US20230131402A1 - Spiro-lactam nmda receptor modulators and uses thereof - Google Patents
Spiro-lactam nmda receptor modulators and uses thereof Download PDFInfo
- Publication number
- US20230131402A1 US20230131402A1 US17/831,544 US202217831544A US2023131402A1 US 20230131402 A1 US20230131402 A1 US 20230131402A1 US 202217831544 A US202217831544 A US 202217831544A US 2023131402 A1 US2023131402 A1 US 2023131402A1
- Authority
- US
- United States
- Prior art keywords
- compound
- alkyl
- mmol
- compounds
- disorder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 title abstract description 35
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 title abstract description 35
- 150000001875 compounds Chemical class 0.000 claims abstract description 222
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 35
- 125000001424 substituent group Chemical group 0.000 claims description 31
- 150000003839 salts Chemical class 0.000 claims description 30
- 229910052736 halogen Inorganic materials 0.000 claims description 26
- 150000002367 halogens Chemical class 0.000 claims description 26
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 21
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 7
- 125000001153 fluoro group Chemical group F* 0.000 claims description 6
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- 125000001246 bromo group Chemical group Br* 0.000 claims description 3
- 125000002346 iodo group Chemical group I* 0.000 claims description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 55
- 238000009472 formulation Methods 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 11
- 238000001990 intravenous administration Methods 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 72
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 64
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 61
- 239000011541 reaction mixture Substances 0.000 description 60
- 239000000243 solution Substances 0.000 description 55
- 238000000034 method Methods 0.000 description 48
- 238000005160 1H NMR spectroscopy Methods 0.000 description 42
- 238000003786 synthesis reaction Methods 0.000 description 42
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 41
- 230000015572 biosynthetic process Effects 0.000 description 41
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 39
- 239000007858 starting material Substances 0.000 description 35
- 230000002829 reductive effect Effects 0.000 description 33
- -1 —C3-C6cycloalkyl Chemical group 0.000 description 33
- 238000004809 thin layer chromatography Methods 0.000 description 32
- 235000019439 ethyl acetate Nutrition 0.000 description 29
- 239000007787 solid Substances 0.000 description 27
- 239000013058 crude material Substances 0.000 description 26
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 24
- 239000012044 organic layer Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 23
- 239000012299 nitrogen atmosphere Substances 0.000 description 23
- 238000003756 stirring Methods 0.000 description 23
- 239000007832 Na2SO4 Substances 0.000 description 22
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 22
- 238000004128 high performance liquid chromatography Methods 0.000 description 22
- 229910052938 sodium sulfate Inorganic materials 0.000 description 22
- 238000004296 chiral HPLC Methods 0.000 description 19
- 208000035475 disorder Diseases 0.000 description 19
- 241001465754 Metazoa Species 0.000 description 18
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 16
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 15
- 208000024891 symptom Diseases 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 239000003981 vehicle Substances 0.000 description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 208000028017 Psychotic disease Diseases 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- KBJGGFKUBMQMOI-QQROTITISA-N C(C1=CC=CC=C1)N1C2(CNC2=O)CN(CC1)C([C@H]([C@@H](C)O)NC(OC(C)(C)C)=O)=O Chemical compound C(C1=CC=CC=C1)N1C2(CNC2=O)CN(CC1)C([C@H]([C@@H](C)O)NC(OC(C)(C)C)=O)=O KBJGGFKUBMQMOI-QQROTITISA-N 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229940024606 amino acid Drugs 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 11
- 150000001413 amino acids Chemical class 0.000 description 11
- 208000004296 neuralgia Diseases 0.000 description 11
- 208000021722 neuropathic pain Diseases 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- 201000000980 schizophrenia Diseases 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 10
- 229940125904 compound 1 Drugs 0.000 description 10
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 208000024827 Alzheimer disease Diseases 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 238000004440 column chromatography Methods 0.000 description 9
- 229940125782 compound 2 Drugs 0.000 description 9
- 208000020925 Bipolar disease Diseases 0.000 description 8
- 239000004471 Glycine Substances 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 208000006011 Stroke Diseases 0.000 description 8
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- 239000006188 syrup Substances 0.000 description 8
- 235000020357 syrup Nutrition 0.000 description 8
- 239000003039 volatile agent Substances 0.000 description 8
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 7
- MKXMXZZARNRMMQ-UHFFFAOYSA-N 4-[(2-methylpropan-2-yl)oxycarbonyl]-1-phenylmethoxycarbonylpiperazine-2-carboxylic acid Chemical compound OC(=O)C1CN(C(=O)OC(C)(C)C)CCN1C(=O)OCC1=CC=CC=C1 MKXMXZZARNRMMQ-UHFFFAOYSA-N 0.000 description 7
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 7
- 206010003805 Autism Diseases 0.000 description 7
- 208000020706 Autistic disease Diseases 0.000 description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 7
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000000556 agonist Substances 0.000 description 7
- 230000027455 binding Effects 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 229930195712 glutamate Natural products 0.000 description 7
- LBOJYSIDWZQNJS-UHFFFAOYSA-N neurogard Chemical compound C12=CC=CC=C2C2(C)C3=CC=CC=C3CC1N2 LBOJYSIDWZQNJS-UHFFFAOYSA-N 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 229910052705 radium Inorganic materials 0.000 description 7
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- FUMOVDZJNXKHJM-UHFFFAOYSA-N 1-o-benzyl 4-o-tert-butyl 2-o-methyl piperazine-1,2,4-tricarboxylate Chemical compound COC(=O)C1CN(C(=O)OC(C)(C)C)CCN1C(=O)OCC1=CC=CC=C1 FUMOVDZJNXKHJM-UHFFFAOYSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 6
- 229910003827 NRaRb Inorganic materials 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 229910052701 rubidium Inorganic materials 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- HFXLPTMYVSZLOO-UHFFFAOYSA-N 5-benzyl-2,5,8-triazaspiro[3.5]nonan-3-one Chemical compound C(C1=CC=CC=C1)N1C2(CNC2=O)CNCC1 HFXLPTMYVSZLOO-UHFFFAOYSA-N 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 5
- 208000019901 Anxiety disease Diseases 0.000 description 5
- 108091006146 Channels Proteins 0.000 description 5
- 206010010904 Convulsion Diseases 0.000 description 5
- 206010012289 Dementia Diseases 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 230000036506 anxiety Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 125000003636 chemical group Chemical group 0.000 description 5
- 230000001684 chronic effect Effects 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 206010015037 epilepsy Diseases 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- XPXMKIXDFWLRAA-UHFFFAOYSA-N hydrazinide Chemical compound [NH-]N XPXMKIXDFWLRAA-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 208000002851 paranoid schizophrenia Diseases 0.000 description 5
- 229940002612 prodrug Drugs 0.000 description 5
- 239000000651 prodrug Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000010898 silica gel chromatography Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000000707 stereoselective effect Effects 0.000 description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- RLENKXKMBIGQIT-IXIJJPBFSA-N 5-[(2S,3R)-2-amino-3-hydroxybutanoyl]-8-methyl-2,5,8-triazaspiro[3.5]nonan-3-one Chemical compound N[C@@H]([C@H](O)C)C(=O)N1C2(CNC2=O)CN(CC1)C RLENKXKMBIGQIT-IXIJJPBFSA-N 0.000 description 4
- QVJSSYWIHHIHCZ-MZVBAPTMSA-N 8-[(2S,3R)-2-amino-3-hydroxybutanoyl]-2,5,8-triazaspiro[3.5]nonan-3-one Chemical compound N[C@@H]([C@H](O)C)C(=O)N1CCNC2(CNC2=O)C1 QVJSSYWIHHIHCZ-MZVBAPTMSA-N 0.000 description 4
- DWADKNOVFJTQHO-UHFFFAOYSA-N 8-methyl-2,5,8-triazaspiro[3.5]nonan-3-one Chemical compound CN1CCNC2(CNC2=O)C1 DWADKNOVFJTQHO-UHFFFAOYSA-N 0.000 description 4
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 4
- 201000006474 Brain Ischemia Diseases 0.000 description 4
- 206010012239 Delusion Diseases 0.000 description 4
- 102100029458 Glutamate receptor ionotropic, NMDA 2A Human genes 0.000 description 4
- 102100022630 Glutamate receptor ionotropic, NMDA 2B Human genes 0.000 description 4
- 101710195187 Glutamate receptor ionotropic, NMDA 2B Proteins 0.000 description 4
- 208000010496 Heart Arrest Diseases 0.000 description 4
- 241000725303 Human immunodeficiency virus Species 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 208000026139 Memory disease Diseases 0.000 description 4
- 150000001204 N-oxides Chemical class 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- 208000036753 Schizophrenia, disorganised type Diseases 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 150000003862 amino acid derivatives Chemical class 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- UZBTYWGVXIZVQT-GCQDHQGHSA-N benzyl N-[(2S,3R)-1-(8-methyl-3-oxo-2,5,8-triazaspiro[3.5]nonan-5-yl)-1-oxo-3-phenylmethoxybutan-2-yl]carbamate Chemical compound C(C1=CC=CC=C1)O[C@@H]([C@@H](C(=O)N1C2(CNC2=O)CN(CC1)C)NC(OCC1=CC=CC=C1)=O)C UZBTYWGVXIZVQT-GCQDHQGHSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229940126214 compound 3 Drugs 0.000 description 4
- 231100000868 delusion Toxicity 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 230000013016 learning Effects 0.000 description 4
- 208000024714 major depressive disease Diseases 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 208000020431 spinal cord injury Diseases 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 231100001274 therapeutic index Toxicity 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 3
- 208000001640 Fibromyalgia Diseases 0.000 description 3
- 208000001914 Fragile X syndrome Diseases 0.000 description 3
- 102100022631 Glutamate receptor ionotropic, NMDA 2C Human genes 0.000 description 3
- 101710195185 Glutamate receptor ionotropic, NMDA 2C Proteins 0.000 description 3
- 102100022626 Glutamate receptor ionotropic, NMDA 2D Human genes 0.000 description 3
- 101710195184 Glutamate receptor ionotropic, NMDA 2D Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000023105 Huntington disease Diseases 0.000 description 3
- 206010021750 Infantile Spasms Diseases 0.000 description 3
- 208000020358 Learning disease Diseases 0.000 description 3
- 108010084867 N-methyl D-aspartate receptor subtype 2A Proteins 0.000 description 3
- 208000029726 Neurodevelopmental disease Diseases 0.000 description 3
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000006289 Rett Syndrome Diseases 0.000 description 3
- 208000036755 Schizophrenia simple Diseases 0.000 description 3
- 208000036754 Schizophrenia, catatonic type Diseases 0.000 description 3
- 208000036752 Schizophrenia, paranoid type Diseases 0.000 description 3
- 206010041243 Social avoidant behaviour Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 description 3
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000001576 beta-amino acids Chemical class 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- QOPVNWQGBQYBBP-UHFFFAOYSA-N chloroethyl chloroformate Chemical compound CC(Cl)OC(Cl)=O QOPVNWQGBQYBBP-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 230000002996 emotional effect Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 235000019000 fluorine Nutrition 0.000 description 3
- 229960002464 fluoxetine Drugs 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 201000003723 learning disability Diseases 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000036407 pain Effects 0.000 description 3
- JSSXHAMIXJGYCS-UHFFFAOYSA-N piperazin-4-ium-2-carboxylate Chemical compound OC(=O)C1CNCCN1 JSSXHAMIXJGYCS-UHFFFAOYSA-N 0.000 description 3
- 230000001242 postsynaptic effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002953 preparative HPLC Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 208000012672 seasonal affective disease Diseases 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000012453 sprague-dawley rat model Methods 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 230000003956 synaptic plasticity Effects 0.000 description 3
- YLOJIHHBAFAQBP-UHFFFAOYSA-N tert-butyl 3-oxo-2,5,8-triazaspiro[3.5]nonane-8-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNC2(CNC2=O)C1 YLOJIHHBAFAQBP-UHFFFAOYSA-N 0.000 description 3
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000009529 traumatic brain injury Effects 0.000 description 3
- 208000009999 tuberous sclerosis Diseases 0.000 description 3
- MHNSPTUQQIYJOT-CULRIWENSA-N (3z)-3-(6h-benzo[c][1]benzoxepin-11-ylidene)-n,n-dimethylpropan-1-amine;hydrochloride Chemical compound Cl.C1OC2=CC=CC=C2C(=C/CCN(C)C)\C2=CC=CC=C21 MHNSPTUQQIYJOT-CULRIWENSA-N 0.000 description 2
- PUSULOVTUJOXPH-UHFFFAOYSA-N 5,8-dibenzyl-2,5,8-triazaspiro[3.5]nonan-3-one Chemical compound C(C1=CC=CC=C1)N1C2(CNC2=O)CN(CC1)CC1=CC=CC=C1 PUSULOVTUJOXPH-UHFFFAOYSA-N 0.000 description 2
- CSRYOVHYLOYJJF-UHFFFAOYSA-N 5-benzyl-8-methyl-2,5,8-triazaspiro[3.5]nonan-3-one Chemical compound C(C1=CC=CC=C1)N1C2(CNC2=O)CN(CC1)C CSRYOVHYLOYJJF-UHFFFAOYSA-N 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 102000009091 Amyloidogenic Proteins Human genes 0.000 description 2
- 108010048112 Amyloidogenic Proteins Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 206010003591 Ataxia Diseases 0.000 description 2
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 2
- 208000008035 Back Pain Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 108091005462 Cation channels Proteins 0.000 description 2
- 206010008027 Cerebellar atrophy Diseases 0.000 description 2
- 206010008120 Cerebral ischaemia Diseases 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 description 2
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- 208000024254 Delusional disease Diseases 0.000 description 2
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 206010012689 Diabetic retinopathy Diseases 0.000 description 2
- 201000010374 Down Syndrome Diseases 0.000 description 2
- 206010052804 Drug tolerance Diseases 0.000 description 2
- 208000012661 Dyskinesia Diseases 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- 208000004547 Hallucinations Diseases 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 208000013016 Hypoglycemia Diseases 0.000 description 2
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 2
- 208000030990 Impulse-control disease Diseases 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 208000001089 Multiple system atrophy Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- 208000008238 Muscle Spasticity Diseases 0.000 description 2
- 206010028570 Myelopathy Diseases 0.000 description 2
- 208000002033 Myoclonus Diseases 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 208000028389 Nerve injury Diseases 0.000 description 2
- PHVGLTMQBUFIQQ-UHFFFAOYSA-N Nortryptiline Chemical group C1CC2=CC=CC=C2C(=CCCNC)C2=CC=CC=C21 PHVGLTMQBUFIQQ-UHFFFAOYSA-N 0.000 description 2
- 208000003435 Optic Neuritis Diseases 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 208000004983 Phantom Limb Diseases 0.000 description 2
- 206010056238 Phantom pain Diseases 0.000 description 2
- 206010034912 Phobia Diseases 0.000 description 2
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 2
- 201000009916 Postpartum depression Diseases 0.000 description 2
- 201000001947 Reflex Sympathetic Dystrophy Diseases 0.000 description 2
- 208000017442 Retinal disease Diseases 0.000 description 2
- 206010038923 Retinopathy Diseases 0.000 description 2
- 208000036750 Schizophrenia, residual type Diseases 0.000 description 2
- 208000008765 Sciatica Diseases 0.000 description 2
- 208000005392 Spasm Diseases 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 208000000323 Tourette Syndrome Diseases 0.000 description 2
- 208000016620 Tourette disease Diseases 0.000 description 2
- 206010044688 Trisomy 21 Diseases 0.000 description 2
- 206010046543 Urinary incontinence Diseases 0.000 description 2
- 201000006791 West syndrome Diseases 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000008484 agonism Effects 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 125000005206 alkoxycarbonyloxymethyl group Chemical group 0.000 description 2
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 2
- 235000008206 alpha-amino acids Nutrition 0.000 description 2
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000008485 antagonism Effects 0.000 description 2
- 239000000935 antidepressant agent Substances 0.000 description 2
- 229940005513 antidepressants Drugs 0.000 description 2
- 239000000164 antipsychotic agent Substances 0.000 description 2
- 229940005529 antipsychotics Drugs 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 229940077388 benzenesulfonate Drugs 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 206010007776 catatonia Diseases 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 206010008118 cerebral infarction Diseases 0.000 description 2
- 206010008129 cerebral palsy Diseases 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 208000024732 dysthymic disease Diseases 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 2
- KKXWTUYDLQVOOO-UHFFFAOYSA-N ethyl 1,4-dibenzylpiperazine-2-carboxylate Chemical compound C1CN(CC=2C=CC=CC=2)C(C(=O)OCC)CN1CC1=CC=CC=C1 KKXWTUYDLQVOOO-UHFFFAOYSA-N 0.000 description 2
- OENICUBCLXKLJQ-UHFFFAOYSA-N ethyl 2,3-dibromopropanoate Chemical compound CCOC(=O)C(Br)CBr OENICUBCLXKLJQ-UHFFFAOYSA-N 0.000 description 2
- 230000002461 excitatory amino acid Effects 0.000 description 2
- 239000003257 excitatory amino acid Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000012048 forced swim test Methods 0.000 description 2
- 230000026781 habituation Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 2
- WNSDZBQLMGKPQS-UHFFFAOYSA-N hydron;piperazine-2-carboxylic acid;dichloride Chemical compound Cl.Cl.OC(=O)C1CNCCN1 WNSDZBQLMGKPQS-UHFFFAOYSA-N 0.000 description 2
- 230000002218 hypoglycaemic effect Effects 0.000 description 2
- 208000035231 inattentive type attention deficit hyperactivity disease Diseases 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 230000027928 long-term synaptic potentiation Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000003340 mental effect Effects 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 230000008764 nerve damage Effects 0.000 description 2
- 230000016273 neuron death Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 208000033808 peripheral neuropathy Diseases 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 208000019899 phobic disease Diseases 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 210000002442 prefrontal cortex Anatomy 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- GIBQQARAXHVEGD-BSOLPCOYSA-N rapastinel Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)N[C@@H]([C@@H](C)O)C(N)=O)CCC1 GIBQQARAXHVEGD-BSOLPCOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 230000000698 schizophrenic effect Effects 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 208000019116 sleep disease Diseases 0.000 description 2
- 208000020685 sleep-wake disease Diseases 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 208000018198 spasticity Diseases 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 201000009032 substance abuse Diseases 0.000 description 2
- 231100000736 substance abuse Toxicity 0.000 description 2
- 208000011117 substance-related disease Diseases 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000003976 synaptic dysfunction Effects 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- SHBHGGOSCAHBGR-ODLMARSHSA-N tert-butyl 5-[(2S,3R)-2-amino-3-hydroxybutanoyl]-3-oxo-2,5,8-triazaspiro[3.5]nonane-8-carboxylate Chemical compound N[C@@H]([C@H](O)C)C(=O)N1C2(CNC2=O)CN(CC1)C(=O)OC(C)(C)C SHBHGGOSCAHBGR-ODLMARSHSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- PHLBKPHSAVXXEF-UHFFFAOYSA-N trazodone Chemical compound ClC1=CC=CC(N2CCN(CCCN3C(N4C=CC=CC4=N3)=O)CC2)=C1 PHLBKPHSAVXXEF-UHFFFAOYSA-N 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- KTGRHKOEFSJQNS-BDQAORGHSA-N (1s)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-3h-2-benzofuran-5-carbonitrile;oxalic acid Chemical compound OC(=O)C(O)=O.C1([C@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 KTGRHKOEFSJQNS-BDQAORGHSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- 125000005862 (C1-C6)alkanoyl group Chemical group 0.000 description 1
- 125000005859 (C1-C6)alkanoyloxymethyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000005845 (C2-C12)alkanoyloxymethyl group Chemical group 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- VSWBSWWIRNCQIJ-GJZGRUSLSA-N (R,R)-asenapine Chemical compound O1C2=CC=CC=C2[C@@H]2CN(C)C[C@H]2C2=CC(Cl)=CC=C21 VSWBSWWIRNCQIJ-GJZGRUSLSA-N 0.000 description 1
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 1
- IIZGWFQKLVCLLA-UHFFFAOYSA-N 1,4-bis[(2-methylpropan-2-yl)oxycarbonyl]piperazine-2-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)OC(C)(C)C)C(C(O)=O)C1 IIZGWFQKLVCLLA-UHFFFAOYSA-N 0.000 description 1
- 125000005860 1-((C1-C6)alkanoyloxy)ethyl group Chemical group 0.000 description 1
- 125000005851 1-(N-(alkoxycarbonyl)amino)ethyl group Chemical group 0.000 description 1
- 125000005846 1-(alkanoyloxy)ethyl group Chemical group 0.000 description 1
- 125000005848 1-(alkoxycarbonyloxy)ethyl group Chemical group 0.000 description 1
- FVRXTLPSQDHTOM-UHFFFAOYSA-N 1-O-benzyl 4-O-tert-butyl 2-O-methyl 2-(cyanomethyl)piperazine-1,2,4-tricarboxylate Chemical compound COC(=O)C1(CC#N)CN(CCN1C(=O)OCC1=CC=CC=C1)C(=O)OC(C)(C)C FVRXTLPSQDHTOM-UHFFFAOYSA-N 0.000 description 1
- WSEQXVZVJXJVFP-UHFFFAOYSA-N 1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrile Chemical compound O1CC2=CC(C#N)=CC=C2C1(CCCN(C)C)C1=CC=C(F)C=C1 WSEQXVZVJXJVFP-UHFFFAOYSA-N 0.000 description 1
- 125000005847 1-methyl-1-(alkanoyloxy)-ethyl group Chemical group 0.000 description 1
- 125000005849 1-methyl-1-(alkoxycarbonyloxy)ethyl group Chemical group 0.000 description 1
- QKNSGUCCNZBAAJ-UHFFFAOYSA-N 1-o,4-o-ditert-butyl 2-o-methyl piperazine-1,2,4-tricarboxylate Chemical compound COC(=O)C1CN(C(=O)OC(C)(C)C)CCN1C(=O)OC(C)(C)C QKNSGUCCNZBAAJ-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 1
- REXUYBKPWIPONM-UHFFFAOYSA-N 2-bromoacetonitrile Chemical compound BrCC#N REXUYBKPWIPONM-UHFFFAOYSA-N 0.000 description 1
- 125000004918 2-methyl-2-pentyl group Chemical group CC(C)(CCC)* 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 229940080296 2-naphthalenesulfonate Drugs 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- 125000004917 3-methyl-2-butyl group Chemical group CC(C(C)*)C 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- PMXMIIMHBWHSKN-UHFFFAOYSA-N 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCC(O)C4=NC=3C)=NOC2=C1 PMXMIIMHBWHSKN-UHFFFAOYSA-N 0.000 description 1
- YRYAXQJXMBETAT-UHFFFAOYSA-N 4-[(2-methylpropan-2-yl)oxycarbonyl]piperazin-1-ium-2-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNC(C(O)=O)C1 YRYAXQJXMBETAT-UHFFFAOYSA-N 0.000 description 1
- 102100035923 4-aminobutyrate aminotransferase, mitochondrial Human genes 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- LQWKBXKEPMKLBU-UHFFFAOYSA-N 5-O-benzyl 8-O-tert-butyl 3-oxo-2,5,8-triazaspiro[3.5]nonane-5,8-dicarboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)OCc2ccccc2)C2(CNC2=O)C1 LQWKBXKEPMKLBU-UHFFFAOYSA-N 0.000 description 1
- XKFPYPQQHFEXRZ-UHFFFAOYSA-N 5-methyl-N'-(phenylmethyl)-3-isoxazolecarbohydrazide Chemical compound O1C(C)=CC(C(=O)NNCC=2C=CC=CC=2)=N1 XKFPYPQQHFEXRZ-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- KFSROHMAWYBIGO-KMMYHCRNSA-N 8-[(2S,3R)-2-amino-3-hydroxybutanoyl]-5-benzyl-2,5,8-triazaspiro[3.5]nonan-3-one Chemical compound N[C@@H]([C@H](O)C)C(=O)N1CCN(C2(CNC2=O)C1)CC1=CC=CC=C1 KFSROHMAWYBIGO-KMMYHCRNSA-N 0.000 description 1
- 101150037123 APOE gene Proteins 0.000 description 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- 206010054196 Affect lability Diseases 0.000 description 1
- 108700023418 Amidases Proteins 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 208000009575 Angelman syndrome Diseases 0.000 description 1
- 102100029470 Apolipoprotein E Human genes 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 208000021465 Brief psychotic disease Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 208000009132 Catalepsy Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- GDLIGKIOYRNHDA-UHFFFAOYSA-N Clomipramine Chemical compound C1CC2=CC=C(Cl)C=C2N(CCCN(C)C)C2=CC=CC=C21 GDLIGKIOYRNHDA-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102100034746 Cyclin-dependent kinase-like 5 Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 206010012374 Depressed mood Diseases 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- 208000001495 Disorganized Schizophrenia Diseases 0.000 description 1
- 206010013754 Drug withdrawal syndrome Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 206010016759 Flat affect Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- LFMYNZPAVPMEGP-PIDGMYBPSA-N Fluvoxamine maleate Chemical compound OC(=O)\C=C/C(O)=O.COCCCC\C(=N/OCCN)C1=CC=C(C(F)(F)F)C=C1 LFMYNZPAVPMEGP-PIDGMYBPSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 102000017692 GABRA5 Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 1
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 206010019070 Hallucination, auditory Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101001000686 Homo sapiens 4-aminobutyrate aminotransferase, mitochondrial Proteins 0.000 description 1
- 101000945692 Homo sapiens Cyclin-dependent kinase-like 5 Proteins 0.000 description 1
- 101001001388 Homo sapiens Gamma-aminobutyric acid receptor subunit alpha-5 Proteins 0.000 description 1
- 101001125242 Homo sapiens Glutamate receptor ionotropic, NMDA 2A Proteins 0.000 description 1
- 101001108436 Homo sapiens Neurexin-1 Proteins 0.000 description 1
- 101001108433 Homo sapiens Neurexin-1-beta Proteins 0.000 description 1
- 101000603173 Homo sapiens Neuroligin-2 Proteins 0.000 description 1
- 101000603172 Homo sapiens Neuroligin-3 Proteins 0.000 description 1
- 101000745167 Homo sapiens Neuronal acetylcholine receptor subunit alpha-4 Proteins 0.000 description 1
- 101001099423 Homo sapiens Proenkephalin-A Proteins 0.000 description 1
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 1
- 101000772888 Homo sapiens Ubiquitin-protein ligase E3A Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 208000009829 Lewy Body Disease Diseases 0.000 description 1
- 201000002832 Lewy body dementia Diseases 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920005479 Lucite® Polymers 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 208000024889 MECP2 duplication syndrome Diseases 0.000 description 1
- 101150083522 MECP2 gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102100039124 Methyl-CpG-binding protein 2 Human genes 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000033180 Monosomy 22q13.3 Diseases 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- 208000008770 Multiple Hamartoma Syndrome Diseases 0.000 description 1
- 125000005855 N,N-di(C1-C2)alkylcarbamoyl-(C1-C2)alkyl group Chemical group 0.000 description 1
- 125000005850 N-(alkoxycarbonyl)aminomethyl group Chemical group 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-UHFFFAOYSA-N N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine Chemical compound C=1C=CC=CC=1C(CCNC)OC1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-UHFFFAOYSA-N 0.000 description 1
- 229940127523 NMDA Receptor Antagonists Drugs 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 102100021582 Neurexin-1-beta Human genes 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 208000003019 Neurofibromatosis 1 Diseases 0.000 description 1
- 208000024834 Neurofibromatosis type 1 Diseases 0.000 description 1
- 102000010196 Neuroligin Human genes 0.000 description 1
- 108050001755 Neuroligin Proteins 0.000 description 1
- 102100038939 Neuroligin-2 Human genes 0.000 description 1
- 102100038940 Neuroligin-3 Human genes 0.000 description 1
- 102100039909 Neuronal acetylcholine receptor subunit alpha-4 Human genes 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 206010057852 Nicotine dependence Diseases 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 125000005861 N—(C1-C6)alkoxycarbonylaminomethyl group Chemical group 0.000 description 1
- 208000026251 Opioid-Related disease Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 201000010917 PTEN hamartoma tumor syndrome Diseases 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 206010034703 Perseveration Diseases 0.000 description 1
- 201000006880 Phelan-McDermid syndrome Diseases 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000027030 Premenstrual dysphoric disease Diseases 0.000 description 1
- 206010036618 Premenstrual syndrome Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100038931 Proenkephalin-A Human genes 0.000 description 1
- 102100024622 Proenkephalin-B Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 208000033876 Proximal Xq28 duplication syndrome Diseases 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102100030681 SH3 and multiple ankyrin repeat domains protein 3 Human genes 0.000 description 1
- 101710101741 SH3 and multiple ankyrin repeat domains protein 3 Proteins 0.000 description 1
- 208000024791 Schizotypal Personality disease Diseases 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 208000019568 Shared Paranoid disease Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010041250 Social phobia Diseases 0.000 description 1
- 208000010513 Stupor Diseases 0.000 description 1
- 208000007271 Substance Withdrawal Syndrome Diseases 0.000 description 1
- 231100000643 Substance intoxication Toxicity 0.000 description 1
- 208000011963 Substance-induced psychotic disease Diseases 0.000 description 1
- 231100000393 Substance-induced psychotic disorder Toxicity 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 208000025569 Tobacco Use disease Diseases 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102100030434 Ubiquitin-protein ligase E3A Human genes 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 206010047853 Waxy flexibility Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- BKPRVQDIOGQWTG-ICOOEGOYSA-N [(1s,2r)-2-phenylcyclopropyl]azanium;[(1r,2s)-2-phenylcyclopropyl]azanium;sulfate Chemical compound [O-]S([O-])(=O)=O.[NH3+][C@H]1C[C@@H]1C1=CC=CC=C1.[NH3+][C@@H]1C[C@H]1C1=CC=CC=C1 BKPRVQDIOGQWTG-ICOOEGOYSA-N 0.000 description 1
- QQIRAVWVGBTHMJ-UHFFFAOYSA-N [dimethyl-(trimethylsilylamino)silyl]methane;lithium Chemical compound [Li].C[Si](C)(C)N[Si](C)(C)C QQIRAVWVGBTHMJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000008856 allosteric binding Effects 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 102000005922 amidase Human genes 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- NTJOBXMMWNYJFB-UHFFFAOYSA-N amisulpride Chemical compound CCN1CCCC1CNC(=O)C1=CC(S(=O)(=O)CC)=C(N)C=C1OC NTJOBXMMWNYJFB-UHFFFAOYSA-N 0.000 description 1
- 229960003036 amisulpride Drugs 0.000 description 1
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 229940025141 anafranil Drugs 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000008503 anti depressant like effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 229940124604 anti-psychotic medication Drugs 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000000949 anxiolytic effect Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960004372 aripiprazole Drugs 0.000 description 1
- 125000005251 aryl acyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005245 asenapine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 208000029560 autism spectrum disease Diseases 0.000 description 1
- 208000022804 avoidant personality disease Diseases 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical compound ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 208000028683 bipolar I disease Diseases 0.000 description 1
- 208000025307 bipolar depression Diseases 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 208000030963 borderline personality disease Diseases 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- SNPPWIUOZRMYNY-UHFFFAOYSA-N bupropion Chemical compound CC(C)(C)NC(C)C(=O)C1=CC=CC(Cl)=C1 SNPPWIUOZRMYNY-UHFFFAOYSA-N 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- FFSAXUULYPJSKH-UHFFFAOYSA-N butyrophenone Chemical class CCCC(=O)C1=CC=CC=C1 FFSAXUULYPJSKH-UHFFFAOYSA-N 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 125000005854 carbamoyl-(C1-C2)alkyl group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229940047493 celexa Drugs 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000000633 chiral stationary phase gas chromatography Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000006726 chronic neurodegeneration Effects 0.000 description 1
- 230000037326 chronic stress Effects 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000007422 cognition related pathway Effects 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229940029644 cymbalta Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 208000013257 developmental and epileptic encephalopathy Diseases 0.000 description 1
- 125000005852 di-N,N—(C1-C2)alkylamino(C2-C3)alkyl group Chemical group 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- BDFWBKWXVAPOCG-UHFFFAOYSA-N ditert-butyl 3-oxo-2,5,8-triazaspiro[3.5]nonane-5,8-dicarboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)OC(C)(C)C)C2(CNC2=O)C1 BDFWBKWXVAPOCG-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 201000002545 drug psychosis Diseases 0.000 description 1
- 229940098766 effexor Drugs 0.000 description 1
- 229940011681 elavil Drugs 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 230000008918 emotional behaviour Effects 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003492 excitotoxic effect Effects 0.000 description 1
- 231100000063 excitotoxicity Toxicity 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000005643 gamma-butyrolacton-4-yl group Chemical group 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 125000001976 hemiacetal group Chemical group 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000000971 hippocampal effect Effects 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- XMXHEBAFVSFQEX-UHFFFAOYSA-N iloperidone Chemical compound COC1=CC(C(C)=O)=CC=C1OCCCN1CCC(C=2C3=CC=C(F)C=C3ON=2)CC1 XMXHEBAFVSFQEX-UHFFFAOYSA-N 0.000 description 1
- 229960003162 iloperidone Drugs 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- XZZXIYZZBJDEEP-UHFFFAOYSA-N imipramine hydrochloride Chemical compound [Cl-].C1CC2=CC=CC=C2N(CCC[NH+](C)C)C2=CC=CC=C21 XZZXIYZZBJDEEP-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000001057 ionotropic effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 235000014705 isoleucine Nutrition 0.000 description 1
- TWBYWOBDOCUKOW-UHFFFAOYSA-M isonicotinate Chemical compound [O-]C(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-M 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000005772 leucine Nutrition 0.000 description 1
- 229940054157 lexapro Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 229960001432 lurasidone Drugs 0.000 description 1
- PQXKDMSYBGKCJA-CVTJIBDQSA-N lurasidone Chemical compound C1=CC=C2C(N3CCN(CC3)C[C@@H]3CCCC[C@H]3CN3C(=O)[C@@H]4[C@H]5CC[C@H](C5)[C@@H]4C3=O)=NSC2=C1 PQXKDMSYBGKCJA-CVTJIBDQSA-N 0.000 description 1
- 229940009622 luvox Drugs 0.000 description 1
- 235000018977 lysine Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940110127 marplan Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- RONZAEMNMFQXRA-UHFFFAOYSA-N mirtazapine Chemical compound C1C2=CC=CN=C2N2CCN(C)CC2C2=CC=CC=C21 RONZAEMNMFQXRA-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 125000005858 morpholino(C2-C3)alkyl group Chemical group 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 230000004973 motor coordination Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 229940087524 nardil Drugs 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 201000004931 neurofibromatosis Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940087480 norpramin Drugs 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 description 1
- 229960005017 olanzapine Drugs 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 201000005040 opiate dependence Diseases 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229960001057 paliperidone Drugs 0.000 description 1
- 229940055692 pamelor Drugs 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical class C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229940087824 parnate Drugs 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 239000004031 partial agonist Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 208000022821 personality disease Diseases 0.000 description 1
- 229950010883 phencyclidine Drugs 0.000 description 1
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical compound CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000005856 piperidino(C2-C3)alkyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229950010765 pivalate Drugs 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 208000028173 post-traumatic stress disease Diseases 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 108010074732 preproenkephalin Proteins 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- BWPIARFWQZKAIA-UHFFFAOYSA-N protriptyline Chemical compound C1=CC2=CC=CC=C2C(CCCNC)C2=CC=CC=C21 BWPIARFWQZKAIA-UHFFFAOYSA-N 0.000 description 1
- 229940035613 prozac Drugs 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 125000005857 pyrrolidino(C2-C3)alkyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 229960004431 quetiapine Drugs 0.000 description 1
- URKOMYMAXPYINW-UHFFFAOYSA-N quetiapine Chemical compound C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 URKOMYMAXPYINW-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940075993 receptor modulator Drugs 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229940023942 remeron Drugs 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 229960001534 risperidone Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
- 229940124834 selective serotonin reuptake inhibitor Drugs 0.000 description 1
- 239000012896 selective serotonin reuptake inhibitor Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- GZKLJWGUPQBVJQ-UHFFFAOYSA-N sertindole Chemical compound C1=CC(F)=CC=C1N1C2=CC=C(Cl)C=C2C(C2CCN(CCN3C(NCC3)=O)CC2)=C1 GZKLJWGUPQBVJQ-UHFFFAOYSA-N 0.000 description 1
- 229960000652 sertindole Drugs 0.000 description 1
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000007958 sleep Effects 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 230000011273 social behavior Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 208000027765 speech disease Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229940118176 surmontil Drugs 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- WWJZWCUNLNYYAU-UHFFFAOYSA-N temephos Chemical compound C1=CC(OP(=S)(OC)OC)=CC=C1SC1=CC=C(OP(=S)(OC)OC)C=C1 WWJZWCUNLNYYAU-UHFFFAOYSA-N 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- AYKBOCGRMCJLLG-UHFFFAOYSA-N tert-butyl 1-oxo-2,6,9-triazaspiro[4.5]decane-9-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNC2(CCNC2=O)C1 AYKBOCGRMCJLLG-UHFFFAOYSA-N 0.000 description 1
- GDVUCQMOFJDSNK-UHFFFAOYSA-N tert-butyl 6-benzyl-1-oxo-2,6,9-triazaspiro[4.5]decane-9-carboxylate Chemical compound C(C1=CC=CC=C1)N1C2(CCNC2=O)CN(CC1)C(=O)OC(C)(C)C GDVUCQMOFJDSNK-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 150000005075 thioxanthenes Chemical class 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000003354 tissue distribution assay Methods 0.000 description 1
- 229940041597 tofranil Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 229960003991 trazodone Drugs 0.000 description 1
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YDGHCKHAXOUQOS-BTJKTKAUSA-N trimipramine maleate Chemical compound [O-]C(=O)\C=C/C([O-])=O.C1CC2=CC=CC=C2[NH+](CC(C[NH+](C)C)C)C2=CC=CC=C21 YDGHCKHAXOUQOS-BTJKTKAUSA-N 0.000 description 1
- 239000003174 triple reuptake inhibitor Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- PNVNVHUZROJLTJ-UHFFFAOYSA-N venlafaxine Chemical compound C1=CC(OC)=CC=C1C(CN(C)C)C1(O)CCCCC1 PNVNVHUZROJLTJ-UHFFFAOYSA-N 0.000 description 1
- 230000031836 visual learning Effects 0.000 description 1
- 229940045977 vivactil Drugs 0.000 description 1
- 229940009065 wellbutrin Drugs 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 description 1
- 229960000607 ziprasidone Drugs 0.000 description 1
- 229940020965 zoloft Drugs 0.000 description 1
- HDOZVRUNCMBHFH-UHFFFAOYSA-N zotepine Chemical compound CN(C)CCOC1=CC2=CC=CC=C2SC2=CC=C(Cl)C=C12 HDOZVRUNCMBHFH-UHFFFAOYSA-N 0.000 description 1
- 229960004496 zotepine Drugs 0.000 description 1
- 125000005863 α-amino(C1-C4)alkanoyl group Chemical group 0.000 description 1
- 125000005853 β-dimethylaminoethyl group Chemical group 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/10—Spiro-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/499—Spiro-condensed pyrazines or piperazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5386—1,4-Oxazines, e.g. morpholine spiro-condensed or forming part of bridged ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/10—Spiro-condensed systems
Definitions
- NMDA N-methyl-d-aspartate
- the NMDA receptor controls the flow of both divalent and monovalent ions into the postsynaptic neural cell through a receptor associated channel (Foster et al., Nature 1987, 329:395-396; Mayer et al., Trends in Pharmacol. Sci. 1990, 11:254-260).
- the NMDA receptor has been implicated during development in specifying neuronal architecture and synaptic connectivity, and may be involved in experience-dependent synaptic modifications.
- NMDA receptors are also thought to be involved in long term potentiation and central nervous system disorders.
- the NMDA receptor plays a major role in the synaptic plasticity that underlies many higher cognitive functions, such as memory acquisition, retention and learning, as well as in certain cognitive pathways and in the perception of pain (Collingridge et al., The NMDA Receptor, Oxford University Press, 1994). In addition, certain properties of NMDA receptors suggest that they may be involved in the information-processing in the brain that underlies consciousness itself.
- the NMDA receptor has drawn particular interest since it appears to be involved in a broad spectrum of CNS disorders. For instance, during brain ischemia caused by stroke or traumatic injury, excessive amounts of the excitatory amino acid glutamate are released from damaged or oxygen deprived neurons. This excess glutamate binds to the NMDA receptors which opens their ligand-gated ion channels; in turn the calcium influx produces a high level of intracellular calcium which activates a biochemical cascade resulting in protein degradation and cell death. This phenomenon, known as excitotoxicity, is also thought to be responsible for the neurological damage associated with other disorders ranging from hypoglycemia and cardiac arrest to epilepsy.
- the NMDA receptor is believed to consist of several protein chains embedded in the postsynaptic membrane.
- the first two types of subunits discovered so far form a large extracellular region, which probably contains most of the allosteric binding sites, several transmembrane regions looped and folded so as to form a pore or channel, which is permeable to Ca ++ , and a carboxyl terminal region.
- the opening and closing of the channel is regulated by the binding of various ligands to domains (allosteric sites) of the protein residing on the extracellular surface.
- the binding of the ligands is thought to affect a conformational change in the overall structure of the protein which is ultimately reflected in the channel opening, partially opening, partially closing, or closing.
- the present disclosure includes compounds that can be NMDA modulators. More specifically, the present disclosure provides a compound having the formula:
- X is 0 or NR 2 ;
- R 1 is selected from the group consisting of H, C 1 -C 6 alkyl, phenyl, —C(O)—C 1 -C 6 alkyl, and —C(O)—O—C 1 -C 6 alkyl;
- R 2 is selected from the group consisting of H, C 1 -C 6 alkyl, phenyl, —C(O)—C 1 -C 6 alkyl, and —C(O)—O—C 1 -C 6 alkyl;
- p 1 or 2;
- R 5 is independently selected for each occurrence from the group consisting of H, C 1 -C 6 alkyl, —S(O) W —C 1 -C 3 alkyl,—NR a R b , C 1 -C 3 alkoxy, cyano, and halogen;
- w 0, 1, or 2
- R 3 is selected from the group consisting of H, C 1 -C 6 alkyl, phenyl—C(O)R 31 and —C(O)OR 32 ;
- R 31 and R 32 are each independently H, C 1 -C 6 alkyl, —C 3 -C 6 cycloalkyl, and phenyl;
- R 7 is independently selected for each occurrence from the group consisting of H, halogen, phenyl, and C 1 -C 6 alkyl;
- R a and R h are each independently for each occurrence selected from the group consisting of H, C 1 -C 3 alkyl, and phenyl, or R a and R b taken together with the nitrogen to which they are attached form a 4-6 membered heterocyclic ring;
- any aforementioned C 1 -C 6 alkyl, independently for each occurrence, can be optionally substituted by one, two or three substituents each independently selected from —C(O)NR a R b , —NR a R b , hydroxyl, S(O) w —C 1 -C 3 alkyl, SH, phenyl and halogen, and wherein any aforementioned phenyl, independently for each occurrence, can be optionally substituted by one, two or three substituents each independently selected from hydroxyl, halogen, —C(O)—O—C 1 -C 3 alkyl, —C(O)—C 1 -C 3 alkyl, methyl, and CF 3 .
- compositions comprising a disclosed compound, and a pharmaceutically acceptable excipient.
- Such compositions can be suitable for administration to a patient orally, parenterally, topically, intravaginally, intrarectally, sublingually, ocularly, transdermally, or nasally.
- compounds described herein bind to NMDA receptors expressing certain NR2 subtypes. In some aspects, the compounds described herein bind to one NR2 subtype and not another. It should be appreciated that disclosed compounds may modulate other protein targets and/or specific NMDA receptor subtype.
- a method of this disclosure includes treating neuropathic pain, wherein the neuropathic pain is selected from the group consisting of herpes, HIV, traumatic nerve injury, stroke, post-ischemia, chronic back pain, post-herpetic neuralgia, fibromyalgia, reflex sympathetic dystrophy, complex regional pain syndrome, spinal cord injury, sciatica, phantom limb pain, diabetic neuropathy, and cancer chemotherapeutic-induced neuropathic pain.
- the neuropathic pain is selected from the group consisting of herpes, HIV, traumatic nerve injury, stroke, post-ischemia, chronic back pain, post-herpetic neuralgia, fibromyalgia, reflex sympathetic dystrophy, complex regional pain syndrome, spinal cord injury, sciatica, phantom limb pain, diabetic neuropathy, and cancer chemotherapeutic-induced neuropathic pain.
- a method of this disclosure includes treating depression.
- depression may include one or more of major depressive disorder, dysthymic disorder, psychotic depression, postpartum depression, seasonal affective disorder, bipolar disorder, mood disorder, or depression caused by a chronic medical condition.
- a disclosed method may treat schizophrenia.
- Such schizophrenia may be, for example, paranoid type schizophrenia, disorganized type schizophrenia, catatonic type schizophrenia, undifferentiated type schizophrenia, residual type schizophrenia, post-schizophrenic depression, or simple schizophrenia.
- This disclosure is generally directed to compounds that are capable of modulating NMDA receptors, for example, NMDA receptor antagonists, agonists, or partial agonists, and compositions and/or methods of using the disclosed compounds. It should be appreciated that the disclosed compounds may modulate other protein targets and/or specific NMDA receptor subtype.
- alkyl refers to a saturated straight-chain or branched hydrocarbon, such as a straight-chain or branched group of 1-6, 1-4, or 1-3 carbon atoms, referred to herein as C 1 -C 6 alkyl, C 1 -C 4 alkyl, and C 1 -C 1 alkyl, respectively.
- C 1 -C 6 alkyl refers to a straight-chain or branched saturated hydrocarbon containing 1-6 carbon atoms.
- C 1 -C 6 alkyl group examples include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, and neopentyl.
- C 1 -C 4 alkyl refers to a straight-chain or branched saturated hydrocarbon containing 1-4 carbon atoms.
- Examples of a C 1 -C 4 alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl.
- Exemplary alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 3-methyl-2-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, and hexyl.
- alkoxy refers to an alkyl group attached to an oxygen atom (alkyl-O—).
- Alkoxy groups can have 1-6 or 2-6 carbon atoms and are referred to herein as C 6 alkoxy and C 2 -C 6 alkoxy, respectively.
- Exemplary alkoxy groups include, but are not limited to, methoxy, ethoxy, propyloxy, isopropoxy, and tert-butoxy.
- carbonyl refers to the radical —C(O)— or C ⁇ O.
- cyano refers to the radical —CN.
- cycloalkyl refers to a monocyclic saturated or partially unsaturated hydrocarbon ring (carbocyclic) system, for example, where each ring is either completely saturated or contains one or more units of unsaturation, but where no ring is aromatic.
- a cycloalkyl can have 3-6 or 4-6 carbon atoms in its ring system, referred to herein as C 3 -C 6 cycloalkyl or C 4 -C 6 cycloalkyl, respectively.
- Exemplary cycloalkyl groups include, but are not limited to, cyclohexyl, cyclohexenyl, cyclopentyl, cyclopentenyl, cyclobutyl, and cyclopropyl.
- halo and “halogen,” as used herein, refer to fluoro (F), chloro (Cl), bromo (Br), and/or iodo (I).
- heteroatom refers to an atom of any element other than carbon or hydrogen and includes, for example, nitrogen (N), oxygen (O), silicon (Si), sulfur (S), phosphorus (P), and selenium (Se).
- heterocyclic ring or “heterocycloalkyl,” as used herein, is art-recognized and refer to saturated or partially unsaturated 3- to 8-membered ring structures, whose ring system include one, two or three heteroatoms, such as nitrogen, oxygen, and/or sulfur.
- a heterocyclic ring can be fused to one or more phenyl, partially unsaturated, or saturated rings. Examples of heterocyclic rings include, hut are not limited to, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, and piperazinyl.
- hydroxy and “hydroxyl,” as used herein, refer to the radical —OH.
- oxo refers to the radical ⁇ O (double bonded oxygen).
- amino acid includes any one of the following alpha amino acids: isoleucine, alanine, leucine, asparagine, lysine, aspartate, methionine, cysteine, phenylalanine, glutamate, threonine, glutamine, tryptophan, glycine, valine, proline, arginine, serine, histidine, and tyrosine.
- An amino acid also can include other art-recognized amino acids such as beta amino acids.
- compound refers to the compound itself and its pharmaceutically acceptable salts, hydrates, esters and N-oxides including its various stereoisomers and its isotopically-labelled forms, unless otherwise understood from the context of the description or expressly limited to one particular form of the compound, i.e., the compound itself, a specific stereoisomer and/or isotopically-labelled compound, or a pharmaceutically acceptable salt, a hydrate, an ester, or an N-oxide thereof. It should be understood that a compound can refer to a pharmaceutically acceptable salt, or a hydrate, an ester or an N-oxide of a stereoisomer of the compound and/or an isotopically-labelled compound.
- the compounds of the disclosure can contain one or more chiral centers and/or double bonds and therefore, can exist as stereoisomers, such as geometric isomers, and enantiomers or diastereomers.
- stereoisomers when used herein, consists of all geometric isomers, enantiomers and/or diastereomers of the compound.
- the compound depicted without such chirality at that and other chiral centers of the compound are within the scope of the present disclosure, i.e., the compound depicted in two-dimensions with “flat” or “straight” bonds rather than in three dimensions, for example, with solid or dashed wedge bonds.
- Stereospecific compounds may be designated by the symbols “R” or “S,” depending on the configuration of substituents around the stereogenic carbon atom.
- the present disclosure encompasses all the various stereoisomers of these compounds and mixtures thereof.
- Mixtures of enantiomers or diastereomers can be designated “( ⁇ )” in nomenclature, but a skilled artisan will recognize that a structure can denote a chiral center implicitly. It is understood that graphical depictions of chemical structures, e.g., generic chemical structures, encompass all stereoisomeric forms of the specified compounds, unless indicated otherwise.
- Individual enantiomers and diastereomers of compounds of the present disclosure can be prepared synthetically from commercially available starting materials that contain asymmetric or stereogenic centers, or by preparation of racemic mixtures followed by resolution methods well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary, (2) salt formation employing an optically active resolving agent, (3) direct separation of the mixture of optical enantiomers on chiral liquid chromatographic columns, or (4) kinetic resolution using stereoselective chemical or enzymatic reagents.
- Racemic mixtures also can be resolved into their component enantiomers by well-known methods, such as chiral-phase gas chromatography or crystallizing the compound in a chiral solvent.
- Stereoselective syntheses a chemical or enzymatic reaction in which a single reactant forms an unequal mixture of stereoisomers during the creation of a new stereocenter or during the transformation of a pre-existing one, are well known in the art.
- Stereoselective syntheses encompass both enantio- and diastereoselective transformations.
- Geometric isomers resulting from the arrangement of substituents around a carbon-carbon double bond or arrangement of substituents around a cycloalkyl or heterocycloalkyl, can also exist in the compounds of the present disclosure.
- the symbol ⁇ denotes a bond that may be a single, double or triple bond as described herein.
- Substituents around a carbon-carbon double bond are designated as being in the “Z” or “E” configuration, where the terms “Z” and “E” are used in accordance with IUPAC standards. Unless otherwise specified, structures depicting double bonds encompass both the “E” and “Z” isomers.
- Substituents around a carbon-carbon double bond alternatively can be referred to as “cis” or “trans,” where “cis” represents substituents on the same side of the double bond and “trans” represents substituents on opposite sides of the double bond.
- the arrangement of substituents around a carbocyclic ring can also be designated as “cis” or “trans.”
- the term “cis” represents substituents on the same side of the plane of the ring and the term “trans” represents substituents on opposite sides of the plane of the ring.
- Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of plane of the ring are designated “cis/trans.”
- the disclosure also embraces isotopically-labeled compounds which are identical to those compounds recited herein, except that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- isotopes that can be incorporated into compounds described herein include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2 H (“D”), 3 H, 13 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
- a compound described herein can have one or more H atoms replaced with deuterium.
- Certain isotopically-labeled compounds can be useful in compound and/or substrate tissue distribution assays.
- Tritiated (i.e., 3 H) and carbon-14 (i.e., 14 C) isotopes can be particularly preferred for their ease of preparation and detectability.
- substitution with heavier isotopes such as deuterium (i.e., 2 H) can afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence can be preferred in some circumstances.
- Isotopically-labeled compounds can generally be prepared by following procedures analogous to those disclosed herein, for example, in the Examples section, by substituting an isotopically-labeled reagent for a non-isotopically-labeled reagent.
- phrases “pharmaceutically acceptable” and “pharmacologically acceptable,” as used herein, refer to compounds, molecular entities, compositions, materials, and/or dosage forms that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or a human, as appropriate.
- preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.
- phrases “pharmaceutically acceptable carrier” and “pharmaceutically acceptable excipient,” as used herein, refer to any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration.
- Pharmaceutical acceptable carriers can include phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents.
- the compositions also can include stabilizers and preservatives.
- composition refers to a composition comprising at least one compound as disclosed herein formulated together with one or more pharmaceutically acceptable carriers.
- the pharmaceutical compositions can also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.
- the terms “individual,” “patient,” and “subject,” as used herein, are used interchangeably and include any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and more preferably, humans.
- the compounds described in the disclosure can be administered to a mammal, such as a human, but can also be administered to other mammals such as an animal in need of veterinary treatment, for example, domestic animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, sheep, pigs, horses, and the like) and laboratory animals (e.g., rats, mice, guinea pigs, and the like).
- the mammal treated in the methods described in the disclosure is preferably a mammal in which treatment, for example, of pain or depression, is desired.
- treating includes any effect, for example, lessening, reducing, modulating, ameliorating, or eliminating, that results in the improvement of the condition, disease, disorder, and the like, including one or more symptoms thereof. Treating can be curing, improving, or at least partially ameliorating the disorder.
- disorder refers to and is used interchangeably with, the terms “disease,” “condition,” or “illness,” unless otherwise indicated.
- modulation refers to and includes antagonism (e.g., inhibition), agonism, partial antagonism, and/or partial agonism.
- therapeutically effective amount refers to the amount of a compound (e.g., a disclosed compound) that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.
- the compounds described in the disclosure can be administered in therapeutically effective amounts to treat a disease.
- a therapeutically effective amount of a compound can be the quantity required to achieve a desired therapeutic and/or prophylactic effect, such as an amount which results in lessening of a symptom of a disease such as depression.
- salt refers to any salt of an acidic or a basic group that may be present in a compound of the present disclosure, which salt is compatible with pharmaceutical administration.
- salts of the compounds of the present disclosure may be derived from inorganic or organic acids and bases.
- salts include, but are not limited to: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate,
- salts include anions of the compounds of the present disclosure compounded with a suitable cation such as Na + , NH 4 + , and NW 4 + (where W can be a C 1-4 alkyl group), and the like.
- a suitable cation such as Na + , NH 4 + , and NW 4 + (where W can be a C 1-4 alkyl group), and the like.
- salts of the compounds of the present disclosure can be pharmaceutically acceptable.
- salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
- compositions that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids.
- the acids that can be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including but not limited to, malate, oxalate, chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfon
- compositions that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations.
- examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.
- compositions that include a basic or acidic moiety can also form pharmaceutically acceptable salts with various amino acids.
- the compounds of the disclosure can contain both acidic and basic groups; for example, one amino and one carboxylic acid group. In such a case, the compound can exist as an acid addition salt, a zwitterion, or a base salt.
- the compounds disclosed herein can exist in a solvated form as well as an unsolvated form with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the disclosure embrace both solvated and unsolvated forms.
- the compound is amorphous.
- the compound is a single polymorph.
- the compound is a mixture of polymorphs.
- the compound is in a crystalline form.
- prodrug refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (such as by esterase, amidase, phosphatase, oxidative and or reductive metabolism) in various locations (such as in the intestinal lumen or upon transit of the intestine, blood or liver). Prodrugs are well known in the art (for example, see Rautio, Kumpulainen, et al, Nature Reviews Drug Discovery 2008, 7, 255).
- a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as (C 1 -C 8 )alkyl, (C 2 -C 12 )alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino
- a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C 1 -C 6 )alkanoyloxymethyl, 1-((C 1 -C 6 )alkanoyloxy)ethyl, 1-methyl-1-((C 1 -C 6 )alkanoyloxy)ethyl (C 1 -C 6 )alkoxycarbonyloxymethyl, N—(C 1 -C 6 )alkoxycarbonylaminomethyl, succinoyl, (C 1 -C 6 )alkanoyl, ⁇ -amino(C 1 -C 4 )alkanoyl, arylacyl and ⁇ -aminoacyl, or ⁇ -aminoacyl- ⁇ -aminoacyl, where each ⁇ -aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH) 2
- a prodrug can be formed, for example, by creation of an amide or carbamate, an N-acyloxyakyl derivative, an (oxodioxolenyl) methyl derivative, an N-Mannich base, imine or enamine.
- a secondary amine can be metabolically cleaved to generate a bioactive primary amine, or a tertiary amine can metabolically cleaved to generate a bioactive primary or secondary amine.
- compositions and kits are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions and kits of the present disclosure that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present disclosure that consist essentially of, or consist of, the recited processing steps.
- an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components, or the element or component can be selected from a group consisting of two or more of the recited elements or components.
- an element means one element or more than one element.
- molecular weight is provided and not an absolute value, for example, of a polymer, then the molecular weight should be understood to be an average molecule weight, unless otherwise stated or understood from the context.
- C 1-6 alkyl is specifically intended to individually disclose C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 1 -C 6 , C 1 -C 5 , C 1 -C 4 , C 3 , C 1 -C 2 , C 2 -C 6 , C 2 -C 5 , C 2 -C 4 , C 2 -C 3 , C 3 -C 6 , C 3 -C 5 , C 3 -C 4 , C 4 -C 6 , C 4 -C 5 , and C 5 -C 6 alkyl.
- an integer in the range of 0 to 40 is specifically intended to individually disclose 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, and 40, and an integer in the range of 1 to 20 is specifically intended to individually disclose 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20.
- phrases “optionally substituted with 1-5 substituents” is specifically intended to individually disclose a chemical group that can include 0, 1, 2, 3, 4, 5, 0-5, 0-4, 0-3, 0-2, 0-1, 1-5, 1-4, 1-3, 1-2, 2-5, 2-4, 2-3, 3-5, 3-4, and 4-5 substituents.
- variable is defined as found elsewhere in the disclosure unless understood to be different from the context.
- definition of each variable and/or substituent for example, C1-C6 alkyl, R2, Rb, w and the like, when it occurs more than once in any structure or compound, can be independent of its definition elsewhere in the same structure or compound.
- Definitions of the variables and/or substituents in formulae and/or compounds herein encompass multiple chemical groups.
- the present disclosure includes embodiments where, for example, i) the definition of a variable and/or substituent is a single chemical group selected from those chemical groups set forth herein, ii) the definition is a collection of two or more of the chemical groups selected from those set forth herein, and iii) the compound is defined by a combination of variables and/or substituents in which the variables and/or substituents are defined by (i) or (ii).
- Disclosed compounds include a compound having the formula:
- X is 0 or NR 2 ;
- R 1 is selected from the group consisting of H, C 1 -C 6 alkyl, phenyl, —C(O)—C 1 -C 6 alkyl, and —C(O)—O—C 1 -C 6 alkyl;
- R 2 is selected from the group consisting of H, C 1 -C 6 alkyl, phenyl, —C(O)—C 1 -C 6 alkyl, and —C(O)—O—C 1 -C 6 alkyl;
- p 1 or 2;
- R 5 is independently selected for each occurrence from the group consisting of H, C 1 -C 6 alkyl, —S(O) w —C 1 -C 3 alkyl, —NR a R b , C 1 -C 3 alkoxy, cyano and halogen;
- w 0, 1, or 2
- R 3 is selected from the group consisting of H, phenyl, C 1 -C 6 alkyl, —C(O)R 31 and —C(O)OR 32 ;
- R 31 and R 32 are each independently H, C 1 -C 6 alkyl, —C 3 -C 6 cycloalkyl, and phenyl;
- R 7 is independently selected for each occurrence from the group consisting of H, halogen, phenyl, and C 1 -C 6 alkyl;
- R a and R b are each independently for each occurrence selected from the group consisting of H, C 1 -C 3 alkyl, and phenyl, or R a and R b taken together with the nitrogen to which they are attached form a 4-6 membered heterocyclic ring;
- R 1 can be —C(O)—O—C 1 -C 6 alkyl.
- R 1 can be tert-butyloxycarbonyl.
- R 1 can be C 1 -C 6 alkyl, optionally substituted by benzyl or one, two or three fluorines.
- R 1 can be methyl; while in some embodiments, R 1 can be
- R 1 can be H.
- R 1 can be —C(O)—C 1 -C 6 alkyl, where —C(O)—C 1 -C 6 alkyl can be represented by:
- R a and R b can be independently selected for each occurrence from the group consisting of hydrogen and —C 1 -C 6 alkyl.
- R 1 can be benzyl
- X can be 0; while in certain embodiments, X can be NR 2 .
- R 2 can be H.
- R 2 can be C 1 -C 6 alkyl, optionally substituted by benzyl or one, two or three fluorines, —C(O)—C 1 -C 6 alkyl, or —C(O)—O—C 1 -C 6 alkyl.
- R 2 can be methyl or
- R 2 can be benzyl
- R 2 can be —C(O)—C 1 -C 6 alkyl, where —C(O)—C 1 -C 6 alkyl can be represented by:
- R a and R b can be each independently selected for each occurrence from the group consisting of hydrogen and —C 1 -C 6 alkyl.
- R 2 can be —C(O)—O—C 1 -C 6 alkyl, for example, tert-butyl oxycarbonyl
- p is 1; while in certain embodiments, p is 2.
- R 3 can be H.
- R 3 can be selected from the group consisting of:
- R a and R h are each independently selected for each occurrence from the group consisting of hydrogen and —C 1 -C 6 alkyl.
- R 1 , R 2 , and/or R 3 independently can be an amino acid or a derivative of an amino acid, for example, an alpha “amino amide” represented by H 2 N—CH(amino acid side chain)-C(O)NH 2 .
- the nitrogen atom of the amino group of the amino acid or the amino acid derivative is a ring nitrogen in a chemical formula described herein.
- the carboxylic acid of the amino acid or the amide group of an amino amide (amino acid derivative) is not within the ring structure, i.e., not a ring atom.
- the carboxylic acid group of the amino acid or the amino acid derivative forms an amide bond with a ring nitrogen in a chemical formula disclosed herein, thereby providing an amino amide, where the amino group of the amino amide is not within the ring structure, i.e., not a ring atom.
- R 1 , R 2 , and/or R 3 independently can be an alpha amino acid, an alpha amino acid derivative, and/or another amino acid or amino acid derivative such as a beta amino acid or a beta amino acid derivative, for example, a beta amino amide.
- the compound is selected from the compounds delineated in the Examples, and includes pharmaceutically acceptable salts and/or stereoisomers thereof.
- a disclosed compound includes one having the formula:
- the compounds of the present disclosure and formulations thereof may have a plurality of chiral centers.
- Each chiral center may be independently R, S, or any mixture of R and S.
- a chiral center may have an R:S ratio of between about 100:0 and about 50:50 (“racemate”), between about 100:0 and about 75:25, between about 100:0 and about 85:15, between about 100:0 and about 90:10, between about 100:0 and about 95:5, between about 100:0 and about 98:2, between about 100:0 and about 99:1, between about 0:100 and 50:50, between about 0:100 and about 25:75, between about 0:100 and about 15:85, between about 0:100 and about 10:90, between about 0:100 and about 5:95, between about 0:100 and about 2:98, between about 0:100 and about 1:99, between about 75:25 and 25:75, and about 50:50.
- Formulations of the disclosed compounds comprising a greater ratio of one or more isomers may possess enhanced therapeutic characteristic relative to racemic formulations of a disclosed compounds or mixture of compounds.
- chemical formulas contain the descriptor “—(R)—” or “—(S)—” that is further attached to solid wedge or dashed wedge. This descriptor is intended to show a methine carbon (CH) that is attached to three other substituents and has either the indicated R or S configuration.
- Disclosed compounds may provide for efficient cation channel opening at the NMDA receptor, e.g. may bind or associate with the glutamate site or glycine site or other modulatory site of the NMDA receptor to assist in opening the cation channel.
- the disclosed compounds may be used to regulate (turn on or turn off) the NMDA receptor through action as an agonist or antagonist.
- the compounds described herein may bind to a specific NMDA receptor subtypes.
- a disclosed compound may bind to one NMDA subtype and not another.
- a disclosed compound may bind to one, or more than one NMDA subtype, and/or may have substantially less (or substantial no) binding activity to certain other NMDA subtypes.
- the compounds as described herein may bind to NMDA receptors.
- a disclosed compound may bind to the NMDA receptor resulting in agonist-like activity (facilitation) over a certain dosing range and/or may bind to the NMDA receptor resulting in antagonist-like activity (inhibition) over a certain dosing range.
- a disclosed compound may possess a potency that is 10-fold or greater than the activity of existing NMDA receptor modulators.
- the disclosed compounds may exhibit a high therapeutic index.
- a disclosed compound may have a therapeutic index of at least about 10:1, at least about 50:1, at least about 100:1, at least about 200:1, at least about 500:1, or at least about 1000:1.
- a pharmaceutical formulation or a pharmaceutical composition including a disclosed compound and a pharmaceutically acceptable excipient is provided.
- a pharmaceutical composition comprises a racemic mixture of one or more of the disclosed compounds.
- a formulation can be prepared in any of a variety of forms for use such as for administering an active agent to a patient, who may be in need thereof, as are known in the pharmaceutical arts.
- the pharmaceutical compositions of the present disclosure can be formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets (e.g., those targeted for buccal, sublingual, and/or systemic absorption), boluses, powders, granules, and pastes for application to the tongue; (2) parenteral administration by, for example, subcutaneous, intramuscular, intraperitoneal, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; (3) topical administration, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; (4) intravaginal or intrarectal administration, for example, as a pessary, cream or
- compositions of the disclosure can be suitable for delivery to the eye, i.e., ocularly.
- Related methods can include administering a pharmaceutically effective amount of a disclosed compound or a pharmaceutical composition including a disclosed compound to a patient in need thereof, for example, to an eye of the patient, where administering can be topically, subconjunctivally, subtenonly, intravitreally, retrobulbarly, peribulbarly, intracomerally, and/or systemically.
- Amounts of a disclosed compound as described herein in a formulation may vary according to factors such as the disease state, age, sex, and weight of the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- compositions typically must be sterile and stable under the conditions of manufacture and storage.
- the composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
- the compounds can be administered in a time release formulation, for example in a composition which includes a slow release polymer.
- the compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, polylactic acid and polylactic, polyglycolic copolymers (PLG). Many methods for the preparation of such formulations are generally known to those skilled in the art.
- Sterile injectable solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- a compound can be formulated with one or more additional compounds that enhance the solubility of the compound.
- Methods of the disclosure for treating a condition in a patient in need thereof include administering a therapeutically effective amount of a compound described herein or a composition including such a compound.
- the condition may be a mental condition.
- a mental illness may be treated.
- a nervous system condition may be treated.
- a condition that affects the central nervous system, the peripheral nervous system, and/or the eye may be treated.
- neurodegenerative diseases may be treated.
- the methods include administering a compound to treat patients suffering from autism, anxiety, depression, bipolar disorder, attention deficit disorder, attention deficit hyperactivity disorder (ADHD), schizophrenia, a psychotic disorder, a psychotic symptom, social withdrawal, obsessive-compulsive disorder (OCD), phobia, post-traumatic stress syndrome, a behavior disorder, an impulse control disorder, a substance abuse disorder (e.g., a withdrawal symptom, opiate addiction, nicotine addiction, and ethanol addition), a sleep disorder, a memory disorder (e.g., a deficit, loss, or reduced ability to make new memories), a learning disorder, urinary incontinence, multiple system atrophy, progressive supra-nuclear palsy, Friedrich's ataxia, Down's syndrome, fragile X syndrome, tuberous sclerosis, olivio-ponto-cerebellar atrophy, cerebral palsy, drug-induced optic neuritis, ischemic retinopathy, diabetic retinopathy, glaucoma, dementia,
- ADHD attention
- methods of treating a memory disorder associated with aging schizophrenia, special learning disorders, seizures, post-stroke convulsions, brain ischemia, hypoglycemia, cardiac arrest, epilepsy, Lewy body dementia, migraine, AIDS dementia, Huntington's chorea, Parkinson's disease, early stage Alzheimer's disease, and Alzheimer's disease are provided.
- methods for treating schizophrenia are provided.
- paranoid type schizophrenia disorganized type schizophrenia (i.e., hebephrenic schizophrenia), catatonic type schizophrenia, undifferentiated type schizophrenia, residual type schizophrenia, post-schizophrenic depression, and simple schizophrenia
- Psychitic disorders such as schizoaffective disorders, delusional disorders, brief psychotic disorders, shared psychotic disorders, and psychotic disorders with delusions or hallucinations may also be treated using the compositions disclosed herein.
- Paranoid schizophrenia may be characterized where delusions or auditory hallucinations are present, but thought disorder, disorganized behavior, or affective flattening are not. Delusions may be persecutory and/or grandiose, but in addition to these, other themes such as MasterCardy, religiosity, or somatization may also be present.
- Disorganized type schizophrenia may be characterized where thought disorder and flat affect are present together.
- Catatonic type schizophrenia may be characterized where the patient may be almost immobile or exhibit agitated, purposeless movement. Symptoms can include catatonic stupor and waxy flexibility.
- Undifferentiated type schizophrenia may be characterized where psychotic symptoms are present but the criteria for paranoid, disorganized, or catatonic types have not been met.
- Residual type schizophrenia may be characterized where positive symptoms are present at a low intensity only.
- Post-schizophrenic depression may be characterized where a depressive episode arises in the aftermath of a schizophrenic illness where some low-level schizophrenic symptoms may still be present.
- Simple schizophrenia may be characterized by insidious and progressive development of prominent negative symptoms with no history of psychotic episodes.
- methods are provided for treating psychotic symptoms that may be present in other mental disorders, including, but not limited to, bipolar disorder, borderline personality disorder, drug intoxication, and drug-induced psychosis.
- methods for treating delusions e.g., “non-bizarre” that may be present in, for example, delusional disorder are provided.
- methods for treating social withdrawal in conditions including, but not limited to, social anxiety disorder, avoidant personality disorder, and schizotypal personality disorder are provided.
- the disclosure provides methods for treating a neurodevelopmental disorder related to synaptic dysfunction in a patient in need thereof, where the methods generally include administering to the patient a therapeutically effective amount of a disclosed compound, or a pharmaceutical composition including a disclosed compound.
- the neurodevelopmental disorder related to synaptic dysfunction can be Rett syndrome also known as cerebroatrophic hyperammonemia, MECP2 duplication syndrome (e.g., a MECP2 disorder), CDKL5 syndrome, fragile X syndrome (e.g., a FMR1 disorder), tuberous sclerosis (e.g., a TSC1 disorder and/or a TSC2 disorder), neurofibromatosis (e.g., a NF1 disorder), Angelman syndrome (e.g., a UBE3A disorder), the PTEN hamartoma tumor syndrome, Phelan-McDermid syndrome (e.g., a SHANK3 disorder), or infantile spasms.
- Rett syndrome also known as cerebroatrophic hyperammonemia, MECP2 duplication syndrome (e.g., a MECP2 disorder), CDKL5 syndrome, fragile X syndrome (e.g., a FMR1 disorder), tuberous sclerosis (e.g., a T
- the neurodevelopmental disorder can be caused by mutations in the neuroligin (e.g., a NLGN3 disorder and/or a NLGN2 disorder) and/or the neurexin (e.g., a NRXN1 disorder).
- the neuroligin e.g., a NLGN3 disorder and/or a NLGN2 disorder
- the neurexin e.g., a NRXN1 disorder
- neuropathic pain may be acute or chronic.
- the neuropathic pain may be associated with a condition such as herpes, HIV, traumatic nerve injury, stroke, post-ischemia, chronic back pain, post-herpetic neuralgia, fibromyalgia, reflex sympathetic dystrophy, complex regional pain syndrome, spinal cord injury, sciatica, phantom limb pain, diabetic neuropathy such as diabetic peripheral neuropathy (“DPN”), and cancer chemotherapeutic-induced neuropathic pain.
- DPN diabetic peripheral neuropathy
- Further methods include a method of treating autism and/or an autism spectrum disorder in a patient need thereof, comprising administering an effective amount of a compound to the patient.
- a method for reducing the symptoms of autism in a patient in need thereof comprises administering an effective amount of a disclosed compound to the patient.
- the compound may decrease the incidence of one or more symptoms of autism such as eye contact avoidance, failure to socialize, attention deficit, poor mood, hyperactivity, abnormal sound sensitivity, inappropriate speech, disrupted sleep, and perseveration. Such decreased incidence may be measured relative to the incidence in the untreated individual or an untreated individual(s).
- Also provided herein is a method of modulating an autism target gene expression in a cell comprising contacting a cell with an effective amount of a compound described herein.
- the autism gene expression may be for example, selected from ABAT, APOE, CHRNA4, GABRA5, GFAP, GRIN2A, PDYN, and PENK.
- a method of modulating synaptic plasticity in a patient suffering from a synaptic plasticity related disorder comprising administering to the patient an effective amount of a compound.
- a method of treating Alzheimer's disease, or e.g., treatment of memory loss that e.g., accompanies early stage Alzheimer's disease, in a patient in need thereof comprising administering a compound.
- a method of modulating an Alzheimer's amyloid protein e.g., beta amyloid peptide, e.g. the isoform A ⁇ 1 ⁇ 42 ), in-vitro or in-vivo (e.g. in a cell) comprising contacting the protein with an effective amount of a compound is disclosed.
- a compound may block the ability of such amyloid protein to inhibit long-term potentiation in hippocampal slices as well as apoptotic neuronal cell death.
- a disclosed compound may provide neuroprotective properties to a Alzheimer's patient in need thereof, for example, may provide a therapeutic effect on later stage Alzheimer's—associated neuronal cell death.
- the disclosed methods include treating a psychosis or a pseudobulbar affect (“PBA”) that is induced by another condition such as a stroke, amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease), multiple sclerosis, traumatic brain injury, Alzheimer's disease, dementia, and/or Parkinson's disease.
- PBA pseudobulbar affect
- Such methods include administration of a pharmaceutically effective amount of a disclosed compound to a patient in need thereof.
- a method of treating depression includes administering a therapeutically effective amount of a compound described herein.
- the treatment may relieve depression or a symptom of depression without affecting behavior or motor coordination and without inducing or promoting seizure activity.
- Exemplary depression conditions that are expected to be treated according to this aspect include, but are not limited to, major depressive disorder, dysthymic disorder, psychotic depression, postpartum depression, premenstrual syndrome, premenstrual dysphoric disorder, seasonal affective disorder (SAD), bipolar disorder (or manic depressive disorder), mood disorder, and depressions caused by chronic medical conditions such as cancer or chronic pain, chemotherapy, chronic stress, and post traumatic stress disorders.
- SAD seasonal affective disorder
- bipolar disorder or manic depressive disorder
- mood disorder and depressions caused by chronic medical conditions such as cancer or chronic pain, chemotherapy, chronic stress, and post traumatic stress disorders.
- patients suffering from any form of depression often experience anxiety.
- Various symptoms associated with anxiety include fear, panic, heart palpitations, shortness of breath, fatigue, nausea
- a method of treating depression in a treatment resistant patient comprising a) optionally identifying the patient as treatment resistant and b) administering an effective dose of a compound to said patient.
- a compound described herein may be used for acute care of a patient.
- a compound may be administered to a patient to treat a particular episode (e.g., a severe episode) of a condition disclosed herein.
- combination therapies comprising a compound of the disclosure in combination with one or more other active agents.
- a compound may be combined with one or more antidepressants, such as tricyclic antidepressants, MAO-I's, SSRI's, and double and triple uptake inhibitors and/or anxiolytic drugs.
- Exemplary drugs that may be used in combination with a compound include Anafranil, Adapin, Aventyl, Elavil, Norpramin, Pamelor, Pertofrane, Sinequan, Surmontil, Tofranil, Vivactil, Parnate, Nardil, Marplan, Celexa, Lexapro, Luvox, Paxil, Prozac, Zoloft, Wellbutrin, Effexor, Remeron, Cymbalta, Desyrel (trazodone), and Ludiomill.
- a compound may be combined with an antipsychotic medication.
- Non-limiting examples of antipsychotics include butyrophenones, phenothiazines, thioxanthenes, clozapine, olanzapine, risperidone, quetiapine, ziprasidone, amisulpride, asenapine, paliperidone, iloperidone, zotepine, sertindole, lurasidone, and aripiprazole. It should be understood that combinations of a compound and one or more of the above therapeutics may be used for treatment of any suitable condition and are not limited to use as antidepressants or antipsychotics.
- Ac is acetyl (—C(O)Ch 3 ), AIDS is acquired immune deficiency syndrome, Boc and BOC are tert-butoxycarbonyl, Boc 2 O is di-tert-butyl dicarbonate, Bn is benzyl, Cbz is carboxybenzyl, DCM is dichloromethane, DIPEA is N,N-diisopropylethylamine, DMF is N,N-dimethylformamide, DMSO is dimethyl sulfoxide, ESI is electrospray ionization, EtOAc is ethyl acetate, h is hour, HATU is 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, HIV is human immunodeficiency virus, HPLC is high performance liquid chromatography, LCMS is liquid chromatography/mas
- racemic ED (1.6 g, 6.92 mmol, racemic) in 1,2-dichloroethane (20 mL) was added paraformaladehyde (415 mg, 13.8 mmol), sodium cyanoborohydride (872 mg, 13.8 mmol) and acetic acid (0.8 mL, 13.8 mmol) at 0° C.
- paraformaladehyde (415 mg, 13.8 mmol)
- sodium cyanoborohydride (872 mg, 13.8 mmol)
- acetic acid 0.8 mL, 13.8 mmol
- the reaction mixture was stirred at RT for 16 h. After consumption of the starting material (by TLC), the reaction mixture was dissolved in 10% MeOH/DCM and washed with NaHCO 3 solution. Organic layer was dried over Na 2 SO 4 and concentrated under reduced pressure to afford racemic EG (550 mg, 33%) as an off white solid.
- the racemic was separated by chiral HPLC purification and obtained 170 mg each of EG
- the compound in the first column is a different stereoisomer, for example, a different enantiomer and/or different diastereomer, from the compound in the second column.
- the compound in the first column is a different stereoisomer, for example, a different enantiomer and/or different diastereomer, from the compound in the second column.
- Rat 50-kHz ultrasonic vocalization is a validated model for the study of positive affective state and is best elicited by rough-and-tumble play. 50-kHz ultrasonic vocalizations have previously been shown to be positively correlated with reward and appetitive social behavior in rats, and to reflect a positive affective state.
- the PEL assay measures the acquisition of positive (hedonic) 50-kHz ultrasonic vocalizations (USVs) to a social stimulus, heterospecific rough and tumble play stimulation.
- Heterospecific rough-and-tumble play stimulation was administered by the experimenter's right hand.
- test compound or vehicle negative control (0.5% sodium carboxymethyl cellulose in 0.9% sterile saline vehicle)
- animals received 3 min of heterospecific rough-and-tumble play that consisted of alternating 15 sec blocks of heterospecific play and 15 sec of no-stimulation.
- test compounds were conducted as described by Moskal et al., “GLYX-13: a monoclonal antibody-derived peptide that acts as an N-methyl-D-aspartate receptor modulator,” Neuropharmacology, 49, 1077-87, 2005. These studies were designed to determine if the test compounds act to facilitate NMDAR activation in NMDAR2A, NMDAR2B, NMDAR2C or NMDAR2D expressing HEK cell membranes as measured by increases in [ 3 H]MK-801 binding.
- the DPM disintegrations per minute
- the baseline value was determined from the best fit curve of the DPM values modeled using the GraphPad program and the log(agonist) vs. response(three parameters) algorithm was then subtracted from all points in the dataset.
- the % maximal [ 3 H]MK-801 binding was then calculated relative to that of 1 mM glycine: all baseline subtracted DPM values were divided by the average value for 1 mM glycine.
- the EC 50 and % maximal activity were then obtained from the best fit curve of the % maximal [ 3 H]MK-801 binding data modelled using the GraphPad program and the log(agonist) vs. response(three parameters) algorithm.
- NMDAR2A NMDAR2B Compound A B A B EE-1 ⁇ ⁇ + ++ EE-2 ⁇ ⁇ + ++ EB-1 + ++ ⁇ ⁇ EB-2 + ++ + + EC-1 + ++ ⁇ ⁇ EC-2 + + ++ ++ ++ EA-1 + ++ + ++ EA-2 ⁇ ⁇ ⁇ ⁇ ED-1 ⁇ ⁇ ⁇ ⁇ ED-2 ⁇ ⁇ + ++ EL-1 ⁇ ⁇ + ++ EL-2 ⁇ ⁇ + ++ EL-2 ⁇ ⁇ + ++ EG-1 + ++ + ++ EK-2 + + + + ++ EG-2 ⁇ ⁇ ⁇ ⁇ EH-1 + ++ + ++ EH-2 + ++ + ++ + ++ EK-1 + ++ ⁇ ⁇ ER-117 ⁇ ⁇ + ++ ER-118 ⁇ ⁇ + ++ ER-141 ⁇ ⁇ + ++ ER-142 + ++ ⁇ ⁇ ES-335
- NMDAR2C NMDAR2D Compound A B A B EE-1 ⁇ ⁇ ⁇ ⁇ EE-2 + ++ ⁇ ⁇ EB-1 + + + ++ EB-2 + ++ + ++ EA-1 NR NR ⁇ ⁇ ED-1 NR NR + ++ ED-2 + ++ + ++ EG-1 ++ + ⁇ ⁇ EC-1 NR NR + ++ EL-2 + ++ ⁇ ⁇ EG-2 + ++ + ++ EH-1 ⁇ ⁇ + ++ EH-2 ⁇ ⁇ ⁇ EK-1 NR + ++ ER-117 ⁇ ⁇ + ++ ER-118 ⁇ ⁇ ++ ++ ++
- Sprague Dawley rats were dosed intravenously using a normal saline formulation containing 2 mg/kg of the compounds identified in the below table (except for the compounds marked with an asterisk that were delivered in 1% NMP and 99% normal saline formulation).
- the table below summarizes the results of the IV pharmacokinetics.
- Sprague Dawley rats were dosed per os using a normal saline formulation containing 10 mg/kg of the compounds identified in the table below (except for the compounds marked with an asterisk that were delivered in 1% NMP and 99% normal saline formulation).
- Plasma, brain, and CSF samples were analyzed at various time points over a 24 hour period.
- the table below summarizes the results of the oral pharmacokinetics.
- a non-clinical in vivo pharmacology study was performed to measure antidepressant-like effects.
- a negative control (0.5% sodium carboxymethyl cellulose in 0.9% sterile saline vehicle) and a positive control (fluoxetine) are shown for comparison against test compound.
- the study allowed for the evaluation of the effects of each compound on the Porsolt forced swim test as assessed by the rats' response (reduced floating time) during a 5-minute swimming test.
- the Porsolt forced swim test adapted for use in rats was performed as described by Burgdorf et al., (The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience 308:202-211, 2015). Animals were placed in a 46 cm tall ⁇ 20 cm in diameter clear glass tube filled to 30 cm with tap water (23 ⁇ 1° C.) for 15 min on the first day (habituation) and 5 min on the subsequent test day. Positive control fluoxetine was dosed 3 times (24 h, 5 h and 1 h) prior to testing. Animals were tested 1 h post-dosing with the test compounds or vehicle.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pain & Pain Management (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Disclosed are compounds having potency in the modulation of NMDA receptor activity. Such compounds can be used in the treatment of conditions such as depression and related disorders. Orally delivered formulations and other pharmaceutically acceptable delivery forms of the compounds, including intravenous formulations, are also disclosed.
Description
- This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/369,456, filed on Aug. 1, 2016; the contents of which are hereby incorporated by reference herein in their entirety.
- An N-methyl-d-aspartate (“NMDA”) receptor is a postsynaptic, ionotropic receptor that is responsive to, inter alia, the excitatory amino acids glutamate and glycine and the synthetic compound NMDA. The NMDA receptor controls the flow of both divalent and monovalent ions into the postsynaptic neural cell through a receptor associated channel (Foster et al., Nature 1987, 329:395-396; Mayer et al., Trends in Pharmacol. Sci. 1990, 11:254-260). The NMDA receptor has been implicated during development in specifying neuronal architecture and synaptic connectivity, and may be involved in experience-dependent synaptic modifications. In addition, NMDA receptors are also thought to be involved in long term potentiation and central nervous system disorders.
- The NMDA receptor plays a major role in the synaptic plasticity that underlies many higher cognitive functions, such as memory acquisition, retention and learning, as well as in certain cognitive pathways and in the perception of pain (Collingridge et al., The NMDA Receptor, Oxford University Press, 1994). In addition, certain properties of NMDA receptors suggest that they may be involved in the information-processing in the brain that underlies consciousness itself.
- The NMDA receptor has drawn particular interest since it appears to be involved in a broad spectrum of CNS disorders. For instance, during brain ischemia caused by stroke or traumatic injury, excessive amounts of the excitatory amino acid glutamate are released from damaged or oxygen deprived neurons. This excess glutamate binds to the NMDA receptors which opens their ligand-gated ion channels; in turn the calcium influx produces a high level of intracellular calcium which activates a biochemical cascade resulting in protein degradation and cell death. This phenomenon, known as excitotoxicity, is also thought to be responsible for the neurological damage associated with other disorders ranging from hypoglycemia and cardiac arrest to epilepsy. In addition, there are preliminary reports indicating similar involvement in the chronic neurodegeneration of Huntington's, Parkinson's and Parkinson's related conditions such as dyskinesia and L-dopa induced dyskinesia and Alzheimer's diseases. Activation of the NMDA receptor has been shown to be responsible for post-stroke convulsions, and, in certain models of epilepsy, activation of the NMDA receptor has been shown to be necessary for the generation of seizures. Neuropsychiatric involvement of the NMDA receptor has also been recognized since blockage of the NMDA receptor Ca++channel by the animal anesthetic PCP (phencyclidine) produces a psychotic state in humans similar to schizophrenia (reviewed in Johnson, K. and Jones, S., 1990). Further, NMDA receptors have also been implicated in certain types of spatial learning.
- The NMDA receptor is believed to consist of several protein chains embedded in the postsynaptic membrane. The first two types of subunits discovered so far form a large extracellular region, which probably contains most of the allosteric binding sites, several transmembrane regions looped and folded so as to form a pore or channel, which is permeable to Ca++, and a carboxyl terminal region. The opening and closing of the channel is regulated by the binding of various ligands to domains (allosteric sites) of the protein residing on the extracellular surface. The binding of the ligands is thought to affect a conformational change in the overall structure of the protein which is ultimately reflected in the channel opening, partially opening, partially closing, or closing.
- A need continues to exist in the art for novel and more specific and/or potent compounds that are capable of modulating NMDA receptors, and provide pharmaceutical benefits. In addition, a need continues to exist in the medical arts for orally deliverable forms of such compounds.
- The present disclosure includes compounds that can be NMDA modulators. More specifically, the present disclosure provides a compound having the formula:
- or a pharmaceutically acceptable salt and/or a stereoisomer thereof, wherein:
- X is 0 or NR2;
- R1 is selected from the group consisting of H, C1-C6alkyl, phenyl, —C(O)—C1-C6alkyl, and —C(O)—O—C1-C6 alkyl;
- R2 is selected from the group consisting of H, C1-C6alkyl, phenyl, —C(O)—C1-C6alkyl, and —C(O)—O—C1-C6 alkyl;
- p is 1 or 2;
- R5 is independently selected for each occurrence from the group consisting of H, C1-C6alkyl, —S(O)W—C1-C3alkyl,—NRaRb, C1-C3alkoxy, cyano, and halogen;
- w is 0, 1, or 2
- R3 is selected from the group consisting of H, C1-C6 alkyl, phenyl—C(O)R31 and —C(O)OR32;
- R31 and R32 are each independently H, C1-C6alkyl, —C3-C6cycloalkyl, and phenyl;
- R7 is independently selected for each occurrence from the group consisting of H, halogen, phenyl, and C1-C6 alkyl;
- Ra and Rh are each independently for each occurrence selected from the group consisting of H, C1-C3alkyl, and phenyl, or Ra and Rb taken together with the nitrogen to which they are attached form a 4-6 membered heterocyclic ring;
- wherein any aforementioned C1-C6 alkyl, independently for each occurrence, can be optionally substituted by one, two or three substituents each independently selected from —C(O)NRaRb, —NRaRb, hydroxyl, S(O)w—C1-C3alkyl, SH, phenyl and halogen, and wherein any aforementioned phenyl, independently for each occurrence, can be optionally substituted by one, two or three substituents each independently selected from hydroxyl, halogen, —C(O)—O—C1-C3alkyl, —C(O)—C1-C3alkyl, methyl, and CF3.
- Also provided herein are pharmaceutically acceptable compositions comprising a disclosed compound, and a pharmaceutically acceptable excipient. Such compositions can be suitable for administration to a patient orally, parenterally, topically, intravaginally, intrarectally, sublingually, ocularly, transdermally, or nasally.
- In some aspects, compounds described herein bind to NMDA receptors expressing certain NR2 subtypes. In some aspects, the compounds described herein bind to one NR2 subtype and not another. It should be appreciated that disclosed compounds may modulate other protein targets and/or specific NMDA receptor subtype.
- In another aspect, a method of treating a condition selected from the group consisting of autism, anxiety, depression, bipolar disorder, attention deficit disorder, attention deficit hyperactivity disorder (ADHD), schizophrenia, a psychotic disorder, a psychotic symptom, social withdrawal, obsessive-compulsive disorder, phobia, post-traumatic stress syndrome, a behavior disorder, an impulse control disorder, a substance abuse disorder, a sleep disorder, a memory disorder, a learning disorder, urinary incontinence, multiple system atrophy, progressive supra-nuclear palsy, Friedrich's ataxia, Down's syndrome, fragile X syndrome, tuberous sclerosis, olivio-ponto-cerebellar atrophy, Rett syndrome, cerebral palsy, drug-induced optic neuritis, ischemic retinopathy, diabetic retinopathy, glaucoma, dementia, AIDS dementia, Alzheimer's disease, Huntington's chorea, spasticity, myoclonus, muscle spasm, Tourette's syndrome, epilepsy, infantile spasms, cerebral ischemia, stroke, a brain tumor, traumatic brain injury, cardiac arrest, myelopathy, spinal cord injury, peripheral neuropathy, fibromyalgia, acute neuropathic pain, and chronic neuropathic pain, in a patient in need thereof is provided. Such methods may comprise administering to the patient a pharmaceutically effective amount of a disclosed compound or pharmaceutically acceptable salts, stereoisomers, N-oxides, and hydrates thereof.
- In some embodiments, a method of this disclosure includes treating neuropathic pain, wherein the neuropathic pain is selected from the group consisting of herpes, HIV, traumatic nerve injury, stroke, post-ischemia, chronic back pain, post-herpetic neuralgia, fibromyalgia, reflex sympathetic dystrophy, complex regional pain syndrome, spinal cord injury, sciatica, phantom limb pain, diabetic neuropathy, and cancer chemotherapeutic-induced neuropathic pain.
- In some embodiments, a method of this disclosure includes treating depression. For example, depression may include one or more of major depressive disorder, dysthymic disorder, psychotic depression, postpartum depression, seasonal affective disorder, bipolar disorder, mood disorder, or depression caused by a chronic medical condition. In some embodiments, a disclosed method may treat schizophrenia. Such schizophrenia may be, for example, paranoid type schizophrenia, disorganized type schizophrenia, catatonic type schizophrenia, undifferentiated type schizophrenia, residual type schizophrenia, post-schizophrenic depression, or simple schizophrenia.
- This disclosure is generally directed to compounds that are capable of modulating NMDA receptors, for example, NMDA receptor antagonists, agonists, or partial agonists, and compositions and/or methods of using the disclosed compounds. It should be appreciated that the disclosed compounds may modulate other protein targets and/or specific NMDA receptor subtype.
- The term “alkyl,” as used herein, refers to a saturated straight-chain or branched hydrocarbon, such as a straight-chain or branched group of 1-6, 1-4, or 1-3 carbon atoms, referred to herein as C1-C6 alkyl, C1-C4 alkyl, and C1-C1 alkyl, respectively. For example, “C1-C6 alkyl” refers to a straight-chain or branched saturated hydrocarbon containing 1-6 carbon atoms. Examples of a C1-C6 alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, and neopentyl. In another example, “C1-C4 alkyl” refers to a straight-chain or branched saturated hydrocarbon containing 1-4 carbon atoms. Examples of a C1-C4 alkyl group include, but are not limited to, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl. Exemplary alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 3-methyl-2-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, and hexyl.
- The term “alkoxy,” as used herein, refers to an alkyl group attached to an oxygen atom (alkyl-O—). Alkoxy groups can have 1-6 or 2-6 carbon atoms and are referred to herein as C6 alkoxy and C2-C6 alkoxy, respectively. Exemplary alkoxy groups include, but are not limited to, methoxy, ethoxy, propyloxy, isopropoxy, and tert-butoxy.
- The term “carbonyl,” as used herein, refers to the radical —C(O)— or C═O.
- The term “cyano,” as used herein, refers to the radical —CN.
- The term “cycloalkyl,” as used herein, refers to a monocyclic saturated or partially unsaturated hydrocarbon ring (carbocyclic) system, for example, where each ring is either completely saturated or contains one or more units of unsaturation, but where no ring is aromatic. A cycloalkyl can have 3-6 or 4-6 carbon atoms in its ring system, referred to herein as C3-C6 cycloalkyl or C4-C6 cycloalkyl, respectively. Exemplary cycloalkyl groups include, but are not limited to, cyclohexyl, cyclohexenyl, cyclopentyl, cyclopentenyl, cyclobutyl, and cyclopropyl.
- The terms “halo” and “halogen,” as used herein, refer to fluoro (F), chloro (Cl), bromo (Br), and/or iodo (I).
- The term “heteroatom,” as used herein, refers to an atom of any element other than carbon or hydrogen and includes, for example, nitrogen (N), oxygen (O), silicon (Si), sulfur (S), phosphorus (P), and selenium (Se).
- The term “heterocyclic ring” or “heterocycloalkyl,” as used herein, is art-recognized and refer to saturated or partially unsaturated 3- to 8-membered ring structures, whose ring system include one, two or three heteroatoms, such as nitrogen, oxygen, and/or sulfur. A heterocyclic ring can be fused to one or more phenyl, partially unsaturated, or saturated rings. Examples of heterocyclic rings include, hut are not limited to, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, and piperazinyl.
- The terms “hydroxy” and “hydroxyl,” as used herein, refer to the radical —OH.
- The term “oxo,” as used herein, refers to the radical═O (double bonded oxygen).
- The term “amino acid,” as used herein, includes any one of the following alpha amino acids: isoleucine, alanine, leucine, asparagine, lysine, aspartate, methionine, cysteine, phenylalanine, glutamate, threonine, glutamine, tryptophan, glycine, valine, proline, arginine, serine, histidine, and tyrosine. An amino acid also can include other art-recognized amino acids such as beta amino acids.
- The term “compound,” as used herein, refers to the compound itself and its pharmaceutically acceptable salts, hydrates, esters and N-oxides including its various stereoisomers and its isotopically-labelled forms, unless otherwise understood from the context of the description or expressly limited to one particular form of the compound, i.e., the compound itself, a specific stereoisomer and/or isotopically-labelled compound, or a pharmaceutically acceptable salt, a hydrate, an ester, or an N-oxide thereof. It should be understood that a compound can refer to a pharmaceutically acceptable salt, or a hydrate, an ester or an N-oxide of a stereoisomer of the compound and/or an isotopically-labelled compound.
- The compounds of the disclosure can contain one or more chiral centers and/or double bonds and therefore, can exist as stereoisomers, such as geometric isomers, and enantiomers or diastereomers. The term “stereoisomers,” when used herein, consists of all geometric isomers, enantiomers and/or diastereomers of the compound. For example, when a compound is shown with specific chiral center(s), the compound depicted without such chirality at that and other chiral centers of the compound are within the scope of the present disclosure, i.e., the compound depicted in two-dimensions with “flat” or “straight” bonds rather than in three dimensions, for example, with solid or dashed wedge bonds. Stereospecific compounds may be designated by the symbols “R” or “S,” depending on the configuration of substituents around the stereogenic carbon atom. The present disclosure encompasses all the various stereoisomers of these compounds and mixtures thereof. Mixtures of enantiomers or diastereomers can be designated “(±)” in nomenclature, but a skilled artisan will recognize that a structure can denote a chiral center implicitly. It is understood that graphical depictions of chemical structures, e.g., generic chemical structures, encompass all stereoisomeric forms of the specified compounds, unless indicated otherwise.
- Individual enantiomers and diastereomers of compounds of the present disclosure can be prepared synthetically from commercially available starting materials that contain asymmetric or stereogenic centers, or by preparation of racemic mixtures followed by resolution methods well known to those of ordinary skill in the art. These methods of resolution are exemplified by (1) attachment of a mixture of enantiomers to a chiral auxiliary, separation of the resulting mixture of diastereomers by recrystallization or chromatography and liberation of the optically pure product from the auxiliary, (2) salt formation employing an optically active resolving agent, (3) direct separation of the mixture of optical enantiomers on chiral liquid chromatographic columns, or (4) kinetic resolution using stereoselective chemical or enzymatic reagents. Racemic mixtures also can be resolved into their component enantiomers by well-known methods, such as chiral-phase gas chromatography or crystallizing the compound in a chiral solvent. Stereoselective syntheses, a chemical or enzymatic reaction in which a single reactant forms an unequal mixture of stereoisomers during the creation of a new stereocenter or during the transformation of a pre-existing one, are well known in the art. Stereoselective syntheses encompass both enantio- and diastereoselective transformations.
- See, for example, Carreira and Kvaerno, Classics in Stereoselective Synthesis, Wiley-VCH: Weinheim, 2009.
- Geometric isomers, resulting from the arrangement of substituents around a carbon-carbon double bond or arrangement of substituents around a cycloalkyl or heterocycloalkyl, can also exist in the compounds of the present disclosure. The symbol ═ denotes a bond that may be a single, double or triple bond as described herein. Substituents around a carbon-carbon double bond are designated as being in the “Z” or “E” configuration, where the terms “Z” and “E” are used in accordance with IUPAC standards. Unless otherwise specified, structures depicting double bonds encompass both the “E” and “Z” isomers.
- Substituents around a carbon-carbon double bond alternatively can be referred to as “cis” or “trans,” where “cis” represents substituents on the same side of the double bond and “trans” represents substituents on opposite sides of the double bond. The arrangement of substituents around a carbocyclic ring can also be designated as “cis” or “trans.” The term “cis” represents substituents on the same side of the plane of the ring and the term “trans” represents substituents on opposite sides of the plane of the ring. Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of plane of the ring are designated “cis/trans.”
- The disclosure also embraces isotopically-labeled compounds which are identical to those compounds recited herein, except that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds described herein include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2H (“D”), 3H, 13C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, respectively. For example, a compound described herein can have one or more H atoms replaced with deuterium.
- Certain isotopically-labeled compounds (e.g., those labeled with 3H and 14C) can be useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes can be particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) can afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence can be preferred in some circumstances. Isotopically-labeled compounds can generally be prepared by following procedures analogous to those disclosed herein, for example, in the Examples section, by substituting an isotopically-labeled reagent for a non-isotopically-labeled reagent.
- The phrases “pharmaceutically acceptable” and “pharmacologically acceptable,” as used herein, refer to compounds, molecular entities, compositions, materials, and/or dosage forms that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or a human, as appropriate. For human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.
- The phrases “pharmaceutically acceptable carrier” and “pharmaceutically acceptable excipient,” as used herein, refer to any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. Pharmaceutical acceptable carriers can include phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents. The compositions also can include stabilizers and preservatives.
- The phrase “pharmaceutical composition,” as used herein, refers to a composition comprising at least one compound as disclosed herein formulated together with one or more pharmaceutically acceptable carriers. The pharmaceutical compositions can also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.
- The terms “individual,” “patient,” and “subject,” as used herein, are used interchangeably and include any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and more preferably, humans. The compounds described in the disclosure can be administered to a mammal, such as a human, but can also be administered to other mammals such as an animal in need of veterinary treatment, for example, domestic animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, sheep, pigs, horses, and the like) and laboratory animals (e.g., rats, mice, guinea pigs, and the like). The mammal treated in the methods described in the disclosure is preferably a mammal in which treatment, for example, of pain or depression, is desired.
- The term “treating,” as used herein, includes any effect, for example, lessening, reducing, modulating, ameliorating, or eliminating, that results in the improvement of the condition, disease, disorder, and the like, including one or more symptoms thereof. Treating can be curing, improving, or at least partially ameliorating the disorder.
- The term “disorder” refers to and is used interchangeably with, the terms “disease,” “condition,” or “illness,” unless otherwise indicated.
- The term “modulation,” as used herein, refers to and includes antagonism (e.g., inhibition), agonism, partial antagonism, and/or partial agonism.
- The phrase “therapeutically effective amount,” as used herein, refers to the amount of a compound (e.g., a disclosed compound) that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician. The compounds described in the disclosure can be administered in therapeutically effective amounts to treat a disease. A therapeutically effective amount of a compound can be the quantity required to achieve a desired therapeutic and/or prophylactic effect, such as an amount which results in lessening of a symptom of a disease such as depression.
- As used herein, the term “pharmaceutically acceptable salt” refers to any salt of an acidic or a basic group that may be present in a compound of the present disclosure, which salt is compatible with pharmaceutical administration. As is known to those of skill in the art, “salts” of the compounds of the present disclosure may be derived from inorganic or organic acids and bases.
- Examples of salts include, but are not limited to: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, undecanoate, and the like. Other examples of salts include anions of the compounds of the present disclosure compounded with a suitable cation such as Na+, NH4 +, and NW4 +(where W can be a C1-4 alkyl group), and the like. For therapeutic use, salts of the compounds of the present disclosure can be pharmaceutically acceptable. However, salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
- Compounds included in the present compositions that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that can be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including but not limited to, malate, oxalate, chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (i.e., 1,1′-methylene-bis-(2-hydroxy-3-naphthoate)) salts.
- Compounds included in the present compositions that are acidic in nature are capable of forming base salts with various pharmacologically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.
- Compounds included in the present compositions that include a basic or acidic moiety can also form pharmaceutically acceptable salts with various amino acids. The compounds of the disclosure can contain both acidic and basic groups; for example, one amino and one carboxylic acid group. In such a case, the compound can exist as an acid addition salt, a zwitterion, or a base salt.
- The compounds disclosed herein can exist in a solvated form as well as an unsolvated form with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the disclosure embrace both solvated and unsolvated forms. In some embodiments, the compound is amorphous. In certain embodiments, the compound is a single polymorph. In various embodiments, the compound is a mixture of polymorphs. In particular embodiments, the compound is in a crystalline form.
- The term “prodrug” refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (such as by esterase, amidase, phosphatase, oxidative and or reductive metabolism) in various locations (such as in the intestinal lumen or upon transit of the intestine, blood or liver). Prodrugs are well known in the art (for example, see Rautio, Kumpulainen, et al, Nature Reviews Drug Discovery 2008, 7, 255). For example, if a compound described herein or a pharmaceutically acceptable salt, hydrate or solvate of the compound contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as (C1-C8)alkyl, (C2-C12)alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4-crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N—(C1-C2)alkylamino(C2-C3)alkyl (such as β-dimethylaminoethyl), carbamoyl-(C1-C2)alkyl, N,N-di(C1-C2)alkylcarbamoyl-(C1-C2)alkyl and piperidino-, pyrrolidino- or morpholino(C2-C3)alkyl.
- Similarly, if a compound described herein contains an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C1-C6)alkanoyloxymethyl, 1-((C1-C6)alkanoyloxy)ethyl, 1-methyl-1-((C1-C6)alkanoyloxy)ethyl (C1-C6)alkoxycarbonyloxymethyl, N—(C1-C6)alkoxycarbonylaminomethyl, succinoyl, (C1-C6)alkanoyl, α-amino(C1-C4)alkanoyl, arylacyl and α-aminoacyl, or α-aminoacyl-α-aminoacyl, where each α-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, —P(O)(O(C1-C6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate).
- If a compound described herein incorporates an amine functional group, a prodrug can be formed, for example, by creation of an amide or carbamate, an N-acyloxyakyl derivative, an (oxodioxolenyl) methyl derivative, an N-Mannich base, imine or enamine. In addition, a secondary amine can be metabolically cleaved to generate a bioactive primary amine, or a tertiary amine can metabolically cleaved to generate a bioactive primary or secondary amine. For examples, see Simplício, et al., Molecules 2008, 13, 519 and references therein.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains.
- Throughout the description, where compositions and kits are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions and kits of the present disclosure that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present disclosure that consist essentially of, or consist of, the recited processing steps.
- In the application, where an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components, or the element or component can be selected from a group consisting of two or more of the recited elements or components.
- Further, it should be understood that elements and/or features of a composition or a method described herein can be combined in a variety of ways without departing from the spirit and scope of the present disclosure, whether explicit or implicit herein. For example, where reference is made to a particular compound, that compound can be used in various embodiments of compositions of the present disclosure and/or in methods of the present disclosure, unless otherwise understood from the context. In other words, within this application, embodiments have been described and depicted in a way that enables a clear and concise application to be written and drawn, but it is intended and will be appreciated that embodiments can be variously combined or separated without parting from the present teachings and disclosure(s). For example, it will be appreciated that all features described and depicted herein can be applicable to all aspects of the disclosure(s) described and depicted herein.
- The articles “a” and “an” are used in this disclosure to refer to one or more than one (i.e., to at least one) of the grammatical object of the article, unless the context is inappropriate. By way of example, “an element” means one element or more than one element.
- The term “and/or” is used in this disclosure to mean either “and” or “or” unless indicated otherwise.
- It should be understood that the expression “at least one of” includes individually each of the recited objects after the expression and the various combinations of two or more of the recited objects unless otherwise understood from the context and use. The expression “and/or” in connection with three or more recited objects should be understood to have the same meaning unless otherwise understood from the context.
- The use of the term “include,” “includes,” “including,” “have,” “has,” “having,” “contain,” “contains,” or “containing,” including grammatical equivalents thereof, should be understood generally as open-ended and non-limiting, for example, not excluding additional unrecited elements or steps, unless otherwise specifically stated or understood from the context.
- Where the use of the term “about” is before a quantitative value, the present disclosure also include the specific quantitative value itself, unless specifically stated otherwise. As used herein, the term “about” refers to a ±10% variation from the nominal value unless otherwise indicated or inferred.
- Where a percentage is provided with respect to an amount of a component or material in a composition, the percentage should be understood to be a percentage based on weight, unless otherwise stated or understood from the context.
- Where a molecular weight is provided and not an absolute value, for example, of a polymer, then the molecular weight should be understood to be an average molecule weight, unless otherwise stated or understood from the context.
- It should be understood that the order of steps or order for performing certain actions is immaterial so long as the present disclosure remain operable. Moreover, two or more steps or actions can be conducted simultaneously.
- At various places in the present specification, substituents are disclosed in groups or in ranges. It is specifically intended that the description include each and every individual subcombination of the members of such groups and ranges. For example, the term “C1-6 alkyl” is specifically intended to individually disclose C1, C2, C3, C4, C5, C6, C1-C6, C1-C5, C1-C4, C3, C1-C2, C2-C6, C2-C5, C2-C4, C2-C3, C3-C6, C3-C5, C3-C4, C4-C6, C4-C5, and C5-C6 alkyl. By way of other examples, an integer in the range of 0 to 40 is specifically intended to individually disclose 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, and 40, and an integer in the range of 1 to 20 is specifically intended to individually disclose 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20. Additional examples include that the phrase “optionally substituted with 1-5 substituents” is specifically intended to individually disclose a chemical group that can include 0, 1, 2, 3, 4, 5, 0-5, 0-4, 0-3, 0-2, 0-1, 1-5, 1-4, 1-3, 1-2, 2-5, 2-4, 2-3, 3-5, 3-4, and 4-5 substituents.
- The use of any and all examples, or exemplary language herein, for example, “such as” or “including,” is intended merely to illustrate better the present disclosure and does not pose a limitation on the scope of the disclosure unless claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the present disclosure.
- Further, if a variable is not accompanied by a definition, then the variable is defined as found elsewhere in the disclosure unless understood to be different from the context. In addition, the definition of each variable and/or substituent, for example, C1-C6 alkyl, R2, Rb, w and the like, when it occurs more than once in any structure or compound, can be independent of its definition elsewhere in the same structure or compound.
- Definitions of the variables and/or substituents in formulae and/or compounds herein encompass multiple chemical groups. The present disclosure includes embodiments where, for example, i) the definition of a variable and/or substituent is a single chemical group selected from those chemical groups set forth herein, ii) the definition is a collection of two or more of the chemical groups selected from those set forth herein, and iii) the compound is defined by a combination of variables and/or substituents in which the variables and/or substituents are defined by (i) or (ii).
- Various aspects of the disclosure are set forth herein under headings and/or in sections for clarity; however, it is understood that all aspects, embodiments, or features of the disclosure described in one particular section are not to be limited to that particular section but rather can apply to any aspect, embodiment, or feature of the present disclosure.
- Disclosed compounds include a compound having the formula:
- or a pharmaceutically acceptable salt and/or stereoisomer thereof, wherein:
- X is 0 or NR2;
- R1 is selected from the group consisting of H, C1-C6alkyl, phenyl, —C(O)—C1-C6alkyl, and —C(O)—O—C1-C6 alkyl;
- R2 is selected from the group consisting of H, C1-C6alkyl, phenyl, —C(O)—C1-C6alkyl, and —C(O)—O—C1-C6 alkyl;
- p is 1 or 2;
- R5 is independently selected for each occurrence from the group consisting of H, C1-C6alkyl, —S(O)w—C1-C3alkyl, —NRaRb, C1-C3alkoxy, cyano and halogen;
- w is 0, 1, or 2
- R3 is selected from the group consisting of H, phenyl, C1-C6 alkyl, —C(O)R31 and —C(O)OR32;
- R31 and R32 are each independently H, C1-C6alkyl, —C3-C6cycloalkyl, and phenyl;
- R7 is independently selected for each occurrence from the group consisting of H, halogen, phenyl, and C1-C6 alkyl; and
- Ra and Rb are each independently for each occurrence selected from the group consisting of H, C1-C3alkyl, and phenyl, or Ra and Rb taken together with the nitrogen to which they are attached form a 4-6 membered heterocyclic ring;
-
- wherein any aforementioned C1-C6 alkyl, independently for each occurrence, may be optionally substituted by one, two or three substituents each independently selected from —C(O)NRaRb, —NRaRb, hydroxyl, S(O)W—C1-C3alkyl, SH, phenyl and halogen, and wherein any aforementioned phenyl, independently for each occurrence, may be optionally substituted by one, two or three substituents each independently selected from hydroxyl, halogen, —C(O)—O—C1-C3alkyl, —C(O)—C1-C3alkyl, methyl, and CF3.
- In certain embodiments, R1 can be —C(O)—O—C1-C6 alkyl. For example, R1 can be tert-butyloxycarbonyl.
- In certain embodiments, R1 can be C1-C6alkyl, optionally substituted by benzyl or one, two or three fluorines. For example, R1 can be methyl; while in some embodiments, R1 can be
- In some embodiments, R1 can be H.
- In certain embodiments, R1 can be —C(O)—C1-C6alkyl, where —C(O)—C1-C6alkyl can be represented by:
- wherein Ra and Rb can be independently selected for each occurrence from the group consisting of hydrogen and —C1-C6alkyl.
- In some embodiments, R1 can be benzyl.
- In certain embodiments, X can be 0; while in certain embodiments, X can be NR2.
- In certain embodiments, R2 can be H.
- In certain embodiments, R2 can be C1-C6alkyl, optionally substituted by benzyl or one, two or three fluorines, —C(O)—C1-C6alkyl, or —C(O)—O—C1-C6 alkyl. For example, R2 can be methyl or
- In some embodiments, R2 can be benzyl.
- In certain embodiments, R2 can be —C(O)—C1-C6alkyl, where —C(O)—C1-C6alkyl can be represented by:
- wherein Ra and Rb can be each independently selected for each occurrence from the group consisting of hydrogen and —C1-C6alkyl.
- In some embodiments, R2 can be —C(O)—O—C1-C6 alkyl, for example, tert-butyl oxycarbonyl
- In certain embodiments, p is 1; while in certain embodiments, p is 2.
- In some embodiments, R3 can be H.
- In certain embodiments, R3 can be selected from the group consisting of:
- wherein Ra and Rh are each independently selected for each occurrence from the group consisting of hydrogen and —C1-C6alkyl.
- In certain embodiments, R1, R2, and/or R3 independently can be an amino acid or a derivative of an amino acid, for example, an alpha “amino amide” represented by H2N—CH(amino acid side chain)-C(O)NH2. In certain embodiments, the nitrogen atom of the amino group of the amino acid or the amino acid derivative is a ring nitrogen in a chemical formula described herein. In such embodiments, the carboxylic acid of the amino acid or the amide group of an amino amide (amino acid derivative) is not within the ring structure, i.e., not a ring atom. In certain embodiments, the carboxylic acid group of the amino acid or the amino acid derivative forms an amide bond with a ring nitrogen in a chemical formula disclosed herein, thereby providing an amino amide, where the amino group of the amino amide is not within the ring structure, i.e., not a ring atom. In certain embodiments, R1, R2, and/or R3 independently can be an alpha amino acid, an alpha amino acid derivative, and/or another amino acid or amino acid derivative such as a beta amino acid or a beta amino acid derivative, for example, a beta amino amide.
- In some embodiments, the compound is selected from the compounds delineated in the Examples, and includes pharmaceutically acceptable salts and/or stereoisomers thereof. In certain embodiments, a disclosed compound includes one having the formula:
- The compounds of the present disclosure and formulations thereof may have a plurality of chiral centers. Each chiral center may be independently R, S, or any mixture of R and S. For example, in some embodiments, a chiral center may have an R:S ratio of between about 100:0 and about 50:50 (“racemate”), between about 100:0 and about 75:25, between about 100:0 and about 85:15, between about 100:0 and about 90:10, between about 100:0 and about 95:5, between about 100:0 and about 98:2, between about 100:0 and about 99:1, between about 0:100 and 50:50, between about 0:100 and about 25:75, between about 0:100 and about 15:85, between about 0:100 and about 10:90, between about 0:100 and about 5:95, between about 0:100 and about 2:98, between about 0:100 and about 1:99, between about 75:25 and 25:75, and about 50:50. Formulations of the disclosed compounds comprising a greater ratio of one or more isomers (i.e., R and/or S) may possess enhanced therapeutic characteristic relative to racemic formulations of a disclosed compounds or mixture of compounds. In some instances, chemical formulas contain the descriptor “—(R)—” or “—(S)—” that is further attached to solid wedge or dashed wedge. This descriptor is intended to show a methine carbon (CH) that is attached to three other substituents and has either the indicated R or S configuration.
- Disclosed compounds may provide for efficient cation channel opening at the NMDA receptor, e.g. may bind or associate with the glutamate site or glycine site or other modulatory site of the NMDA receptor to assist in opening the cation channel. The disclosed compounds may be used to regulate (turn on or turn off) the NMDA receptor through action as an agonist or antagonist.
- The compounds described herein, in some embodiments, may bind to a specific NMDA receptor subtypes. For example, a disclosed compound may bind to one NMDA subtype and not another. In some embodiments, a disclosed compound may bind to one, or more than one NMDA subtype, and/or may have substantially less (or substantial no) binding activity to certain other NMDA subtypes.
- The compounds as described herein may bind to NMDA receptors. A disclosed compound may bind to the NMDA receptor resulting in agonist-like activity (facilitation) over a certain dosing range and/or may bind to the NMDA receptor resulting in antagonist-like activity (inhibition) over a certain dosing range. In some embodiments, a disclosed compound may possess a potency that is 10-fold or greater than the activity of existing NMDA receptor modulators.
- The disclosed compounds may exhibit a high therapeutic index. The therapeutic index, as used herein, refers to the ratio of the dose that produces a toxicity in 50% of the population (i.e., TD50) to the minimum effective dose for 50% of the population (i.e., ED50). Thus, the therapeutic index=(TD50):(ED50). In some embodiments, a disclosed compound may have a therapeutic index of at least about 10:1, at least about 50:1, at least about 100:1, at least about 200:1, at least about 500:1, or at least about 1000:1.
- In other aspects of the disclosure, a pharmaceutical formulation or a pharmaceutical composition including a disclosed compound and a pharmaceutically acceptable excipient is provided. In some embodiments, a pharmaceutical composition comprises a racemic mixture of one or more of the disclosed compounds.
- A formulation can be prepared in any of a variety of forms for use such as for administering an active agent to a patient, who may be in need thereof, as are known in the pharmaceutical arts. For example, the pharmaceutical compositions of the present disclosure can be formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets (e.g., those targeted for buccal, sublingual, and/or systemic absorption), boluses, powders, granules, and pastes for application to the tongue; (2) parenteral administration by, for example, subcutaneous, intramuscular, intraperitoneal, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; (3) topical administration, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; (4) intravaginal or intrarectal administration, for example, as a pessary, cream or foam; (5) sublingual administration; (6) ocular administration; (7) transdermal administration; or (8) nasal administration.
- For example, pharmaceutical compositions of the disclosure can be suitable for delivery to the eye, i.e., ocularly. Related methods can include administering a pharmaceutically effective amount of a disclosed compound or a pharmaceutical composition including a disclosed compound to a patient in need thereof, for example, to an eye of the patient, where administering can be topically, subconjunctivally, subtenonly, intravitreally, retrobulbarly, peribulbarly, intracomerally, and/or systemically.
- Amounts of a disclosed compound as described herein in a formulation may vary according to factors such as the disease state, age, sex, and weight of the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- The specification for the dosage unit forms are dictated by and directly dependent on (a) the unique characteristics of the compound selected and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
- Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin.
- The compounds can be administered in a time release formulation, for example in a composition which includes a slow release polymer. The compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, polylactic acid and polylactic, polyglycolic copolymers (PLG). Many methods for the preparation of such formulations are generally known to those skilled in the art.
- Sterile injectable solutions can be prepared by incorporating the compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- In some embodiments, a compound can be formulated with one or more additional compounds that enhance the solubility of the compound.
- Methods of the disclosure for treating a condition in a patient in need thereof include administering a therapeutically effective amount of a compound described herein or a composition including such a compound. In some embodiments, the condition may be a mental condition. For example, a mental illness may be treated. In another aspect, a nervous system condition may be treated. For example, a condition that affects the central nervous system, the peripheral nervous system, and/or the eye may be treated. In some embodiments, neurodegenerative diseases may be treated.
- In some embodiments, the methods include administering a compound to treat patients suffering from autism, anxiety, depression, bipolar disorder, attention deficit disorder, attention deficit hyperactivity disorder (ADHD), schizophrenia, a psychotic disorder, a psychotic symptom, social withdrawal, obsessive-compulsive disorder (OCD), phobia, post-traumatic stress syndrome, a behavior disorder, an impulse control disorder, a substance abuse disorder (e.g., a withdrawal symptom, opiate addiction, nicotine addiction, and ethanol addition), a sleep disorder, a memory disorder (e.g., a deficit, loss, or reduced ability to make new memories), a learning disorder, urinary incontinence, multiple system atrophy, progressive supra-nuclear palsy, Friedrich's ataxia, Down's syndrome, fragile X syndrome, tuberous sclerosis, olivio-ponto-cerebellar atrophy, cerebral palsy, drug-induced optic neuritis, ischemic retinopathy, diabetic retinopathy, glaucoma, dementia, AIDS dementia, Alzheimer's disease, Huntington's chorea, spasticity, myoclonus, muscle spasm, infantile spasm, Tourette's syndrome, epilepsy, cerebral ischemia, stroke, a brain tumor, traumatic brain injury, cardiac arrest, myelopathy, spinal cord injury, peripheral neuropathy, acute neuropathic pain, and chronic neuropathic pain.
- In some embodiments, methods of treating a memory disorder associated with aging, schizophrenia, special learning disorders, seizures, post-stroke convulsions, brain ischemia, hypoglycemia, cardiac arrest, epilepsy, Lewy body dementia, migraine, AIDS dementia, Huntington's chorea, Parkinson's disease, early stage Alzheimer's disease, and Alzheimer's disease are provided.
- In certain embodiments, methods for treating schizophrenia are provided. For example, paranoid type schizophrenia, disorganized type schizophrenia (i.e., hebephrenic schizophrenia), catatonic type schizophrenia, undifferentiated type schizophrenia, residual type schizophrenia, post-schizophrenic depression, and simple schizophrenia may be treated using the methods and compositions disclosed herein. Psychotic disorders such as schizoaffective disorders, delusional disorders, brief psychotic disorders, shared psychotic disorders, and psychotic disorders with delusions or hallucinations may also be treated using the compositions disclosed herein.
- Paranoid schizophrenia may be characterized where delusions or auditory hallucinations are present, but thought disorder, disorganized behavior, or affective flattening are not. Delusions may be persecutory and/or grandiose, but in addition to these, other themes such as jealousy, religiosity, or somatization may also be present. Disorganized type schizophrenia may be characterized where thought disorder and flat affect are present together. Catatonic type schizophrenia may be characterized where the patient may be almost immobile or exhibit agitated, purposeless movement. Symptoms can include catatonic stupor and waxy flexibility. Undifferentiated type schizophrenia may be characterized where psychotic symptoms are present but the criteria for paranoid, disorganized, or catatonic types have not been met. Residual type schizophrenia may be characterized where positive symptoms are present at a low intensity only. Post-schizophrenic depression may be characterized where a depressive episode arises in the aftermath of a schizophrenic illness where some low-level schizophrenic symptoms may still be present. Simple schizophrenia may be characterized by insidious and progressive development of prominent negative symptoms with no history of psychotic episodes.
- In some embodiments, methods are provided for treating psychotic symptoms that may be present in other mental disorders, including, but not limited to, bipolar disorder, borderline personality disorder, drug intoxication, and drug-induced psychosis. In certain embodiments, methods for treating delusions (e.g., “non-bizarre”) that may be present in, for example, delusional disorder are provided.
- In various embodiments, methods for treating social withdrawal in conditions including, but not limited to, social anxiety disorder, avoidant personality disorder, and schizotypal personality disorder are provided.
- In some embodiments, the disclosure provides methods for treating a neurodevelopmental disorder related to synaptic dysfunction in a patient in need thereof, where the methods generally include administering to the patient a therapeutically effective amount of a disclosed compound, or a pharmaceutical composition including a disclosed compound. In certain embodiments, the neurodevelopmental disorder related to synaptic dysfunction can be Rett syndrome also known as cerebroatrophic hyperammonemia, MECP2 duplication syndrome (e.g., a MECP2 disorder), CDKL5 syndrome, fragile X syndrome (e.g., a FMR1 disorder), tuberous sclerosis (e.g., a TSC1 disorder and/or a TSC2 disorder), neurofibromatosis (e.g., a NF1 disorder), Angelman syndrome (e.g., a UBE3A disorder), the PTEN hamartoma tumor syndrome, Phelan-McDermid syndrome (e.g., a SHANK3 disorder), or infantile spasms.
- In particular embodiments, the neurodevelopmental disorder can be caused by mutations in the neuroligin (e.g., a NLGN3 disorder and/or a NLGN2 disorder) and/or the neurexin (e.g., a NRXN1 disorder).
- In some embodiments, methods are provided for treating neuropathic pain. The neuropathic pain may be acute or chronic. In some cases, the neuropathic pain may be associated with a condition such as herpes, HIV, traumatic nerve injury, stroke, post-ischemia, chronic back pain, post-herpetic neuralgia, fibromyalgia, reflex sympathetic dystrophy, complex regional pain syndrome, spinal cord injury, sciatica, phantom limb pain, diabetic neuropathy such as diabetic peripheral neuropathy (“DPN”), and cancer chemotherapeutic-induced neuropathic pain. Methods for enhancing pain relief and for providing analgesia to a patient are also provided.
- Further methods include a method of treating autism and/or an autism spectrum disorder in a patient need thereof, comprising administering an effective amount of a compound to the patient. In certain embodiments, a method for reducing the symptoms of autism in a patient in need thereof comprises administering an effective amount of a disclosed compound to the patient. For example, upon administration, the compound may decrease the incidence of one or more symptoms of autism such as eye contact avoidance, failure to socialize, attention deficit, poor mood, hyperactivity, abnormal sound sensitivity, inappropriate speech, disrupted sleep, and perseveration. Such decreased incidence may be measured relative to the incidence in the untreated individual or an untreated individual(s).
- Also provided herein is a method of modulating an autism target gene expression in a cell comprising contacting a cell with an effective amount of a compound described herein. The autism gene expression may be for example, selected from ABAT, APOE, CHRNA4, GABRA5, GFAP, GRIN2A, PDYN, and PENK. In some embodiments, a method of modulating synaptic plasticity in a patient suffering from a synaptic plasticity related disorder is provided, comprising administering to the patient an effective amount of a compound.
- In certain embodiments, a method of treating Alzheimer's disease, or e.g., treatment of memory loss that e.g., accompanies early stage Alzheimer's disease, in a patient in need thereof is provided, comprising administering a compound. Also provided herein is a method of modulating an Alzheimer's amyloid protein (e.g., beta amyloid peptide, e.g. the isoform Aβ1−42), in-vitro or in-vivo (e.g. in a cell) comprising contacting the protein with an effective amount of a compound is disclosed. For example, in some embodiments, a compound may block the ability of such amyloid protein to inhibit long-term potentiation in hippocampal slices as well as apoptotic neuronal cell death. In some embodiments, a disclosed compound may provide neuroprotective properties to a Alzheimer's patient in need thereof, for example, may provide a therapeutic effect on later stage Alzheimer's—associated neuronal cell death.
- In certain embodiments, the disclosed methods include treating a psychosis or a pseudobulbar affect (“PBA”) that is induced by another condition such as a stroke, amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease), multiple sclerosis, traumatic brain injury, Alzheimer's disease, dementia, and/or Parkinson's disease. Such methods, as with other methods of the disclosure, include administration of a pharmaceutically effective amount of a disclosed compound to a patient in need thereof.
- In certain embodiments, a method of treating depression includes administering a therapeutically effective amount of a compound described herein. In some embodiments, the treatment may relieve depression or a symptom of depression without affecting behavior or motor coordination and without inducing or promoting seizure activity. Exemplary depression conditions that are expected to be treated according to this aspect include, but are not limited to, major depressive disorder, dysthymic disorder, psychotic depression, postpartum depression, premenstrual syndrome, premenstrual dysphoric disorder, seasonal affective disorder (SAD), bipolar disorder (or manic depressive disorder), mood disorder, and depressions caused by chronic medical conditions such as cancer or chronic pain, chemotherapy, chronic stress, and post traumatic stress disorders. In addition, patients suffering from any form of depression often experience anxiety. Various symptoms associated with anxiety include fear, panic, heart palpitations, shortness of breath, fatigue, nausea, and headaches among others. Anxiety or any of the symptoms thereof may be treated by administering a compound as described herein.
- Also provided herein are methods of treating a condition in treatment-resistant patients, e.g., patients suffering from a mental or central nervous system condition that does not, and/or has not, responded to adequate courses of at least one, or at least two, other compounds or therapeutics. For example, provided herein is a method of treating depression in a treatment resistant patient, comprising a) optionally identifying the patient as treatment resistant and b) administering an effective dose of a compound to said patient.
- In some embodiments, a compound described herein may be used for acute care of a patient. For example, a compound may be administered to a patient to treat a particular episode (e.g., a severe episode) of a condition disclosed herein.
- Also provided herein are combination therapies comprising a compound of the disclosure in combination with one or more other active agents. For example, a compound may be combined with one or more antidepressants, such as tricyclic antidepressants, MAO-I's, SSRI's, and double and triple uptake inhibitors and/or anxiolytic drugs. Exemplary drugs that may be used in combination with a compound include Anafranil, Adapin, Aventyl, Elavil, Norpramin, Pamelor, Pertofrane, Sinequan, Surmontil, Tofranil, Vivactil, Parnate, Nardil, Marplan, Celexa, Lexapro, Luvox, Paxil, Prozac, Zoloft, Wellbutrin, Effexor, Remeron, Cymbalta, Desyrel (trazodone), and Ludiomill. In another example, a compound may be combined with an antipsychotic medication. Non-limiting examples of antipsychotics include butyrophenones, phenothiazines, thioxanthenes, clozapine, olanzapine, risperidone, quetiapine, ziprasidone, amisulpride, asenapine, paliperidone, iloperidone, zotepine, sertindole, lurasidone, and aripiprazole. It should be understood that combinations of a compound and one or more of the above therapeutics may be used for treatment of any suitable condition and are not limited to use as antidepressants or antipsychotics.
- The following examples are provided for illustrative purposes only, and are not intended to limit the scope of the disclosure.
- The following abbreviations may be used herein and have the indicated definitions: Ac is acetyl (—C(O)Ch3), AIDS is acquired immune deficiency syndrome, Boc and BOC are tert-butoxycarbonyl, Boc2O is di-tert-butyl dicarbonate, Bn is benzyl, Cbz is carboxybenzyl, DCM is dichloromethane, DIPEA is N,N-diisopropylethylamine, DMF is N,N-dimethylformamide, DMSO is dimethyl sulfoxide, ESI is electrospray ionization, EtOAc is ethyl acetate, h is hour, HATU is 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate, HIV is human immunodeficiency virus, HPLC is high performance liquid chromatography, LCMS is liquid chromatography/mass spectrometry, LiHMDS is lithium hexamethyldisilazane, NMDAR is N-methyl-d-apartate receptor, NMR is nuclear magnetic resonance, Pd/C is palladium on carbon, RT is room temperature (e.g., from about 20° C. to about 25° C.), TEA is triethylamine, TLC is thin layer chromatography, TFA is trifluoroacetic acid, THF is tetrahydrofuran, and TMS is trimethylsilyl.
-
- To a stirring solution of piperazine-2-carboxylic acid dihydrochloride (SM1) (5 g, 24.6 mmol) in 1,4-dioxane (40 mL) were added 5 N NaOH solution (3.5 g, 88.6 mmol) and Boc-anhydride (12.9 mL, 56.6 mmol) at 0° C. and the reaction mixture was stirred at RT for 16 h. After consumption of the starting material (by TLC), volatiles were evaporated under reduced pressure. Obtained crude was dissolved in water (50 mL) and extracted with Et2O (2×100 mL). Organic layer was acidified with 1 N HCl solution and extracted with EtOAc (2×100 mL). Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure to afford crude compound which was triturated with n-pentane to obtain compound 1 (6 g, 74%) as white solid.
1H-NMR: (400 MHz, DMSO-d6): δ 12.91 (br s, 1H), 4.42 (d, J=24.8 Hz, 1H), 4.35-4.27 (dd, J=20.4, 13.6 Hz, 1H), 3.82 (s, 1H), 3.66 (d, J=13.2 Hz, 1H), 2.99-2.79 (m, 2H), 2.79 (br s, 1H), 1.37 (s, 18H).
LCMS (m/z): 329.3 [M+−1] - To a stirring solution of compound 1 (6 g, 18.2 mmol) in DMF (30 mL) were added K2CO3 (3 g, 21.8 mmol) and MeI (1.7 mL, 27.2 mmol) at 0° C. and the reaction mixture was stirred at RT for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (50 mL) and extracted with EtOAc (2×100 mL). The combined organic layer was washed with citric acid (50 mL), brine (50 mL). The organic layer was dried over Na2SO4 and concentrated under reduced pressure to afford crude compound which was purified by column chromatography by eluting with 10% EtOAc/hexanes to obtain compound 2 (5 g, 82%) as white solid.
1H-NMR: (400 MHz, DMSO-d6): δ 4.56 (d, J=28.8 Hz, 1H), 4.32-4.22 (dd, J=24.8, 14.0 Hz, 1H), 3.82 (br s, 1H), 3.82-3.66 (m, 4H), 3.14-2.82 (m, 3H), 1.37 (s, 18H). - To a stirring solution of compound 2 (1 g, 2.91 mmol) in dry THF (20 mL) were added LiHMDS (1.0 M in THF) (10.2 mL, 10.2 mmol), paraformaldehyde (69 mg, 2.32 mmol) at −78° C. under nitrogen atmosphere. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was quenched with ice water (20 mL) and extracted with EtOAc (2×50 mL). The combined organic layer was washed with brine solution (2×10 mL), dried over Na2SO4 and concentrated to obtain crude compound which was purified by column chromatography by eluting 30% EtOAc/hexanes to afford racemic EE (320 mg, 32%) as white solid. The racemic was separated by chiral HPLC purification to give 75 mg each of EE-1 and EE-2.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.98 (s, 1H), 3.78 (d, J=12.8 Hz, 1H), 3.67-3.60 (m, 1H), 3.51 (d, J=13.6 Hz, 1H), 3.41-3.30 (m, 4H), 3.07 (br s, 1H), 1.39 (s, 18H).
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.99 (s, 1H), 3.78 (d, J=12.8 Hz, 1H), 3.65-3.61 (m, 1H), 3.51 (d, J=13.6 Hz, 1H), 3.40-3.30 (m, 4H), 3.07 (br s, 1H), 1.39 (s, 18H).
-
- To a stirred suspension of piperazine-2-carboxylic acid (SM) (5 g, 24.6 mmol) in 1, 4-dioxane: water (1: 1, 100 mL) was added. NaHCO3 (3.1 g, 36.9 mmol) followed by Boc-anhydride (5.6 mL, 24.6 mmol) at 0° C. under nitrogen atmosphere. The reaction mixture was warmed to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (50 mL) and extracted with Et2O (2×100 mL). Aqueous layer was acidified with 2N HCl solution and extracted with n-BuOH. Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure to afford compound 1 (5 g, 88%) as white solid.
1H-NMR: (500 MHz, DMSO-d6): δ 10.18 (br s, 1H), 4.08 (br s, 1H), 3.81-3.71 (m, 2H), 3.63 (t, J=6.5 Hz, 1H), 3.17-3.15 (m, 2H), 2.91-2.86 (m, 1H), 1.36 (s, 9H), 1.31-1.26 (m, 0.5H), 0.87-0.84 (m, 0.5H). - To a stirring solution of compound 1 (5 g, 21.7 mmol) in EtOAc (70 mL) were added saturated NaHCO3 solution (70 mL) followed by drop wise addition of Cbz-C1 (3.7 mL, 26.1 mmol) at 0° C. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (50 mL) and extracted with EtOAc (2×50 mL). Aqueous layer was acidified with 2 N HCl solution and extracted with EtOAc. Combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford crude material which was purified by column chromatography eluting with 50% EtOAc: n-hexane to afford compound 2 (4 g, 50%) as thick syrup. 1H-NMR: (500 MHz, DMSO-d6): δ 13.06 (br s, 1H), 7.37-7.30 (m, 5H), 5.12-5.05 (m, 2H), 4.57-4.53 (m, 1H), 4.38-4.32 (m, 1H), 3.86-3.76 (m, 2H), 3.18-3.08 (m, 2H), 2.83 (br s, 1H), 1.37 (s, 9H).
- To a stirring solution of compound 2 (4 g, 10.9 mmol) in DMF (40 mL) were added K2CO3 (1.82 g, 13.2 mmol) and MeI (1 mL, 16.5 mmol) at 0° C. under nitrogen atmosphere. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (20 mL) and extracted with Et2O (2×50 mL). Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure. Obtained crude material was purified by silica gel column chromatography eluting 10% EtOAc/hexanes to afford compound 3 (3.2 g, 77%) as thick syrup.
1H-NMR: (400 MHz, CDCl3): δ 7.36-7.31 (m, 5H), 5.21-5.11 (m, 2H), 4.78 (s, 0.5H), 4.66-4.50 (m, 1.5H), 4.02-3.88 (m, 2H), 3.68 (s, 3H), 3.24 (br s, 1H), 3.08 (dd, J=13.6, 3.2 Hz, 1H), 2.83 (hr s, 1H), 1.44 (s, 9H). - To a stirring solution of compound 3 (3.2 g, 8.46 mmol) in THF (30 mL) was added paraformaldehyde (203 mg, 6.77 mmol) at RT under nitrogen atmosphere. The reaction mixture was cooled to −78° C. and added LiHMDS (1M in THF) (33.8 mL, 23.2 mmol) and allowed to stir at RT for 12 h. After consumption of the starting material (by TLC), the reaction was quenched with ice water (10 mL) and extracted with EtOAc (2×20 mL). The combined organic layer was washed with water (2×15 mL) followed by brine solution (2×10 mL). The organic layer was dried over Na2SO4 and concentrated to obtain crude material which was purified by column chromatography by eluting with 40% EtOAc/hexanes to afford compound 4 (640 mg, 20%) as thick syrup.
1H-NMR: (500 MHz, DMSO-d6): δ 8.04 (s, 1H), 7.37-7.31 (m, 5H), 5.14-5.07 (m, 2H), 4.07-4.01 (m, 1H), 3.83-3.73 (m, 2H), 3.72-3.41 (m, 4H), 3.09 (br s, 1H), 1.40 (s, 9H). - To a stirring solution of compound 4 (600 mg, 1.6 mmol) in EtOAc (10 mL) was added 10% Pd/C (180 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred at RT for 4h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite. Organic layer was dried over Na2SO4 and concentrated to obtain crude material which was purified by column chromatography by eluting 4% MeOH/DCM to afford EB (320 mg, crude) as a white solid. The racemic was separated by chiral HPLC purification and obtained 80 mg each of EB-1 and EB-2.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.89 (s, 1H), 3.53 (d, J=12.8 Hz, 1H), 3.39-3.35 (m, 1H), 3.21 (s, 1H), 3.17-3.11 (m, 1H), 3.06 (d, J=5.2 Hz, 1H), 2.98 (d, J=5.2 Hz, 1H), 2.92-2.87 (m, 1H), 2.59-2.53 (m, 1H), 1.38 (s, 9H).
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.89 (s, 1H), 3.53 (d, J=12.8 Hz, 1H), 3.39-3.35 (m, 1H), 3.21 (s, 1H), 3.17-3.11 (m, 1H), 3.06 (d, J=5.2 Hz, 1H), 2.98 (d, J=5.2 Hz, 1H), 2.92-2.87 (m, 1H), 2.59-2.53 (m, 1H), 1.38 (s, 9H).
- To a stirred solution of Int-A (1.7 g, 4.98 mmol) in DCM (50 mL) were added N-methyl morpholine (2.51 g, 24.89 mmol), 1-Propanephosphonic anhydride solution (50 wt. % in ethyl acetate) (7.9 g, 24.89 mmol) and racemic tert-butyl 1-oxo-2,5,8-triazaspiro[3.5]nonane-8-carboxylate (EB-racemic) (1 g, 4.15 mmol) at 0° C. under nitrogen atmosphere. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (50 mL) and extracted with DCM (3×50 mL). Combined organic layer was dried over Na2SO4 and concentrated to obtain crude material which was purified by column chromatography by eluting 10% MeOH/DCM to afford racemic compound 5 (700 mg, 30%) as an off white solid. The racemic was separated by chiral HPLC purification and obtained 80 mg each of compound 5-F1 and compound 5-F2.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.99 (s, 1H), 7.42-7.24 (m, 11H), 5.04 (t, J=14.0 Hz, 2H), 4.55-4.48 (m, 3H), 3.80-3.71 (m, 4H), 3.43 (d, J=14.0 Hz, 1H), 3.43 (d, J=4.0 Hz, 1H), 3.32-3.30 (m, 2H), 3.00 (br s, 1H), 1.40 (s, 9H), 1.12 (d, J=6.4 Hz, 3H).
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.96 (s, 1H), 7.35-7.25 (m, 11H), 5.08-5.01 (dd, J=16.8, 12.8 Hz, 2H), 4.69-466 (dd, J=8.8, 5.6 Hz, 1H), 3.54 (d, J=12.0 Hz, 1H), 3.44 (d, J=12.0 Hz, 1H), 3.86-3.74 (m, 4H), 3.43 (m, 1H), 3.39 (d, J=5.4 Hz, 1H), 3.29-3.27 (m, 2H), 2.94 (br s, 1H), 1.39 (s, 9H), 1.12 (d, J=6.4 Hz, 3H).
- To a stirring solution of compound 5-F1 (140 mg, 0.25 mmol) in methanol (10 mL) was added 10% Pd/C (45 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred at RT for 48 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite. Organic layer was dried over Na2SO4 and concentrated to obtain crude material which was purified by preparative HPLC to afford EC-1 (12 mg) as a white solid.
- 1H-NMR: (400 MHz, D2O): δ 4.51 (d, J=13.6 Hz, 1H), 4.40-4.28 (m, 2H), 4.18 (s, 2H), 4.42 (d, J=14.0 Hz, 1H), 3.22 (d, J=14.0 Hz, 2H), 3.13-3.05 (m, 1H), 2.92 (br s, 1H), 1.51 (s, 9H), 1.33 (d, J=6.8 Hz, 3H).
- To a stirring solution of compound 5-F2 (70 mg, 0.12 mmol) in methanol (3 mL) was added 10% Pd/C (23 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred at RT for 12 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite. Organic layer was dried over Na2SO4 and concentrated to obtain crude material was triturated with pentane/ether to afford EC-2 (23 mg, 59%) as an off white solid.
- 1H-NMR: (400 MHz, D2O): δ 4.52-4.49 (m, 1H), 4.38-4.30 (m, 2H), 4.22-4.16 (s, 2H), 3.22 (d, J=14.4 Hz, 2H), 3.12-3.01 (m, 3H), 1.52 (s, 9H), 1.31 (d, J=6.8 Hz, 3H).
-
- To a solution of Int-A (20 g, 812 mmol) and triethylamine (23.0 mL, 166.4 mmol) in toluene (300 mL) was added ethyl 2,3-dibromopropanoate (SM) (12.1 mL, 83.2 mmol) slowly at 40° C. The reaction mixture was heated to 80° C. and stirred for 4 h. After consumption of the starting material (by TLC), the reaction mixture was brought to RT and volatiles were evaporated under reduced pressure. Obtained crude material was purified by silica gel column chromatography eluting 5%-30% EtOAc/hexanes to afford compound 1 (21.2 g, 75%) as light green syrup.
1H-NMR: (500 MHz, CDCl3): δ 7.33-7.7.22 (m, 10H), 4.17-4.15 (q, J=7.0 Hz, 2H), 3.90 (d, J=13.5 Hz, 1H), 3.59-3.54 (m, 2H), 3.42 (d, J=13.5 Hz, 1H), 3.31-3.29 (m, 1H), 2.76-2.62 (m, 2H), 2.48-2.38 (m, 4H), 1.25 (t, J=7.0 Hz, 3H).
LCMS (m/z): 339 [M++1] - To a solution of compound 1 (1.5 g, 4.43 mmol) in THF (15 mL) was added paraformaladehyde (133 mg, 4.43 mmol) and LiHMDS (1M in THF) (13.3 mL, 13.3 mmol) at −10° C. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction mixture was diluted with water (50 mL) and extracted with EtOAc (3×100 mL). Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure to obtain racemic compound 2 (800 mg, 56%) as white solid. The racemic was separated by chiral HPLC purification and obtained 350 mg of EA-1 and 350 mg of EA-2.
- 1H-NMR: (400 MHz, DMSO-d6): δ 8.01 (s, 1H), 7.34-7.20 (m, 10H), 3.74 (d, J=13.6 Hz, 1H), 3.55-3.52 (m, 2H), 3.45 (d, J=13.2 Hz, 1H), 3.39 (d, J=13.2 Hz, 1H), 2.96 (d, J=6.0 Hz, 1H), 2.74-2.72 (m, 1H), 2.59 (d, J=10.8 Hz, 1H), 2.49 (s, 1H), 2.35 (d, J=10.8 Hz, 1H), 2.26-2.20 (td, J=14.8, 2.8 Hz, 1H), 2.11-2.05 (td, J=14.8, 2.8 Hz, 1H).
- 1H-NMR: (400 MHz, DMSO-d6): δ8.01 (s, 1H), 7.34-7.21 (m, 10H), 3.74 (d, J=13.6 Hz, 1H), 3.55-3.52 (m, 2H), 3.45 (d, J=13.2 Hz, 1H), 3.39 (d, J=13.2 Hz, 1H), 2.96 (d, J=6.0 Hz, 1H), 2.74-2.72 (m, 1H), 2.59 (d, J=10.8 Hz, 1H), 2.49 (s, 1H), 2.35 (d, J=10.8 Hz, 1H), 2.26-2.20 (td, J=14.8, 2.8 Hz, 1H), 2.11-2.05 (td, J=14.8, 2.8 Hz, 1H).
- To a solution of EA-1 (270 mg, 0.84 mmol) in 1,2-dichloroethane (3 mL) was added 1-chloro ethylchloroformate (132 mg, 0.92 mmol) in 1,2-dichloroethane (2 mL) at 0° C. under nitrogen atmosphere. The reaction mixture was heated to reflux and stirred for 1 h. The reaction mixture was brought to RT and volatiles were evaporated under reduced pressure. Crude material was dissolved in methanol (5 mL) and heated to reflux again for 1 h. The reaction mixture was brought to RT and diluted with ice water (5 mL) and extracted with DCM (2×50 mL). Aqueous layer was basified with NaHCO3 solution extracted with 10% MeOH/DCM. Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure. Obtained crude material was triturated with ether and pentane to afford ED-1 (140 mg, 72%) as an off white solid.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.98 (s, 1H), 7.31-7.20 (m, 5H), 3.71 (d, J=13.6 Hz, 1H), 3.49 (d, J=6.0 Hz, 1H), 3.36 (d, J=13.6 Hz, 1H), 3.07 (d, J=5.6 Hz, 1H), 2.96 (d, J=6.0 Hz, 1H), 2.91-2.84 (m, 2H), 2.69-2.66 (m, 1H), 2.57-2.53 (m, 1H), 2.40-2.36 (td, J=11.2, 3.2 Hz, 1H), 2.09-2.03 (td, J=11.2, 3.2 Hz, 1H).
- To a solution of EA-2 (270 mg, 0.84 mmol) in 1,2-dichloroethane (4 mL) was added 1-chloro ethylchloroformate (132 mg, 0.92 mmol) in 1,2-dichloroethane (2 mL) at 0° C. under nitrogen atmosphere. The reaction mixture was heated to reflux and stirred for 1 h. The reaction mixture was brought to RT and volatiles were evaporated under reduced pressure. Crude material was dissolved in methanol (5 mL) and heated to reflux again for 1 h. The reaction mixture was brought to RT and diluted with ice water (5 mL) and extracted with DCM (2×50 mL). Aqueous layer was basified with NaHCO3 solution extracted with 10% MeOH/DCM. Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure. Obtained crude material was triturated with ether and pentane to afford ED-2 (110 mg, 56%) as an off white solid.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.99 (s, 1H), 7.31-7.20 (m, 5H), 3.71 (d, J=13.6 Hz, 1H), 3.49 (d, J=6.0 Hz, 1H), 3.36 (d, J=13.6 Hz, 1H), 3.07 (d, J=6.0 Hz, 1H), 2.96 (d, J=6.0 Hz, 1H), 2.91-2.84 (m, 2H), 2.69-2.66 (m, 1H), 2.57-2.53 (m, 1H), 2.40-2.36 (td, J=11.2, 3.2 Hz, 1H), 2.09-2.03 (td, J=11.2, 3.2 Hz, 1H).
- To a stirred solution of racemic ED (1.6 g, 6.92 mmol, racemic) in 1,2-dichloroethane (20 mL) was added paraformaladehyde (415 mg, 13.8 mmol), sodium cyanoborohydride (872 mg, 13.8 mmol) and acetic acid (0.8 mL, 13.8 mmol) at 0° C. The reaction mixture was stirred at RT for 16 h. After consumption of the starting material (by TLC), the reaction mixture was dissolved in 10% MeOH/DCM and washed with NaHCO3 solution. Organic layer was dried over Na2SO4 and concentrated under reduced pressure to afford racemic EG (550 mg, 33%) as an off white solid. The racemic was separated by chiral HPLC purification and obtained 170 mg each of EG-1 and EG-2.
- 1H-NMR: (400 MHz, DMSO-d6): δ 8.04 (s, 1H), 7.31-7.22 (m, 5H), 3.74 (d, J=13.2 Hz, 1H), 3.52 (d, J=6.0 Hz, 1H), 3.38 (d, J=13.6 Hz, 1H), 3.03 (d, J=6.0 Hz, 1H), 2.76 (d, J=10.8 Hz, 1H), 2.47-2.42 (m, 1H), 2.30 (d, J=10.8 Hz, 1H), 2.23 (d, J=2.8 Hz, 1H), 2.22-(d, J=3.2 Hz, 1H), 2.17 (s, 3H), 1.98-1.92 (td, J=10.8, 2.8 Hz, 1H).
- 1H-NMR: (400 MHz, DMSO-d6): δ 8.04 (s, 1H), 7.31-7.22 (m, 5H), 3.74 (d, J=13.2 Hz, 1H), 3.52 (d, J=6.0 Hz, 1H), 3.38 (d, J=13.6 Hz, 1H), 3.03 (d, J=6.0 Hz, 1H), 2.76 (d, J=10.8 Hz, 1H), 2.47-2.43 (m, 1H), 2.30 (d, J=10.8 Hz, 1H), 2.23 (d, J=2.8 Hz, 1H), 2.22-(d, J=3.2 Hz, 1H), 2.17 (s, 3H), 1.98-1.92 (td, J=10.8, 2.8 Hz, 1H).
- To a stirring solution of EG-1 (70 mg, 0.28 mmol) in methanol (3 mL) was added 10% Pd/C (23 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred at RT for 4 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite and concentrated under reduced pressure. Obtain crude material was triturated with pentane to afford EH-1 (35 mg, 79%) as a white solid.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.81 (s, 1H), 3.10 (d, J=5.2 Hz, 1H), 2.99 (d, J=5.2 Hz, 1H), 2.82-2.79 (m, 2H), 2.66-2.60 (m, 1H), 2.56-2.50 (m, 1H), 2.41-2.39 (m, 1H), 2.18 (d, J=10.4 Hz, 1H), 2.14 (s, 3H), 2.02-1.97 (m, 1H).
- To a stirring solution of EG-2 (70 mg, 0.28 mmol) in methanol (3 mL) was added 10% Pd/C (23 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred at RT for 4 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite and concentrated under reduced pressure. Obtain crude material was triturated with pentane to afford EH-2 (30 mg, 68%) as a white solid.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.81 (s, 1H), 3.10 (d, J=5.2 Hz, 1H), 2.99 (d, J=5.2 Hz, 1H), 2.82-2.79 (m, 2H), 2.66-2.60 (m, 1H), 2.56-2.50 (m, 1H), 2.41-2.39 (m, 1H), 2.18 (d, J=10.4 Hz, 1H), 2.14 (s, 3H), 2.02-1.97 (m, 1H).
- To a stirred solution of Int-B (2.21 g, 6.44 mmol) in DCM (30 mL) were added N-methyl morpholine (2.6 g, 25.81 mmol), 1-Propanephosphonic anhydride solution (50 wt. % in ethyl acetate) (8.2 g, 25.81 mmol) and racemic tert-butyl 1-oxo-2,5,8-triazaspiro[3.5]nonane-8-carboxylate (EH) (1 g, 6.45 mmol) at 0° C. under nitrogen atmosphere. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (50 mL) and extracted with 10% MeOH/DCM (3×50 mL). Combined organic layer was dried over Na2SO4 and concentrated to obtain crude material which was purified by column chromatography by eluting 10% MeOH/DCM to afford racemic compound 6 (350 mg, 12%) as an off white solid. The racemic was separated by chiral HPLC purification and obtained 130 mg of compound 6-F1 and 60 mg of compound 6-F2.
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.87 (s, 1H), 7.35-7.24 (m, 11H), 5.08-5.00 (m, 2H), 4.56-4.46 (m, 3H), 3.91 (d, J=12.4 Hz, 1H), 3.73-3.71 (m, 1H), 3.22 (d, J=5.2 Hz, 1H), 3.17 (d, J=4.8 Hz, 1H), 3.04-2.99 (m, 1H), 2.77 (d, J=11.6 Hz, 1H), 2.64 (d, J=12.0 Hz, 1H), 2.18-2.13 (m, 4H), 1.88-1.83 (m, 1H), 1.11 (d, J=6.4 Hz, 3H).
- 1H-NMR: (400 MHz, DMSO-d6): δ 7.88 (s, 1H), 7.42 (d, J=9.2 Hz, 1H), 7.35-7.25 (m, 10H), 5.08-5.01 (m, 2H), 4.63-4.44 (m, 3H), 3.97 (d, J=12.8 Hz, 1H), 3.85-3.82 (m, 1H), 3.23 (d, J=5.2 Hz, 1H), 3.07 (d, J=4.4 Hz, 1H), 3.05-3.02 (m, 1H), 2.77 (d, J=12.0 Hz, 1H), 2.69 (d, J=11.6 Hz, 1H), 2.120-2.13 (m, 4H), 1.98-1.91 (m, 1H), 1.12 (d, J=6.4 Hz, 3H).
- To a stirring solution of compound 6-F1 (130 mg, 0.27 mmol) in methanol (5 mL) was added 10% Pd/C (43 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred at RT for 48 h under H2 atmosphere (balloon pressure). After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite. Obtain crude material was triturated with ether and pentane to afford EJ-1 (35 mg, 51%) as an off white solid.
- 1H-NMR: (400 MHz, D2O): δ 4.51-4.47 (m, 1H), 4.40-4.34 (m, 1H), 4.16 (s, 1H), 3.55 (d, J=14.0 Hz, 1H), 3.15 (d, J=12.0 Hz, 1H), 3.12-3.05 (m, 2H), 2.93 (d, J=12.0 Hz, 1H), 2.32 (d, J=12.0 Hz, 1H), 2.27 (s, 3H), 2.12-2.05 (td, J=12.0, 3.6 Hz, 1H), 1.32 (d, J=6.8 Hz, 3H).
- To a stirring solution of compound 6-F2 (60 mg, 0.12 mmol) in methanol (5 mL) was added 10% Pd/C (20 mg) at RT under nitrogen atmosphere (balloon pressure). The reaction mixture was stirred at RT for 48 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite. Obtain crude material was triturated with ether and pentane to afford EJ-2 (20 mg, 62%) as an off white solid.
- 1H-NMR: (400 MHz, D2O): δ 4.56-4.52 (m, 1H), 4.38-4.33 (m, 1H), 4.18 (s, 1H), 3.44 (d, J=14.4 Hz, 1H), 3.22 (d, J=10.8 Hz, 1H), 3.13 (d, J=14.0 Hz, 1H), 3.10-3.02 (m, 1H), 2.96-2.93 (m, 1H), 2.36 (d, J=13.2 Hz, 1H), 2.32 (s, 3H), 2.19-2.12 (td, J=12.0, 3.6 Hz, 1H), 1.32 (d, J=6.8 Hz, 3H).
-
- To a solution of Int-A (20 g, 83.2 mmol) and triethylamine (23.0 mL, 166.4 mmol) in toluene (300 mL) was added ethyl 2,3-dibromopropanoate (SM) (12.1 mL, 83.2 mmol) slowly at 40° C. The reaction mixture was heated to 80° C. and stirred for 4 h. After consumption of the starting material (by TLC), the reaction mixture was brought to RT and volatiles were evaporated under reduced pressure. Obtained crude material was purified by silica gel column chromatography eluting with 5-30% EtOAc/hexane to afford compound 1 (21.2 g, 75%) as light green syrup.
1H-NMR: (500 MHz, CDCl3): δ 7.33-7.7.22 (m, 10H), 4.17-4.15 (q, J=7.0 Hz, 2H), 3.90 (d, J=13.5 Hz, 1H), 3.59-3.54 (m, 2H), 3.42 (d, J=13.5 Hz, 1H), 3.31-3.29 (m, 1H), 2.76-2.62 (m, 2H), 2.48-2.38 (m, 4H), 1.25 (t, J=7.0 Hz, 3H).
LCMS (m/z): 337 [M+−1] - To a solution of compound 1 (25 g, 73.9 mmol) in THF (200 mL) was added paraformaladehyde (2.21 g, 73.9 mmol) and LiHMDS (1M in THF) (295 mL, 295.8 mmol) at −10° C. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction mixture was diluted with water (200 mL) and extracted with EtOAc (3×100 mL). Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure to obtain racemic compound 2 (19 g, 80%) as white solid.
1H-NMR: (400 MHz, DMSO-d6): δ 8.01 (s, 1H), 7.34-7.20 (m, 10H), 3.74 (d, J=13.6 Hz, 1H), 3.55-3.52 (m, 2H), 3.45 (d, J=13.2 Hz, 1H), 3.39 (d, J=13.2 Hz, 1H), 2.96 (d, J=6.0 Hz, 1H), 2.74-2.72 (m, 1H), 2.59 (d, J=10.8 Hz, 1H), 2.49 (s, 1H), 2.35 (d, J=10.8 Hz, 1H), 2.26-2.20 (td, J=14.8, 2.8 Hz, 1H), 2.11-2.05 (td, J=14.8, 2.8 Hz, 1H). - To a solution of compound 2 (19 g, 59.19 mmol) in 1,2-dichloroethane (100 mL) was added 1-chloro ethylchloroformate (9.31 g, 65.11 mmol) in 1,2-dichloroethane (100 mL) at 0° C. under nitrogen atmosphere. The reaction mixture was heated to reflux and stirred for 1 h. The reaction mixture was brought to RT and volatiles were evaporated under reduced pressure. Crude material was dissolved in methanol (100 mL) and heated to reflux again for 1 h. The reaction mixture was brought to RT and diluted with ice water (100 mL) and extracted with DCM (2×50 mL). Aqueous layer was basified with NaHCO3 solution extracted with 10% MeOH/DCM. Combined organic layer was dried over Na2SO4 and concentrated under reduced pressure. Obtained crude material was triturated with ether and n-pentane to afford racemic 3 (7.5 g, 55%) as light brick red solid.
1H-NMR: (400 MHz, DMSO-d6): δ 7.99 (s, 1H), 7.31-7.20 (m, 5H), 3.71 (d, J=13.6 Hz, 1H), 3.49 (d, J=6.0 Hz, 1H), 3.36 (d, J=13.6 Hz, 1H), 3.07 (d, J=6.0 Hz, 1H), 2.96 (d, J=6.0 Hz, 1H), 2.91-2.84 (m, 2H), 2.69-2.66 (m, 1H), 2.57-2.53 (m, 1H), 2.40-2.36 (td, J=11.2, 3.2 Hz, 1H), 2.09-2.03 (td, J=11.2, 3.2 Hz, 1H). - To a stirring solution of racemic 3 (1.5 g, 6.5 mmol) in DMF (20 mL) were added Int-B (1.42 g, 6.5 mmol) and HAM (2.96 g, 7.8 mmol) at 0° C. under nitrogen atmosphere. After being stirred for 10 min, DIPEA (2.26 mL, 13 mmol) was added drop wise at 0° C. The reaction mixture was brought to RT and stirred for 3 h. After consumption of the starting material (by TLC), the reaction mixture was diluted with EtOAc (100 mL) and washed with water (3×100 mL). Combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure to afford crude compound which was purified by column chromatography by eluting with 3% MeOH/DCM to obtain racemic compound 4 (1.8 g, 64%) as an off white solid.
- To a stirring solution of racemic compound 4 (1.8 g, 4.17 mmol) in DCM (30 mL) was added TFA (3.3 mL, 41.7 mmol) at 0° C. The reaction mixture was brought to RT and stirred for 2 h. After consumption of the starting material (by TLC), volatiles were concentrated under reduced pressure. Crude material was washed with Et2O (2×50 mL) and obtained as TFA salt. This salt was suspended in DCM (30 mL) followed by neutralization with TEA (1 eq.). Reaction mixture was concentrated under reduced pressure to obtain EL (1 g, racemic crude) as yellow syrup. The racemic was separated by chiral HPLC purification and obtained 300 mg of EL-1 and 3000 mg of EL-2.
- 1H-NMR: (400 MHz, DMSO-d6): δ 8.19 (s, 1H), 7.34-7.24 (m, 5H), 4.63-4.58 (m, 1H), 4.41-3.90 (td, 2H), 3.75 (d, J=13.6 Hz, 1H), 3.57-3.42 (m, 4H), 3.13-3.00 (m, 2H), 2.86-2.84 (m, 1H), 2.51-2.48 (m, 1H), 2.21-2.08 (m, 1H), 1.92-1.81 (m, 2H), 0.97 (d, J=6.0 Hz, 3H).
- 1H-NMR: (400 MHz, DMSO-d6): δ 8.17 (s, 1H), 7.34-7.24 (m, 5H), 4.64-4.52 (m, 1H), 4.27-4.08 (m, 1H), 3.81 (d, J=12.8 Hz, 1H), 3.70 (d, J=12.8 Hz, 2H), 3.52-3.44 (m, 4H), 3.19 (d, J=12.8 Hz, 2H), 2.93 (d, J=5.6 Hz, 1H), 2.32-2.20 (m, 1H), 1.86-1.81 (m, 2H), 0.99 (d, J=6.4 Hz, 3H).
- To a stirring solution of EL-1 (300 mg, 0.91 mmol) in methanol (10 mL) was added 50% wet 10% Pd/C (120 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred RT for 48 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite and the pad was washed with MeOH (150 mL). Obtained filtrate was concentrated under reduced pressure to afford 300 mg crude, which was by preparative HPLC to afford EK-1 (108 mg, 49%) as white hygroscopic solid.
- 1H-NMR: (400 MHz, D2O): δ 4.03-3.97 (m, 3H), 3.93-3.86 (m, 1H), 3.80-3.60 (m, 2H), 3.49-3.33 (m, 2H), 3.27-3.15 (m, 1H), 3.01-2.95 (m, 1H), 1.26-1.23 (m, 3H).
- To a stirring solution of EL-2 (300 mg, 0.91 mmol) in methanol (10 mL) was added 50% wet 10% Pd/C (120 mg) at RT under nitrogen atmosphere. The reaction mixture was stirred RT for 48 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite and the pad was washed with MeOH (150 mL). Obtained filtrate was concentrated under reduced pressure to afford 300 mg crude, which was purified via preparative HPLC to afford EK-2 (106 mg, 49%) as white hygroscopic solid.
- 1H-NMR: (400 MHz, D2O): δ 4.06-4.03 (m, 3H), 3.90-3.81 (m, 2H), 3.73-3.67 (m, 1H), 3.49-3.46 (m, 1H), 3.36-3.32 (m, 1H), 3.27-3.25 (m, 1H), 3.05-3.00 (m, 1H), 1.31-1.27 (m, 3H).
- Following the above procedures, the following compounds were or are prepared. It should be appreciated that the compound in the first column is a different stereoisomer, for example, a different enantiomer and/or different diastereomer, from the compound in the second column.
-
Structure Compound ER-101 ER-102 ER-103 ER-104 ER-105 ER-106 ER-107 ER-108 ER-109 ER-110 ER-111 ER-112 ER-113 ER-114 ER-115 ER-116 ER-117 ER-118 ER-119 ER-120 ER-121 ER-122 ER-123 ER-124 ER-125 ER-126 ER-127 ER-128 ER-129 ER-130 ER-131 ER-132 ER-133 ER-134 ER-135 ER-136 ER-137 ER-138 ER-139 ER-140 ER-141 ER-142 ER-143 ER-144 ER-145 ER-146 ER-147 ER-148 ER-149 ER-150 ER-151 ER-152 ER-153 ER-154 ER-155 ER-156 ER-157 ER-158 ER-159 ER-160 ER-161 ER-162 ER-163 ER-164 ER-165 ER-166 -
- To a stirred suspension of piperazine-2-carboxylic acid (SM) (20 g, 153.7 mmol) in 1,4-dioxane: water (1:1, 400 mL) was added NaHCO3 (19.37 g, 230.5 mmol) followed by Boc-anhydride (42.3 mL, 184.47 mmol) at 0° C. under nitrogen atmosphere. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), volatiles were reduced (200 mL) under vacuum. Obtained crude material of compound 1 (200 mL, ˜35 g) was taken to next step without any further purification.
1H-NMR: (500 MHz, DMSO-d6): δ 10.18 (br s, 1H), 4.08 (br s, 1H), 3.81-3.71 (m, 2H), 3.63 (t, J=6.5 Hz, 1H), 3.17-3.15 (m, 2H), 2.91-2.86 (m, 1H), 1.36 (s, 9H), 1.31-1.26 (m, 0.5H), 0.87-0.84 (m, 0.5H). - To a stirring solution of compound 1 (35 g, 0.152 mol) in 1,4-dioxane:water (1:1, 500 mL) was added NaHCO3 (25.56 g, 0.304 mol) followed by drop wise addition of Cbz-Cl (50% in toluene) (62 mL, 0.182 mol) at 0° C. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (100 mL) and washed with EtOAc (100 mL). Aqueous layer was acidified with 1N HCl solution and extracted with EtOAc (3×100 mL). Organic extracts washed with brine solution (100 mL) and dried over anhydrous Na2SO4, concentrated under reduced pressure to afford compound 2 (46 g, 83%) as thick syrup.
1H-NMR: (500 MHz, DMSO-d6): δ 13.06 (br s, 1H), 7.37-7.30 (m, 5H), 5.12-5.05 (m, 2H), 4.57-4.53 (m, 1H), 4.38-4.32 (m, 1H), 3.86-3.76 (m, 2H), 3.18-3.08 (m, 2H), 2.83 (br s, 1H), 1.37 (s, 9H). - To a stirring solution of compound 2 (46 g, 0.126 mol) in DMF (460 mL) were added K2CO3 (21 g, 0.151 mol) and MeI (12 mL, 0.189 mol) at 0° C. under nitrogen atmosphere. The reaction mixture was brought to RT and stirred for 16 h. After consumption of the starting material (by TLC), the reaction was diluted with water (1 L) and extracted with Et2O (2×300 mL). Combined organic layer was washed with water (100 mL) and brine solution (100 mL), dried over Na2SO4 and concentrated under reduced pressure. Obtained crude material was purified by silica gel column chromatography eluting 10% EtOAc/hexane to afford compound 3 (25 g, 52%) as white solid.
1H-NMR (400 MHz, CDCl3): δ 7.36-7.31 (m, 5H), 5.21-5.11 (m, 2H), 4.78 (s, 0.5H), 4.66-4.50 (m, 1.5H), 4.02-3.88 (m, 2H), 3.68 (s, 3H), 3.24 (hr s, 1H), 3.08 (dd, J=13.6, 3.2 Hz, 1H), 2.83 (br s, 1H), 1.44 (s, 9H). - To a stirring solution of compound 3 (5 g, 13.22 mmol) in THF (50 mL) was added LiHMDS (1M in THF) (20 mL, 19.84 mmol) at −78° C. under nitrogen atmosphere. The reaction mixture was allowed to warm to −20° C. and stirred for 1 h. Again the reaction mixture was cooled to −78° C., bromo acetonitrile (1.4 mL, 19.84 mmol) was added and allowed to warm to RT and stirred for 16 h. Reaction mixture was quenched with NH4Cl solution (200 mL) and extracted with EtOAc (2×200 mL). Combined organic layers were washed with brine solution (100 mL), dried over Na2SO4 and concentrated to obtain crude material which was purified by combi-flash chromatography by eluting 20% EtOAc/n-hexane to afford compound 4 (1.5 g, 27%) as thick syrup.
1H NMR (400 MHz, DMSO-d6): δ 7.42-7.28 (m, 5H), 5.13 (br s, 2H), 4.00 (br d, J=14.3 Hz, 2H), 3.85 (br s, 1H), 3.73-3.53 (m, 3H), 3.40 (br s, 3H), 3.22 (s, 1H), 3.17 (d, J=5.3 Hz, 1H), 1.39 (s, 9H). - To a stirring solution of compound 4 (1.5 g, 3.59 mmol) in MeOH (20 mL) was added Ra—Ni at RT under nitrogen atmosphere. The reaction mixture was stirred at RT for 16 h under H2 atmosphere. After consumption of the starting material (by TLC), the reaction mixture was filtered through a pad of celite and the filtrate was concentrated under vacuum. Obtained crude material was purified by column chromatography by eluting 5% MeOH/DCM to afford racemic EM & EN (600 mg) as a white solid. The racemic mixture was separated by chiral HPLC purification to afford 210 mg of EM and 220 mg of EN.
- 1H NMR (400 MHz, DMSO-d6): δ 7.77 (br s, 1H), 3.68-3.49 (m, 2H), 3.26-3.16 (m, 1H), 3.14-3.04 (m, 1H), 2.87 (br d, J=13.0 Hz, 3H), 2.57-2.52 (m, 1H), 2.14 (br s, 1H), 2.07-1.97 (m, 1H), 1.89-1.78 (m, 1H), 1.39 (s, 9H).
- 1H NMR (400 MHz, DMSO-d6): δ 7.77 (br s, 1H), 3.68-3.49 (m, 2H), 3.26-3.16 (m, 1H), 3.14-3.04 (m, 1H), 2.87 (br d, J=13.0 Hz, 3H), 2.57-2.52 (m, 1H), 2.14 (br s, 1H), 2.07-1.97 (m, 1H), 1.89-1.78 (m, 1H), 1.39 (s, 9H).
- To a stirring solution of racemic EM & EN (200 mg, 0.784 mmol) in CH3CN (2 mL) were added K2CO3 (162 mg, 2.35 mmol) and BnBr (0.1 mL, 0.86 mmol) at room temperature. The reaction mixture was stirred at room temperature for 16 h. After consumption of the starting material (by TLC), the reaction mixture was diluted with EtOAc (20 mL) and filtered through a pad of celite. Obtained filtrate was concentrated under reduced pressure and crude material was purified by silica gel column chromatography eluting 40% EtOAc/hexane to afford 100 mg of MO and MP as a mixture. The racemic compound was separated by chiral HPLC purification and obtained MO and MP.
- 1H NMR (500 MHz, DMSO-d6): δ 7.90 (s, 1H), 7.38 (d, J=7.5 Hz, 2H), 7.28 (t, J=7.5 Hz, 2H), 7.23-7.18 (m, 1H), 3.69 (br d, J=8.1 Hz, 2H), 3.44 (d, J=13.3 Hz, 1H), 3.26 (br d, J=4.6 Hz, 1H), 3.19-3.13 (m, 2H), 3.00-2.72 (m, 2H), 2.44 (br d, J=11.6 Hz, 1H), 2.16-2.05 (m, 2H), 1.87 (dd, J=7.2, 12.5 Hz, 1H), 1.39 (s, 9H).
- 1H NMR (500 MHz, DMSO-d6): δ 7.90 (s, 1H), 7.38 (d, J=7.5 Hz, 2H), 7.28 (t, J=7.5 Hz, 2H), 7.23-7.18 (m, 1H), 3.69 (br d, J=8.1 Hz, 2H), 3.44 (d, J=13.3 Hz, 1H), 3.26 (br d, J=4.6 Hz, 1H), 3.19-3.13 (m, 2H), 3.00-2.72 (m, 2H), 2.44 (br d, J=11.6 Hz, 1H), 2.16-2.05 (m, 2H), 1.87 (dd, J=7.2, 12.5 Hz, 1H), 1.39 (s, 9H).
- Following the above procedures, the following compounds were or are prepared. It should be appreciated that the compound in the first column is a different stereoisomer, for example, a different enantiomer and/or different diastereomer, from the compound in the second column.
-
Structure Compound ES-301 ES-302 ES-303 ES-304 ES-305 ES-306 EM EN ES-307 ES-308 ES-309 ES-310 ES-311 ES-312 ES-313 ES-314 ES-315 ES-316 ES-317 ES-318 MO MP ES-319 ES-320 ES-321 ES-322 ES-323 ES-324 ES-325 ES-326 ES-327 ES-328 ES-329 ES-330 ES-331 ES-332 ES-333 ES-334 ES-335 ES-336 ES-337 ES-338 ES-339 ES-340 ES-341 ES-342 ES-343 ES-344 - This example demonstrates the positive emotional learning (PEL) test. Experiments were conducted as described in Burgdorf et al., “The effect of selective breeding for differential rates of 50-kHz ultrasonic vocalizations on emotional behavior in rats,” Devel. Psychobiol., 51:34-46 (2009). Rat 50-kHz ultrasonic vocalization (hedonic USVs) is a validated model for the study of positive affective state and is best elicited by rough-and-tumble play. 50-kHz ultrasonic vocalizations have previously been shown to be positively correlated with reward and appetitive social behavior in rats, and to reflect a positive affective state.
- The PEL assay measures the acquisition of positive (hedonic) 50-kHz ultrasonic vocalizations (USVs) to a social stimulus, heterospecific rough and tumble play stimulation. Heterospecific rough-and-tumble play stimulation was administered by the experimenter's right hand. One hour after administration of test compound or vehicle negative control (0.5% sodium carboxymethyl cellulose in 0.9% sterile saline vehicle), animals received 3 min of heterospecific rough-and-tumble play that consisted of alternating 15 sec blocks of heterospecific play and 15 sec of no-stimulation. High frequency ultrasonic vocalizations (USVs) were recorded and analyzed by sonogram with Avasoft SASlab Pro (Germany) as previously described by Burgdorf et al., “Positive emotional learning is regulated in the medial prefrontal cortex by GluN2B-containing NMDA receptors,” Neuroscience, 192:515-523 (2011). Frequency modulated 50-kHz US V s that occurred during each of the no-stimulation periods were quantified to measure PEL. Animals were not habituated to play stimulation before testing. Positive emotional learning was measured during the conditioned stimulus (CS) trials preceding the tickle unconditioned stimulus (UCS) trials. Animals received 15 second trials consisting of 6 CS and 6 UCS trials each (3 min total).
- The table below summarizes the findings. As each experiment includes its own vehicle group, an example (typical) vehicle score is shown. Max effect (mean number of 50 kHz USVs per 15 seconds) is reported as ∧: <6.0; *: 6.0-7.6; **: 7.7-10; ***: 10.1-20.
-
Dose Compound Route (mg/kg) Max Effect Vehicle PO NA {circumflex over ( )} EC-2 PO .1 ** ED-2 PO .001-1 *** EL-1 PO .1 *** EG-1 PO .001-1 *** EK-2 PO .1 * - Assays were conducted as described by Moskal et al., “GLYX-13: a monoclonal antibody-derived peptide that acts as an N-methyl-D-aspartate receptor modulator,” Neuropharmacology, 49, 1077-87, 2005. These studies were designed to determine if the test compounds act to facilitate NMDAR activation in NMDAR2A, NMDAR2B, NMDAR2C or NMDAR2D expressing HEK cell membranes as measured by increases in [3H]MK-801 binding.
- In the assay, 300 μg of NMDAR expressing HEK cell membrane extract protein was preincubated for 15 minutes at 25° C. in the presence of saturating concentrations of glutamate (50 μM) and varying concentrations of test compound (1×10−15M−1×10−7M), or 1 mM glycine. Following the addition of 0.3 μCi of [3H]MK-801 (22.5 Ci/mmol), reactions were again incubated for 15 minutes at 25° C. (nonequilibrium conditions). Bound and free [3H]MK-801 were separated via rapid filtration using a Brandel apparatus.
- In analyzing the data, the DPM (disintegrations per minute) of [3H]MK-801 remaining on the filter were measured for each concentration of test compound or for 1 mM glycine. The DPM values for each concentration of a ligand (N=2) were averaged. The baseline value was determined from the best fit curve of the DPM values modeled using the GraphPad program and the log(agonist) vs. response(three parameters) algorithm was then subtracted from all points in the dataset. The % maximal [3H]MK-801 binding was then calculated relative to that of 1 mM glycine: all baseline subtracted DPM values were divided by the average value for 1 mM glycine. The EC50 and % maximal activity were then obtained from the best fit curve of the % maximal [3H]MK-801 binding data modelled using the GraphPad program and the log(agonist) vs. response(three parameters) algorithm.
- The tables below summarize the results for the wild type NMDAR agonists NMDAR2A, NMDAR2B, NMDAR2C, and NMDAR2D, and whether the compound is not an agonist (−), is an agonist (+), or is a strong agonist (++), where column A is based on the % maximal [3H]MK-801 binding relative to 1 mM glycine (−=0; <100%=+; and >100%=++); and column B is based on log EC50 values (0=−; ≥1×10−9M (e.g., −8)=+; and <1×10−9M (e.g., −10)=++).
-
NMDAR2A NMDAR2B Compound A B A B EE-1 − − + ++ EE-2 − − + ++ EB-1 + ++ − − EB-2 + ++ + + EC-1 + ++ − − EC-2 + + ++ ++ EA-1 + ++ + ++ EA-2 − − − − ED-1 − − − − ED-2 − − + ++ EL-1 − − + ++ EL-2 − − + ++ EG-1 + ++ + ++ EK-2 + + + ++ EG-2 − − − − EH-1 + ++ + ++ EH-2 + ++ + ++ EK-1 + ++ − − ER-117 − − + ++ ER-118 − − + ++ ER-141 − − + ++ ER-142 + ++ − − ES-335 + ++ + ++ ES-336 + ++ + ++ ES-301 − − + ++ ES-302 − − ++ ++ EM + ++ ++ + EN − − − − ES-315 + ++ + ++ ES-316 + ++ + ++ ES-319 + ++ + ++ ES-320 − − − − ES-321 + + ++ ++ ES-322 − − − − -
NMDAR2C NMDAR2D Compound A B A B EE-1 − − − − EE-2 + ++ − − EB-1 + + + ++ EB-2 + ++ + ++ EA-1 NR NR − − ED-1 NR NR + ++ ED-2 + ++ + ++ EG-1 ++ + − − EC-1 NR NR + ++ EL-2 + ++ − − EG-2 + ++ + ++ EH-1 − − + ++ EH-2 − − − − EK-1 NR NR + ++ ER-117 − − + ++ ER-118 − − ++ ++ - Sprague Dawley rats were dosed intravenously using a normal saline formulation containing 2 mg/kg of the compounds identified in the below table (except for the compounds marked with an asterisk that were delivered in 1% NMP and 99% normal saline formulation). The table below summarizes the results of the IV pharmacokinetics.
-
Cl C0 AUClast T1/2 (mL/min/ Vss Compound (ng/mL) (hr*ng/mL) (hr) kg) (L/kg) EJ-1 4029.19 3160.28 1.3 10.51 0.62 EJ-2 3415.56 1737 1.59 18.95 1.35 ED-1 1183.98 1022.78 0.79 32.07 1.88 ED-2* 1793.2 806.5 0.54 40.6 1.45 EL-1* 3248.4 4324.9 6.77 7.35 2.12 EG-1 2010.43 622.05 0.43 53.51 0.96 EG-2 1103.29 399.89 0.48 83.3 1.87 EK-1 6459 2260 0.8 15 0.4 ER-117 1673 593 0.52 57.16 1.44 ER-141 4275 1674 0.55 19.88 0.7 ES-336 13682 4772 13.67 6.84 0.73 ES-302 6089 1716 2.36 18.89 1.33 ES-316 2088 1109 2.3 30.6 1.75 ES-319 2769 1792 4.65 18.2 1.74 ES-321 2570 577 0.17 58.6 0.71 - In another experiment, Sprague Dawley rats were dosed per os using a normal saline formulation containing 10 mg/kg of the compounds identified in the table below (except for the compounds marked with an asterisk that were delivered in 1% NMP and 99% normal saline formulation). Plasma, brain, and CSF samples were analyzed at various time points over a 24 hour period. The table below summarizes the results of the oral pharmacokinetics.
-
AUClast CSF Brain Tmax Cmax (hr*ng/ Cmax Cmax Compound (hr) (ng/mL) mL) (ng/mL) (ng/mL) % F EJ-1 0.75 186.14 568.18 NR NR 4 EJ-2 1.33 201.12 811.97 NR NR 9 ED-1 0.67 2801.95 7053.49 NR NR 138 ED-2* 0.25 1563.1 2178.53 178.3 478.5 54 EL-1* 0.5 4977 19441.3 56.9 143 90 EG-1 0.25 700.4 428.79 367.18 334.3 14 EG-2 0.25 3526.63 3082.39 NR NR 100 EK-1 1.67 1625 5739 7 0 51 EK-2 1 1910.5 NR 81.6 NR ER-117 0.5 1540 2054 232 121 69 ER-141 0.83 962 2623 42 NR 31 ES-336 1 2687 9819 143 32 44 ES-302 0.83 339.7 1039 NR NR 12 ES-316 0.25 2770.2 3025.5 430.2 1583 55 ES-319 0.33 4764 6468 520 758 72 ES-321 0.25 795 466 NR NR 16 - A non-clinical in vivo pharmacology study (Porsolt assay) was performed to measure antidepressant-like effects. A negative control (0.5% sodium carboxymethyl cellulose in 0.9% sterile saline vehicle) and a positive control (fluoxetine) are shown for comparison against test compound. The study allowed for the evaluation of the effects of each compound on the Porsolt forced swim test as assessed by the rats' response (reduced floating time) during a 5-minute swimming test.
- Male 2-3 month old Sprague Dawley rats were used (Harlan, Indianapolis, Ind.). Rats were housed in Lucite cages with aspen wood chip bedding, maintained on a 12:12 light:dark cycle (lights on at 5 AM), and given ad libitum access to Purina lab chow (USA) and tap water throughout the study.
- The Porsolt forced swim test adapted for use in rats was performed as described by Burgdorf et al., (The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience 308:202-211, 2015). Animals were placed in a 46 cm tall×20 cm in diameter clear glass tube filled to 30 cm with tap water (23±1° C.) for 15 min on the first day (habituation) and 5 min on the subsequent test day. Positive control fluoxetine was dosed 3 times (24 h, 5 h and 1 h) prior to testing. Animals were tested 1 h post-dosing with the test compounds or vehicle. Animals received a 15 min habituation session 1 day before the 5 min test. A subset of compounds tested at 1 h post-dosing were retested at 1 wk post-dosing in the same sets of animals. Water was changed after every other animal. Animals were videotaped, and floating time as defined as the minimal amount of effort required to keep the animals head above water was scored offline by a blinded experimenter with high inter-rater reliability (Pearson's r>0.9).
- The results for test compounds are shown in the table below. Each compound tested at dose level shown. Significance vs. vehicle group for each experiment is marked. A compound marked “Yes” was found to be statistically significant (p<=0.05) from vehicle at dose level shown. A compound marked “No” was not statistically significant from vehicle. Data was averaged for test compound and vehicle groups (N approximately 8 per group) and the percent reduction in floating for group treated with test compound relative to group treated with vehicle is shown.
-
1 h post-dose 1 wk post-dose Signif- % re- Signif- % re- icance duction Dose icance duction Dose vs. in float (0.1 vs. in float Compound (mg/kg) vehicle time mg/kg) vehicle time Fluoxetine 20 Yes 54% NA NA NA ER-117 0.1 Yes 55.0% NR NR NR ES-335 0.1 Yes 58.5% 0.1 Yes 72.9% ES-336 0.1 Yes 81.6% 0.1 Yes 86.5% ES-315 0.1 Yes 44.1% 0.1 No 25.0% ES-316 0.1 Yes 49.4% 0.1 Yes 42.4% ES-319 0.1 Yes 76.3% 0.1 Yes 60.5% - Equivalents
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure described herein. Such equivalents are intended to be encompassed by the following claims.
- The entire contents of all patents, published patent applications, websites, and other references cited herein are hereby expressly incorporated herein in their entireties by reference.
Claims (25)
1. A compound represented by:
or a pharmaceutically acceptable salt and/or stereoisomer thereof, wherein:
X is NR2;
R1 is C1-C6alkyl;
R2 is C(O)—C1-C6alkyl;
p is 2;
R5 is for each occurrence H;
R3 is H; and
R7 is for each occurrence H
wherein any aforementioned C1-C6 alkyl, independently for each occurrence, is optionally substituted by one, two or three substituents each independently selected from phenyl and halogen, and any aforementioned phenyl, independently for each occurrence, is optionally substituted by one, two or three substituents each independently selected from hydroxyl, halogen, methyl, and CF3.
2.-3. (canceled)
4. The compound of claim 1 , wherein R1 is C1-C6alkyl, optionally substituted by phenyl.
5.-7. (canceled)
8. The compound of claim 4 , wherein R1 is benzyl.
9.-14. (canceled)
15. The compound of claim 1 , wherein R2 is —C(O)—C1-C6alkyl.
16.-27. (canceled)
28. A pharmaceutical composition comprising a compound of claim 1 , and a pharmaceutically acceptable excipient.
29.-34. (canceled)
35. The compound of claim 4 , wherein R1 is benzyl, and the phenyl is optionally substituted by one, two or three substituents each independently selected from halogen, methyl, and CF3.
36. The compound of claim 4 , wherein R1 is benzyl, and the phenyl is substituted by one, two or three substituents each independently selected from halogen, methyl, and CF3.
37. The compound of claim 1 , wherein R2 is —C(O)—C1-C6alkyl and C1-C6 alkyl is substituted by one substituent selected from halogen.
38. The compound of claim 37 , wherein the halogen is fluoro.
39. The compound of claim 37 , wherein the halogen is chloro.
40. The compound of claim 37 , wherein the halogen is bromo.
41. The compound of claim 37 , wherein the halogen is iodo.
42. The compound of claim 35 , wherein R2 is —C(O)—C1-C6alkyl and C1-C6 alkyl is methylene substituted by one substituent selected from halogen.
43. The compound of claim 42 , wherein the halogen is fluoro.
44. The compound of claim 42 , wherein the halogen is chloro.
45. The compound of claim 36 , wherein R2 is —C(O)—C1-C6alkyl and C1-C6 alkyl is substituted by one substituent selected from halogen.
46. The compound of claim 45 , wherein the halogen is fluoro.
47. The compound of claim 45 , wherein the halogen is chloro.
48. The compound of claim 45 , wherein the halogen is bromo.
49. The compound of claim 45 , wherein the halogen is iodo.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/831,544 US20230131402A1 (en) | 2016-08-01 | 2022-06-03 | Spiro-lactam nmda receptor modulators and uses thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662369456P | 2016-08-01 | 2016-08-01 | |
PCT/US2017/044841 WO2018026782A1 (en) | 2016-08-01 | 2017-08-01 | Spiro-lactam nmda receptor modulators and uses thereof |
US201916321903A | 2019-01-30 | 2019-01-30 | |
US17/108,199 US11376250B2 (en) | 2016-08-01 | 2020-12-01 | Spiro-lactam NMDA receptor modulators and uses thereof |
US17/831,544 US20230131402A1 (en) | 2016-08-01 | 2022-06-03 | Spiro-lactam nmda receptor modulators and uses thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/108,199 Continuation US11376250B2 (en) | 2016-08-01 | 2020-12-01 | Spiro-lactam NMDA receptor modulators and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230131402A1 true US20230131402A1 (en) | 2023-04-27 |
Family
ID=59593191
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/321,903 Active US10918637B2 (en) | 2016-08-01 | 2017-08-01 | Spiro-lactam NMDA receptor modulators and uses thereof |
US17/108,199 Active US11376250B2 (en) | 2016-08-01 | 2020-12-01 | Spiro-lactam NMDA receptor modulators and uses thereof |
US17/831,544 Abandoned US20230131402A1 (en) | 2016-08-01 | 2022-06-03 | Spiro-lactam nmda receptor modulators and uses thereof |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/321,903 Active US10918637B2 (en) | 2016-08-01 | 2017-08-01 | Spiro-lactam NMDA receptor modulators and uses thereof |
US17/108,199 Active US11376250B2 (en) | 2016-08-01 | 2020-12-01 | Spiro-lactam NMDA receptor modulators and uses thereof |
Country Status (17)
Country | Link |
---|---|
US (3) | US10918637B2 (en) |
EP (1) | EP3490993B1 (en) |
JP (1) | JP7032378B2 (en) |
KR (1) | KR102465757B1 (en) |
CN (1) | CN109890825B (en) |
AU (1) | AU2017305240B2 (en) |
CA (1) | CA3031539C (en) |
CL (1) | CL2019000247A1 (en) |
CO (1) | CO2019000943A2 (en) |
EA (1) | EA201990428A1 (en) |
ES (1) | ES2973283T3 (en) |
IL (2) | IL286107B2 (en) |
MX (1) | MX2019001321A (en) |
PE (1) | PE20190504A1 (en) |
PH (1) | PH12019500206A1 (en) |
SG (1) | SG11201900551WA (en) |
WO (1) | WO2018026782A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010033757A1 (en) | 2008-09-18 | 2010-03-25 | Naurex, Inc. | Nmda receptor modulators and uses thereof |
PE20151416A1 (en) | 2013-01-29 | 2015-10-10 | Naurex Inc | SPIRO-LACTAMA NMDA RECEIVER MODULATORS AND THEIR USES |
KR101518972B1 (en) | 2014-08-01 | 2015-05-18 | 제이더블유크레아젠 주식회사 | Method of Preparing Dendritic Cell, Dendritic Cell Prepared by the Same and Use Thereof |
IL264496B (en) | 2016-08-01 | 2022-09-01 | Aptinyx Inc | Spiro-lactam and bis-spiro-lactam nmda receptor modulators and uses thereof |
CN109937204B (en) | 2016-08-01 | 2022-11-25 | 阿普廷伊克斯股份有限公司 | Spiro-lactam NMDA receptor modulators and uses thereof |
WO2018026763A1 (en) | 2016-08-01 | 2018-02-08 | Aptinyx Inc. | Spiro-lactam nmda receptor modulators and uses thereof |
AU2017305240B2 (en) | 2016-08-01 | 2021-12-09 | Aptinyx Inc. | Spiro-lactam NMDA receptor modulators and uses thereof |
EP3490990B1 (en) | 2016-08-01 | 2023-12-06 | Tenacia Biotechnology (Hong Kong) Co., Limited | Spiro-lactam nmda modulators and methods of using same |
US11578072B2 (en) | 2018-01-31 | 2023-02-14 | Aptinyx Inc. | Spiro-lactam NMDA receptor modulators and uses thereof |
US12012413B2 (en) | 2019-11-11 | 2024-06-18 | Tenacia Biotechnology (Hong Kong) Co., Limited | Methods of treating painful diabetic peripheral neuropathy |
AU2021284376A1 (en) | 2020-06-03 | 2023-01-05 | Aptinyx Inc. | Spiro-lactam compounds and methods of treating viral infections |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376250B2 (en) * | 2016-08-01 | 2022-07-05 | Aptinyx Inc. | Spiro-lactam NMDA receptor modulators and uses thereof |
Family Cites Families (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0180398A1 (en) | 1984-10-26 | 1986-05-07 | The Regents Of The University Of California | Synthesis of beta-lactam |
CA1305177C (en) | 1987-06-30 | 1992-07-14 | Yasufumi Ohfune | Carboxycyclopropylglycine and process for producing the same |
US4904681A (en) | 1987-12-01 | 1990-02-27 | G. D. Searle & Co. | D-cycloserine and its prodrugs as cognitive enhancers |
EP0360390A1 (en) | 1988-07-25 | 1990-03-28 | Glaxo Group Limited | Spirolactam derivatives |
US5061721A (en) | 1989-03-15 | 1991-10-29 | G. D. Searle & Co. | Composition containing d-cycloserine and d-alanine for memory and learning enhancement or treatment of a cognitive or psychotic disorder |
US5086072A (en) | 1990-06-18 | 1992-02-04 | The United States Of America As Represented By The Department Of Health And Human Services | Treatment of mood disorders with functional antagonists of the glycine/nmda receptor complex |
US5350769A (en) | 1990-10-30 | 1994-09-27 | Ss Pharmaceutical Co., Ltd. | Antiinflammatory gel preparation |
US5168103A (en) | 1991-01-22 | 1992-12-01 | American Home Products Corporation | [[2-(amino-3,4-dioxo-1-cyclobuten-1-yl) amino]alkyl]-acid derivatives |
FR2692268B1 (en) | 1992-06-15 | 1994-08-19 | Rhone Poulenc Rorer Sa | New polypeptides having NMDA receptor activity, nucleic acids encoding these polypeptides and uses. |
SE9301667D0 (en) | 1993-05-14 | 1993-05-14 | Kabi Pharmacia Ab | NEW USE |
US5523323A (en) | 1993-09-14 | 1996-06-04 | Maccecchini; Maria-Luisa | Use of partial agonists of the NMDA receptor to reduce opiate induced tolerance and dependence |
US5605911A (en) | 1995-01-31 | 1997-02-25 | Washington University | Use of alpha-2 adrenergic drugs to prevent adverse effects of NMDA receptor hypofunction (NRH) |
US6335358B1 (en) | 1995-04-12 | 2002-01-01 | President And Fellows Of Harvard College | Lactacystin analogs |
US5741778A (en) | 1996-03-19 | 1998-04-21 | Amgen Inc. | Method for treating Huntington's disease using glial cell line-derived neurotrophic factor (GDNF) protein product |
US5763393A (en) | 1996-05-17 | 1998-06-09 | Neurotherapeutics L.P. | Neuroactive peptides |
PL330348A1 (en) | 1996-06-07 | 1999-05-10 | Zeneca Ltd | Peptidic derivatives |
AU3972797A (en) | 1996-08-02 | 1998-02-25 | Zymogenetics Inc. | Testis-specific insulin homolog polypeptides |
US5902815A (en) | 1996-09-03 | 1999-05-11 | Washington University | Use of 5HT-2A serotonin agonists to prevent adverse effects of NMDA receptor hypofunction |
JP3955345B2 (en) | 1996-09-27 | 2007-08-08 | サントリー株式会社 | New amino acid Daiji Harvein |
AU1585999A (en) | 1997-11-12 | 1999-05-31 | Neurotherapeutics | Methods for the detection and treatment of disease using a glycosyltransferase |
US5952389A (en) | 1998-01-13 | 1999-09-14 | Synchroneuron | Methods of treating tardive dyskinesia and other movement disorders |
US6007841A (en) | 1998-03-13 | 1999-12-28 | Algos Pharmaceutical Corporation | Analgesic composition and method for treating pain |
US6274314B1 (en) | 1998-04-02 | 2001-08-14 | Nyxis Neurotherapies, Inc. | Diagnostic assay for the modified nucleosides pseudouridine, 7-methyladenosine, or 1-methyladenosine |
US6197820B1 (en) | 1998-04-06 | 2001-03-06 | Uab Research Foundation | Use of phenylglycine derivatives to decrease neuronal death caused by brain tumors and brain lesions |
US6025471A (en) | 1998-06-03 | 2000-02-15 | Deghenghi; Romano | Diazaspiro, azepino and azabicyclo therapeutic peptides |
WO2000028090A2 (en) | 1998-11-12 | 2000-05-18 | Nyxis, Inc. | Diagnostic assay for cancer |
US20030064921A1 (en) | 1999-10-27 | 2003-04-03 | The Regents Of The University Of California | Methods and compounds for modulating melanocortin receptor ligand binding and activity |
AU1922301A (en) | 1999-11-17 | 2001-05-30 | Nyxis Neurotherapies, Inc. | Differential gene expression in cancer |
US6521414B2 (en) | 2000-02-01 | 2003-02-18 | Agy Therapeutics, Inc. | Methods for identifying a modulator of the interaction of NMDA receptor with protein tyrosine phosphatase L1 |
AU2001268467A1 (en) | 2000-06-14 | 2001-12-24 | Nyxis Neurotherapies, Inc. | Identification of genes and compounds for treatment of cancer |
AU2001271366A1 (en) | 2000-06-22 | 2002-01-02 | Nyxis Neurotherapies, Inc. | Neuroactive peptides for treatment of hypoxia and related conditions |
GB0018272D0 (en) | 2000-07-25 | 2000-09-13 | Vernalis Research Limited | Chemical compounds IV |
EP1186303A3 (en) | 2000-09-06 | 2003-12-10 | Pfizer Products Inc. | Pharmaceutical combinations, for the treatment of stroke and traumatic brain injury, containing a neutrophil inhibiting factor and an selective NMDA-NR2B receptor antagonist |
IL145209A0 (en) | 2000-09-06 | 2002-06-30 | Pfizer Prod Inc | Pharmaceutical combinations for the treatment of stroke and traumatic brain injury |
UA73619C2 (en) | 2000-12-13 | 2005-08-15 | Pfizer Prod Inc | Stable pharmaceutical compositions of nmda receptor agonist (variants) and method of treatment |
US20020142287A1 (en) | 2000-12-14 | 2002-10-03 | Hirotaka Yamamoto | High throughput assay to detect inhibitors of the map kinase pathway |
WO2002072005A2 (en) | 2001-03-07 | 2002-09-19 | University Of Utah Research Foundation | Linear y-carboxyglutamate rich conotoxins |
AU2002255705A1 (en) | 2001-03-12 | 2002-09-24 | Nyxis Neurotherapies, Inc | Neuroactive peptides for prevention and/or treatment of hypoxia and neuropathic pain |
US20030022253A1 (en) | 2001-07-25 | 2003-01-30 | Nyxis Neurotherapies, Inc. | Method for identifying, isolating and producing neuroactive binding agents and binding agents derived thereby |
MXPA05000370A (en) | 2002-07-05 | 2005-04-19 | Targacept Inc | N-aryl diazaspiracyclic compounds and methods of preparation and use thereof. |
US7273889B2 (en) | 2002-09-25 | 2007-09-25 | Innovative Drug Delivery Systems, Inc. | NMDA receptor antagonist formulation with reduced neurotoxicity |
US7544478B2 (en) | 2003-08-08 | 2009-06-09 | The Burnham Institute | Method for screening for compounds that modulate P16 mediated regulation of NMDA receptors |
US7662856B2 (en) | 2003-08-29 | 2010-02-16 | The University Of Houston System | Compositions having antimycrobial activity including a hydroxamate or a hydroxamate and a hydroxlyamine |
GB0323204D0 (en) | 2003-10-03 | 2003-11-05 | Novartis Ag | Organic compounds |
US20050096311A1 (en) | 2003-10-30 | 2005-05-05 | Cns Response | Compositions and methods for treatment of nervous system disorders |
US20060063707A1 (en) | 2004-09-17 | 2006-03-23 | Lifelike Biomatic, Inc. | Compositions for enhancing memory and methods therefor |
DK2030622T3 (en) | 2005-03-24 | 2011-05-02 | Univ Emory | Dose indication of progesterone in the treatment of traumatic brain injury |
CA2617042A1 (en) * | 2005-07-29 | 2007-02-01 | Takeda Pharmaceutical Company Limited | Spiro-cyclic compound |
EP1945691A2 (en) | 2005-08-26 | 2008-07-23 | Wisconsin Alumni Research Foundation | Poly-beta-peptides from functionalized beta-lactam monomers and antibacterial compositions containing same |
AR059224A1 (en) | 2006-01-31 | 2008-03-19 | Jerini Ag | COMPOUNDS FOR THE INHIBITION OF INTEGRINS AND USE OF THESE |
US20070208001A1 (en) | 2006-03-03 | 2007-09-06 | Jincong Zhuo | Modulators of 11- beta hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same |
CA2663502A1 (en) | 2006-09-15 | 2008-03-20 | Schering Corporation | Azetidinone derivatives and methods of use thereof |
JP2008188285A (en) | 2007-02-06 | 2008-08-21 | Bridgestone Corp | Back pad and vehicle seat |
CN101066945B (en) | 2007-05-25 | 2010-05-19 | 中国科学院上海有机化学研究所 | Process of synthesizing 3-substituted lactan compound |
CN101125817B (en) | 2007-08-03 | 2011-09-14 | 中国科学院上海有机化学研究所 | Method for synthesizing aldehyde substituted small ring amines compounds with high enantioselectivity and 3-substituted lactams compounds with optical activity |
WO2009039390A2 (en) | 2007-09-20 | 2009-03-26 | Naurex Inc. | The development of glycobiology-based therapeutics for the treatment of brain tumors |
AU2009217278B2 (en) | 2008-02-20 | 2015-08-20 | The Children's Hospital Of Philadelphia | Genetic alterations associated with autism and the autistic phenotype and methods of use thereof for the diagnosis and treatment of autism |
US20110105480A1 (en) | 2008-06-24 | 2011-05-05 | Keith Freehauf | Pharmaceutical transdermal compositions and method for treating inflammation in cattle |
RU2011102523A (en) | 2008-06-27 | 2012-08-10 | Ньюросерч А/С (DK) | NEW TETROMETHYL-SUBSTITUTED PIPERIDINE DERIVATIVES AND THEIR APPLICATION AS REVERSE INHIBITION INHIBITORS OF MONOAMINE NEUROMEDIATORS |
KR101647520B1 (en) | 2008-08-07 | 2016-08-10 | 에프. 호프만-라 로슈 아게 | Process for the preparation of a macrocycle |
GB0814991D0 (en) | 2008-08-15 | 2008-09-24 | Glaxo Group Ltd | Compounds |
WO2010033757A1 (en) | 2008-09-18 | 2010-03-25 | Naurex, Inc. | Nmda receptor modulators and uses thereof |
WO2010065709A2 (en) | 2008-12-03 | 2010-06-10 | Amin Khan | Hydroxamic acid derivatives, preparation and therapeutic uses thereof |
DE102009001460B4 (en) | 2009-03-11 | 2010-12-02 | Zf Friedrichshafen Ag | oilcontainer |
US20120178695A1 (en) | 2009-07-02 | 2012-07-12 | Joseph Moskal | Methods of treating neuropathic pain |
US8951968B2 (en) | 2009-10-05 | 2015-02-10 | Northwestern University | Methods of treating depression and other related diseases |
SI2485751T1 (en) | 2009-10-05 | 2014-10-30 | Northwestern University | GLYX-13 for use in a method of treating refractory depression |
KR101692275B1 (en) | 2010-02-11 | 2017-01-04 | 노오쓰웨스턴 유니버시티 | Secondary structure stabilized nmda receptor modulators and uses thereof |
US9101612B2 (en) | 2010-02-11 | 2015-08-11 | Northwestern University | Secondary structure stabilized NMDA receptor modulators and uses thereof |
US8097634B2 (en) | 2010-04-15 | 2012-01-17 | Hoffmann-La Roche Inc. | Azacyclic derivatives |
WO2012021712A1 (en) | 2010-08-12 | 2012-02-16 | Tetraphase Pharmaceuticals, Inc. | Tetracycline analogs |
US9737531B2 (en) | 2012-07-12 | 2017-08-22 | Glytech, Llc | Composition and method for treatment of depression and psychosis in humans |
CN103974712A (en) | 2011-04-27 | 2014-08-06 | 西北大学 | Methods of treating alzheimer's disease, huntington's disease, autism, or other disorders |
US9293690B2 (en) | 2011-06-27 | 2016-03-22 | Koninklijke Philips N.V. | Ultrasound transducer assembly and method of manufacturing the same |
RS60190B1 (en) | 2011-07-27 | 2020-06-30 | Astrazeneca Ab | 2-(2,4,5-substituted-anilino)pyrimidine derivatives as egfr modulators useful for treating cancer |
PE20151416A1 (en) * | 2013-01-29 | 2015-10-10 | Naurex Inc | SPIRO-LACTAMA NMDA RECEIVER MODULATORS AND THEIR USES |
EP2951185B1 (en) * | 2013-01-29 | 2016-12-21 | Aptinyx Inc. | Spiro-lactam nmda receptor modulators and uses thereof |
KR20150110787A (en) * | 2013-01-29 | 2015-10-02 | 노렉스, 인크. | Spiro-lactam nmda receptor modulators and uses thereof |
BR112015018089B1 (en) | 2013-01-29 | 2022-09-20 | Aptinyx Inc | SPIRO-LACTAMA NMDA RECEPTOR MODULATING COMPOUNDS, PHARMACEUTICAL COMPOSITION COMPRISING THEM AND USE THEREOF |
KR20150110586A (en) * | 2013-01-29 | 2015-10-02 | 노렉스, 인크. | Spiro-lactam nmda receptor modulators and uses thereof |
WO2017201285A1 (en) | 2016-05-19 | 2017-11-23 | Aptinyx Inc. | Spiro-lactam nmda receptor modulators and uses thereof |
KR102128675B1 (en) | 2016-05-19 | 2020-06-30 | 앱티닉스 인크. | Spiro-lactam NMDA receptor modulators and uses thereof |
EP3490990B1 (en) | 2016-08-01 | 2023-12-06 | Tenacia Biotechnology (Hong Kong) Co., Limited | Spiro-lactam nmda modulators and methods of using same |
IL264496B (en) | 2016-08-01 | 2022-09-01 | Aptinyx Inc | Spiro-lactam and bis-spiro-lactam nmda receptor modulators and uses thereof |
CN109937204B (en) | 2016-08-01 | 2022-11-25 | 阿普廷伊克斯股份有限公司 | Spiro-lactam NMDA receptor modulators and uses thereof |
WO2018026763A1 (en) | 2016-08-01 | 2018-02-08 | Aptinyx Inc. | Spiro-lactam nmda receptor modulators and uses thereof |
MX2020008106A (en) | 2018-01-31 | 2020-09-25 | Aptinyx Inc | Spiro-lactam nmda receptor modulators and uses thereof. |
US11578072B2 (en) | 2018-01-31 | 2023-02-14 | Aptinyx Inc. | Spiro-lactam NMDA receptor modulators and uses thereof |
US12012413B2 (en) | 2019-11-11 | 2024-06-18 | Tenacia Biotechnology (Hong Kong) Co., Limited | Methods of treating painful diabetic peripheral neuropathy |
-
2017
- 2017-08-01 AU AU2017305240A patent/AU2017305240B2/en not_active Ceased
- 2017-08-01 IL IL286107A patent/IL286107B2/en unknown
- 2017-08-01 JP JP2019505249A patent/JP7032378B2/en active Active
- 2017-08-01 EA EA201990428A patent/EA201990428A1/en unknown
- 2017-08-01 PE PE2019000297A patent/PE20190504A1/en unknown
- 2017-08-01 SG SG11201900551WA patent/SG11201900551WA/en unknown
- 2017-08-01 CN CN201780048070.6A patent/CN109890825B/en active Active
- 2017-08-01 EP EP17751913.9A patent/EP3490993B1/en active Active
- 2017-08-01 US US16/321,903 patent/US10918637B2/en active Active
- 2017-08-01 CA CA3031539A patent/CA3031539C/en active Active
- 2017-08-01 WO PCT/US2017/044841 patent/WO2018026782A1/en unknown
- 2017-08-01 MX MX2019001321A patent/MX2019001321A/en unknown
- 2017-08-01 KR KR1020197005662A patent/KR102465757B1/en active IP Right Grant
- 2017-08-01 ES ES17751913T patent/ES2973283T3/en active Active
-
2019
- 2019-01-27 IL IL264495A patent/IL264495B/en unknown
- 2019-01-28 PH PH12019500206A patent/PH12019500206A1/en unknown
- 2019-01-30 CL CL2019000247A patent/CL2019000247A1/en unknown
- 2019-01-30 CO CONC2019/0000943A patent/CO2019000943A2/en unknown
-
2020
- 2020-12-01 US US17/108,199 patent/US11376250B2/en active Active
-
2022
- 2022-06-03 US US17/831,544 patent/US20230131402A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11376250B2 (en) * | 2016-08-01 | 2022-07-05 | Aptinyx Inc. | Spiro-lactam NMDA receptor modulators and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
SG11201900551WA (en) | 2019-02-27 |
US11376250B2 (en) | 2022-07-05 |
WO2018026782A1 (en) | 2018-02-08 |
IL264495B (en) | 2021-09-30 |
ES2973283T3 (en) | 2024-06-19 |
CO2019000943A2 (en) | 2019-02-08 |
US20210322406A1 (en) | 2021-10-21 |
KR102465757B1 (en) | 2022-11-09 |
EP3490993C0 (en) | 2023-12-06 |
EP3490993A1 (en) | 2019-06-05 |
MX2019001321A (en) | 2019-07-04 |
PH12019500206A1 (en) | 2019-06-17 |
CN109890825B (en) | 2022-03-11 |
US20190175588A1 (en) | 2019-06-13 |
EA201990428A1 (en) | 2019-08-30 |
IL286107B1 (en) | 2024-05-01 |
US10918637B2 (en) | 2021-02-16 |
KR20190033594A (en) | 2019-03-29 |
JP7032378B2 (en) | 2022-03-08 |
IL286107A (en) | 2021-10-31 |
CA3031539C (en) | 2023-11-28 |
CA3031539A1 (en) | 2018-02-08 |
CL2019000247A1 (en) | 2019-06-21 |
AU2017305240B2 (en) | 2021-12-09 |
PE20190504A1 (en) | 2019-04-10 |
EP3490993B1 (en) | 2023-12-06 |
IL286107B2 (en) | 2024-09-01 |
CN109890825A (en) | 2019-06-14 |
AU2017305240A1 (en) | 2019-02-28 |
JP2019527234A (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11376250B2 (en) | Spiro-lactam NMDA receptor modulators and uses thereof | |
US11427585B2 (en) | Spiro-lactam NMDA modulators and methods of using same | |
US11530223B2 (en) | Spiro-lactam NMDA receptor modulators and uses thereof | |
US10253032B2 (en) | Spiro-lactam NMDA receptor modulators and uses thereof | |
US11512051B2 (en) | Spiro-lactam NMDA receptor modulators and uses thereof | |
US20220098211A1 (en) | Spiro-lactam and bis-spiro-lactam nmda receptor modulators and uses thereof | |
WO2019152688A1 (en) | Spiro-lactam nmda receptor modulators and uses thereof | |
WO2024054919A1 (en) | Spiro-lactam nmda receptor modulators and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |