC), and charge and discharge current sensing.
  • the charging port 130 disposed in the battery housing is capable of accepting a USB-Type C Connector 108 but is not limited to that connection type.
  • the charging port 130 typically includes USB communication provisions 122 and a USB Type C Connector 108 .
  • the battery comprises a tool connection interface for operable connection between a tool and the battery.
  • the charging circuit assembly 140 is in electrical connection with the charging port 130 and the battery management system 102 , thereby allowing the use of a USB-Type C Connector 108 or the like to provide the necessary power to charge the battery.
  • the battery management system 102 is in electrical communication with the tool connection interface microcontroller(s) which may include or use microcontroller(s) and memory, thereby allowing discharge of the battery cell(s) to a tool.
  • the battery may further comprises provisions for memory and information gathering which may be integrated in one or more of the circuits within the battery.
  • FIG. 6 illustrates a block diagram of a power source module or adapter 150 configured for use with the battery 101 in accordance with an embodiment of the present disclosure.
  • the system 100 shown in FIG. 5 can further include the power source module system 150 .
  • the power source module or adapter 150 comprises a universal AC/DC power circuit 110 in electrical communication with a USB power delivery controller 106 and a low power DC power circuit 114 .
  • the low power DC power circuit 114 further comprises a wireless connectivity component 116 , provisions for memory storage 118 , and a microcontroller 120 .
  • the microcontroller 120 is in further communication with USB communication 122 coupled with the USB power delivery controller 106 and a USB connector 108 .
  • the USB connector 108 allows connection to the charging port provided on the battery.
  • the system as provided by the present disclosure may include provisions to collect and withdraw tool information from the battery.
  • the battery may selectively identify information to download and store within its memory provisions.
  • the power source may retrieve the tool use information and submit the information wirelessly to one or more host computers or servers and/or to the cloud.
  • FIG. 7 illustrates a block diagram of a battery charging system 200 in which a charging circuit 224 is integrated in an external shoe 203 in accordance with another embodiment of the present disclosure.
  • the external charging shoe 203 comprises a housing with a battery terminal interface 205 and a defined inner region within the housing of the charging shoe sized and shaped for the charging circuit 224 , a microcontroller 226 , memory 228 , and a connection or charging port 230 .
  • the charging shoe housing further defines on its exterior, an interface such as interface 205 for connection with a battery such as battery 201 and provides provisions for charging the existing battery 201 .
  • the charging circuit 224 is electrically connected to the shoe interface 205 and USB power delivery controller 206 and the connection port 230 .
  • the microcontroller 226 is in electrical communication with the shoe interface 205 and a USB communication 222 of the connection port 230 .
  • the battery 201 is slidably engageable with the shoe 203 to facilitate electrical communication from the shoe 203 to the battery 201 and provide electrical power transfer through the battery terminals generally shown as interface 205 .
  • the connection port 230 can include a USB type C Connector 208 .
  • the battery 201 typically includes one or more battery cells 204 and a battery management system 202 .
  • the battery management system 202 typically includes provisions for monitoring and/or performing cycle count, relative state of charge (RSOC), and charge and discharge current sensing.
  • the charging system comprises a power source module or adapter 250 configured for use with the shoe 203 .
  • the system 200 shown in FIG. 7 can further include the power source module 250 .
  • FIG. 8 illustrates a block diagram of a power source module or adapter 250 in accordance with another embodiment of the present disclosure.
  • the power source module 250 comprises a universal AC/DC power circuit 210 in electrical communication with a USB power delivery controller 206 and a low power DC power circuit 214 .
  • the low power DC power circuit 214 further comprises a wireless connectivity component 216 , provisions for memory storage 218 , and a microcontroller 220 .
  • the microcontroller 220 is in further communication with a USB communication 222 coupled with the USB power delivery controller 206 and a USB connector 208 .
  • the USB connector 208 allows connection to the charging port provided on the charging shoe 203 .
  • the present subject matter also provides various methods of data transfer which may be accompanied with discharging and/or charging batteries using the battery charging systems and components thereof, as described herein.
  • the method of data transfer with discharging comprises providing a battery typically as described herein.
  • the battery includes at least one battery cell, a housing with an interior region, and a battery charging circuit disposed within the battery housing.
  • the methods also comprise connecting the battery with a tool having provisions to transfer or transmit information or data relating to the tool or use of the tool.
  • the methods also comprise identifying the tool to which the battery is connected.
  • the methods additionally comprise transmitting the information from the tool to the battery.
  • the methods also comprise storing the transmitted information in the battery. Typically such information is stored in memory provisions of the battery.
  • the methods further comprise processing the stored information in the battery. Typically, such processing is performed by microcontroller(s) in the battery.
  • the methods may further comprise storing the processed information in the battery. Such information can be stored in memory provisions of the battery.
  • the method of data transfer with charging comprises providing a battery including at least one battery cell, memory with stored information, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing.
  • the method also comprises connecting the battery with a power adapter.
  • the battery typically includes provisions for identifying the power adapter.
  • the method comprises identifying the power adapter to which the battery is connected.
  • the method also comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell in the battery.
  • the method also comprises transmitting the stored information from the stored information from the memory of the battery to the power adapter.
  • another method of data transfer with charging comprises providing a battery including at least one battery cell, memory with stored information, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing.
  • the method also comprises connecting the battery with a power adapter.
  • the power adapter includes provisions to identify the battery.
  • the method comprises identifying the battery to which the power adapter is connected.
  • the method also comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell.
  • the method also comprises transmitting the stored information from the memory of the battery to the power adapter.
  • the method also comprises the power adapter transferring the transmitted information to a remote server, or other processing component, or to the cloud.
  • FIG. 9 illustrates a flowchart depicting discharging and/or data transfer between a tool and a battery in accordance with an embodiment of the present disclosure.
  • FIG. 9 depicts a discharging and data transfer method 300 generally as follows.
  • the battery Upon actuation of the tool or connection between the tool and the battery generally shown as 302 , the battery then identifies the tool to which the battery is connected. This is depicted as one or more operations 304 .
  • the battery management system is then activated or otherwise initiated in operation(s) 306 ; and identification information relating to the particular tool is stored in the battery in operation(s) 308 .
  • circuitry or like provisions sample (i) cycle count(s), (ii) state of charge of the battery, and/or (iii) discharge current of the battery. Such sampling is performed in operation(s) 310 .
  • Information or data is forwarded to a microcontroller or like provisions for processing in one or more operation(s) 312 .
  • Processed information along with tool identification information is forwarded to memory in the battery in operation(s) 314 .
  • FIG. 10 illustrates a flowchart depicting charging and/or data transfer between a power adapter and a battery in accordance with an embodiment of the present disclosure.
  • FIG. 10 illustrates a charging and data transfer method 400 as follows.
  • the charging method proceeds. Electrical power is transferred from the power adapter to the battery as shown by operation(s) 406 .
  • Information and/or data is also transferred between the power adapter and the battery. More specifically, in one or more operations, the battery identifies the particular charger to which it is connected in operation(s) 408 .
  • Information and/or data from memory in the battery or battery shoe is forwarded to a microcontroller or like provisions in operation(s) 410 , 412 .
  • Processing and/or data collection by the battery may also be performed in operation(s) 412 .
  • the processed and/or collected data is forwarded to the power adapter in one or more operation(s) 414 .
  • FIG. 11 illustrates a flowchart depicting charging and data transfer between a power adapter and a battery in accordance with another embodiment of the present disclosure.
  • FIG. 11 illustrates a charging and data transfer method 500 .
  • the charging method proceeds. Electrical power is transferred from the power adapter to the battery as shown by operation(s) 506 .
  • Information and/or data is also transferred between the power adapter and the battery. More specifically, in one or more operations, the battery forwards its information and/or data to the power adapter, denoted as operation(s) 508 .
  • Information and/or data from memory in the power adapter is forwarded to a microcontroller or like provisions in operation(s) 510 , 512 .
  • Processing and/or data collection by the adaptor may also be performed in operation(s) 512 .
  • the processed and/or collected data is forwarded in operation(s) 514 to one or more remote computers, servers, and/or to the cloud generally denoted as 516 .
  • such forwarding of information is performed wirelessly.
  • FIG. 12 illustrates a battery pack with electrical isolation provisions, showing connection with a traditional battery charger and a USB type C connector plugged in or otherwise electrically connected to the battery pack at the same time.
  • FIG. 12 illustrates a block diagram of a battery charging system 600 in which a charging circuit 624 is integrated in a battery pack 601 in accordance with another embodiment of the present disclosure.
  • the battery pack 601 comprises a housing with a battery terminal interface 605 and a defined inner region within the housing of the battery pack sized and shaped for the charging circuit 624 , a microcontroller 626 , and memory 628 .
  • the battery pack housing further defines on its exterior, an interface such as interface 605 for connection with a traditional charger and provides provisions for charging the battery.
  • the battery pack 601 also includes switching provisions 632 for governing charging of the battery cells 604 via a traditional charger interface; and switching provisions 634 for governing charging of the battery cells 604 via the USB type C connector 608 .
  • the switching provisions 632 and/or 634 are in the form of field effect transistor(s) and particularly metal oxide semiconductor field effect transistors (MOSFETs).
  • the charging circuit 624 is electrically connected to the switching provisions 634 and USB power delivery controller 606 .
  • the microcontroller 626 is in electrical communication with the switching provisions 632 , the switching provisions 634 , the interface 605 , the USB communication 622 , and the USB power delivery controller 606 .
  • the battery pack 601 typically includes one or more battery cells 604 and a battery management system 602 .
  • the battery management system 602 typically includes provisions for monitoring and/or performing cycle count, relative state of charge (RSOC), and charge and discharge current sensing.
  • RSOC relative state of charge
  • FIG. 13 illustrates a flowchart depicting charging and/or data transfer between a power adapter and a battery in accordance with an embodiment of the present disclosure.
  • FIG. 13 illustrates a charging and data transfer method 700 as follows.
  • the charging method proceeds. Electrical power is transferred from the power adapter to the battery.
  • Information and/or data is also transferred between the power adapter and the battery. More specifically, in one or more operations, the battery identifies the particular charger to which it is connected in operation(s) 708 .
  • Information and/or data from memory in the battery or battery shoe is forwarded to a microcontroller or like provisions in operation(s) 710 , 712 . Processing and/or data collection by the battery may also be performed in operation(s) 712 . The processed and/or collected data is forwarded to the power adapter in one or more operation(s) 714 . Transfer of electrical power is governed by operation(s) 722 , 724 , 726 , 728 , and 730 . Specifically, in operation 722 the battery assesses whether a traditional charger is plugged in or otherwise electrically connected to the battery. If yes, the switching provisions of the battery turn off or electrically isolate the USB charge path, i.e., using the switching provisions 634 described in association with FIG.
  • a USB charging port is provided on a battery pack and particularly within the interface of the battery pack and in electrical communication with the battery pack's interface to the tool or traditional charger.
  • This configuration allows the battery to physically connect either to a tool or the USB connector (either to the traditional charger or the USB connector), but not to both at the same time.
  • FIGS. 4 and 5 show this feature. If the battery is plugged into a tool or traditional charger, the USB port, e.g., USB type C connector, is not accessible to a user and thus prevents the user from connecting to both at the same time.
  • FIG. 14 illustrates an embodiment of a battery charging system 800 comprising a battery pack 801 including one or more battery cells such as lithium ion cells 802 , a tool or charging port 804 , and a USB connector 806 .
  • the tool or charging port 804 and the USB connector 806 are arranged and/or located on the battery pack 801 such that only one of the port 804 and the USB connector 806 can be used or accessed at a time. Restated, the port 804 and the USB connector 806 can not be used concurrently or accessed at the same time.
  • the USB charging port is positioned on interior region(s) of the interface of the battery pack to tool or traditional charger.
  • FIG. 15 illustrates an embodiment of a battery charging system 900 comprising a battery pack 901 including one or more battery cells such as lithium ion cells 902 , a charging port 904 , and a USB connector 906 .
  • the battery pack 901 also includes switching provisions 908 .
  • the switching provisions are configured to detect which of the charging port 904 and the USB connector 906 was first connected to an external component; and then to disable the other, i.e., the charging port 904 or the USB connector 906 .
  • the switching provisions are configured to enable the charging port and disable the USB connector if both are connected to corresponding external components at the same time. Thus, if a user plugs in both chargers at the same time, the traditional charger takes priority and the USB charger is disabled or turned off.
  • the system may optionally include provisions to collect and withdraw information from the battery.
  • the power source may retrieve the battery information and submit the information wirelessly to a host or cloud.
  • the system may employ one or more charging strip(s) with USB type C plugs so that the user can charge multiple batteries at the same time.
  • the present subject matter provides a battery charging system comprising a battery including at least one battery cell and a housing.
  • the housing defines an interior region.
  • the battery charging system also comprises a battery charging circuit, a battery management system, a microcontroller, a memory, and a charging port.
  • the battery charging circuit is disposed in the interior region of the housing.
  • the present subject matter provides a battery charging system comprising a charging shoe housing including a battery terminal interface.
  • the housing defines an interior region.
  • the battery charging system also comprises a battery charging circuit, a microcontroller, a memory, and a charging port.
  • the battery charging circuit is disposed in the interior region of the charging shoe housing.
  • the present subject matter provides a method of data transfer between a tool and a battery.
  • the method comprises providing a battery including at least one battery cell, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing.
  • the method also comprises connecting the battery with a tool having provisions to transmit information relating to the tool or use of the tool.
  • the method additionally comprises identifying the tool to which the battery is connected.
  • the method further comprises transmitting the information from the tool to the battery.
  • the method also comprises storing in the battery the transmitted information.
  • the method also comprises processing the stored information in the battery. And, the method comprises storing the processed information in the battery.
  • the present subject matter provides a method of data transfer between a power adapter and a battery.
  • the method comprises providing a battery including at least one battery cell, memory with stored information, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing.
  • the method also comprises connecting the battery with a power adapter.
  • the battery includes provisions to identify the power adapter.
  • the method further comprises identifying the power adapter to which the battery is connected.
  • the method also comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell.
  • the method comprises transmitting the stored information from the memory of the battery to the power adapter.
  • the present subject matter provides a method of data transfer between a power adapter and a battery.
  • the method comprises providing a battery including at least one battery cell, a housing defining an interior region, memory with stored information, and a battery charging circuit disposed in the interior region of the housing.
  • the method also comprises connecting the battery with a power adapter.
  • the power adapter includes provisions to identify the battery.
  • the method also comprises identifying the battery to which the power adapter is connected.
  • the method further comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell.
  • the method additionally comprises transmitting the stored information from the memory of the battery to the power adapter.
  • the method comprises the power adapter transferring the transmitted information to a remote server.
  • the present subject matter provides a battery charging system including a battery having at least one battery cell, a charging port, and a USB connector.
  • the battery is configured such that only one of the port and the connector can be used at the same time.
  • the present subject matter provides a battery charging system including a battery having at least one battery cell, a charging port, a USB connector, and switching provisions.
  • the switching provisions (i) detect which of the charging port and the USB connector was first connected to external component(s), and (ii) disable the other.
  • the present disclosure described herein has several technical advantages including, but not limited to, the realization of a battery charging system that eliminates the use of traditional battery charges in the market; provides fast charging; eliminates the use of traditional battery chargers to charge a battery; reduces physical footprint of typical battery chargers that are in the market; and is convenient to use.
  • the present subject matter includes all operable combinations of features and aspects described herein. Thus, for example if one feature is described in association with an embodiment and another feature is described in association with another embodiment, it will be understood that the present subject matter includes embodiments having a combination of these features.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Battery charging systems having battery charging circuits are described. The battery charging circuit can be located within a battery housing. Alternatively, the battery charging circuit can be located within a charging shoe housing. Also described are power source modules. In addition, various methods of charging and discharging are described.

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • This application claims priority from U.S. application Ser. No. 16/684,797 filed on Nov. 15, 2019, which claims priority from India application No. 2018/21043261 filed on Nov. 16, 2018.
  • FIELD
  • The present subject matter relates to batteries and particularly lithium ion batteries and charging thereof. More particularly, the present subject matter relates to charging circuitry and battery packs, and enabling the battery pack to accept a charge without the need for a dedicated charger.
  • BACKGROUND
  • Many power tool batteries utilize a stand alone power source or charger capable of delivering a required charge to a battery. These chargers comprise a power cord which is typically connected to an AC power source or, less commonly, connected to a car outlet capable of delivering 12V DC. A charging circuit capable of converting the previously noted power source to a required charging power, is disposed within a housing capable of direct engagement to the appropriate corresponding battery. Known stand alone chargers are relatively large and require the exact corresponding charger circuit for proper charging. Therefore, a need remains for a battery that does not rely on a traditional charger and related charging method.
  • SUMMARY
  • The difficulties and drawbacks associated with previous approaches are addressed in the present subject matter as follows.
  • In one aspect, the present subject matter provides a battery pack charging system for a power tool. The battery pack charging system comprises a battery pack including at least one battery cell and a housing. The housing defines an interior region. The system also comprises a battery charging circuit including a microcontroller. The battery charging circuit is disposed within the interior region of the housing of the battery pack. The system also comprises a USB charging port disposed on the housing of the battery pack. The system further comprises a power source module including an AC/DC power circuit, and a USB power delivery controller for delivering DC power to the USB charging port of the battery pack.
  • In another aspect, the present subject matter provides a battery pack charging system for a power tool. The battery pack charging system includes a battery pack including a housing defining an interior region, at least one battery cell disposed within the interior region of the housing, and a USB charging port accessible along an exterior region of the housing. The system also includes a power source module separate from the battery pack. The power source module includes an AC/DC power circuit, and a USB power delivery controller for delivering power to the USB charging port of the battery pack. The system further includes a charging shoe including an interface for connection to the battery pack for charging the battery pack.
  • In yet another aspect, the present subject matter provides a battery pack charging system comprising a charging shoe housing including a battery terminal interface. The housing defines an interior region. The charging shoe further includes a battery charging circuit, a microcontroller, a memory, and a charging port. The battery charging circuit is disposed in the interior region of the charging shoe housing.
  • In still another aspect, the present subject matter provides a battery pack charging system comprising a battery pack including at least one battery cell, a tool charging port, and a USB connector. Only one of the port and the USB connector can be used at the same time.
  • As will be realized, the subject matter described herein is capable of other and different embodiments and its several details are capable of modifications in various respects, all without departing from the claimed subject matter. Accordingly, the drawings and description are to be regarded as illustrative and not restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a battery charging system with a battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 2 illustrates another battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 3 illustrates still another battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 4 illustrates yet another battery housing in accordance with an embodiment of the present disclosure.
  • FIG. 5 illustrates a block diagram of a battery charging system including a battery with an integrated charging circuit, in accordance with an embodiment of the present disclosure.
  • FIG. 6 illustrates a block diagram of a power source module in accordance with an embodiment of the present disclosure.
  • FIG. 7 illustrates a block diagram of a battery charging system including a battery with a charging circuit in an external shoe, in accordance with another embodiment of the present disclosure.
  • FIG. 8 illustrates a block diagram of a power source module in accordance with another embodiment of the present disclosure.
  • FIG. 9 illustrates a flowchart depicting discharging in accordance with an embodiment of the present disclosure.
  • FIG. 10 illustrates a flowchart depicting charging in accordance with an embodiment of the present disclosure.
  • FIG. 11 illustrates a flowchart depicting charging in accordance with another embodiment of the present disclosure.
  • FIG. 12 illustrates a block diagram of a battery charging system in accordance with embodiment of the present disclosure.
  • FIG. 13 illustrates a flowchart depicting charging in accordance with an embodiment of the present disclosure.
  • FIG. 14 illustrates a block diagram of a battery charging system in accordance with an embodiment of the present disclosure.
  • FIG. 15 illustrates a block diagram of a battery charging system in accordance with an embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Some of the objects of the present disclosure, which at least one embodiment herein satisfies, are as follows:
  • It is an object of the present disclosure to ameliorate one or more problems of the prior art or to at least provide a useful alternative.
  • An object of the present disclosure is to provide a battery charging circuit integrated inside a battery pack.
  • Another object of the present disclosure is to provide a battery charging system which eliminates the use of traditional battery chargers in the market.
  • Still another object of the present disclosure is to provide a battery charging system that provides fast charging.
  • Still another object of the present disclosure is to provide a battery charging system which eliminates the use of traditional battery chargers to charge a battery.
  • Yet another object of the present disclosure is to provide a battery charging system that reduces the physical footprint of typical battery chargers that are in the market.
  • Still another object of the present disclosure is to provide a battery charging system that is convenient to use.
  • Other objects and advantages of the present disclosure will be more apparent from the following description, which is not intended to limit the scope of the present disclosure.
  • The present disclosure provides a system in which a battery charging circuit is integrated inside a battery pack or housing. In other versions, the charging circuit is integrated inside a battery charging shoe. These systems eliminate the use of traditional battery chargers in the market. In certain embodiments, the system reduces the physical footprint of typical battery chargers that are in the market. The system enables smart batteries to transfer tool data from a battery to a charger. In many embodiments, the battery charging and/or data transmission is performed through a connector such as a USB connector and particularly a USB-Type C Connector that is incorporated inside the battery pack or the charging shoe. An external wall outlet power adapter with a corresponding connector such as for example a USB-Type C Connector acts as the power source to the battery pack or the charging shoe.
  • The battery charging system, as provided in the present disclosure, typically has one or more of the following features:
  • An external power source is required to charge the battery. The power source typically has a USB output connector.
  • The USB controller, power conversion, battery management system and battery charging circuit are integrated into the battery or the battery charging shoe.
  • The battery pack or the battery charging shoe has a battery management system which can monitor various aspects of the battery or charging shoe and in particular monitor safety features of the battery or charging shoe.
  • The safety features are monitored by a microprocessor including cycle life, state of charge, and cell balancing.
  • The battery and/or the battery charging shoe has an internal memory to collect tool information, when connected to a tool providing such information. The battery and/or the battery charging shoe circuitry has a current sensing circuit, which samples the tool current information and stores that information in the internal memory.
  • When the tool is connected to the external power source through a USB connector for charging, the data collected from the tool is transferred to the external power source.
  • The external power source has wireless connectivity and sends data to one or more computers, servers, and/or to the cloud.
  • FIGS. 1-4 illustrate a battery charging system with several embodiments of a battery housing in accordance with the present disclosure. Specifically, FIG. 1 illustrates a battery charging system 10 comprising a battery and battery housing 20, a power adapter or power source module 30 including a connector port 32, and a cable 40 having corresponding connector ends 42 and 44. The battery 20 includes a connector port 22 along an exterior region of the battery 20 as described in greater detail herein. In the particular embodiment depicted in FIG. 1 , the connector type is a USB-Type C Connector as known in the industry. However, the present disclosure is not limited to such and includes other connector types. In addition, although the battery charging system 10 as described herein and illustrated in FIG. 1 utilizes female receiving connector ports 32, 22 on the adapter and battery respectively, with male connector ends 42, 44 on the cable 40; it will be understood that the present disclosure includes reversal of one or both sets of male and female connectors. Thus, one or both ends of the cable could utilize female receiving ports with corresponding male connector ends on the power adapter and/or battery.
  • FIGS. 2-4 illustrate representative potential locations for the connector port 22 located along an exterior region of the battery housing 20. It will be understood that the present disclosure is not limited to any of these representative port locations and instead includes nearly any location along the battery at which the port can be accessed and engaged with a corresponding connector end of a charging cable.
  • The present disclosure also provides a battery charging system having an internal charging circuit. FIG. 5 illustrates a block diagram of a battery charging system 100 in which a charging circuit 140 is integrated within a battery 101 in accordance with an embodiment of the present disclosure. The battery 101 comprises a top housing and a bottom housing and defines an interior region. The interior region is sized and shaped for receiving and placement of the charging circuit assembly 140, a battery management system 102, at least one battery cell 104, a USB power delivery controller 106, and a charging port 130. The USB power delivery controller 106 may be included with the charging port 130. The battery 101 also comprises a microcontroller 126 and memory 128 disposed within the housing. The battery management system 102 typically includes provisions for monitoring and/or performing cycle count, relative state of charge (RSOC), and charge and discharge current sensing. The charging port 130 disposed in the battery housing is capable of accepting a USB-Type C Connector 108 but is not limited to that connection type. The charging port 130 typically includes USB communication provisions 122 and a USB Type C Connector 108. And in many versions, the battery comprises a tool connection interface for operable connection between a tool and the battery. The charging circuit assembly 140 is in electrical connection with the charging port 130 and the battery management system 102, thereby allowing the use of a USB-Type C Connector 108 or the like to provide the necessary power to charge the battery. The battery management system 102 is in electrical communication with the tool connection interface microcontroller(s) which may include or use microcontroller(s) and memory, thereby allowing discharge of the battery cell(s) to a tool. The battery may further comprises provisions for memory and information gathering which may be integrated in one or more of the circuits within the battery.
  • FIG. 6 illustrates a block diagram of a power source module or adapter 150 configured for use with the battery 101 in accordance with an embodiment of the present disclosure. Thus, the system 100 shown in FIG. 5 can further include the power source module system 150. The power source module or adapter 150 comprises a universal AC/DC power circuit 110 in electrical communication with a USB power delivery controller 106 and a low power DC power circuit 114. The low power DC power circuit 114 further comprises a wireless connectivity component 116, provisions for memory storage 118, and a microcontroller 120. The microcontroller 120 is in further communication with USB communication 122 coupled with the USB power delivery controller 106 and a USB connector 108. The USB connector 108 allows connection to the charging port provided on the battery.
  • Further, the system as provided by the present disclosure may include provisions to collect and withdraw tool information from the battery. Upon connection of the battery system to a tool that within itself can collect tool use information, the battery may selectively identify information to download and store within its memory provisions. Furthermore, upon connection of the battery to the power source, the power source may retrieve the tool use information and submit the information wirelessly to one or more host computers or servers and/or to the cloud.
  • In another aspect shown in FIG. 7 , the present subject matter provides a battery charging system 200 with an external charging shoe 203 for connection with existing batteries denoted as 201. FIG. 7 illustrates a block diagram of a battery charging system 200 in which a charging circuit 224 is integrated in an external shoe 203 in accordance with another embodiment of the present disclosure. The external charging shoe 203 comprises a housing with a battery terminal interface 205 and a defined inner region within the housing of the charging shoe sized and shaped for the charging circuit 224, a microcontroller 226, memory 228, and a connection or charging port 230. The charging shoe housing further defines on its exterior, an interface such as interface 205 for connection with a battery such as battery 201 and provides provisions for charging the existing battery 201. The charging circuit 224 is electrically connected to the shoe interface 205 and USB power delivery controller 206 and the connection port 230. The microcontroller 226 is in electrical communication with the shoe interface 205 and a USB communication 222 of the connection port 230. The battery 201 is slidably engageable with the shoe 203 to facilitate electrical communication from the shoe 203 to the battery 201 and provide electrical power transfer through the battery terminals generally shown as interface 205. The connection port 230 can include a USB type C Connector 208. The battery 201 typically includes one or more battery cells 204 and a battery management system 202. The battery management system 202 typically includes provisions for monitoring and/or performing cycle count, relative state of charge (RSOC), and charge and discharge current sensing.
  • Although the present subject matter is described with regard to batteries and battery packs using lithium ion cells, it will be understood that the present subject matter is not limited to such. Instead, the present subject matter may be used in association with other battery cell technologies.
  • Furthermore, the charging system comprises a power source module or adapter 250 configured for use with the shoe 203. Thus, the system 200 shown in FIG. 7 can further include the power source module 250. FIG. 8 illustrates a block diagram of a power source module or adapter 250 in accordance with another embodiment of the present disclosure. The power source module 250 comprises a universal AC/DC power circuit 210 in electrical communication with a USB power delivery controller 206 and a low power DC power circuit 214. The low power DC power circuit 214 further comprises a wireless connectivity component 216, provisions for memory storage 218, and a microcontroller 220. The microcontroller 220 is in further communication with a USB communication 222 coupled with the USB power delivery controller 206 and a USB connector 208. The USB connector 208 allows connection to the charging port provided on the charging shoe 203.
  • The present subject matter also provides various methods of data transfer which may be accompanied with discharging and/or charging batteries using the battery charging systems and components thereof, as described herein. Generally, the method of data transfer with discharging comprises providing a battery typically as described herein. In many embodiments, the battery includes at least one battery cell, a housing with an interior region, and a battery charging circuit disposed within the battery housing. The methods also comprise connecting the battery with a tool having provisions to transfer or transmit information or data relating to the tool or use of the tool. The methods also comprise identifying the tool to which the battery is connected. The methods additionally comprise transmitting the information from the tool to the battery. The methods also comprise storing the transmitted information in the battery. Typically such information is stored in memory provisions of the battery. The methods further comprise processing the stored information in the battery. Typically, such processing is performed by microcontroller(s) in the battery. The methods may further comprise storing the processed information in the battery. Such information can be stored in memory provisions of the battery.
  • Generally, the method of data transfer with charging comprises providing a battery including at least one battery cell, memory with stored information, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing. The method also comprises connecting the battery with a power adapter. The battery typically includes provisions for identifying the power adapter. The method comprises identifying the power adapter to which the battery is connected. The method also comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell in the battery. The method also comprises transmitting the stored information from the stored information from the memory of the battery to the power adapter.
  • Generally, another method of data transfer with charging comprises providing a battery including at least one battery cell, memory with stored information, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing. The method also comprises connecting the battery with a power adapter. Typically, the power adapter includes provisions to identify the battery. The method comprises identifying the battery to which the power adapter is connected. The method also comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell. The method also comprises transmitting the stored information from the memory of the battery to the power adapter. The method also comprises the power adapter transferring the transmitted information to a remote server, or other processing component, or to the cloud.
  • FIG. 9 illustrates a flowchart depicting discharging and/or data transfer between a tool and a battery in accordance with an embodiment of the present disclosure. Specifically, FIG. 9 depicts a discharging and data transfer method 300 generally as follows. Upon actuation of the tool or connection between the tool and the battery generally shown as 302, the battery then identifies the tool to which the battery is connected. This is depicted as one or more operations 304. Next, the battery management system is then activated or otherwise initiated in operation(s) 306; and identification information relating to the particular tool is stored in the battery in operation(s) 308. Upon activation or initiation of the battery management system, circuitry or like provisions sample (i) cycle count(s), (ii) state of charge of the battery, and/or (iii) discharge current of the battery. Such sampling is performed in operation(s) 310. Information or data is forwarded to a microcontroller or like provisions for processing in one or more operation(s) 312. Processed information along with tool identification information is forwarded to memory in the battery in operation(s) 314.
  • FIG. 10 illustrates a flowchart depicting charging and/or data transfer between a power adapter and a battery in accordance with an embodiment of the present disclosure. Specifically, FIG. 10 illustrates a charging and data transfer method 400 as follows. Upon actuation of the power adapter and/or connection between the power adapter and the battery generally shown as 402, and for applications using USB connectors, upon electrical communication between the power adapter and battery shown as 404, the charging method proceeds. Electrical power is transferred from the power adapter to the battery as shown by operation(s) 406. Information and/or data is also transferred between the power adapter and the battery. More specifically, in one or more operations, the battery identifies the particular charger to which it is connected in operation(s) 408. Information and/or data from memory in the battery or battery shoe is forwarded to a microcontroller or like provisions in operation(s) 410, 412. Processing and/or data collection by the battery may also be performed in operation(s) 412. The processed and/or collected data is forwarded to the power adapter in one or more operation(s) 414.
  • FIG. 11 illustrates a flowchart depicting charging and data transfer between a power adapter and a battery in accordance with another embodiment of the present disclosure. Specifically, FIG. 11 illustrates a charging and data transfer method 500. Upon actuation of the power adapter and/or connection between the power adapter and the battery generally shown as 502, and for applications using USB connectors, upon electrical communication between the power adapter and battery shown as 504, the charging method proceeds. Electrical power is transferred from the power adapter to the battery as shown by operation(s) 506. Information and/or data is also transferred between the power adapter and the battery. More specifically, in one or more operations, the battery forwards its information and/or data to the power adapter, denoted as operation(s) 508. Information and/or data from memory in the power adapter is forwarded to a microcontroller or like provisions in operation(s) 510, 512. Processing and/or data collection by the adaptor may also be performed in operation(s) 512. The processed and/or collected data is forwarded in operation(s) 514 to one or more remote computers, servers, and/or to the cloud generally denoted as 516. Preferably, such forwarding of information is performed wirelessly.
  • In another aspect shown in FIG. 12 , the present subject matter provides a battery charging system 600 with electrical isolation provisions. Specifically, FIG. 12 illustrates a battery pack with electrical isolation provisions, showing connection with a traditional battery charger and a USB type C connector plugged in or otherwise electrically connected to the battery pack at the same time. FIG. 12 illustrates a block diagram of a battery charging system 600 in which a charging circuit 624 is integrated in a battery pack 601 in accordance with another embodiment of the present disclosure. The battery pack 601 comprises a housing with a battery terminal interface 605 and a defined inner region within the housing of the battery pack sized and shaped for the charging circuit 624, a microcontroller 626, and memory 628. The battery pack housing further defines on its exterior, an interface such as interface 605 for connection with a traditional charger and provides provisions for charging the battery. The battery pack 601 also includes switching provisions 632 for governing charging of the battery cells 604 via a traditional charger interface; and switching provisions 634 for governing charging of the battery cells 604 via the USB type C connector 608. Typically, the switching provisions 632 and/or 634 are in the form of field effect transistor(s) and particularly metal oxide semiconductor field effect transistors (MOSFETs). The charging circuit 624 is electrically connected to the switching provisions 634 and USB power delivery controller 606. The microcontroller 626 is in electrical communication with the switching provisions 632, the switching provisions 634, the interface 605, the USB communication 622, and the USB power delivery controller 606. The battery pack 601 typically includes one or more battery cells 604 and a battery management system 602. The battery management system 602 typically includes provisions for monitoring and/or performing cycle count, relative state of charge (RSOC), and charge and discharge current sensing.
  • FIG. 13 illustrates a flowchart depicting charging and/or data transfer between a power adapter and a battery in accordance with an embodiment of the present disclosure. Specifically, FIG. 13 illustrates a charging and data transfer method 700 as follows. Upon actuation of the power adapter and/or connection between the power adapter and the battery generally shown as 702, and for applications using USB connectors, upon electrical communication between the power adapter and battery shown as 704, the charging method proceeds. Electrical power is transferred from the power adapter to the battery. Information and/or data is also transferred between the power adapter and the battery. More specifically, in one or more operations, the battery identifies the particular charger to which it is connected in operation(s) 708. Information and/or data from memory in the battery or battery shoe is forwarded to a microcontroller or like provisions in operation(s) 710, 712. Processing and/or data collection by the battery may also be performed in operation(s) 712. The processed and/or collected data is forwarded to the power adapter in one or more operation(s) 714. Transfer of electrical power is governed by operation(s) 722, 724, 726, 728, and 730. Specifically, in operation 722 the battery assesses whether a traditional charger is plugged in or otherwise electrically connected to the battery. If yes, the switching provisions of the battery turn off or electrically isolate the USB charge path, i.e., using the switching provisions 634 described in association with FIG. 12 , and turn on or enable the traditional charge path, i.e., using the switching provisions 632 described in association with FIG. 12 . These operation(s) are denoted as 724. If no traditional charger is connected to the battery, the switching provisions of the battery turn on or enable the USB charge path, i.e., using the switching provisions 634, and turn off or electrically isolate the traditional charge path, i.e., using the switching provisions 632. These operation(s) are denoted as 726. In operation 728, charge current is supplied to the battery management system. And, in 730, the battery cell(s) are charged.
  • In certain embodiments, a USB charging port is provided on a battery pack and particularly within the interface of the battery pack and in electrical communication with the battery pack's interface to the tool or traditional charger. This configuration allows the battery to physically connect either to a tool or the USB connector (either to the traditional charger or the USB connector), but not to both at the same time. For example, FIGS. 4 and 5 show this feature. If the battery is plugged into a tool or traditional charger, the USB port, e.g., USB type C connector, is not accessible to a user and thus prevents the user from connecting to both at the same time.
  • FIG. 14 illustrates an embodiment of a battery charging system 800 comprising a battery pack 801 including one or more battery cells such as lithium ion cells 802, a tool or charging port 804, and a USB connector 806. The tool or charging port 804 and the USB connector 806 are arranged and/or located on the battery pack 801 such that only one of the port 804 and the USB connector 806 can be used or accessed at a time. Restated, the port 804 and the USB connector 806 can not be used concurrently or accessed at the same time. In certain versions, the USB charging port is positioned on interior region(s) of the interface of the battery pack to tool or traditional charger.
  • FIG. 15 illustrates an embodiment of a battery charging system 900 comprising a battery pack 901 including one or more battery cells such as lithium ion cells 902, a charging port 904, and a USB connector 906. The battery pack 901 also includes switching provisions 908. The switching provisions are configured to detect which of the charging port 904 and the USB connector 906 was first connected to an external component; and then to disable the other, i.e., the charging port 904 or the USB connector 906. In certain versions, the switching provisions are configured to enable the charging port and disable the USB connector if both are connected to corresponding external components at the same time. Thus, if a user plugs in both chargers at the same time, the traditional charger takes priority and the USB charger is disabled or turned off.
  • Further the system may optionally include provisions to collect and withdraw information from the battery. Upon connection of the battery to the external charging shoe, the power source may retrieve the battery information and submit the information wirelessly to a host or cloud.
  • The system may employ one or more charging strip(s) with USB type C plugs so that the user can charge multiple batteries at the same time.
  • In one embodiment, the present subject matter provides a battery charging system comprising a battery including at least one battery cell and a housing. The housing defines an interior region. The battery charging system also comprises a battery charging circuit, a battery management system, a microcontroller, a memory, and a charging port. The battery charging circuit is disposed in the interior region of the housing.
  • In another embodiment, the present subject matter provides a battery charging system comprising a charging shoe housing including a battery terminal interface. The housing defines an interior region. The battery charging system also comprises a battery charging circuit, a microcontroller, a memory, and a charging port. The battery charging circuit is disposed in the interior region of the charging shoe housing.
  • In yet another embodiment, the present subject matter provides a method of data transfer between a tool and a battery. The method comprises providing a battery including at least one battery cell, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing. The method also comprises connecting the battery with a tool having provisions to transmit information relating to the tool or use of the tool. The method additionally comprises identifying the tool to which the battery is connected. The method further comprises transmitting the information from the tool to the battery. The method also comprises storing in the battery the transmitted information. The method also comprises processing the stored information in the battery. And, the method comprises storing the processed information in the battery.
  • In still a further embodiment, the present subject matter provides a method of data transfer between a power adapter and a battery. The method comprises providing a battery including at least one battery cell, memory with stored information, a housing defining an interior region, and a battery charging circuit disposed in the interior region of the housing. The method also comprises connecting the battery with a power adapter. The battery includes provisions to identify the power adapter. The method further comprises identifying the power adapter to which the battery is connected. The method also comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell. And, the method comprises transmitting the stored information from the memory of the battery to the power adapter.
  • In still another embodiment, the present subject matter provides a method of data transfer between a power adapter and a battery. The method comprises providing a battery including at least one battery cell, a housing defining an interior region, memory with stored information, and a battery charging circuit disposed in the interior region of the housing. The method also comprises connecting the battery with a power adapter. The power adapter includes provisions to identify the battery. The method also comprises identifying the battery to which the power adapter is connected. The method further comprises transferring electrical power from the power adapter to the battery to thereby charge the at least one battery cell. The method additionally comprises transmitting the stored information from the memory of the battery to the power adapter. And, the method comprises the power adapter transferring the transmitted information to a remote server.
  • In yet another embodiment, the present subject matter provides a battery charging system including a battery having at least one battery cell, a charging port, and a USB connector. The battery is configured such that only one of the port and the connector can be used at the same time.
  • In still another embodiment, the present subject matter provides a battery charging system including a battery having at least one battery cell, a charging port, a USB connector, and switching provisions. The switching provisions (i) detect which of the charging port and the USB connector was first connected to external component(s), and (ii) disable the other.
  • The present disclosure described herein has several technical advantages including, but not limited to, the realization of a battery charging system that eliminates the use of traditional battery charges in the market; provides fast charging; eliminates the use of traditional battery chargers to charge a battery; reduces physical footprint of typical battery chargers that are in the market; and is convenient to use.
  • The foregoing description of the specific embodiments so fully reveals the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modification within the spirit and scope of the embodiments as described herein.
  • Any discussion of documents, acts, materials, devices, articles or the like that has been included in this specification is solely for the purpose of providing a context for the disclosure. It is not to be taken as an admission that any or all of these matters form a part of the prior art base or were common general knowledge in the field relevant to the disclosure as it existed anywhere before the priority date of this application.
  • While considerable emphasis has been placed herein on the components and component parts of the preferred embodiments, it will be appreciated that many embodiments can be made and that many changes can be made in the preferred embodiments without departing from the principles of the disclosure. These and other changes in the preferred embodiment as well as other embodiments of the disclosure will be apparent to those skilled in the art from the disclosure herein, whereby it is to be distinctly understood that the foregoing descriptive matter is to be interpreted merely as illustrative of the disclosure and not as a limitation.
  • The terminology used, in the present disclosure, is only for the purpose of explaining a particular embodiment and such terminology shall not be considered to limit the scope of the present disclosure. As used in the present disclosure, the forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly suggests otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are open ended transitional phrases and therefore specify the presence of stated features, integers, steps, operations, elements, modules, units and/or components, but do not forbid the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The particular order of steps disclosed in the method and process of the present disclosure is not to be construed as necessarily requiring their performance as described or illustrated. It is also to be understood that additional or alternative steps may be employed.
  • When an element is referred to as being “mounted on,” “engaged to,” “connected to,” or “coupled to” another element, it may be directly on, engaged, connected or coupled to the other element. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed elements.
  • Many other benefits will no doubt become apparent from future application and development of this technology.
  • All patents, applications, standards, and articles noted herein are hereby incorporated by reference in their entirety.
  • The present subject matter includes all operable combinations of features and aspects described herein. Thus, for example if one feature is described in association with an embodiment and another feature is described in association with another embodiment, it will be understood that the present subject matter includes embodiments having a combination of these features.
  • As described hereinabove, the present subject matter solves many problems associated with previous strategies, systems and/or devices. However, it will be appreciated that various changes in the details, materials and arrangements of components, which have been herein described and illustrated in order to explain the nature of the present subject matter, may be made by those skilled in the art without departing from the principle and scope of the claimed subject matter, as expressed in the appended claims.

Claims (22)

What is claimed is:
1. A battery pack charging system for a power tool, the battery pack charging system comprising:
a battery pack including:
at least one battery cell and a housing, the housing defining an interior region;
a battery charging circuit including a microcontroller, the battery charging circuit disposed within the interior region of the housing of the battery pack;
a USB charging port disposed on the housing of the battery pack;
a battery source module for delivering DC power to the USB charging port of the battery pack, the power source module including an AC/DC power circuit.
2. The battery pack charging system of claim 1 wherein the power source module is separate from the battery pack.
3. The battery pack charging system of claim 1 wherein the battery pack further includes a battery terminal interface for connection with a battery charger.
4. The battery pack charging system of claim 3 wherein the battery pack further includes switching provisions to enable connection to an external component and one of the battery terminal interface and the USB charging port.
5. The battery pack charging system of claim 4 wherein the switching provisions are configured to detect which of the battery terminal interface and the USB charging port is first connected to the external component, and then disable the other of the battery terminal interface and the USB charging port.
6. The battery pack charging system of claim 4 wherein the external component is one of the power tool and the battery charger.
7. The battery pack charging system of claim 1 wherein the battery pack further includes a battery memory and provisions for data transfer between a power tool and the battery memory.
8. The battery pack charging system of claim 7, wherein the power source module further including a memory and provisions for data transfer between the battery memory of the battery pack and the memory of the power source module.
9. The battery pack charging system of claim 8 wherein the power source module further includes a wireless connectivity component for wirelessly transfer data.
10. The battery pack charging system of claim 9 wherein the data being wirelessly transferred relates to the power tool or use of the power tool.
11. The battery pack charging system of claim 9 wherein the data is received from the battery memory.
12. The battery pack charging system of claim 9 wherein the data is wirelessly transferred to one or more host computers and/or to the cloud.
13. A battery pack charging system for a power tool, the battery pack charging system comprising:
a battery pack including a housing defining an interior region, at least one battery cell disposed within the interior region of the housing, a USB charging port accessible along an exterior region of the housing, and a battery terminal interface for connection to one of a battery charger and the power tool;
a power source module separate from the battery pack, the power source module including an AC/DC power circuit, and a USB power delivery controller for delivering power to the USB charging port of the battery pack.
14. The battery pack charging system of claim 13 wherein the battery terminal interface for connection to the battery charger is separate from the USB charging port.
15. The battery pack charging system of claim 13 wherein the power source module further includes provisions for data transfer between the battery pack and the power source module.
16. The battery pack charging system of claim 15 wherein the power source module further includes a wireless connectivity component for wirelessly transferring data received from the battery pack.
17. The battery pack charging system of claim 16 wherein the data being wirelessly transferred relates to the power tool or use of the power tool.
18. The battery pack charging system of claim 16 wherein the data is wirelessly transferred to one or more host computers and/or to the cloud.
19. A battery pack charging system for a power tool, the battery pack charging system comprising:
a battery pack including a housing defining an interior region, at least one battery cell disposed in the interior region, a battery charging circuit having a microcontroller, a USB charging port accessible along the housing, a memory, and a battery terminal interface;
a power source module for providing DC power to the USB charging port of the battery pack, the power source module including an AC/DC power circuit, a memory, and provisions for data transfer between the battery memory and the memory of the power source module;
wherein the power source module is separate from the battery pack.
20. The battery pack charging system of claim 19 wherein the battery pack further includes switching provisions to enable connection to an external component and one of the battery terminal interface and the USB charging port.
21. The battery pack charging system of claim 20 wherein the switching provisions are configured to detect which of the battery terminal interface and the USB charging port is first connected to the external component, and then disable the other of the battery terminal interface and the USB charging port.
22. The battery pack charging system of claim 19 wherein the battery terminal interface is configured to attach to one of the power tool and a battery charger.
US18/093,399 2018-11-16 2023-01-05 Battery charging circuit integrated inside battery pack Pending US20230142634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/093,399 US20230142634A1 (en) 2018-11-16 2023-01-05 Battery charging circuit integrated inside battery pack

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IN201821043261 2018-11-16
ININ201821043261 2018-11-16
US16/684,797 US11552362B2 (en) 2018-11-16 2019-11-15 Battery charging circuit integrated inside battery pack
US18/093,399 US20230142634A1 (en) 2018-11-16 2023-01-05 Battery charging circuit integrated inside battery pack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/684,797 Continuation US11552362B2 (en) 2018-11-16 2019-11-15 Battery charging circuit integrated inside battery pack

Publications (1)

Publication Number Publication Date
US20230142634A1 true US20230142634A1 (en) 2023-05-11

Family

ID=70470374

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/684,797 Active 2040-12-26 US11552362B2 (en) 2018-11-16 2019-11-15 Battery charging circuit integrated inside battery pack
US18/093,399 Pending US20230142634A1 (en) 2018-11-16 2023-01-05 Battery charging circuit integrated inside battery pack

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/684,797 Active 2040-12-26 US11552362B2 (en) 2018-11-16 2019-11-15 Battery charging circuit integrated inside battery pack

Country Status (3)

Country Link
US (2) US11552362B2 (en)
CN (1) CN111200305A (en)
DE (1) DE102019217689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1000022S1 (en) * 2020-02-14 2023-09-26 Ridge Tool Company Plumbing tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705683B2 (en) 2020-04-22 2023-07-18 Black & Decker Inc. Battery pack power transfer adaptor
WO2022140327A1 (en) * 2020-12-22 2022-06-30 Emerson Professional Tools, Llc Charge adapter for power tools
DE102022113138A1 (en) 2022-05-24 2023-11-30 Alfred Kärcher SE & Co. KG Charging system, electrical appliance system and method for charging a rechargeable battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780867B1 (en) * 2005-10-28 2016-11-30 Black & Decker Inc. Battery pack for cordless power tools
JP4241714B2 (en) * 2005-11-17 2009-03-18 パナソニック電工株式会社 Battery pack for power tools
JP4104648B1 (en) * 2007-09-13 2008-06-18 和征 榊原 Battery pack
JP2014525840A (en) * 2011-07-24 2014-10-02 株式会社マキタ Power tool adapter, power tool system, and method for wirelessly communicating maintenance information thereof
EP3223389B1 (en) * 2016-03-21 2022-08-24 Milwaukee Electric Tool Corporation System and method for charging a battery pack
CN108630879A (en) * 2017-03-21 2018-10-09 创科(澳门离岸商业服务)有限公司 Battery pack, group charger and the combination of battery packs for electric tool
US11534901B2 (en) 2017-04-11 2022-12-27 Milwaukee Electric Tool Corporation Battery charger having a battery charging terminal, an input terminal, and an output terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1000022S1 (en) * 2020-02-14 2023-09-26 Ridge Tool Company Plumbing tool

Also Published As

Publication number Publication date
CN111200305A (en) 2020-05-26
US11552362B2 (en) 2023-01-10
US20200161607A1 (en) 2020-05-21
DE102019217689A1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US11552362B2 (en) Battery charging circuit integrated inside battery pack
US10840716B2 (en) Safety circuit for multi-function portable power charger
KR102315165B1 (en) Battery packs and chargers, and battery pack kit for power tools
US10250056B2 (en) Multi-function external attachment and safety circuit for a portable power charger
RU2587159C2 (en) Mobile terminal and interface connection method therefor
US9800075B2 (en) Smart charging cable and method for operating a portable electronic device
CN108347089B (en) Electric energy transmission controller, electric energy transmission system and electric energy transmission method
CN107643998B (en) System for realizing OTG and charging dual functions based on intelligent module
CN104037920A (en) Intelligent charge control system for lead-acid battery
CN109358548A (en) A kind of charging method of automotive diagnostic system, vehicle diagnosis and automotive diagnostic unit
US20150349561A1 (en) Charging an electrical device via a data interface
KR20190051341A (en) Battery Pack with locking recognition function
US10128676B2 (en) Method and apparatus for charging a battery
US20130221922A1 (en) Universal serial bus charging device
CN104037465A (en) Intelligent charge control method for lead-acid battery
CN109378891B (en) Charging and discharging method, mobile power supply and computer storage medium
US9669725B2 (en) Store for electrical energy, and holding device for at least one store for an electrically drivable vehicle
CN106487061B (en) Charging circuit and method
AU2018281840B2 (en) Method, apparatus and system for charging two-terminal portable electronic devices
US20160190844A1 (en) Optimization of a battery driven ultrasound device
CN214100917U (en) Charging circuit and charging device
US20200412053A1 (en) Auto-Eject Apparatus For Charging Cord
CN105656152A (en) Portable battery management device for reader-writer of responder
KR200389119Y1 (en) Multipurpose portable power supply for mobile terminal using usb data communication cable
NZ740278B2 (en) Battery packs and chargers, and battery pack kit for power tools

Legal Events

Date Code Title Description
AS Assignment

Owner name: RIDGE TOOL COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRONDORFER, HARALD;PENMETSA, NAGA;SIGNING DATES FROM 20200128 TO 20200210;REEL/FRAME:062280/0836

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION