US20230142429A1 - Process for production of new sulfolenic intermediates - Google Patents

Process for production of new sulfolenic intermediates Download PDF

Info

Publication number
US20230142429A1
US20230142429A1 US17/915,448 US202117915448A US2023142429A1 US 20230142429 A1 US20230142429 A1 US 20230142429A1 US 202117915448 A US202117915448 A US 202117915448A US 2023142429 A1 US2023142429 A1 US 2023142429A1
Authority
US
United States
Prior art keywords
formula
compound
process according
value
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/915,448
Inventor
Werner Bonrath
Marc-André Mueller
Bettina Wuestenberg
Viktor ZIMMERMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Assigned to DSM IP ASSETS B.V. reassignment DSM IP ASSETS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BONRATH, WERNER, Mueller, Marc-André, ZIMMERMANN, VIKTOR, WUESTENBERG, BETTINA
Publication of US20230142429A1 publication Critical patent/US20230142429A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/46Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom
    • C07D333/48Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom by oxygen atoms

Definitions

  • the present invention relates to a new process for the production of new specific intermediates, which are preferably used in the production of vitamin A, vitamin A acetate, or ⁇ -carotene and derivatives thereof, e.g. canthaxanthin, astaxanthin or zeaxanthin.
  • the new compounds are useful as intermediates (building blocks) in the synthesis of vitamin A or ⁇ -carotene, preferably vitamin A.
  • Vitamin A plays a role in a variety of functions throughout the body, such as e.g. vision process, gene transcription, immune function, bone metabolism, haematopoiesis, skin and cellular health and antioxidant function.
  • the goal of the present invention was to find easily accessible compounds, which can then be used in an improved synthesis of vitamin A or its derivates, or ⁇ -carotene, preferably vitamin A (acetate).
  • the aim was achieved by the synthesis as disclosed and described below.
  • R is H, or —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0-14, or
  • R is —X(C 1-4 alkyl) 3 or —X(C 6 H 5 ) 3 , wherein X is Si or Ge
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether,
  • R is H, or —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0-14, or
  • R is —X(C 1-4 alkyl) 3 or —X(C 6 H 5 ) 3 , wherein X is Si or Ge
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
  • the present invention relates to a process (P) for the production of a compound of formula (I)
  • R is H, or —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0-14, preferably 0-10, more preferably 0 or 1, most preferably 1, or
  • R is —X(C 1-4 alkyl) 3 or —X(C 6 H 5 ) 3 , wherein X is Si or Ge,
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether,
  • R has the same meanings as defined for the compound of formula (I).
  • the present invention also relates to a process (P′) for the production of a compound of formula (I)
  • R is H, or —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0-10.
  • the present invention also relates to a process (P′′) for the production of a compound of formula (I)
  • R is H, or —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0 or 1.
  • the present invention also relates to a process (P′′′) for the production of a compound of formula (I)
  • R is H, or —(CO)—(CH 2 ) CH 3 .
  • the present invention also relates to a process (P′′′′) for the production of a compound of formula (I)
  • R is —X(C 1-4 alkyl) 3 or —X(C 6 H 5 ) 3 , wherein X is Si or Ge.
  • the present invention also relates to a process (P′′′′′) for the production of a compound of formula (I)
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
  • the process according to the present invention is usually carried out in the presence of a strong base such as Schlesinger base, 2,2,6,6-tetramethyl piperidine, lithium diisopropylamide, n-butyllithium, hexyllithium, tert.-butyl lithium, sec-butyllithium, metal amide (with metals such as Na, K and Cs), lithium hexamethyldisilazane, metal hydride (with metals such as Na, Mg, K and Cs), metal hydroxide (with metals such as Na, K and Cs), metal alkoxide (with metals such Na, K and Cs) or sodium hexamethyl-disilazane.
  • a strong base such as Schlesinger base, 2,2,6,6-tetramethyl piperidine, lithium diisopropylamide, n-butyllithium, hexyllithium, tert.-butyl lithium, sec-butyllithium, metal amide
  • the present invention relates to the process (P1), which is process (P), (P′), (P′′), (P′′′), (P′′′′) or (P′′′′′), wherein the process is carried out in the presence of at least one strong base.
  • the present invention relates to the process (P1′), which is process (P1), wherein the at least one strong base is chosen from the group consisting of Schlesinger base, 2,2,6,6-tetramethyl piperidine, lithium diisopropylamide, n-butyllithium, hexyllithium, tert.-butyl lithium, sec-butyllithium, metal amide (wherein the metals are chosen from the group consisting of Na, K and Cs), lithium hexamethyldisilazane, metal hydride (wherein the metals are chosen from the group consisting of Na, Mg, K and Cs), metal hydroxide (wherein the metals are chosen from the group consisting of Na, K and Cs), metal alkoxide (wherein the metals are chosen from the group consisting of Na, K and Cs) and sodium hexamethyl-disilazane.
  • the at least one strong base is chosen from the group consisting of Schlesinger base, 2,2,6,6
  • the process is usually carried out in an inert solvent.
  • the solvent is a polar aprotic solvent. More preferably the solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, or ethers (such as diethylether, 1,4-dioxane, 1,2-dimethoxyethane and crown ethers).
  • one solvent can also be a nonpolar solvent (such as heptane, n-pentane, and other hydrocarbones).
  • the present invention relates to the process (P2), which is process (P), (P′), (P′′), (P′′′), (P′′′′), (P′′′′′), (P1) or (P1′), wherein the process is carried out in at least one inert solvent.
  • the present invention relates to the process (P2′), which is process (P2), wherein the solvent is a polar aprotic solvent.
  • the present invention relates to the process (P2′′), which is process (P2) or (P4′), wherein the at least one solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, and ethers.
  • the present invention relates to the process (P2′′′), which is process (P2) or (P4′), wherein the at least one solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, and ethers chosen from the group consisting of diethylether, 1,4-dioxane, 1,2-dimethoxyethane and crown ethers.
  • the at least one solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, and ethers chosen from the group consisting of diethylether, 1,4-dioxane, 1,2-dimethoxyethane and crown ethers.
  • the process according to the present invention is usually carried out at low temperature. Usually a temperature range of from ⁇ 100° C. to 25° C., preferably at a temperature range of from ⁇ 95° C. to 5° C.
  • the present invention relates to the process (P3), which is process (P), (P′), (P′′), (P′′′), (P′′′′), (P′′′′′), (P1), (P1′), (P2), (P2′), (P2′′) or (P2′′′), wherein the process is carried out at a temperature range of from ⁇ 100° C. to 25° C.
  • the present invention relates to the process (P3′), which is process (P), (P′), (P′′), (P′′′), (P′′′′), (P′′′′′), (P1), (P1′), (P2), (P2′), (P2′′) or (P2′′′), wherein the process is carried out at a temperature range of from ⁇ 95° C. to 5° C.
  • the starting material which are the compounds of formula (II) and of formula (III) can be used in equimolar amounts. But it is also possible to use an excess of one of the starting material. Usually the molar ratio of the compound of formula (II) to the compound of formula (III) goes from 1:2 to 2:1.
  • the present invention relates to the process (P4), which is process (P), (P), (P′), (P′′), (P′′′), (P′′′′), (P′′′′′), (P1), (P1′), (P2), (P2′), (P2′′), (P2′′′), (P3) or (P3′), wherein the molar ratio of the compound of formula (II) to the compound of formula (III) goes from 1:2 to 2:1.
  • R is H, or —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0-14, or
  • R is —X(C 1-4 alkyl) 3 or —X(C 6 H 5 ) 3 , wherein X is Si or Ge,
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
  • the present invention relates to compounds of formula (I)
  • R is —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0-10.
  • the present invention relates to compounds of formula (I)
  • R is —(CO)—(CH 2 ) n CH 3 , wherein n has a value of 0 or 1.
  • the present invention relates to the compound of formula (I)
  • R is —(CO)—(CH 2 )CH 3 .
  • the following schema shows how to produce vitamin A (or derivatives thereof) can be obtained.
  • R has the same meanings are defined above.
  • the temperature is given in ° C. and all percentages are related to the weight.
  • the crude was purified with a column chromatography (SiO2) to obtain the products in 45% yield.
  • the reaction mixture was stirred at ⁇ 76° C. for 7 min. Subsequently the cooling bath was removed and half saturated ammonium chloride solution (5 mL) was added.
  • the reaction mixture was diluted and extracted with toluene (10 mL).
  • the aqueous layer was separated and extracted with toluene (10 mL).
  • the organic layers were washed with water (2 ⁇ 10 mL) and saturated sodium chloride solution (1 ⁇ 10 mL).
  • the combined organic layers were filtered over a plug of cotton wool. All volatiles were evaporated at 40° C. (5 mbar) until a clear yellow oil remained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a new process for the production of new specific intermediates, which are preferably used in the production of vitamin A, vitamin A acetate, or β-carotene and derivatives thereof, e.g. canthaxanthin, astaxanthin or zeaxanthin.

Description

  • The present invention relates to a new process for the production of new specific intermediates, which are preferably used in the production of vitamin A, vitamin A acetate, or β-carotene and derivatives thereof, e.g. canthaxanthin, astaxanthin or zeaxanthin. Especially to be mentioned is that the new compounds are useful as intermediates (building blocks) in the synthesis of vitamin A or β-carotene, preferably vitamin A.
  • Vitamin A or its derivatives such as Vitamin acetate
  • Figure US20230142429A1-20230511-C00001
  • is an important ingredient for many applications. Vitamin A plays a role in a variety of functions throughout the body, such as e.g. vision process, gene transcription, immune function, bone metabolism, haematopoiesis, skin and cellular health and antioxidant function.
  • Due to the importance of vitamin A (and its derivatives) and the complexity of the synthesis thereof, there is always a need for improved processes of production.
  • The goal of the present invention was to find easily accessible compounds, which can then be used in an improved synthesis of vitamin A or its derivates, or β-carotene, preferably vitamin A (acetate). The aim was achieved by the synthesis as disclosed and described below.
  • The new intermediates, which are produced by the process according to the present invention are the compounds of formula (I)
  • Figure US20230142429A1-20230511-C00002
  • wherein
  • R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0-14, or
  • R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge
  • or R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether,
  • which are ideal intermediates (especially) in the vitamin A (and/or its derivates) production.
  • How vitamin A (and/or its derivatives) are obtained is disclosed and discussed further below.
  • The compounds of formula (I), (II) and (III) have several diastereoisomeric forms. Also when not explicitly disclosed all of these forms are all claimed and disclosed by the Markush formulae of these compounds in the present patent application.
  • To obtain a compound of formula (I), the compound of formula (II)
  • Figure US20230142429A1-20230511-C00003
  • is reacted with a compound of formula (III)
  • Figure US20230142429A1-20230511-C00004
  • wherein
  • wherein R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0-14, or
  • R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge
  • or R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
  • Therefore the present invention relates to a process (P) for the production of a compound of formula (I)
  • Figure US20230142429A1-20230511-C00005
  • wherein
  • R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0-14, preferably 0-10, more preferably 0 or 1, most preferably 1, or
  • R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge,
  • or
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether,
  • characterized in that the compound of formula (II)
  • Figure US20230142429A1-20230511-C00006
  • is reacted with a compound of formula (III)
  • Figure US20230142429A1-20230511-C00007
  • wherein R has the same meanings as defined for the compound of formula (I).
  • Therefore the present invention also relates to a process (P′) for the production of a compound of formula (I)
  • Figure US20230142429A1-20230511-C00008
  • wherein
  • R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0-10.
  • Therefore the present invention also relates to a process (P″) for the production of a compound of formula (I)
  • Figure US20230142429A1-20230511-C00009
  • wherein
  • R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0 or 1.
  • Therefore the present invention also relates to a process (P′″) for the production of a compound of formula (I)
  • Figure US20230142429A1-20230511-C00010
  • wherein
  • R is H, or —(CO)—(CH2) CH3.
  • Therefore the present invention also relates to a process (P″″) for the production of a compound of formula (I)
  • Figure US20230142429A1-20230511-C00011
  • wherein
  • R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge.
  • Therefore the present invention also relates to a process (P′″″) for the production of a compound of formula (I)
  • Figure US20230142429A1-20230511-C00012
  • wherein
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
  • It is known from the prior art how to obtain the compounds of formula (II) (e.g. from Desai et al. Tetrahedron, 1992, 48, 481-490 or from Kienzle et al. Helvetica Chimica Acta, 1975, 58, 27-40.)
  • The process according to the present invention is usually carried out in the presence of a strong base such as Schlesinger base, 2,2,6,6-tetramethyl piperidine, lithium diisopropylamide, n-butyllithium, hexyllithium, tert.-butyl lithium, sec-butyllithium, metal amide (with metals such as Na, K and Cs), lithium hexamethyldisilazane, metal hydride (with metals such as Na, Mg, K and Cs), metal hydroxide (with metals such as Na, K and Cs), metal alkoxide (with metals such Na, K and Cs) or sodium hexamethyl-disilazane.
  • Therefore the present invention relates to the process (P1), which is process (P), (P′), (P″), (P′″), (P″″) or (P′″″), wherein the process is carried out in the presence of at least one strong base.
  • Therefore the present invention relates to the process (P1′), which is process (P1), wherein the at least one strong base is chosen from the group consisting of Schlesinger base, 2,2,6,6-tetramethyl piperidine, lithium diisopropylamide, n-butyllithium, hexyllithium, tert.-butyl lithium, sec-butyllithium, metal amide (wherein the metals are chosen from the group consisting of Na, K and Cs), lithium hexamethyldisilazane, metal hydride (wherein the metals are chosen from the group consisting of Na, Mg, K and Cs), metal hydroxide (wherein the metals are chosen from the group consisting of Na, K and Cs), metal alkoxide (wherein the metals are chosen from the group consisting of Na, K and Cs) and sodium hexamethyl-disilazane.
  • The process is usually carried out in an inert solvent. Preferably the solvent is a polar aprotic solvent. More preferably the solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, or ethers (such as diethylether, 1,4-dioxane, 1,2-dimethoxyethane and crown ethers).
  • It is also possible to have a mixture of solvents, wherein one solvent can also be a nonpolar solvent (such as heptane, n-pentane, and other hydrocarbones).
  • Therefore the present invention relates to the process (P2), which is process (P), (P′), (P″), (P′″), (P″″), (P′″″), (P1) or (P1′), wherein the process is carried out in at least one inert solvent.
  • Therefore the present invention relates to the process (P2′), which is process (P2), wherein the solvent is a polar aprotic solvent.
  • Therefore the present invention relates to the process (P2″), which is process (P2) or (P4′), wherein the at least one solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, and ethers.
  • Therefore the present invention relates to the process (P2′″), which is process (P2) or (P4′), wherein the at least one solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, and ethers chosen from the group consisting of diethylether, 1,4-dioxane, 1,2-dimethoxyethane and crown ethers.
  • The process according to the present invention is usually carried out at low temperature. Usually a temperature range of from −100° C. to 25° C., preferably at a temperature range of from −95° C. to 5° C.
  • Therefore the present invention relates to the process (P3), which is process (P), (P′), (P″), (P′″), (P″″), (P′″″), (P1), (P1′), (P2), (P2′), (P2″) or (P2′″), wherein the process is carried out at a temperature range of from −100° C. to 25° C.
  • Therefore the present invention relates to the process (P3′), which is process (P), (P′), (P″), (P′″), (P″″), (P′″″), (P1), (P1′), (P2), (P2′), (P2″) or (P2′″), wherein the process is carried out at a temperature range of from −95° C. to 5° C.
  • The starting material, which are the compounds of formula (II) and of formula (III) can be used in equimolar amounts. But it is also possible to use an excess of one of the starting material. Usually the molar ratio of the compound of formula (II) to the compound of formula (III) goes from 1:2 to 2:1.
  • Therefore the present invention relates to the process (P4), which is process (P), (P), (P′), (P″), (P′″), (P″″), (P′″″), (P1), (P1′), (P2), (P2′), (P2″), (P2′″), (P3) or (P3′), wherein the molar ratio of the compound of formula (II) to the compound of formula (III) goes from 1:2 to 2:1.
  • The obtained products of the process according to the present invention (these are the compound of formula (I)) are new ideal intermediates. Especially in the production of vitamin A and its derivates.
  • Therefore the present invention relates to compounds of formula (I)
  • Figure US20230142429A1-20230511-C00013
  • wherein
  • R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0-14, or
  • R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge,
  • or
  • R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
  • Preferably, the present invention relates to compounds of formula (I)
  • Figure US20230142429A1-20230511-C00014
  • wherein R is —(CO)—(CH2)nCH3, wherein n has a value of 0-10.
  • More preferably, the present invention relates to compounds of formula (I)
  • Figure US20230142429A1-20230511-C00015
  • wherein R is —(CO)—(CH2)nCH3, wherein n has a value of 0 or 1.
  • Most preferably, the present invention relates to the compound of formula (I)
  • Figure US20230142429A1-20230511-C00016
  • wherein R is —(CO)—(CH2)CH3.
  • The following schema shows how to produce vitamin A (or derivatives thereof) can be obtained.
  • Figure US20230142429A1-20230511-C00017
  • R has the same meanings are defined above.
  • The following example serve to illustrate the invention. The temperature is given in ° C. and all percentages are related to the weight.
  • EXAMPLES Example 1: Synthesis of the Intermediate
  • 3-Methyl-2-((2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-2,5-dihydrothiophene 1,1-dioxide (5.65 g, 20.1 mmol; 1.0 eq), (E)-3-methyl-4-oxobut-2-en-1-yl acetate (2.95 g, 20.8 mmol; 1.03 eq) and dry tetrahydrofuran (40.0 mL) were placed in a dried four necked round bottom flask equipped with a magnetic stirrer, thermometer and condenser under an argon atmosphere. The reaction mixture was cooled to −76° C. Lithium diisopropylamide (20.0 mL, 20.0 mmol, 0.99 eq, 1 M in tetrahydrofuran/hexane, d=0.719 g/mL) was added dropwise over a period of 40 min. The reaction was stirred at −76° C. for 2 h. Subsequently, the cooling bath was removed and half saturated ammonium chloride solution (100 mL) was added. The reaction mixture was diluted with diethylether (150 mL). The aqueous layer was separated and extracted with diethylether (150 mL). The organic layers were washed with half saturated ammonium chloride solution (100 mL), water (2×100 mL) and saturated sodium chloride solution (100 mL). The combined organic layers were filtered over a plug of cotton wool. All volatiles were evaporated at 40° C. (5 mbar).
  • The crude was purified with a column chromatography (SiO2) to obtain the products in 45% yield.
  • Example 2: Synthesis of Compound IV
  • (E)-4-hydroxy-3-methyl-4-(4-methyl-1,1-dioxido-5-((2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-2,5-dihydrothiophen-2-yl)but-2-en-1-yl acetate (55 mg, 0.13 mmol; 1.0 eq) and pyridine (3.0 mL) were placed in a dried two necked round bottom flask equipped with a magnetic stirrer and condenser under an argon atmosphere. The reaction mixture was heated to 100° C. for 5 h. All volatiles were evaporated under reduced pressure (50° C., 5 mbar) to obtain the product in 82% yield
  • Example 3: Synthesis of Vitamin A Acetate from Compound I
  • (E)-4-hydroxy-3-methyl-4-(4-methyl-1,1-dioxido-5-((2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-2,5-dihydrothiophen-2-yl)but-2-en-1-yl acetate (product obtained from Example 1) (263 mg, 0.6 mmol; 1.0 eq) and dry toluene (5.0 mL) were placed in a dried two necked round bottom flask equipped with a magnetic stirrer and condenser under an argon atmosphere. The reaction mixture was heated to reflux for 2 h. All volatiles were evaporated under reduced pressure (40° C., 5 mbar) to obtain the product in a yield of 71%.
  • Example 4: Preparation of Retinyl Propionate
  • 3-Methyl-2-((2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-2,5-dihydrothiophene 1,1-dioxide (310 mg, 1.1 mmol; 1.0 eq), (E)-3-methyl-4-oxobut-2-en-1-yl propionate (190 mg, 1.2 mmol; 1.1 eq) and dry toluene (2.0 mL) were placed in a dried two necked round bottom flask under an argon atmosphere. The reaction mixture was cooled to −76° C. Lithium diidopropylamide (1.2 mL, 1.2 mmol, 1.1 eq, 1 M in tetrahydrofuran/hexane, d=0.719 g/mL) was added over a period of 7 min. The reaction mixture was stirred at −76° C. for 7 min. Subsequently the cooling bath was removed and half saturated ammonium chloride solution (5 mL) was added. The reaction mixture was diluted and extracted with toluene (10 mL). The aqueous layer was separated and extracted with toluene (10 mL). The organic layers were washed with water (2×10 mL) and saturated sodium chloride solution (1×10 mL). The combined organic layers were filtered over a plug of cotton wool. All volatiles were evaporated at 40° C. (5 mbar) until a clear yellow oil remained.
  • The oil was placed in a dried two necked round bottom flask and dissolved in toluene (5 mL) with a magnetic stirrer, condenser under an argon atmosphere. The reaction mixture was heated to reflux for 2 h. All volatiles were evaporated under reduced pressure (50° C., 5 mbar) to obtain the product (399 mg), yield=52%.
  • Example 5: Preparation of Retinyl Acetate
  • 3-Methyl-2-((2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-2,5-dihydrothiophene 1,1-dioxide (308 mg, 1.1 mmol; 1.0 eq), (E)-3-methyl-4-oxobut-2-en-1-yl acetate (161 mg, 1.1 mmol; 1.0 eq) and dry toluene (2.0 mL) were placed in a dried two necked round bottom flask equipped with a magnetic stirrer under an argon atmosphere. The reaction mixture was cooled to −76° C. Lithium diidopropylamide (1.2 mL, 1.2 mmol, 1.1 eq, 1 M in tetrahydrofuran/hexane, d=0.719 g/mL) was added dropwise over a period of 8 min. The reaction was stirred at −76° C. for 7 min. Subsequently, the cooling bath was removed and half saturated ammonium chloride solution (5 mL) was added. The reaction mixture was diluted with toluene (10 mL). The aqueous layer was separated and extracted with toluene (10 mL). The organic layers were washed with water (2×10 mL) and saturated sodium chloride solution (1×10 mL). The combined organic layers were filtered over a plug of cotton wool. All volatiles were evaporated at 40° C. (5 mbar).
  • The oil was placed in a dried two necked round bottom flask and dissolved in toluene (5 mL) with a magnetic stirrer under an argon atmosphere. The reaction mixture was heated to reflux for 1 h. All volatiles were evaporated under reduced pressure (40° C., 5 mbar). Purification afforded the product in 34% yield.

Claims (12)

1. Process of the production of compounds of formula (I)
Figure US20230142429A1-20230511-C00018
wherein
R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0-14 or
R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge
or R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether,
wherein the compound of formula (II)
Figure US20230142429A1-20230511-C00019
is reacted with the compound of formula (III)
Figure US20230142429A1-20230511-C00020
wherein R has the same meanings as defined for the compound of formula (I).
2. Process according to claim 1, wherein R is
R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0 or 1, or
R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge
or R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
3. Process according to claim 1, wherein the process is carried out in the presence of at least one strong base.
4. Process according to claim 3, wherein the at least one strong base is chosen from the group consisting of Schlesinger base, 2,2,6,6-tetramethyl piperidine, lithium diisopropylamide, n-butyllithium, hexyllithium, tert.-butyl lithium, sec-butyllithium, metal amide, lithium hexamethyldisilazane, metal hydride, metal hydroxide, metal alkoxide and sodium hexamethyl-disilazane.
5. Process according to claim 1, wherein the process is carried out in at least one inert solvent.
6. Process according to claim 5, wherein the solvent is a polar aprotic solvent.
7. Process according to claim 5, wherein the at least one solvent is chosen from the group consisting of pyridine, toluene, xylene, THF, methyl THF, and ethers (such as diethylether, 1,4-dioxane, 1,2-dimethoxyethane and crown ethers.
8. Process according to claim 1, wherein the process is carried out at a temperature range of from −100° C. to 25° C.
9. Process according to claim 1, wherein the molar ratio of the compound of formula (II) to the compound of formula (III) goes from 1:2 to 2:1.
10. Compounds of formula (I)
Figure US20230142429A1-20230511-C00021
wherein
R is H, or —(CO)—(CH2)nCH3, wherein n has a value of 0-14, or
R is —X(C1-4alkyl)3 or —X(C6H5)3, wherein X is Si or Ge
or R is tetrahydro pyrane, isopropylmethyl ether or 2-methoxy-butylether.
11. Compounds according to claim 10, wherein R is —(CO)—(CH2)nCH3 and n has a value of 0-10.
12. Compounds according to claim 10, wherein R is —(CO)—(CH2)nCH3 and n has a value of 0 or 1.
US17/915,448 2020-03-31 2021-03-22 Process for production of new sulfolenic intermediates Pending US20230142429A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20167023 2020-03-31
EP20167023.9 2020-03-31
PCT/EP2021/057242 WO2021197889A1 (en) 2020-03-31 2021-03-22 Process for production of new sulfolenic intermediates

Publications (1)

Publication Number Publication Date
US20230142429A1 true US20230142429A1 (en) 2023-05-11

Family

ID=70110051

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/915,448 Pending US20230142429A1 (en) 2020-03-31 2021-03-22 Process for production of new sulfolenic intermediates

Country Status (6)

Country Link
US (1) US20230142429A1 (en)
EP (1) EP4126837A1 (en)
JP (1) JP2023520136A (en)
CN (1) CN115515945A (en)
BR (1) BR112022019527A2 (en)
WO (1) WO2021197889A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023520135A (en) * 2020-03-31 2023-05-16 ディーエスエム アイピー アセッツ ビー.ブイ. How to generate vitamin A
WO2023094422A1 (en) * 2021-11-26 2023-06-01 Dsm Ip Assets B.V. Process for production of vitamin a

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179531A1 (en) * 2000-08-11 2002-02-13 Aventis Animal Nutrition S.A. Intermediates for use in the preparation of vitamin E

Also Published As

Publication number Publication date
CN115515945A (en) 2022-12-23
EP4126837A1 (en) 2023-02-08
BR112022019527A2 (en) 2022-11-16
WO2021197889A1 (en) 2021-10-07
JP2023520136A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US20230142429A1 (en) Process for production of new sulfolenic intermediates
US20220380333A1 (en) Cannabinoid derivatives, precursors and uses
EP1414775A2 (en) Novel bicyclic and tricyclic cannabinoids
EP4126838B1 (en) Process for production of vitamin a
AU693588B2 (en) Novel process for the preparation of diisopinocampheylchloroborane
US20110275872A1 (en) Process for the synthesis of ethynylcyclopropane
US7414143B2 (en) Process for the preparation of 4,4-dimethyl-6-ethynylthiochroman
US5292946A (en) In-situ preparation of diisopinocamphenyl chloroborane
US2533798A (en) 2-thenylamines
US20230192605A1 (en) Process for production of intermediates
CN114829367B (en) Functionalization of 1, 3-alpha-diene (I)
JP5448572B2 (en) Acetyl compound, method for producing the acetyl compound, and method for producing a naphthol compound using the acetyl compound
JPS609490B2 (en) Production method of cyclohexanedione-(1,3)
EP4081499B1 (en) Functionalisation of 1,3-alpha-dienes (ii)
CN113185518B (en) Synthesis method of dipyridamole Mo Zazhi I, II
CA1093086A (en) Process for the production of ¬1,1-dithien-(3)-yl-1- hydroxy-(3)propyl|-¬1-phenyl-1-hydroxy-(2)- propyl|-amine and ¬1,1-dithien-(3)-yl-(1)-propen- (3)-yl|-¬1-phenyl-(2)-propyl|-amine
US5254713A (en) 2- and 3-chloropyrroles and process for preparing the same
CA2021172A1 (en) Monocyclic terpene derivatives
WO2023094422A1 (en) Process for production of vitamin a
HUT61274A (en) Process for regioselective production of 3-substituted 3-aryloxy propaneamine compounds
KR100531117B1 (en) New 3,4-diexomethylene tetrahydropyrane derivatives, and process for preparing them
JP5476549B2 (en) Process for producing 2,3-dihydro-thieno [3,4-b] furan derivative and novel compound used therefor
CN112824411A (en) Bridged ring isoindolinone derivatives, and preparation method and application thereof
JP2012500811A (en) Improved synthesis of hexahydrodibenzopyranones

Legal Events

Date Code Title Description
AS Assignment

Owner name: DSM IP ASSETS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BONRATH, WERNER;MUELLER, MARC-ANDRE;WUESTENBERG, BETTINA;AND OTHERS;SIGNING DATES FROM 20200321 TO 20200331;REEL/FRAME:061248/0087

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION