US20230109584A1 - Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers - Google Patents
Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers Download PDFInfo
- Publication number
- US20230109584A1 US20230109584A1 US17/933,353 US202217933353A US2023109584A1 US 20230109584 A1 US20230109584 A1 US 20230109584A1 US 202217933353 A US202217933353 A US 202217933353A US 2023109584 A1 US2023109584 A1 US 2023109584A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- peptides
- composition
- seq
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 596
- 102000004196 processed proteins & peptides Human genes 0.000 title abstract description 304
- 206010028980 Neoplasm Diseases 0.000 title abstract description 212
- 238000009169 immunotherapy Methods 0.000 title abstract description 13
- 208000020816 lung neoplasm Diseases 0.000 title description 52
- 206010058467 Lung neoplasm malignant Diseases 0.000 title description 50
- 201000005202 lung cancer Diseases 0.000 title description 49
- 210000004027 cell Anatomy 0.000 claims abstract description 204
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 110
- 239000000203 mixture Substances 0.000 claims abstract description 49
- 230000014509 gene expression Effects 0.000 claims description 54
- 150000003839 salts Chemical class 0.000 claims description 40
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 32
- 239000002671 adjuvant Substances 0.000 claims description 29
- 239000008194 pharmaceutical composition Substances 0.000 claims description 18
- 238000009472 formulation Methods 0.000 claims description 15
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 12
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 11
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 10
- 108091034117 Oligonucleotide Proteins 0.000 claims description 8
- 239000000872 buffer Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 7
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 claims description 7
- 229950010550 resiquimod Drugs 0.000 claims description 7
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 7
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 6
- 230000001580 bacterial effect Effects 0.000 claims description 6
- 229960004397 cyclophosphamide Drugs 0.000 claims description 6
- 229960002751 imiquimod Drugs 0.000 claims description 6
- BNRNXUUZRGQAQC-UHFFFAOYSA-N sildenafil Chemical compound CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 claims description 6
- 102000006992 Interferon-alpha Human genes 0.000 claims description 5
- 108010047761 Interferon-alpha Proteins 0.000 claims description 5
- 108010002350 Interleukin-2 Proteins 0.000 claims description 5
- 102000000588 Interleukin-2 Human genes 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 5
- 108010065805 Interleukin-12 Proteins 0.000 claims description 4
- 102000013462 Interleukin-12 Human genes 0.000 claims description 4
- 229960000397 bevacizumab Drugs 0.000 claims description 4
- 108010074108 interleukin-21 Proteins 0.000 claims description 4
- 239000007790 solid phase Substances 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 claims description 3
- 108090000467 Interferon-beta Proteins 0.000 claims description 3
- 102000003812 Interleukin-15 Human genes 0.000 claims description 3
- 108090000172 Interleukin-15 Proteins 0.000 claims description 3
- 108010002586 Interleukin-7 Proteins 0.000 claims description 3
- 102000000704 Interleukin-7 Human genes 0.000 claims description 3
- 102000015696 Interleukins Human genes 0.000 claims description 3
- 108010063738 Interleukins Proteins 0.000 claims description 3
- 239000002147 L01XE04 - Sunitinib Substances 0.000 claims description 3
- 238000010647 peptide synthesis reaction Methods 0.000 claims description 3
- 229940115272 polyinosinic:polycytidylic acid Drugs 0.000 claims description 3
- 229960003310 sildenafil Drugs 0.000 claims description 3
- 229960001796 sunitinib Drugs 0.000 claims description 3
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 claims description 3
- 239000000277 virosome Substances 0.000 claims description 3
- 210000005253 yeast cell Anatomy 0.000 claims description 3
- 102000003996 Interferon-beta Human genes 0.000 claims description 2
- 102000003816 Interleukin-13 Human genes 0.000 claims description 2
- 108090000176 Interleukin-13 Proteins 0.000 claims description 2
- 102000013264 Interleukin-23 Human genes 0.000 claims description 2
- 108010065637 Interleukin-23 Proteins 0.000 claims description 2
- 108090000978 Interleukin-4 Proteins 0.000 claims description 2
- 102000004388 Interleukin-4 Human genes 0.000 claims description 2
- 239000003405 delayed action preparation Substances 0.000 claims description 2
- 159000000021 acetate salts Chemical group 0.000 claims 3
- 150000003841 chloride salts Chemical group 0.000 claims 3
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims 2
- 229960001388 interferon-beta Drugs 0.000 claims 1
- 108091008874 T cell receptors Proteins 0.000 abstract description 122
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 abstract description 122
- 108090000623 proteins and genes Proteins 0.000 abstract description 116
- 238000000034 method Methods 0.000 abstract description 96
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 abstract description 71
- 108700018351 Major Histocompatibility Complex Proteins 0.000 abstract description 70
- 201000011510 cancer Diseases 0.000 abstract description 58
- 230000027455 binding Effects 0.000 abstract description 57
- 102000004169 proteins and genes Human genes 0.000 abstract description 57
- 150000007523 nucleic acids Chemical class 0.000 abstract description 43
- 102000039446 nucleic acids Human genes 0.000 abstract description 38
- 108020004707 nucleic acids Proteins 0.000 abstract description 38
- 229960005486 vaccine Drugs 0.000 abstract description 36
- 238000012546 transfer Methods 0.000 abstract description 6
- 230000005975 antitumor immune response Effects 0.000 abstract description 5
- 230000001024 immunotherapeutic effect Effects 0.000 abstract description 5
- 239000008186 active pharmaceutical agent Substances 0.000 abstract description 3
- 210000001519 tissue Anatomy 0.000 description 91
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 86
- 239000000427 antigen Substances 0.000 description 81
- 108091007433 antigens Proteins 0.000 description 77
- 102000036639 antigens Human genes 0.000 description 77
- 208000005017 glioblastoma Diseases 0.000 description 77
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 71
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 67
- 208000003670 Pure Red-Cell Aplasia Diseases 0.000 description 63
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 60
- 241000282414 Homo sapiens Species 0.000 description 57
- 208000000587 small cell lung carcinoma Diseases 0.000 description 56
- 235000018102 proteins Nutrition 0.000 description 55
- 235000001014 amino acid Nutrition 0.000 description 53
- 229920001184 polypeptide Polymers 0.000 description 53
- 229940024606 amino acid Drugs 0.000 description 51
- 150000001413 amino acids Chemical class 0.000 description 50
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 47
- 108010075704 HLA-A Antigens Proteins 0.000 description 47
- 108020004414 DNA Proteins 0.000 description 41
- 239000000523 sample Substances 0.000 description 40
- 235000002639 sodium chloride Nutrition 0.000 description 37
- 210000000612 antigen-presenting cell Anatomy 0.000 description 36
- 208000006265 Renal cell carcinoma Diseases 0.000 description 32
- 239000013598 vector Substances 0.000 description 31
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 29
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 29
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 29
- 102210012669 B*08 Human genes 0.000 description 28
- 108091054437 MHC class I family Proteins 0.000 description 28
- 210000004698 lymphocyte Anatomy 0.000 description 27
- 239000003814 drug Substances 0.000 description 26
- 238000000338 in vitro Methods 0.000 description 26
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 25
- 206010009944 Colon cancer Diseases 0.000 description 24
- 230000005867 T cell response Effects 0.000 description 23
- -1 clones Substances 0.000 description 23
- 239000013604 expression vector Substances 0.000 description 23
- 239000012634 fragment Substances 0.000 description 23
- 238000011282 treatment Methods 0.000 description 23
- 241000501754 Astronotus ocellatus Species 0.000 description 20
- 125000000539 amino acid group Chemical group 0.000 description 20
- 230000028993 immune response Effects 0.000 description 20
- 102000043129 MHC class I family Human genes 0.000 description 19
- 238000001514 detection method Methods 0.000 description 19
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 18
- 108010058607 HLA-B Antigens Proteins 0.000 description 18
- 108091054438 MHC class II family Proteins 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000010186 staining Methods 0.000 description 18
- 102000040430 polynucleotide Human genes 0.000 description 17
- 108091033319 polynucleotide Proteins 0.000 description 17
- 239000002157 polynucleotide Substances 0.000 description 17
- 210000004881 tumor cell Anatomy 0.000 description 17
- 108091023037 Aptamer Proteins 0.000 description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 16
- 108700028369 Alleles Proteins 0.000 description 15
- 101000577881 Homo sapiens Macrophage metalloelastase Proteins 0.000 description 15
- 102100027998 Macrophage metalloelastase Human genes 0.000 description 15
- 239000003446 ligand Substances 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 238000006467 substitution reaction Methods 0.000 description 15
- 238000002560 therapeutic procedure Methods 0.000 description 15
- 101001027602 Homo sapiens Kinesin-like protein KIF26B Proteins 0.000 description 14
- 102100037692 Kinesin-like protein KIF26B Human genes 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 230000005847 immunogenicity Effects 0.000 description 14
- 230000000638 stimulation Effects 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 101001023271 Homo sapiens Laminin subunit gamma-2 Proteins 0.000 description 13
- 102100035159 Laminin subunit gamma-2 Human genes 0.000 description 13
- 210000004443 dendritic cell Anatomy 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 208000019465 refractory cytopenia of childhood Diseases 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 12
- 101001005724 Homo sapiens Melanoma-associated antigen 9 Proteins 0.000 description 12
- 102000043131 MHC class II family Human genes 0.000 description 12
- 102100025079 Melanoma-associated antigen 9 Human genes 0.000 description 12
- 238000013459 approach Methods 0.000 description 12
- 210000000056 organ Anatomy 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 11
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 11
- 102100027881 Tumor protein 63 Human genes 0.000 description 11
- 101710140697 Tumor protein 63 Proteins 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 201000001441 melanoma Diseases 0.000 description 11
- 230000035772 mutation Effects 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 108010008553 HLA-B*07 antigen Proteins 0.000 description 10
- 108060003951 Immunoglobulin Proteins 0.000 description 10
- 108010038807 Oligopeptides Proteins 0.000 description 10
- 102000015636 Oligopeptides Human genes 0.000 description 10
- 206010033128 Ovarian cancer Diseases 0.000 description 10
- 206010061535 Ovarian neoplasm Diseases 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 10
- 208000005718 Stomach Neoplasms Diseases 0.000 description 10
- 208000009956 adenocarcinoma Diseases 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 239000003085 diluting agent Substances 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 239000012636 effector Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 206010017758 gastric cancer Diseases 0.000 description 10
- 210000000987 immune system Anatomy 0.000 description 10
- 102000018358 immunoglobulin Human genes 0.000 description 10
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 10
- 210000004072 lung Anatomy 0.000 description 10
- 201000011549 stomach cancer Diseases 0.000 description 10
- 238000007920 subcutaneous administration Methods 0.000 description 10
- 206010006187 Breast cancer Diseases 0.000 description 9
- 208000026310 Breast neoplasm Diseases 0.000 description 9
- 102100024338 Collagen alpha-3(VI) chain Human genes 0.000 description 9
- 102000004127 Cytokines Human genes 0.000 description 9
- 108090000695 Cytokines Proteins 0.000 description 9
- 101000909506 Homo sapiens Collagen alpha-3(VI) chain Proteins 0.000 description 9
- 101000577877 Homo sapiens Stromelysin-3 Proteins 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- 206010060862 Prostate cancer Diseases 0.000 description 9
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 9
- 206010041067 Small cell lung cancer Diseases 0.000 description 9
- 102100028847 Stromelysin-3 Human genes 0.000 description 9
- 208000002495 Uterine Neoplasms Diseases 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000002163 immunogen Effects 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000003550 marker Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 206010046766 uterine cancer Diseases 0.000 description 9
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 8
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 8
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 8
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 8
- 101001013150 Homo sapiens Interstitial collagenase Proteins 0.000 description 8
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 8
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 8
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 8
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 8
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 208000006990 cholangiocarcinoma Diseases 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 201000004101 esophageal cancer Diseases 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 210000004185 liver Anatomy 0.000 description 8
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 8
- 238000004949 mass spectrometry Methods 0.000 description 8
- 201000002528 pancreatic cancer Diseases 0.000 description 8
- 208000008443 pancreatic carcinoma Diseases 0.000 description 8
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 108020004705 Codon Proteins 0.000 description 7
- 102100022204 DNA-dependent protein kinase catalytic subunit Human genes 0.000 description 7
- 102100027043 Discoidin, CUB and LCCL domain-containing protein 2 Human genes 0.000 description 7
- 102100023637 FYVE, RhoGEF and PH domain-containing protein 6 Human genes 0.000 description 7
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 7
- 241000238631 Hexapoda Species 0.000 description 7
- 101000619536 Homo sapiens DNA-dependent protein kinase catalytic subunit Proteins 0.000 description 7
- 101000911787 Homo sapiens Discoidin, CUB and LCCL domain-containing protein 2 Proteins 0.000 description 7
- 101000827814 Homo sapiens FYVE, RhoGEF and PH domain-containing protein 6 Proteins 0.000 description 7
- 101001108932 Homo sapiens Nuclear pore complex protein Nup155 Proteins 0.000 description 7
- 101000686031 Homo sapiens Proto-oncogene tyrosine-protein kinase ROS Proteins 0.000 description 7
- 102100021512 Nuclear pore complex protein Nup155 Human genes 0.000 description 7
- 102100023347 Proto-oncogene tyrosine-protein kinase ROS Human genes 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 108020001507 fusion proteins Proteins 0.000 description 7
- 102000037865 fusion proteins Human genes 0.000 description 7
- 201000010175 gallbladder cancer Diseases 0.000 description 7
- 210000002443 helper t lymphocyte Anatomy 0.000 description 7
- 238000001356 surgical procedure Methods 0.000 description 7
- HLHSUNWAPXINQU-GQCTYLIASA-N (E)-3-(3,4-dihydroxyphenyl)-N-prop-2-ynylprop-2-enamide Chemical compound OC=1C=C(C=CC=1O)/C=C/C(=O)NCC#C HLHSUNWAPXINQU-GQCTYLIASA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 206010004593 Bile duct cancer Diseases 0.000 description 6
- 208000003174 Brain Neoplasms Diseases 0.000 description 6
- 241000701022 Cytomegalovirus Species 0.000 description 6
- 101000662909 Homo sapiens T cell receptor beta constant 1 Proteins 0.000 description 6
- 101000662902 Homo sapiens T cell receptor beta constant 2 Proteins 0.000 description 6
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 6
- 102100024629 Laminin subunit beta-3 Human genes 0.000 description 6
- 208000035823 Non-specific autoimmune cerebellar ataxia without characteristic antibodies Diseases 0.000 description 6
- 102100037272 T cell receptor beta constant 1 Human genes 0.000 description 6
- 102100037298 T cell receptor beta constant 2 Human genes 0.000 description 6
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 6
- 230000000890 antigenic effect Effects 0.000 description 6
- 208000026900 bile duct neoplasm Diseases 0.000 description 6
- 239000000090 biomarker Substances 0.000 description 6
- 210000000601 blood cell Anatomy 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 6
- 201000010989 colorectal carcinoma Diseases 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 6
- 238000007912 intraperitoneal administration Methods 0.000 description 6
- 108010028309 kalinin Proteins 0.000 description 6
- 210000004962 mammalian cell Anatomy 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 229920000771 poly (alkylcyanoacrylate) Polymers 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 201000005112 urinary bladder cancer Diseases 0.000 description 6
- 238000002255 vaccination Methods 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 5
- 101000877857 Homo sapiens Protein FAM83A Proteins 0.000 description 5
- 101000737828 Homo sapiens Threonylcarbamoyladenosine tRNA methylthiotransferase Proteins 0.000 description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 5
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 102100035446 Protein FAM83A Human genes 0.000 description 5
- 102100035310 Threonylcarbamoyladenosine tRNA methylthiotransferase Human genes 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 230000034994 death Effects 0.000 description 5
- 231100000517 death Toxicity 0.000 description 5
- 210000004602 germ cell Anatomy 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 208000014018 liver neoplasm Diseases 0.000 description 5
- 239000012931 lyophilized formulation Substances 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 238000002823 phage display Methods 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000003053 toxin Substances 0.000 description 5
- 231100000765 toxin Toxicity 0.000 description 5
- 108700012359 toxins Proteins 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 102100032296 A disintegrin and metalloproteinase with thrombospondin motifs 12 Human genes 0.000 description 4
- 108091005671 ADAMTS12 Proteins 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108010032389 CBFA2T2 myeloid-transforming gene-related protein Proteins 0.000 description 4
- 102100023344 Centromere protein F Human genes 0.000 description 4
- 102100027995 Collagenase 3 Human genes 0.000 description 4
- 102000036364 Cullin Ring E3 Ligases Human genes 0.000 description 4
- 108091007045 Cullin Ring E3 Ligases Proteins 0.000 description 4
- 102000006354 HLA-DR Antigens Human genes 0.000 description 4
- 108010058597 HLA-DR Antigens Proteins 0.000 description 4
- 101000907941 Homo sapiens Centromere protein F Proteins 0.000 description 4
- 101000577887 Homo sapiens Collagenase 3 Proteins 0.000 description 4
- 101001046687 Homo sapiens Integrin alpha-E Proteins 0.000 description 4
- 101001027143 Homo sapiens Kelch domain-containing protein 7B Proteins 0.000 description 4
- 101001017764 Homo sapiens Lipopolysaccharide-responsive and beige-like anchor protein Proteins 0.000 description 4
- 101001005719 Homo sapiens Melanoma-associated antigen 3 Proteins 0.000 description 4
- 101000969812 Homo sapiens Multidrug resistance-associated protein 1 Proteins 0.000 description 4
- 101001128138 Homo sapiens NACHT, LRR and PYD domains-containing protein 2 Proteins 0.000 description 4
- 101000712977 Homo sapiens Ras association domain-containing protein 6 Proteins 0.000 description 4
- 101000844217 Homo sapiens Thioredoxin domain-containing protein 16 Proteins 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 102100022341 Integrin alpha-E Human genes 0.000 description 4
- 102100037648 Kelch domain-containing protein 7B Human genes 0.000 description 4
- 102100033353 Lipopolysaccharide-responsive and beige-like anchor protein Human genes 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 102100025082 Melanoma-associated antigen 3 Human genes 0.000 description 4
- 102100021339 Multidrug resistance-associated protein 1 Human genes 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 102100031897 NACHT, LRR and PYD domains-containing protein 2 Human genes 0.000 description 4
- 108060006580 PRAME Proteins 0.000 description 4
- 102000036673 PRAME Human genes 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 102100024949 Protein CBFA2T2 Human genes 0.000 description 4
- 102100033216 Ras association domain-containing protein 6 Human genes 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 102100032034 Thioredoxin domain-containing protein 16 Human genes 0.000 description 4
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 4
- 102000002689 Toll-like receptor Human genes 0.000 description 4
- 108020000411 Toll-like receptor Proteins 0.000 description 4
- 102100033117 Toll-like receptor 9 Human genes 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 230000000735 allogeneic effect Effects 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 210000001185 bone marrow Anatomy 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 4
- 238000013467 fragmentation Methods 0.000 description 4
- 238000006062 fragmentation reaction Methods 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 230000002147 killing effect Effects 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 210000001550 testis Anatomy 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 210000003359 CD4-positive helper T lymphocyte Anatomy 0.000 description 3
- 102100025473 Carcinoembryonic antigen-related cell adhesion molecule 6 Human genes 0.000 description 3
- 108010078791 Carrier Proteins Proteins 0.000 description 3
- 102100040484 Claspin Human genes 0.000 description 3
- 102100039551 Collagen triple helix repeat-containing protein 1 Human genes 0.000 description 3
- 102100035300 Cystine/glutamate transporter Human genes 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 3
- 102100024739 E3 ubiquitin-protein ligase UHRF1 Human genes 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 101000914326 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 6 Proteins 0.000 description 3
- 101000750011 Homo sapiens Claspin Proteins 0.000 description 3
- 101000746121 Homo sapiens Collagen triple helix repeat-containing protein 1 Proteins 0.000 description 3
- 101000760417 Homo sapiens E3 ubiquitin-protein ligase UHRF1 Proteins 0.000 description 3
- 101000606465 Homo sapiens Inactive tyrosine-protein kinase 7 Proteins 0.000 description 3
- 101000599782 Homo sapiens Insulin-like growth factor 2 mRNA-binding protein 3 Proteins 0.000 description 3
- 101001078133 Homo sapiens Integrin alpha-2 Proteins 0.000 description 3
- 101001026977 Homo sapiens Keratin, type II cuticular Hb6 Proteins 0.000 description 3
- 101000972489 Homo sapiens Laminin subunit alpha-1 Proteins 0.000 description 3
- 101000636209 Homo sapiens Matrix-remodeling-associated protein 5 Proteins 0.000 description 3
- 101001005720 Homo sapiens Melanoma-associated antigen 4 Proteins 0.000 description 3
- 101001005722 Homo sapiens Melanoma-associated antigen 6 Proteins 0.000 description 3
- 101001005723 Homo sapiens Melanoma-associated antigen 8 Proteins 0.000 description 3
- 101001057156 Homo sapiens Melanoma-associated antigen C2 Proteins 0.000 description 3
- 101001128132 Homo sapiens NACHT, LRR and PYD domains-containing protein 7 Proteins 0.000 description 3
- 101001095308 Homo sapiens Periostin Proteins 0.000 description 3
- 101001067189 Homo sapiens Plexin-A1 Proteins 0.000 description 3
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 description 3
- 101000730612 Homo sapiens Puratrophin-1 Proteins 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 102100039813 Inactive tyrosine-protein kinase 7 Human genes 0.000 description 3
- 102100037920 Insulin-like growth factor 2 mRNA-binding protein 3 Human genes 0.000 description 3
- 102100025305 Integrin alpha-2 Human genes 0.000 description 3
- 102100037382 Keratin, type II cuticular Hb6 Human genes 0.000 description 3
- 102100021533 Kita-kyushu lung cancer antigen 1 Human genes 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- 102100022746 Laminin subunit alpha-1 Human genes 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 102100030776 Matrix-remodeling-associated protein 5 Human genes 0.000 description 3
- 102100025077 Melanoma-associated antigen 4 Human genes 0.000 description 3
- 102100025075 Melanoma-associated antigen 6 Human genes 0.000 description 3
- 102100025076 Melanoma-associated antigen 8 Human genes 0.000 description 3
- 102100027252 Melanoma-associated antigen C2 Human genes 0.000 description 3
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 3
- 102100031902 NACHT, LRR and PYD domains-containing protein 7 Human genes 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 108090000526 Papain Proteins 0.000 description 3
- 102100037765 Periostin Human genes 0.000 description 3
- 102100034382 Plexin-A1 Human genes 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 102100022019 Pregnancy-specific beta-1-glycoprotein 2 Human genes 0.000 description 3
- 102100021983 Pregnancy-specific beta-1-glycoprotein 9 Human genes 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 102100032590 Puratrophin-1 Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108091006241 SLC7A11 Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108010091356 Tumor Protein p73 Proteins 0.000 description 3
- 102100030018 Tumor protein p73 Human genes 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000005422 blasting Methods 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 238000002619 cancer immunotherapy Methods 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 231100000504 carcinogenesis Toxicity 0.000 description 3
- 230000036755 cellular response Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 210000003238 esophagus Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 108010028930 invariant chain Proteins 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 229940055729 papain Drugs 0.000 description 3
- 235000019834 papain Nutrition 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 230000001817 pituitary effect Effects 0.000 description 3
- 210000002826 placenta Anatomy 0.000 description 3
- 108700002563 poly ICLC Proteins 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004393 prognosis Methods 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- DTMHTVJOHYTUHE-UHFFFAOYSA-N thiocyanogen Chemical compound N#CSSC#N DTMHTVJOHYTUHE-UHFFFAOYSA-N 0.000 description 3
- 210000001541 thymus gland Anatomy 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- DRHZYJAUECRAJM-DWSYSWFDSA-N (2s,3s,4s,5r,6r)-6-[[(3s,4s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-[(2s,3r,4s,5r,6r)-3-[(2s,3r,4s,5r,6s)-5-[(2s,3r,4s,5r)-4-[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-3,5-dihydroxyoxan-2-yl]oxy-3,4-dihydroxy-6-methyloxan-2-yl]oxy-5-[(3s,5s, Chemical compound O([C@H]1[C@H](O)[C@H](O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@H]5CC(C)(C)CC[C@@]5([C@@H](C[C@@]4(C)[C@]3(C)CC[C@H]2[C@@]1(C=O)C)O)C(=O)O[C@@H]1O[C@H](C)[C@@H]([C@@H]([C@H]1O[C@H]1[C@@H]([C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@](O)(CO)CO3)O)[C@H](O)CO2)O)[C@H](C)O1)O)O)OC(=O)C[C@@H](O)C[C@H](OC(=O)C[C@@H](O)C[C@@H]([C@@H](C)CC)O[C@H]1[C@@H]([C@@H](O)[C@H](CO)O1)O)[C@@H](C)CC)C(O)=O)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O DRHZYJAUECRAJM-DWSYSWFDSA-N 0.000 description 2
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- JVJFIQYAHPMBBX-UHFFFAOYSA-N 4-hydroxynonenal Chemical compound CCCCCC(O)C=CC=O JVJFIQYAHPMBBX-UHFFFAOYSA-N 0.000 description 2
- 102100030841 AT-rich interactive domain-containing protein 4A Human genes 0.000 description 2
- 102100022142 Achaete-scute homolog 1 Human genes 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 102100021694 BTB/POZ domain-containing protein 17 Human genes 0.000 description 2
- 102100027314 Beta-2-microglobulin Human genes 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 108091058559 CXorf61 Proteins 0.000 description 2
- 102100024153 Cadherin-15 Human genes 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 102100031762 Cancer/testis antigen family 45 member A3 Human genes 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102100039505 Choline transporter-like protein 5 Human genes 0.000 description 2
- 102100031457 Collagen alpha-1(V) chain Human genes 0.000 description 2
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 102100028624 Cytoskeleton-associated protein 5 Human genes 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 102100022307 DNA polymerase alpha catalytic subunit Human genes 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 2
- 102100032297 Dynein axonemal heavy chain 17 Human genes 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 206010014733 Endometrial cancer Diseases 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 102100023387 Endoribonuclease Dicer Human genes 0.000 description 2
- 102100032029 Epidermal growth factor-like protein 6 Human genes 0.000 description 2
- 102100026353 F-box-like/WD repeat-containing protein TBL1XR1 Human genes 0.000 description 2
- 108010040721 Flagellin Proteins 0.000 description 2
- 102100030456 Follistatin-related protein 4 Human genes 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 102100037854 G1/S-specific cyclin-E2 Human genes 0.000 description 2
- 102000017700 GABRP Human genes 0.000 description 2
- 102100023525 Glucoside xylosyltransferase 1 Human genes 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 102100036700 Golgi reassembly-stacking protein 2 Human genes 0.000 description 2
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 description 2
- 108010052199 HLA-C Antigens Proteins 0.000 description 2
- 102100029284 Hepatocyte nuclear factor 3-beta Human genes 0.000 description 2
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 2
- 101000792933 Homo sapiens AT-rich interactive domain-containing protein 4A Proteins 0.000 description 2
- 101000901099 Homo sapiens Achaete-scute homolog 1 Proteins 0.000 description 2
- 101000896707 Homo sapiens BTB/POZ domain-containing protein 17 Proteins 0.000 description 2
- 101000762242 Homo sapiens Cadherin-15 Proteins 0.000 description 2
- 101000714553 Homo sapiens Cadherin-3 Proteins 0.000 description 2
- 101000940803 Homo sapiens Cancer/testis antigen family 45 member A3 Proteins 0.000 description 2
- 101000941708 Homo sapiens Collagen alpha-1(V) chain Proteins 0.000 description 2
- 101000766864 Homo sapiens Cytoskeleton-associated protein 5 Proteins 0.000 description 2
- 101000902558 Homo sapiens DNA polymerase alpha catalytic subunit Proteins 0.000 description 2
- 101001016203 Homo sapiens Dynein axonemal heavy chain 17 Proteins 0.000 description 2
- 101000907904 Homo sapiens Endoribonuclease Dicer Proteins 0.000 description 2
- 101000921196 Homo sapiens Epidermal growth factor-like protein 6 Proteins 0.000 description 2
- 101000835675 Homo sapiens F-box-like/WD repeat-containing protein TBL1XR1 Proteins 0.000 description 2
- 101001062597 Homo sapiens Follistatin-related protein 4 Proteins 0.000 description 2
- 101000738575 Homo sapiens G1/S-specific cyclin-E2 Proteins 0.000 description 2
- 101000822394 Homo sapiens Gamma-aminobutyric acid receptor subunit pi Proteins 0.000 description 2
- 101000906417 Homo sapiens Glucoside xylosyltransferase 1 Proteins 0.000 description 2
- 101001072495 Homo sapiens Golgi reassembly-stacking protein 2 Proteins 0.000 description 2
- 101001062347 Homo sapiens Hepatocyte nuclear factor 3-beta Proteins 0.000 description 2
- 101000599453 Homo sapiens Importin-9 Proteins 0.000 description 2
- 101000614627 Homo sapiens Keratin, type I cytoskeletal 13 Proteins 0.000 description 2
- 101000998027 Homo sapiens Keratin, type I cytoskeletal 17 Proteins 0.000 description 2
- 101001007027 Homo sapiens Keratin, type II cuticular Hb1 Proteins 0.000 description 2
- 101001026976 Homo sapiens Keratin, type II cuticular Hb3 Proteins 0.000 description 2
- 101001026979 Homo sapiens Keratin, type II cuticular Hb5 Proteins 0.000 description 2
- 101001112162 Homo sapiens Kinetochore protein NDC80 homolog Proteins 0.000 description 2
- 101001055106 Homo sapiens Metastasis-associated in colon cancer protein 1 Proteins 0.000 description 2
- 101000578920 Homo sapiens Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 Proteins 0.000 description 2
- 101000634526 Homo sapiens Nucleolar pre-ribosomal-associated protein 1 Proteins 0.000 description 2
- 101001135738 Homo sapiens Parathyroid hormone-related protein Proteins 0.000 description 2
- 101000886222 Homo sapiens Polypeptide N-acetylgalactosaminyltransferase 5 Proteins 0.000 description 2
- 101001047102 Homo sapiens Potassium voltage-gated channel subfamily G member 1 Proteins 0.000 description 2
- 101001047098 Homo sapiens Potassium voltage-gated channel subfamily G member 2 Proteins 0.000 description 2
- 101000617708 Homo sapiens Pregnancy-specific beta-1-glycoprotein 1 Proteins 0.000 description 2
- 101000617727 Homo sapiens Pregnancy-specific beta-1-glycoprotein 4 Proteins 0.000 description 2
- 101000617720 Homo sapiens Pregnancy-specific beta-1-glycoprotein 5 Proteins 0.000 description 2
- 101000617723 Homo sapiens Pregnancy-specific beta-1-glycoprotein 8 Proteins 0.000 description 2
- 101000952073 Homo sapiens Probable ATP-dependent RNA helicase DDX60-like Proteins 0.000 description 2
- 101000817237 Homo sapiens Protein ECT2 Proteins 0.000 description 2
- 101000877861 Homo sapiens Protein FAM83B Proteins 0.000 description 2
- 101000801295 Homo sapiens Protein O-mannosyl-transferase TMTC3 Proteins 0.000 description 2
- 101000657326 Homo sapiens Protein TANC2 Proteins 0.000 description 2
- 101000702132 Homo sapiens Protein spinster homolog 1 Proteins 0.000 description 2
- 101000944945 Homo sapiens Putative keratin-87 protein Proteins 0.000 description 2
- 101000994788 Homo sapiens Ras GTPase-activating-like protein IQGAP3 Proteins 0.000 description 2
- 101000984533 Homo sapiens Ribosome biogenesis protein BMS1 homolog Proteins 0.000 description 2
- 101000875498 Homo sapiens Serine protease FAM111B Proteins 0.000 description 2
- 101000616172 Homo sapiens Splicing factor 3B subunit 3 Proteins 0.000 description 2
- 101000798076 Homo sapiens T cell receptor delta constant Proteins 0.000 description 2
- 101000835782 Homo sapiens Tudor domain-containing protein 5 Proteins 0.000 description 2
- 101000667110 Homo sapiens Vacuolar protein sorting-associated protein 13B Proteins 0.000 description 2
- 101000626703 Homo sapiens YEATS domain-containing protein 2 Proteins 0.000 description 2
- 101000818845 Homo sapiens Zinc finger protein 439 Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 102100037961 Importin-9 Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- 102100040487 Keratin, type I cytoskeletal 13 Human genes 0.000 description 2
- 102100033511 Keratin, type I cytoskeletal 17 Human genes 0.000 description 2
- 102100028340 Keratin, type II cuticular Hb1 Human genes 0.000 description 2
- 102100037379 Keratin, type II cuticular Hb3 Human genes 0.000 description 2
- 102100037381 Keratin, type II cuticular Hb5 Human genes 0.000 description 2
- 102100023890 Kinetochore protein NDC80 homolog Human genes 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 102100026892 Metastasis-associated in colon cancer protein 1 Human genes 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 2
- 102100028322 Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 Human genes 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 102100029053 Nucleolar pre-ribosomal-associated protein 1 Human genes 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102100036899 Parathyroid hormone-related protein Human genes 0.000 description 2
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 2
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 102100039697 Polypeptide N-acetylgalactosaminyltransferase 5 Human genes 0.000 description 2
- 102100022783 Potassium voltage-gated channel subfamily G member 1 Human genes 0.000 description 2
- 102100022811 Potassium voltage-gated channel subfamily G member 2 Human genes 0.000 description 2
- 102100022021 Pregnancy-specific beta-1-glycoprotein 4 Human genes 0.000 description 2
- 102100022025 Pregnancy-specific beta-1-glycoprotein 5 Human genes 0.000 description 2
- 102100022018 Pregnancy-specific beta-1-glycoprotein 8 Human genes 0.000 description 2
- 102100037440 Probable ATP-dependent RNA helicase DDX60-like Human genes 0.000 description 2
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 2
- 102100040437 Protein ECT2 Human genes 0.000 description 2
- 102100035443 Protein FAM83B Human genes 0.000 description 2
- 102100033736 Protein O-mannosyl-transferase TMTC3 Human genes 0.000 description 2
- 102100034784 Protein TANC2 Human genes 0.000 description 2
- 102100033527 Putative keratin-87 protein Human genes 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 230000004570 RNA-binding Effects 0.000 description 2
- 102100034417 Ras GTPase-activating-like protein IQGAP3 Human genes 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 102100027057 Ribosome biogenesis protein BMS1 homolog Human genes 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 108091006959 SLC35D3 Proteins 0.000 description 2
- 108091007564 SLC44A5 Proteins 0.000 description 2
- 102100035992 Serine protease FAM111B Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102100032281 Solute carrier family 35 member D3 Human genes 0.000 description 2
- 241000713880 Spleen focus-forming virus Species 0.000 description 2
- 102100021816 Splicing factor 3B subunit 3 Human genes 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 102100032272 T cell receptor delta constant Human genes 0.000 description 2
- 108700042076 T-Cell Receptor alpha Genes Proteins 0.000 description 2
- 108700042077 T-Cell Receptor beta Genes Proteins 0.000 description 2
- 102000003610 TRPM8 Human genes 0.000 description 2
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 101150111302 Trpm8 gene Proteins 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 102100026393 Tudor domain-containing protein 5 Human genes 0.000 description 2
- 102100039113 Vacuolar protein sorting-associated protein 13B Human genes 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 102000013387 Vitamin D3 24-Hydroxylase Human genes 0.000 description 2
- 108010026102 Vitamin D3 24-Hydroxylase Proteins 0.000 description 2
- 102100024781 YEATS domain-containing protein 2 Human genes 0.000 description 2
- 108010088665 Zinc Finger Protein Gli2 Proteins 0.000 description 2
- 102100021414 Zinc finger protein 439 Human genes 0.000 description 2
- 102100035558 Zinc finger protein GLI2 Human genes 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- PAAZCQANMCYGAW-UHFFFAOYSA-N acetic acid;2,2,2-trifluoroacetic acid Chemical class CC(O)=O.OC(=O)C(F)(F)F PAAZCQANMCYGAW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 2
- 210000000013 bile duct Anatomy 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 239000008364 bulk solution Substances 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 230000021235 carbamoylation Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 229940047120 colony stimulating factors Drugs 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- XVOYSCVBGLVSOL-UHFFFAOYSA-N cysteic acid Chemical compound OC(=O)C(N)CS(O)(=O)=O XVOYSCVBGLVSOL-UHFFFAOYSA-N 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- OQALFHMKVSJFRR-UHFFFAOYSA-N dityrosine Chemical compound OC(=O)C(N)CC1=CC=C(O)C(C=2C(=CC=C(CC(N)C(O)=O)C=2)O)=C1 OQALFHMKVSJFRR-UHFFFAOYSA-N 0.000 description 2
- 229940126534 drug product Drugs 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 102000054766 genetic haplotypes Human genes 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 229940124452 immunizing agent Drugs 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 239000000568 immunological adjuvant Substances 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 210000002752 melanocyte Anatomy 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 108091005601 modified peptides Proteins 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229940023041 peptide vaccine Drugs 0.000 description 2
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 2
- 210000004303 peritoneum Anatomy 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- OJUGVDODNPJEEC-UHFFFAOYSA-N phenylglyoxal Chemical compound O=CC(=O)C1=CC=CC=C1 OJUGVDODNPJEEC-UHFFFAOYSA-N 0.000 description 2
- 210000004224 pleura Anatomy 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 108010000627 pregnancy-specific beta-1-glycoprotein 7 Proteins 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000009145 protein modification Effects 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 108010038379 sargramostim Proteins 0.000 description 2
- 229960002530 sargramostim Drugs 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000002626 targeted therapy Methods 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 108010060175 trypsinogen activation peptide Proteins 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 210000000626 ureter Anatomy 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- YUXKOWPNKJSTPQ-AXWWPMSFSA-N (2s,3r)-2-amino-3-hydroxybutanoic acid;(2s)-2-amino-3-hydroxypropanoic acid Chemical compound OC[C@H](N)C(O)=O.C[C@@H](O)[C@H](N)C(O)=O YUXKOWPNKJSTPQ-AXWWPMSFSA-N 0.000 description 1
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- DMQYDVBIPXAAJA-VHXPQNKSSA-N (3z)-5-[(1-ethylpiperidin-4-yl)amino]-3-[(3-fluorophenyl)-(5-methyl-1h-imidazol-2-yl)methylidene]-1h-indol-2-one Chemical compound C1CN(CC)CCC1NC1=CC=C(NC(=O)\C2=C(/C=3NC=C(C)N=3)C=3C=C(F)C=CC=3)C2=C1 DMQYDVBIPXAAJA-VHXPQNKSSA-N 0.000 description 1
- 229910019670 (NH4)H2PO4 Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical class CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- KFDPCYZHENQOBV-UHFFFAOYSA-N 2-(bromomethyl)-4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1CBr KFDPCYZHENQOBV-UHFFFAOYSA-N 0.000 description 1
- VUCNQOPCYRJCGQ-UHFFFAOYSA-N 2-[4-(hydroxymethyl)phenoxy]acetic acid Chemical class OCC1=CC=C(OCC(O)=O)C=C1 VUCNQOPCYRJCGQ-UHFFFAOYSA-N 0.000 description 1
- IOJUJUOXKXMJNF-UHFFFAOYSA-N 2-acetyloxybenzoic acid [3-(nitrooxymethyl)phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)OC1=CC=CC(CO[N+]([O-])=O)=C1 IOJUJUOXKXMJNF-UHFFFAOYSA-N 0.000 description 1
- IZQAUUVBKYXMET-UHFFFAOYSA-N 2-bromoethanamine Chemical compound NCCBr IZQAUUVBKYXMET-UHFFFAOYSA-N 0.000 description 1
- JQPFYXFVUKHERX-UHFFFAOYSA-N 2-hydroxy-2-cyclohexen-1-one Natural products OC1=CCCCC1=O JQPFYXFVUKHERX-UHFFFAOYSA-N 0.000 description 1
- NEWKHUASLBMWRE-UHFFFAOYSA-N 2-methyl-6-(phenylethynyl)pyridine Chemical compound CC1=CC=CC(C#CC=2C=CC=CC=2)=N1 NEWKHUASLBMWRE-UHFFFAOYSA-N 0.000 description 1
- MWOOKDULMBMMPN-UHFFFAOYSA-N 3-(2-ethyl-1,2-oxazol-2-ium-5-yl)benzenesulfonate Chemical compound O1[N+](CC)=CC=C1C1=CC=CC(S([O-])(=O)=O)=C1 MWOOKDULMBMMPN-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- HXHAJRMTJXHJJZ-UHFFFAOYSA-N 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-(4-pyrrolidin-1-ylbutylcarbamoylamino)-1,2-thiazole-4-carboxamide Chemical compound S1N=C(OCC=2C(=CC(Br)=CC=2F)F)C(C(=O)N)=C1NC(=O)NCCCCN1CCCC1 HXHAJRMTJXHJJZ-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- XXJWYDDUDKYVKI-UHFFFAOYSA-N 4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline Chemical compound COC1=CC2=C(OC=3C(=C4C=C(C)NC4=CC=3)F)N=CN=C2C=C1OCCCN1CCCC1 XXJWYDDUDKYVKI-UHFFFAOYSA-N 0.000 description 1
- 102100034580 AT-rich interactive domain-containing protein 1A Human genes 0.000 description 1
- 102100033618 ATP-binding cassette sub-family A member 2 Human genes 0.000 description 1
- 102100028280 ATP-binding cassette sub-family B member 10, mitochondrial Human genes 0.000 description 1
- 102100028186 ATP-binding cassette sub-family C member 5 Human genes 0.000 description 1
- 102100023388 ATP-dependent RNA helicase DHX15 Human genes 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102100028249 Acetyl-coenzyme A transporter 1 Human genes 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102100026661 Activity-dependent neuroprotector homeobox protein 2 Human genes 0.000 description 1
- 102100035984 Adenosine receptor A2b Human genes 0.000 description 1
- 102100036799 Adhesion G-protein coupled receptor V1 Human genes 0.000 description 1
- 102100040026 Agrin Human genes 0.000 description 1
- 102100024092 Aldo-keto reductase family 1 member C4 Human genes 0.000 description 1
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- 102100027726 Alpha-(1,3)-fucosyltransferase 11 Human genes 0.000 description 1
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102000052587 Anaphase-Promoting Complex-Cyclosome Apc3 Subunit Human genes 0.000 description 1
- 108700004606 Anaphase-Promoting Complex-Cyclosome Apc3 Subunit Proteins 0.000 description 1
- 108010049777 Ankyrins Proteins 0.000 description 1
- 102000008102 Ankyrins Human genes 0.000 description 1
- 241000272478 Aquila Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 1
- BXTVQNYQYUTQAZ-UHFFFAOYSA-N BNPS-skatole Chemical compound N=1C2=CC=CC=C2C(C)(Br)C=1SC1=CC=CC=C1[N+]([O-])=O BXTVQNYQYUTQAZ-UHFFFAOYSA-N 0.000 description 1
- 108700020462 BRCA2 Proteins 0.000 description 1
- 102000052609 BRCA2 Human genes 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 108020004513 Bacterial RNA Proteins 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102100031500 Beta-1,4-glucuronyltransferase 1 Human genes 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 101150008921 Brca2 gene Proteins 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 102100037676 CCAAT/enhancer-binding protein zeta Human genes 0.000 description 1
- 102100032976 CCR4-NOT transcription complex subunit 6 Human genes 0.000 description 1
- 102100031042 CCR4-NOT transcription complex subunit 6-like Human genes 0.000 description 1
- 108010062802 CD66 antigens Proteins 0.000 description 1
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 1
- 101150108242 CDC27 gene Proteins 0.000 description 1
- 101710036791 CEP192 Proteins 0.000 description 1
- 102100025659 Cadherin EGF LAG seven-pass G-type receptor 1 Human genes 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 102100031757 Cancer/testis antigen family 45 member A1 Human genes 0.000 description 1
- 102100031761 Cancer/testis antigen family 45 member A2 Human genes 0.000 description 1
- 102100031661 Cancer/testis antigen family 45 member A5 Human genes 0.000 description 1
- 102100031662 Cancer/testis antigen family 45 member A6 Human genes 0.000 description 1
- 102100038710 Capping protein-inhibiting regulator of actin dynamics Human genes 0.000 description 1
- 102100032146 Carbohydrate sulfotransferase 11 Human genes 0.000 description 1
- 102100024533 Carcinoembryonic antigen-related cell adhesion molecule 1 Human genes 0.000 description 1
- 102100025466 Carcinoembryonic antigen-related cell adhesion molecule 3 Human genes 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102100024974 Caspase recruitment domain-containing protein 8 Human genes 0.000 description 1
- 102100034744 Cell division cycle 7-related protein kinase Human genes 0.000 description 1
- 102100024485 Cell division cycle-associated protein 7 Human genes 0.000 description 1
- 102100036178 Centrosomal protein of 192 kDa Human genes 0.000 description 1
- 102100034755 Centrosomal protein of 85 kDa Human genes 0.000 description 1
- 108050004729 Centrosomal protein of 85kDa Proteins 0.000 description 1
- 102100021585 Chromatin assembly factor 1 subunit B Human genes 0.000 description 1
- 102100031265 Chromodomain-helicase-DNA-binding protein 2 Human genes 0.000 description 1
- 102100038165 Chromodomain-helicase-DNA-binding protein 8 Human genes 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 102100033538 Clusterin-associated protein 1 Human genes 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 102100025842 Coiled-coil domain-containing protein 87 Human genes 0.000 description 1
- 102100024335 Collagen alpha-1(VII) chain Human genes 0.000 description 1
- 102100027442 Collagen alpha-1(XII) chain Human genes 0.000 description 1
- 102100024344 Collagen alpha-5(VI) chain Human genes 0.000 description 1
- 102100030137 Complement C1q tumor necrosis factor-related protein 6 Human genes 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 102100032980 Condensin-2 complex subunit G2 Human genes 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102000000529 Costimulatory and Inhibitory T-Cell Receptors Human genes 0.000 description 1
- 108010041504 Costimulatory and Inhibitory T-Cell Receptors Proteins 0.000 description 1
- 241000723655 Cowpea mosaic virus Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 102100028908 Cullin-3 Human genes 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 102100036871 Cyclin-J Human genes 0.000 description 1
- 102100024109 Cyclin-T1 Human genes 0.000 description 1
- 102100024112 Cyclin-T2 Human genes 0.000 description 1
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 101700026669 DACH1 Proteins 0.000 description 1
- 101700024220 DACH2 Proteins 0.000 description 1
- 102100037165 DBH-like monooxygenase protein 1 Human genes 0.000 description 1
- YVGGHNCTFXOJCH-UHFFFAOYSA-N DDT Chemical compound C1=CC(Cl)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(Cl)C=C1 YVGGHNCTFXOJCH-UHFFFAOYSA-N 0.000 description 1
- 108091008102 DNA aptamers Proteins 0.000 description 1
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 1
- 102100021147 DNA mismatch repair protein Msh6 Human genes 0.000 description 1
- 102100035474 DNA polymerase kappa Human genes 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102100037373 DNA-(apurinic or apyrimidinic site) endonuclease Human genes 0.000 description 1
- 102100020986 DNA-binding protein RFX5 Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102100028735 Dachshund homolog 1 Human genes 0.000 description 1
- 102100025694 Dachshund homolog 2 Human genes 0.000 description 1
- 101100444936 Danio rerio eif3ha gene Proteins 0.000 description 1
- 102100024347 Dedicator of cytokinesis protein 5 Human genes 0.000 description 1
- 102100024350 Dedicator of cytokinesis protein 8 Human genes 0.000 description 1
- 102100036466 Delta-like protein 3 Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 101100216227 Dictyostelium discoideum anapc3 gene Proteins 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 102100020750 Dipeptidyl peptidase 3 Human genes 0.000 description 1
- 102100022820 Disintegrin and metalloproteinase domain-containing protein 28 Human genes 0.000 description 1
- 102100021071 Dynactin subunit 5 Human genes 0.000 description 1
- 102100032238 Dynein axonemal assembly factor 5 Human genes 0.000 description 1
- 102100032298 Dynein axonemal heavy chain 14 Human genes 0.000 description 1
- 102100023149 E3 ubiquitin-protein ligase MARCHF6 Human genes 0.000 description 1
- 102100038795 E3 ubiquitin-protein ligase TRIM4 Human genes 0.000 description 1
- 102000017914 EDNRA Human genes 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 101150028132 Eif3h gene Proteins 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102100037115 Eukaryotic translation initiation factor 3 subunit H Human genes 0.000 description 1
- 102100026339 F-box-like/WD repeat-containing protein TBL1X Human genes 0.000 description 1
- 102100026338 F-box-like/WD repeat-containing protein TBL1Y Human genes 0.000 description 1
- 102100038516 FERM domain-containing protein 6 Human genes 0.000 description 1
- 102100035441 FRAS1-related extracellular matrix protein 2 Human genes 0.000 description 1
- 102100026545 Fibronectin type III domain-containing protein 3B Human genes 0.000 description 1
- 240000008168 Ficus benjamina Species 0.000 description 1
- 102100037000 Fidgetin-like protein 1 Human genes 0.000 description 1
- 101710088570 Flagellar hook-associated protein 1 Proteins 0.000 description 1
- 102100021265 Frizzled-2 Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000016251 GREB1 Human genes 0.000 description 1
- 108050004787 GREB1 Proteins 0.000 description 1
- 102100023930 GREB1-like protein Human genes 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 102100028464 Galactose-3-O-sulfotransferase 4 Human genes 0.000 description 1
- 102100028605 Gamma-tubulin complex component 2 Human genes 0.000 description 1
- 241001663880 Gammaretrovirus Species 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102100030395 Glycerol-3-phosphate dehydrogenase, mitochondrial Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102100023177 Glycoprotein endo-alpha-1,2-mannosidase Human genes 0.000 description 1
- 102100023179 Glycoprotein endo-alpha-1,2-mannosidase-like protein Human genes 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 102000015789 HLA-DP Antigens Human genes 0.000 description 1
- 108010010378 HLA-DP Antigens Proteins 0.000 description 1
- 102100028893 Hemicentin-1 Human genes 0.000 description 1
- 102100037532 Heparan sulfate N-sulfotransferase 4 Human genes 0.000 description 1
- 102100039381 Heparan-sulfate 6-O-sulfotransferase 2 Human genes 0.000 description 1
- 102100024233 High affinity cAMP-specific 3',5'-cyclic phosphodiesterase 7A Human genes 0.000 description 1
- 102100030688 Histone H2B type 1-A Human genes 0.000 description 1
- 102100021640 Histone H2B type 1-L Human genes 0.000 description 1
- 102100038806 Histone H2B type 3-B Human genes 0.000 description 1
- 102100022373 Homeobox protein DLX-5 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000924266 Homo sapiens AT-rich interactive domain-containing protein 1A Proteins 0.000 description 1
- 101000801645 Homo sapiens ATP-binding cassette sub-family A member 2 Proteins 0.000 description 1
- 101000724360 Homo sapiens ATP-binding cassette sub-family B member 10, mitochondrial Proteins 0.000 description 1
- 101000986622 Homo sapiens ATP-binding cassette sub-family C member 5 Proteins 0.000 description 1
- 101000907886 Homo sapiens ATP-dependent RNA helicase DHX15 Proteins 0.000 description 1
- 101000874516 Homo sapiens Acetylgalactosaminyl-O-glycosyl-glycoprotein beta-1,3-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 101000690901 Homo sapiens Activity-dependent neuroprotector homeobox protein 2 Proteins 0.000 description 1
- 101000783756 Homo sapiens Adenosine receptor A2b Proteins 0.000 description 1
- 101000928167 Homo sapiens Adhesion G-protein coupled receptor V1 Proteins 0.000 description 1
- 101000959594 Homo sapiens Agrin Proteins 0.000 description 1
- 101000862213 Homo sapiens Alpha-(1,3)-fucosyltransferase 11 Proteins 0.000 description 1
- 101000729794 Homo sapiens Beta-1,4-glucuronyltransferase 1 Proteins 0.000 description 1
- 101000880588 Homo sapiens CCAAT/enhancer-binding protein zeta Proteins 0.000 description 1
- 101000942595 Homo sapiens CCR4-NOT transcription complex subunit 6 Proteins 0.000 description 1
- 101000919666 Homo sapiens CCR4-NOT transcription complex subunit 6-like Proteins 0.000 description 1
- 101000914155 Homo sapiens Cadherin EGF LAG seven-pass G-type receptor 1 Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000940800 Homo sapiens Cancer/testis antigen family 45 member A1 Proteins 0.000 description 1
- 101000940805 Homo sapiens Cancer/testis antigen family 45 member A2 Proteins 0.000 description 1
- 101000940772 Homo sapiens Cancer/testis antigen family 45 member A5 Proteins 0.000 description 1
- 101000940770 Homo sapiens Cancer/testis antigen family 45 member A6 Proteins 0.000 description 1
- 101000957909 Homo sapiens Capping protein-inhibiting regulator of actin dynamics Proteins 0.000 description 1
- 101000775587 Homo sapiens Carbohydrate sulfotransferase 11 Proteins 0.000 description 1
- 101000914337 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 3 Proteins 0.000 description 1
- 101000761247 Homo sapiens Caspase recruitment domain-containing protein 8 Proteins 0.000 description 1
- 101000945740 Homo sapiens Cell division cycle 7-related protein kinase Proteins 0.000 description 1
- 101000980893 Homo sapiens Cell division cycle-associated protein 7 Proteins 0.000 description 1
- 101000898225 Homo sapiens Chromatin assembly factor 1 subunit B Proteins 0.000 description 1
- 101000777079 Homo sapiens Chromodomain-helicase-DNA-binding protein 2 Proteins 0.000 description 1
- 101000883545 Homo sapiens Chromodomain-helicase-DNA-binding protein 8 Proteins 0.000 description 1
- 101000945060 Homo sapiens Clusterin-associated protein 1 Proteins 0.000 description 1
- 101000932702 Homo sapiens Coiled-coil domain-containing protein 87 Proteins 0.000 description 1
- 101000909498 Homo sapiens Collagen alpha-1(VII) chain Proteins 0.000 description 1
- 101000861874 Homo sapiens Collagen alpha-1(XII) chain Proteins 0.000 description 1
- 101000909508 Homo sapiens Collagen alpha-5(VI) chain Proteins 0.000 description 1
- 101000794256 Homo sapiens Complement C1q tumor necrosis factor-related protein 6 Proteins 0.000 description 1
- 101000942591 Homo sapiens Condensin-2 complex subunit G2 Proteins 0.000 description 1
- 101000916238 Homo sapiens Cullin-3 Proteins 0.000 description 1
- 101000713131 Homo sapiens Cyclin-J Proteins 0.000 description 1
- 101000910488 Homo sapiens Cyclin-T1 Proteins 0.000 description 1
- 101000910484 Homo sapiens Cyclin-T2 Proteins 0.000 description 1
- 101001028766 Homo sapiens DBH-like monooxygenase protein 1 Proteins 0.000 description 1
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 1
- 101000968658 Homo sapiens DNA mismatch repair protein Msh6 Proteins 0.000 description 1
- 101001094659 Homo sapiens DNA polymerase kappa Proteins 0.000 description 1
- 101000865085 Homo sapiens DNA polymerase theta Proteins 0.000 description 1
- 101001075432 Homo sapiens DNA-binding protein RFX5 Proteins 0.000 description 1
- 101001052956 Homo sapiens Dedicator of cytokinesis protein 5 Proteins 0.000 description 1
- 101001052946 Homo sapiens Dedicator of cytokinesis protein 8 Proteins 0.000 description 1
- 101000928513 Homo sapiens Delta-like protein 3 Proteins 0.000 description 1
- 101000931862 Homo sapiens Dipeptidyl peptidase 3 Proteins 0.000 description 1
- 101000756727 Homo sapiens Disintegrin and metalloproteinase domain-containing protein 23 Proteins 0.000 description 1
- 101000756756 Homo sapiens Disintegrin and metalloproteinase domain-containing protein 28 Proteins 0.000 description 1
- 101000880945 Homo sapiens Down syndrome cell adhesion molecule Proteins 0.000 description 1
- 101001041180 Homo sapiens Dynactin subunit 5 Proteins 0.000 description 1
- 101000869175 Homo sapiens Dynein axonemal assembly factor 5 Proteins 0.000 description 1
- 101001016204 Homo sapiens Dynein axonemal heavy chain 14 Proteins 0.000 description 1
- 101000978676 Homo sapiens E3 ubiquitin-protein ligase MARCHF6 Proteins 0.000 description 1
- 101000664604 Homo sapiens E3 ubiquitin-protein ligase TRIM4 Proteins 0.000 description 1
- 101000967336 Homo sapiens Endothelin-1 receptor Proteins 0.000 description 1
- 101000835691 Homo sapiens F-box-like/WD repeat-containing protein TBL1X Proteins 0.000 description 1
- 101000835690 Homo sapiens F-box-like/WD repeat-containing protein TBL1Y Proteins 0.000 description 1
- 101001030537 Homo sapiens FERM domain-containing protein 6 Proteins 0.000 description 1
- 101000877894 Homo sapiens FRAS1-related extracellular matrix protein 2 Proteins 0.000 description 1
- 101000913642 Homo sapiens Fibronectin type III domain-containing protein 3B Proteins 0.000 description 1
- 101000878272 Homo sapiens Fidgetin-like protein 1 Proteins 0.000 description 1
- 101000819477 Homo sapiens Frizzled-2 Proteins 0.000 description 1
- 101000904872 Homo sapiens GREB1-like protein Proteins 0.000 description 1
- 101001061348 Homo sapiens Galactose-3-O-sulfotransferase 4 Proteins 0.000 description 1
- 101001058904 Homo sapiens Gamma-tubulin complex component 2 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101001009678 Homo sapiens Glycerol-3-phosphate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000978837 Homo sapiens Glycoprotein endo-alpha-1,2-mannosidase Proteins 0.000 description 1
- 101000978842 Homo sapiens Glycoprotein endo-alpha-1,2-mannosidase-like protein Proteins 0.000 description 1
- 101000839060 Homo sapiens Hemicentin-1 Proteins 0.000 description 1
- 101000601604 Homo sapiens Heparan sulfate N-sulfotransferase 4 Proteins 0.000 description 1
- 101001035622 Homo sapiens Heparan-sulfate 6-O-sulfotransferase 2 Proteins 0.000 description 1
- 101001117267 Homo sapiens High affinity cAMP-specific 3',5'-cyclic phosphodiesterase 7A Proteins 0.000 description 1
- 101001084688 Homo sapiens Histone H2B type 1-A Proteins 0.000 description 1
- 101000898901 Homo sapiens Histone H2B type 1-L Proteins 0.000 description 1
- 101001031390 Homo sapiens Histone H2B type 3-B Proteins 0.000 description 1
- 101000901627 Homo sapiens Homeobox protein DLX-5 Proteins 0.000 description 1
- 101001055315 Homo sapiens Immunoglobulin heavy constant alpha 1 Proteins 0.000 description 1
- 101001055314 Homo sapiens Immunoglobulin heavy constant alpha 2 Proteins 0.000 description 1
- 101001055307 Homo sapiens Immunoglobulin heavy constant delta Proteins 0.000 description 1
- 101000961145 Homo sapiens Immunoglobulin heavy constant gamma 3 Proteins 0.000 description 1
- 101000998950 Homo sapiens Immunoglobulin heavy variable 1-18 Proteins 0.000 description 1
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 description 1
- 101000839684 Homo sapiens Immunoglobulin heavy variable 4-31 Proteins 0.000 description 1
- 101000599449 Homo sapiens Importin-8 Proteins 0.000 description 1
- 101000599778 Homo sapiens Insulin-like growth factor 2 mRNA-binding protein 1 Proteins 0.000 description 1
- 101001033715 Homo sapiens Insulinoma-associated protein 1 Proteins 0.000 description 1
- 101000994378 Homo sapiens Integrin alpha-3 Proteins 0.000 description 1
- 101000997318 Homo sapiens Kelch repeat and BTB domain-containing protein 2 Proteins 0.000 description 1
- 101001008953 Homo sapiens Kinesin-like protein KIF11 Proteins 0.000 description 1
- 101000971605 Homo sapiens Kita-kyushu lung cancer antigen 1 Proteins 0.000 description 1
- 101000604886 Homo sapiens Kremen protein 2 Proteins 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101001039113 Homo sapiens Leucine-rich repeat-containing protein 15 Proteins 0.000 description 1
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 description 1
- 101000613960 Homo sapiens Lysine-specific histone demethylase 1B Proteins 0.000 description 1
- 101001047677 Homo sapiens Lysocardiolipin acyltransferase 1 Proteins 0.000 description 1
- 101000615509 Homo sapiens MBT domain-containing protein 1 Proteins 0.000 description 1
- 101001029024 Homo sapiens Mas-related G-protein coupled receptor member E Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101001005728 Homo sapiens Melanoma-associated antigen 1 Proteins 0.000 description 1
- 101001005725 Homo sapiens Melanoma-associated antigen 10 Proteins 0.000 description 1
- 101001005717 Homo sapiens Melanoma-associated antigen 12 Proteins 0.000 description 1
- 101000576800 Homo sapiens Mesothelin-like protein Proteins 0.000 description 1
- 101000653360 Homo sapiens Methylcytosine dioxygenase TET1 Proteins 0.000 description 1
- 101001013999 Homo sapiens Microtubule cross-linking factor 1 Proteins 0.000 description 1
- 101001036653 Homo sapiens Mitogen-activated protein kinase-binding protein 1 Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101000635935 Homo sapiens Myosin-IIIa Proteins 0.000 description 1
- 101001066305 Homo sapiens N-acetylgalactosamine-6-sulfatase Proteins 0.000 description 1
- 101000601394 Homo sapiens Neuroendocrine convertase 2 Proteins 0.000 description 1
- 101000604177 Homo sapiens Neuromedin-U receptor 2 Proteins 0.000 description 1
- 101000578351 Homo sapiens Nodal modulator 1 Proteins 0.000 description 1
- 101000578353 Homo sapiens Nodal modulator 2 Proteins 0.000 description 1
- 101000578354 Homo sapiens Nodal modulator 3 Proteins 0.000 description 1
- 101001108926 Homo sapiens Nuclear pore complex protein Nup160 Proteins 0.000 description 1
- 101000995932 Homo sapiens Nucleolar protein 58 Proteins 0.000 description 1
- 101001108862 Homo sapiens Nucleoporin NUP188 Proteins 0.000 description 1
- 101001138465 Homo sapiens Olfactory receptor 6C75 Proteins 0.000 description 1
- 101001138328 Homo sapiens Olfactory receptor 7E24 Proteins 0.000 description 1
- 101000720966 Homo sapiens Opsin-3 Proteins 0.000 description 1
- 101001084254 Homo sapiens Peptidyl-tRNA hydrolase 2, mitochondrial Proteins 0.000 description 1
- 101001087045 Homo sapiens Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN Proteins 0.000 description 1
- 101000730648 Homo sapiens Phospholipase A-2-activating protein Proteins 0.000 description 1
- 101000730670 Homo sapiens Phospholipase D2 Proteins 0.000 description 1
- 101000701522 Homo sapiens Phospholipid-transporting ATPase ID Proteins 0.000 description 1
- 101001097889 Homo sapiens Platelet-activating factor acetylhydrolase Proteins 0.000 description 1
- 101001096189 Homo sapiens Pleckstrin homology domain-containing family G member 4B Proteins 0.000 description 1
- 101000605625 Homo sapiens Polycystic kidney disease 2-like 1 protein Proteins 0.000 description 1
- 101001077420 Homo sapiens Potassium voltage-gated channel subfamily H member 7 Proteins 0.000 description 1
- 101000617726 Homo sapiens Pregnancy-specific beta-1-glycoprotein 3 Proteins 0.000 description 1
- 101000617721 Homo sapiens Pregnancy-specific beta-1-glycoprotein 6 Proteins 0.000 description 1
- 101000617728 Homo sapiens Pregnancy-specific beta-1-glycoprotein 9 Proteins 0.000 description 1
- 101000864678 Homo sapiens Probable ATP-dependent RNA helicase DHX37 Proteins 0.000 description 1
- 101001009518 Homo sapiens Probable G-protein coupled receptor 33 Proteins 0.000 description 1
- 101000808592 Homo sapiens Probable ubiquitin carboxyl-terminal hydrolase FAF-X Proteins 0.000 description 1
- 101000808590 Homo sapiens Probable ubiquitin carboxyl-terminal hydrolase FAF-Y Proteins 0.000 description 1
- 101001133941 Homo sapiens Prolyl 3-hydroxylase 1 Proteins 0.000 description 1
- 101000706243 Homo sapiens Prominin-2 Proteins 0.000 description 1
- 101000579580 Homo sapiens Protein LSM14 homolog A Proteins 0.000 description 1
- 101000579584 Homo sapiens Protein LSM14 homolog B Proteins 0.000 description 1
- 101000987019 Homo sapiens Protein PPP4R3C Proteins 0.000 description 1
- 101000735473 Homo sapiens Protein mono-ADP-ribosyltransferase TIPARP Proteins 0.000 description 1
- 101000716310 Homo sapiens Protein sidekick-2 Proteins 0.000 description 1
- 101000824318 Homo sapiens Protocadherin Fat 1 Proteins 0.000 description 1
- 101000610022 Homo sapiens Protocadherin beta-13 Proteins 0.000 description 1
- 101000610009 Homo sapiens Protocadherin beta-8 Proteins 0.000 description 1
- 101000989486 Homo sapiens Putative methyltransferase C9orf114 Proteins 0.000 description 1
- 101000576060 Homo sapiens RAD50-interacting protein 1 Proteins 0.000 description 1
- 101000687439 Homo sapiens REST corepressor 2 Proteins 0.000 description 1
- 101000853730 Homo sapiens RING finger and transmembrane domain-containing protein 2 Proteins 0.000 description 1
- 101000629807 Homo sapiens RNA-binding protein MEX3A Proteins 0.000 description 1
- 101001094545 Homo sapiens Retrotransposon-like protein 1 Proteins 0.000 description 1
- 101001051707 Homo sapiens Ribosomal protein S6 kinase delta-1 Proteins 0.000 description 1
- 101000836397 Homo sapiens SEC14 domain and spectrin repeat-containing protein 1 Proteins 0.000 description 1
- 101000880123 Homo sapiens SERTA domain-containing protein 4 Proteins 0.000 description 1
- 101000650667 Homo sapiens SET domain-containing protein 4 Proteins 0.000 description 1
- 101000687715 Homo sapiens SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 Proteins 0.000 description 1
- 101000685296 Homo sapiens Seizure 6-like protein Proteins 0.000 description 1
- 101000864751 Homo sapiens Seizure protein 6 homolog Proteins 0.000 description 1
- 101000777277 Homo sapiens Serine/threonine-protein kinase Chk2 Proteins 0.000 description 1
- 101000637847 Homo sapiens Serine/threonine-protein kinase tousled-like 2 Proteins 0.000 description 1
- 101000802948 Homo sapiens Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform Proteins 0.000 description 1
- 101000987024 Homo sapiens Serine/threonine-protein phosphatase 4 regulatory subunit 3B Proteins 0.000 description 1
- 101000889460 Homo sapiens Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit C Proteins 0.000 description 1
- 101000654386 Homo sapiens Sodium channel protein type 9 subunit alpha Proteins 0.000 description 1
- 101000665023 Homo sapiens Sorting nexin-7 Proteins 0.000 description 1
- 101000740243 Homo sapiens Spindle assembly abnormal protein 6 homolog Proteins 0.000 description 1
- 101000629319 Homo sapiens Spindlin-1 Proteins 0.000 description 1
- 101000707569 Homo sapiens Splicing factor 3A subunit 3 Proteins 0.000 description 1
- 101000577874 Homo sapiens Stromelysin-2 Proteins 0.000 description 1
- 101000633424 Homo sapiens Structural maintenance of chromosomes protein 1B Proteins 0.000 description 1
- 101000825726 Homo sapiens Structural maintenance of chromosomes protein 4 Proteins 0.000 description 1
- 101000825904 Homo sapiens Structural maintenance of chromosomes protein 5 Proteins 0.000 description 1
- 101000702566 Homo sapiens Structural maintenance of chromosomes protein 6 Proteins 0.000 description 1
- 101000661816 Homo sapiens Suppression of tumorigenicity 18 protein Proteins 0.000 description 1
- 101000820477 Homo sapiens Syntaxin-binding protein 3 Proteins 0.000 description 1
- 101000939742 Homo sapiens T cell receptor beta variable 20-1 Proteins 0.000 description 1
- 101000837903 Homo sapiens TATA box-binding protein-associated factor RNA polymerase I subunit B Proteins 0.000 description 1
- 101000596016 Homo sapiens TLR adapter interacting with SLC15A4 on the lysosome Proteins 0.000 description 1
- 101000787850 Homo sapiens Taste receptor type 2 member 38 Proteins 0.000 description 1
- 101000653435 Homo sapiens Tectonic-3 Proteins 0.000 description 1
- 101000626112 Homo sapiens Telomerase protein component 1 Proteins 0.000 description 1
- 101000666331 Homo sapiens Teneurin-4 Proteins 0.000 description 1
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 description 1
- 101001067250 Homo sapiens Transcription cofactor HES-6 Proteins 0.000 description 1
- 101000891371 Homo sapiens Transcription elongation regulator 1 Proteins 0.000 description 1
- 101000904152 Homo sapiens Transcription factor E2F1 Proteins 0.000 description 1
- 101000866292 Homo sapiens Transcription factor E2F7 Proteins 0.000 description 1
- 101000825060 Homo sapiens Transcription factor SOX-14 Proteins 0.000 description 1
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 1
- 101000798707 Homo sapiens Transmembrane protease serine 13 Proteins 0.000 description 1
- 101000798700 Homo sapiens Transmembrane protease serine 3 Proteins 0.000 description 1
- 101000798702 Homo sapiens Transmembrane protease serine 4 Proteins 0.000 description 1
- 101000680173 Homo sapiens Transmembrane protein 217 Proteins 0.000 description 1
- 101000830742 Homo sapiens Tryptophan 5-hydroxylase 1 Proteins 0.000 description 1
- 101000598103 Homo sapiens Tuberoinfundibular peptide of 39 residues Proteins 0.000 description 1
- 101000834944 Homo sapiens Tubulin epsilon and delta complex protein 2 Proteins 0.000 description 1
- 101001087426 Homo sapiens Tyrosine-protein phosphatase non-receptor type 14 Proteins 0.000 description 1
- 101000807354 Homo sapiens Ubiquitin-conjugating enzyme E2 C Proteins 0.000 description 1
- 101000945541 Homo sapiens Uncharacterized protein C5orf34 Proteins 0.000 description 1
- 101000854707 Homo sapiens VPS35 endosomal protein-sorting factor-like Proteins 0.000 description 1
- 101000743596 Homo sapiens Vacuolar protein sorting-associated protein 26C Proteins 0.000 description 1
- 101000854918 Homo sapiens WD repeat-containing protein 6 Proteins 0.000 description 1
- 101000666068 Homo sapiens WD repeat-containing protein 75 Proteins 0.000 description 1
- 101000788669 Homo sapiens Zinc finger MYM-type protein 2 Proteins 0.000 description 1
- 101000916537 Homo sapiens Zinc finger and BTB domain-containing protein 43 Proteins 0.000 description 1
- 101000976595 Homo sapiens Zinc finger protein 107 Proteins 0.000 description 1
- 101000785649 Homo sapiens Zinc finger protein 267 Proteins 0.000 description 1
- 101000788892 Homo sapiens Zinc finger protein 280C Proteins 0.000 description 1
- 101000818710 Homo sapiens Zinc finger protein 614 Proteins 0.000 description 1
- 101000818706 Homo sapiens Zinc finger protein 618 Proteins 0.000 description 1
- 101000785609 Homo sapiens Zinc finger protein 655 Proteins 0.000 description 1
- 101000743810 Homo sapiens Zinc finger protein 681 Proteins 0.000 description 1
- 101000760267 Homo sapiens Zinc finger protein 724 Proteins 0.000 description 1
- 101000624356 Homo sapiens tRNA dimethylallyltransferase Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 102100026217 Immunoglobulin heavy constant alpha 1 Human genes 0.000 description 1
- 102100026216 Immunoglobulin heavy constant alpha 2 Human genes 0.000 description 1
- 102100026211 Immunoglobulin heavy constant delta Human genes 0.000 description 1
- 102100039348 Immunoglobulin heavy constant gamma 3 Human genes 0.000 description 1
- 102100036884 Immunoglobulin heavy variable 1-18 Human genes 0.000 description 1
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 description 1
- 102100028310 Immunoglobulin heavy variable 4-31 Human genes 0.000 description 1
- 102100037966 Importin-8 Human genes 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100027004 Inhibin beta A chain Human genes 0.000 description 1
- 102100037924 Insulin-like growth factor 2 mRNA-binding protein 1 Human genes 0.000 description 1
- 102100039091 Insulinoma-associated protein 1 Human genes 0.000 description 1
- 102100032819 Integrin alpha-3 Human genes 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 102100030703 Interleukin-22 Human genes 0.000 description 1
- 102100034075 Kelch repeat and BTB domain-containing protein 2 Human genes 0.000 description 1
- 102100027629 Kinesin-like protein KIF11 Human genes 0.000 description 1
- 102100038224 Kremen protein 2 Human genes 0.000 description 1
- 108010062028 L-BLP25 Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 239000003798 L01XE11 - Pazopanib Substances 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100040645 Leucine-rich repeat-containing protein 15 Human genes 0.000 description 1
- 102100039564 Leukosialin Human genes 0.000 description 1
- 229910010951 LiH2 Inorganic materials 0.000 description 1
- 101000761444 Loxosceles laeta Dermonecrotic toxin Proteins 0.000 description 1
- 102100040596 Lysine-specific histone demethylase 1B Human genes 0.000 description 1
- 102100024033 Lysocardiolipin acyltransferase 1 Human genes 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 102100021282 MBT domain-containing protein 1 Human genes 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 102100037117 Mas-related G-protein coupled receptor member E Human genes 0.000 description 1
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 1
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 1
- 102100025050 Melanoma-associated antigen 1 Human genes 0.000 description 1
- 102100025049 Melanoma-associated antigen 10 Human genes 0.000 description 1
- 102100025084 Melanoma-associated antigen 12 Human genes 0.000 description 1
- 102100025099 Mesothelin-like protein Human genes 0.000 description 1
- 102100038294 Metabotropic glutamate receptor 7 Human genes 0.000 description 1
- 102100030819 Methylcytosine dioxygenase TET1 Human genes 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102100031339 Microtubule cross-linking factor 1 Human genes 0.000 description 1
- 102100039508 Mitogen-activated protein kinase-binding protein 1 Human genes 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100096028 Mus musculus Smok1 gene Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100030743 Myosin-IIIa Human genes 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- GUVMFDICMFQHSZ-UHFFFAOYSA-N N-(1-aminoethenyl)-1-[4-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[hydroxy-[[3-[hydroxy-[[3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-[[[2-[[[2-[[[5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[5-(4-amino-2-oxopyrimidin-1-yl)-2-[[hydroxy-[2-(hydroxymethyl)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-2-yl]-5-methylimidazole-4-carboxamide Chemical compound CC1=C(C(=O)NC(N)=C)N=CN1C1OC(COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)CO)C(OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)O)C1 GUVMFDICMFQHSZ-UHFFFAOYSA-N 0.000 description 1
- 102100031688 N-acetylgalactosamine-6-sulfatase Human genes 0.000 description 1
- VIHYIVKEECZGOU-UHFFFAOYSA-N N-acetylimidazole Chemical compound CC(=O)N1C=CN=C1 VIHYIVKEECZGOU-UHFFFAOYSA-N 0.000 description 1
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 102100037732 Neuroendocrine convertase 2 Human genes 0.000 description 1
- 102100038814 Neuromedin-U receptor 2 Human genes 0.000 description 1
- 102100027968 Nodal modulator 1 Human genes 0.000 description 1
- 102100027967 Nodal modulator 2 Human genes 0.000 description 1
- 102100027966 Nodal modulator 3 Human genes 0.000 description 1
- 102100021510 Nuclear pore complex protein Nup160 Human genes 0.000 description 1
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 description 1
- 102100034532 Nucleolar protein 58 Human genes 0.000 description 1
- 102100021530 Nucleoporin NUP188 Human genes 0.000 description 1
- GOWLTLODGKPXMN-MEKRSRHXSA-N OM-174 Chemical compound O1[C@H](OP(O)(O)=O)[C@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](O)[C@H](O)[C@H]1CO[C@H]1[C@H](NC(=O)C[C@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](CO)O1 GOWLTLODGKPXMN-MEKRSRHXSA-N 0.000 description 1
- 102100020747 Olfactory receptor 6C75 Human genes 0.000 description 1
- 102100020763 Olfactory receptor 7E24 Human genes 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 102100025909 Opsin-3 Human genes 0.000 description 1
- 108700006640 OspA Proteins 0.000 description 1
- 239000012648 POLY-ICLC Substances 0.000 description 1
- 101000843385 Paenibacillus lautus Endoglucanase B Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 101800001442 Peptide pr Proteins 0.000 description 1
- 102100032572 Phospholipase A-2-activating protein Human genes 0.000 description 1
- 102100032983 Phospholipase D2 Human genes 0.000 description 1
- 102100030474 Phospholipid-transporting ATPase ID Human genes 0.000 description 1
- 102100037518 Platelet-activating factor acetylhydrolase Human genes 0.000 description 1
- 102100037863 Pleckstrin homology domain-containing family G member 4B Human genes 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 102100038330 Polycystic kidney disease 2-like 1 protein Human genes 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101150107725 Pomk gene Proteins 0.000 description 1
- 102100025133 Potassium voltage-gated channel subfamily H member 7 Human genes 0.000 description 1
- 102100022020 Pregnancy-specific beta-1-glycoprotein 3 Human genes 0.000 description 1
- 102100022026 Pregnancy-specific beta-1-glycoprotein 6 Human genes 0.000 description 1
- 102100030093 Probable ATP-dependent RNA helicase DHX37 Human genes 0.000 description 1
- 102100030282 Probable G-protein coupled receptor 33 Human genes 0.000 description 1
- 102100038603 Probable ubiquitin carboxyl-terminal hydrolase FAF-X Human genes 0.000 description 1
- 102100038600 Probable ubiquitin carboxyl-terminal hydrolase FAF-Y Human genes 0.000 description 1
- 102100034144 Prolyl 3-hydroxylase 1 Human genes 0.000 description 1
- 102100031190 Prominin-2 Human genes 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102100028259 Protein LSM14 homolog A Human genes 0.000 description 1
- 102100028258 Protein LSM14 homolog B Human genes 0.000 description 1
- 102100028655 Protein O-mannose kinase Human genes 0.000 description 1
- 102100027872 Protein PPP4R3C Human genes 0.000 description 1
- 102100034905 Protein mono-ADP-ribosyltransferase TIPARP Human genes 0.000 description 1
- 102100021005 Protein sidekick-2 Human genes 0.000 description 1
- 102100030293 Protein spinster homolog 1 Human genes 0.000 description 1
- 102100022095 Protocadherin Fat 1 Human genes 0.000 description 1
- 102100040143 Protocadherin beta-13 Human genes 0.000 description 1
- 102100039151 Protocadherin beta-8 Human genes 0.000 description 1
- 102100029317 Putative methyltransferase C9orf114 Human genes 0.000 description 1
- 102100023104 Putative solute carrier family 22 member 31 Human genes 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 102100025895 RAD50-interacting protein 1 Human genes 0.000 description 1
- 102100024866 REST corepressor 2 Human genes 0.000 description 1
- 102100035928 RING finger and transmembrane domain-containing protein 2 Human genes 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 102100026875 RNA-binding protein MEX3A Human genes 0.000 description 1
- 101150056579 Rasa3 gene Proteins 0.000 description 1
- 102100020982 Regulator of G-protein signaling 17 Human genes 0.000 description 1
- 101710148109 Regulator of G-protein signaling 17 Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 102100035123 Retrotransposon-like protein 1 Human genes 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 102100024913 Ribosomal protein S6 kinase delta-1 Human genes 0.000 description 1
- 102100027289 SEC14 domain and spectrin repeat-containing protein 1 Human genes 0.000 description 1
- 238000010847 SEQUEST Methods 0.000 description 1
- 102100037350 SERTA domain-containing protein 4 Human genes 0.000 description 1
- 102100027707 SET domain-containing protein 4 Human genes 0.000 description 1
- 108091006597 SLC15A4 Proteins 0.000 description 1
- 108091006759 SLC22A31 Proteins 0.000 description 1
- 108091006518 SLC26A9 Proteins 0.000 description 1
- 108091006570 SLC33A1 Proteins 0.000 description 1
- 102100024792 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 Human genes 0.000 description 1
- 102100023160 Seizure 6-like protein Human genes 0.000 description 1
- 102100030057 Seizure protein 6 homolog Human genes 0.000 description 1
- 241000252141 Semionotiformes Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 102100031075 Serine/threonine-protein kinase Chk2 Human genes 0.000 description 1
- 102100032014 Serine/threonine-protein kinase tousled-like 2 Human genes 0.000 description 1
- 102100035728 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform Human genes 0.000 description 1
- 102100027865 Serine/threonine-protein phosphatase 4 regulatory subunit 3B Human genes 0.000 description 1
- 102100039149 Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit C Human genes 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 102100031367 Sodium channel protein type 9 subunit alpha Human genes 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 102100021484 Solute carrier family 15 member 4 Human genes 0.000 description 1
- 102100035267 Solute carrier family 26 member 9 Human genes 0.000 description 1
- 102100038627 Sorting nexin-7 Human genes 0.000 description 1
- 102100037198 Spindle assembly abnormal protein 6 homolog Human genes 0.000 description 1
- 102100027005 Spindlin-1 Human genes 0.000 description 1
- 102100031710 Splicing factor 3A subunit 3 Human genes 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 102100028848 Stromelysin-2 Human genes 0.000 description 1
- 102100029543 Structural maintenance of chromosomes protein 1B Human genes 0.000 description 1
- 102100022842 Structural maintenance of chromosomes protein 4 Human genes 0.000 description 1
- 102100022773 Structural maintenance of chromosomes protein 5 Human genes 0.000 description 1
- 102100031030 Structural maintenance of chromosomes protein 6 Human genes 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 102100021679 Syntaxin-binding protein 3 Human genes 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 230000037453 T cell priming Effects 0.000 description 1
- 102100029659 T cell receptor beta variable 20-1 Human genes 0.000 description 1
- 102100028546 TATA box-binding protein-associated factor RNA polymerase I subunit B Human genes 0.000 description 1
- 102100035166 TLR adapter interacting with SLC15A4 on the lysosome Human genes 0.000 description 1
- 102000003615 TRPM2 Human genes 0.000 description 1
- 101150095096 TRPM2 gene Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 102100025867 Taste receptor type 2 member 38 Human genes 0.000 description 1
- 102100030785 Tectonic-3 Human genes 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 102100024553 Telomerase protein component 1 Human genes 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 1
- 102100038123 Teneurin-4 Human genes 0.000 description 1
- NYTOUQBROMCLBJ-UHFFFAOYSA-N Tetranitromethane Chemical compound [O-][N+](=O)C([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O NYTOUQBROMCLBJ-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000008236 Toll-Like Receptor 7 Human genes 0.000 description 1
- 108010060825 Toll-Like Receptor 7 Proteins 0.000 description 1
- 102000008208 Toll-Like Receptor 8 Human genes 0.000 description 1
- 108010060752 Toll-Like Receptor 8 Proteins 0.000 description 1
- 102100039357 Toll-like receptor 5 Human genes 0.000 description 1
- 102100034424 Transcription cofactor HES-6 Human genes 0.000 description 1
- 102100040393 Transcription elongation regulator 1 Human genes 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100024026 Transcription factor E2F1 Human genes 0.000 description 1
- 102100031556 Transcription factor E2F7 Human genes 0.000 description 1
- 102100022431 Transcription factor SOX-14 Human genes 0.000 description 1
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 102100032467 Transmembrane protease serine 13 Human genes 0.000 description 1
- 102100032454 Transmembrane protease serine 3 Human genes 0.000 description 1
- 102100022215 Transmembrane protein 217 Human genes 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102100024971 Tryptophan 5-hydroxylase 1 Human genes 0.000 description 1
- 102100036964 Tuberoinfundibular peptide of 39 residues Human genes 0.000 description 1
- 102100026157 Tubulin epsilon and delta complex protein 2 Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 102100033015 Tyrosine-protein phosphatase non-receptor type 14 Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 102100037256 Ubiquitin-conjugating enzyme E2 C Human genes 0.000 description 1
- 102100039937 Ufm1-specific protease 2 Human genes 0.000 description 1
- 102100034822 Uncharacterized protein C5orf34 Human genes 0.000 description 1
- 102100020777 VPS35 endosomal protein-sorting factor-like Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 102100038397 Vacuolar protein sorting-associated protein 26C Human genes 0.000 description 1
- SECKRCOLJRRGGV-UHFFFAOYSA-N Vardenafil Chemical compound CCCC1=NC(C)=C(C(N=2)=O)N1NC=2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(CC)CC1 SECKRCOLJRRGGV-UHFFFAOYSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 102100020706 WD repeat-containing protein 6 Human genes 0.000 description 1
- 102100038093 WD repeat-containing protein 75 Human genes 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 101150084041 WT1 gene Proteins 0.000 description 1
- 241001492404 Woodchuck hepatitis virus Species 0.000 description 1
- 108010004696 Xenotropic and Polytropic Retrovirus Receptor Proteins 0.000 description 1
- 102100036974 Xenotropic and polytropic retrovirus receptor 1 Human genes 0.000 description 1
- 102100025085 Zinc finger MYM-type protein 2 Human genes 0.000 description 1
- 102100028131 Zinc finger and BTB domain-containing protein 43 Human genes 0.000 description 1
- 102100023559 Zinc finger protein 107 Human genes 0.000 description 1
- 102100026522 Zinc finger protein 267 Human genes 0.000 description 1
- 102100025295 Zinc finger protein 280C Human genes 0.000 description 1
- 102100021104 Zinc finger protein 614 Human genes 0.000 description 1
- 102100021103 Zinc finger protein 618 Human genes 0.000 description 1
- 102100026494 Zinc finger protein 655 Human genes 0.000 description 1
- 102100039053 Zinc finger protein 681 Human genes 0.000 description 1
- 102100024711 Zinc finger protein 724 Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000011226 adjuvant chemotherapy Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229940060265 aldara Drugs 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- UKFWSNCTAHXBQN-UHFFFAOYSA-N ammonium iodide Chemical compound [NH4+].[I-] UKFWSNCTAHXBQN-UHFFFAOYSA-N 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 1
- 230000008349 antigen-specific humoral response Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 229910001620 barium bromide Inorganic materials 0.000 description 1
- NKQIMNKPSDEDMO-UHFFFAOYSA-L barium bromide Chemical compound [Br-].[Br-].[Ba+2] NKQIMNKPSDEDMO-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001638 barium iodide Inorganic materials 0.000 description 1
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Inorganic materials [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 1
- WAKZZMMCDILMEF-UHFFFAOYSA-H barium(2+);diphosphate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O WAKZZMMCDILMEF-UHFFFAOYSA-H 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Inorganic materials [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Inorganic materials [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 1
- 229910001490 caesium perchlorate Inorganic materials 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 238000009566 cancer vaccine Methods 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 230000005773 cancer-related death Effects 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 210000002318 cardia Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960002412 cediranib Drugs 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- QUPYHCHUQVNFJW-UHFFFAOYSA-M cesium;thiocyanate Chemical compound [Cs+].[S-]C#N QUPYHCHUQVNFJW-UHFFFAOYSA-M 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 230000006328 chemical modification of amino acids Effects 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000336 copper(I) sulfate Inorganic materials 0.000 description 1
- WIVXEZIMDUGYRW-UHFFFAOYSA-L copper(i) sulfate Chemical compound [Cu+].[Cu+].[O-]S([O-])(=O)=O WIVXEZIMDUGYRW-UHFFFAOYSA-L 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical compound O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229940127276 delta-like ligand 3 Drugs 0.000 description 1
- 230000004041 dendritic cell maturation Effects 0.000 description 1
- 229940029030 dendritic cell vaccine Drugs 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 125000004989 dicarbonyl group Chemical group 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- FFYPMLJYZAEMQB-UHFFFAOYSA-N diethyl pyrocarbonate Chemical compound CCOC(=O)OC(=O)OCC FFYPMLJYZAEMQB-UHFFFAOYSA-N 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006334 disulfide bridging Effects 0.000 description 1
- 229950009791 durvalumab Drugs 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 229940056913 eftilagimod alfa Drugs 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 238000001437 electrospray ionisation time-of-flight quadrupole detection Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 229940066758 endopeptidases Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 201000008396 gallbladder adenocarcinoma Diseases 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 238000003500 gene array Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 230000036449 good health Effects 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000019691 hematopoietic and lymphoid cell neoplasm Diseases 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 229920000639 hydroxypropylmethylcellulose acetate succinate Polymers 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000001571 immunoadjuvant effect Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 108010019691 inhibin beta A subunit Proteins 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- JDNTWHVOXJZDSN-UHFFFAOYSA-N iodoacetic acid Chemical compound OC(=O)CI JDNTWHVOXJZDSN-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JXDYKVIHCLTXOP-UHFFFAOYSA-N isatin Chemical compound C1=CC=C2C(=O)C(=O)NC2=C1 JXDYKVIHCLTXOP-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 229960001021 lactose monohydrate Drugs 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 208000003849 large cell carcinoma Diseases 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 108010051618 macrophage stimulatory lipopeptide 2 Proteins 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000008099 melanin synthesis Effects 0.000 description 1
- 108010038449 metabotropic glutamate receptor 7 Proteins 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- ZCQGVFNHUATAJY-UHFFFAOYSA-N methyl 2-[methyl(prop-2-enoyl)amino]acetate Chemical compound COC(=O)CN(C)C(=O)C=C ZCQGVFNHUATAJY-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000150 monocalcium phosphate Inorganic materials 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 229940035036 multi-peptide vaccine Drugs 0.000 description 1
- CMWYAOXYQATXSI-UHFFFAOYSA-N n,n-dimethylformamide;piperidine Chemical compound CN(C)C=O.C1CCNCC1 CMWYAOXYQATXSI-UHFFFAOYSA-N 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- VXAPDXVBDZRZKP-UHFFFAOYSA-N nitric acid phosphoric acid Chemical compound O[N+]([O-])=O.OP(O)(O)=O VXAPDXVBDZRZKP-UHFFFAOYSA-N 0.000 description 1
- 229960003301 nivolumab Drugs 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 231100001221 nontumorigenic Toxicity 0.000 description 1
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 1
- 230000005937 nuclear translocation Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 229940100027 ontak Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 210000002990 parathyroid gland Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 description 1
- 229960000639 pazopanib Drugs 0.000 description 1
- 229960002621 pembrolizumab Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 229940125667 peptide vaccine candidate Drugs 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229940115270 poly iclc Drugs 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Inorganic materials [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 1
- GKKCIDNWFBPDBW-UHFFFAOYSA-M potassium cyanate Chemical compound [K]OC#N GKKCIDNWFBPDBW-UHFFFAOYSA-M 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229940021993 prophylactic vaccine Drugs 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000016434 protein splicing Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000007347 radical substitution reaction Methods 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005932 reductive alkylation reaction Methods 0.000 description 1
- 230000012385 regulation of binding Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 229910000344 rubidium sulfate Inorganic materials 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229960000714 sipuleucel-t Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 229940074386 skatole Drugs 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- PUZPDOWCWNUUKD-ULWFUOSBSA-M sodium;fluorine-18(1-) Chemical compound [18F-].[Na+] PUZPDOWCWNUUKD-ULWFUOSBSA-M 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 102100023397 tRNA dimethylallyltransferase Human genes 0.000 description 1
- 229960000835 tadalafil Drugs 0.000 description 1
- IEHKWSGCTWLXFU-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C([C]4C=CC=CC4=N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 IEHKWSGCTWLXFU-IIBYNOLFSA-N 0.000 description 1
- 108010010186 talactoferrin alfa Proteins 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- 229960000235 temsirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229940021747 therapeutic vaccine Drugs 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 101150070518 ufsp2 gene Proteins 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940124931 vaccine adjuvant Drugs 0.000 description 1
- 239000012646 vaccine adjuvant Substances 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 229960002381 vardenafil Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4748—Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/193—Colony stimulating factors [CSF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001102—Receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001184—Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
- A61K39/001189—PRAME
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464499—Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5434—IL-12
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70539—MHC-molecules, e.g. HLA-molecules
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2833—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1062—Isolating an individual clone by screening libraries mRNA-Display, e.g. polypeptide and encoding template are connected covalently
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0638—Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5158—Antigen-pulsed cells, e.g. T-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/572—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
Definitions
- the present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods.
- the present invention relates to the immunotherapy of cancer.
- the present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients.
- Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
- MHC major histocompatibility complex
- the present invention relates to several novel peptide sequences and their variants derived from HLA class I molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses, or as targets for the development of pharmaceutically/immunologically active compounds and cells.
- Lung cancer accounts for the most cancer-related deaths in both men and women. Worldwide, lung cancer is the most common cancer in terms of both incidence and mortality. In 2012, there were more than 1.8 million new cases (13% of total cancer incidence), and 1.6 million deaths (20% of total cancer mortality) due to lung cancer. Lung cancer is the leading cause of cancer death in men in 87 countries and in women in 26 countries. More than one third of all newly diagnosed cases occurred in China. The highest rates are in North America, Europe, and East Asia (World Cancer Report, 2014).
- NCI national cancer institute
- SCLC small cell lung carcinoma
- NSCLC non-small cell lung carcinoma
- adenocarcinoma adenocarcinoma
- squamous cell carcinoma adenocarcinoma
- large cell carcinoma adenocarcinoma
- lung cancers are increasingly classified according to molecular subtypes, predicated on particular genetic alterations that drive and maintain lung tumorigenesis (Travis et al., 2013).
- Prognosis is generally poor. Of all people with lung cancer, 10-15% survive for five years after diagnosis. Poor survival of lung cancer patients is due, at least in part, to 80% of patients being diagnosed with metastatic disease and more than half of patients having distant metastases (SEER Stat facts, 2014). At presentation, 30-40% of cases of NSCLC are stage IV, and 60% of SCLC are stage IV.
- the 1-year relative survival for lung cancer has slightly increased from 35% in 1975-1979 to 44% in 2010, largely due to improvements in surgical techniques and combined therapies.
- the 5-year survival rate for all stages combined is only 17%.
- the survival rate is 54% for cases detected when the disease is still localized; however, only 16% of lung cancers are diagnosed at this early stage (SEER Stat facts, 2014).
- Treatment options are determined by the type (small cell or non-small cell) and stage of cancer and include surgery, radiation therapy, chemotherapy, and targeted biological therapies such as bevacizumab (AVASTIN®) and erlotinib (TARCEVA®).
- surgery is usually the treatment of choice.
- Recent studies indicate that survival with early-stage, non-small cell lung cancer is improved by chemotherapy following surgery. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often used, sometimes in combination with surgery.
- Chemotherapy alone or combined with radiation is the usual treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which is long lasting in some cases surgery (S3-Leitline Lurgikarzinom, 2011).
- Advanced lung cancer has also been resistant to traditional chemotherapy.
- recent advances have led to exciting progress in therapies that are dependent on histology and genetics.
- the level of scrutiny is exemplified by trials of adjuvant chemotherapy designed to differentiate not only between mutations in codons 12 and 13 of KRAS, but also between different amino acid substitutions as determined by particular mutations at codon 12 (Shepherd et al., 2013).
- Immunotherapy of cancer represents an option of specific targeting of cancer cells while minimizing side effects. Cancer immunotherapy makes use of the existence of tumor associated antigens.
- TAAs tumor associated antigens
- Cancer-testis antigens The first TAAs ever identified that can be recognized by T cells belong to this class, which was originally called cancer-testis (CT) antigens because of the expression of its members in histologically different human tumors and, among normal tissues, only in spermatocytes/spermatogonia of testis and, occasionally, in placenta. Since the cells of testis do not express class I and II HLA molecules, these antigens cannot be recognized by T cells in normal tissues and can therefore be considered as immunologically tumor-specific.
- CT antigens are the MAGE family members and NY-ESO-1.
- TAAs Differentiation antigens
- These TAAs are shared between tumors and the normal tissue from which the tumor arose. Most of the known differentiation antigens are found in melanomas and normal melanocytes. Many of these melanocyte lineage-related proteins are involved in biosynthesis of melanin and are therefore not tumor specific but nevertheless are widely used for cancer immunotherapy. Examples include, but are not limited to, tyrosinase and Melan-A/MART-1 for melanoma or PSA for prostate cancer.
- TAAs Over-expressed TAAs: Genes encoding widely expressed TAAs have been detected in histologically different types of tumors as well as in many normal tissues, generally with lower expression levels. It is possible that many of the epitopes processed and potentially presented by normal tissues are below the threshold level for T-cell recognition, while their over-expression in tumor cells can trigger an anticancer response by breaking previously established tolerance. Prominent examples for this class of TAAs are Her-2/neu, survivin, telomerase, or WT1.
- Tumor-specific antigens arise from mutations of normal genes (such as ⁇ -catenin, CDK4, etc.). Some of these molecular changes are associated with neoplastic transformation and/or progression. Tumor-specific antigens are generally able to induce strong immune responses without bearing the risk for autoimmune reactions against normal tissues. On the other hand, these TAAs are in most cases only relevant to the exact tumor on which they were identified and are usually not shared between many individual tumors. Tumor-specificity (or -association) of a peptide may also arise if the peptide originates from a tumor-(-associated) exon in case of proteins with tumor-specific (-associated) isoforms.
- TAAs arising from abnormal post-translational modifications may arise from proteins which are neither specific nor overexpressed in tumors but nevertheless become tumor associated by posttranslational processes primarily active in tumors. Examples for this class arise from altered glycosylation patterns leading to novel epitopes in tumors as for MUC1 or events like protein splicing during degradation which may or may not be tumor specific.
- Oncoviral proteins are viral proteins that may play a critical role in the oncogenic process and, because they are foreign (not of human origin), they can evoke a T-cell response. Examples of such proteins are the human papilloma type 16 virus proteins, E6 and E7, which are expressed in cervical carcinoma.
- T-cell based immunotherapy targets peptide epitopes derived from tumor-associated or tumor-specific proteins, which are presented by molecules of the major histocompatibility complex (MHC).
- MHC major histocompatibility complex
- the antigens that are recognized by the tumor specific T lymphocytes, that is, the epitopes thereof, can be molecules derived from all protein classes, such as enzymes, receptors, transcription factors, etc. which are expressed and, as compared to unaltered cells of the same origin, usually up-regulated in cells of the respective tumor.
- MHC class I There are two classes of MHC-molecules, MHC class I and MHC class II.
- MHC class I molecules are composed of an alpha heavy chain and beta-2-microglobulin, MHC class II molecules of an alpha and a beta chain. Their three-dimensional conformation results in a binding groove, which is used for non-covalent interaction with peptides.
- MHC class I molecules can be found on most nucleated cells. They present peptides that result from proteolytic cleavage of predominantly endogenous proteins, defective ribosomal products (DRIPs) and larger peptides. However, peptides derived from endosomal compartments or exogenous sources are also frequently found on MHC class I molecules.
- DRIPs defective ribosomal products
- MHC class II molecules can be found predominantly on professional antigen presenting cells (APCs), and primarily present peptides of exogenous or transmembrane proteins that are taken up by APCs e.g. during endocytosis, and are subsequently processed.
- APCs professional antigen presenting cells
- CD8-positive T cells bearing the appropriate T-cell receptor (TCR)
- CD4-positive-helper-T cells bearing the appropriate TCR. It is well known that the TCR, the peptide and the MHC are thereby present in a stoichiometric amount of 1:1:1.
- CD4-positive helper T cells play an important role in inducing and sustaining effective responses by CD8-positive cytotoxic T cells.
- TAA tumor associated antigens
- T helper cells support a cytotoxic T cell ⁇ (CTL ⁇ ) friendly cytokine milieu (Mortara et al., 2006) and attract effector cells, e.g. CTLs, natural killer (NK) cells, macrophages, and granulocytes (Hwang et al., 2007).
- CTL ⁇ cytotoxic T cell ⁇ friendly cytokine milieu
- NK natural killer cells
- macrophages macrophages
- granulocytes Hwang et al., 2007.
- MHC class II molecules In the absence of inflammation, expression of MHC class II molecules is mainly restricted to cells of the immune system, especially professional antigen-presenting cells (APC), e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells.
- APC professional antigen-presenting cells
- monocytes e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells.
- monocytes e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells.
- Elongated (longer) peptides of the invention can act as MHC class II active epitopes.
- T-helper cells activated by MHC class II epitopes, play an important role in orchestrating the effector function of CTLs in anti-tumor immunity.
- T-helper cell epitopes that trigger a T-helper cell response of the TH1 type support effector functions of CD8-positive killer T cells, which include cytotoxic functions directed against tumor cells displaying tumor-associated peptide/MHC complexes on their cell surfaces.
- tumor-associated T-helper cell peptide epitopes alone or in combination with other tumor-associated peptides, can serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses.
- CD4-positive T cells are sufficient for inhibiting manifestation of tumors via inhibition of angiogenesis by secretion of interferon-gamma (IFN ⁇ ) (Beatty and Paterson, 2001; Mumberg et al., 1999). There is evidence for CD4 T cells as direct anti-tumor effectors (Braumuller et al., 2013; Tran et al., 2014).
- IFN ⁇ interferon-gamma
- HLA class II molecules Since the constitutive expression of HLA class II molecules is usually limited to immune cells, the possibility of isolating class II peptides directly from primary tumors was previously not considered possible. However, Dengjel et al. were successful in identifying a number of MHC Class II epitopes directly from tumors (WO 2007/028574, EP 1 760 088 B1).
- CD8 and CD4 dependent Since both types of response, CD8 and CD4 dependent, contribute jointly and synergistically to the anti-tumor effect, the identification and characterization of tumor-associated antigens recognized by either CD8+ T cells (ligand: MHC class I molecule+peptide epitope) or by CD4-positive T-helper cells (ligand: MHC class II molecule+peptide epitope) is important in the development of tumor vaccines.
- MHC-class I peptide For an MHC class I peptide to trigger (elicit) a cellular immune response, it also must bind to an MHC-molecule. This process is dependent on the allele of the MHC-molecule and specific polymorphisms of the amino acid sequence of the peptide.
- MHC-class-1-binding peptides are usually 8-12 amino acid residues in length and usually contain two conserved residues (“anchors”) in their sequence that interact with the corresponding binding groove of the MHC-molecule. In this way, each MHC allele has a “binding motif” determining which peptides can bind specifically to the binding groove.
- peptides In the MHC class I dependent immune reaction, peptides not only have to be able to bind to certain MHC class I molecules expressed by tumor cells, they subsequently also have to be recognized by T cells bearing specific T cell receptors (TCR).
- TCR T cell receptors
- the antigen should be expressed mainly by tumor cells and not, or in comparably small amounts, by normal healthy tissues.
- the peptide should be over-presented by tumor cells as compared to normal healthy tissues. It is furthermore desirable that the respective antigen is not only present in a type of tumor, but also in high concentrations (i.e. copy numbers of the respective peptide per cell).
- Tumor-specific and tumor-associated antigens are often derived from proteins directly involved in transformation of a normal cell to a tumor cell due to their function, e.g. in cell cycle control or suppression of apoptosis.
- downstream targets of the proteins directly causative for a transformation may be up-regulated and thus may be indirectly tumor-associated.
- Such indirect tumor-associated antigens may also be targets of a vaccination approach (Singh-Jasuja et al., 2004). It is essential that epitopes are present in the amino acid sequence of the antigen, in order to ensure that such a peptide (“immunogenic peptide”), being derived from a tumor associated antigen, leads to an in vitro or in vivo T-cell-response.
- any peptide able to bind an MHC molecule may function as a T-cell epitope.
- a prerequisite for the induction of an in vitro or in vivo T-cell-response is the presence of a T cell having a corresponding TCR and the absence of immunological tolerance for this particular epitope.
- TAAs are a starting point for the development of a T cell based therapy including but not limited to tumor vaccines.
- the methods for identifying and characterizing the TAAs are usually based on the use of T-cells that can be isolated from patients or healthy subjects, or they are based on the generation of differential transcription profiles or differential peptide expression patterns between tumors and normal tissues.
- the identification of genes over-expressed in tumor tissues or human tumor cell lines, or selectively expressed in such tissues or cell lines does not provide precise information as to the use of the antigens being transcribed from these genes in an immune therapy.
- effector T cell Such a functional T cell is defined as a T cell, which upon stimulation with a specific antigen can be clonally expanded and is able to execute effector functions (“effector T cell”).
- the immunogenicity of the underlying peptides is secondary. In these cases, the presentation is the determining factor.
- the present invention relates to a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant sequence thereof which is at least 77%, preferably at least 88%, homologous (preferably at least 77% or at least 88% identical) to SEQ ID NO: 1 to SEQ ID NO: 489, wherein said variant binds to MHC and/or induces T cells cross-reacting with said peptide, or a pharmaceutical acceptable salt thereof, wherein said peptide is not the underlying full-length polypeptide.
- the present invention further relates to a peptide of the present invention comprising a sequence that is selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof, which is at least 77%, preferably at least 88%, homologous (preferably at least 77% or at least 88% identical) to SEQ ID NO: 1 to SEQ ID NO: 489, wherein said peptide or variant thereof has an overall length of between 8 and 100, preferably between 8 and 30, and most preferred of between 8 and 14 amino acids.
- peptides with SEQ ID NO: 1 to SEQ ID NO: 83 bind to HLA-A*24
- peptides with SEQ ID NO: 84 to SEQ ID NO: 133 bind to HLA-A*02
- peptides with SEQ ID NO: 134 to SEQ ID NO: 201 bind to HLA-A*01
- peptides with SEQ ID NO: 202 to SEQ ID NO: 219 bind to HLA-A*03
- peptides with SEQ ID NO: 220 to SEQ ID NO: 295 bind to HLA-B*07
- peptides with SEQ ID NO: 296 to SEQ ID NO: 318 bind to HLA-B*08
- peptides with SEQ ID NO: 319 to SEQ ID NO: 374 bind to HLA-B*44.
- peptides in Table 2 have been disclosed before in large listings as results of high-throughput screenings with high error rates or calculated using algorithms, but have not been associated with cancer at all before.
- peptides with SEQ ID NO: 375 to SEQ ID NO: 387 bind to HLA-A*24
- peptides with SEQ ID NO: 388 to SEQ ID NO: 393 bind to HLA-A*02
- peptides with SEQ ID NO: 394 to SEQ ID NO: 452 bind to HLA-A*01
- peptides with SEQ ID NO: 453 to SEQ ID NO: 458 bind to HLA-A*03
- peptides with SEQ ID NO: 459 to SEQ ID NO: 475 bind to HLA-B*07
- peptides with SEQ ID NO: 476 to SEQ ID NO: 489 bind to HLA-B*44.
- peptides in Table 3 are additional peptides that may be useful in combination with the other peptides of the invention.
- peptides with SEQ ID NO: 490 to SEQ ID NO: 508 bind to HLA-A*24
- peptides with SEQ ID NO: 509 to SEQ ID NO: 528 bind to HLA-A*02
- peptides with SEQ ID NO: 529 to SEQ ID NO: 530 bind to HLA-B*07
- peptide with SEQ ID NO: 531 binds to HLA-B*44.
- the present invention furthermore generally relates to the peptides according to the present invention for use in the treatment of proliferative diseases, such as, for example, acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer.
- proliferative diseases such as, for example, acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lympho
- peptides—alone or in combination—according to the present invention selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489. More preferred are the peptides—alone or in combination—selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 374 (see Table 1), and their uses in the immunotherapy of lung cancer (including NSCLC and SCLC), acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer, and preferably lung cancer (including NSCLC and SCLC).
- lung cancer including NSCLC and SCLC
- acute myeloid leukemia breast cancer,
- another aspect of the present invention relates to the use of the peptides according to the present invention for the—preferably combined—treatment of a proliferative disease selected from the group of lung cancer (including NSCLC and SCLC), acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer.
- lung cancer including NSCLC and SCLC
- acute myeloid leukemia breast cancer
- bile duct cancer brain cancer
- chronic lymphocytic leukemia colorectal carcinoma
- esophageal cancer gallbladder cancer
- gastric cancer head and neck squamous cell carcinoma
- the present invention furthermore relates to peptides according to the present invention that have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or—in an elongated form, such as a length-variant—MHC class-II.
- MHC human major histocompatibility complex
- the present invention further relates to the peptides according to the present invention wherein said peptides (each) consist or consist essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489.
- the present invention further relates to the peptides according to the present invention, wherein said peptide is modified and/or includes non-peptide bonds.
- the present invention further relates to the peptides according to the present invention, wherein said peptide is part of a fusion protein, in particular fused to the N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or fused to (or into the sequence of) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- a fusion protein in particular fused to the N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or fused to (or into the sequence of) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- the present invention further relates to a nucleic acid, encoding the peptides according to the present invention.
- the present invention further relates to the nucleic acid according to the present invention that is DNA, cDNA, PNA, RNA or combinations thereof.
- the present invention further relates to an expression vector capable of expressing and/or expressing a nucleic acid according to the present invention.
- the present invention further relates to a peptide according to the present invention, a nucleic acid according to the present invention or an expression vector according to the present invention for use in the treatment of diseases and in medicine, in particular in the treatment of cancer.
- the present invention further relates to antibodies that are specific against the peptides according to the present invention or complexes of said peptides according to the present invention with MHC, and methods of making these.
- the present invention further relates to T-cell receptors (TCRs), in particular soluble TCR (sTCRs) and cloned TCRs engineered into autologous or allogeneic T cells, and methods of making these, as well as NK cells or other cells bearing said TCR or cross-reacting with said TCRs.
- TCRs T-cell receptors
- sTCRs soluble TCR
- cloned TCRs engineered into autologous or allogeneic T cells
- the antibodies and TCRs are additional embodiments of the immunotherapeutic use of the peptides according to the invention at hand.
- the present invention further relates to a host cell comprising a nucleic acid according to the present invention or an expression vector as described before.
- the present invention further relates to the host cell according to the present invention that is an antigen presenting cell, and preferably is a dendritic cell.
- the present invention further relates to a method for producing a peptide according to the present invention, said method comprising culturing the host cell according to the present invention, and isolating the peptide from said host cell or its culture medium.
- the present invention further relates to said method according to the present invention, wherein the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell or artificial antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell.
- the present invention further relates to the method according to the present invention, wherein the antigen-presenting cell comprises an expression vector capable of expressing or expressing said peptide containing SEQ ID No. 1 to SEQ ID No.: 489, preferably containing SEQ ID No. 1 to SEQ ID No. 374, or a variant amino acid sequence.
- the present invention further relates to activated T cells, produced by the method according to the present invention, wherein said T cell selectively recognizes a cell which expresses a polypeptide comprising an amino acid sequence according to the present invention.
- the present invention further relates to a method of killing target cells in a patient which target cells aberrantly express a polypeptide comprising any amino acid sequence according to the present invention, the method comprising administering to the patient an effective number of T cells as produced according to the present invention.
- the present invention further relates to the use of any peptide as described, the nucleic acid according to the present invention, the expression vector according to the present invention, the cell according to the present invention, the activated T lymphocyte, the T cell receptor or the antibody or other peptide- and/or peptide-MHC-binding molecules according to the present invention as a medicament or in the manufacture of a medicament.
- said medicament is active against cancer.
- said medicament is a cellular therapy, a vaccine or a protein based on a soluble TCR or antibody.
- the present invention further relates to a use according to the present invention, wherein said cancer cells are lung cancer (including NSCLC and SCLC), acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer, and preferably lung cancer (including NSCLC and SCLC) cells.
- lung cancer including NSCLC and SCLC
- acute myeloid leukemia breast cancer
- bile duct cancer brain cancer
- chronic lymphocytic leukemia colorectal carcinoma
- esophageal cancer gallbladder cancer
- gastric cancer head and neck squamous cell carcinoma
- hepatocellular cancer mela
- the present invention further relates to biomarkers based on the peptides according to the present invention, herein called “targets” that can be used in the diagnosis of cancer, preferably lung cancer (including NSCLC and SCLC).
- the marker can be over-presentation of the peptide(s) themselves, or over-expression of the corresponding gene(s).
- the markers may also be used to predict the probability of success of a treatment, preferably an immunotherapy, and most preferred an immunotherapy targeting the same target that is identified by the biomarker.
- an antibody or soluble TCR can be used to stain sections of the tumor to detect the presence of a peptide of interest in complex with MHC.
- the antibody carries a further effector function such as an immune stimulating domain or toxin.
- the present invention also relates to the use of these novel targets in the context of cancer treatment.
- Stimulation of an immune response is dependent upon the presence of antigens recognized as foreign by the host immune system.
- the discovery of the existence of tumor associated antigens has raised the possibility of using a host's immune system to intervene in tumor growth.
- Various mechanisms of harnessing both the humoral and cellular arms of the immune system are currently being explored for cancer immunotherapy.
- T-cells capable of specifically recognizing and destroying tumor cells.
- CD8-positive T-cells which recognize class I molecules of the major histocompatibility complex (MHC)-bearing peptides of usually 8 to 10 amino acid residues derived from proteins or defect ribosomal products (DRIPS) located in the cytosol, play an important role in this response.
- MHC-molecules of the human are also designated as human leukocyte-antigens (HLA).
- T-cell response means the specific proliferation and activation of effector functions induced by a peptide in vitro or in vivo.
- effector functions may be lysis of peptide-pulsed, peptide-precursor pulsed or naturally peptide-presenting target cells, secretion of cytokines, preferably Interferon-gamma, TNF-alpha, or IL-2 induced by peptide, secretion of effector molecules, preferably granzymes or perforins induced by peptide, or degranulation.
- peptide is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the peptides are preferably 9 amino acids in length, but can be as short as 8 amino acids in length, and as long as 10, 11, or 12 or longer, and in case of MHC class II peptides (elongated variants of the peptides of the invention) they can be as long as 13, 14, 15, 16, 17, 18, 19 or 20 or more amino acids in length.
- the term “peptide” shall include salts of a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the salts are pharmaceutical acceptable salts of the peptides, such as, for example, the chloride or acetate (trifluoroacetate) salts. It has to be noted that the salts of the peptides according to the present invention differ substantially from the peptides in their state(s) in vivo, as the peptides are not salts in vivo.
- peptide shall also include “oligopeptide”.
- oligopeptide is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the length of the oligopeptide is not critical to the invention, as long as the correct epitope or epitopes are maintained therein.
- the oligopeptides are typically less than about 30 amino acid residues in length, and greater than about 15 amino acids in length.
- polypeptide designates a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the length of the polypeptide is not critical to the invention as long as the correct epitopes are maintained.
- polypeptide is meant to refer to molecules containing more than about 30 amino acid residues.
- a peptide, oligopeptide, protein or polynucleotide coding for such a molecule is “immunogenic” (and thus is an “immunogen” within the present invention), if it is capable of inducing an immune response.
- immunogenicity is more specifically defined as the ability to induce a T-cell response.
- an “immunogen” would be a molecule that is capable of inducing an immune response, and in the case of the present invention, a molecule capable of inducing a T-cell response.
- the immunogen can be the peptide, the complex of the peptide with MHC, oligopeptide, and/or protein that is used to raise specific antibodies or TCRs against it.
- a class I T cell “epitope” requires a short peptide that is bound to a class I MHC receptor, forming a ternary complex (MHC class I alpha chain, beta-2-microglobulin, and peptide) that can be recognized by a T cell bearing a matching T-cell receptor binding to the MHC/peptide complex with appropriate affinity.
- Peptides binding to MHC class I molecules are typically 8-14 amino acids in length, and most typically 9 amino acids in length.
- HLA-molecules of the human are also designated human leukocyte antigens (HLA)): HLA-A, HLA-B, and HLA-C.
- HLA-A*01, HLA-A*02, and HLA-B*07 are examples of different MHC class I alleles that can be expressed from these loci.
- Haplotype frequencies Gf are derived from a study which used HLA- typing data from a registry of more than 6.5 million volunteer donors in the U.S. (Gragert et al., 2013).
- the peptides of the invention preferably when included into a vaccine of the invention as described herein bind to A*02, A*01, A*03, A*24, B*07, B*08 or B*44.
- a vaccine may also include pan-binding MHC class II peptides. Therefore, the vaccine of the invention can be used to treat cancer in patients that are A*02-, A*01-, A*03-, A*24-, B*07-, B*08- or B*44-positive, whereas no selection for MHC class II allotypes is necessary due to the pan-binding nature of these peptides.
- A*02 peptides of the invention are combined with peptides binding to another allele, for example A*24, a higher percentage of any patient population can be treated compared with addressing either MHC class I allele alone. While in most populations less than 50% of patients could be addressed by either allele alone, a vaccine comprising HLA-A*24 and HLA-A*02 epitopes can treat at least 60% of patients in any relevant population. Specifically, the following percentages of patients will be positive for at least one of these alleles in various regions: USA 61%, Western Europe 62%, China 75%, South Korea 77%, Japan 86% (calculated from www.allelefrequencies.net).
- nucleotide sequence refers to a heteropolymer of deoxyribonucleotides.
- nucleotide sequence coding for a particular peptide, oligopeptide, or polypeptide may be naturally occurring or they may be synthetically constructed.
- DNA segments encoding the peptides, polypeptides, and proteins of this invention are assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene that is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.
- a nucleotide coding for (or encoding) a peptide refers to a nucleotide sequence coding for the peptide including artificial (man-made) start and stop codons compatible for the biological system the sequence is to be expressed by, for example, a dendritic cell or another cell system useful for the production of TCRs.
- nucleic acid sequence includes both single stranded and double stranded nucleic acid.
- specific sequence refers to the single strand DNA of such sequence, the duplex of such sequence with its complement (double stranded DNA) and the complement of such sequence.
- coding region refers to that portion of a gene which either naturally or normally codes for the expression product of that gene in its natural genomic environment, i.e., the region coding in vivo for the native expression product of the gene.
- the coding region can be derived from a non-mutated (“normal”), mutated or altered gene, or can even be derived from a DNA sequence, or gene, wholly synthesized in the laboratory using methods well known to those of skill in the art of DNA synthesis.
- expression product means the polypeptide or protein that is the natural translation product of the gene and any nucleic acid sequence coding equivalents resulting from genetic code degeneracy and thus coding for the same amino acid(s).
- fragment when referring to a coding sequence, means a portion of DNA comprising less than the complete coding region, whose expression product retains essentially the same biological function or activity as the expression product of the complete coding region.
- DNA segment refers to a DNA polymer, in the form of a separate fragment or as a component of a larger DNA construct, which has been derived from DNA isolated at least once in substantially pure form, i.e., free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of the segment and its component nucleotide sequences by standard biochemical methods, for example, by using a cloning vector.
- Such segments are provided in the form of an open reading frame uninterrupted by internal non-translated sequences, or introns, which are typically present in eukaryotic genes. Sequences of non-translated DNA may be present downstream from the open reading frame, where the same do not interfere with manipulation or expression of the coding regions.
- primer means a short nucleic acid sequence that can be paired with one strand of DNA and provides a free 3′-OH end at which a DNA polymerase starts synthesis of a deoxyribonucleotide chain.
- promoter means a region of DNA involved in binding of RNA polymerase to initiate transcription.
- isolated means that the material is removed from its original environment (e.g., the natural environment, if it is naturally occurring).
- a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated.
- Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.
- polynucleotides, and recombinant or immunogenic polypeptides, disclosed in accordance with the present invention may also be in “purified” form.
- the term “purified” does not require absolute purity; rather, it is intended as a relative definition, and can include preparations that are highly purified or preparations that are only partially purified, as those terms are understood by those of skill in the relevant art.
- individual clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated.
- a claimed polypeptide which has a purity of preferably 99.999%, or at least 99.99% or 99.9%; and even desirably 99% by weight or greater is expressly encompassed.
- nucleic acids and polypeptide expression products disclosed according to the present invention may be in “enriched form”.
- enriched means that the concentration of the material is at least about 2, 5, 10, 100, or 1000 times its natural concentration (for example), advantageously 0.01%, by weight, preferably at least about 0.1% by weight. Enriched preparations of about 0.5%, 1%, 5%, 10%, and 20% by weight are also contemplated.
- sequences, constructs, vectors, clones, and other materials comprising the present invention can advantageously be in enriched or isolated form.
- active fragment means a fragment, usually of a peptide, polypeptide or nucleic acid sequence, that generates an immune response (i.e., has immunogenic activity) when administered, alone or optionally with a suitable adjuvant or in a vector, to an animal, such as a mammal, for example, a rabbit or a mouse, and also including a human, such immune response taking the form of stimulating a T-cell response within the recipient animal, such as a human.
- the “active fragment” may also be used to induce a T-cell response in vitro.
- portion when used in relation to polypeptides, refer to a continuous sequence of residues, such as amino acid residues, which sequence forms a subset of a larger sequence.
- the oligopeptides resulting from such treatment would represent portions, segments or fragments of the starting polypeptide.
- these terms refer to the products produced by treatment of said polynucleotides with any of the endonucleases.
- percent identity when referring to a sequence, means that a sequence is compared to a claimed or described sequence after alignment of the sequence to be compared (the “Compared Sequence”) with the described or claimed sequence (the “Reference Sequence”). The percent identity is then determined according to the following formula:
- C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence
- each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence constitutes a difference
- R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted as a base or amino acid.
- the Compared Sequence has the specified minimum percent identity to the Reference Sequence even though alignments may exist in which the herein above calculated percent identity is less than the specified percent identity.
- the present invention thus provides a peptide comprising a sequence that is selected from the group of consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof which is 88% homologous to SEQ ID NO: 1 to SEQ ID NO: 489, or a variant thereof that will induce T cells cross-reacting with said peptide.
- the peptides of the invention have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or elongated versions of said peptides to class II.
- MHC human major histocompatibility complex
- homologous refers to the degree of identity (see percent identity above) between sequences of two amino acid sequences, i.e. peptide or polypeptide sequences.
- the aforementioned “homology” is determined by comparing two sequences aligned under optimal conditions over the sequences to be compared. Such a sequence homology can be calculated by creating an alignment using, for example, the ClustalW algorithm.
- sequence analysis software more specifically, Vector NTI, GENETYX or other tools are provided by public databases.
- T cells induced by a variant of a specific peptide will be able to cross-react with the peptide itself (Appay et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997).
- the inventors mean that the side chains of, for example, one or two of the amino acid residues are altered (for example by replacing them with the side chain of another naturally occurring amino acid residue or some other side chain) such that the peptide is still able to bind to an HLA molecule in substantially the same way as a peptide consisting of the given amino acid sequence in consisting of SEQ ID NO: 1 to SEQ ID NO: 489.
- a peptide may be modified so that it at least maintains, if not improves, the ability to interact with and bind to the binding groove of a suitable MHC molecule, such as HLA-A*02 or -DR, and in that way, it at least maintains, if not improves, the ability to bind to the TCR of activated T cells.
- a suitable MHC molecule such as HLA-A*02 or -DR
- T cells can subsequently cross-react with cells and kill cells that express a polypeptide that contains the natural amino acid sequence of the cognate peptide as defined in the aspects of the invention.
- a polypeptide that contains the natural amino acid sequence of the cognate peptide as defined in the aspects of the invention.
- certain positions of HLA binding peptides are typically anchor residues forming a core sequence fitting to the binding motif of the HLA receptor, which is defined by polar, electrophysical, hydrophobic and spatial properties of the polypeptide chains constituting the binding groove.
- variants of the present invention retain the ability to bind to the TCR of activated T cells, which can subsequently cross-react with and kill cells that express a polypeptide containing the natural amino acid sequence of the cognate peptide as defined in the aspects of the invention.
- the original (unmodified) peptides as disclosed herein can be modified by the substitution of one or more residues at different, possibly selective, sites within the peptide chain, if not otherwise stated. Preferably those substitutions are located at the end of the amino acid chain. Such substitutions may be of a conservative nature, for example, where one amino acid is replaced by an amino acid of similar structure and characteristics, such as where a hydrophobic amino acid is replaced by another hydrophobic amino acid. Even more conservative would be replacement of amino acids of the same or similar size and chemical nature, such as where leucine is replaced by isoleucine.
- Conservative substitutions are herein defined as exchanges within one of the following five groups: Group 1-small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, Gly); Group 2-polar, negatively charged residues and their amides (Asp, Asn, Glu, Gln); Group 3-polar, positively charged residues (His, Arg, Lys); Group 4-large, aliphatic, nonpolar residues (Met, Leu, Ile, Val, Cys); and Group 5-large, aromatic residues (Phe, Tyr, Trp).
- substitutions may involve structures other than the common L-amino acids.
- D-amino acids might be substituted for the L-amino acids commonly found in the antigenic peptides of the invention and yet still be encompassed by the disclosure herein.
- non-standard amino acids i.e., other than the common naturally occurring proteinogenic amino acids
- substitutions at more than one position are found to result in a peptide with substantially equivalent or greater antigenic activity as defined below, then combinations of those substitutions will be tested to determine if the combined substitutions result in additive or synergistic effects on the antigenicity of the peptide. At most, no more than 4 positions within the peptide would be simultaneously substituted.
- a peptide consisting essentially of the amino acid sequence as indicated herein can have one or two non-anchor amino acids (see below regarding the anchor motif) exchanged without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed or is negatively affected, when compared to the non-modified peptide.
- MHC human major histocompatibility complex
- one or two amino acids can be exchanged with their conservative exchange partners (see herein below) without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed, or is negatively affected, when compared to the non-modified peptide.
- MHC human major histocompatibility complex
- the amino acid residues that do not substantially contribute to interactions with the T-cell receptor can be modified by replacement with other amino acid whose incorporation does not substantially affect T-cell reactivity and does not eliminate binding to the relevant MHC.
- the peptide of the invention may be any peptide (by which term the inventors include oligopeptide or polypeptide), which includes the amino acid sequences or a portion or variant thereof as given.
- MHC class I epitopes although usually between 8 and 11 amino acids long, are generated by peptide processing from longer peptides or proteins that include the actual epitope. It is preferred that the residues that flank the actual epitope are residues that do not substantially affect proteolytic cleavage necessary to expose the actual epitope during processing.
- the peptides of the invention can be elongated by up to four amino acids, that is 1, 2, 3 or 4 amino acids can be added to either end in any combination between 4:0 and 0:4. Combinations of the elongations according to the invention can be found in Table 7.
- the amino acids for the elongation/extension can be the peptides of the original sequence of the protein or any other amino acid(s).
- the elongation can be used to enhance the stability or solubility of the peptides.
- the epitopes of the present invention may be identical to naturally occurring tumor-associated or tumor-specific epitopes or may include epitopes that differ by no more than four residues from the reference peptide, as long as they have substantially identical antigenic activity.
- the peptide is elongated on either or both sides by more than 4 amino acids, preferably to a total length of up to 30 amino acids. This may lead to MHC class II binding peptides. Binding to MHC class II can be tested by methods known in the art.
- the present invention provides peptides and variants of MHC class I epitopes, wherein the peptide or variant has an overall length of from 8 and 100, from 9 and 100, from 10 and 100, from 11 and 100, from 12 and 100, preferably from 8 and 30, and from 9 and 30, from 10 and 30, from 11 and 30, from 12 and 30, most preferred from 8 and 14, from 9 and 14, from 10 and 14, from 11 and 14, from 12 and 14.
- the present invention further provides peptides and variants of MHC class I epitopes, wherein the peptide or variant has an overall length of namely 8, 9, 10, 11, 12, 13, or 14 amino acids, in case of the elongated class II binding peptides the length can also be 15, 16, 17, 18, 19, 20, 21 or 22 amino acids.
- the peptide or variant according to the present invention will have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class I or II. Binding of a peptide or a variant to a MHC complex may be tested by methods known in the art.
- MHC human major histocompatibility complex
- the peptide concentration at which the substituted peptides achieve half the maximal increase in lysis relative to background is no more than about 1 mM, preferably no more than about 1 ⁇ M, more preferably no more than about 1 nM, and still more preferably no more than about 100 pM, and most preferably no more than about 10 pM. It is also preferred that the substituted peptide be recognized by T cells from more than one individual, at least two, and more preferably three individuals.
- the peptide consists or consists essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489.
- Consisting essentially of shall mean that a peptide according to the present invention, in addition to the sequence according to any of SEQ ID NO: 1 to SEQ ID NO 489 or a variant thereof contains additional N- and/or C-terminally located stretches of amino acids that are not necessarily forming part of the peptide that functions as an epitope for MHC molecules epitope.
- the peptide is part of a fusion protein which comprises, for example, the 80 N-terminal amino acids of the HLA-DR antigen-associated invariant chain (p33, in the following “Ii”) as derived from the NCBI, GenBank Accession number X00497.
- the peptides of the present invention can be fused to an antibody as described herein, or a functional part thereof, in particular into a sequence of an antibody, so as to be specifically targeted by said antibody, or, for example, to or into an antibody that is specific for dendritic cells as described herein.
- the peptide or variant may be modified further to improve stability and/or binding to MHC molecules in order to elicit a stronger immune response.
- Methods for such an optimization of a peptide sequence are well known in the art and include, for example, the introduction of reverse peptide bonds or non-peptide bonds.
- a reverse peptide bond amino acid residues are not joined by peptide (—CO—NH—) linkages but the peptide bond is reversed.
- Such retro-inverso peptidomimetics may be made using methods known in the art, for example such as those described in Meziere et al (1997) (Meziere et al., 1997), incorporated herein by reference. This approach involves making pseudopeptides containing changes involving the backbone, and not the orientation of side chains. Meziere et al. (Meziere et al., 1997) show that for MHC binding and T helper cell responses, these pseudopeptides are useful.
- Retro-inverse peptides which contain NH—CO bonds instead of CO—NH peptide bonds, are much more resistant to proteolysis.
- a non-peptide bond is, for example, —CH 2 —NH, —CH 2 S—, —CH 2 CH 2 —, —CH ⁇ CH—, —COCH 2 —, —CH(OH)CH 2 —, and —CH 2 SO—.
- U.S. Pat. No. 4,897,445 provides a method for the solid phase synthesis of non-peptide bonds (—CH 2 —NH) in polypeptide chains which involves polypeptides synthesized by standard procedures and the non-peptide bond synthesized by reacting an amino aldehyde and an amino acid in the presence of NaCNBH 3 .
- Peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, to enhance the stability, bioavailability, and/or affinity of the peptides.
- additional chemical groups such as carbobenzoxyl, dansyl, or t-butyloxycarbonyl groups may be added to the peptides' amino termini.
- an acetyl group or a 9-fluorenylmethoxy-carbonyl group may be placed at the peptides' amino termini.
- the hydrophobic group, t-butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini.
- the peptides of the invention may be synthesized to alter their steric configuration.
- the D-isomer of one or more of the amino acid residues of the peptide may be used, rather than the usual L-isomer.
- at least one of the amino acid residues of the peptides of the invention may be substituted by one of the well-known non-naturally occurring amino acid residues. Alterations such as these may serve to increase the stability, bioavailability and/or binding action of the peptides of the invention.
- a peptide or variant of the invention may be modified chemically by reacting specific amino acids either before or after synthesis of the peptide. Examples for such modifications are well known in the art and are summarized e.g. in R. Lundblad, Chemical Reagents for Protein Modification, 3rd ed. CRC Press, 2004 (Lundblad, 2004), which is incorporated herein by reference.
- Chemical modification of amino acids includes but is not limited to, modification by acylation, amidination, pyridoxylation of lysine, reductive alkylation, trinitrobenzylation of amino groups with 2,4,6-trinitrobenzene sulphonic acid (TNBS), amide modification of carboxyl groups and sulphydryl modification by performic acid oxidation of cysteine to cysteic acid, formation of mercurial derivatives, formation of mixed disulphides with other thiol compounds, reaction with maleimide, carboxymethylation with iodoacetic acid or iodoacetamide and carbamoylation with cyanate at alkaline pH, although without limitation thereto.
- TNBS 2,4,6-trinitrobenzene sulphonic acid
- modification of e.g. arginyl residues in proteins is often based on the reaction of vicinal dicarbonyl compounds such as phenylglyoxal, 2,3-butanedione, and 1,2-cyclohexanedione to form an adduct.
- vicinal dicarbonyl compounds such as phenylglyoxal, 2,3-butanedione, and 1,2-cyclohexanedione to form an adduct.
- Cysteine can be modified without concomitant modification of other nucleophilic sites such as lysine and histidine.
- a large number of reagents are available for the modification of cysteine.
- the websites of companies such as Sigma-Aldrich (www.sigma-aldrich.com) provide information on specific reagents.
- Disulfide bonds can be formed and oxidized during the heat treatment of biopharmaceuticals.
- Woodward's Reagent K may be used to modify specific glutamic acid residues.
- N-(3-(dimethylamino)propyl)-N′-ethylcarbodiimide can be used to form intra-molecular crosslinks between a lysine residue and a glutamic acid residue.
- diethylpyrocarbonate is a reagent for the modification of histidyl residues in proteins. Histidine can also be modified using 4-hydroxy-2-nonenal.
- lysine residues and other ⁇ -amino groups are, for example, useful in binding of peptides to surfaces or the cross-linking of proteins/peptides.
- Lysine is the site of attachment of poly(ethylene)glycol and the major site of modification in the glycosylation of proteins.
- Methionine residues in proteins can be modified with e.g. iodoacetamide, bromoethylamine, and chloramine T.
- Tetranitromethane and N-acetylimidazole can be used for the modification of tyrosyl residues.
- Cross-linking via the formation of dityrosine can be accomplished with hydrogen peroxide/copper ions.
- a peptide or variant, wherein the peptide is modified or includes non-peptide bonds is a preferred embodiment of the invention.
- Another embodiment of the present invention relates to a non-naturally occurring peptide wherein said peptide consists or consists essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489 and has been synthetically produced (e.g. synthesized) as a pharmaceutically acceptable salt.
- Methods to synthetically produce peptides are well known in the art.
- the salts of the peptides according to the present invention differ substantially from the peptides in their state(s) in vivo, as the peptides as generated in vivo are no salts.
- the non-natural salt form of the peptide mediates the solubility of the peptide, in particular in the context of pharmaceutical compositions comprising the peptides, e.g.
- the peptide vaccines as disclosed herein.
- a sufficient and at least substantial solubility of the peptide(s) is required in order to efficiently provide the peptides to the subject to be treated.
- the salts are pharmaceutically acceptable salts of the peptides.
- salts according to the invention include alkaline and earth alkaline salts such as salts of the Hofmeister series comprising as anions PO 4 3 ⁇ , SO 4 2 ⁇ , CH 3 COO ⁇ , Cl ⁇ , Br ⁇ , NO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ and as cations NH 4 + , Rb + , K + , Na + , Cs + , Li + , Zn 2+ , Mg 2+ , Ca 2+ , Mn 2+ , Cu 2+ and Ba 2+ .
- alkaline and earth alkaline salts such as salts of the Hofmeister series comprising as anions PO 4 3 ⁇ , SO 4 2 ⁇ , CH 3 COO ⁇ , Cl ⁇ , Br ⁇ , NO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ and as cations NH 4 + , Rb + , K + , Na + , Cs + , Li + , Zn 2+
- Particularly salts are selected from (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 )H 2 PO 4 , (NH 4 ) 2 SO 4 , NH 4 CH 3 COO, NH 4 Cl, NH 4 Br, NH 4 NO 3 , NH 4 ClO 4 , NH 4 I, NH 4 SCN, Rb 3 PO 4 , Rb 2 HPO 4 , RbH 2 PO 4 , Rb 2 SO 4 , Rb 4 CH 3 COO, Rb 4 Cl, Rb 4 Br, Rb 4 NO 3 , Rb 4 ClO 4 , Rb 4 I, Rb 4 SCN, K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 , K 2 SO 4 , KCH 3 COO, KCl, KBr, KNO 3 , KClO 4 , KI, KSCN, Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , NaCH
- NH acetate MgCl 2 , KH 2 PO 4 , Na 2 SO 4 , KCl, NaCl, and CaCl 2 , such as, for example, the chloride or acetate (trifluoroacetate) salts.
- peptides and variants may be synthesized by the Fmoc-polyamide mode of solid-phase peptide synthesis as disclosed by Lukas et al. (Lukas et al., 1981) and by references as cited therein.
- Temporary N-amino group protection is afforded by the 9-fluorenylmethyloxycarbonyl (Fmoc) group. Repetitive cleavage of this highly base-labile protecting group is done using 20% piperidine in N, N-dimethylformamide.
- Side-chain functionalities may be protected as their butyl ethers (in the case of serine threonine and tyrosine), butyl esters (in the case of glutamic acid and aspartic acid), butyloxycarbonyl derivative (in the case of lysine and histidine), trityl derivative (in the case of cysteine) and 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative (in the case of arginine).
- glutamine or asparagine are C-terminal residues, use is made of the 4,4′-dimethoxybenzhydryl group for protection of the side chain amido functionalities.
- the solid-phase support is based on a polydimethyl-acrylamide polymer constituted from the three monomers dimethylacrylamide (backbone-monomer), bisacryloylethylene diamine (cross linker) and acryloylsarcosine methyl ester (functionalizing agent).
- the peptide-to-resin cleavable linked agent used is the acid-labile 4-hydroxymethyl-phenoxyacetic acid derivative. All amino acid derivatives are added as their preformed symmetrical anhydride derivatives with the exception of asparagine and glutamine, which are added using a reversed N, N-dicyclohexyl-carbodiimide/1 hydroxybenzotriazole mediated coupling procedure.
- peptides are cleaved from the resin support with concomitant removal of side-chain protecting groups by treatment with 95% trifluoroacetic acid containing a 50% scavenger mix.
- Scavengers commonly used include ethanedithiol, phenol, anisole and water, the exact choice depending on the constituent amino acids of the peptide being synthesized. Also a combination of solid phase and solution phase methodologies for the synthesis of peptides is possible (see, for example, (Bruckdorfer et al., 2004), and the references as cited therein).
- Trifluoroacetic acid is removed by evaporation in vacuo, with subsequent trituration with diethyl ether affording the crude peptide.
- Any scavengers present are removed by a simple extraction procedure which on lyophilization of the aqueous phase affords the crude peptide free of scavengers.
- Reagents for peptide synthesis are generally available from e.g. Calbiochem-Novabiochem (Nottingham, UK).
- Purification may be performed by any one, or a combination of, techniques such as re-crystallization, size exclusion chromatography, ion-exchange chromatography, hydrophobic interaction chromatography and (usually) reverse-phase high performance liquid chromatography using e.g. acetonitrile/water gradient separation.
- techniques such as re-crystallization, size exclusion chromatography, ion-exchange chromatography, hydrophobic interaction chromatography and (usually) reverse-phase high performance liquid chromatography using e.g. acetonitrile/water gradient separation.
- Analysis of peptides may be carried out using thin layer chromatography, electrophoresis, in particular capillary electrophoresis, solid phase extraction (CSPE), reverse-phase high performance liquid chromatography, amino-acid analysis after acid hydrolysis and by fast atom bombardment (FAB) mass spectrometric analysis, as well as MALDI and ESI-Q-TOF mass spectrometric analysis.
- electrophoresis in particular capillary electrophoresis
- CSPE solid phase extraction
- FAB fast atom bombardment
- MALDI and ESI-Q-TOF mass spectrometric analysis as well as MALDI and ESI-Q-TOF mass spectrometric analysis.
- a presentation profile is calculated showing the median sample presentation as well as replicate variation.
- the profile juxtaposes samples of the tumor entity of interest to a baseline of normal tissue samples.
- Each of these profiles can then be consolidated into an over-presentation score by calculating the p-value of a Linear Mixed-Effects Model (Pinheiro et al., 2015) adjusting for multiple testing by False Discovery Rate (Benjamini and Hochberg, 1995) (cf. Example 1, FIGS. 1 A through 1 N ).
- HLA molecules from shock-frozen tissue samples were purified and HLA-associated peptides were isolated.
- the isolated peptides were separated and sequences were identified by online nano-electrospray-ionization (nanoESI) liquid chromatography-mass spectrometry (LC-MS) experiments.
- the discovery pipeline XPRESIDENT® v2.1 allows the identification and selection of relevant over-presented peptide vaccine candidates based on direct relative quantitation of HLA-restricted peptide levels on cancer tissues in comparison to several different non-cancerous tissues and organs. This was achieved by the development of label-free differential quantitation using the acquired LC-MS data processed by a proprietary data analysis pipeline, combining algorithms for sequence identification, spectral clustering, ion counting, retention time alignment, charge state deconvolution and normalization.
- HLA-peptide complexes from lung cancer including NSCLC and SCLC tissue samples were purified and HLA-associated peptides were isolated and analyzed by LC-MS (see example 1). All TUMAPs contained in the present application were identified with this approach on lung cancer (including NSCLC and SCLC) samples confirming their presentation on lung cancer (including NSCLC and SCLC).
- TUMAPs identified on multiple lung cancer including NSCLC and SCLC
- normal tissues were quantified using ion-counting of label-free LC-MS data.
- the method assumes that LC-MS signal areas of a peptide correlate with its abundance in the sample. All quantitative signals of a peptide in various LC-MS experiments were normalized based on central tendency, averaged per sample and merged into a bar plot, called presentation profile.
- the presentation profile consolidates different analysis methods like protein database search, spectral clustering, charge state deconvolution (decharging) and retention time alignment and normalization.
- mRNA expression of the underlying gene was tested.
- mRNA data were obtained via RNASeq analyses of normal tissues and cancer tissues (cf. Example 2, FIGS. 2 A through 2 N ).
- An additional source of normal tissue data was a database of publicly available RNA expression data from around 3000 normal tissue samples (Lonsdale, 2013).
- Peptides which are derived from proteins whose coding mRNA is highly expressed in cancer tissue, but very low or absent in vital normal tissues, were preferably included in the present invention.
- the present invention provides peptides that are useful in treating cancers/tumors, preferably lung cancer (including NSCLC and SCLC) that over- or exclusively present the peptides of the invention.
- lung cancer including NSCLC and SCLC
- These peptides were shown by mass spectrometry to be naturally presented by HLA molecules on primary human lung cancer (including NSCLC and SCLC) samples.
- abnormal tissues in relation to this invention shall mean either healthy lung cells or other normal tissue cells, demonstrating a high degree of tumor association of the source genes (see Example 2).
- tumor tissue in relation to this invention shall mean a sample from a patient suffering from lung cancer (including NSCLC and SCLC), but not on normal tissues (see Example 1).
- HLA-bound peptides can be recognized by the immune system, specifically T lymphocytes.
- T cells can destroy the cells presenting the recognized HLA/peptide complex, e.g. lung cancer (including NSCLC and SCLC) cells presenting the derived peptides.
- the peptides of the present invention have been shown to be capable of stimulating T cell responses and/or are over-presented and thus can be used for the production of antibodies and/or TCRs, such as soluble TCRs, according to the present invention (see Example 3, Example 4). Furthermore, the peptides when complexed with the respective MHC can be used for the production of antibodies and/or TCRs, in particular sTCRs, according to the present invention, as well. Respective methods are well known to the person of skill, and can be found in the respective literature as well (see also below). Thus, the peptides of the present invention are useful for generating an immune response in a patient by which tumor cells can be destroyed.
- An immune response in a patient can be induced by direct administration of the described peptides or suitable precursor substances (e.g. elongated peptides, proteins, or nucleic acids encoding these peptides) to the patient, ideally in combination with an agent enhancing the immunogenicity (i.e. an adjuvant).
- the immune response originating from such a therapeutic vaccination can be expected to be highly specific against tumor cells because the target peptides of the present invention are not presented on normal tissues in comparable copy numbers, preventing the risk of undesired autoimmune reactions against normal cells in the patient.
- TCRs T-cell receptors
- alpha/beta TCRs T-cell receptors
- peptides according to the invention capable of binding to TCRs and antibodies when presented by an MHC molecule.
- the present description also relates to fragments of the TCRs according to the invention that are capable of binding to a peptide antigen according to the present invention when presented by an HLA molecule.
- the term particularly relates to soluble TCR fragments, for example TCRs missing the transmembrane parts and/or constant regions, single chain TCRs, and fusions thereof to, for example, with lg.
- the present description also relates to nucleic acids, vectors and host cells for expressing TCRs and peptides of the present description; and methods of using the same.
- T-cell receptor refers to a heterodimeric molecule comprising an alpha polypeptide chain (alpha chain) and a beta polypeptide chain (beta chain), wherein the heterodimeric receptor is capable of binding to a peptide antigen presented by an HLA molecule.
- the term also includes so-called gamma/delta TCRs.
- the desembodiment provides a method of producing a TCR as described herein, the method comprising culturing a host cell capable of expressing the TCR under conditions suitable to promote expression of the TCR.
- the description in another aspect relates to methods according to the description, wherein the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell or artificial antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell or the antigen is loaded onto class I or II MHC tetramers by tetramerizing the antigen/class I or II MHC complex monomers.
- the alpha and beta chains of alpha/beta TCR's, and the gamma and delta chains of gamma/delta TCRs, are generally regarded as each having two “domains”, namely variable and constant domains.
- the variable domain consists of a concatenation of variable region (V), and joining region (J).
- the variable domain may also include a leader region (L).
- Beta and delta chains may also include a diversity region (D).
- the alpha and beta constant domains may also include C-terminal transmembrane (TM) domains that anchor the alpha and beta chains to the cell membrane.
- TCR gamma variable domain refers to the concatenation of the TCR gamma V (TRGV) region without leader region (L), and the TCR gamma J (TRGJ) region
- TCR gamma constant domain refers to the extracellular TRGC region, or to a C-terminal truncated TRGC sequence.
- TCR delta variable domain refers to the concatenation of the TCR delta V (TRDV) region without leader region (L) and the TCR delta D/J (TRDD/TRDJ) region
- TCR delta constant domain refers to the extracellular TRDC region, or to a C-terminal truncated TRDC sequence.
- TCRs of the present description preferably bind to a peptide-HLA molecule complex with a binding affinity (KD) of about 100 ⁇ M or less, about 50 ⁇ M or less, about 25 ⁇ M or less, or about 10 ⁇ M or less. More preferred are high affinity TCRs having binding affinities of about 1 ⁇ M or less, about 100 nM or less, about 50 nM or less, about 25 nM or less.
- KD binding affinity
- Non-limiting examples of preferred binding affinity ranges for TCRs of the present invention include about 1 nM to about 10 nM; about 10 nM to about 20 nM; about 20 nM to about 30 nM; about 30 nM to about 40 nM; about 40 nM to about 50 nM; about 50 nM to about 60 nM; about 60 nM to about 70 nM; about 70 nM to about 80 nM; about 80 nM to about 90 nM; and about 90 nM to about 100 nM.
- binding and grammatical variants thereof are used to mean a TCR having a binding affinity (KD) for a peptide-HLA molecule complex of 100 ⁇ M or less.
- Alpha/beta heterodimeric TCRs of the present description may have an introduced disulfide bond between their constant domains.
- Preferred TCRs of this type include those which have a TRAC constant domain sequence and a TRBC1 or TRBC2 constant domain sequence except that Thr 48 of TRAC and Ser 57 of TRBC1 or TRBC2 are replaced by cysteine residues, the said cysteines forming a disulfide bond between the TRAC constant domain sequence and the TRBC1 or TRBC2 constant domain sequence of the TCR.
- alpha/beta heterodimeric TCRs of the present description may have a TRAC constant domain sequence and a TRBC1 or TRBC2 constant domain sequence, and the TRAC constant domain sequence and the TRBC1 or TRBC2 constant domain sequence of the TCR may be linked by the native disulfide bond between Cys4 of exon 2 of TRAC and Cys2 of exon 2 of TRBC1 or TRBC2.
- TCRs of the present description may comprise a detectable label selected from the group consisting of a radionuclide, a fluorophore and biotin. TCRs of the present description may be conjugated to a therapeutically active agent, such as a radionuclide, a chemotherapeutic agent, or a toxin.
- a therapeutically active agent such as a radionuclide, a chemotherapeutic agent, or a toxin.
- a TCR of the present description having at least one mutation in the alpha chain and/or having at least one mutation in the beta chain has modified glycosylation compared to the unmutated TCR.
- a TCR comprising at least one mutation in the TCR alpha chain and/or TCR beta chain has a binding affinity for, and/or a binding half-life for, a peptide-HLA molecule complex, which is at least double that of a TCR comprising the unmutated TCR alpha chain and/or unmutated TCR beta chain.
- Affinity-enhancement of tumor-specific TCRs, and its exploitation, relies on the existence of a window for optimal TCR affinities.
- TCRs specific for HLA-A2-restricted pathogens have KD values that are generally about 10-fold lower when compared to TCRs specific for HLA-A2-restricted tumor-associated self-antigens.
- KD values might be in a slightly different range, but there are no general differences between the different alleles with respect to the possibility of creating TCRs. It is now known, although tumor antigens have the potential to be immunogenic, because tumors arise from the individual's own cells only mutated proteins or proteins with altered translational processing will be seen as foreign by the immune system.
- T-cells expressing TCRs that are highly reactive to these antigens will have been negatively selected within the thymus in a process known as central tolerance, meaning that only T-cells with low-affinity TCRs for self-antigens remain. Therefore, affinity of TCRs or variants of the present description to peptides can be enhanced by methods well known in the art.
- the present description further relates to a method of identifying and isolating a TCR according to the present description, said method comprising incubating PBMCs from healthy donors negative with respect to the allel at hand with the HLA/peptide monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)—Calibur analysis.
- PE tetramer-phycoerythrin
- the present description further relates to a method of identifying and isolating a TCR according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCR ⁇ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with a peptide, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)—Calibur analysis.
- FACS fluorescence activated cell sorting
- nucleic acids encoding TCR-alpha and/or TCR-beta chains of the present description are cloned into expression vectors, such as gamma retrovirus or lentivirus.
- the recombinant viruses are generated and then tested for functionality, such as antigen specificity and functional avidity.
- An aliquot of the final product is then used to transduce the target T-cell population (generally purified from patient PBMCs), which is expanded before infusion into the patient.
- TCR RNAs are synthesized by techniques known in the art, e.g., in vitro transcription sys-tems.
- the in vitro-synthesized TCR RNAs are then introduced into primary CD8+ T-cells obtained from healthy donors by electroporation to re-express tumor specific TCR-alpha and/or TCR-beta chains.
- nucleic acids encoding TCRs of the present description may be operably linked to strong promoters, such as retroviral long terminal repeats (LTRs), cytomegalovirus (CMV), murine stem cell virus (MSCV) U3, phosphoglycerate kinase (PGK), ⁇ -actin, ubiquitin, and a simian virus 40 (SV40)/CD43 composite promoter, elongation factor (EF)-1a and the spleen focus-forming virus (SFFV) promoter.
- promoter is heterologous to the nucleic acid being expressed.
- TCR expression cassettes of the present description may contain additional elements that can enhance transgene expression, including a central polypurine tract (cPPT), which promotes the nuclear translocation of lentiviral constructs (Follenzi et al., 2000), and the woodchuck hepatitis virus posttranscriptional regulatory element (wPRE), which increases the level of transgene expression by increasing RNA stability (Zufferey et al., 1999).
- cPPT central polypurine tract
- wPRE woodchuck hepatitis virus posttranscriptional regulatory element
- the alpha and beta chains of a TCR of the present invention may be encoded by nucleic acids located in separate vectors, or may be encoded by polynucleotides located in the same vector.
- TCR-alpha and TCR-beta chains of the introduced TCR be transcribed at high levels.
- the TCR-alpha and TCR-beta chains of the present description may be cloned into bi-cistronic constructs in a single vector, which has been shown to be capable of over-coming this obstacle.
- TCR-alpha and TCR-beta chains are used to coordinate expression of both chains, because the TCR-alpha and TCR-beta chains are generated from a single transcript that is broken into two proteins during translation, ensuring that an equal molar ratio of TCR-alpha and TCR-beta chains are produced (Schmitt et al., 2009).
- IVS intraribosomal entry site
- Nucleic acids encoding TCRs of the present description may be codon optimized to increase expression from a host cell. Redundancy in the genetic code allows some amino acids to be encoded by more than one codon, but certain codons are less “op-timal” than others because of the relative availability of matching tRNAs as well as other factors (Gustafsson et al., 2004). Modifying the TCR-alpha and TCR-beta gene sequences such that each amino acid is encoded by the optimal codon for mammalian gene expression, as well as eliminating mRNA instability motifs or cryptic splice sites, has been shown to significantly enhance TCR-alpha and TCR-beta gene expression (Scholten et al., 2006).
- mispairing between the introduced and endogenous TCR chains may result in the acquisition of specificities that pose a significant risk for autoimmunity.
- the formation of mixed TCR dimers may reduce the number of CD3 molecules available to form properly paired TCR complexes, and therefore can significantly decrease the functional avidity of the cells expressing the introduced TCR (Kuball et al., 2007).
- the C-terminus domain of the introduced TCR chains of the present description may be modified in order to promote interchain affinity, while de-creasing the ability of the introduced chains to pair with the endogenous TCR.
- These strategies may include replacing the human TCR-alpha and TCR-beta C-terminus domains with their murine counterparts (murinized C-terminus domain); generating a second interchain disulfide bond in the C-terminus domain by introducing a second cysteine residue into both the TCR-alpha and TCR-beta chains of the introduced TCR (cysteine modification); swapping interacting residues in the TCR-alpha and TCR-beta chain C-terminus domains (“knob-in-hole”); and fusing the variable domains of the TCR-alpha and TCR-beta chains directly to CD3 ⁇ (CD3 ⁇ fusion) (Schmitt et al., 2009).
- a host cell is engineered to express a TCR of the present description.
- the host cell is a human T-cell or T-cell progenitor.
- the T-cell or T-cell progenitor is obtained from a cancer patient.
- the T-cell or T-cell progenitor is obtained from a healthy donor.
- Host cells of the present description can be allogeneic or autologous with respect to a patient to be treated.
- the host is a gamma/delta T-cell transformed to express an alpha/beta TCR.
- a “pharmaceutical composition” is a composition suitable for administration to a human being in a medical setting.
- a pharmaceutical composition is sterile and produced according to GMP guidelines.
- compositions comprise the peptides either in the free form or in the form of a pharmaceutically acceptable salt (see also above).
- a peptide described herein is in the form of a pharmaceutically acceptable salt.
- a peptide in the form of a pharmaceutical salt is in crystalline form.
- a pharmaceutically acceptable salt described herein refers to salts which possess toxicity profiles within a range that is acceptable for pharmaceutical applications.
- a pharmaceutically acceptable salt refers to a derivative of the disclosed peptides wherein the peptide is modified by making acid or base salts of the agent.
- acid salts are prepared from the free base (typically wherein the neutral form of the drug has a neutral —NH2 group) involving reaction with a suitable acid.
- Suitable acids for preparing acid salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methane sulfonic acid, ethane sulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid phosphoric acid and the like.
- preparation of basic salts of acid moieties which may be present on a peptide are prepared using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine or the like.
- pharmaceutically acceptable salts may increase the solubility and/or stability of peptides of described herein.
- pharmaceutical salts described herein may be prepared by conventional means from the corresponding carrier peptide or complex by reacting, for example, the appropriate acid or base with peptides or complexes as described herein.
- the pharmaceutically acceptable salts are in crystalline form or semi-crystalline form.
- pharmaceutically acceptable salts may include, for example, those described in Handbook of Pharmaceutical Salts: Properties, Selection, and Use By P. H. Stahl and C. G. Wermuth (Wiley-VCH 2002) and L. D. Bighley, S. M. Berge, D. C. Monkhouse, in “Encyclopedia of Pharmaceutical Technology”. Eds. J. Swarbrick and J. C. Boylan, Vol. 13, Marcel Dekker, Inc., New York, Basel, Hong Kong 1995, pp. 453-499, each of these references is herein incorporated by reference in their entirety.
- the pharmaceutical compositions comprise the peptides as salts of acetic acid (acetates), trifluoro acetates or hydrochloric acid (chlorides).
- the medicament of the present invention is an immunotherapeutic such as a vaccine. It may be administered directly into the patient, into the affected organ or systemically i.d., i.m., s.c., i.p. and i.v., or applied ex vivo to cells derived from the patient or a human cell line which are subsequently administered to the patient, or used in vitro to select a subpopulation of immune cells derived from the patient, which are then re-administered to the patient. If the nucleic acid is administered to cells in vitro, it may be useful for the cells to be transfected so as to co-express immune-stimulating cytokines, such as interleukin-2.
- cytokines such as interleukin-2.
- the peptide may be substantially pure, or combined with an immune-stimulating adjuvant (see below) or used in combination with immune-stimulatory cytokines, or be administered with a suitable delivery system, for example liposomes.
- the peptide may also be conjugated to a suitable carrier such as keyhole limpet haemocyanin (KLH) or mannan (see WO 95/18145 and (Longenecker et al., 1993)).
- KLH keyhole limpet haemocyanin
- mannan see WO 95/18145 and (Longenecker et al., 1993)
- the peptide may also be tagged, may be a fusion protein, or may be a hybrid molecule.
- the peptides whose sequence is given in the present invention are expected to stimulate CD4 or CD8 T cells.
- CD8 T cells stimulation of CD8 T cells is more efficient in the presence of help provided by CD4 T-helper cells.
- MHC Class I epitopes that stimulate CD8 T cells the fusion partner or sections of a hybrid molecule suitably provide epitopes which stimulate CD4-positive T cells.
- CD4- and CD8-stimulating epitopes are well known in the art and include those identified in the present invention.
- the vaccine comprises at least one peptide having the amino acid sequence set forth SEQ ID No. 1 to SEQ ID No. 489, and at least one additional peptide, preferably two to 50, more preferably two to 25, even more preferably two to 20 and most preferably two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen or eighteen peptides.
- the peptide(s) may be derived from one or more specific TAAs and may bind to MHC class I molecules.
- a further aspect of the invention provides a nucleic acid (for example a polynucleotide) encoding a peptide or peptide variant of the invention.
- the polynucleotide may be, for example, DNA, cDNA, PNA, RNA or combinations thereof, either single- and/or double-stranded, or native or stabilized forms of polynucleotides, such as, for example, polynucleotides with a phosphorothioate backbone and it may or may not contain introns so long as it codes for the peptide.
- a still further aspect of the invention provides an expression vector capable of expressing a polypeptide according to the invention.
- a variety of methods have been developed to link polynucleotides, especially DNA, to vectors for example via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.
- Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors.
- Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc. New Haven, Conn., USA.
- a desirable method of modifying the DNA encoding the polypeptide of the invention employs the polymerase chain reaction as disclosed by Saiki R K, et al. (Saiki et al., 1988). This method may be used for introducing the DNA into a suitable vector, for example by engineering in suitable restriction sites, or it may be used to modify the DNA in other useful ways as is known in the art. If viral vectors are used, pox- or adenovirus vectors are preferred.
- the DNA (or in the case of retroviral vectors, RNA) may then be expressed in a suitable host to produce a polypeptide comprising the peptide or variant of the invention.
- the DNA encoding the peptide or variant of the invention may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the invention.
- Such techniques include those disclosed, for example, in U.S. Pat. Nos. 4,440,859, 4,530,901, 4,582,800, 4,677,063, 4,678,751, 4,704,362, 4,710,463, 4,757,006, 4,766,075, and 4,810,648.
- DNA (or in the case of retroviral vectors, RNA) encoding the polypeptide constituting the compound of the invention may be joined to a wide variety of other DNA sequences for introduction into an appropriate host.
- the companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.
- the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression.
- an expression vector such as a plasmid
- the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognized by the desired host, although such controls are generally available in the expression vector.
- the vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells.
- One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance.
- the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.
- Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.
- bacteria for example E. coli and Bacillus subtilis
- yeasts for example Saccharomyces cerevisiae
- filamentous fungi for example Aspergillus spec.
- plant cells animal cells and insect cells.
- the system can be mammalian cells such as CHO cells available from the ATCC Cell Biology Collection.
- a typical mammalian cell vector plasmid for constitutive expression comprises the CMV or SV40 promoter with a suitable poly A tail and a resistance marker, such as neomycin.
- a suitable poly A tail and a resistance marker, such as neomycin.
- pSVL available from Pharmacia, Piscataway, N.J., USA.
- An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia.
- Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA.
- Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, TRP1, LEU2 and URA3.
- Plasm ids pRS413-416 are Yeast Centromere plasmids (Ycps).
- CMV promoter-based vectors (for example from Sigma-Aldrich) provide transient or stable expression, cytoplasmic expression or secretion, and N-terminal or C-terminal tagging in various combinations of FLAG, 3 ⁇ FLAG, c-myc or MAT. These fusion proteins allow for detection, purification and analysis of recombinant protein. Dual-tagged fusions provide flexibility in detection.
- CMV human cytomegalovirus
- the strong human cytomegalovirus (CMV) promoter regulatory region drives constitutive protein expression levels as high as 1 mg/L in COS cells. For less potent cell lines, protein levels are typically ⁇ 0.1 mg/L.
- the presence of the SV40 replication origin will result in high levels of DNA replication in SV40 replication permissive COS cells.
- CMV vectors for example, can contain the pMB1 (derivative of pBR322) origin for replication in bacterial cells, the b-lactamase gene for ampicillin resistance selection in bacteria, hGH polyA, and the f1 origin.
- Vectors containing the pre-pro-trypsin leader (PPT) sequence can direct the secretion of FLAG fusion proteins into the culture medium for purification using ANTI-FLAG antibodies, resins, and plates.
- Other vectors and expression systems are well known in the art for use with a variety of host cells.
- two or more peptides or peptide variants of the invention are encoded and thus expressed in a successive order (similar to “beads on a string” constructs).
- the peptides or peptide variants may be linked or fused together by stretches of linker amino acids, such as for example LLLLLL, or may be linked without any additional peptide(s) between them.
- linker amino acids such as for example LLLLLL
- These constructs can also be used for cancer therapy, and may induce immune responses both involving MHC I and MHC II.
- the present invention also relates to a host cell transformed with a polynucleotide vector construct of the present invention.
- the host cell can be either prokaryotic or eukaryotic.
- Bacterial cells may be preferred prokaryotic host cells in some circumstances and typically are a strain of E. coli such as, for example, the E. coli strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, Md., USA, and RR1 available from the American Type Culture Collection (ATCC) of Rockville, Md., USA (No ATCC 31343).
- ATCC American Type Culture Collection
- Preferred eukaryotic host cells include yeast, insect and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic and colon cell lines.
- Yeast host cells include YPH499, YPH500 and YPH501, which are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA.
- Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650 and 293 cells which are human embryonic kidney cells.
- Preferred insect cells are Sf9 cells which can be transfected with baculovirus expression vectors.
- An overview regarding the choice of suitable host cells for expression can be found in, for example, the textbook of Paulina Balbás and Argelia Lorence “Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols,” Part One, Second Edition, ISBN 978-1-58829-262-9, and other literature known to the person of skill.
- Transformation of appropriate cell hosts with a DNA construct of the present invention is accomplished by well-known methods that typically depend on the type of vector used.
- transformation of prokaryotic host cells see, for example, Cohen et al. (Cohen et al., 1972) and (Green and Sambrook, 2012). Transformation of yeast cells is described in Sherman et al. (Sherman et al., 1986). The method of Beggs (Beggs, 1978) is also useful.
- reagents useful in transfecting such cells for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, Md. 20877, USA. Electroporation is also useful for transforming and/or transfecting cells and is well known in the art for transforming yeast cell, bacterial cells, insect cells and vertebrate cells.
- Successfully transformed cells i.e. cells that contain a DNA construct of the present invention, can be identified by well-known techniques such as PCR. Alternatively, the presence of the protein in the supernatant can be detected using antibodies.
- host cells of the invention are useful in the preparation of the peptides of the invention, for example bacterial, yeast and insect cells.
- other host cells may be useful in certain therapeutic methods.
- antigen-presenting cells such as dendritic cells, may usefully be used to express the peptides of the invention such that they may be loaded into appropriate MHC molecules.
- the current invention provides a host cell comprising a nucleic acid or an expression vector according to the invention.
- the host cell is an antigen presenting cell, in particular a dendritic cell or antigen presenting cell.
- APCs loaded with a recombinant fusion protein containing prostatic acid phosphatase (PAP) were approved by the U.S. Food and Drug Administration (FDA) on Apr. 29, 2010, to treat asymptomatic or minimally symptomatic metastatic HRPC (Sipuleucel-T) (Rini et al., 2006; Small et al., 2006).
- a further aspect of the invention provides a method of producing a peptide or its variant, the method comprising culturing a host cell and isolating the peptide from the host cell or its culture medium.
- the peptide, the nucleic acid or the expression vector of the invention are used in medicine.
- the peptide or its variant may be prepared for intravenous (i.v.) injection, sub-cutaneous (s.c.) injection, intradermal (i.d.) injection, intraperitoneal (i.p.) injection, intramuscular (i.m.) injection.
- Preferred methods of peptide injection include s.c., i.d., i.p., i.m., and i.v.
- Preferred methods of DNA injection include i.d., i.m., s.c., i.p. and i.v.
- peptide or DNA between 50 ⁇ g and 1.5 mg, preferably 125 ⁇ g to 500 ⁇ g, of peptide or DNA may be given and will depend on the respective peptide or DNA. Dosages of this range were successfully used in previous trials (Walter et al., 2012).
- the polynucleotide used for active vaccination may be substantially pure, or contained in a suitable vector or delivery system.
- the nucleic acid may be DNA, cDNA, PNA, RNA or a combination thereof. Methods for designing and introducing such a nucleic acid are well known in the art. An overview is provided by e.g. Teufel et al. (Teufel et al., 2005). Polynucleotide vaccines are easy to prepare, but the mode of action of these vectors in inducing an immune response is not fully understood.
- Suitable vectors and delivery systems include viral DNA and/or RNA, such as systems based on adenovirus, vaccinia virus, retroviruses, herpes virus, adeno-associated virus or hybrids containing elements of more than one virus.
- Non-viral delivery systems include cationic lipids and cationic polymers and are well known in the art of DNA delivery. Physical delivery, such as via a “gene-gun” may also be used.
- the peptide or peptides encoded by the nucleic acid may be a fusion protein, for example with an epitope that stimulates T cells for the respective opposite CDR as noted above.
- the medicament of the invention may also include one or more adjuvants.
- adjuvants are substances that non-specifically enhance or potentiate the immune response (e.g., immune responses mediated by CD8-positive T cells and helper-T (TH) cells to an antigen, and would thus be considered useful in the medicament of the present invention.
- Suitable adjuvants include, but are not limited to, 1018 ISS, aluminum salts, AMPLIVAX®, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, flagellin or TLR5 ligands derived from flagellin, FLT3 ligand, GM-CSF, IC30, IC31, Imiquimod (ALDARA®), resiquimod, ImuFact IMP321, Interleukins as IL-2, IL-13, IL-21, Interferon-alpha or -beta, or pegylated derivatives thereof, IS Patch, ISS, ISCOMATRIX, ISCOMs, JuvImmune®, LipoVac, MALP2, MF59, monophosphoryl lipid A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, water-in-oil and oil-in-water emulsions, OK
- Adjuvants such as Freund's or GM-CSF are preferred.
- Several immunological adjuvants e.g., MF59
- cytokines may be used.
- TNF ⁇ lymphoid tissues
- IL-1 and IL-4 efficient antigen-presenting cells for T-lymphocytes
- CpG immunostimulatory oligonucleotides have also been reported to enhance the effects of adjuvants in a vaccine setting.
- CpG oligonucleotides act by activating the innate (non-adaptive) immune system via Toll-like receptors (TLR), mainly TLR9.
- TLR Toll-like receptors
- CpG triggered TLR9 activation enhances antigen-specific humoral and cellular responses to a wide variety of antigens, including peptide or protein antigens, live or killed viruses, dendritic cell vaccines, autologous cellular vaccines and polysaccharide conjugates in both prophylactic and therapeutic vaccines.
- TH1 bias induced by TLR9 stimulation is maintained even in the presence of vaccine adjuvants such as alum or incomplete Freund's adjuvant (IFA) that normally promote a TH2 bias.
- vaccine adjuvants such as alum or incomplete Freund's adjuvant (IFA) that normally promote a TH2 bias.
- CpG oligonucleotides show even greater adjuvant activity when formulated or co-administered with other adjuvants or in formulations such as microparticles, nanoparticles, lipid emulsions or similar formulations, which are especially necessary for inducing a strong response when the antigen is relatively weak.
- U.S. Pat. No. 6,406,705 B1 describes the combined use of CpG oligonucleotides, non-nucleic acid adjuvants and an antigen to induce an antigen-specific immune response.
- a CpG TLR9 antagonist is dSLIM (double Stem Loop Immunomodulator) by Mologen (Berlin, Germany) which is a preferred component of the pharmaceutical composition of the present invention.
- Other TLR binding molecules such as RNA binding TLR 7, TLR 8 and/or TLR 9 may also be used.
- CpGs e.g. CpR, Idera
- dsRNA analogues such as Poly(I:C) and derivates thereof (e.g. AmpliGen®, Hiltonol®, poly-(ICLC), poly(IC-R), poly(I:C12U), non-CpG bacterial DNA or RNA as well as immunoactive small molecules and antibodies such as cyclophosphamide, sunitinib, Bevacizumab®, celebrex, NCX-4016, sildenafil, tadalafil, vardenafil, sorafenib, temozolomide, temsirolimus, XL-999, CP-547632, pazopanib, VEGF Trap, ZD2171, AZD2171, anti-CTLA4, other antibodies targeting key structures of the immune system (e.g.
- anti-CD40, anti-TGFbeta, anti-TNFalpha receptor) and SC58175, which may act therapeutically and/or as an adjuvant may act therapeutically and/or as an adjuvant.
- concentrations of adjuvants and additives useful in the context of the present invention can readily be determined by the skilled artisan without undue experimentation.
- Preferred adjuvants are anti-CD40, imiquimod, resiquimod, GM-CSF, cyclophosphamide, sunitinib, bevacizumab, interferon-alpha, CpG oligonucleotides and derivates, poly-(I:C) and derivates, RNA, sildenafil, and particulate formulations with PLG or virosomes.
- the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod, resiquimod, and interferon-alpha.
- colony-stimulating factors such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod, resiquimod, and interferon-alpha.
- the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod and resiquimod.
- the adjuvant is cyclophosphamide, imiquimod or resiquimod.
- Even more preferred adjuvants are Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, poly-ICLC (Hiltonol®) and anti-CD40 mAB, or combinations thereof.
- composition is used for parenteral administration, such as subcutaneous, intradermal, intramuscular or oral administration.
- parenteral administration such as subcutaneous, intradermal, intramuscular or oral administration.
- the peptides and optionally other molecules are dissolved or suspended in a pharmaceutically acceptable, preferably aqueous carrier.
- the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, lubricants, etc.
- the peptides can also be administered together with immune stimulating substances, such as cytokines.
- An extensive listing of excipients that can be used in such a composition can be, for example, taken from A. Kibbe, Handbook of Pharmaceutical Excipients (Kibbe, 2000).
- the composition can be used for a prevention, prophylaxis and/or therapy of adenomatous or cancerous diseases. Exemplary formulations can be found in, for example, EP2112253.
- peptides or other molecules described herein may be combined with an aquous carrier.
- the aquous carrier is selected from ion exchangers, alumina, aluminum stearate, magnesium stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, dicalcium phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, polyvinylpyrrolidone-vinyl acetate, cellulose-based substances (e.g., microcrystalline cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose acetate succinate, hydroxypropyl methylcellulose Phthalate), starch
- the aquous carrier contains multiple components, such as water together with a non-water carrier component, such as those components described herein.
- the aquous carrier is capable of imparting improved properties when combined with a peptide or other molecule described herein, for example, improved solubility, efficiacy, and/or improved immunotherapy.
- the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, lubricants, etc.
- a “pharmaceutically acceptable diluent,” for example, may include solvents, bulking agents, stabilizing agents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like which are physiologically compatible.
- Examples of pharmaceutically acceptable diluents include one or more of saline, phosphate buffered saline, dextrose, glycerol, ethanol, and the like as well as combinations thereof.
- isotonic agents for example, sugars such as trehalose and sucrose, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition.
- Pharmaceutically acceptable substances such as wetting or minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, are also within the scope of the present invention.
- the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, and lubricants.
- the immune response triggered by the vaccine according to the invention attacks the cancer in different cell-stages and different stages of development. Furthermore, different cancer associated signaling pathways are attacked. This is an advantage over vaccines that address only one or few targets, which may cause the tumor to easily adapt to the attack (tumor escape). Furthermore, not all individual tumors express the same pattern of antigens. Therefore, a combination of several tumor-associated peptides ensures that every single tumor bears at least some of the targets.
- the composition is designed in such a way that each tumor is expected to express several of the antigens and cover several independent pathways necessary for tumor growth and maintenance. Thus, the vaccine can easily be used “off-the-shelf” for a larger patient population.
- a scaffold refers to a molecule that specifically binds to an (e.g. antigenic) determinant.
- a scaffold is able to direct the entity to which it is attached (e.g. a (second) antigen binding moiety) to a target site, for example to a specific type of tumor cell or tumor stroma bearing the antigenic determinant (e.g. the complex of a peptide with MHC, according to the application at hand).
- a scaffold is able to activate signaling through its target antigen, for example a T cell receptor complex antigen.
- Scaffolds include but are not limited to antibodies and fragments thereof, antigen binding domains of an antibody, comprising an antibody heavy chain variable region and an antibody light chain variable region, binding proteins comprising at least one ankyrin repeat motif and single domain antigen binding (SDAB) molecules, aptamers, (soluble) TCRs and (modified) cells such as allogenic or autologous T cells.
- SDAB single domain antigen binding
- “Specific” binding means that the scaffold binds the peptide-MHC-complex of interest better than other naturally occurring peptide-MHC-complexes, to an extent that a scaffold armed with an active molecule that is able to kill a cell bearing the specific target is not able to kill another cell without the specific target but presenting other peptide-MHC complex(es). Binding to other peptide-MHC complexes is irrelevant if the peptide of the cross-reactive peptide-MHC is not naturally occurring, i.e. not derived from the human HLA-peptidome. Tests to assess target cell killing are well known in the art. They should be performed using target cells (primary cells or cell lines) with unaltered peptide-MHC presentation, or cells loaded with peptides such that naturally occurring peptide-MHC levels are reached.
- Each scaffold can comprise a labelling which provides that the bound scaffold can be detected by determining the presence or absence of a signal provided by the label.
- the scaffold can be labelled with a fluorescent dye or any other applicable cellular marker molecule.
- marker molecules are well known in the art.
- a fluorescence-labelling for example provided by a fluorescence dye, can provide a visualization of the bound aptamer by fluorescence or laser scanning microscopy or flow cytometry.
- Each scaffold can be conjugated with a second active molecule such as for example IL-21, anti-CD3, and anti-CD28.
- a second active molecule such as for example IL-21, anti-CD3, and anti-CD28.
- the present invention further relates to aptamers.
- Aptamers (see for example WO 2014/191359 and the literature as cited therein) are short single-stranded nucleic acid molecules, which can fold into defined three-dimensional structures and recognize specific target structures. They have appeared to be suitable alternatives for developing targeted therapies. Aptamers have been shown to selectively bind to a variety of complex targets with high affinity and specificity.
- Aptamers recognizing cell surface located molecules have been identified within the past decade and provide means for developing diagnostic and therapeutic approaches. Since aptamers have been shown to possess almost no toxicity and immunogenicity they are promising candidates for biomedical applications. Indeed aptamers, for example prostate-specific membrane-antigen recognizing aptamers, have been successfully employed for targeted therapies and shown to be functional in xenograft in vivo models. Furthermore, aptamers recognizing specific tumor cell lines have been identified.
- DNA aptamers can be selected to reveal broad-spectrum recognition properties for various cancer cells, and particularly those derived from solid tumors, while non-tumorigenic and primary healthy cells are not recognized. If the identified aptamers recognize not only a specific tumor sub-type but rather interact with a series of tumors, this renders the aptamers applicable as so-called broad-spectrum diagnostics and therapeutics.
- Aptamers are useful for diagnostic and therapeutic purposes. Further, it could be shown that some of the aptamers are taken up by tumor cells and thus can function as molecular vehicles for the targeted delivery of anti-cancer agents such as siRNA into tumor cells.
- Aptamers can be selected against complex targets such as cells and tissues and complexes of the peptides comprising, preferably consisting of, a sequence according to any of SEQ ID NO 1 to SEQ ID NO 489, according to the present invention with the MHC molecule, using the cell-SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique.
- complex targets such as cells and tissues and complexes of the peptides comprising, preferably consisting of, a sequence according to any of SEQ ID NO 1 to SEQ ID NO 489, according to the present invention with the MHC molecule, using the cell-SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique.
- the peptides of the present invention can be used to generate and develop specific antibodies against MHC/peptide complexes. These can be used for therapy, targeting toxins or radioactive substances to the diseased tissue. Another use of these antibodies can be targeting radionuclides to the diseased tissue for imaging purposes such as PET. This use can help to detect small metastases or to determine the size and precise localization of diseased tissues.
- a further aspect of the invention to provide a method for producing a recombinant antibody specifically binding to a human major histocompatibility complex (MHC) class I or II being complexed with a HLA-restricted antigen (preferably a peptide according to the present invention), the method comprising: immunizing a genetically engineered non-human mammal comprising cells expressing said human major histocompatibility complex (MHC) class I or II with a soluble form of a MHC class I or II molecule being complexed with said HLA-restricted antigen; isolating mRNA molecules from antibody producing cells of said non-human mammal; producing a phage display library displaying protein molecules encoded by said mRNA molecules; and isolating at least one phage from said phage display library, said at least one phage displaying said antibody specifically binding to said human major histocompatibility complex (MHC) class I or II being complexed with said HLA-restricte
- MHC human major histocompatibility complex
- the antibody is binding with a binding affinity of below 20 nanomolar, preferably of below 10 nanomolar, to the complex, which is also regarded as “specific” in the context of the present invention.
- the present invention relates to a peptide comprising a sequence that is selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489, or a variant thereof which is at least 88% homologous (preferably identical) to SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof that induces T cells cross-reacting with said peptide, wherein said peptide is not the underlying full-length polypeptide.
- the present invention further relates to a peptide comprising a sequence that is selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof which is at least 88% homologous (preferably identical) to SEQ ID NO: 1 to SEQ ID NO: 489, wherein said peptide or variant has an overall length of between 8 and 100, preferably between 8 and 30, and most preferred between 8 and 14 amino acids.
- the present invention further relates to the peptides according to the invention that have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or -II.
- MHC human major histocompatibility complex
- the present invention further relates to the peptides according to the invention wherein the peptide consists or consists essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489.
- the present invention further relates to the peptides according to the invention, wherein the peptide is (chemically) modified and/or includes non-peptide bonds.
- the present invention further relates to the peptides according to the invention, wherein the peptide is part of a fusion protein, in particular comprising N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or wherein the peptide is fused to (or into) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- a fusion protein in particular comprising N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii)
- an antibody such as, for example, an antibody that is specific for dendritic cells.
- the present invention further relates to a nucleic acid, encoding the peptides according to the invention, provided that the peptide is not the complete (full) human protein.
- the present invention further relates to the nucleic acid according to the invention that is DNA, cDNA, PNA, RNA or combinations thereof.
- the present invention further relates to an expression vector capable of expressing a nucleic acid according to the present invention.
- the present invention further relates to a peptide according to the present invention, a nucleic acid according to the present invention or an expression vector according to the present invention for use in medicine, in particular in the treatment of lung cancer (including NSCLC and SCLC).
- the present invention further relates to a host cell comprising a nucleic acid according to the present invention or an expression vector according to the present invention.
- the present invention further relates to the host cell according to the present invention that is an antigen presenting cell, and preferably a dendritic cell.
- the present invention further relates to a method of producing a peptide according to the present invention, said method comprising culturing the host cell according to the present invention, and isolating the peptide from said host cell or its culture medium.
- the present invention further relates to the method according to the present invention, where-in the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell.
- the present invention further relates to the method according to the invention, wherein the antigen-presenting cell comprises an expression vector capable of expressing said peptide containing SEQ ID NO: 1 to SEQ ID NO: 489 or said variant amino acid sequence.
- the present invention further relates to activated T cells, produced by the method according to the present invention, wherein said T cells selectively recognizes a cell which aberrantly expresses a polypeptide comprising an amino acid sequence according to the present invention.
- the present invention further relates to a method of killing target cells in a patient which target cells aberrantly express a polypeptide comprising any amino acid sequence according to the present invention, the method comprising administering to the patient an effective number of T cells as according to the present invention.
- the present invention further relates to the use of any peptide described, a nucleic acid according to the present invention, an expression vector according to the present invention, a cell according to the present invention, or an activated cytotoxic T lymphocyte according to the present invention as a medicament or in the manufacture of a medicament.
- the present invention further relates to a use according to the present invention, wherein the medicament is active against cancer.
- the present invention further relates to a use according to the invention, wherein the medicament is a vaccine.
- the present invention further relates to a use according to the invention, wherein the medicament is active against cancer.
- the present invention further relates to a use according to the invention, wherein said cancer cells are lung cancer (including NSCLC and SCLC) cells or other solid or hematological tumor cells such as acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer.
- lung cancer including NSCLC and SCLC
- SCLC solid or hematological tumor cells
- acute myeloid leukemia breast cancer
- bile duct cancer brain cancer
- chronic lymphocytic leukemia colorectal carcinoma
- esophageal cancer gallbladder cancer
- gallbladder cancer gastric cancer
- the present invention further relates to particular marker proteins and biomarkers based on the peptides according to the present invention, herein called “targets” that can be used in the diagnosis and/or prognosis of lung cancer (including NSCLC and SCLC).
- targets can be used in the diagnosis and/or prognosis of lung cancer (including NSCLC and SCLC).
- the present invention also relates to the use of these novel targets for cancer treatment.
- antibody or “antibodies” is used herein in a broad sense and includes both polyclonal and monoclonal antibodies. In addition to intact or “full” immunoglobulin molecules, also included in the term “antibodies” are fragments (e.g.
- CDRs, Fv, Fab and Fc fragments or polymers of those immunoglobulin molecules and humanized versions of immunoglobulin molecules, as long as they exhibit any of the desired properties (e.g., specific binding of a lung cancer (including NSCLC and SCLC) marker (poly)peptide, delivery of a toxin to a lung cancer (including NSCLC and SCLC) cell expressing a cancer marker gene at an increased level, and/or inhibiting the activity of a lung cancer (including NSCLC and SCLC) marker polypeptide) according to the invention.
- a lung cancer including NSCLC and SCLC
- marker poly
- the antibodies of the invention may be purchased from commercial sources.
- the antibodies of the invention may also be generated using well-known methods.
- full length lung cancer including NSCLC and SCLC
- marker polypeptides or fragments thereof may be used to generate the antibodies of the invention.
- a polypeptide to be used for generating an antibody of the invention may be partially or fully purified from a natural source, or may be produced using recombinant DNA techniques.
- a cDNA encoding a peptide according to the present invention can be expressed in prokaryotic cells (e.g., bacteria) or eukaryotic cells (e.g., yeast, insect, or mammalian cells), after which the recombinant protein can be purified and used to generate a monoclonal or polyclonal antibody preparation that specifically bind the lung cancer (including NSCLC and SCLC) marker polypeptide used to generate the antibody according to the invention.
- prokaryotic cells e.g., bacteria
- eukaryotic cells e.g., yeast, insect, or mammalian cells
- the antibodies may be tested in ELISA assays or, Western blots, immunohistochemical staining of formalin-fixed cancers or frozen tissue sections. After their initial in vitro characterization, antibodies intended for therapeutic or in vivo diagnostic use are tested according to known clinical testing methods.
- the term “monoclonal antibody” as used herein refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e.; the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts.
- the monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired antagonistic activity (U.S. Pat. No. 4,816,567, which is hereby incorporated in its entirety).
- Monoclonal antibodies of the invention may be prepared using hybridoma methods.
- a hybridoma method a mouse or other appropriate host animal is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent.
- the lymphocytes may be immunized in vitro.
- the monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567.
- DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
- In vitro methods are also suitable for preparing monovalent antibodies.
- Digestion of antibodies to produce fragments thereof, particularly Fab fragments can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in WO 94/29348 and U.S. Pat. No. 4,342,566.
- Papain digestion of antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields a F(ab′)2 fragment and a pFc′ fragment.
- the antibody fragments can also include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids residues, provided the activity of the fragment is not significantly altered or impaired compared to the non-modified antibody or antibody fragment. These modifications can provide for some additional property, such as to remove/add amino acids capable of disulfide bonding, to increase its bio-longevity, to alter its secretory characteristics, etc.
- the antibody fragment must possess a bioactive property, such as binding activity, regulation of binding at the binding domain, etc.
- Functional or active regions of the antibody may be identified by mutagenesis of a specific region of the protein, followed by expression and testing of the expressed polypeptide. Such methods are readily apparent to a skilled practitioner in the art and can include site-specific mutagenesis of the nucleic acid encoding the antibody fragment.
- the antibodies of the invention may further comprise humanized antibodies or human antibodies.
- Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
- Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity.
- CDR complementary determining region
- Fv framework (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
- the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- Transgenic animals e.g., mice
- mice that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production
- homozygous deletion of the antibody heavy chain joining region gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production.
- Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge.
- Human antibodies can also be produced in phage display libraries.
- Antibodies of the invention are preferably administered to a subject in a pharmaceutically acceptable carrier.
- a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic.
- the pharmaceutically-acceptable carrier include saline, Ringer's solution and dextrose solution.
- the pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5.
- Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of antibody being administered.
- the antibodies can be administered to the subject, patient, or cell by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular), or by other methods such as infusion that ensure its delivery to the bloodstream in an effective form.
- the antibodies may also be administered by intratumoral or peritumoral routes, to exert local as well as systemic therapeutic effects. Local or intravenous injection is preferred.
- Effective dosages and schedules for administering the antibodies may be determined empirically, and making such determinations is within the skill in the art. Those skilled in the art will understand that the dosage of antibodies that must be administered will vary depending on, for example, the subject that will receive the antibody, the route of administration, the particular type of antibody used and other drugs being administered. A typical daily dosage of the antibody used alone might range from about 1 ( ⁇ g/kg to up to 100 mg/kg of body weight or more per day, depending on the factors mentioned above.
- the efficacy of the therapeutic antibody can be assessed in various ways well known to the skilled practitioner. For instance, the size, number, and/or distribution of cancer in a subject receiving treatment may be monitored using standard tumor imaging techniques.
- soluble T-cell receptor recognizing a specific peptide-MHC complex.
- soluble T-cell receptors can be generated from specific T-cell clones, and their affinity can be increased by mutagenesis targeting the complementarity-determining regions.
- phage display can be used (US 2010/0113300, (Liddy et al., 2012)).
- alpha and beta chain can be linked e.g.
- the T-cell receptor can be linked to toxins, drugs, cytokines (see, for example, US 2013/0115191), and domains recruiting effector cells such as an anti-CD3 domain, etc., in order to execute particular functions on target cells. Moreover, it could be expressed in T cells used for adoptive transfer. Further information can be found in WO 2004/033685A1 and WO 2004/074322A1. A combination of sTCRs is described in WO 2012/056407A1. Further methods for the production are disclosed in WO 2013/057586A1.
- the peptides and/or the TCRs or antibodies or other binding molecules of the present invention can be used to verify a pathologist's diagnosis of a cancer based on a biopsied sample.
- the antibodies or TCRs may also be used for in vivo diagnostic assays.
- the antibody is labeled with a radionucleotide (such as 111 In, 99 Tc, 14 C, 131 I, 3 H, 32 P or 35 S) so that the tumor can be localized using immunoscintiography.
- a radionucleotide such as 111 In, 99 Tc, 14 C, 131 I, 3 H, 32 P or 35 S
- antibodies or fragments thereof bind to the extracellular domains of two or more targets of a protein selected from the group consisting of the above-mentioned proteins, and the affinity value (Kd) is less than 1 ⁇ 10 ⁇ M.
- Antibodies for diagnostic use may be labeled with probes suitable for detection by various imaging methods.
- Methods for detection of probes include, but are not limited to, fluorescence, light, confocal and electron microscopy; magnetic resonance imaging and spectroscopy; fluoroscopy, computed tomography and positron emission tomography.
- Suitable probes include, but are not limited to, fluorescein, rhodamine, eosin and other fluorophores, radioisotopes, gold, gadolinium and other lanthanides, paramagnetic iron, fluorine-18 and other positron-emitting radionuclides. Additionally, probes may be bi- or multi-functional and be detectable by more than one of the methods listed.
- the disease tissue sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin.
- the fixed or embedded section contains the sample are contacted with a labeled primary antibody and secondary antibody, wherein the antibody is used to detect the expression of the proteins in situ.
- Another aspect of the present invention includes an in vitro method for producing activated T cells, the method comprising contacting in vitro T cells with antigen loaded human MHC molecules expressed on the surface of a suitable antigen-presenting cell for a period of time sufficient to activate the T cell in an antigen specific manner, wherein the antigen is a peptide according to the invention.
- the antigen is a peptide according to the invention.
- a sufficient amount of the antigen is used with an antigen-presenting cell.
- the mammalian cell lacks or has a reduced level or function of the TAP peptide transporter.
- Suitable cells that lack the TAP peptide transporter include T2, RMA-S and Drosophila cells.
- TAP is the transporter associated with antigen processing.
- the human peptide loading deficient cell line T2 is available from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md. 20852, USA under Catalogue No CRL 1992; the Drosophila cell line Schneider line 2 is available from the ATCC under Catalogue No CRL 19863; the mouse RMA-S cell line is described in Ljunggren et al. (Ljunggren and Karre, 1985).
- the host cell expresses substantially no MHC class I molecules. It is also preferred that the stimulator cell expresses a molecule important for providing a co-stimulatory signal for T-cells such as any of B7.1, B7.2, ICAM-1 and LFA 3.
- a molecule important for providing a co-stimulatory signal for T-cells such as any of B7.1, B7.2, ICAM-1 and LFA 3.
- the nucleic acid sequences of numerous MHC class I molecules and of the co-stimulator molecules are publicly available from the GenBank and EMBL databases.
- the T cells are CD8-positive T cells.
- an antigen-presenting cell is transfected to express such an epitope
- the cell comprises an expression vector capable of expressing a peptide containing SEQ ID NO: 1 to SEQ ID NO: 489, or a variant amino acid sequence thereof.
- a number of other methods may be used for generating T cells in vitro.
- autologous tumor-infiltrating lymphocytes can be used in the generation of CTL.
- Plebanski et al. (Plebanski et al., 1995) made use of autologous peripheral blood lymphocytes (PLBs) in the preparation of T cells.
- PLBs peripheral blood lymphocytes
- the production of autologous T cells by pulsing dendritic cells with peptide or polypeptide, or via infection with recombinant virus is possible.
- B cells can be used in the production of autologous T cells.
- macrophages pulsed with peptide or polypeptide, or infected with recombinant virus may be used in the preparation of autologous T cells. S.
- aAPCs artificial antigen presenting cells
- aAPCs were generated by the coupling of preformed MHC:peptide complexes to the surface of polystyrene particles (microbeads) by biotin:streptavidin biochemistry. This system permits the exact control of the MHC density on aAPCs, which allows to selectively elicit high- or low-avidity antigen-specific T cell responses with high efficiency from blood samples.
- aAPCs should carry other proteins with co-stimulatory activity like anti-CD28 antibodies coupled to their surface. Furthermore, such aAPC-based systems often require the addition of appropriate soluble factors, e. g. cytokines, like interleukin-12.
- Allogeneic cells may also be used in the preparation of T cells and a method is described in detail in WO 97/26328, incorporated herein by reference.
- other cells may be used to present antigens such as CHO cells, baculovirus-infected insect cells, bacteria, yeast, and vaccinia-infected target cells.
- plant viruses may be used (see, for example, Porta et al. (Porta et al., 1994) which describes the development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides.
- the activated T cells that are directed against the peptides of the invention are useful in therapy.
- a further aspect of the invention provides activated T cells obtainable by the foregoing methods of the invention.
- Activated T cells which are produced by the above method, will selectively recognize a cell that aberrantly expresses a polypeptide that comprises an amino acid sequence of SEQ ID NO: 1 to SEQ ID NO 489.
- the T cell recognizes the cell by interacting through its TCR with the HLA/peptide-complex (for example, binding).
- the T cells are useful in a method of killing target cells in a patient whose target cells aberrantly express a polypeptide comprising an amino acid sequence of the invention wherein the patient is administered an effective number of the activated T cells.
- the T cells that are administered to the patient may be derived from the patient and activated as described above (i.e. they are autologous T cells). Alternatively, the T cells are not from the patient but are from another individual. Of course, it is preferred if the individual is a healthy individual.
- healthy individual the inventors mean that the individual is generally in good health, preferably has a competent immune system and, more preferably, is not suffering from any disease that can be readily tested for, and detected.
- the target cells for the CD8-positive T cells according to the present invention can be cells of the tumor (which sometimes express MHC class II) and/or stromal cells surrounding the tumor (tumor cells) (which sometimes also express MHC class II; (Dengjel et al., 2006)).
- the T cells of the present invention may be used as active ingredients of a therapeutic composition.
- the invention also provides a method of killing target cells in a patient whose target cells aberrantly express a polypeptide comprising an amino acid sequence of the invention, the method comprising administering to the patient an effective number of T cells as defined above.
- the inventors also mean that the polypeptide is over-expressed compared to levels of expression in normal tissues or that the gene is silent in the tissue from which the tumor is derived but in the tumor it is expressed.
- over-expressed the inventors mean that the polypeptide is present at a level at least 1.2-fold of that present in normal tissue; preferably at least 2-fold, and more preferably at least 4-fold or 6-fold the level present in normal tissue.
- T cells may be obtained by methods known in the art, e.g. those described above.
- Another aspect of the present invention includes the use of the peptides complexed with MHC to generate a T-cell receptor whose nucleic acid is cloned and is introduced into a host cell, preferably a T cell. This engineered T cell can then be transferred to a patient for therapy of cancer.
- any molecule of the invention i.e. the peptide, nucleic acid, antibody, expression vector, cell, activated T cell, T-cell receptor or the nucleic acid encoding it, is useful for the treatment of disorders, characterized by cells escaping an immune response. Therefore, any molecule of the present invention may be used as medicament or in the manufacture of a medicament.
- the molecule may be used by itself or combined with other molecule(s) of the invention or (a) known molecule(s).
- the present invention is further directed at a kit comprising:
- the kit may further comprise one or more of (iii) a buffer, (iv) a diluent, (v) a filter, (vi) a needle, or (v) a syringe.
- the container is preferably a bottle, a vial, a syringe or test tube; and it may be a multi-use container.
- the pharmaceutical composition is preferably lyophilized.
- Kits of the present invention preferably comprise a lyophilized formulation of the present invention in a suitable container and instructions for its reconstitution and/or use.
- Suitable containers include, for example, bottles, vials (e.g. dual chamber vials), syringes (such as dual chamber syringes) and test tubes.
- the container may be formed from a variety of materials such as glass or plastic.
- the kit and/or container contain/s instructions on or associated with the container that indicates directions for reconstitution and/or use.
- the label may indicate that the lyophilized formulation is to be reconstituted to peptide concentrations as described above.
- the label may further indicate that the formulation is useful or intended for subcutaneous administration.
- the container holding the formulation may be a multi-use vial, which allows for repeat administrations (e.g., from 2-6 administrations) of the reconstituted formulation.
- the kit may further comprise a second container comprising a suitable diluent (e.g., sodium bicarbonate solution).
- the kit may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
- Kits of the present invention may have a single container that contains the formulation of the pharmaceutical compositions according to the present invention with or without other components (e.g., other compounds or pharmaceutical compositions of these other compounds) or may have distinct container for each component.
- kits of the invention include a formulation of the invention packaged for use in combination with the co-administration of a second compound (such as adjuvants (e.g. GM-CSF), a chemotherapeutic agent, a natural product, a hormone or antagonist, an anti-angiogenesis agent or inhibitor, an apoptosis-inducing agent or a chelator) or a pharmaceutical composition thereof.
- a second compound such as adjuvants (e.g. GM-CSF), a chemotherapeutic agent, a natural product, a hormone or antagonist, an anti-angiogenesis agent or inhibitor, an apoptosis-inducing agent or a chelator) or a pharmaceutical composition thereof.
- a second compound such as adjuvants (e.g. GM-CSF), a chemotherapeutic agent, a natural product, a hormone or antagonist, an anti-angiogenesis agent or inhibitor, an apoptosis-inducing agent or a chelator) or a
- the container of a therapeutic kit may be a vial, test tube, flask, bottle, syringe, or any other means of enclosing a solid or liquid.
- the kit will contain a second vial or other container, which allows for separate dosing.
- the kit may also contain another container for a pharmaceutically acceptable liquid.
- a therapeutic kit will contain an apparatus (e.g., one or more needles, syringes, eye droppers, pipette, etc.), which enables administration of the agents of the invention that are components of the present kit.
- the present formulation is one that is suitable for administration of the peptides by any acceptable route such as oral (enteral), nasal, ophthal, subcutaneous, intradermal, intramuscular, intravenous or transdermal.
- the administration is s.c., and most preferably i.d. administration may be by infusion pump.
- the medicament of the invention is preferably used to treat lung cancer (including NSCLC and SCLC).
- the present invention further relates to a method for producing a personalized pharmaceutical for an individual patient comprising manufacturing a pharmaceutical composition comprising at least one peptide selected from a warehouse of pre-screened TUMAPs, wherein the at least one peptide used in the pharmaceutical composition is selected for suitability in the individual patient.
- the pharmaceutical composition is a vaccine.
- the method could also be adapted to produce T cell clones for down-stream applications, such as TCR isolations, or soluble antibodies, and other treatment options.
- a “personalized pharmaceutical” shall mean specifically tailored therapies for one individual patient that will only be used for therapy in such individual patient, including actively personalized cancer vaccines and adoptive cellular therapies using autologous patient tissue.
- the term “warehouse” shall refer to a group or set of peptides that have been pre-screened for immunogenicity and/or over-presentation in a particular tumor type.
- the term “warehouse” is not intended to imply that the particular peptides included in the vaccine have been pre-manufactured and stored in a physical facility, although that possibility is contemplated. It is expressly contemplated that the peptides may be manufactured de novo for each individualized vaccine produced, or may be pre-manufactured and stored.
- the warehouse e.g.
- the warehouse in the form of a database, is composed of tumor-associated peptides which were highly overexpressed in the tumor tissue of lung cancer (including NSCLC and SCLC) patients with various HLA-A HLA-B and HLA-C alleles. It may contain MHC class I and MHC class II peptides or elongated MHC class I peptides.
- the warehouse may contain HLA-A*02, HLA-A*01, HLA-A*03, HLA-A*24, HLA-B*07, HLA-B*08 and HLA-B*44 marker peptides.
- These peptides allow comparison of the magnitude of T-cell immunity induced by TUMAPS in a quantitative manner and hence allow important conclusion to be drawn on the capacity of the vaccine to elicit anti-tumor responses. Secondly, they function as important positive control peptides derived from a “non-self” antigen in the case that any vaccine-induced T-cell responses to TUMAPs derived from “self” antigens in a patient are not observed. And thirdly, it may allow conclusions to be drawn, regarding the status of immunocompetence of the patient.
- TUMAPs for the warehouse are identified by using an integrated functional genomics approach combining gene expression analysis, mass spectrometry, and T-cell immunology (XPresident®). The approach assures that only TUMAPs truly present on a high percentage of tumors but not or only minimally expressed on normal tissue, are chosen for further analysis.
- lung cancer including NSCLC and SCLC
- SCLC SCLC
- HLA ligands from the malignant material were identified by mass spectrometry
- mRNA expression analysis was used to identify genes over-expressed in the malignant tissue (lung cancer (including NSCLC and SCLC)) compared with a range of normal organs and tissues
- HLA ligands were compared to gene expression data.
- Peptides over-presented or selectively presented on tumor tissue, preferably encoded by selectively expressed or over-expressed genes as detected in step 2 were considered suitable TUMAP candidates for a multi-peptide vaccine.
- in vitro immunogenicity assays were performed using human T cells from healthy donors as well as from lung cancer (including NSCLC and SCLC) patients.
- the peptides are pre-screened for immunogenicity before being included in the warehouse.
- the immunogenicity of the peptides included in the warehouse is determined by a method comprising in vitro T-cell priming through repeated stimulations of CD8+ T cells from healthy donors with artificial antigen presenting cells loaded with peptide/MHC complexes and anti-CD28 antibody.
- This method is preferred for rare cancers and patients with a rare expression profile.
- the warehouse allows a significantly higher matching of the actual expression of antigens in the tumor with the vaccine.
- Selected single or combinations of several “off-the-shelf” peptides will be used for each patient in a multitarget approach.
- an approach based on selection of e.g. 5 different antigenic peptides from a library of 50 would already lead to approximately 17 million possible drug product (DP) compositions.
- DP drug product
- the peptides are selected for inclusion in the vaccine based on their suitability for the individual patient based on the method according to the present invention as described herein, or as below.
- the HLA phenotype, transcriptomic and peptidomic data is gathered from the patient's tumor material, and blood samples to identify the most suitable peptides for each patient containing “warehouse” and patient-unique (i.e. mutated) TUMAPs. Those peptides will be chosen, which are selectively or over-expressed in the patients' tumor and, where possible, show strong in vitro immunogenicity if tested with the patients' individual PBMCs.
- the peptides included in the vaccine are identified by a method comprising: (a) identifying tumor-associated peptides (TUMAPs) presented by a tumor sample from the individual patient; (b) comparing the peptides identified in (a) with a warehouse (database) of peptides as described above; and (c) selecting at least one peptide from the warehouse (database) that correlates with a tumor-associated peptide identified in the patient.
- TUMAPs tumor-associated peptides
- the TUMAPs presented by the tumor sample are identified by: (a1) comparing expression data from the tumor sample to expression data from a sample of normal tissue corresponding to the tissue type of the tumor sample to identify proteins that are over-expressed or aberrantly expressed in the tumor sample; and (a2) correlating the expression data with sequences of MHC ligands bound to MHC class I and/or class II molecules in the tumor sample to identify MHC ligands derived from proteins over-expressed or aberrantly expressed by the tumor.
- the sequences of MHC ligands are identified by eluting bound peptides from MHC molecules isolated from the tumor sample, and sequencing the eluted ligands.
- the tumor sample and the normal tissue are obtained from the same patient.
- TUMAPs may be identified in the patient de novo, and then included in the vaccine.
- candidate TUMAPs may be identified in the patient by (a1) comparing expression data from the tumor sample to expression data from a sample of normal tissue corresponding to the tissue type of the tumor sample to identify proteins that are over-expressed or aberrantly expressed in the tumor sample; and (a2) correlating the expression data with sequences of MHC ligands bound to MHC class I and/or class II molecules in the tumor sample to identify MHC ligands derived from proteins over-expressed or aberrantly expressed by the tumor.
- proteins may be identified containing mutations that are unique to the tumor sample relative to normal corresponding tissue from the individual patient, and TUMAPs can be identified that specifically target the mutation.
- the genome of the tumor and of corresponding normal tissue can be sequenced by whole genome sequencing: For discovery of non-synonymous mutations in the protein-coding regions of genes, genomic DNA and RNA are extracted from tumor tissues and normal non-mutated genomic germline DNA is extracted from peripheral blood mononuclear cells (PBMCs). The applied NGS approach is confined to the re-sequencing of protein coding regions (exome re-sequencing). For this purpose, exonic DNA from human samples is captured using vendor-supplied target enrichment kits, followed by sequencing with e.g.
- tumor mRNA is sequenced for direct quantification of gene expression and validation that mutated genes are expressed in the patients' tumors.
- the resultant millions of sequence reads are processed through software algorithms.
- the output list contains mutations and gene expression. Tumor-specific somatic mutations are determined by comparison with the PBMC-derived germline variations and prioritized.
- the de novo identified peptides can then be tested for immunogenicity as described above for the warehouse, and candidate TUMAPs possessing suitable immunogenicity are selected for inclusion in the vaccine.
- the peptides included in the vaccine are identified by: (a) identifying tumor-associated peptides (TUMAPs) presented by a tumor sample from the individual patient by the method as described above; (b) comparing the peptides identified in a) with a warehouse of peptides that have been prescreened for immunogenicity and overpresentation in tumors as compared to corresponding normal tissue; (c) selecting at least one peptide from the warehouse that correlates with a tumor-associated peptide identified in the patient; and (d) optionally, selecting at least one peptide identified de novo in (a) confirming its immunogenicity.
- TUMAPs tumor-associated peptides
- the peptides included in the vaccine are identified by: (a) identifying tumor-associated peptides (TUMAPs) presented by a tumor sample from the individual patient; and (b) selecting at least one peptide identified de novo in (a) and confirming its immunogenicity.
- TUMAPs tumor-associated peptides
- the vaccine preferably is a liquid formulation consisting of the individual peptides dissolved in between 20-40% DMSO, preferably about 30-35% DMSO, such as about 33% DMSO.
- Each peptide to be included into a product is dissolved in DMSO.
- the concentration of the single peptide solutions has to be chosen depending on the number of peptides to be included into the product.
- the single peptide-DMSO solutions are mixed in equal parts to achieve a solution containing all peptides to be included in the product with a concentration of ⁇ 2.5 mg/ml per peptide.
- the mixed solution is then diluted 1:3 with water for injection to achieve a concentration of 0.826 mg/ml per peptide in 33% DMSO.
- the diluted solution is filtered through a 0.22 ⁇ m sterile filter. The final bulk solution is obtained.
- Final bulk solution is filled into vials and stored at ⁇ 20° C. until use.
- One vial contains 700 ⁇ L solution, containing 0.578 mg of each peptide. Of this, 500 ⁇ L (approx. 400 ⁇ g per peptide) will be applied for intradermal injection.
- the peptides of the present invention are also useful as diagnostics. Since the peptides were generated from lung cancer (including NSCLC and SCLC) cells and since it was determined that these peptides are not or at lower levels present in normal tissues, these peptides can be used to diagnose the presence of a cancer.
- tissue biopsies in blood samples can assist a pathologist in diagnosis of cancer. Detection of certain peptides by means of antibodies, mass spectrometry or other methods known in the art can tell the pathologist that the tissue sample is malignant or inflamed or generally diseased, or can be used as a biomarker for lung cancer (including NSCLC and SCLC). Presence of groups of peptides can enable classification or sub-classification of diseased tissues.
- the detection of peptides on diseased tissue specimen can enable the decision about the benefit of therapies involving the immune system, especially if T-lymphocytes are known or expected to be involved in the mechanism of action.
- Loss of MHC expression is a well described mechanism by which infected of malignant cells escape immuno-surveillance. Thus, presence of peptides shows that this mechanism is not exploited by the analyzed cells.
- the peptides of the present invention might be used to analyze lymphocyte responses against those peptides such as T cell responses or antibody responses against the peptide or the peptide complexed to MHC molecules. These lymphocyte responses can be used as prognostic markers for decision on further therapy steps. These responses can also be used as surrogate response markers in immunotherapy approaches aiming to induce lymphocyte responses by different means, e.g. vaccination of protein, nucleic acids, autologous materials, adoptive transfer of lymphocytes. In gene therapy settings, lymphocyte responses against peptides can be considered in the assessment of side effects. Monitoring of lymphocyte responses might also be a valuable tool for follow-up examinations of transplantation therapies, e.g. for the detection of graft versus host and host versus graft diseases.
- FIGS. 1 A through 1 N show the over-presentation of various peptides in different cancer tissues (black dots).
- Tumor and normal samples are grouped according to organ of origin, and box-and-whisker plots represent median, 25th and 75th percentile (box), and minimum and maximum (whiskers) of normalized signal intensities over multiple samples.
- Normal organs are ordered according to risk categories (blood cells, blood vessels, brain, liver, lung: high risk, grey dots; reproductive organs, breast, prostate: low risk, grey dots; all other organs: medium risk; grey dots).
- Tissues (from left to right): Normal samples: bloodvess (blood vessels); brain; heart; liver; lung; kidney; pituit (pituitary).
- Tumor samples GBM: glioblastoma; GC: gastric cancer; HCC: hepatocellular carcinoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); SCLC: small cell lung cancer.
- FIG. 1 A Gene symbol: URB1, Peptide: LYQEILAQL (SEQ ID NO.: 62), FIG.
- Tissues from left to right: Normal samples: blood cells; bloodvess (blood vessels); brain; heart; liver; lung; adipose (adipose tissue); adren.gl.
- renal gland bile duct; bladder; BM (bone marrow); esoph (esophagus); eye; gallb (gallbladder); head&neck; kidney; large_int (large intestine); LN (lymph node); nerve; pancreas; parathyr (parathyroid gland); perit (peritoneum); pituit (pituitary); pleura; skel.mus (skeletal muscle); skin; small_int (small intestine); spleen; stomach; thyroid; trachea; ureter; breast; ovary; placenta; prostate; testis; thymus; uterus.
- Tumor samples AML: acute myeloid leukemia; BRCA: breast cancer; CCC: cholangiocellular carcinoma; CLL: chronic lymphocytic leukemia; CRC: colorectal cancer; GBC: gallbladder cancer; GBM: glioblastoma; GC: gastric cancer; GEJC: stomach cardia esophagus, cancer; HCC: hepatocellular carcinoma; HNSCC: head-and-neck cancer; MEL: melanoma; NHL: non-hodgkin lymphoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); OC: ovarian cancer; OSCAR: esophageal cancer; PACA: pancreatic cancer; PRCA: prostate cancer; RCC: renal cell carcinoma; SCLC: small cell lung cancer; UBC: urinary bladder carcinoma;
- FIG. 1 C Gene symbol: BMS1, Peptide: VLYDKDAVYV (SEQ ID NO.: 129),
- FIG. 1 D Gene symbol: GORASP2, Peptide: NLWGGQGLLGV (SEQ ID NO.: 130).
- Tissues (from left to right): Normal samples: blood cells; brain; heart; liver; lung.
- FIG. 1 E Gene symbol: ZNF439, Peptide: LLDISQKNLY (SEQ ID NO.: 154),
- FIG. 1 F Gene symbol: MMP12, Peptide: SADDIRGIQSLY (SEQ ID NO.: 174).
- Tissues from left to right: Normal samples: blood cells; bloodvess (blood vessels); brain; heart; liver; lung.
- Tumor samples GBM: glioblastoma; GC: gastric cancer; NHL: non-hodgkin lymphoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); SCLC: small cell lung cancer.
- Tissues from left to right: Normal samples: blood cells; bloodvess (blood vessels); brain; heart; liver; lung.
- FIG. 1 I Gene symbol: CTHRC1, Peptide: SPQRLRGLL (SEQ ID NO.: 291), FIG. 1 J ) Gene symbol: MANEA, Peptide: RPHKPGLYL (SEQ ID NO.: 475).
- FIGS. 1 I Gene symbol: CTHRC1, Peptide: SPQRLRGLL (SEQ ID NO.: 291), FIG. 1 J ) Gene symbol: MANEA, Peptide: RPHKPGLYL (SEQ ID NO.: 475).
- Tissues from left to right: Normal samples: lung.
- FIG. 1 K Gene symbol: VPS13B, Peptide: DIYQRALNL (SEQ ID NO.: 315), FIG.
- Tissues from left to right: Normal samples: brain; heart; liver; lung.
- FIG. 1 M Gene symbol: NUP155, Peptide: SEKGVIQVY (SEQ ID NO.: 362), FIG. 1 N ) Gene symbol: CLSPN, Peptide: SEIGKAVGF (SEQ ID NO.: 489).
- FIGS. 2 A through 2 N show exemplary exon expression profile of source genes of the present invention that are over-expressed in different cancer samples.
- Tumor black dots
- normal grey dots
- box-and-whisker plots represent median, 25th and 75th percentile (box), and minimum and maximum (whiskers) RPKM values.
- Normal organs are ordered according to risk categories.
- FPKM fragments per kilobase per million mapped reads.
- Normal samples blood cells; bloodvess: blood vessel; brain; heart; liver; lung; adipose: adipose tissue; adren.gl.: adrenal gland; bile duct; bladder; BM: bone marrow; cartilage; esoph: esophagus; eye; gallb: gallbladder; head and neck; kidney; large_int: large intestine; LN: lymph node; nerve; pancreas; parathyr: parathyroid; perit: peritoneum; pituit: pituitary; pleura; skel.mus: skeletal muscle; skin; small_int: small intestine; spleen; stomach; thyroid; trachea; ureter; breast; ovary; placenta; prostate; testis; thymus; uterus.
- Tumor samples AML: acute myeloid leukemia; BRCA: breast cancer; CCC: cholangiocellular carcinoma; CLL: chronic lymphocytic leukemia; CRC: colorectal cancer; GBC: gallbladder cancer; GBM: glioblastoma; GC: gastric cancer; HCC: hepatocellular carcinoma; HNSCC: head-and-neck cancer; MEL: melanoma; NHL: non-hodgkin lymphoma; NSCLCadeno: non-small cell lung cancer adenocarcinoma; NSCLCother: non-small cell lung cancer; NSCLCsquam: non-small cell lung cancer squamous cell; OC: ovarian cancer; OSCAR: esophageal cancer; PACA: pancreatic cancer; PRCA: prostate cancer; RCC: renal cell carcinoma; SCLC: small cell lung cancer; UBC: urinary bladder carcinoma; UEC: uterine and endometrial cancer.
- FIG. 2 A Gene symbol: ADAMTS12, Peptide: QYDPTPLTW (SEQ ID No.: 1)
- FIG. 2 B Gene symbol: MMP12, Peptide: VWSNVTPLKF (SEQ ID No.: 2)
- FIG. 2 C Gene symbol: MMP12, Peptide: YVDINTFRL (SEQ ID No.: 84)
- FIG. 2 D Gene symbol: KIF26B, Peptide: TLYPYQISQL (SEQ ID No.: 87)
- FIG. 2 E Gene symbol: CT83, Peptide: NTDNNLAVY (SEQ ID No.: 164), FIG.
- FIG. 2 F Gene symbol: LAMA1, Peptide: VSDSECLSRY (SEQ ID No.: 189), FIG. 2 G ) Gene symbol: KIF26B, Peptide: KVKDTPGLGK (SEQ ID No.: 203), FIG. 2 H ) Gene symbol: SP6, Peptide: SLDGAARPK (SEQ ID No.: 205), FIG. 2 I ) Gene symbol: PRAME, Peptide: SPSVSQLSVL (SEQ ID No.: 220), FIG. 2 J ) Gene symbol: MMP1, Peptide: NPFYPEVEL (SEQ ID No.: 222), FIG.
- FIG. 2 K Gene symbol: NLRP2, Peptide: FNKRKPLSL (SEQ ID No.: 298), FIG. 2 L ) Gene symbol: KIF26B, Peptide: VASPKHCVL (SEQ ID No.: 300), FIG. 2 M ) Gene symbols: MAGEA3, MAGEA6, Peptide: MEVDPIGHVYIF (SEQ ID No.: 320), FIG. 2 N ) Gene symbol: MMP12, Peptide: QEMQHFLGL (SEQ ID No.: 326).
- FIG. 3 A and FIG. 3 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*02+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*02 in complex with SeqID No 520 peptide (KIQEMQHFL, Seq ID NO: 520) ( FIG. 3 A , left panel). After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*02/SeqID 520 ( FIG. 3 A ).
- Right panel FIG. 3 B
- FIG. 3 B show control staining of cells stimulated with irrelevant A*02/peptide complexes. Viable singlet cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 4 A and FIG. 4 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*24+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*24 in complex with SeqID No 504 peptide ( FIG. 4 A , left panel). After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*24/SeqID No 504 (VYEKNGYIYF, Seq ID NO: 504) ( FIG. 4 A ).
- Right panel FIG. 4 B shows control staining of cells stimulated with irrelevant A*24/peptide complexes. Viable singlet cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 5 A and FIG. 5 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*01+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*01 in complex with SeqID No 153 peptide (KLDRSVFTAY, Seq ID NO: 153) ( FIG. 5 A , left panel) and SeqID No 173 peptide (RTEFNLNQY, Seq ID NO: 173) ( FIG. 5 B , left panel), respectively.
- SeqID No 153 peptide KLDRSVFTAY, Seq ID NO: 153
- RTEFNLNQY Seq ID NO: 173
- FIGS. 5 A and 5 B show control staining of cells stimulated with irrelevant A*01/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 6 A and FIG. 6 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*02+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*02 in complex with SeqID No 89 peptide (ILSTTMVTV, Seq ID NO: 89) ( FIG. 6 A , left panel) and SeqID No 88 peptide (VQMVITEAQKV, Seq ID NO: 88) ( FIG. 6 B , left panel), respectively.
- SeqID No 89 peptide ILSTTMVTV, Seq ID NO: 89
- FIG. 6 B left panel
- the detection of peptide-reactive cells was performed by 2D multimer staining with A*02/SeqID No 89 ( FIG.
- FIGS. 6 A and 6 B show control staining of cells stimulated with irrelevant A*02/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 7 A and FIG. 7 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*03+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*03 in complex with SeqID No 208 peptide (GLASRILDAK, Seq ID NO: 208) ( FIG. 7 A , left panel) and SeqID No 210 peptide (ATSGVPVYK, Seq ID NO: 210) ( FIG. 7 B , left panel), respectively.
- SeqID No 208 peptide GLASRILDAK, Seq ID NO: 208
- FIG. 7 A left panel
- SeqID No 210 peptide ATSGVPVYK, Seq ID NO: 210)
- FIGS. 7 A and 7 B show control staining of cells stimulated with irrelevant A*03/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 8 A and FIG. 8 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*24+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*24 in complex with SeqID No 15 peptide (KYALLLQDL, Seq ID NO: 15) ( FIG. 8 A , left panel) and SeqID No 11 peptide (YYSKSVGFMQW, Seq ID NO: 11) ( FIG. 8 B , left panel), respectively.
- SeqID No 15 peptide KYALLLQDL, Seq ID NO: 15
- YYSKSVGFMQW Seq ID NO: 11
- FIGS. 8 A and 8 B show control staining of cells stimulated with irrelevant A*24/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 9 A and FIG. 9 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-B*07+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-B*07 in complex with SeqID No 225 peptide (LPFDGPGGIL, Seq ID NO: 225) ( FIG. 9 A , left panel) and SeqID No 248 peptide (IPNWARQDL, Seq ID NO: 248) ( FIG. 9 B , left panel), respectively.
- SeqID No 225 peptide LPFDGPGGIL, Seq ID NO: 225
- IPNWARQDL Seq ID NO: 248
- FIG. 9 B left panel
- FIGS. 9 A and 9 B show control staining of cells stimulated with irrelevant B*07/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 10 A and FIG. 10 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-B*08+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-B*08 in complex with SeqID No 299 peptide (MAQFKEISL, Seq ID NO: 299) ( FIG. 10 A , left panel) and SeqID No 297 peptide (RAQLKLVAL, Seq ID NO: 297) ( FIG. 10 B , left panel), respectively.
- SeqID No 299 peptide MAQFKEISL, Seq ID NO: 299
- RAQLKLVAL Seq ID NO: 297
- FIGS. 10 A and 10 B show control staining of cells stimulated with irrelevant B*08/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- FIG. 11 A and FIG. 11 B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-B*44+ donor.
- CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-B*44 in complex with SeqID No 325 peptide (QEQDVDLVQKY, Seq ID NO: 325) ( FIG. 11 A , left panel) and SeqID No 331 peptide (EDAQGHIW, Seq ID NO: 331) ( FIG. 11 B , left panel), respectively.
- FIGS. 11 A and 11 B show control staining of cells stimulated with irrelevant B*44/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated.
- HLA peptide pools from shock-frozen tissue samples were obtained by immune precipitation from solid tissues according to a slightly modified protocol (Falk et al., 1991; Seeger et al., 1999) using the HLA-A*02-specific antibody BB7.2, the HLA-A, —B, C-specific antibody W6/32, the HLA-DR specific antibody L243 and the HLA DP specific antibody B7/21, CNBr-activated sepharose, acid treatment, and ultrafiltration.
- HLA peptide pools as obtained were separated according to their hydrophobicity by reversed-phase chromatography (nanoAcquity UPLC system, Waters) and the eluting peptides were analyzed in LTQ-velos and fusion hybrid mass spectrometers (ThermoElectron) equipped with an ESI source.
- Peptide pools were loaded directly onto the analytical fused-silica micro-capillary column (75 ⁇ m i.d. ⁇ 250 mm) packed with 1.7 ⁇ m C18 reversed-phase material (Waters) applying a flow rate of 400 nL per minute.
- the peptides were separated using a two-step 180 minute-binary gradient from 10% to 33% B at a flow rate of 300 nL per minute.
- the gradient was composed of Solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in acetonitrile).
- a gold coated glass capillary (PicoTip, New Objective) was used for introduction into the nanoESI source.
- the LTQ-Orbitrap mass spectrometers were operated in the data-dependent mode using a TOP5 strategy.
- Label-free relative LC-MS quantitation was performed by ion counting i.e. by extraction and analysis of LC-MS features (Mueller et al., 2007). The method assumes that the peptide's LC-MS signal area correlates with its abundance in the sample. Extracted features were further processed by charge state deconvolution and retention time alignment (Mueller et al., 2008; Sturm et al., 2008). Finally, all LC-MS features were cross-referenced with the sequence identification results to combine quantitative data of different samples and tissues to peptide presentation profiles. The quantitative data were normalized in a two-tier fashion according to central tendency to account for variation within technical and biological replicates.
- each identified peptide can be associated with quantitative data allowing relative quantification between samples and tissues.
- all quantitative data acquired for peptide candidates was inspected manually to assure data consistency and to verify the accuracy of the automated analysis.
- a presentation profile was calculated showing the mean sample presentation as well as replicate variations. The profiles juxtapose cancer samples to a baseline of normal tissue samples. Presentation profiles of peptides exemplary over-presented or exclusively presented on tumors are shown in FIGS. 1 A through 1 N .
- Table 8 shows the presentation on various cancer entities for selected peptides, and thus the particular relevance of the peptides as mentioned for the diagnosis and/or treatment of the cancers as indicated (e.g. peptide SEQ ID No. 3 for hepatocellular carcinoma, peptide SEQ ID No. 11 for melanoma, ovarian cancer and uterine cancer).
- AML acute myeloid leukemia
- BRCA breast cancer
- CCC bile duct cancer
- GBM brain cancer
- CLL chronic lymphocytic leukemia
- CRC colorectal carcinoma
- OSCAR esophageal cancer
- GBC gallbladder adenocarcinoma
- GC gastric cancer
- HNSCC head and neck squamous cell carcinoma
- HCC hepatocellular carcinoma
- MEL melanoma
- NHL non-Hodgkin lymphoma
- OC ovarian cancer
- PACA pancreatic cancer
- PRCA prostate cancer and benign prostate hyperplasia
- RCC renal cell carcinoma
- UBC urinary bladder cancer
- UEC uterine cancer.
- mRNA expression profiling adds an additional level of safety in selection of peptide targets for immunotherapies.
- the ideal target peptide will be derived from a protein that is unique to the tumor and not found on normal tissues.
- RNA from healthy human tissues for RNASeq experiments was obtained from: Asterand (Detroit, Mich., USA & Royston, Herts, UK); Bio-Options Inc. (Brea, Calif., USA); BioCat GmbH (Heidelberg, Germany); BioServe (Beltsville, Md., USA); Capital BioScience Inc. (Rockville, Md., USA); Geneticist Inc. (Glendale, Calif., USA); Heidelberg University Hospital (Thoraxklinik, Heidelberg, Germany); Istituto Nazionale Tumori “Pascale” (Naples, Italy); ProteoGenex Inc. (Culver City, Calif., USA).
- RNA from tumor tissues for RNASeq experiments was obtained from: Asterand (Detroit, Mich., USA & Royston, Herts, UK); Geneticist Inc. (Glendale, Calif., USA); ProteoGenex Inc. (Culver City, Calif., USA); Tissue Solutions Ltd (Glasgow, UK); University Hospital Bonn (Bonn, Germany); University Hospital Tübingen (Tübingen, Germany).
- RNA samples Quality and quantity of all RNA samples were assessed on an Agilent 2100 Bioanalyzer (Agilent, Waldbronn, Germany) using the RNA 6000 Pico LabChip Kit (Agilent).
- RNAseq next generation sequencing
- CeGaT CeGaT
- sequencing libraries are prepared using the Illumina HiSeq v4 reagent kit according to the provider's protocol (Illumina Inc., San Diego, Calif., USA), which includes RNA fragmentation, cDNA conversion and addition of sequencing adaptors. Libraries derived from multiple samples are mixed equimolar and sequenced on the Illumina HiSeq 2500 sequencer according to the manufacturer's instructions, generating 50 bp single end reads. Processed reads are mapped to the human genome (GRCh38) using the STAR software.
- Expression data are provided on transcript level as RPKM (Reads Per Kilobase per Million mapped reads, generated by the software Cufflinks) and on exon level (total reads, generated by the software Bedtools), based on annotations of the ensembl sequence database (Ensembl77). Exon reads are normalized for exon length and alignment size to obtain RPKM values.
- RPKM Reads Per Kilobase per Million mapped reads, generated by the software Cufflinks
- exon level total reads, generated by the software Bedtools
- Exon reads are normalized for exon length and alignment size to obtain RPKM values.
- FIGS. 2 A through 2 N Exemplary expression profiles of source genes of the present invention that are highly over-expressed or exclusively expressed in lung cancer (including NSCLC and SCLC) are shown in FIGS. 2 A through 2 N . Expression scores for further exemplary genes are shown in Table 9.
- NSCLCadeno non-small cell lung carcinoma adenocarcinoma
- NSCLCsquam non-small cell lung carcinoma squamous cell
- NSCLCother non-small cell lung carcinoma, other subtypes
- SCLC small cell lung carcinoma
- the baseline for this score was calculated from measurements of the following relevant normal tissues: adipose tissue, adrenal gland, bile duct, blood cells, blood vessels, bone marrow, brain, cartilage, esophagus, eye, gallbladder, heart, head&neck, kidney, large intestine, liver, lung, lymph node, nerve, parathyroid, pancreas, pituitary, pleura, skeletal muscle, skin,
- the inventors performed investigations using an in vitro T-cell priming assay based on repeated stimulations of CD8+ T cells with artificial antigen presenting cells (aAPCs) loaded with peptide/MHC complexes and anti-CD28 antibody.
- aAPCs artificial antigen presenting cells
- the inventors In order to perform in vitro stimulations by artificial antigen presenting cells loaded with peptide-MHC complex (pMHC) and anti-CD28 antibody, the inventors first isolated CD8+ T cells from fresh HLA-A*02, HLA-A*24, HLA-A*01, HLA-A*03, HLA-B*07, HLA-B*08 or HLA-B*44 leukapheresis products via positive selection using CD8 microbeads (Miltenyi Biotec, Bergisch-Gladbach, Germany) of healthy donors obtained from the University clinics Mannheim, Germany, after informed consent.
- CD8 microbeads Miltenyi Biotec, Bergisch-Gladbach, Germany
- TCM T-cell medium
- PBMCs and isolated CD8+ lymphocytes were incubated in T-cell medium (TCM) until use consisting of RPMI-Glutamax (Invitrogen, Düsseldorf, Germany) supplemented with 10% heat inactivated human AB serum (PAN-Biotech, Aidenbach, Germany), 100 U/ml Penicillin/100 ⁇ g/ml Streptomycin (Cambrex, Cologne, Germany), 1 mM sodium pyruvate (CC Pro, Oberdorla, Germany), 20 ⁇ g/ml Gentamycin (Cambrex). 2.5 ng/ml IL-7 (PromoCell, Heidelberg, Germany) and 10 U/ml IL-2 (Novartis Pharma, Rhein, Germany) were also added to the TCM at this step.
- TCM T-cell medium
- the purified co-stimulatory mouse IgG2a anti human CD28 Ab 9.3 (Jung et al., 1987) was chemically biotinylated using Sulfo-N-hydroxysuccinimidobiotin as recommended by the manufacturer (Perbio, Bonn, Germany). Beads used were 5.6 ⁇ m diameter streptavidin coated polystyrene particles (Bangs Laboratories, Illinois, USA).
- pMHC used for positive and negative control stimulations were A*02:01/MLA-001 (peptide ELAGIGILTV (SEQ ID NO. 532) from modified Melan-A/MART-1) and A*02:01/DDX5-001 (YLLPAIVHI from DDX5, SEQ ID NO. 533), respectively.
- peptides were synthesized using standard and well-established solid phase peptide synthesis using the Fmoc-strategy. Identity and purity of each individual peptide have been determined by mass spectrometry and analytical RP-HPLC. The peptides were obtained as white to off-white lyophilizes (trifluoro acetate salt) in purities of >50%. All TUMAPs are preferably administered as trifluoro-acetate salts or acetate salts, other salt-forms are also possible.
- Candidate peptides for T cell based therapies according to the present invention were further tested for their MHC binding capacity (affinity).
- the individual peptide-MHC complexes were produced by UV-ligand exchange, where a UV-sensitive peptide is cleaved upon UV-irradiation, and exchanged with the peptide of interest as analyzed. Only peptide candidates that can effectively bind and stabilize the peptide-receptive MHC molecules prevent dissociation of the MHC complexes.
- an ELISA was performed based on the detection of the light chain ( ⁇ 2m) of stabilized MHC complexes. The assay was performed as generally described in Rodenko et al. (Rodenko et al., 2006).
- 96 well MAXISorp plates (NUNC) were coated over night with 2 ug/ml streptavidin in PBS at room temperature, washed 4 ⁇ and blocked for 1 h at 37° C. in 2% BSA containing blocking buffer.
- Refolded HLA-A*02:01/MLA-001 monomers served as standards, covering the range of 15-500 ng/ml.
- Peptide-MHC monomers of the UV-exchange reaction were diluted 100-fold in blocking buffer.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Cell Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Mycology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Hospice & Palliative Care (AREA)
Abstract
The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Description
- This application is a continuation of U.S. patent application Ser. No. 17/929,347, filed Sep. 2, 2022, which is a continuation of U.S. patent application Ser. No. 17/877,515, filed Jul. 29, 2022, which is a continuation of U.S. patent application Ser. No. 17/860,600, filed 8 Jul. 2022, which is a continuation of U.S. patent application Ser. No. 17/371,755, filed 9 Jul. 2021, which is a continuation of U.S. patent application Ser. No. 17/227,885, filed 12 Apr. 2021, now U.S. Pat. No. 11,168,122, issued 9 Nov. 2021, which is a continuation of U.S. patent application Ser. No. 16/913,788, filed 26 Jun. 2020, now U.S. Pat. No. 11,001,616, issued 11 May 2021, which is a continuation of U.S. patent application Ser. No. 16/026,707, filed 3 Jul. 2018, now U.S. Pat. No. 10,800,823, issued 13 Oct. 2020, which claims priority to U.S. Provisional Application No. 62/529,758, filed 7 Jul. 2017, and German Patent Application Number 102017115301.2, filed 7 Jul. 2017. The content of each of these applications is herein incorporated by reference in their entirety.
- This application is also related to PCT/EP2018/067979, filed 3 Jul. 2018, the content of which is incorporated herein by reference in its entirety.
- Pursuant to the EFS-Web legal framework and 37 CFR §§ 1.821-825 (see MPEP § 2442.03(a)), a Sequence Listing in the form of an ASCII-compliant text file (entitled “Sequence_Listing_2912919-089056_ST26.xml” created on 16 Sep. 2022, and 458,914 bytes in size) is submitted concurrently with the instant application, and the entire contents of the Sequence Listing are incorporated herein by reference.
- The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
- The present invention relates to several novel peptide sequences and their variants derived from HLA class I molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses, or as targets for the development of pharmaceutically/immunologically active compounds and cells.
- Lung cancer accounts for the most cancer-related deaths in both men and women. Worldwide, lung cancer is the most common cancer in terms of both incidence and mortality. In 2012, there were more than 1.8 million new cases (13% of total cancer incidence), and 1.6 million deaths (20% of total cancer mortality) due to lung cancer. Lung cancer is the leading cause of cancer death in men in 87 countries and in women in 26 countries. More than one third of all newly diagnosed cases occurred in China. The highest rates are in North America, Europe, and East Asia (World Cancer Report, 2014).
- Since 1987, more women have died each year from lung cancer than from breast cancer. Death rates have continued to decline significantly in men from 1991-2003 by about 1.9% per year. Female lung cancer death rates are approaching a plateau after continuously increasing for several decades. These trends in lung cancer mortality reflect the decrease in smoking rates over the past 30 years.
- An estimated 230,000 new cases of lung cancer and 160,000 deaths due to lung cancer are expected in 2013 in the USA according to the national cancer institute (NCI).
- Historically, small cell lung carcinoma (SCLC) has been distinguished from non-small cell lung carcinoma (NSCLC), which includes the histological types of adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. However, in the past decade, the distinction between adenocarcinoma and squamous cell carcinoma has been increasingly recognized because of major differences in genetics and also in responses to specific therapies. Therefore, lung cancers are increasingly classified according to molecular subtypes, predicated on particular genetic alterations that drive and maintain lung tumorigenesis (Travis et al., 2013).
- Prognosis is generally poor. Of all people with lung cancer, 10-15% survive for five years after diagnosis. Poor survival of lung cancer patients is due, at least in part, to 80% of patients being diagnosed with metastatic disease and more than half of patients having distant metastases (SEER Stat facts, 2014). At presentation, 30-40% of cases of NSCLC are stage IV, and 60% of SCLC are stage IV.
- The 1-year relative survival for lung cancer has slightly increased from 35% in 1975-1979 to 44% in 2010, largely due to improvements in surgical techniques and combined therapies. However, the 5-year survival rate for all stages combined is only 17%. The survival rate is 54% for cases detected when the disease is still localized; however, only 16% of lung cancers are diagnosed at this early stage (SEER Stat facts, 2014).
- Treatment options are determined by the type (small cell or non-small cell) and stage of cancer and include surgery, radiation therapy, chemotherapy, and targeted biological therapies such as bevacizumab (AVASTIN®) and erlotinib (TARCEVA®). For localized cancers, surgery is usually the treatment of choice. Recent studies indicate that survival with early-stage, non-small cell lung cancer is improved by chemotherapy following surgery. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often used, sometimes in combination with surgery. Chemotherapy alone or combined with radiation is the usual treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which is long lasting in some cases surgery (S3-Leitlinie Lungenkarzinom, 2011).
- Advanced lung cancer has also been resistant to traditional chemotherapy. However, recent advances have led to exciting progress in therapies that are dependent on histology and genetics. The level of scrutiny is exemplified by trials of adjuvant chemotherapy designed to differentiate not only between mutations in codons 12 and 13 of KRAS, but also between different amino acid substitutions as determined by particular mutations at codon 12 (Shepherd et al., 2013).
- To expand the therapeutic options for NSCLC, different immunotherapeutic approaches have been studied or are still under investigation. While vaccination with L-BLP25 or MAGEA3 failed to demonstrate a vaccine-mediated survival advantage in NSCLC patients, an allogeneic cell line-derived vaccine showed promising results in clinical studies. Additionally, further vaccination trials targeting gangliosides, the epidermal growth factor receptor and several other antigens are currently ongoing. An alternative strategy to enhance the patient's anti-tumor T cell response consists of blocking inhibitory T cell receptors or their ligands with specific antibodies. The therapeutic potential of several of these antibodies, including ipilimumab, nivolumab, pembrolizumab, MPDL3280A and MEDI-4736, in NSCLC is currently evaluated in clinical trials (Reinmuth et al., 2015).
- Considering the severe side-effects and expense associated with treating cancer, there is a need to identify factors that can be used in the treatment of cancer in general and lung cancer (including NSCLC and SCLC) in particular. There is also a need to identify factors representing biomarkers for cancer in general and lung cancer (including NSCLC and SCLC), leading to better diagnosis of cancer, assessment of prognosis, and prediction of treatment success.
- Immunotherapy of cancer represents an option of specific targeting of cancer cells while minimizing side effects. Cancer immunotherapy makes use of the existence of tumor associated antigens.
- The current classification of tumor associated antigens (TAAs) comprises the following major groups:
- a) Cancer-testis antigens: The first TAAs ever identified that can be recognized by T cells belong to this class, which was originally called cancer-testis (CT) antigens because of the expression of its members in histologically different human tumors and, among normal tissues, only in spermatocytes/spermatogonia of testis and, occasionally, in placenta. Since the cells of testis do not express class I and II HLA molecules, these antigens cannot be recognized by T cells in normal tissues and can therefore be considered as immunologically tumor-specific. Well-known examples for CT antigens are the MAGE family members and NY-ESO-1.
- b) Differentiation antigens: These TAAs are shared between tumors and the normal tissue from which the tumor arose. Most of the known differentiation antigens are found in melanomas and normal melanocytes. Many of these melanocyte lineage-related proteins are involved in biosynthesis of melanin and are therefore not tumor specific but nevertheless are widely used for cancer immunotherapy. Examples include, but are not limited to, tyrosinase and Melan-A/MART-1 for melanoma or PSA for prostate cancer.
- c) Over-expressed TAAs: Genes encoding widely expressed TAAs have been detected in histologically different types of tumors as well as in many normal tissues, generally with lower expression levels. It is possible that many of the epitopes processed and potentially presented by normal tissues are below the threshold level for T-cell recognition, while their over-expression in tumor cells can trigger an anticancer response by breaking previously established tolerance. Prominent examples for this class of TAAs are Her-2/neu, survivin, telomerase, or WT1.
- d) Tumor-specific antigens: These unique TAAs arise from mutations of normal genes (such as β-catenin, CDK4, etc.). Some of these molecular changes are associated with neoplastic transformation and/or progression. Tumor-specific antigens are generally able to induce strong immune responses without bearing the risk for autoimmune reactions against normal tissues. On the other hand, these TAAs are in most cases only relevant to the exact tumor on which they were identified and are usually not shared between many individual tumors. Tumor-specificity (or -association) of a peptide may also arise if the peptide originates from a tumor-(-associated) exon in case of proteins with tumor-specific (-associated) isoforms.
- e) TAAs arising from abnormal post-translational modifications: Such TAAs may arise from proteins which are neither specific nor overexpressed in tumors but nevertheless become tumor associated by posttranslational processes primarily active in tumors. Examples for this class arise from altered glycosylation patterns leading to novel epitopes in tumors as for MUC1 or events like protein splicing during degradation which may or may not be tumor specific.
- f) Oncoviral proteins: These TAAs are viral proteins that may play a critical role in the oncogenic process and, because they are foreign (not of human origin), they can evoke a T-cell response. Examples of such proteins are the human papilloma type 16 virus proteins, E6 and E7, which are expressed in cervical carcinoma.
- T-cell based immunotherapy targets peptide epitopes derived from tumor-associated or tumor-specific proteins, which are presented by molecules of the major histocompatibility complex (MHC). The antigens that are recognized by the tumor specific T lymphocytes, that is, the epitopes thereof, can be molecules derived from all protein classes, such as enzymes, receptors, transcription factors, etc. which are expressed and, as compared to unaltered cells of the same origin, usually up-regulated in cells of the respective tumor.
- There are two classes of MHC-molecules, MHC class I and MHC class II. MHC class I molecules are composed of an alpha heavy chain and beta-2-microglobulin, MHC class II molecules of an alpha and a beta chain. Their three-dimensional conformation results in a binding groove, which is used for non-covalent interaction with peptides. MHC class I molecules can be found on most nucleated cells. They present peptides that result from proteolytic cleavage of predominantly endogenous proteins, defective ribosomal products (DRIPs) and larger peptides. However, peptides derived from endosomal compartments or exogenous sources are also frequently found on MHC class I molecules. This non-classical way of class I presentation is referred to as cross-presentation in the literature (Brossart and Bevan, 1997; Rock et al., 1990). MHC class II molecules can be found predominantly on professional antigen presenting cells (APCs), and primarily present peptides of exogenous or transmembrane proteins that are taken up by APCs e.g. during endocytosis, and are subsequently processed. Complexes of peptide and MHC class I are recognized by CD8-positive T cells bearing the appropriate T-cell receptor (TCR), whereas complexes of peptide and MHC class II molecules are recognized by CD4-positive-helper-T cells bearing the appropriate TCR. It is well known that the TCR, the peptide and the MHC are thereby present in a stoichiometric amount of 1:1:1.
- CD4-positive helper T cells play an important role in inducing and sustaining effective responses by CD8-positive cytotoxic T cells. The identification of CD4-positive T-cell epitopes derived from tumor associated antigens (TAA) is of great importance for the development of pharmaceutical products for triggering anti-tumor immune responses (Gnjatic et al., 2003). At the tumor site, T helper cells, support a cytotoxic T cell− (CTL−) friendly cytokine milieu (Mortara et al., 2006) and attract effector cells, e.g. CTLs, natural killer (NK) cells, macrophages, and granulocytes (Hwang et al., 2007).
- In the absence of inflammation, expression of MHC class II molecules is mainly restricted to cells of the immune system, especially professional antigen-presenting cells (APC), e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells. In cancer patients, cells of the tumor have been found to express MHC class II molecules (Dengjel et al., 2006).
- Elongated (longer) peptides of the invention can act as MHC class II active epitopes.
- T-helper cells, activated by MHC class II epitopes, play an important role in orchestrating the effector function of CTLs in anti-tumor immunity. T-helper cell epitopes that trigger a T-helper cell response of the TH1 type support effector functions of CD8-positive killer T cells, which include cytotoxic functions directed against tumor cells displaying tumor-associated peptide/MHC complexes on their cell surfaces. In this way tumor-associated T-helper cell peptide epitopes, alone or in combination with other tumor-associated peptides, can serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses.
- It was shown in mammalian animal models, e.g., mice, that even in the absence of CD8-positive T lymphocytes, CD4-positive T cells are sufficient for inhibiting manifestation of tumors via inhibition of angiogenesis by secretion of interferon-gamma (IFNγ) (Beatty and Paterson, 2001; Mumberg et al., 1999). There is evidence for CD4 T cells as direct anti-tumor effectors (Braumuller et al., 2013; Tran et al., 2014).
- Since the constitutive expression of HLA class II molecules is usually limited to immune cells, the possibility of isolating class II peptides directly from primary tumors was previously not considered possible. However, Dengjel et al. were successful in identifying a number of MHC Class II epitopes directly from tumors (WO 2007/028574,
EP 1 760 088 B1). - Since both types of response, CD8 and CD4 dependent, contribute jointly and synergistically to the anti-tumor effect, the identification and characterization of tumor-associated antigens recognized by either CD8+ T cells (ligand: MHC class I molecule+peptide epitope) or by CD4-positive T-helper cells (ligand: MHC class II molecule+peptide epitope) is important in the development of tumor vaccines.
- For an MHC class I peptide to trigger (elicit) a cellular immune response, it also must bind to an MHC-molecule. This process is dependent on the allele of the MHC-molecule and specific polymorphisms of the amino acid sequence of the peptide. MHC-class-1-binding peptides are usually 8-12 amino acid residues in length and usually contain two conserved residues (“anchors”) in their sequence that interact with the corresponding binding groove of the MHC-molecule. In this way, each MHC allele has a “binding motif” determining which peptides can bind specifically to the binding groove.
- In the MHC class I dependent immune reaction, peptides not only have to be able to bind to certain MHC class I molecules expressed by tumor cells, they subsequently also have to be recognized by T cells bearing specific T cell receptors (TCR).
- For proteins to be recognized by T-lymphocytes as tumor-specific or -associated antigens, and to be used in a therapy, prerequisites must be fulfilled. The antigen should be expressed mainly by tumor cells and not, or in comparably small amounts, by normal healthy tissues. In a preferred embodiment, the peptide should be over-presented by tumor cells as compared to normal healthy tissues. It is furthermore desirable that the respective antigen is not only present in a type of tumor, but also in high concentrations (i.e. copy numbers of the respective peptide per cell). Tumor-specific and tumor-associated antigens are often derived from proteins directly involved in transformation of a normal cell to a tumor cell due to their function, e.g. in cell cycle control or suppression of apoptosis. Additionally, downstream targets of the proteins directly causative for a transformation may be up-regulated and thus may be indirectly tumor-associated. Such indirect tumor-associated antigens may also be targets of a vaccination approach (Singh-Jasuja et al., 2004). It is essential that epitopes are present in the amino acid sequence of the antigen, in order to ensure that such a peptide (“immunogenic peptide”), being derived from a tumor associated antigen, leads to an in vitro or in vivo T-cell-response.
- Basically, any peptide able to bind an MHC molecule may function as a T-cell epitope. A prerequisite for the induction of an in vitro or in vivo T-cell-response is the presence of a T cell having a corresponding TCR and the absence of immunological tolerance for this particular epitope.
- Therefore, TAAs are a starting point for the development of a T cell based therapy including but not limited to tumor vaccines. The methods for identifying and characterizing the TAAs are usually based on the use of T-cells that can be isolated from patients or healthy subjects, or they are based on the generation of differential transcription profiles or differential peptide expression patterns between tumors and normal tissues. However, the identification of genes over-expressed in tumor tissues or human tumor cell lines, or selectively expressed in such tissues or cell lines, does not provide precise information as to the use of the antigens being transcribed from these genes in an immune therapy. This is because only an individual subpopulation of epitopes of these antigens are suitable for such an application since a T cell with a corresponding TCR has to be present and the immunological tolerance for this particular epitope needs to be absent or minimal. In a very preferred embodiment of the invention it is therefore important to select only those over- or selectively presented peptides against which a functional and/or a proliferating T cell can be found. Such a functional T cell is defined as a T cell, which upon stimulation with a specific antigen can be clonally expanded and is able to execute effector functions (“effector T cell”).
- In case of targeting peptide-MHC by specific TCRs (e.g. soluble TCRs) and antibodies or other binding molecules (scaffolds) according to the invention, the immunogenicity of the underlying peptides is secondary. In these cases, the presentation is the determining factor.
- In a first aspect of the present invention, the present invention relates to a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant sequence thereof which is at least 77%, preferably at least 88%, homologous (preferably at least 77% or at least 88% identical) to SEQ ID NO: 1 to SEQ ID NO: 489, wherein said variant binds to MHC and/or induces T cells cross-reacting with said peptide, or a pharmaceutical acceptable salt thereof, wherein said peptide is not the underlying full-length polypeptide.
- The present invention further relates to a peptide of the present invention comprising a sequence that is selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof, which is at least 77%, preferably at least 88%, homologous (preferably at least 77% or at least 88% identical) to SEQ ID NO: 1 to SEQ ID NO: 489, wherein said peptide or variant thereof has an overall length of between 8 and 100, preferably between 8 and 30, and most preferred of between 8 and 14 amino acids.
- The following tables show the peptides according to the present invention, their respective SEQ ID NOs, and the prospective source (underlying) genes for these peptides. In Table 1, peptides with SEQ ID NO: 1 to SEQ ID NO: 83 bind to HLA-
A* 24, peptides with SEQ ID NO: 84 to SEQ ID NO: 133 bind to HLA-A* 02, peptides with SEQ ID NO: 134 to SEQ ID NO: 201 bind to HLA-A* 01, peptides with SEQ ID NO: 202 to SEQ ID NO: 219 bind to HLA-A* 03, peptides with SEQ ID NO: 220 to SEQ ID NO: 295 bind to HLA-B* 07, peptides with SEQ ID NO: 296 to SEQ ID NO: 318 bind to HLA-B* 08, peptides with SEQ ID NO: 319 to SEQ ID NO: 374 bind to HLA-B* 44. The peptides in Table 2 have been disclosed before in large listings as results of high-throughput screenings with high error rates or calculated using algorithms, but have not been associated with cancer at all before. In Table 2, peptides with SEQ ID NO: 375 to SEQ ID NO: 387 bind to HLA-A* 24, peptides with SEQ ID NO: 388 to SEQ ID NO: 393 bind to HLA-A* 02, peptides with SEQ ID NO: 394 to SEQ ID NO: 452 bind to HLA-A* 01, peptides with SEQ ID NO: 453 to SEQ ID NO: 458 bind to HLA-A* 03, peptides with SEQ ID NO: 459 to SEQ ID NO: 475 bind to HLA-B* 07, peptides with SEQ ID NO: 476 to SEQ ID NO: 489 bind to HLA-B* 44. The peptides in Table 3 are additional peptides that may be useful in combination with the other peptides of the invention. In Table 3, peptides with SEQ ID NO: 490 to SEQ ID NO: 508 bind to HLA-A* 24, peptides with SEQ ID NO: 509 to SEQ ID NO: 528 bind to HLA-A* 02, peptides with SEQ ID NO: 529 to SEQ ID NO: 530 bind to HLA-B* 07, peptide with SEQ ID NO: 531 binds to HLA-B* 44. -
TABLE 1 Peptides according to the present invention. Seq ID HLA No Sequence Gene(s) allotype 1 QYDPTPLTW ADAMTS12 A*24 2 VWSNVTPLKF MMP12 A*24 3 YLEKFYGL MMP12 A*24 4 SYEKVINYL MAGEA9, MAGEA9B A*24 5 RYMKKDYLI SLC35D3 A*24 6 KYKDYFPVI MAGEC2, LOC392555 A*24 7 VQQWSVAVF PTHLH A*24/B*15 8 PFLPPAACFF ASCL1 A*24 9 RILRFPWQL MMP11 A*24/A*32 10 VWSDVTPLNF MMP13 A*24 11 YYSKSVGFMQW FAM111B A*24 12 STIRGELFFF MMP11 A*24/B*57 13 HYTYILEVF SLC7A11 A*24 14 SYSSCYSF KRT13, KRT17 A*24 15 KYALLLQDL PLEKHG4B A*24 16 TYNPDFSSL SP9 A*24 17 YYADKKTFIVL SCN9A A*24 18 DYIGSVEKW HS6ST2 A*24 19 ILKEDPFLF MACC1 A*24 20 EFTTVLYNF TP63 A*24 21 SYEVRSTF TAS2R38 A*24 22 TQPGDWTLF POSTN A*24/B*15 23 KFIISDWRF FAM83A A*24 24 MYPDLSELLM NUP155 A*24 25 SYNGYVFYL ROS1 A*24 26 KTPTNYYLF NMUR2 A*24/B*35 27 NYTLYPITF GXYLT1 A*24 28 YYSIISHTL ROS1 A*24 29 VYPLLSRLYW ROS1 A*24 30 QYLPGWTVLF SLC22A31 A*24 31 QYQNVLTLW DST A*24 32 SLPDLTPTF LAMB3 A*24 33 KSSVIASLLF TMTC3 A*24/B*57 34 MQPRMFFLF FGD6 A*24 35 KYLEESVWL GPR98 A*24 36 KQMEDGHTLF UHRF1 A*24/B*15 37 QWPWQASLQF TMPRSS3 A*24 38 KYTNWKAFL MBTD1 A*24 39 LIFMLANVF GABRP A*24/A*32 40 QYEPPSAPSTTF DROSHA A*24 41 VIYFMGAIF OR7E24 A*24/B*15 42 TLPNTIYRF ROS1 A*24 43 IQMDEPMAF CDC7 A*24/B*15 44 AYLSAVGTF ABCC1 A*24 45 KYFVPPQLF B3GNT6 A*24 46 AFPVTSIFHTF KCNG1, KCNG2 A*24 47 KYADYFLEV CCNJ A*24 48 VFIDHPVHLKF TENM4 A*24 49 LYISEVRNI DST A*24 50 SYPELVKMVW C5orf34 A*24 51 KYALLLQEL PLEKHG4 A*24 52 KYMKIFHKF ZNF681 A*24 53 KYITNLEDL TXNDC16 A*24 54 LLIKLLQTF PRKDC A*24/B*15 55 RWMDQRLVF GABRP A*24 56 VYMIEPLEL ADAM23 A*24 57 YPSHQEF POLA1 A*24 58 QFAAPLRGIYF C1QTNF6 A*24 59 KYSTTFFMV XPR1 A*24 60 TYLSIFDQL SF3A3 A*24 61 NYAENILTL FIGNL1 A*24 62 LYQEILAQL URB1 A*24 63 VMPSDSFFF GAL3ST4 A*24 64 NYAIFDEGHML SMARCAD1 A*24 65 VYPASKMFPFI CKAP5 A*24 66 IYFRDSSFL TEP1 A*24 67 RYPGKFYRV ZAK A*24 68 IYQQIIQTY NCAPG2 A*24 69 IMPEKFEFW CHD2 A*24 70 PYTNYTFDF CNOT6, CNOT6L, A*24 CNOT6LP1 71 SYMVLAPVF SPIN1, SPNS1 A*24 72 RYEGILYTI LSM14A, LSM14B A*24 73 SYIGLPLTL NPC1 A*24 74 VYDQYFITL ATP8B2 A*24 75 NYIYSISVF PLAA A*24 76 WYGWHFPEL NOP58 A*24 77 AYTLLGHEFV CDC27 A*24 78 TWFPKTPMLF KBTBD2 A*24 79 RYLADLPTL CEP85 A*24 80 YYSPLRDLL Rasa3 A*24 81 LYPEGLRLL ATP6VOD2 A*24 82 RFLPSPVVI CUL3 A*24 83 TYCQNIKEF EIF3H A*24 84 YVDINTFRL MMP12 A*02 85 YIDEFQSLV RTL1 A*02 86 FVIDGFDEL NLRP2 A*02 87 TLYPYQISQL KIF26B A*02 88 VQMVITEAQKV LAMC2 A*02 89 ILSTTMVTV KIF26B A*02 90 FLLMHPSI NDST4 A*02 91 FALPGLLHA LAMB3 A*02 92 NLRDLLSEV KIF26B A*02 93 TLQEKILQV MYO3A A*02 94 VLPDIETLIGV TET1 A*02 95 ITIGVLARV CEACAM6 A*02 96 HLVGGLHTV DACH1, DACH2 A*02 97 VLALVNSTV CBFA2T2 A*02 98 LQSSGLTLLL MSLNL A*02/B*13 99 FLKEKVPGI CDKAL1 A*02 100 RQYPTPFQL ZNF280C A*02/B*48 101 FIISDWRFVL FAM83A A*02 102 SLLEQAIAL ST18 A*02 103 FLYYPDPVL PLXNA1 A*02 104 GMLDIFWGV RASSF6 A*02 105 SLLTHIPTA PLEKHG4 A*02 106 FHDTTYPAYV FAP A*02 107 LLQGAIESV PLEKHG4 A*02 108 MIIALSLYI GPR33 A*02 109 LLLGSIGLLGV OPN3 A*02 110 LLADFQALL CCDC87 A*02 111 ALCLLLHLL MRGPRE A*02 112 SVSDGIHSV CELSR1 A*02 113 AVLTGLVEV LRBA A*02 114 ILDERQVLL ITGAE A*02 115 MLLETQDALYV ADORA2B A*02 116 VLMEENSKL HAP1 A*02 117 FLDPNARPLV CAD A*02 118 ALSSVLHSI FGD6 A*02 119 RTADITVTV ITGAE A*02 120 ALLANLPAV SLC26A9 A*02 121 ALVDTLTGI IPO9 A*02 122 ALLEMFPEITV TXNDC16 A*02 123 LMAFFLAVV OR6C75 A*02 124 SVASVLLYL PRKDC A*02 125 VLQPFLPSI IPO9 A*02 126 FLSTVTSV SOGA2 A*02 127 GLDGSLVFL MARCH6 A*02 128 FLGTTPTL SF3B3 A*02 129 VLYDKDAVYV BMS1 A*02 130 NLWGGQGLLGV GORASP2 A*02 131 LLKEFVQRV COL6A3 A*02 132 ALWLVDPLTV SLC33A1 A*02 133 MTLPVDAVISV UFSP2 A*02 134 AAEIGDKSWLY PLA2G7 A*01 135 ASEDSVLLY CHAF1B A*01 136 ATDLVVLDRY DICER1 A*01 137 ATSKFMEFY EDNRA A*01 138 DSDSCHFNY DCBLD2 A*01 139 ECDMAFHIY UHRF1, LOC728688 A*01 140 ESDREELNY CBFA2T2 A*01 141 ESDVGVVVY DDX60L A*01 142 EVAEPSVLFDLY C9orf114 A*01 143 FIDYPKKEDY PLAU A*01 144 FLDSQNLSAY BBS1, DPP3 A*01 145 FVDKPVAY TAF1B A*01 146 GLNTGSALSY COL6A3 A*01/B*15 147 GSSDSSTLPKL TDRD5 A*01 148 GTEFTTILY TP73 A*01 149 GTEFTTVLY TP63 A*01 150 GTELLSLVY PRKDC A*01 151 HSDLKVGEY DICER1 A*01 152 HTDSLHLLI ANKRD52, FLJ25613 A*01 153 KLDRSVFTAY FAM111B A*01 154 LLDISQKNLY ZNF439 A*01 155 LLDPNPHMY RGS17 A*01 156 LLDSLREQY SESTD1 A*01 157 LMDRPIFY GALNS A*01 158 LSDLLKQGY PKD2L1 A*01 159 LSDTSVIQFY C16orf62 A*01 160 LTEAVLNRY KIF26B A*01 161 LVDDGTHGQY TRPM2 A*01 162 LVDNSIRELQY CARD8 A*01 163 NSDSSLTLREFY FSTL4 A*01 164 NTDNNLAVY CXorf61 A*01 165 NTDPTAPPY CDH3 A*01 166 NTQITDIGRY HMCN1 A*01 167 QSDPGTSVLGY SEZ6 A*01 168 QTDHPQPILDRY ITGAE A*01 169 RLDTPLYFSY LEPRE1 A*01 170 RSDDTAVYY IGHA1, IGHA2, IGHD, A*01 IGHG3, IGHV1-18, IGHV1-2, IGHV4-31 171 RSDPVTLNVLY CEACAM6, PSG1, PSG2, A*01 PSG4, PSG5, PSG7, PSG8 172 RTDSCSSAQAQY DCBLD2 A*01 173 RTEFNLNQY COL12A1 A*01 174 SADDIRGIQSLY MMP12 A*01 175 SDVTPLTF MMP11 A*01 176 SRTINVSNLY LAMA1 A*01 177 SSDEVNFLVY TBL1XR1 A*01 178 SSDSSTLPKL TDRD5 A*01/C*12 179 STAKSATWTY TP63, TP73 A*01 180 STDPWIQMAY KDM1B A*01 181 TADGKTYYY TCERG1 A*01 182 TDYHVRVY FNDC3B A*01 183 TLEDIATSHLY CBFA2T2 A*01 184 TSAHPEDSSFY LOC731467, TRBV20-1 A*01 185 TSDSNLNKY KCNH7 A*01 186 TTDIIEKY DDX60L A*01 187 VADLHLYLY GARS A*01 188 VSDAKLDKY RCOR2, LOC441644 A*01 189 VSDSECLSRY LAMA1 A*01 190 VTDGINPLIDRY FREM2 A*01 191 VTDGSLYEGVAY DSE A*01 192 VTEESFDSKFY CDKAL1 A*01 193 VTEFSLNTY COL6A3 A*01 194 VVADTKMIEY ADAMTS12 A*01 195 VVDSVGGYLY ROS1 A*01 196 WMFFVINY TMEM217 A*01 197 YADTVRPEFY COL6A3 A*01 198 YLDPVQRDLY ZNF655 A*01 199 YLPQHTIETY TP63 A*01/B*15 200 YSDEDVTKY SDK2 A*01 201 YVGKEHMFY MAGEA9, MAGEA9B A*01 202 KLAELEGALQK KRT81, KRT121P, A*03 KRT83, KRT85, KRT86 203 KVKDTPGLGK KIF26B A*03 204 AVFDKFIRY BTBD17 A*03 205 SLDGAARPK SP6 A*03 206 KLIDLSQVMY MACC1 A*03/B*15 207 RSFNGLLTMY LAMB3 A*03/B*15 208 GLASRILDAK LAMB3 A*03 209 RTQIPMSEK RASSF6 A*03 210 ATSGVPVYK SLC44A5 A*03 211 TVNPVAIHK GLI2 A*03 212 KAYEQVMHY FOXA2 A*03 213 LNINMTSPMGTK PCSK2 A*03 214 RTMSEAALVRK RASSF6 A*03 215 MMFSGPQILKL ABCC1 A*03/A*32 216 KLYAWELAF ABCC1 A*03/A*32 217 RILNQILYY FGD6 A*03 218 KTLVAELLILK POLQ A*03 219 RLRSSLVFK FAM83B A*03 220 SPSVSQLSVL PRAME B*07 221 VPDVAQFVL MMP1 B*07 222 NPFYPEVEL MMP1 B*07 223 YPKDIYSSF MMP1 B*07 224 GPQPWHAAL MMP11 B*07 225 LPFDGPGGIL MMP11 B*07 226 SPRMSGLLSQT DLL3 B*07 227 YPRGNHWAVGH GRP B*07 228 YPRGNHWAVGHL GRP B*07 229 VPLPAGGGTV GRP B*07 230 VPLPAGGGTVL GRP B*07 231 RPRALRDLQL NLRP7 B*07 232 RPRALRDLQLL NLRP7 B*07 233 KPYQGNPTF DNAH17 B*07 234 RAKNAGVTI LAMC2 B*07 235 MPLKHYLLL LRRC15 B*07 236 RVRGGEDGDRAL INSM1 B*07 237 RPAATAVISL SLC7A11 B*07 238 KPGPPWAAF DCBLD2 B*07 239 YVPSASLFML E2F7 B*07 240 SPREVTTVL DCBLD2 B*07 241 SARLATDAL FAM83A B*07 242 SPRWLPVSL BTBD17 B*07 243 RPIENRILIL PSG1, PSG3, B*07 PSG4, PSG5, PSG6, PSG7, PSG8, PSG9 244 FPYVRDFVM COL6A3 B*07/B*35 245 RIREHVPQL COL6A3 B*07 246 TPLPAVIVL SLC7A11 B*07 247 RALLARLLL PLAU B*07 248 IPNWARQDL NLRP7 B*07 249 VPSSRILQL TH EG B*07 250 SPRDFLSGL ABCA2, TPH1 B*07 251 VPRSSGQTV SP6 B*07 252 SPDIRNTTV DCBLD2 B*07 253 RVIDAVRFTL TP63 B*07 254 NPFPHLITL ROS1 B*07 255 MPLLENLYL MXRA5 B*07 256 SPRVPSIEL COL7A1 B*07 257 LPRIPFADV ROS1 B*07 258 LPRGPLASL CDH3 B*07 259 RPPAAGLRGISL SEZ6L B*07 260 YPQHPGLNA SOX2 B*07 261 APSARVGVC KRT86 B*07 262 SAYPQRLEI CYP24A1 B*07/B*51 263 HPAPYGDLL GLI2 B*07 264 RPILIIITL TP73 B*07 265 SPRQPPRLV CYP24A1 B*07 266 HAYPPGPGL MMP10 B*07/C*03 267 HPELVNHIVF GALNT5 B*07/B*35 268 YPLFRGINL COL5A1 B*07 269 APRAPRLML ITGA3 B*07 270 APGPRFLVT CD109 B*07 271 MPLPWSLALP EGFL6 B*07/B*35 272 MPLPWSLALPL EGFL6 B*07 273 MPLLWLRGF INHBA B*07/B*35 274 TPYQEHVAL ZNF618 B*07/B*35 275 APHPPLSVV IQGAP3 B*07 276 LPRAGGAFL LAMB3 B*07 277 MPLFEPRVF PTK7 B*07/B*35 278 HPMIDINGIIVF COL5A1 B*07/B*35 279 SPARASPAL TMPRSS13 B*07 280 VPISEEGTPVL KIAA0754 B*07 281 RPRAPVTPA HES6 B*07 282 MPQIETRVIL ECT2 B*07 283 RPHSLSSEL ITGAE B*07 284 FPVTSIFHTF KCNG1, KCNG2 B*07/B*35 285 FPSFLTNSL CEP192 B*07/B*35 286 VPTLRSEL DST, MACF1 B*07 287 APREEQQRSL KIAA1211 B*07 288 FPQKFIDLL SASS6 B*07 289 VPENHSVAL FAM83B B*07 290 APYRPPDISL TANC2 B*07 291 SPQRLRGLL CTHRC1 B*07 292 SPQRLRGLLL CTHRC1 B*07 293 RPRSALPRLLLP FZD2 B*07 294 GPTPNTGAAL COL6A3 B*07 295 KPEGTRIAV COL6A3 B*07 296 MPMQDIKM PRAME B*08 297 RAQLKLVAL KLHDC7B B*08 298 FNKRKPLSL NLRP2 B*08 299 MAQFKEISL NLRP2 B*08 300 VASPKHCVL KIF26B B*08 301 YMHKLLVL PTH2 B*08/B*35 302 HLLQKQTSI TP63 B*08 303 LPFPKFTV GALNT5 B*08 304 ELKKLYCQI TP63 B*08 305 ALKLRVAVL C16orf59 B*08 306 ILKVKVGL POSTN B*08 307 ILLPRTVSL MXRA5 B*08 308 MLKQKVEEL DST B*08 309 DAIQRKYSC DST B*08 310 LPPKKFVL NUP155 B*08 311 EIRIRVVQM PRKDC B*08 312 EAMLRNKEL CENPF B*08 313 ELKKKEYEEL CENPF B*08 314 AIISRLVAL TANC2 B*08 315 DIYQRALNL VPS13B B*08 316 VIKEKALTL USP9X, USP9Y B*08 317 LVKVKVLL ARID4A B*08 318 EAAIRSVEL DSCR3 B*08 319 AEMLERVIKNY MAGEA4 B*44 320 MEVDPIGHVYIF MAGEA3, MAGEA6 B*44 321 AEMLESVIKNY MAGEA1, MAGEA8, B*44 MAGEA9, MAGEA9B 322 KEVDPAGHSY MAGEA8, MAGEA9, B*44 MAGEA9B 323 SEFMQVIF MAGEA9, MAGEA9B B*44 324 TDSIHAWTF SLC35D3 B*44/B*18 325 QEQDVDLVQKY MMP1 B*44 326 QEMQHFLGL MMP12 B*44 327 YEIEARNQVF MMP12 B*44/B*18 328 FEYDFLLQRI MMP12 B*44 329 NEHPSNNW LAMC2 B*44 330 KEGDLGGKQW ADAMTS12 B*44 331 EDAQGHIW MMP11 B*44 332 MEVPVIKI ECT2 B*44 333 AETLSTIQI KIF26B B*44 334 AEDEPAAAHL KIF26B B*44 335 KELEATKQY KIF26B B*44 336 ASSSGPMRWW LAMB3 B*44/B*57 337 TENRYCVQL JUP, KRT13, KRT17 B*44 338 SEGSEPALLHSW FAM83A B*44 339 SEPALLHSW FAM83A B*44 340 TEFSLNTY COL6A3 B*44 341 EEIEGKGSFTYF POSTN B*44 342 HEFSSPSHL TP63 B*44 343 TEFTTVLY TP63 B*44 344 EEATGQFHVY CEACAM1, CEACAM3, B*44 CEACAM6 345 IEFIHPQAF MXRA5 B*44 346 VEAPGPVHVYW PTK7 B*44 347 ALNPYQYQY DLX5 B*44/A*29 348 AEIQGNINHV IQGAP3 B*44 349 AEQDMRELTY DST B*44 350 GECDVFKEIL DCBLD2 B*44 351 EEVNYINTF CCNE2 B*44 352 NEVLTYIKF ABCC5 B*44 353 GEIIMQNNW SERTAD4 B*44 354 TEDPTILRI PLXNA1 B*44 355 SDMVRFHLF SGK196 B*44 356 EEGRVYLF ITGA2 B*44 357 RELENCFQIQ DNAH14 B*44 358 KEADIHFLI COL6A5 B*44 359 DELFSIALY NUP155 B*44 360 AEVPTGVII ITGA2 B*44 361 SENLFFASF ITGA2 B*44 362 SEKGVIQVY NUP155 B*44 363 AELDKLTSV CENPF B*44 364 AETPIQNVI MET B*44 365 SEMNVNMKY MET B*44 366 AENLFRAF PRKDC B*44 367 GEVHPSEMI PRKDC B*44 368 GEFPVRVQV YEATS2 B*44 369 EEIERFFKL NUP155 B*44 370 YEDLSQKY CENPF B*44 371 GELALKKKI PRKDC B*44 372 TEGIIMKDF MET B*44 373 MEMQKSPVF FSTL4, GRM7, B*44 LOC440173, LOC644919, LOC728755, SLC44A5 374 DEVNFLVY TBL1X, TBL1XR1, TBL1Y -
TABLE 2 Additional peptides according to the present invention with no prior known cancer association. Seq ID HLA No Sequence Gene(s) allotype 375 VYSDLHAFYY MANEAL A*24 376 KYVKDFHKF ZNF724P A*24 377 VYVGAVNRI PLXNA1 A*24 378 KFLGPAEHLTF PROM2 A*24 379 NYIVPDKQIF POLA1 A*24 380 VFQEKHHVI MOXD1 A*24 381 TYSKKHFRI CHEK2 A*24 382 IYHSHHPTL OPA1 A*24 383 RYKQDVERF SMC5 A*24 384 KYVKVFDKF ZNF107 A*24 385 MYINEVERL PTPN14 A*24 386 VYNDHSIYVW MAPKBP1 A*24 387 RWLPQKNAAQF DOCK5, PPP2R2A A*24 388 FSIPEGALVAV ABCC1 A*02 389 TLMEQPLTTL TXNDC16 A*02 390 HIMPTVHTV ADNP2 A*02 391 SLIDMRGIETV SMC6 A*02 392 SLFKDQMEL IPO8 A*02 393 ILLPYLQTL TIPARP A*02 394 ASEAEMRLFY DHX37 A*01 395 ASEASRLAHY HIST1H2BA, A*01 HIST1H2BL, HIST3H2BB 396 ASEFGNHYLY SF3B3 A*01 397 ASEITSKGASLY CLUAP1 A*01 398 ASEQQALHTVQY NUP188 A*01 399 ATDIPCLLY RINT1 A*01 400 ATDISRQNEY PDE7A A*01 401 DSDESYMEKSLY CLSPN A*01 402 DTDSQRLAY E2F1 A*01 403 ELDSKVEVLTY SNX7 A*01 404 ETARKFLYY GPD2 A*01 405 ETEEGIYWRY KREMEN2 A*01 406 ETEQTKFWDY FUT11 A*01 407 FSDNDKLYLY RFX5 A*01 408 FTEQWTDGY TLK2 A*01 409 FVDPLVTNY TRIT1 A*01 410 GSDHQSPSSSSY ZBTB43 A*01 411 GTVYEDLRY UBE2C A*01 412 ILDEVIMGY KIF11 A*01 413 ISDRYYTALY CEBPZ A*01 414 KTDESLTKY CHD8 A*01 415 LLDPRSYHTY DOCK8 A*01 416 LLDTAQKNLY ZNF614 A*01 417 LLEDKHFQSY WDR6 A*01 418 LSDPSGPKSY RPS6KC1 A*01 419 LSELKPMSY TMTC3 A*01 420 LTEDKETLQY TUBGCP2 A*01 421 LTELLERAAFY SLC15A4 A*01 422 MIDVTKSYY DCTN5 A*01 423 NLDAVHDITVAY LCLAT1 A*01 424 NLDEEKQLLY FRMD6 A*01 425 NLDIIQQEY WDR75 A*01 426 NLDQATRVAY SMC4 A*01 427 NSDEQKITEMVY LRBA A*01 428 NSELSCQLY TYMS A*01 429 NTEDSSMSGYLY FGD6 A*01 430 NTEGLHHLY SMEK2, SMEK3P A*01 431 NTSDMMGRMSY ARID1A A*01 432 NVDPVQHTY AGRN A*01 433 QIDTGENLY ZNF267 A*01 434 QTDCAPNNGY NOMO1, NOMO2, A*01 NOMO3 435 QTDDTWRTEY ZMYM2 A*01 436 QTETGTPYMLY RRM1 A*01 437 STDGKHWWEY CCNT1, CCNT2 A*01 438 STDNFNCKY FGD6 A*01 439 TLDAGKFQIY DHX15 A*01 440 TLDENPGVRY STXBP3 A*01 441 TLDSALNAASYY TCTN3 A*01 442 TSDFSRFTNY CCNE2 A*01 443 TTDFPSESSFEY CXorf21 A*01 444 TTDTVIRSY SETD4 A*01 445 VLDQGKITEY ABCB10 A*01 446 VTAQVVGTERY PLD2 A*01 447 VVDEDHELIY CHST11 A*01 448 YLDIPNPRY CIT A*01 449 YLDRGTGNVSFY TRIM4 A*01 450 YSDDGQKWTVY DCBLD2 A*01 451 YSDSLVQKGY MSH6 A*01 452 YVDAVLGKGHQY NUP160 A*01 453 AINTSIKNK TRPM8 A*03 454 KVYTPSISK CDKAL1 A*03 455 RIADIFVKK FGD6 A*03 456 SMFTAILKK LRBA A*03 457 SINKPTSER NDC80 A*03 458 GIADFVLKY RNFT2 A*03 459 RPMQQARAQL KLHDC7B B*07 460 MPMAGDMNGL TP63 B*07 461 RPILIIVTL TP63 B*07 462 RPFHTRATV KIF26B B*07 463 TPKAGPTL KIF26B B*07 464 YPRPGTPAA CDKAL1 B*07 465 VPRPIFSQL GREB1, GREB1L B*07 466 APYKSVTSL FGD6 B*07 467 KPFSSFTSM RASSF6 B*07 468 SPMYGQAGL FOXA2 B*07 469 YPENGVVQM UHRF1 B*07 470 SPNSYFRVL PCDHB13, PCDHB8 B*07 471 KPRPDVTNEL CDCA7 B*07 472 NPRATDAQL LRBA B*07 473 LPRALLSSL IL4I1 B*07 474 LPRLLPAL HEATR2 B*07 475 RPHKPGLYL MANEA B*07 476 AEEEIMKKI IGF2BP3 B*44 477 QENSYQSRL LAMC2 B*44 478 SEIEQEIGSL LAMC2 B*44 479 AEIQPQTQV PTK7 B*44 480 GEVSGLTKDF CDKAL1 B*44 481 RELQHEHSL FAT1 B*44 482 TEREWADEW CBFA2T2 B*44 483 EENDQSTHKW YEATS2 B*44 484 AEVGFVRFF MSH2 B*44 485 SEIEDSTKQVF BRCA2 B*44 486 SEDDPILQI NUP155 B*44 487 AEDQLHHSF GXYLT1 B*44 488 TEFPIIKMY TXNDC16 B*44 489 SEIGKAVGF CLSPN B*44 -
TABLE 3 Peptides according to the present invention useful for e.g. personalized cancer therapies. Seq ID HLA No Sequence Gene(s) allotype 490 SYVKVLHHL MAGEA12, A*24 LOC101060230 491 KYLEKYYNL MMP1 A*24 492 NYEDHFPLL MAGEA10 A*24 493 TYKYVDINTF MMP12 A*24 494 RYLEKFYGL MMP12 A*24 495 SYNDALLTF TRPM8 A*24 496 VFMKDGFFYF MMP1 A*24 497 NYPKSIHSF MMP12 A*24 498 EYIRALQQL ASCL1 A*24 499 VYFVAPAKF LAMC2 A*24 500 VWSDVTPLTF MMP11 A*24 501 GYIDNVTLI LAMC2 A*24 502 SVHKITSTF LAMC2 A*24 503 VHFEDTGKTLLF MMP13 A*24 504 VYEKNGYIYF MMP13 A*24 505 AYISGLDVF DNAH17 A*24 506 RYVFPLPYL SOX14 A*24 507 VYIAELEKI SMC1B A*24 508 IYVTGGHLF KLHDC7B A*24 509 ALLEEEEGV MAGEA4 A*02 510 KVLEHVVRV MAGEA4, MAGEA8 A*02 511 KIWEELSVLEV MAGEA3, MAGEA6 A*02 512 VLGEEQEGV MAGEA9, MAGEA9B A*02 513 KLVELEHTL CXorf61 A*02 514 VQLDSIEDLEV PRAME A*02 515 KIFEMLEGV CT45A1, CT45A2, A*02 CT45A3, CT45A4, CT45A5, CT45A6, LOC101060208, LOC101060210, LOC101060211 516 YTFSGDVQL MMP1 A*02 517 TLYNPERTITV IGF2BP1, IGF2BP3 A*02 518 GLLEDERALQL MEX3A A*02 519 KIQEILTQV IGF2BP3 A*02 520 KIQEMQHFL MMP12 A*02 521 FVYGEPREL MAGEC2, LOC392555 A*02 522 TLDEKVAEL MAGEC2 A*02 523 HLIAEIHTA PTHLH A*02 524 KVWSDVTPL MMP11, MMP13 A*02 525 RLDDLKMTV LAMC2 A*02 526 VLSPFILTL KLHDC7B A*02 527 LLDSVSRL LAMC2 A*02 528 RLLDSVSRL LAMC2 A*02 529 HPSAHDVIL LAMC2 B*07 530 APAAWLRSAA MMP11 B*07 531 AEIEADRSY LAMC2 B*44 - The present invention furthermore generally relates to the peptides according to the present invention for use in the treatment of proliferative diseases, such as, for example, acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer.
- Particularly preferred are the peptides—alone or in combination—according to the present invention selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489. More preferred are the peptides—alone or in combination—selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 374 (see Table 1), and their uses in the immunotherapy of lung cancer (including NSCLC and SCLC), acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer, and preferably lung cancer (including NSCLC and SCLC).
- Thus, another aspect of the present invention relates to the use of the peptides according to the present invention for the—preferably combined—treatment of a proliferative disease selected from the group of lung cancer (including NSCLC and SCLC), acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer.
- The present invention furthermore relates to peptides according to the present invention that have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or—in an elongated form, such as a length-variant—MHC class-II.
- The present invention further relates to the peptides according to the present invention wherein said peptides (each) consist or consist essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489.
- The present invention further relates to the peptides according to the present invention, wherein said peptide is modified and/or includes non-peptide bonds.
- The present invention further relates to the peptides according to the present invention, wherein said peptide is part of a fusion protein, in particular fused to the N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or fused to (or into the sequence of) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- The present invention further relates to a nucleic acid, encoding the peptides according to the present invention. The present invention further relates to the nucleic acid according to the present invention that is DNA, cDNA, PNA, RNA or combinations thereof.
- The present invention further relates to an expression vector capable of expressing and/or expressing a nucleic acid according to the present invention.
- The present invention further relates to a peptide according to the present invention, a nucleic acid according to the present invention or an expression vector according to the present invention for use in the treatment of diseases and in medicine, in particular in the treatment of cancer.
- The present invention further relates to antibodies that are specific against the peptides according to the present invention or complexes of said peptides according to the present invention with MHC, and methods of making these.
- The present invention further relates to T-cell receptors (TCRs), in particular soluble TCR (sTCRs) and cloned TCRs engineered into autologous or allogeneic T cells, and methods of making these, as well as NK cells or other cells bearing said TCR or cross-reacting with said TCRs.
- The antibodies and TCRs are additional embodiments of the immunotherapeutic use of the peptides according to the invention at hand.
- The present invention further relates to a host cell comprising a nucleic acid according to the present invention or an expression vector as described before. The present invention further relates to the host cell according to the present invention that is an antigen presenting cell, and preferably is a dendritic cell.
- The present invention further relates to a method for producing a peptide according to the present invention, said method comprising culturing the host cell according to the present invention, and isolating the peptide from said host cell or its culture medium.
- The present invention further relates to said method according to the present invention, wherein the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell or artificial antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell.
- The present invention further relates to the method according to the present invention, wherein the antigen-presenting cell comprises an expression vector capable of expressing or expressing said peptide containing SEQ ID No. 1 to SEQ ID No.: 489, preferably containing SEQ ID No. 1 to SEQ ID No. 374, or a variant amino acid sequence.
- The present invention further relates to activated T cells, produced by the method according to the present invention, wherein said T cell selectively recognizes a cell which expresses a polypeptide comprising an amino acid sequence according to the present invention.
- The present invention further relates to a method of killing target cells in a patient which target cells aberrantly express a polypeptide comprising any amino acid sequence according to the present invention, the method comprising administering to the patient an effective number of T cells as produced according to the present invention.
- The present invention further relates to the use of any peptide as described, the nucleic acid according to the present invention, the expression vector according to the present invention, the cell according to the present invention, the activated T lymphocyte, the T cell receptor or the antibody or other peptide- and/or peptide-MHC-binding molecules according to the present invention as a medicament or in the manufacture of a medicament. Preferably, said medicament is active against cancer.
- Preferably, said medicament is a cellular therapy, a vaccine or a protein based on a soluble TCR or antibody.
- The present invention further relates to a use according to the present invention, wherein said cancer cells are lung cancer (including NSCLC and SCLC), acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer, and preferably lung cancer (including NSCLC and SCLC) cells.
- The present invention further relates to biomarkers based on the peptides according to the present invention, herein called “targets” that can be used in the diagnosis of cancer, preferably lung cancer (including NSCLC and SCLC). The marker can be over-presentation of the peptide(s) themselves, or over-expression of the corresponding gene(s). The markers may also be used to predict the probability of success of a treatment, preferably an immunotherapy, and most preferred an immunotherapy targeting the same target that is identified by the biomarker. For example, an antibody or soluble TCR can be used to stain sections of the tumor to detect the presence of a peptide of interest in complex with MHC.
- Optionally the antibody carries a further effector function such as an immune stimulating domain or toxin.
- The present invention also relates to the use of these novel targets in the context of cancer treatment.
- Stimulation of an immune response is dependent upon the presence of antigens recognized as foreign by the host immune system. The discovery of the existence of tumor associated antigens has raised the possibility of using a host's immune system to intervene in tumor growth. Various mechanisms of harnessing both the humoral and cellular arms of the immune system are currently being explored for cancer immunotherapy.
- Specific elements of the cellular immune response are capable of specifically recognizing and destroying tumor cells. The isolation of T-cells from tumor-infiltrating cell populations or from peripheral blood suggests that such cells play an important role in natural immune defense against cancer. CD8-positive T-cells, which recognize class I molecules of the major histocompatibility complex (MHC)-bearing peptides of usually 8 to 10 amino acid residues derived from proteins or defect ribosomal products (DRIPS) located in the cytosol, play an important role in this response. The MHC-molecules of the human are also designated as human leukocyte-antigens (HLA).
- As used herein and except as noted otherwise all terms are defined as given below.
- The term “T-cell response” means the specific proliferation and activation of effector functions induced by a peptide in vitro or in vivo. For MHC class I restricted cytotoxic T cells, effector functions may be lysis of peptide-pulsed, peptide-precursor pulsed or naturally peptide-presenting target cells, secretion of cytokines, preferably Interferon-gamma, TNF-alpha, or IL-2 induced by peptide, secretion of effector molecules, preferably granzymes or perforins induced by peptide, or degranulation.
- The term “peptide” is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. The peptides are preferably 9 amino acids in length, but can be as short as 8 amino acids in length, and as long as 10, 11, or 12 or longer, and in case of MHC class II peptides (elongated variants of the peptides of the invention) they can be as long as 13, 14, 15, 16, 17, 18, 19 or 20 or more amino acids in length.
- Furthermore, the term “peptide” shall include salts of a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. Preferably, the salts are pharmaceutical acceptable salts of the peptides, such as, for example, the chloride or acetate (trifluoroacetate) salts. It has to be noted that the salts of the peptides according to the present invention differ substantially from the peptides in their state(s) in vivo, as the peptides are not salts in vivo.
- The term “peptide” shall also include “oligopeptide”. The term “oligopeptide” is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. The length of the oligopeptide is not critical to the invention, as long as the correct epitope or epitopes are maintained therein. The oligopeptides are typically less than about 30 amino acid residues in length, and greater than about 15 amino acids in length.
- The term “polypeptide” designates a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. The length of the polypeptide is not critical to the invention as long as the correct epitopes are maintained. In contrast to the terms peptide or oligopeptide, the term polypeptide is meant to refer to molecules containing more than about 30 amino acid residues.
- A peptide, oligopeptide, protein or polynucleotide coding for such a molecule is “immunogenic” (and thus is an “immunogen” within the present invention), if it is capable of inducing an immune response. In the case of the present invention, immunogenicity is more specifically defined as the ability to induce a T-cell response. Thus, an “immunogen” would be a molecule that is capable of inducing an immune response, and in the case of the present invention, a molecule capable of inducing a T-cell response. In another aspect, the immunogen can be the peptide, the complex of the peptide with MHC, oligopeptide, and/or protein that is used to raise specific antibodies or TCRs against it.
- A class I T cell “epitope” requires a short peptide that is bound to a class I MHC receptor, forming a ternary complex (MHC class I alpha chain, beta-2-microglobulin, and peptide) that can be recognized by a T cell bearing a matching T-cell receptor binding to the MHC/peptide complex with appropriate affinity. Peptides binding to MHC class I molecules are typically 8-14 amino acids in length, and most typically 9 amino acids in length.
- In humans, there are three different genetic loci that encode MHC class I molecules (the MHC-molecules of the human are also designated human leukocyte antigens (HLA)): HLA-A, HLA-B, and HLA-C. HLA-
A* 01, HLA-A* 02, and HLA-B*07 are examples of different MHC class I alleles that can be expressed from these loci. -
TABLE 4 Expression frequencies F of HLA- A* 02,HLA- A* 01, HLA-A* 03, HLA-A* 24,HLA- B* 07, HLA-B* 08 and HLA-B*44serotypes. Haplotype frequencies Gf are derived from a study which used HLA- typing data from a registry of more than 6.5 million volunteer donors in the U.S. (Gragert et al., 2013). The haplotype frequency is the frequency of a distinct allele on an individual chromosome. Due to the diploid set of chromosomes within mammalian cells, the frequency of genotypic occurrence of this allele is higher and can be calculated employing the Hardy- Weinberg principle (F = 1 − (1 − Gf)2). Calculated phenotype from allele Allele Population frequency (F) A* 02African (N = 28557) 32.3% European Caucasian 49.3% (N = 1242890) Japanese (N = 24582) 42.7% Hispanic, S + Cent 46.1% Amer. (N = 146714) Southeast Asian 30.4% (N = 27978) A*01 African (N = 28557) 10.2% European Caucasian 30.2% (N = 1242890) Japanese (N = 24582) 1.8% Hispanic, S + Cent 14.0% Amer. (N = 146714) Southeast Asian 21.0% (N = 27978) A*03 African (N = 28557) 14.8% European Caucasian 26.4% (N = 1242890) Japanese (N = 24582) 1.8% Hispanic, S + Cent 14.4% Amer. (N = 146714) Southeast Asian 10.6% (N = 27978) A*24 African (N = 28557) 2.0% European Caucasian 8.6% (N = 1242890) Japanese (N = 24582) 35.5% Hispanic, S + Cent 13.6% Amer. (N = 146714) Southeast Asian 16.9% (N = 27978) B*07 African (N = 28557) 14.7% European Caucasian 25.0% (N = 1242890) Japanese (N = 24582) 11.4% Hispanic, S + Cent 12.2% Amer. (N = 146714) Southeast Asian 10.4% (N = 27978) B*08 African (N = 28557) 6.0% European Caucasian 21.6% (N = 1242890) Japanese (N = 24582) 1.0% Hispanic, S + Cent 7.6% Amer. (N = 146714) Southeast Asian 6.2% (N = 27978) B*44 African (N = 28557) 10.6% European Caucasian 26.9% (N = 1242890) Japanese (N = 24582) 13.0% Hispanic, S + Cent 18.2% Amer. (N = 146714) Southeast Asian 13.1% (N = 27978) - The peptides of the invention, preferably when included into a vaccine of the invention as described herein bind to A*02, A*01, A*03, A*24, B*07, B*08 or B*44. A vaccine may also include pan-binding MHC class II peptides. Therefore, the vaccine of the invention can be used to treat cancer in patients that are A*02-, A*01-, A*03-, A*24-, B*07-, B*08- or B*44-positive, whereas no selection for MHC class II allotypes is necessary due to the pan-binding nature of these peptides.
- If A*02 peptides of the invention are combined with peptides binding to another allele, for example A*24, a higher percentage of any patient population can be treated compared with addressing either MHC class I allele alone. While in most populations less than 50% of patients could be addressed by either allele alone, a vaccine comprising HLA-
A* 24 and HLA-A* 02 epitopes can treat at least 60% of patients in any relevant population. Specifically, the following percentages of patients will be positive for at least one of these alleles in various regions: USA 61%,Western Europe 62%, China 75%, South Korea 77%, Japan 86% (calculated from www.allelefrequencies.net). -
TABLE 5 HLA alleles coverage in European Caucasian population (calculated from (Gragert et al., 2013)). coverage (at least combined one A- combined combined with B*07 allele) with B*07 with B*44 and B*44 A*02/A*01 70% 78% 78% 84% A*02/A*03 68% 76% 76% 83% A*02/A*24 61% 71% 71% 80% A*′01/A*03 52% 64% 65% 75% A*01/A*24 44% 58% 59% 71% A*03/A*24 40% 55% 56% 69% A*02/A*01/ 84% 88% 88% 91% A*03 A*02/A*01/ 79% 84% 84% 89% A*24 A*02/A*03/ 77% 82% 83% 88% A*24 A*01/A*03/ 63% 72% 73% 81% A*24 A*02/A*01/ 90% 92% 93% 95% A*03/ A* 24 - In a preferred embodiment, the term “nucleotide sequence” refers to a heteropolymer of deoxyribonucleotides.
- The nucleotide sequence coding for a particular peptide, oligopeptide, or polypeptide may be naturally occurring or they may be synthetically constructed. Generally, DNA segments encoding the peptides, polypeptides, and proteins of this invention are assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene that is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.
- As used herein the term “a nucleotide coding for (or encoding) a peptide” refers to a nucleotide sequence coding for the peptide including artificial (man-made) start and stop codons compatible for the biological system the sequence is to be expressed by, for example, a dendritic cell or another cell system useful for the production of TCRs.
- As used herein, reference to a nucleic acid sequence includes both single stranded and double stranded nucleic acid. Thus, for example for DNA, the specific sequence, unless the context indicates otherwise, refers to the single strand DNA of such sequence, the duplex of such sequence with its complement (double stranded DNA) and the complement of such sequence.
- The term “coding region” refers to that portion of a gene which either naturally or normally codes for the expression product of that gene in its natural genomic environment, i.e., the region coding in vivo for the native expression product of the gene.
- The coding region can be derived from a non-mutated (“normal”), mutated or altered gene, or can even be derived from a DNA sequence, or gene, wholly synthesized in the laboratory using methods well known to those of skill in the art of DNA synthesis.
- The term “expression product” means the polypeptide or protein that is the natural translation product of the gene and any nucleic acid sequence coding equivalents resulting from genetic code degeneracy and thus coding for the same amino acid(s).
- The term “fragment”, when referring to a coding sequence, means a portion of DNA comprising less than the complete coding region, whose expression product retains essentially the same biological function or activity as the expression product of the complete coding region.
- The term “DNA segment” refers to a DNA polymer, in the form of a separate fragment or as a component of a larger DNA construct, which has been derived from DNA isolated at least once in substantially pure form, i.e., free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of the segment and its component nucleotide sequences by standard biochemical methods, for example, by using a cloning vector. Such segments are provided in the form of an open reading frame uninterrupted by internal non-translated sequences, or introns, which are typically present in eukaryotic genes. Sequences of non-translated DNA may be present downstream from the open reading frame, where the same do not interfere with manipulation or expression of the coding regions.
- The term “primer” means a short nucleic acid sequence that can be paired with one strand of DNA and provides a free 3′-OH end at which a DNA polymerase starts synthesis of a deoxyribonucleotide chain.
- The term “promoter” means a region of DNA involved in binding of RNA polymerase to initiate transcription.
- The term “isolated” means that the material is removed from its original environment (e.g., the natural environment, if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.
- The polynucleotides, and recombinant or immunogenic polypeptides, disclosed in accordance with the present invention may also be in “purified” form. The term “purified” does not require absolute purity; rather, it is intended as a relative definition, and can include preparations that are highly purified or preparations that are only partially purified, as those terms are understood by those of skill in the relevant art. For example, individual clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated. Furthermore, a claimed polypeptide which has a purity of preferably 99.999%, or at least 99.99% or 99.9%; and even desirably 99% by weight or greater is expressly encompassed.
- The nucleic acids and polypeptide expression products disclosed according to the present invention, as well as expression vectors containing such nucleic acids and/or such polypeptides, may be in “enriched form”. As used herein, the term “enriched” means that the concentration of the material is at least about 2, 5, 10, 100, or 1000 times its natural concentration (for example), advantageously 0.01%, by weight, preferably at least about 0.1% by weight. Enriched preparations of about 0.5%, 1%, 5%, 10%, and 20% by weight are also contemplated. The sequences, constructs, vectors, clones, and other materials comprising the present invention can advantageously be in enriched or isolated form. The term “active fragment” means a fragment, usually of a peptide, polypeptide or nucleic acid sequence, that generates an immune response (i.e., has immunogenic activity) when administered, alone or optionally with a suitable adjuvant or in a vector, to an animal, such as a mammal, for example, a rabbit or a mouse, and also including a human, such immune response taking the form of stimulating a T-cell response within the recipient animal, such as a human. Alternatively, the “active fragment” may also be used to induce a T-cell response in vitro.
- As used herein, the terms “portion”, “segment” and “fragment”, when used in relation to polypeptides, refer to a continuous sequence of residues, such as amino acid residues, which sequence forms a subset of a larger sequence. For example, if a polypeptide were subjected to treatment with any of the common endopeptidases, such as trypsin or chymotrypsin, the oligopeptides resulting from such treatment would represent portions, segments or fragments of the starting polypeptide. When used in relation to polynucleotides, these terms refer to the products produced by treatment of said polynucleotides with any of the endonucleases.
- In accordance with the present invention, the term “percent identity” or “percent identical”, when referring to a sequence, means that a sequence is compared to a claimed or described sequence after alignment of the sequence to be compared (the “Compared Sequence”) with the described or claimed sequence (the “Reference Sequence”). The percent identity is then determined according to the following formula:
-
percent identity=100[1−(C/R)] - wherein C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence, wherein
- (i) each base or amino acid in the Reference Sequence that does not have a corresponding aligned base or amino acid in the Compared Sequence and
- (ii) each gap in the Reference Sequence and
- (iii) each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence, constitutes a difference and
- (iiii) the alignment has to start at
position 1 of the aligned sequences; - and R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted as a base or amino acid.
- If an alignment exists between the Compared Sequence and the Reference Sequence for which the percent identity as calculated above is about equal to or greater than a specified minimum Percent Identity then the Compared Sequence has the specified minimum percent identity to the Reference Sequence even though alignments may exist in which the herein above calculated percent identity is less than the specified percent identity.
- As mentioned above, the present invention thus provides a peptide comprising a sequence that is selected from the group of consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof which is 88% homologous to SEQ ID NO: 1 to SEQ ID NO: 489, or a variant thereof that will induce T cells cross-reacting with said peptide. The peptides of the invention have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or elongated versions of said peptides to class II.
- In the present invention, the term “homologous” refers to the degree of identity (see percent identity above) between sequences of two amino acid sequences, i.e. peptide or polypeptide sequences. The aforementioned “homology” is determined by comparing two sequences aligned under optimal conditions over the sequences to be compared. Such a sequence homology can be calculated by creating an alignment using, for example, the ClustalW algorithm. Commonly available sequence analysis software, more specifically, Vector NTI, GENETYX or other tools are provided by public databases.
- A person skilled in the art will be able to assess, whether T cells induced by a variant of a specific peptide will be able to cross-react with the peptide itself (Appay et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997).
- By a “variant” of the given amino acid sequence the inventors mean that the side chains of, for example, one or two of the amino acid residues are altered (for example by replacing them with the side chain of another naturally occurring amino acid residue or some other side chain) such that the peptide is still able to bind to an HLA molecule in substantially the same way as a peptide consisting of the given amino acid sequence in consisting of SEQ ID NO: 1 to SEQ ID NO: 489. For example, a peptide may be modified so that it at least maintains, if not improves, the ability to interact with and bind to the binding groove of a suitable MHC molecule, such as HLA-A*02 or -DR, and in that way, it at least maintains, if not improves, the ability to bind to the TCR of activated T cells.
- These T cells can subsequently cross-react with cells and kill cells that express a polypeptide that contains the natural amino acid sequence of the cognate peptide as defined in the aspects of the invention. As can be derived from the scientific literature and databases (Rammensee et al., 1999; Godkin et al., 1997), certain positions of HLA binding peptides are typically anchor residues forming a core sequence fitting to the binding motif of the HLA receptor, which is defined by polar, electrophysical, hydrophobic and spatial properties of the polypeptide chains constituting the binding groove. Thus, one skilled in the art would be able to modify the amino acid sequences set forth in SEQ ID NO: 1 to
SEQ ID NO 489, by maintaining the known anchor residues, and would be able to determine whether such variants maintain the ability to bind MHC class I or II molecules. The variants of the present invention retain the ability to bind to the TCR of activated T cells, which can subsequently cross-react with and kill cells that express a polypeptide containing the natural amino acid sequence of the cognate peptide as defined in the aspects of the invention. - The original (unmodified) peptides as disclosed herein can be modified by the substitution of one or more residues at different, possibly selective, sites within the peptide chain, if not otherwise stated. Preferably those substitutions are located at the end of the amino acid chain. Such substitutions may be of a conservative nature, for example, where one amino acid is replaced by an amino acid of similar structure and characteristics, such as where a hydrophobic amino acid is replaced by another hydrophobic amino acid. Even more conservative would be replacement of amino acids of the same or similar size and chemical nature, such as where leucine is replaced by isoleucine. In studies of sequence variations in families of naturally occurring homologous proteins, certain amino acid substitutions are more often tolerated than others, and these are often show correlation with similarities in size, charge, polarity, and hydrophobicity between the original amino acid and its replacement, and such is the basis for defining “conservative substitutions.”
- Conservative substitutions are herein defined as exchanges within one of the following five groups: Group 1-small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, Gly); Group 2-polar, negatively charged residues and their amides (Asp, Asn, Glu, Gln); Group 3-polar, positively charged residues (His, Arg, Lys); Group 4-large, aliphatic, nonpolar residues (Met, Leu, Ile, Val, Cys); and Group 5-large, aromatic residues (Phe, Tyr, Trp).
- Less conservative substitutions might involve the replacement of one amino acid by another that has similar characteristics but is somewhat different in size, such as replacement of an alanine by an isoleucine residue. Highly non-conservative replacements might involve substituting an acidic amino acid for one that is polar, or even for one that is basic in character. Such “radical” substitutions cannot, however, be dismissed as potentially ineffective since chemical effects are not totally predictable and radical substitutions might well give rise to serendipitous effects not otherwise predictable from simple chemical principles.
- Of course, such substitutions may involve structures other than the common L-amino acids. Thus, D-amino acids might be substituted for the L-amino acids commonly found in the antigenic peptides of the invention and yet still be encompassed by the disclosure herein. In addition, non-standard amino acids (i.e., other than the common naturally occurring proteinogenic amino acids) may also be used for substitution purposes to produce immunogens and immunogenic polypeptides according to the present invention.
- If substitutions at more than one position are found to result in a peptide with substantially equivalent or greater antigenic activity as defined below, then combinations of those substitutions will be tested to determine if the combined substitutions result in additive or synergistic effects on the antigenicity of the peptide. At most, no more than 4 positions within the peptide would be simultaneously substituted.
- A peptide consisting essentially of the amino acid sequence as indicated herein can have one or two non-anchor amino acids (see below regarding the anchor motif) exchanged without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed or is negatively affected, when compared to the non-modified peptide. In another embodiment, in a peptide consisting essentially of the amino acid sequence as indicated herein, one or two amino acids can be exchanged with their conservative exchange partners (see herein below) without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed, or is negatively affected, when compared to the non-modified peptide.
- The amino acid residues that do not substantially contribute to interactions with the T-cell receptor can be modified by replacement with other amino acid whose incorporation does not substantially affect T-cell reactivity and does not eliminate binding to the relevant MHC. Thus, apart from the proviso given, the peptide of the invention may be any peptide (by which term the inventors include oligopeptide or polypeptide), which includes the amino acid sequences or a portion or variant thereof as given.
-
TABLE 6 Variants and motif of the peptides according to SEQ ID NO: 4, 13, 90, 93, 138, 171, 202, 204, 224, 294, 306, 316, 322 and 327. Position 1 2 3 4 5 6 7 8 9 SEQ ID No S Y E K V I N Y L 4 Variant I F F I F F F Position 1 2 3 4 5 6 7 8 9 SEQ ID No H Y T Y I L E V F 13 Variant I L F I F L F Position 1 2 3 4 5 6 7 8 SEQ ID No F L L M H P S I 90 Variant V L A M V M M L M A A V A A L A A V V V V L V A T V T T L T A Q V Q Q L Q A Position 1 2 3 4 5 6 7 8 9 SEQ ID No T L Q E K I L Q V 93 Variant I L A M M I M L M A A A I A L A A V V I V L V A T T I T L T A Q Q I Q L Q A Position 1 2 3 4 5 6 7 8 9 SEQ ID No D s D S C H F N Y 138 Variant A E E A T T A T E T E A Position 1 2 3 4 5 6 7 8 9 10 11 SEQ ID No R s D P V T L N V L Y 171 Variant A E E A T T A T E T E A Position 1 2 3 4 5 6 7 8 9 10 11 SEQ ID No K L A E L E G A L Q K 202 Variant Y R F I I Y I R I F M M Y M R M F V V Y V R V F T T Y T R T F Position 1 2 3 4 5 6 7 8 9 SEQ ID No A V F D K F I R Y 204 Variant L K L L R L F I K I I R I F M K M M R M F K R F T K T T R T F Position 1 2 3 4 5 6 7 8 9 SEQ ID No G P Q P W H A A L 224 Variant F V M A I Position 1 2 3 4 5 6 7 8 9 10 SEQ ID No G P T P N T G A A L 294 Variant F V M A I Position 1 2 3 4 5 6 7 8 SEQ ID No I L K V K V G L 306 Variant V I M F R R V R I R M R F H H V H I H M H F R R V R I R M R F R R R R V R R I R R M R R F R H R H V R H I R H M R H F L L V L I L M L F L R L R V L R I L R M L R F L H L H V L H I L H M L H F Position 1 2 3 4 5 6 7 8 9 SEQ ID No V I K E K A L T L 316 Variant V I M F R R V R I R M R F H H V H I H M H F R R V R I R M R F R R R R V R R I R R M R R F R H R H V R H I R H M R H F L L V L I L M L F L R L R V L R I L R M L R F L H L H V L H I L H M L H F Position 1 2 3 4 5 6 7 8 9 10 SEQ ID No K E V D P A G H S Y 322 Variant F W L D F D W D D L Position 1 2 3 4 5 6 7 8 9 10 SEQ ID No Y E I E A R N Q V F 327 Variant W Y L D D W D Y D L - Longer (elongated) peptides may also be suitable. It is possible that MHC class I epitopes, although usually between 8 and 11 amino acids long, are generated by peptide processing from longer peptides or proteins that include the actual epitope. It is preferred that the residues that flank the actual epitope are residues that do not substantially affect proteolytic cleavage necessary to expose the actual epitope during processing.
- The peptides of the invention can be elongated by up to four amino acids, that is 1, 2, 3 or 4 amino acids can be added to either end in any combination between 4:0 and 0:4. Combinations of the elongations according to the invention can be found in Table 7.
-
TABLE 7 Combinations of the elongations of peptides of the invention C-terminus N-terminus 4 0 3 0 or 1 2 0 or 1 or 2 1 0 or 1 or 2 or 3 0 0 or 1 or 2 or 3 or 4 N-terminus C-terminus 4 0 3 0 or 1 2 0 or 1 or 2 1 0 or 1 or 2 or 3 0 0 or 1 or 2 or 3 or 4 - The amino acids for the elongation/extension can be the peptides of the original sequence of the protein or any other amino acid(s). The elongation can be used to enhance the stability or solubility of the peptides.
- Thus, the epitopes of the present invention may be identical to naturally occurring tumor-associated or tumor-specific epitopes or may include epitopes that differ by no more than four residues from the reference peptide, as long as they have substantially identical antigenic activity.
- In an alternative embodiment, the peptide is elongated on either or both sides by more than 4 amino acids, preferably to a total length of up to 30 amino acids. This may lead to MHC class II binding peptides. Binding to MHC class II can be tested by methods known in the art.
- Accordingly, the present invention provides peptides and variants of MHC class I epitopes, wherein the peptide or variant has an overall length of from 8 and 100, from 9 and 100, from 10 and 100, from 11 and 100, from 12 and 100, preferably from 8 and 30, and from 9 and 30, from 10 and 30, from 11 and 30, from 12 and 30, most preferred from 8 and 14, from 9 and 14, from 10 and 14, from 11 and 14, from 12 and 14. The present invention further provides peptides and variants of MHC class I epitopes, wherein the peptide or variant has an overall length of namely 8, 9, 10, 11, 12, 13, or 14 amino acids, in case of the elongated class II binding peptides the length can also be 15, 16, 17, 18, 19, 20, 21 or 22 amino acids.
- Of course, the peptide or variant according to the present invention will have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class I or II. Binding of a peptide or a variant to a MHC complex may be tested by methods known in the art.
- Preferably, when the T cells specific for a peptide according to the present invention are tested against the substituted peptides, the peptide concentration at which the substituted peptides achieve half the maximal increase in lysis relative to background is no more than about 1 mM, preferably no more than about 1 μM, more preferably no more than about 1 nM, and still more preferably no more than about 100 pM, and most preferably no more than about 10 pM. It is also preferred that the substituted peptide be recognized by T cells from more than one individual, at least two, and more preferably three individuals.
- In a particularly preferred embodiment of the invention the peptide consists or consists essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489.
- “Consisting essentially of” shall mean that a peptide according to the present invention, in addition to the sequence according to any of SEQ ID NO: 1 to SEQ ID NO 489 or a variant thereof contains additional N- and/or C-terminally located stretches of amino acids that are not necessarily forming part of the peptide that functions as an epitope for MHC molecules epitope.
- Nevertheless, these stretches can be important to provide an efficient introduction of the peptide according to the present invention into the cells. In one embodiment of the present invention, the peptide is part of a fusion protein which comprises, for example, the 80 N-terminal amino acids of the HLA-DR antigen-associated invariant chain (p33, in the following “Ii”) as derived from the NCBI, GenBank Accession number X00497. In other fusions, the peptides of the present invention can be fused to an antibody as described herein, or a functional part thereof, in particular into a sequence of an antibody, so as to be specifically targeted by said antibody, or, for example, to or into an antibody that is specific for dendritic cells as described herein.
- In addition, the peptide or variant may be modified further to improve stability and/or binding to MHC molecules in order to elicit a stronger immune response. Methods for such an optimization of a peptide sequence are well known in the art and include, for example, the introduction of reverse peptide bonds or non-peptide bonds.
- In a reverse peptide bond, amino acid residues are not joined by peptide (—CO—NH—) linkages but the peptide bond is reversed. Such retro-inverso peptidomimetics may be made using methods known in the art, for example such as those described in Meziere et al (1997) (Meziere et al., 1997), incorporated herein by reference. This approach involves making pseudopeptides containing changes involving the backbone, and not the orientation of side chains. Meziere et al. (Meziere et al., 1997) show that for MHC binding and T helper cell responses, these pseudopeptides are useful. Retro-inverse peptides, which contain NH—CO bonds instead of CO—NH peptide bonds, are much more resistant to proteolysis.
- A non-peptide bond is, for example, —CH2—NH, —CH2S—, —CH2CH2—, —CH═CH—, —COCH2—, —CH(OH)CH2—, and —CH2SO—. U.S. Pat. No. 4,897,445 provides a method for the solid phase synthesis of non-peptide bonds (—CH2—NH) in polypeptide chains which involves polypeptides synthesized by standard procedures and the non-peptide bond synthesized by reacting an amino aldehyde and an amino acid in the presence of NaCNBH3.
- Peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, to enhance the stability, bioavailability, and/or affinity of the peptides. For example, hydrophobic groups such as carbobenzoxyl, dansyl, or t-butyloxycarbonyl groups may be added to the peptides' amino termini. Likewise, an acetyl group or a 9-fluorenylmethoxy-carbonyl group may be placed at the peptides' amino termini. Additionally, the hydrophobic group, t-butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini.
- Further, the peptides of the invention may be synthesized to alter their steric configuration. For example, the D-isomer of one or more of the amino acid residues of the peptide may be used, rather than the usual L-isomer. Still further, at least one of the amino acid residues of the peptides of the invention may be substituted by one of the well-known non-naturally occurring amino acid residues. Alterations such as these may serve to increase the stability, bioavailability and/or binding action of the peptides of the invention.
- Similarly, a peptide or variant of the invention may be modified chemically by reacting specific amino acids either before or after synthesis of the peptide. Examples for such modifications are well known in the art and are summarized e.g. in R. Lundblad, Chemical Reagents for Protein Modification, 3rd ed. CRC Press, 2004 (Lundblad, 2004), which is incorporated herein by reference. Chemical modification of amino acids includes but is not limited to, modification by acylation, amidination, pyridoxylation of lysine, reductive alkylation, trinitrobenzylation of amino groups with 2,4,6-trinitrobenzene sulphonic acid (TNBS), amide modification of carboxyl groups and sulphydryl modification by performic acid oxidation of cysteine to cysteic acid, formation of mercurial derivatives, formation of mixed disulphides with other thiol compounds, reaction with maleimide, carboxymethylation with iodoacetic acid or iodoacetamide and carbamoylation with cyanate at alkaline pH, although without limitation thereto. In this regard, the skilled person is referred to
Chapter 15 of Current Protocols In Protein Science, Eds. Coligan et al. (John Wiley and Sons NY 1995-2000) (Coligan et al., 1995) for more extensive methodology relating to chemical modification of proteins. - Briefly, modification of e.g. arginyl residues in proteins is often based on the reaction of vicinal dicarbonyl compounds such as phenylglyoxal, 2,3-butanedione, and 1,2-cyclohexanedione to form an adduct. Another example is the reaction of methylglyoxal with arginine residues. Cysteine can be modified without concomitant modification of other nucleophilic sites such as lysine and histidine. As a result, a large number of reagents are available for the modification of cysteine. The websites of companies such as Sigma-Aldrich (www.sigma-aldrich.com) provide information on specific reagents.
- Selective reduction of disulfide bonds in proteins is also common. Disulfide bonds can be formed and oxidized during the heat treatment of biopharmaceuticals. Woodward's Reagent K may be used to modify specific glutamic acid residues. N-(3-(dimethylamino)propyl)-N′-ethylcarbodiimide can be used to form intra-molecular crosslinks between a lysine residue and a glutamic acid residue. For example, diethylpyrocarbonate is a reagent for the modification of histidyl residues in proteins. Histidine can also be modified using 4-hydroxy-2-nonenal. The reaction of lysine residues and other α-amino groups is, for example, useful in binding of peptides to surfaces or the cross-linking of proteins/peptides. Lysine is the site of attachment of poly(ethylene)glycol and the major site of modification in the glycosylation of proteins. Methionine residues in proteins can be modified with e.g. iodoacetamide, bromoethylamine, and chloramine T.
- Tetranitromethane and N-acetylimidazole can be used for the modification of tyrosyl residues. Cross-linking via the formation of dityrosine can be accomplished with hydrogen peroxide/copper ions.
- Recent studies on the modification of tryptophan have used N-bromosuccinimide, 2-hydroxy-5-nitrobenzyl bromide or 3-bromo-3-methyl-2-(2-nitrophenylmercapto)-3H-indole (BPNS-skatole).
- Successful modification of therapeutic proteins and peptides with PEG is often associated with an extension of circulatory half-life while cross-linking of proteins with glutaraldehyde, polyethylene glycol diacrylate and formaldehyde is used for the preparation of hydrogels. Chemical modification of allergens for immunotherapy is often achieved by carbamylation with potassium cyanate.
- A peptide or variant, wherein the peptide is modified or includes non-peptide bonds is a preferred embodiment of the invention.
- Another embodiment of the present invention relates to a non-naturally occurring peptide wherein said peptide consists or consists essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489 and has been synthetically produced (e.g. synthesized) as a pharmaceutically acceptable salt. Methods to synthetically produce peptides are well known in the art. The salts of the peptides according to the present invention differ substantially from the peptides in their state(s) in vivo, as the peptides as generated in vivo are no salts. The non-natural salt form of the peptide mediates the solubility of the peptide, in particular in the context of pharmaceutical compositions comprising the peptides, e.g. the peptide vaccines as disclosed herein. A sufficient and at least substantial solubility of the peptide(s) is required in order to efficiently provide the peptides to the subject to be treated. Preferably, the salts are pharmaceutically acceptable salts of the peptides. These salts according to the invention include alkaline and earth alkaline salts such as salts of the Hofmeister series comprising as anions PO4 3−, SO4 2−, CH3COO−, Cl−, Br−, NO3 −, ClO4 −, SCN− and as cations NH4 +, Rb+, K+, Na+, Cs+, Li+, Zn2+, Mg2+, Ca2+, Mn2+, Cu2+ and Ba2+. Particularly salts are selected from (NH4)3PO4, (NH4)2HPO4, (NH4)H2PO4, (NH4)2SO4, NH4CH3COO, NH4Cl, NH4Br, NH4NO3, NH4ClO4, NH4I, NH4SCN, Rb3PO4, Rb2HPO4, RbH2PO4, Rb2SO4, Rb4CH3COO, Rb4Cl, Rb4Br, Rb4NO3, Rb4ClO4, Rb4I, Rb4SCN, K3PO4, K2HPO4, KH2PO4, K2SO4, KCH3COO, KCl, KBr, KNO3, KClO4, KI, KSCN, Na3PO4, Na2HPO4, NaH2PO4, Na2SO4, NaCH3COO, NaCl, NaBr, NaNO3, NaClO4, NaI, NaSCN, ZnCl2 Cs3PO4, Cs2HPO4, CsH2PO4, Cs2SO4, CsCH3COO, CsCl, CsBr, CsNO3, CsClO4, CsI, CsSCN, Li3PO4, Li2HPO4, LiH2PO4, Li2SO4, LiCH3COO, LiCl, LiBr, LiNO3, LiClO4, LiI, LiSCN, Cu2SO4, Mg3(PO4)2, Mg2HPO4, Mg(H2PO4)2, Mg2SO4, Mg(CH3COO)2, MgCl2, MgBr2, Mg(NO3)2, Mg(ClO4)2, MgI2, Mg(SCN)2, MnCl2, Ca3(PO4), Ca2HPO4, Ca(H2PO4)2, CaSO4, Ca(CH3COO)2, CaCl2, CaBr2, Ca(NO3)2, Ca(ClO4)2, CaI2, Ca(SCN)2, Ba3(PO4)2, Ba2HPO4, Ba(H2PO4)2, BaSO4, Ba(CH3COO)2, BaCl2, BaBr2, Ba(NO3)2, Ba(ClO4)2, BaI2, and Ba(SCN)2. Particularly preferred are NH acetate, MgCl2, KH2PO4, Na2SO4, KCl, NaCl, and CaCl2, such as, for example, the chloride or acetate (trifluoroacetate) salts.
- Generally, peptides and variants (at least those containing peptide linkages between amino acid residues) may be synthesized by the Fmoc-polyamide mode of solid-phase peptide synthesis as disclosed by Lukas et al. (Lukas et al., 1981) and by references as cited therein. Temporary N-amino group protection is afforded by the 9-fluorenylmethyloxycarbonyl (Fmoc) group. Repetitive cleavage of this highly base-labile protecting group is done using 20% piperidine in N, N-dimethylformamide. Side-chain functionalities may be protected as their butyl ethers (in the case of serine threonine and tyrosine), butyl esters (in the case of glutamic acid and aspartic acid), butyloxycarbonyl derivative (in the case of lysine and histidine), trityl derivative (in the case of cysteine) and 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative (in the case of arginine). Where glutamine or asparagine are C-terminal residues, use is made of the 4,4′-dimethoxybenzhydryl group for protection of the side chain amido functionalities. The solid-phase support is based on a polydimethyl-acrylamide polymer constituted from the three monomers dimethylacrylamide (backbone-monomer), bisacryloylethylene diamine (cross linker) and acryloylsarcosine methyl ester (functionalizing agent). The peptide-to-resin cleavable linked agent used is the acid-labile 4-hydroxymethyl-phenoxyacetic acid derivative. All amino acid derivatives are added as their preformed symmetrical anhydride derivatives with the exception of asparagine and glutamine, which are added using a reversed N, N-dicyclohexyl-carbodiimide/1 hydroxybenzotriazole mediated coupling procedure. All coupling and deprotection reactions are monitored using ninhydrin, trinitrobenzene sulphonic acid or isotin test procedures. Upon completion of synthesis, peptides are cleaved from the resin support with concomitant removal of side-chain protecting groups by treatment with 95% trifluoroacetic acid containing a 50% scavenger mix. Scavengers commonly used include ethanedithiol, phenol, anisole and water, the exact choice depending on the constituent amino acids of the peptide being synthesized. Also a combination of solid phase and solution phase methodologies for the synthesis of peptides is possible (see, for example, (Bruckdorfer et al., 2004), and the references as cited therein).
- Trifluoroacetic acid is removed by evaporation in vacuo, with subsequent trituration with diethyl ether affording the crude peptide. Any scavengers present are removed by a simple extraction procedure which on lyophilization of the aqueous phase affords the crude peptide free of scavengers. Reagents for peptide synthesis are generally available from e.g. Calbiochem-Novabiochem (Nottingham, UK).
- Purification may be performed by any one, or a combination of, techniques such as re-crystallization, size exclusion chromatography, ion-exchange chromatography, hydrophobic interaction chromatography and (usually) reverse-phase high performance liquid chromatography using e.g. acetonitrile/water gradient separation.
- Analysis of peptides may be carried out using thin layer chromatography, electrophoresis, in particular capillary electrophoresis, solid phase extraction (CSPE), reverse-phase high performance liquid chromatography, amino-acid analysis after acid hydrolysis and by fast atom bombardment (FAB) mass spectrometric analysis, as well as MALDI and ESI-Q-TOF mass spectrometric analysis.
- In order to select over-presented peptides, a presentation profile is calculated showing the median sample presentation as well as replicate variation. The profile juxtaposes samples of the tumor entity of interest to a baseline of normal tissue samples. Each of these profiles can then be consolidated into an over-presentation score by calculating the p-value of a Linear Mixed-Effects Model (Pinheiro et al., 2015) adjusting for multiple testing by False Discovery Rate (Benjamini and Hochberg, 1995) (cf. Example 1,
FIGS. 1A through 1N ). - For the identification and relative quantitation of HLA ligands by mass spectrometry, HLA molecules from shock-frozen tissue samples were purified and HLA-associated peptides were isolated. The isolated peptides were separated and sequences were identified by online nano-electrospray-ionization (nanoESI) liquid chromatography-mass spectrometry (LC-MS) experiments. The resulting peptide sequences were verified by comparison of the fragmentation pattern of natural tumor-associated peptides (TUMAPs) recorded from lung cancer (including NSCLC and SCLC) samples (N=201 samples) with the fragmentation patterns of corresponding synthetic reference peptides of identical sequences. Since the peptides were directly identified as ligands of HLA molecules of primary tumors, these results provide direct evidence for the natural processing and presentation of the identified peptides on primary cancer tissue obtained from 201 lung cancer (including NSCLC and SCLC) patients.
- The discovery pipeline XPRESIDENT® v2.1 (see, for example, US 2013-0096016, which is hereby incorporated by reference in its entirety) allows the identification and selection of relevant over-presented peptide vaccine candidates based on direct relative quantitation of HLA-restricted peptide levels on cancer tissues in comparison to several different non-cancerous tissues and organs. This was achieved by the development of label-free differential quantitation using the acquired LC-MS data processed by a proprietary data analysis pipeline, combining algorithms for sequence identification, spectral clustering, ion counting, retention time alignment, charge state deconvolution and normalization.
- Presentation levels including error estimates for each peptide and sample were established. Peptides exclusively presented on tumor tissue and peptides over-presented in tumor versus non-cancerous tissues and organs have been identified.
- HLA-peptide complexes from lung cancer (including NSCLC and SCLC) tissue samples were purified and HLA-associated peptides were isolated and analyzed by LC-MS (see example 1). All TUMAPs contained in the present application were identified with this approach on lung cancer (including NSCLC and SCLC) samples confirming their presentation on lung cancer (including NSCLC and SCLC).
- TUMAPs identified on multiple lung cancer (including NSCLC and SCLC) and normal tissues were quantified using ion-counting of label-free LC-MS data. The method assumes that LC-MS signal areas of a peptide correlate with its abundance in the sample. All quantitative signals of a peptide in various LC-MS experiments were normalized based on central tendency, averaged per sample and merged into a bar plot, called presentation profile. The presentation profile consolidates different analysis methods like protein database search, spectral clustering, charge state deconvolution (decharging) and retention time alignment and normalization.
- Besides over-presentation of the peptide, mRNA expression of the underlying gene was tested. mRNA data were obtained via RNASeq analyses of normal tissues and cancer tissues (cf. Example 2,
FIGS. 2A through 2N ). An additional source of normal tissue data was a database of publicly available RNA expression data from around 3000 normal tissue samples (Lonsdale, 2013). Peptides which are derived from proteins whose coding mRNA is highly expressed in cancer tissue, but very low or absent in vital normal tissues, were preferably included in the present invention. - The present invention provides peptides that are useful in treating cancers/tumors, preferably lung cancer (including NSCLC and SCLC) that over- or exclusively present the peptides of the invention. These peptides were shown by mass spectrometry to be naturally presented by HLA molecules on primary human lung cancer (including NSCLC and SCLC) samples.
- Many of the source gene/proteins (also designated “full-length proteins” or “underlying proteins”) from which the peptides are derived were shown to be highly over-expressed in cancer compared with normal tissues—“normal tissues” in relation to this invention shall mean either healthy lung cells or other normal tissue cells, demonstrating a high degree of tumor association of the source genes (see Example 2). Moreover, the peptides themselves are strongly over-presented on tumor tissue—“tumor tissue” in relation to this invention shall mean a sample from a patient suffering from lung cancer (including NSCLC and SCLC), but not on normal tissues (see Example 1).
- HLA-bound peptides can be recognized by the immune system, specifically T lymphocytes. T cells can destroy the cells presenting the recognized HLA/peptide complex, e.g. lung cancer (including NSCLC and SCLC) cells presenting the derived peptides.
- The peptides of the present invention have been shown to be capable of stimulating T cell responses and/or are over-presented and thus can be used for the production of antibodies and/or TCRs, such as soluble TCRs, according to the present invention (see Example 3, Example 4). Furthermore, the peptides when complexed with the respective MHC can be used for the production of antibodies and/or TCRs, in particular sTCRs, according to the present invention, as well. Respective methods are well known to the person of skill, and can be found in the respective literature as well (see also below). Thus, the peptides of the present invention are useful for generating an immune response in a patient by which tumor cells can be destroyed. An immune response in a patient can be induced by direct administration of the described peptides or suitable precursor substances (e.g. elongated peptides, proteins, or nucleic acids encoding these peptides) to the patient, ideally in combination with an agent enhancing the immunogenicity (i.e. an adjuvant). The immune response originating from such a therapeutic vaccination can be expected to be highly specific against tumor cells because the target peptides of the present invention are not presented on normal tissues in comparable copy numbers, preventing the risk of undesired autoimmune reactions against normal cells in the patient.
- The present description further relates to T-cell receptors (TCRs) comprising an alpha chain and a beta chain (“alpha/beta TCRs”). Also provided are peptides according to the invention capable of binding to TCRs and antibodies when presented by an MHC molecule.
- The present description also relates to fragments of the TCRs according to the invention that are capable of binding to a peptide antigen according to the present invention when presented by an HLA molecule. The term particularly relates to soluble TCR fragments, for example TCRs missing the transmembrane parts and/or constant regions, single chain TCRs, and fusions thereof to, for example, with lg.
- The present description also relates to nucleic acids, vectors and host cells for expressing TCRs and peptides of the present description; and methods of using the same.
- The term “T-cell receptor” (abbreviated TCR) refers to a heterodimeric molecule comprising an alpha polypeptide chain (alpha chain) and a beta polypeptide chain (beta chain), wherein the heterodimeric receptor is capable of binding to a peptide antigen presented by an HLA molecule. The term also includes so-called gamma/delta TCRs.
- In one embodiment the desembodiment, provides a method of producing a TCR as described herein, the method comprising culturing a host cell capable of expressing the TCR under conditions suitable to promote expression of the TCR.
- The description in another aspect relates to methods according to the description, wherein the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell or artificial antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell or the antigen is loaded onto class I or II MHC tetramers by tetramerizing the antigen/class I or II MHC complex monomers.
- The alpha and beta chains of alpha/beta TCR's, and the gamma and delta chains of gamma/delta TCRs, are generally regarded as each having two “domains”, namely variable and constant domains. The variable domain consists of a concatenation of variable region (V), and joining region (J). The variable domain may also include a leader region (L). Beta and delta chains may also include a diversity region (D). The alpha and beta constant domains may also include C-terminal transmembrane (TM) domains that anchor the alpha and beta chains to the cell membrane.
- With respect to gamma/delta TCRs, the term “TCR gamma variable domain” as used herein refers to the concatenation of the TCR gamma V (TRGV) region without leader region (L), and the TCR gamma J (TRGJ) region, and the term TCR gamma constant domain refers to the extracellular TRGC region, or to a C-terminal truncated TRGC sequence. Likewise, the term “TCR delta variable domain” refers to the concatenation of the TCR delta V (TRDV) region without leader region (L) and the TCR delta D/J (TRDD/TRDJ) region, and the term “TCR delta constant domain” refers to the extracellular TRDC region, or to a C-terminal truncated TRDC sequence.
- TCRs of the present description preferably bind to a peptide-HLA molecule complex with a binding affinity (KD) of about 100 μM or less, about 50 μM or less, about 25 μM or less, or about 10 μM or less. More preferred are high affinity TCRs having binding affinities of about 1 μM or less, about 100 nM or less, about 50 nM or less, about 25 nM or less. Non-limiting examples of preferred binding affinity ranges for TCRs of the present invention include about 1 nM to about 10 nM; about 10 nM to about 20 nM; about 20 nM to about 30 nM; about 30 nM to about 40 nM; about 40 nM to about 50 nM; about 50 nM to about 60 nM; about 60 nM to about 70 nM; about 70 nM to about 80 nM; about 80 nM to about 90 nM; and about 90 nM to about 100 nM.
- As used herein in connect with TCRs of the present description, “specific binding” and grammatical variants thereof are used to mean a TCR having a binding affinity (KD) for a peptide-HLA molecule complex of 100 μM or less.
- Alpha/beta heterodimeric TCRs of the present description may have an introduced disulfide bond between their constant domains. Preferred TCRs of this type include those which have a TRAC constant domain sequence and a TRBC1 or TRBC2 constant domain sequence except that Thr 48 of TRAC and Ser 57 of TRBC1 or TRBC2 are replaced by cysteine residues, the said cysteines forming a disulfide bond between the TRAC constant domain sequence and the TRBC1 or TRBC2 constant domain sequence of the TCR.
- With or without the introduced inter-chain bond mentioned above, alpha/beta heterodimeric TCRs of the present description may have a TRAC constant domain sequence and a TRBC1 or TRBC2 constant domain sequence, and the TRAC constant domain sequence and the TRBC1 or TRBC2 constant domain sequence of the TCR may be linked by the native disulfide bond between Cys4 of
exon 2 of TRAC and Cys2 ofexon 2 of TRBC1 or TRBC2. - TCRs of the present description may comprise a detectable label selected from the group consisting of a radionuclide, a fluorophore and biotin. TCRs of the present description may be conjugated to a therapeutically active agent, such as a radionuclide, a chemotherapeutic agent, or a toxin.
- In an embodiment, a TCR of the present description having at least one mutation in the alpha chain and/or having at least one mutation in the beta chain has modified glycosylation compared to the unmutated TCR.
- In an embodiment, a TCR comprising at least one mutation in the TCR alpha chain and/or TCR beta chain has a binding affinity for, and/or a binding half-life for, a peptide-HLA molecule complex, which is at least double that of a TCR comprising the unmutated TCR alpha chain and/or unmutated TCR beta chain. Affinity-enhancement of tumor-specific TCRs, and its exploitation, relies on the existence of a window for optimal TCR affinities. The existence of such a window is based on observations that TCRs specific for HLA-A2-restricted pathogens have KD values that are generally about 10-fold lower when compared to TCRs specific for HLA-A2-restricted tumor-associated self-antigens. For TCRs specific for patogenes restricted to other alleles compared to tumor-associated self-antigens the KD values might be in a slightly different range, but there are no general differences between the different alleles with respect to the possibility of creating TCRs. It is now known, although tumor antigens have the potential to be immunogenic, because tumors arise from the individual's own cells only mutated proteins or proteins with altered translational processing will be seen as foreign by the immune system. Antigens that are upregulated or overexpressed (so called self-antigens) will not necessarily induce a functional immune response against the tumor: T-cells expressing TCRs that are highly reactive to these antigens will have been negatively selected within the thymus in a process known as central tolerance, meaning that only T-cells with low-affinity TCRs for self-antigens remain. Therefore, affinity of TCRs or variants of the present description to peptides can be enhanced by methods well known in the art.
- The present description further relates to a method of identifying and isolating a TCR according to the present description, said method comprising incubating PBMCs from healthy donors negative with respect to the allel at hand with the HLA/peptide monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)—Calibur analysis.
- The present description further relates to a method of identifying and isolating a TCR according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCRαβ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with a peptide, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)—Calibur analysis.
- In one aspect, to obtain T-cells expressing TCRs of the present description, nucleic acids encoding TCR-alpha and/or TCR-beta chains of the present description are cloned into expression vectors, such as gamma retrovirus or lentivirus. The recombinant viruses are generated and then tested for functionality, such as antigen specificity and functional avidity. An aliquot of the final product is then used to transduce the target T-cell population (generally purified from patient PBMCs), which is expanded before infusion into the patient.
- In another aspect, to obtain T-cells expressing TCRs of the present description, TCR RNAs are synthesized by techniques known in the art, e.g., in vitro transcription sys-tems. The in vitro-synthesized TCR RNAs are then introduced into primary CD8+ T-cells obtained from healthy donors by electroporation to re-express tumor specific TCR-alpha and/or TCR-beta chains.
- To increase the expression, nucleic acids encoding TCRs of the present description may be operably linked to strong promoters, such as retroviral long terminal repeats (LTRs), cytomegalovirus (CMV), murine stem cell virus (MSCV) U3, phosphoglycerate kinase (PGK), β-actin, ubiquitin, and a simian virus 40 (SV40)/CD43 composite promoter, elongation factor (EF)-1a and the spleen focus-forming virus (SFFV) promoter. In a preferred embodiment, the promoter is heterologous to the nucleic acid being expressed.
- In addition to strong promoters, TCR expression cassettes of the present description may contain additional elements that can enhance transgene expression, including a central polypurine tract (cPPT), which promotes the nuclear translocation of lentiviral constructs (Follenzi et al., 2000), and the woodchuck hepatitis virus posttranscriptional regulatory element (wPRE), which increases the level of transgene expression by increasing RNA stability (Zufferey et al., 1999).
- The alpha and beta chains of a TCR of the present invention may be encoded by nucleic acids located in separate vectors, or may be encoded by polynucleotides located in the same vector.
- Achieving high-level TCR surface expression requires that both the TCR-alpha and TCR-beta chains of the introduced TCR be transcribed at high levels. To do so, the TCR-alpha and TCR-beta chains of the present description may be cloned into bi-cistronic constructs in a single vector, which has been shown to be capable of over-coming this obstacle. The use of a viral intraribosomal entry site (IRES) between the TCR-alpha and TCR-beta chains results in the coordinated expression of both chains, because the TCR-alpha and TCR-beta chains are generated from a single transcript that is broken into two proteins during translation, ensuring that an equal molar ratio of TCR-alpha and TCR-beta chains are produced (Schmitt et al., 2009).
- Nucleic acids encoding TCRs of the present description may be codon optimized to increase expression from a host cell. Redundancy in the genetic code allows some amino acids to be encoded by more than one codon, but certain codons are less “op-timal” than others because of the relative availability of matching tRNAs as well as other factors (Gustafsson et al., 2004). Modifying the TCR-alpha and TCR-beta gene sequences such that each amino acid is encoded by the optimal codon for mammalian gene expression, as well as eliminating mRNA instability motifs or cryptic splice sites, has been shown to significantly enhance TCR-alpha and TCR-beta gene expression (Scholten et al., 2006).
- Furthermore, mispairing between the introduced and endogenous TCR chains may result in the acquisition of specificities that pose a significant risk for autoimmunity. For example, the formation of mixed TCR dimers may reduce the number of CD3 molecules available to form properly paired TCR complexes, and therefore can significantly decrease the functional avidity of the cells expressing the introduced TCR (Kuball et al., 2007).
- To reduce mispairing, the C-terminus domain of the introduced TCR chains of the present description may be modified in order to promote interchain affinity, while de-creasing the ability of the introduced chains to pair with the endogenous TCR. These strategies may include replacing the human TCR-alpha and TCR-beta C-terminus domains with their murine counterparts (murinized C-terminus domain); generating a second interchain disulfide bond in the C-terminus domain by introducing a second cysteine residue into both the TCR-alpha and TCR-beta chains of the introduced TCR (cysteine modification); swapping interacting residues in the TCR-alpha and TCR-beta chain C-terminus domains (“knob-in-hole”); and fusing the variable domains of the TCR-alpha and TCR-beta chains directly to CD3ζ (CD3ζ fusion) (Schmitt et al., 2009).
- In an embodiment, a host cell is engineered to express a TCR of the present description. In preferred embodiments, the host cell is a human T-cell or T-cell progenitor. In some embodiments, the T-cell or T-cell progenitor is obtained from a cancer patient. In other embodiments, the T-cell or T-cell progenitor is obtained from a healthy donor. Host cells of the present description can be allogeneic or autologous with respect to a patient to be treated. In one embodiment, the host is a gamma/delta T-cell transformed to express an alpha/beta TCR.
- A “pharmaceutical composition” is a composition suitable for administration to a human being in a medical setting. Preferably, a pharmaceutical composition is sterile and produced according to GMP guidelines.
- The pharmaceutical compositions comprise the peptides either in the free form or in the form of a pharmaceutically acceptable salt (see also above). In an aspect, a peptide described herein is in the form of a pharmaceutically acceptable salt. In another aspect, a peptide in the form of a pharmaceutical salt is in crystalline form.
- In an aspect, a pharmaceutically acceptable salt described herein refers to salts which possess toxicity profiles within a range that is acceptable for pharmaceutical applications.
- As used herein, “a pharmaceutically acceptable salt” refers to a derivative of the disclosed peptides wherein the peptide is modified by making acid or base salts of the agent. For example, acid salts are prepared from the free base (typically wherein the neutral form of the drug has a neutral —NH2 group) involving reaction with a suitable acid. Suitable acids for preparing acid salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methane sulfonic acid, ethane sulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid phosphoric acid and the like. Conversely, preparation of basic salts of acid moieties which may be present on a peptide are prepared using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine or the like.
- In an aspect, pharmaceutically acceptable salts may increase the solubility and/or stability of peptides of described herein. In another aspect, pharmaceutical salts described herein may be prepared by conventional means from the corresponding carrier peptide or complex by reacting, for example, the appropriate acid or base with peptides or complexes as described herein. In another aspect, the pharmaceutically acceptable salts are in crystalline form or semi-crystalline form. In yet another aspect, pharmaceutically acceptable salts may include, for example, those described in Handbook of Pharmaceutical Salts: Properties, Selection, and Use By P. H. Stahl and C. G. Wermuth (Wiley-VCH 2002) and L. D. Bighley, S. M. Berge, D. C. Monkhouse, in “Encyclopedia of Pharmaceutical Technology”. Eds. J. Swarbrick and J. C. Boylan, Vol. 13, Marcel Dekker, Inc., New York, Basel, Hong Kong 1995, pp. 453-499, each of these references is herein incorporated by reference in their entirety.
- In an especially preferred embodiment, the pharmaceutical compositions comprise the peptides as salts of acetic acid (acetates), trifluoro acetates or hydrochloric acid (chlorides).
- Preferably, the medicament of the present invention is an immunotherapeutic such as a vaccine. It may be administered directly into the patient, into the affected organ or systemically i.d., i.m., s.c., i.p. and i.v., or applied ex vivo to cells derived from the patient or a human cell line which are subsequently administered to the patient, or used in vitro to select a subpopulation of immune cells derived from the patient, which are then re-administered to the patient. If the nucleic acid is administered to cells in vitro, it may be useful for the cells to be transfected so as to co-express immune-stimulating cytokines, such as interleukin-2. The peptide may be substantially pure, or combined with an immune-stimulating adjuvant (see below) or used in combination with immune-stimulatory cytokines, or be administered with a suitable delivery system, for example liposomes. The peptide may also be conjugated to a suitable carrier such as keyhole limpet haemocyanin (KLH) or mannan (see WO 95/18145 and (Longenecker et al., 1993)). The peptide may also be tagged, may be a fusion protein, or may be a hybrid molecule. The peptides whose sequence is given in the present invention are expected to stimulate CD4 or CD8 T cells. However, stimulation of CD8 T cells is more efficient in the presence of help provided by CD4 T-helper cells. Thus, for MHC Class I epitopes that stimulate CD8 T cells the fusion partner or sections of a hybrid molecule suitably provide epitopes which stimulate CD4-positive T cells. CD4- and CD8-stimulating epitopes are well known in the art and include those identified in the present invention.
- In one aspect, the vaccine comprises at least one peptide having the amino acid sequence set forth SEQ ID No. 1 to SEQ ID No. 489, and at least one additional peptide, preferably two to 50, more preferably two to 25, even more preferably two to 20 and most preferably two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen or eighteen peptides. The peptide(s) may be derived from one or more specific TAAs and may bind to MHC class I molecules.
- A further aspect of the invention provides a nucleic acid (for example a polynucleotide) encoding a peptide or peptide variant of the invention. The polynucleotide may be, for example, DNA, cDNA, PNA, RNA or combinations thereof, either single- and/or double-stranded, or native or stabilized forms of polynucleotides, such as, for example, polynucleotides with a phosphorothioate backbone and it may or may not contain introns so long as it codes for the peptide. Of course, only peptides that contain naturally occurring amino acid residues joined by naturally occurring peptide bonds are encodable by a polynucleotide. A still further aspect of the invention provides an expression vector capable of expressing a polypeptide according to the invention.
- A variety of methods have been developed to link polynucleotides, especially DNA, to vectors for example via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.
- Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc. New Haven, Conn., USA.
- A desirable method of modifying the DNA encoding the polypeptide of the invention employs the polymerase chain reaction as disclosed by Saiki R K, et al. (Saiki et al., 1988). This method may be used for introducing the DNA into a suitable vector, for example by engineering in suitable restriction sites, or it may be used to modify the DNA in other useful ways as is known in the art. If viral vectors are used, pox- or adenovirus vectors are preferred.
- The DNA (or in the case of retroviral vectors, RNA) may then be expressed in a suitable host to produce a polypeptide comprising the peptide or variant of the invention. Thus, the DNA encoding the peptide or variant of the invention may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the invention. Such techniques include those disclosed, for example, in U.S. Pat. Nos. 4,440,859, 4,530,901, 4,582,800, 4,677,063, 4,678,751, 4,704,362, 4,710,463, 4,757,006, 4,766,075, and 4,810,648.
- The DNA (or in the case of retroviral vectors, RNA) encoding the polypeptide constituting the compound of the invention may be joined to a wide variety of other DNA sequences for introduction into an appropriate host. The companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.
- Generally, the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognized by the desired host, although such controls are generally available in the expression vector. The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance.
- Alternatively, the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.
- Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.
- Many expression systems are known, including bacteria (for example E. coli and Bacillus subtilis), yeasts (for example Saccharomyces cerevisiae), filamentous fungi (for example Aspergillus spec.), plant cells, animal cells and insect cells. Preferably, the system can be mammalian cells such as CHO cells available from the ATCC Cell Biology Collection.
- A typical mammalian cell vector plasmid for constitutive expression comprises the CMV or SV40 promoter with a suitable poly A tail and a resistance marker, such as neomycin. One example is pSVL available from Pharmacia, Piscataway, N.J., USA. An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia. Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, TRP1, LEU2 and URA3. Plasm ids pRS413-416 are Yeast Centromere plasmids (Ycps). CMV promoter-based vectors (for example from Sigma-Aldrich) provide transient or stable expression, cytoplasmic expression or secretion, and N-terminal or C-terminal tagging in various combinations of FLAG, 3×FLAG, c-myc or MAT. These fusion proteins allow for detection, purification and analysis of recombinant protein. Dual-tagged fusions provide flexibility in detection.
- The strong human cytomegalovirus (CMV) promoter regulatory region drives constitutive protein expression levels as high as 1 mg/L in COS cells. For less potent cell lines, protein levels are typically ˜0.1 mg/L. The presence of the SV40 replication origin will result in high levels of DNA replication in SV40 replication permissive COS cells. CMV vectors, for example, can contain the pMB1 (derivative of pBR322) origin for replication in bacterial cells, the b-lactamase gene for ampicillin resistance selection in bacteria, hGH polyA, and the f1 origin. Vectors containing the pre-pro-trypsin leader (PPT) sequence can direct the secretion of FLAG fusion proteins into the culture medium for purification using ANTI-FLAG antibodies, resins, and plates. Other vectors and expression systems are well known in the art for use with a variety of host cells.
- In another embodiment two or more peptides or peptide variants of the invention are encoded and thus expressed in a successive order (similar to “beads on a string” constructs). In doing so, the peptides or peptide variants may be linked or fused together by stretches of linker amino acids, such as for example LLLLLL, or may be linked without any additional peptide(s) between them. These constructs can also be used for cancer therapy, and may induce immune responses both involving MHC I and MHC II.
- The present invention also relates to a host cell transformed with a polynucleotide vector construct of the present invention. The host cell can be either prokaryotic or eukaryotic. Bacterial cells may be preferred prokaryotic host cells in some circumstances and typically are a strain of E. coli such as, for example, the E. coli strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, Md., USA, and RR1 available from the American Type Culture Collection (ATCC) of Rockville, Md., USA (No ATCC 31343). Preferred eukaryotic host cells include yeast, insect and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic and colon cell lines. Yeast host cells include YPH499, YPH500 and YPH501, which are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA. Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650 and 293 cells which are human embryonic kidney cells. Preferred insect cells are Sf9 cells which can be transfected with baculovirus expression vectors. An overview regarding the choice of suitable host cells for expression can be found in, for example, the textbook of Paulina Balbás and Argelia Lorence “Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols,” Part One, Second Edition, ISBN 978-1-58829-262-9, and other literature known to the person of skill.
- Transformation of appropriate cell hosts with a DNA construct of the present invention is accomplished by well-known methods that typically depend on the type of vector used. With regard to transformation of prokaryotic host cells, see, for example, Cohen et al. (Cohen et al., 1972) and (Green and Sambrook, 2012). Transformation of yeast cells is described in Sherman et al. (Sherman et al., 1986). The method of Beggs (Beggs, 1978) is also useful. With regard to vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, Md. 20877, USA. Electroporation is also useful for transforming and/or transfecting cells and is well known in the art for transforming yeast cell, bacterial cells, insect cells and vertebrate cells.
- Successfully transformed cells, i.e. cells that contain a DNA construct of the present invention, can be identified by well-known techniques such as PCR. Alternatively, the presence of the protein in the supernatant can be detected using antibodies.
- It will be appreciated that certain host cells of the invention are useful in the preparation of the peptides of the invention, for example bacterial, yeast and insect cells. However, other host cells may be useful in certain therapeutic methods. For example, antigen-presenting cells, such as dendritic cells, may usefully be used to express the peptides of the invention such that they may be loaded into appropriate MHC molecules. Thus, the current invention provides a host cell comprising a nucleic acid or an expression vector according to the invention.
- In a preferred embodiment, the host cell is an antigen presenting cell, in particular a dendritic cell or antigen presenting cell. APCs loaded with a recombinant fusion protein containing prostatic acid phosphatase (PAP) were approved by the U.S. Food and Drug Administration (FDA) on Apr. 29, 2010, to treat asymptomatic or minimally symptomatic metastatic HRPC (Sipuleucel-T) (Rini et al., 2006; Small et al., 2006).
- A further aspect of the invention provides a method of producing a peptide or its variant, the method comprising culturing a host cell and isolating the peptide from the host cell or its culture medium.
- In another embodiment, the peptide, the nucleic acid or the expression vector of the invention are used in medicine. For example, the peptide or its variant may be prepared for intravenous (i.v.) injection, sub-cutaneous (s.c.) injection, intradermal (i.d.) injection, intraperitoneal (i.p.) injection, intramuscular (i.m.) injection. Preferred methods of peptide injection include s.c., i.d., i.p., i.m., and i.v. Preferred methods of DNA injection include i.d., i.m., s.c., i.p. and i.v. Doses of e.g. between 50 μg and 1.5 mg, preferably 125 μg to 500 μg, of peptide or DNA may be given and will depend on the respective peptide or DNA. Dosages of this range were successfully used in previous trials (Walter et al., 2012).
- The polynucleotide used for active vaccination may be substantially pure, or contained in a suitable vector or delivery system. The nucleic acid may be DNA, cDNA, PNA, RNA or a combination thereof. Methods for designing and introducing such a nucleic acid are well known in the art. An overview is provided by e.g. Teufel et al. (Teufel et al., 2005). Polynucleotide vaccines are easy to prepare, but the mode of action of these vectors in inducing an immune response is not fully understood. Suitable vectors and delivery systems include viral DNA and/or RNA, such as systems based on adenovirus, vaccinia virus, retroviruses, herpes virus, adeno-associated virus or hybrids containing elements of more than one virus. Non-viral delivery systems include cationic lipids and cationic polymers and are well known in the art of DNA delivery. Physical delivery, such as via a “gene-gun” may also be used. The peptide or peptides encoded by the nucleic acid may be a fusion protein, for example with an epitope that stimulates T cells for the respective opposite CDR as noted above.
- The medicament of the invention may also include one or more adjuvants. Adjuvants are substances that non-specifically enhance or potentiate the immune response (e.g., immune responses mediated by CD8-positive T cells and helper-T (TH) cells to an antigen, and would thus be considered useful in the medicament of the present invention. Suitable adjuvants include, but are not limited to, 1018 ISS, aluminum salts, AMPLIVAX®, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, flagellin or TLR5 ligands derived from flagellin, FLT3 ligand, GM-CSF, IC30, IC31, Imiquimod (ALDARA®), resiquimod, ImuFact IMP321, Interleukins as IL-2, IL-13, IL-21, Interferon-alpha or -beta, or pegylated derivatives thereof, IS Patch, ISS, ISCOMATRIX, ISCOMs, JuvImmune®, LipoVac, MALP2, MF59, monophosphoryl lipid A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, water-in-oil and oil-in-water emulsions, OK-432, OM-174, OM-197-MP-EC, ONTAK, OspA, PepTel® vector system, poly(lactid co-glycolid) [PLG]-based and dextran microparticles, talactoferrin SRL172, Virosomes and other Virus-like particles, YF-17D, VEGF trap, R848, beta-glucan, Pam3Cys, Aquila's QS21 stimulon, which is derived from saponin, mycobacterial extracts and synthetic bacterial cell wall mimics, and other proprietary adjuvants such as Ribi's Detox, Quil, or Superfos. Adjuvants such as Freund's or GM-CSF are preferred. Several immunological adjuvants (e.g., MF59) specific for dendritic cells and their preparation have been described previously (Allison and Krummel, 1995). Also, cytokines may be used. Several cytokines have been directly linked to influencing dendritic cell migration to lymphoid tissues (e.g., TNF−), accelerating the maturation of dendritic cells into efficient antigen-presenting cells for T-lymphocytes (e.g., GM-CSF, IL-1 and IL-4) (U.S. Pat. No. 5,849,589, specifically incorporated herein by reference in its entirety) and acting as immunoadjuvants (e.g., IL-12, IL-15, IL-23, IL-7, IFN-alpha. IFN-beta) (Gabrilovich et al., 1996).
- CpG immunostimulatory oligonucleotides have also been reported to enhance the effects of adjuvants in a vaccine setting. Without being bound by theory, CpG oligonucleotides act by activating the innate (non-adaptive) immune system via Toll-like receptors (TLR), mainly TLR9. CpG triggered TLR9 activation enhances antigen-specific humoral and cellular responses to a wide variety of antigens, including peptide or protein antigens, live or killed viruses, dendritic cell vaccines, autologous cellular vaccines and polysaccharide conjugates in both prophylactic and therapeutic vaccines. More importantly it enhances dendritic cell maturation and differentiation, resulting in enhanced activation of TH1 cells and strong cytotoxic T-lymphocyte (CTL) generation, even in the absence of CD4 T cell help. The TH1 bias induced by TLR9 stimulation is maintained even in the presence of vaccine adjuvants such as alum or incomplete Freund's adjuvant (IFA) that normally promote a TH2 bias. CpG oligonucleotides show even greater adjuvant activity when formulated or co-administered with other adjuvants or in formulations such as microparticles, nanoparticles, lipid emulsions or similar formulations, which are especially necessary for inducing a strong response when the antigen is relatively weak. They also accelerate the immune response and enable the antigen doses to be reduced by approximately two orders of magnitude, with comparable antibody responses to the full-dose vaccine without CpG in some experiments (Krieg, 2006). U.S. Pat. No. 6,406,705 B1 describes the combined use of CpG oligonucleotides, non-nucleic acid adjuvants and an antigen to induce an antigen-specific immune response. A CpG TLR9 antagonist is dSLIM (double Stem Loop Immunomodulator) by Mologen (Berlin, Germany) which is a preferred component of the pharmaceutical composition of the present invention. Other TLR binding molecules such as RNA binding TLR 7,
TLR 8 and/orTLR 9 may also be used. - Other examples for useful adjuvants include, but are not limited to chemically modified CpGs (e.g. CpR, Idera), dsRNA analogues such as Poly(I:C) and derivates thereof (e.g. AmpliGen®, Hiltonol®, poly-(ICLC), poly(IC-R), poly(I:C12U), non-CpG bacterial DNA or RNA as well as immunoactive small molecules and antibodies such as cyclophosphamide, sunitinib, Bevacizumab®, celebrex, NCX-4016, sildenafil, tadalafil, vardenafil, sorafenib, temozolomide, temsirolimus, XL-999, CP-547632, pazopanib, VEGF Trap, ZD2171, AZD2171, anti-CTLA4, other antibodies targeting key structures of the immune system (e.g. anti-CD40, anti-TGFbeta, anti-TNFalpha receptor) and SC58175, which may act therapeutically and/or as an adjuvant. The amounts and concentrations of adjuvants and additives useful in the context of the present invention can readily be determined by the skilled artisan without undue experimentation.
- Preferred adjuvants are anti-CD40, imiquimod, resiquimod, GM-CSF, cyclophosphamide, sunitinib, bevacizumab, interferon-alpha, CpG oligonucleotides and derivates, poly-(I:C) and derivates, RNA, sildenafil, and particulate formulations with PLG or virosomes.
- In a preferred embodiment, the pharmaceutical composition according to the invention the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod, resiquimod, and interferon-alpha.
- In a preferred embodiment, the pharmaceutical composition according to the invention the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod and resiquimod. In a preferred embodiment of the pharmaceutical composition according to the invention, the adjuvant is cyclophosphamide, imiquimod or resiquimod. Even more preferred adjuvants are Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, poly-ICLC (Hiltonol®) and anti-CD40 mAB, or combinations thereof.
- This composition is used for parenteral administration, such as subcutaneous, intradermal, intramuscular or oral administration. For this, the peptides and optionally other molecules are dissolved or suspended in a pharmaceutically acceptable, preferably aqueous carrier. In addition, the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, lubricants, etc. The peptides can also be administered together with immune stimulating substances, such as cytokines. An extensive listing of excipients that can be used in such a composition, can be, for example, taken from A. Kibbe, Handbook of Pharmaceutical Excipients (Kibbe, 2000). The composition can be used for a prevention, prophylaxis and/or therapy of adenomatous or cancerous diseases. Exemplary formulations can be found in, for example, EP2112253.
- In an aspect, peptides or other molecules described herein may be combined with an aquous carrier. In an aspect, the aquous carrier is selected from ion exchangers, alumina, aluminum stearate, magnesium stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, dicalcium phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, polyvinylpyrrolidone-vinyl acetate, cellulose-based substances (e.g., microcrystalline cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose acetate succinate, hydroxypropyl methylcellulose Phthalate), starch, lactose monohydrate, mannitol, trehalose sodium lauryl sulfate, and crosscarmellose sodium, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, polymethacrylate, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- In an aspect, the aquous carrier contains multiple components, such as water together with a non-water carrier component, such as those components described herein. In another aspect, the aquous carrier is capable of imparting improved properties when combined with a peptide or other molecule described herein, for example, improved solubility, efficiacy, and/or improved immunotherapy. In addition, the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, lubricants, etc. A “pharmaceutically acceptable diluent,” for example, may include solvents, bulking agents, stabilizing agents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like which are physiologically compatible. Examples of pharmaceutically acceptable diluents include one or more of saline, phosphate buffered saline, dextrose, glycerol, ethanol, and the like as well as combinations thereof. In many cases it will be preferable to include one or more isotonic agents, for example, sugars such as trehalose and sucrose, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Pharmaceutically acceptable substances such as wetting or minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, are also within the scope of the present invention. In addition, the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, and lubricants.
- It is important to realize that the immune response triggered by the vaccine according to the invention attacks the cancer in different cell-stages and different stages of development. Furthermore, different cancer associated signaling pathways are attacked. This is an advantage over vaccines that address only one or few targets, which may cause the tumor to easily adapt to the attack (tumor escape). Furthermore, not all individual tumors express the same pattern of antigens. Therefore, a combination of several tumor-associated peptides ensures that every single tumor bears at least some of the targets. The composition is designed in such a way that each tumor is expected to express several of the antigens and cover several independent pathways necessary for tumor growth and maintenance. Thus, the vaccine can easily be used “off-the-shelf” for a larger patient population. This means that a pre-selection of patients to be treated with the vaccine can be restricted to HLA typing, does not require any additional biomarker assessments for antigen expression, but it is still ensured that several targets are simultaneously attacked by the induced immune response, which is important for efficacy (Banchereau et al., 2001; Walter et al., 2012).
- As used herein, the term “scaffold” refers to a molecule that specifically binds to an (e.g. antigenic) determinant. In one embodiment, a scaffold is able to direct the entity to which it is attached (e.g. a (second) antigen binding moiety) to a target site, for example to a specific type of tumor cell or tumor stroma bearing the antigenic determinant (e.g. the complex of a peptide with MHC, according to the application at hand). In another embodiment, a scaffold is able to activate signaling through its target antigen, for example a T cell receptor complex antigen. Scaffolds include but are not limited to antibodies and fragments thereof, antigen binding domains of an antibody, comprising an antibody heavy chain variable region and an antibody light chain variable region, binding proteins comprising at least one ankyrin repeat motif and single domain antigen binding (SDAB) molecules, aptamers, (soluble) TCRs and (modified) cells such as allogenic or autologous T cells. To assess whether a molecule is a scaffold binding to a target, binding assays can be performed.
- “Specific” binding means that the scaffold binds the peptide-MHC-complex of interest better than other naturally occurring peptide-MHC-complexes, to an extent that a scaffold armed with an active molecule that is able to kill a cell bearing the specific target is not able to kill another cell without the specific target but presenting other peptide-MHC complex(es). Binding to other peptide-MHC complexes is irrelevant if the peptide of the cross-reactive peptide-MHC is not naturally occurring, i.e. not derived from the human HLA-peptidome. Tests to assess target cell killing are well known in the art. They should be performed using target cells (primary cells or cell lines) with unaltered peptide-MHC presentation, or cells loaded with peptides such that naturally occurring peptide-MHC levels are reached.
- Each scaffold can comprise a labelling which provides that the bound scaffold can be detected by determining the presence or absence of a signal provided by the label. For example, the scaffold can be labelled with a fluorescent dye or any other applicable cellular marker molecule. Such marker molecules are well known in the art. For example, a fluorescence-labelling, for example provided by a fluorescence dye, can provide a visualization of the bound aptamer by fluorescence or laser scanning microscopy or flow cytometry.
- Each scaffold can be conjugated with a second active molecule such as for example IL-21, anti-CD3, and anti-CD28.
- For further information on polypeptide scaffolds see for example the background section of WO 2014/071978A1 and the references cited therein.
- The present invention further relates to aptamers. Aptamers (see for example WO 2014/191359 and the literature as cited therein) are short single-stranded nucleic acid molecules, which can fold into defined three-dimensional structures and recognize specific target structures. They have appeared to be suitable alternatives for developing targeted therapies. Aptamers have been shown to selectively bind to a variety of complex targets with high affinity and specificity.
- Aptamers recognizing cell surface located molecules have been identified within the past decade and provide means for developing diagnostic and therapeutic approaches. Since aptamers have been shown to possess almost no toxicity and immunogenicity they are promising candidates for biomedical applications. Indeed aptamers, for example prostate-specific membrane-antigen recognizing aptamers, have been successfully employed for targeted therapies and shown to be functional in xenograft in vivo models. Furthermore, aptamers recognizing specific tumor cell lines have been identified.
- DNA aptamers can be selected to reveal broad-spectrum recognition properties for various cancer cells, and particularly those derived from solid tumors, while non-tumorigenic and primary healthy cells are not recognized. If the identified aptamers recognize not only a specific tumor sub-type but rather interact with a series of tumors, this renders the aptamers applicable as so-called broad-spectrum diagnostics and therapeutics.
- Further, investigation of cell-binding behavior with flow cytometry showed that the aptamers revealed very good apparent affinities that are within the nanomolar range.
- Aptamers are useful for diagnostic and therapeutic purposes. Further, it could be shown that some of the aptamers are taken up by tumor cells and thus can function as molecular vehicles for the targeted delivery of anti-cancer agents such as siRNA into tumor cells.
- Aptamers can be selected against complex targets such as cells and tissues and complexes of the peptides comprising, preferably consisting of, a sequence according to any of
SEQ ID NO 1 toSEQ ID NO 489, according to the present invention with the MHC molecule, using the cell-SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique. - The peptides of the present invention can be used to generate and develop specific antibodies against MHC/peptide complexes. These can be used for therapy, targeting toxins or radioactive substances to the diseased tissue. Another use of these antibodies can be targeting radionuclides to the diseased tissue for imaging purposes such as PET. This use can help to detect small metastases or to determine the size and precise localization of diseased tissues.
- Therefore, it is a further aspect of the invention to provide a method for producing a recombinant antibody specifically binding to a human major histocompatibility complex (MHC) class I or II being complexed with a HLA-restricted antigen (preferably a peptide according to the present invention), the method comprising: immunizing a genetically engineered non-human mammal comprising cells expressing said human major histocompatibility complex (MHC) class I or II with a soluble form of a MHC class I or II molecule being complexed with said HLA-restricted antigen; isolating mRNA molecules from antibody producing cells of said non-human mammal; producing a phage display library displaying protein molecules encoded by said mRNA molecules; and isolating at least one phage from said phage display library, said at least one phage displaying said antibody specifically binding to said human major histocompatibility complex (MHC) class I or II being complexed with said HLA-restricted antigen.
- It is thus a further aspect of the invention to provide an antibody that specifically binds to a human major histocompatibility complex (MHC) class I or II being complexed with a HLA-restricted antigen, wherein the antibody preferably is a polyclonal antibody, monoclonal antibody, bi-specific antibody and/or a chimeric antibody.
- Respective methods for producing such antibodies and single chain class I major histocompatibility complexes, as well as other tools for the production of these antibodies are disclosed in WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752, and in publications (Cohen et al., 2003a; Cohen et al., 2003b; Denkberg et al., 2003), which for the purposes of the present invention are all explicitly incorporated by reference in their entireties.
- Preferably, the antibody is binding with a binding affinity of below 20 nanomolar, preferably of below 10 nanomolar, to the complex, which is also regarded as “specific” in the context of the present invention.
- The present invention relates to a peptide comprising a sequence that is selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489, or a variant thereof which is at least 88% homologous (preferably identical) to SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof that induces T cells cross-reacting with said peptide, wherein said peptide is not the underlying full-length polypeptide.
- The present invention further relates to a peptide comprising a sequence that is selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 489 or a variant thereof which is at least 88% homologous (preferably identical) to SEQ ID NO: 1 to SEQ ID NO: 489, wherein said peptide or variant has an overall length of between 8 and 100, preferably between 8 and 30, and most preferred between 8 and 14 amino acids.
- The present invention further relates to the peptides according to the invention that have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or -II.
- The present invention further relates to the peptides according to the invention wherein the peptide consists or consists essentially of an amino acid sequence according to SEQ ID NO: 1 to SEQ ID NO: 489.
- The present invention further relates to the peptides according to the invention, wherein the peptide is (chemically) modified and/or includes non-peptide bonds.
- The present invention further relates to the peptides according to the invention, wherein the peptide is part of a fusion protein, in particular comprising N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or wherein the peptide is fused to (or into) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- The present invention further relates to a nucleic acid, encoding the peptides according to the invention, provided that the peptide is not the complete (full) human protein.
- The present invention further relates to the nucleic acid according to the invention that is DNA, cDNA, PNA, RNA or combinations thereof.
- The present invention further relates to an expression vector capable of expressing a nucleic acid according to the present invention.
- The present invention further relates to a peptide according to the present invention, a nucleic acid according to the present invention or an expression vector according to the present invention for use in medicine, in particular in the treatment of lung cancer (including NSCLC and SCLC).
- The present invention further relates to a host cell comprising a nucleic acid according to the present invention or an expression vector according to the present invention.
- The present invention further relates to the host cell according to the present invention that is an antigen presenting cell, and preferably a dendritic cell.
- The present invention further relates to a method of producing a peptide according to the present invention, said method comprising culturing the host cell according to the present invention, and isolating the peptide from said host cell or its culture medium.
- The present invention further relates to the method according to the present invention, where-in the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell.
- The present invention further relates to the method according to the invention, wherein the antigen-presenting cell comprises an expression vector capable of expressing said peptide containing SEQ ID NO: 1 to SEQ ID NO: 489 or said variant amino acid sequence.
- The present invention further relates to activated T cells, produced by the method according to the present invention, wherein said T cells selectively recognizes a cell which aberrantly expresses a polypeptide comprising an amino acid sequence according to the present invention.
- The present invention further relates to a method of killing target cells in a patient which target cells aberrantly express a polypeptide comprising any amino acid sequence according to the present invention, the method comprising administering to the patient an effective number of T cells as according to the present invention.
- The present invention further relates to the use of any peptide described, a nucleic acid according to the present invention, an expression vector according to the present invention, a cell according to the present invention, or an activated cytotoxic T lymphocyte according to the present invention as a medicament or in the manufacture of a medicament. The present invention further relates to a use according to the present invention, wherein the medicament is active against cancer.
- The present invention further relates to a use according to the invention, wherein the medicament is a vaccine. The present invention further relates to a use according to the invention, wherein the medicament is active against cancer.
- The present invention further relates to a use according to the invention, wherein said cancer cells are lung cancer (including NSCLC and SCLC) cells or other solid or hematological tumor cells such as acute myeloid leukemia, breast cancer, bile duct cancer, brain cancer, chronic lymphocytic leukemia, colorectal carcinoma, esophageal cancer, gallbladder cancer, gastric cancer, head and neck squamous cell carcinoma, hepatocellular cancer, melanoma, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, prostate cancer, renal cell cancer, urinary bladder cancer, uterine cancer.
- The present invention further relates to particular marker proteins and biomarkers based on the peptides according to the present invention, herein called “targets” that can be used in the diagnosis and/or prognosis of lung cancer (including NSCLC and SCLC). The present invention also relates to the use of these novel targets for cancer treatment.
- The term “antibody” or “antibodies” is used herein in a broad sense and includes both polyclonal and monoclonal antibodies. In addition to intact or “full” immunoglobulin molecules, also included in the term “antibodies” are fragments (e.g. CDRs, Fv, Fab and Fc fragments) or polymers of those immunoglobulin molecules and humanized versions of immunoglobulin molecules, as long as they exhibit any of the desired properties (e.g., specific binding of a lung cancer (including NSCLC and SCLC) marker (poly)peptide, delivery of a toxin to a lung cancer (including NSCLC and SCLC) cell expressing a cancer marker gene at an increased level, and/or inhibiting the activity of a lung cancer (including NSCLC and SCLC) marker polypeptide) according to the invention.
- Whenever possible, the antibodies of the invention may be purchased from commercial sources. The antibodies of the invention may also be generated using well-known methods. The skilled artisan will understand that either full length lung cancer (including NSCLC and SCLC) marker polypeptides or fragments thereof may be used to generate the antibodies of the invention. A polypeptide to be used for generating an antibody of the invention may be partially or fully purified from a natural source, or may be produced using recombinant DNA techniques.
- For example, a cDNA encoding a peptide according to the present invention, such as a peptide according to SEQ ID NO: 1 to SEQ ID NO: 489 polypeptide, or a variant or fragment thereof, can be expressed in prokaryotic cells (e.g., bacteria) or eukaryotic cells (e.g., yeast, insect, or mammalian cells), after which the recombinant protein can be purified and used to generate a monoclonal or polyclonal antibody preparation that specifically bind the lung cancer (including NSCLC and SCLC) marker polypeptide used to generate the antibody according to the invention.
- One of skill in the art will realize that the generation of two or more different sets of monoclonal or polyclonal antibodies maximizes the likelihood of obtaining an antibody with the specificity and affinity required for its intended use (e.g., ELISA, immunohistochemistry, in vivo imaging, immunotoxin therapy). The antibodies are tested for their desired activity by known methods, in accordance with the purpose for which the antibodies are to be used (e.g., ELISA, immunohistochemistry, immunotherapy, etc.; for further guidance on the generation and testing of antibodies, see, e.g., Greenfield, 2014 (Greenfield, 2014)). For example, the antibodies may be tested in ELISA assays or, Western blots, immunohistochemical staining of formalin-fixed cancers or frozen tissue sections. After their initial in vitro characterization, antibodies intended for therapeutic or in vivo diagnostic use are tested according to known clinical testing methods.
- The term “monoclonal antibody” as used herein refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e.; the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. The monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired antagonistic activity (U.S. Pat. No. 4,816,567, which is hereby incorporated in its entirety).
- Monoclonal antibodies of the invention may be prepared using hybridoma methods. In a hybridoma method, a mouse or other appropriate host animal is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro.
- The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
- In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly Fab fragments, can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in WO 94/29348 and U.S. Pat. No. 4,342,566. Papain digestion of antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields a F(ab′)2 fragment and a pFc′ fragment.
- The antibody fragments, whether attached to other sequences or not, can also include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids residues, provided the activity of the fragment is not significantly altered or impaired compared to the non-modified antibody or antibody fragment. These modifications can provide for some additional property, such as to remove/add amino acids capable of disulfide bonding, to increase its bio-longevity, to alter its secretory characteristics, etc. In any case, the antibody fragment must possess a bioactive property, such as binding activity, regulation of binding at the binding domain, etc. Functional or active regions of the antibody may be identified by mutagenesis of a specific region of the protein, followed by expression and testing of the expressed polypeptide. Such methods are readily apparent to a skilled practitioner in the art and can include site-specific mutagenesis of the nucleic acid encoding the antibody fragment.
- The antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- Transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production can be employed. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. Human antibodies can also be produced in phage display libraries.
- Antibodies of the invention are preferably administered to a subject in a pharmaceutically acceptable carrier. Typically, an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic. Examples of the pharmaceutically-acceptable carrier include saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5. Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of antibody being administered.
- The antibodies can be administered to the subject, patient, or cell by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular), or by other methods such as infusion that ensure its delivery to the bloodstream in an effective form. The antibodies may also be administered by intratumoral or peritumoral routes, to exert local as well as systemic therapeutic effects. Local or intravenous injection is preferred.
- Effective dosages and schedules for administering the antibodies may be determined empirically, and making such determinations is within the skill in the art. Those skilled in the art will understand that the dosage of antibodies that must be administered will vary depending on, for example, the subject that will receive the antibody, the route of administration, the particular type of antibody used and other drugs being administered. A typical daily dosage of the antibody used alone might range from about 1 (μg/kg to up to 100 mg/kg of body weight or more per day, depending on the factors mentioned above. Following administration of an antibody, preferably for treating lung cancer (including NSCLC and SCLC), the efficacy of the therapeutic antibody can be assessed in various ways well known to the skilled practitioner. For instance, the size, number, and/or distribution of cancer in a subject receiving treatment may be monitored using standard tumor imaging techniques. A therapeutically-administered antibody that arrests tumor growth, results in tumor shrinkage, and/or prevents the development of new tumors, compared to the disease course that would occurs in the absence of antibody administration, is an efficacious antibody for treatment of cancer.
- It is a further aspect of the invention to provide a method for producing a soluble T-cell receptor (sTCR) recognizing a specific peptide-MHC complex. Such soluble T-cell receptors can be generated from specific T-cell clones, and their affinity can be increased by mutagenesis targeting the complementarity-determining regions. For the purpose of T-cell receptor selection, phage display can be used (US 2010/0113300, (Liddy et al., 2012)). For the purpose of stabilization of T-cell receptors during phage display and in case of practical use as drug, alpha and beta chain can be linked e.g. by non-native disulfide bonds, other covalent bonds (single-chain T-cell receptor), or by dimerization domains (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999). The T-cell receptor can be linked to toxins, drugs, cytokines (see, for example, US 2013/0115191), and domains recruiting effector cells such as an anti-CD3 domain, etc., in order to execute particular functions on target cells. Moreover, it could be expressed in T cells used for adoptive transfer. Further information can be found in WO 2004/033685A1 and WO 2004/074322A1. A combination of sTCRs is described in WO 2012/056407A1. Further methods for the production are disclosed in WO 2013/057586A1.
- In addition, the peptides and/or the TCRs or antibodies or other binding molecules of the present invention can be used to verify a pathologist's diagnosis of a cancer based on a biopsied sample.
- The antibodies or TCRs may also be used for in vivo diagnostic assays. Generally, the antibody is labeled with a radionucleotide (such as 111In, 99Tc, 14C, 131I, 3H, 32P or 35S) so that the tumor can be localized using immunoscintiography. In one embodiment, antibodies or fragments thereof bind to the extracellular domains of two or more targets of a protein selected from the group consisting of the above-mentioned proteins, and the affinity value (Kd) is less than 1×10 μM.
- Antibodies for diagnostic use may be labeled with probes suitable for detection by various imaging methods. Methods for detection of probes include, but are not limited to, fluorescence, light, confocal and electron microscopy; magnetic resonance imaging and spectroscopy; fluoroscopy, computed tomography and positron emission tomography. Suitable probes include, but are not limited to, fluorescein, rhodamine, eosin and other fluorophores, radioisotopes, gold, gadolinium and other lanthanides, paramagnetic iron, fluorine-18 and other positron-emitting radionuclides. Additionally, probes may be bi- or multi-functional and be detectable by more than one of the methods listed. These antibodies may be directly or indirectly labeled with said probes. Attachment of probes to the antibodies includes covalent attachment of the probe, incorporation of the probe into the antibody, and the covalent attachment of a chelating compound for binding of probe, amongst others well recognized in the art. For immunohistochemistry, the disease tissue sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin. The fixed or embedded section contains the sample are contacted with a labeled primary antibody and secondary antibody, wherein the antibody is used to detect the expression of the proteins in situ.
- Another aspect of the present invention includes an in vitro method for producing activated T cells, the method comprising contacting in vitro T cells with antigen loaded human MHC molecules expressed on the surface of a suitable antigen-presenting cell for a period of time sufficient to activate the T cell in an antigen specific manner, wherein the antigen is a peptide according to the invention. Preferably a sufficient amount of the antigen is used with an antigen-presenting cell.
- Preferably the mammalian cell lacks or has a reduced level or function of the TAP peptide transporter. Suitable cells that lack the TAP peptide transporter include T2, RMA-S and Drosophila cells. TAP is the transporter associated with antigen processing.
- The human peptide loading deficient cell line T2 is available from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md. 20852, USA under Catalogue No CRL 1992; the Drosophila cell
line Schneider line 2 is available from the ATCC under Catalogue No CRL 19863; the mouse RMA-S cell line is described in Ljunggren et al. (Ljunggren and Karre, 1985). - Preferably, before transfection the host cell expresses substantially no MHC class I molecules. It is also preferred that the stimulator cell expresses a molecule important for providing a co-stimulatory signal for T-cells such as any of B7.1, B7.2, ICAM-1 and LFA 3. The nucleic acid sequences of numerous MHC class I molecules and of the co-stimulator molecules are publicly available from the GenBank and EMBL databases.
- In case of a MHC class I epitope being used as an antigen, the T cells are CD8-positive T cells.
- If an antigen-presenting cell is transfected to express such an epitope, preferably the cell comprises an expression vector capable of expressing a peptide containing SEQ ID NO: 1 to SEQ ID NO: 489, or a variant amino acid sequence thereof.
- A number of other methods may be used for generating T cells in vitro. For example, autologous tumor-infiltrating lymphocytes can be used in the generation of CTL. Plebanski et al. (Plebanski et al., 1995) made use of autologous peripheral blood lymphocytes (PLBs) in the preparation of T cells. Furthermore, the production of autologous T cells by pulsing dendritic cells with peptide or polypeptide, or via infection with recombinant virus is possible. Also, B cells can be used in the production of autologous T cells. In addition, macrophages pulsed with peptide or polypeptide, or infected with recombinant virus, may be used in the preparation of autologous T cells. S. Walter et al. (Walter et al., 2003) describe the in vitro priming of T cells by using artificial antigen presenting cells (aAPCs), which is also a suitable way for generating T cells against the peptide of choice. In the present invention, aAPCs were generated by the coupling of preformed MHC:peptide complexes to the surface of polystyrene particles (microbeads) by biotin:streptavidin biochemistry. This system permits the exact control of the MHC density on aAPCs, which allows to selectively elicit high- or low-avidity antigen-specific T cell responses with high efficiency from blood samples. Apart from MHC:peptide complexes, aAPCs should carry other proteins with co-stimulatory activity like anti-CD28 antibodies coupled to their surface. Furthermore, such aAPC-based systems often require the addition of appropriate soluble factors, e. g. cytokines, like interleukin-12.
- Allogeneic cells may also be used in the preparation of T cells and a method is described in detail in WO 97/26328, incorporated herein by reference. For example, in addition to Drosophila cells and T2 cells, other cells may be used to present antigens such as CHO cells, baculovirus-infected insect cells, bacteria, yeast, and vaccinia-infected target cells. In addition, plant viruses may be used (see, for example, Porta et al. (Porta et al., 1994) which describes the development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides.
- The activated T cells that are directed against the peptides of the invention are useful in therapy. Thus, a further aspect of the invention provides activated T cells obtainable by the foregoing methods of the invention.
- Activated T cells, which are produced by the above method, will selectively recognize a cell that aberrantly expresses a polypeptide that comprises an amino acid sequence of SEQ ID NO: 1 to
SEQ ID NO 489. - Preferably, the T cell recognizes the cell by interacting through its TCR with the HLA/peptide-complex (for example, binding). The T cells are useful in a method of killing target cells in a patient whose target cells aberrantly express a polypeptide comprising an amino acid sequence of the invention wherein the patient is administered an effective number of the activated T cells. The T cells that are administered to the patient may be derived from the patient and activated as described above (i.e. they are autologous T cells). Alternatively, the T cells are not from the patient but are from another individual. Of course, it is preferred if the individual is a healthy individual. By “healthy individual” the inventors mean that the individual is generally in good health, preferably has a competent immune system and, more preferably, is not suffering from any disease that can be readily tested for, and detected.
- In vivo, the target cells for the CD8-positive T cells according to the present invention can be cells of the tumor (which sometimes express MHC class II) and/or stromal cells surrounding the tumor (tumor cells) (which sometimes also express MHC class II; (Dengjel et al., 2006)).
- The T cells of the present invention may be used as active ingredients of a therapeutic composition. Thus, the invention also provides a method of killing target cells in a patient whose target cells aberrantly express a polypeptide comprising an amino acid sequence of the invention, the method comprising administering to the patient an effective number of T cells as defined above.
- By “aberrantly expressed” the inventors also mean that the polypeptide is over-expressed compared to levels of expression in normal tissues or that the gene is silent in the tissue from which the tumor is derived but in the tumor it is expressed. By “over-expressed” the inventors mean that the polypeptide is present at a level at least 1.2-fold of that present in normal tissue; preferably at least 2-fold, and more preferably at least 4-fold or 6-fold the level present in normal tissue.
- T cells may be obtained by methods known in the art, e.g. those described above.
- Protocols for this so-called adoptive transfer of T cells are well known in the art. Reviews can be found in: Gattioni et al. and Morgan et al. (Gattinoni et al., 2006; Morgan et al., 2006).
- Another aspect of the present invention includes the use of the peptides complexed with MHC to generate a T-cell receptor whose nucleic acid is cloned and is introduced into a host cell, preferably a T cell. This engineered T cell can then be transferred to a patient for therapy of cancer.
- Any molecule of the invention, i.e. the peptide, nucleic acid, antibody, expression vector, cell, activated T cell, T-cell receptor or the nucleic acid encoding it, is useful for the treatment of disorders, characterized by cells escaping an immune response. Therefore, any molecule of the present invention may be used as medicament or in the manufacture of a medicament. The molecule may be used by itself or combined with other molecule(s) of the invention or (a) known molecule(s).
- The present invention is further directed at a kit comprising:
- (a) a container containing a pharmaceutical composition as described above, in solution or in lyophilized form;
- (b) optionally a second container containing a diluent or reconstituting solution for the lyophilized formulation; and
- (c) optionally, instructions for (i) use of the solution or (ii) reconstitution and/or use of the lyophilized formulation.
- The kit may further comprise one or more of (iii) a buffer, (iv) a diluent, (v) a filter, (vi) a needle, or (v) a syringe. The container is preferably a bottle, a vial, a syringe or test tube; and it may be a multi-use container. The pharmaceutical composition is preferably lyophilized.
- Kits of the present invention preferably comprise a lyophilized formulation of the present invention in a suitable container and instructions for its reconstitution and/or use. Suitable containers include, for example, bottles, vials (e.g. dual chamber vials), syringes (such as dual chamber syringes) and test tubes. The container may be formed from a variety of materials such as glass or plastic. Preferably the kit and/or container contain/s instructions on or associated with the container that indicates directions for reconstitution and/or use. For example, the label may indicate that the lyophilized formulation is to be reconstituted to peptide concentrations as described above. The label may further indicate that the formulation is useful or intended for subcutaneous administration.
- The container holding the formulation may be a multi-use vial, which allows for repeat administrations (e.g., from 2-6 administrations) of the reconstituted formulation. The kit may further comprise a second container comprising a suitable diluent (e.g., sodium bicarbonate solution).
- Upon mixing of the diluent and the lyophilized formulation, the final peptide concentration in the reconstituted formulation is preferably at least 0.15 mg/mL/peptide (=75 μg) and preferably not more than 3 mg/mL/peptide (=1500 μg). The kit may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
- Kits of the present invention may have a single container that contains the formulation of the pharmaceutical compositions according to the present invention with or without other components (e.g., other compounds or pharmaceutical compositions of these other compounds) or may have distinct container for each component.
- Preferably, kits of the invention include a formulation of the invention packaged for use in combination with the co-administration of a second compound (such as adjuvants (e.g. GM-CSF), a chemotherapeutic agent, a natural product, a hormone or antagonist, an anti-angiogenesis agent or inhibitor, an apoptosis-inducing agent or a chelator) or a pharmaceutical composition thereof. The components of the kit may be pre-complexed or each component may be in a separate distinct container prior to administration to a patient. The components of the kit may be provided in one or more liquid solutions, preferably, an aqueous solution, more preferably, a sterile aqueous solution. The components of the kit may also be provided as solids, which may be converted into liquids by addition of suitable solvents, which are preferably provided in another distinct container.
- The container of a therapeutic kit may be a vial, test tube, flask, bottle, syringe, or any other means of enclosing a solid or liquid. Usually, when there is more than one component, the kit will contain a second vial or other container, which allows for separate dosing. The kit may also contain another container for a pharmaceutically acceptable liquid. Preferably, a therapeutic kit will contain an apparatus (e.g., one or more needles, syringes, eye droppers, pipette, etc.), which enables administration of the agents of the invention that are components of the present kit.
- The present formulation is one that is suitable for administration of the peptides by any acceptable route such as oral (enteral), nasal, ophthal, subcutaneous, intradermal, intramuscular, intravenous or transdermal. Preferably, the administration is s.c., and most preferably i.d. administration may be by infusion pump.
- Since the peptides of the invention were isolated from lung cancer (including NSCLC and SCLC), the medicament of the invention is preferably used to treat lung cancer (including NSCLC and SCLC).
- The present invention further relates to a method for producing a personalized pharmaceutical for an individual patient comprising manufacturing a pharmaceutical composition comprising at least one peptide selected from a warehouse of pre-screened TUMAPs, wherein the at least one peptide used in the pharmaceutical composition is selected for suitability in the individual patient. In one embodiment, the pharmaceutical composition is a vaccine. The method could also be adapted to produce T cell clones for down-stream applications, such as TCR isolations, or soluble antibodies, and other treatment options.
- A “personalized pharmaceutical” shall mean specifically tailored therapies for one individual patient that will only be used for therapy in such individual patient, including actively personalized cancer vaccines and adoptive cellular therapies using autologous patient tissue.
- As used herein, the term “warehouse” shall refer to a group or set of peptides that have been pre-screened for immunogenicity and/or over-presentation in a particular tumor type. The term “warehouse” is not intended to imply that the particular peptides included in the vaccine have been pre-manufactured and stored in a physical facility, although that possibility is contemplated. It is expressly contemplated that the peptides may be manufactured de novo for each individualized vaccine produced, or may be pre-manufactured and stored. The warehouse (e.g. in the form of a database) is composed of tumor-associated peptides which were highly overexpressed in the tumor tissue of lung cancer (including NSCLC and SCLC) patients with various HLA-A HLA-B and HLA-C alleles. It may contain MHC class I and MHC class II peptides or elongated MHC class I peptides. In addition to the tumor associated peptides collected from several lung cancers (including NSCLC and SCLC) tissues, the warehouse may contain HLA-
A* 02, HLA-A* 01, HLA-A* 03, HLA-A* 24, HLA-B* 07, HLA-B* 08 and HLA-B* 44 marker peptides. These peptides allow comparison of the magnitude of T-cell immunity induced by TUMAPS in a quantitative manner and hence allow important conclusion to be drawn on the capacity of the vaccine to elicit anti-tumor responses. Secondly, they function as important positive control peptides derived from a “non-self” antigen in the case that any vaccine-induced T-cell responses to TUMAPs derived from “self” antigens in a patient are not observed. And thirdly, it may allow conclusions to be drawn, regarding the status of immunocompetence of the patient. - TUMAPs for the warehouse are identified by using an integrated functional genomics approach combining gene expression analysis, mass spectrometry, and T-cell immunology (XPresident®). The approach assures that only TUMAPs truly present on a high percentage of tumors but not or only minimally expressed on normal tissue, are chosen for further analysis. For initial peptide selection, lung cancer (including NSCLC and SCLC) samples from patients and blood from healthy donors were analyzed in a stepwise approach:
- 1. HLA ligands from the malignant material were identified by mass spectrometry
- 2. Genome-wide messenger ribonucleic acid (mRNA) expression analysis was used to identify genes over-expressed in the malignant tissue (lung cancer (including NSCLC and SCLC)) compared with a range of normal organs and tissues
- 3. Identified HLA ligands were compared to gene expression data. Peptides over-presented or selectively presented on tumor tissue, preferably encoded by selectively expressed or over-expressed genes as detected in
step 2 were considered suitable TUMAP candidates for a multi-peptide vaccine. - 4. Literature research was performed in order to identify additional evidence supporting the relevance of the identified peptides as TUMAPs
- 5. The relevance of over-expression at the mRNA level was confirmed by redetection of selected TUMAPs from step 3 on tumor tissue and lack of (or infrequent) detection on healthy tissues.
- 6. In order to assess, whether an induction of in vivo T-cell responses by the selected peptides may be feasible, in vitro immunogenicity assays were performed using human T cells from healthy donors as well as from lung cancer (including NSCLC and SCLC) patients.
- In an aspect, the peptides are pre-screened for immunogenicity before being included in the warehouse. By way of example, and not limitation, the immunogenicity of the peptides included in the warehouse is determined by a method comprising in vitro T-cell priming through repeated stimulations of CD8+ T cells from healthy donors with artificial antigen presenting cells loaded with peptide/MHC complexes and anti-CD28 antibody.
- This method is preferred for rare cancers and patients with a rare expression profile. In contrast to multi-peptide cocktails with a fixed composition as currently developed, the warehouse allows a significantly higher matching of the actual expression of antigens in the tumor with the vaccine. Selected single or combinations of several “off-the-shelf” peptides will be used for each patient in a multitarget approach. In theory, an approach based on selection of e.g. 5 different antigenic peptides from a library of 50 would already lead to approximately 17 million possible drug product (DP) compositions.
- In an aspect, the peptides are selected for inclusion in the vaccine based on their suitability for the individual patient based on the method according to the present invention as described herein, or as below.
- The HLA phenotype, transcriptomic and peptidomic data is gathered from the patient's tumor material, and blood samples to identify the most suitable peptides for each patient containing “warehouse” and patient-unique (i.e. mutated) TUMAPs. Those peptides will be chosen, which are selectively or over-expressed in the patients' tumor and, where possible, show strong in vitro immunogenicity if tested with the patients' individual PBMCs.
- Preferably, the peptides included in the vaccine are identified by a method comprising: (a) identifying tumor-associated peptides (TUMAPs) presented by a tumor sample from the individual patient; (b) comparing the peptides identified in (a) with a warehouse (database) of peptides as described above; and (c) selecting at least one peptide from the warehouse (database) that correlates with a tumor-associated peptide identified in the patient. For example, the TUMAPs presented by the tumor sample are identified by: (a1) comparing expression data from the tumor sample to expression data from a sample of normal tissue corresponding to the tissue type of the tumor sample to identify proteins that are over-expressed or aberrantly expressed in the tumor sample; and (a2) correlating the expression data with sequences of MHC ligands bound to MHC class I and/or class II molecules in the tumor sample to identify MHC ligands derived from proteins over-expressed or aberrantly expressed by the tumor. Preferably, the sequences of MHC ligands are identified by eluting bound peptides from MHC molecules isolated from the tumor sample, and sequencing the eluted ligands. Preferably, the tumor sample and the normal tissue are obtained from the same patient.
- In addition to, or as an alternative to, selecting peptides using a warehousing (database) model, TUMAPs may be identified in the patient de novo, and then included in the vaccine. As one example, candidate TUMAPs may be identified in the patient by (a1) comparing expression data from the tumor sample to expression data from a sample of normal tissue corresponding to the tissue type of the tumor sample to identify proteins that are over-expressed or aberrantly expressed in the tumor sample; and (a2) correlating the expression data with sequences of MHC ligands bound to MHC class I and/or class II molecules in the tumor sample to identify MHC ligands derived from proteins over-expressed or aberrantly expressed by the tumor. As another example, proteins may be identified containing mutations that are unique to the tumor sample relative to normal corresponding tissue from the individual patient, and TUMAPs can be identified that specifically target the mutation. For example, the genome of the tumor and of corresponding normal tissue can be sequenced by whole genome sequencing: For discovery of non-synonymous mutations in the protein-coding regions of genes, genomic DNA and RNA are extracted from tumor tissues and normal non-mutated genomic germline DNA is extracted from peripheral blood mononuclear cells (PBMCs). The applied NGS approach is confined to the re-sequencing of protein coding regions (exome re-sequencing). For this purpose, exonic DNA from human samples is captured using vendor-supplied target enrichment kits, followed by sequencing with e.g. a HiSeq2000 (Illumina). Additionally, tumor mRNA is sequenced for direct quantification of gene expression and validation that mutated genes are expressed in the patients' tumors. The resultant millions of sequence reads are processed through software algorithms. The output list contains mutations and gene expression. Tumor-specific somatic mutations are determined by comparison with the PBMC-derived germline variations and prioritized. The de novo identified peptides can then be tested for immunogenicity as described above for the warehouse, and candidate TUMAPs possessing suitable immunogenicity are selected for inclusion in the vaccine.
- In one exemplary embodiment, the peptides included in the vaccine are identified by: (a) identifying tumor-associated peptides (TUMAPs) presented by a tumor sample from the individual patient by the method as described above; (b) comparing the peptides identified in a) with a warehouse of peptides that have been prescreened for immunogenicity and overpresentation in tumors as compared to corresponding normal tissue; (c) selecting at least one peptide from the warehouse that correlates with a tumor-associated peptide identified in the patient; and (d) optionally, selecting at least one peptide identified de novo in (a) confirming its immunogenicity.
- In one exemplary embodiment, the peptides included in the vaccine are identified by: (a) identifying tumor-associated peptides (TUMAPs) presented by a tumor sample from the individual patient; and (b) selecting at least one peptide identified de novo in (a) and confirming its immunogenicity.
- Once the peptides for a personalized peptide based vaccine are selected, the vaccine is produced. The vaccine preferably is a liquid formulation consisting of the individual peptides dissolved in between 20-40% DMSO, preferably about 30-35% DMSO, such as about 33% DMSO.
- Each peptide to be included into a product is dissolved in DMSO. The concentration of the single peptide solutions has to be chosen depending on the number of peptides to be included into the product. The single peptide-DMSO solutions are mixed in equal parts to achieve a solution containing all peptides to be included in the product with a concentration of ˜2.5 mg/ml per peptide. The mixed solution is then diluted 1:3 with water for injection to achieve a concentration of 0.826 mg/ml per peptide in 33% DMSO. The diluted solution is filtered through a 0.22 μm sterile filter. The final bulk solution is obtained.
- Final bulk solution is filled into vials and stored at −20° C. until use. One vial contains 700 μL solution, containing 0.578 mg of each peptide. Of this, 500 μL (approx. 400 μg per peptide) will be applied for intradermal injection.
- In addition to being useful for treating cancer, the peptides of the present invention are also useful as diagnostics. Since the peptides were generated from lung cancer (including NSCLC and SCLC) cells and since it was determined that these peptides are not or at lower levels present in normal tissues, these peptides can be used to diagnose the presence of a cancer.
- The presence of claimed peptides on tissue biopsies in blood samples can assist a pathologist in diagnosis of cancer. Detection of certain peptides by means of antibodies, mass spectrometry or other methods known in the art can tell the pathologist that the tissue sample is malignant or inflamed or generally diseased, or can be used as a biomarker for lung cancer (including NSCLC and SCLC). Presence of groups of peptides can enable classification or sub-classification of diseased tissues.
- The detection of peptides on diseased tissue specimen can enable the decision about the benefit of therapies involving the immune system, especially if T-lymphocytes are known or expected to be involved in the mechanism of action. Loss of MHC expression is a well described mechanism by which infected of malignant cells escape immuno-surveillance. Thus, presence of peptides shows that this mechanism is not exploited by the analyzed cells.
- The peptides of the present invention might be used to analyze lymphocyte responses against those peptides such as T cell responses or antibody responses against the peptide or the peptide complexed to MHC molecules. These lymphocyte responses can be used as prognostic markers for decision on further therapy steps. These responses can also be used as surrogate response markers in immunotherapy approaches aiming to induce lymphocyte responses by different means, e.g. vaccination of protein, nucleic acids, autologous materials, adoptive transfer of lymphocytes. In gene therapy settings, lymphocyte responses against peptides can be considered in the assessment of side effects. Monitoring of lymphocyte responses might also be a valuable tool for follow-up examinations of transplantation therapies, e.g. for the detection of graft versus host and host versus graft diseases.
- The present invention will now be described in the following examples which describe preferred embodiments thereof, and with reference to the accompanying figures, nevertheless, without being limited thereto. For the purposes of the present invention, all references as cited herein are incorporated by reference in their entireties.
-
FIGS. 1A through 1N show the over-presentation of various peptides in different cancer tissues (black dots). Upper part: Median MS signal intensities from technical replicate measurements are plotted as dots for single positive normal (grey dots) and tumor samples (black dots) on which the peptide was detected. Tumor and normal samples are grouped according to organ of origin, and box-and-whisker plots represent median, 25th and 75th percentile (box), and minimum and maximum (whiskers) of normalized signal intensities over multiple samples. Normal organs are ordered according to risk categories (blood cells, blood vessels, brain, liver, lung: high risk, grey dots; reproductive organs, breast, prostate: low risk, grey dots; all other organs: medium risk; grey dots). Lower part: The relative peptide detection frequency in every organ is shown as spine plot. Numbers below the panel indicate number of samples on which the peptide was detected out of the total number of samples analyzed for each organ. If the peptide has been detected on a sample but could not be quantified for technical reasons, the sample is included in this representation of detection frequency, but no dot is shown in the upper part of the figure.FIGS. 1A to 1B show the over-presentation of various peptides in HLA-A*24 cancer tissues compared to a panel of HLA-A*24 normal samples (N=19 for normal samples, N=94 for tumor samples). Tissues (from left to right): Normal samples: bloodvess (blood vessels); brain; heart; liver; lung; kidney; pituit (pituitary). Tumor samples: GBM: glioblastoma; GC: gastric cancer; HCC: hepatocellular carcinoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); SCLC: small cell lung cancer.FIG. 1A ) Gene symbol: URB1, Peptide: LYQEILAQL (SEQ ID NO.: 62),FIG. 1B ) Gene symbol: CKAP5, Peptide: VYPASKMFPFI (SEQ ID NO.: 65).FIGS. 1C to 1D show the over-presentation of various peptides in HLA-A*02 cancer tissues compared to a panel of HLA-A*02 normal samples (N=469 for normal samples, N=528 for tumor samples). Tissues (from left to right): Normal samples: blood cells; bloodvess (blood vessels); brain; heart; liver; lung; adipose (adipose tissue); adren.gl. (adrenal gland); bile duct; bladder; BM (bone marrow); esoph (esophagus); eye; gallb (gallbladder); head&neck; kidney; large_int (large intestine); LN (lymph node); nerve; pancreas; parathyr (parathyroid gland); perit (peritoneum); pituit (pituitary); pleura; skel.mus (skeletal muscle); skin; small_int (small intestine); spleen; stomach; thyroid; trachea; ureter; breast; ovary; placenta; prostate; testis; thymus; uterus. Tumor samples: AML: acute myeloid leukemia; BRCA: breast cancer; CCC: cholangiocellular carcinoma; CLL: chronic lymphocytic leukemia; CRC: colorectal cancer; GBC: gallbladder cancer; GBM: glioblastoma; GC: gastric cancer; GEJC: stomach cardia esophagus, cancer; HCC: hepatocellular carcinoma; HNSCC: head-and-neck cancer; MEL: melanoma; NHL: non-hodgkin lymphoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); OC: ovarian cancer; OSCAR: esophageal cancer; PACA: pancreatic cancer; PRCA: prostate cancer; RCC: renal cell carcinoma; SCLC: small cell lung cancer; UBC: urinary bladder carcinoma; UEC: uterine and endometrial cancer.FIG. 1C ) Gene symbol: BMS1, Peptide: VLYDKDAVYV (SEQ ID NO.: 129),FIG. 1D ) Gene symbol: GORASP2, Peptide: NLWGGQGLLGV (SEQ ID NO.: 130).FIGS. 1E to 1F show the over-presentation of various peptides in HLA-A*01 cancer tissues compared to a panel of HLA-A*01 normal samples (N=13 for normal samples, N=40 for tumor samples). Tissues (from left to right): Normal samples: blood cells; brain; heart; liver; lung. Tumor samples: GBM: glioblastoma; HCC: hepatocellular carcinoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); SCLC: small cell lung cancer.FIG. 1E ) Gene symbol: ZNF439, Peptide: LLDISQKNLY (SEQ ID NO.: 154),FIG. 1F ) Gene symbol: MMP12, Peptide: SADDIRGIQSLY (SEQ ID NO.: 174).FIGS. 1G to 1H show the over-presentation of various peptides in HLA-A*03 cancer tissues compared to a panel of HLA-A*03 normal samples (N=12 for normal samples, N=28 for tumor samples). Tissues (from left to right): Normal samples: blood cells; bloodvess (blood vessels); brain; heart; liver; lung. Tumor samples: GBM: glioblastoma; GC: gastric cancer; NHL: non-hodgkin lymphoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); SCLC: small cell lung cancer.FIG. 1G ) Gene symbols: KRT81, KRT121P, KRT83, KRT85, KRT86, Peptide: KLAELEGALQK (SEQ ID NO.: 202),FIG. 1H ) Gene symbol: NDC80, Peptide: SINKPTSER (SEQ ID NO.: 457).FIGS. 1I to 1J show the over-presentation of various peptides in HLA-B*07 cancer tissues compared to a panel of HLA-B*07 normal samples (N=13 for normal samples, N=36 for tumor samples). Tissues (from left to right): Normal samples: blood cells; bloodvess (blood vessels); brain; heart; liver; lung. Tumor samples: GBM: glioblastoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); OC: ovarian cancer; SCLC: small cell lung cancer.FIG. 1I ) Gene symbol: CTHRC1, Peptide: SPQRLRGLL (SEQ ID NO.: 291),FIG. 1J ) Gene symbol: MANEA, Peptide: RPHKPGLYL (SEQ ID NO.: 475).FIGS. 1K to 1L show the over-presentation of various peptides in HLA-B*08 cancer tissues compared to a panel of HLA-B*08 normal samples (N=1 for normal samples, N=22 for tumor samples). Tissues (from left to right): Normal samples: lung. Tumor samples: GBM: glioblastoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); SCLC: small cell lung cancer.FIG. 1K ) Gene symbol: VPS13B, Peptide: DIYQRALNL (SEQ ID NO.: 315),FIG. 1L ) Gene symbol: ARID4A, Peptide: LVKVKVLL (SEQ ID NO.: 317).FIGS. 1M to 1N show the over-presentation of various peptides in HLA-B*44 cancer tissues compared to a panel of HLA-B*44 normal samples (N=15 for normal samples, N=25 for tumor samples). Tissues (from left to right): Normal samples: brain; heart; liver; lung. Tumor samples: GBM: glioblastoma; NSCLCadeno (non-small cell lung cancer adenocarcinoma); NSCLCother (non-small cell lung cancer); NSCLCsquam (non-small cell lung cancer squamous cell); SCLC: small cell lung cancer.FIG. 1M ) Gene symbol: NUP155, Peptide: SEKGVIQVY (SEQ ID NO.: 362),FIG. 1N ) Gene symbol: CLSPN, Peptide: SEIGKAVGF (SEQ ID NO.: 489). -
FIGS. 2A through 2N show exemplary exon expression profile of source genes of the present invention that are over-expressed in different cancer samples. Tumor (black dots) and normal (grey dots) samples are grouped according to organ of origin, and box-and-whisker plots represent median, 25th and 75th percentile (box), and minimum and maximum (whiskers) RPKM values. Normal organs are ordered according to risk categories. FPKM=fragments per kilobase per million mapped reads. Normal samples: blood cells; bloodvess: blood vessel; brain; heart; liver; lung; adipose: adipose tissue; adren.gl.: adrenal gland; bile duct; bladder; BM: bone marrow; cartilage; esoph: esophagus; eye; gallb: gallbladder; head and neck; kidney; large_int: large intestine; LN: lymph node; nerve; pancreas; parathyr: parathyroid; perit: peritoneum; pituit: pituitary; pleura; skel.mus: skeletal muscle; skin; small_int: small intestine; spleen; stomach; thyroid; trachea; ureter; breast; ovary; placenta; prostate; testis; thymus; uterus. Tumor samples: AML: acute myeloid leukemia; BRCA: breast cancer; CCC: cholangiocellular carcinoma; CLL: chronic lymphocytic leukemia; CRC: colorectal cancer; GBC: gallbladder cancer; GBM: glioblastoma; GC: gastric cancer; HCC: hepatocellular carcinoma; HNSCC: head-and-neck cancer; MEL: melanoma; NHL: non-hodgkin lymphoma; NSCLCadeno: non-small cell lung cancer adenocarcinoma; NSCLCother: non-small cell lung cancer; NSCLCsquam: non-small cell lung cancer squamous cell; OC: ovarian cancer; OSCAR: esophageal cancer; PACA: pancreatic cancer; PRCA: prostate cancer; RCC: renal cell carcinoma; SCLC: small cell lung cancer; UBC: urinary bladder carcinoma; UEC: uterine and endometrial cancer.FIG. 2A ) Gene symbol: ADAMTS12, Peptide: QYDPTPLTW (SEQ ID No.: 1),FIG. 2B ) Gene symbol: MMP12, Peptide: VWSNVTPLKF (SEQ ID No.: 2),FIG. 2C ) Gene symbol: MMP12, Peptide: YVDINTFRL (SEQ ID No.: 84),FIG. 2D ) Gene symbol: KIF26B, Peptide: TLYPYQISQL (SEQ ID No.: 87),FIG. 2E ) Gene symbol: CT83, Peptide: NTDNNLAVY (SEQ ID No.: 164),FIG. 2F ) Gene symbol: LAMA1, Peptide: VSDSECLSRY (SEQ ID No.: 189),FIG. 2G ) Gene symbol: KIF26B, Peptide: KVKDTPGLGK (SEQ ID No.: 203),FIG. 2H ) Gene symbol: SP6, Peptide: SLDGAARPK (SEQ ID No.: 205),FIG. 2I ) Gene symbol: PRAME, Peptide: SPSVSQLSVL (SEQ ID No.: 220),FIG. 2J ) Gene symbol: MMP1, Peptide: NPFYPEVEL (SEQ ID No.: 222),FIG. 2K ) Gene symbol: NLRP2, Peptide: FNKRKPLSL (SEQ ID No.: 298),FIG. 2L ) Gene symbol: KIF26B, Peptide: VASPKHCVL (SEQ ID No.: 300),FIG. 2M ) Gene symbols: MAGEA3, MAGEA6, Peptide: MEVDPIGHVYIF (SEQ ID No.: 320),FIG. 2N ) Gene symbol: MMP12, Peptide: QEMQHFLGL (SEQ ID No.: 326). -
FIG. 3A andFIG. 3B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*02+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A* 02 in complex withSeqID No 520 peptide (KIQEMQHFL, Seq ID NO: 520) (FIG. 3A , left panel). After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*02/SeqID 520 (FIG. 3A ). Right panel (FIG. 3B ) show control staining of cells stimulated with irrelevant A*02/peptide complexes. Viable singlet cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 4A andFIG. 4B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*24+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A* 24 in complex withSeqID No 504 peptide (FIG. 4A , left panel). After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*24/SeqID No 504 (VYEKNGYIYF, Seq ID NO: 504) (FIG. 4A ). Right panel (FIG. 4B ) shows control staining of cells stimulated with irrelevant A*24/peptide complexes. Viable singlet cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 5A andFIG. 5B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*01+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A* 01 in complex withSeqID No 153 peptide (KLDRSVFTAY, Seq ID NO: 153) (FIG. 5A , left panel) andSeqID No 173 peptide (RTEFNLNQY, Seq ID NO: 173) (FIG. 5B , left panel), respectively. After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*01/SeqID No 153 (FIG. 5A ) or A*01/SeqID No 173. Right panels (FIGS. 5A and 5B ) show control staining of cells stimulated with irrelevant A*01/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 6A andFIG. 6B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*02+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A* 02 in complex withSeqID No 89 peptide (ILSTTMVTV, Seq ID NO: 89) (FIG. 6A , left panel) andSeqID No 88 peptide (VQMVITEAQKV, Seq ID NO: 88) (FIG. 6B , left panel), respectively. After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*02/SeqID No 89 (FIG. 6A ) or A*02/SeqID No 88 (FIG. 6B ). Right panels (FIGS. 6A and 6B ) show control staining of cells stimulated with irrelevant A*02/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 7A andFIG. 7B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*03+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*03 in complex withSeqID No 208 peptide (GLASRILDAK, Seq ID NO: 208) (FIG. 7A , left panel) andSeqID No 210 peptide (ATSGVPVYK, Seq ID NO: 210) (FIG. 7B , left panel), respectively. After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*03/SeqID No 208 (FIG. 7A ) or A*03/SeqID No 210 (FIG. 7B ). Right panels (FIGS. 7A and 7B ) show control staining of cells stimulated with irrelevant A*03/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 8A andFIG. 8B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-A*24+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-A*24 in complex withSeqID No 15 peptide (KYALLLQDL, Seq ID NO: 15) (FIG. 8A , left panel) andSeqID No 11 peptide (YYSKSVGFMQW, Seq ID NO: 11) (FIG. 8B , left panel), respectively. After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with A*24/SeqID No 15 (FIG. 8A ) or A*24/SeqID No 11 (FIG. 8B ). Right panels (FIGS. 8A and 8B ) show control staining of cells stimulated with irrelevant A*24/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 9A andFIG. 9B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-B*07+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-B*07 in complex withSeqID No 225 peptide (LPFDGPGGIL, Seq ID NO: 225) (FIG. 9A , left panel) andSeqID No 248 peptide (IPNWARQDL, Seq ID NO: 248) (FIG. 9B , left panel), respectively. After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with B*07/SeqID No 225 (FIG. 9A ) or B*07/SeqID No 248 (FIG. 9B ). Right panels (FIGS. 9A and 9B ) show control staining of cells stimulated with irrelevant B*07/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 10A andFIG. 10B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-B*08+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-B*08 in complex withSeqID No 299 peptide (MAQFKEISL, Seq ID NO: 299) (FIG. 10A , left panel) andSeqID No 297 peptide (RAQLKLVAL, Seq ID NO: 297) (FIG. 10B , left panel), respectively. After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining with B*08/SeqID No 299 (FIG. 10A ) or B*08/SeqID No 297 (FIG. 10B ). Right panels (FIGS. 10A and 10B ) show control staining of cells stimulated with irrelevant B*08/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. -
FIG. 11A andFIG. 11B show exemplary results of peptide-specific in vitro CD8+ T cell responses of a healthy HLA-B*44+ donor. CD8+ T cells were primed using artificial APCs coated with anti-CD28 mAb and HLA-B*44 in complex withSeqID No 325 peptide (QEQDVDLVQKY, Seq ID NO: 325) (FIG. 11A , left panel) andSeqID No 331 peptide (EDAQGHIW, Seq ID NO: 331) (FIG. 11B , left panel), respectively. After three cycles of stimulation, the detection of peptide-reactive cells was performed by 2D multimer staining single cells were gated for CD8+ lymphocytes with B*44/SeqID No 325 (FIG. 11A ) or B*44/SeqID No 331 (FIG. 11B ). Right panels (FIGS. 11A and 11B ) show control staining of cells stimulated with irrelevant B*44/peptide complexes. Viable single cells were gated for CD8+ lymphocytes. Boolean gates helped excluding false-positive events detected with multimers specific for different peptides. Frequencies of specific multimer+ cells among CD8+ lymphocytes are indicated. - Identification and Quantitation of Tumor Associated Peptides Presented on the Cell Surface
- Tissue Samples
- Patients' tumor tissues were obtained from: Asterand (Detroit, Mich., USA & Royston, Herts, UK); Bio-Options Inc. (Brea, Calif., USA); Geneticist Inc. (Glendale, Calif., USA); University Hospital Heidelberg (Heidelberg, Germany); ProteoGenex Inc. (Culver City, Calif., USA); Tissue Solutions Ltd (Glasgow, UK); University Hospital Munich (Munich, Germany). Normal tissues were obtained from Asterand (Detroit, Mich., USA & Royston, Herts, UK); Bio-Options Inc. (Brea, Calif., USA); BioServe (Beltsville, Md., USA); Capital BioScience Inc. (Rockville, Md., USA); Centre for Clinical Transfusion Medicine Tuebingen (Tübingen, Germany); Geneticist Inc. (Glendale, Calif., USA); Kyoto Prefectural University of Medicine (KPUM) (Kyoto, Japan); Osaka City University (OCU) (Osaka, Japan); ProteoGenex Inc. (Culver City, Calif., USA); Tissue Solutions Ltd (Glasgow, UK); University Hospital Geneva (Geneva, Switzerland); University Hospital Heidelberg (Heidelberg, Germany); University Hospital Tübingen (Tübingen, Germany); University Hospital Munich (Munich, Germany). Written informed consents of all patients had been given before surgery or autopsy. Tissues were shock-frozen immediately after excision and stored until isolation of TUMAPs at −70° C. or below.
- Isolation of HLA Peptides from Tissue Samples
- HLA peptide pools from shock-frozen tissue samples were obtained by immune precipitation from solid tissues according to a slightly modified protocol (Falk et al., 1991; Seeger et al., 1999) using the HLA-A*02-specific antibody BB7.2, the HLA-A, —B, C-specific antibody W6/32, the HLA-DR specific antibody L243 and the HLA DP specific antibody B7/21, CNBr-activated sepharose, acid treatment, and ultrafiltration.
- Mass Spectrometry Analyses
- The HLA peptide pools as obtained were separated according to their hydrophobicity by reversed-phase chromatography (nanoAcquity UPLC system, Waters) and the eluting peptides were analyzed in LTQ-velos and fusion hybrid mass spectrometers (ThermoElectron) equipped with an ESI source. Peptide pools were loaded directly onto the analytical fused-silica micro-capillary column (75 μm i.d.×250 mm) packed with 1.7 μm C18 reversed-phase material (Waters) applying a flow rate of 400 nL per minute. Subsequently, the peptides were separated using a two-step 180 minute-binary gradient from 10% to 33% B at a flow rate of 300 nL per minute. The gradient was composed of Solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in acetonitrile). A gold coated glass capillary (PicoTip, New Objective) was used for introduction into the nanoESI source. The LTQ-Orbitrap mass spectrometers were operated in the data-dependent mode using a TOP5 strategy. In brief, a scan cycle was initiated with a full scan of high mass accuracy in the orbitrap (R=30 000), which was followed by MS/MS scans also in the orbitrap (R=7500) on the 5 most abundant precursor ions with dynamic exclusion of previously selected ions. Tandem mass spectra were interpreted by SEQUEST at a fixed false discovery rate (q≤0.05) and additional manual control. In cases where the identified peptide sequence was uncertain it was additionally validated by comparison of the generated natural peptide fragmentation pattern with the fragmentation pattern of a synthetic sequence-identical reference peptide.
- Label-free relative LC-MS quantitation was performed by ion counting i.e. by extraction and analysis of LC-MS features (Mueller et al., 2007). The method assumes that the peptide's LC-MS signal area correlates with its abundance in the sample. Extracted features were further processed by charge state deconvolution and retention time alignment (Mueller et al., 2008; Sturm et al., 2008). Finally, all LC-MS features were cross-referenced with the sequence identification results to combine quantitative data of different samples and tissues to peptide presentation profiles. The quantitative data were normalized in a two-tier fashion according to central tendency to account for variation within technical and biological replicates. Thus, each identified peptide can be associated with quantitative data allowing relative quantification between samples and tissues. In addition, all quantitative data acquired for peptide candidates was inspected manually to assure data consistency and to verify the accuracy of the automated analysis. For each peptide, a presentation profile was calculated showing the mean sample presentation as well as replicate variations. The profiles juxtapose cancer samples to a baseline of normal tissue samples. Presentation profiles of peptides exemplary over-presented or exclusively presented on tumors are shown in
FIGS. 1A through 1N . - Table 8 shows the presentation on various cancer entities for selected peptides, and thus the particular relevance of the peptides as mentioned for the diagnosis and/or treatment of the cancers as indicated (e.g. peptide SEQ ID No. 3 for hepatocellular carcinoma, peptide SEQ ID No. 11 for melanoma, ovarian cancer and uterine cancer).
-
TABLE 8 Overview of presentation of selected tumor-associated peptides of the present invention across entities. AML = acute myeloid leukemia, BRCA = breast cancer, CCC = bile duct cancer, GBM = brain cancer, CLL = chronic lymphocytic leukemia, CRC = colorectal carcinoma, OSCAR = esophageal cancer, GBC = gallbladder adenocarcinoma, GC = gastric cancer, HNSCC = head and neck squamous cell carcinoma, HCC = hepatocellular carcinoma, MEL = melanoma, NHL = non-Hodgkin lymphoma, OC = ovarian cancer, PACA = pancreatic cancer, PRCA = prostate cancer and benign prostate hyperplasia, RCC = renal cell carcinoma, UBC = urinary bladder cancer, UEC = uterine cancer. SEQ ID No. Sequence Peptide Presentation on cancer entities 3 YLEKFYGL HCC 6 KYKDYFPVI HCC 9 RILRFPWQL MEL 11 YYSKSVGFMQW MEL, OC, UEC 13 HYTYILEVF GC, UEC 14 SYSSCYSF GC 18 DYIGSVEKW PRCA 19 ILKEDPFLF OC, RCC 21 SYEVRSTF CCC, OC, PRCA 22 TQPGDWTLF MEL 23 KFIISDWRF MEL 24 MYPDLSELLM AML, GBM, OC, UEC 26 KTPTNYYLF GC 28 YYSIISHTL HCC 31 QYQNVLTLW GBM, GC, HCC, MEL, NHL, PRCA, RCC, UEC 32 SLPDLTPTF PRCA 33 KSSVIASLLF GBM 34 MQPRMFFLF AML, GBM, HCC, MEL, UEC 36 KQMEDGHTLF AML, OC 37 QWPWQASLQF GC 38 KYTNWKAFL AML, HCC 41 VIYFMGAIF HCC, PRCA, UEC 43 IQMDEPMAF AML, MEL, OC 44 AYLSAVGTF AML, GC, MEL 45 KYFVPPQLF GC 47 KYADYFLEV GBM, OC, UEC 48 VFIDHPVHLKF UEC 50 SYPELVKMVW AML, GC, HCC 51 KYALLLQEL AML, CLL, GBM, GC, HCC, MEL, OC, PRCA, RCC, UEC 52 KYMKIFHKF OC, UEC 53 KYITNLEDL PRCA 54 LLIKLLQTF AML, GBM, MEL, OC, PRCA, RCC 55 RWMDQRLVF GC, HCC, MEL, UEC 56 VYMIEPLEL GBM,NHL 57 YPSHQEF GBM,RCC 58 QFAAPLRGIYF GBM, HCC 59 KYSTTFFMV GBM 60 TYLSIFDQL AML, GC, HCC, OC 61 NYAENILTL AML, GBM, GC, MEL 62 LYQEILAQL AML, GBM, GC, HCC, MEL, PRCA, RCC 63 VMPSDSFFF MEL, NHL, OC, UEC 64 NYAIFDEGHML GBM, GC 65 VYPASKMFPFI GBM, GC, HCC, MEL, NHL, OC, UEC 66 IYFRDSSFL AML, GC, MEL 67 RYPGKFYRV OC 68 IYQQIIQTY GC, MEL, UEC 69 IMPEKFEFW AML, GC, MEL, NHL, UEC 70 PYTNYTFDF GC, MEL 71 SYMVLAPVF MEL 72 RYEGILYTI GC, HCC, NHL, PRCA 73 SYIGLPLTL GC, HCC, RCC 74 VYDQYFITL AML, PRCA 76 WYGWHFPEL AML, GC, HCC, RCC, UEC 77 AYTLLGHEFV GC, MEL, OC 78 TWFPKTPMLF AML, GBM, GC, HCC, MEL, UEC 79 RYLADLPTL GC, HCC, OC, UEC 80 YYSPLRDLL MEL 82 RFLPSPVVI AML, GC, HCC, MEL, PRCA, UEC 83 TYCQNIKEF AML, OC, PRCA, UEC 84 YVDINTFRL HCC 86 FVIDGFDEL CRC, GC, NHL, OSCAR 87 TLYPYQISQL HCC, OSCAR 90 FLLMHPSI CLL, HCC, RCC 91 FALPGLLHA GC, HCC, NHL, OSCAR, RCC 92 NLRDLLSEV HCC 93 TLQEKILQV CLL, GBM, NHL 95 ITIGVLARV CRC, PACA 96 HLVGGLHTV AML, BRCA, CRC, GC, MEL, OC, PRCA 97 VLALVNSTV CLL 98 LQSSGLTLLL GBM, OC, PRCA 99 FLKEKVPGI CLL, GC, MEL, NHL 100 RQYPTPFQL AML, CLL, CRC, GBM, NHL, OC, RCC 101 FIISDWRFVL HNSCC 102 SLLEQAIAL GC, HCC, NHL, OC, UEC 103 FLYYPDPVL GBC, HCC, MEL, NHL 105 SLLTHIPTA AML, CRC, HNSCC, MEL, OC, OSCAR, RCC, UBC, UEC 106 FIIDTTYPAYV CRC, OC, OSCAR 107 LLQGAIESV BRCA, CLL, CRC, HNSCC, MEL, NHL, UBC, UEC 108 MIIALSLYI AML, BRCA 110 LLADFQALL RCC 111 ALCLLLHLL AML, GBC, HCC, HNSCC, RCC 113 AVLTGLVEV BRCA, CLL, CRC, GC, HCC, NHL, OSCAR, RCC, UEC 114 ILDERQVLL AML, BRCA, CRC, GBC, GC, HCC, HNSCC, MEL, NHL, OC, OSCAR, PACA, UBC, UEC 115 MLLETQDALYV HNSCC 116 VLMEENSKL GBM 117 FLDPNARPLV NHL, OC 118 ALSSVLHSI AML, BRCA, CRC, GBC, HCC, HNSCC, MEL, NHL, OC, OSCAR, PACA, RCC, UBC 119 RTADITVTV AML, CRC, UBC 120 ALLANLPAV GBC, GC, OC, PACA 121 ALVDTLTGI HNSCC, NHL, UEC 122 ALLEMFPEITV BRCA, OC, PRCA 123 LMAFFLAVV CCC, HCC, NHL, OSCAR, RCC 124 SVASVLLYL AML, BRCA, CLL, HCC, HNSCC, NHL, OC 125 VLQPFLPSI AML, BRCA, CCC, CLL, CRC, HCC, HNSCC, MEL, NHL, OC, RCC 126 FLSTVTSV CCC, GBM, HCC, HNSCC, MEL, NHL, OSCAR, PACA, RCC, UBC, UEC 127 GLDGSLVFL AML, CLL, CRC, GBM, HCC, HNSCC, MEL, NHL, OC, OSCAR, UBC 128 FLGTTPTL AML, CLL, GBM, HNSCC, NHL, OC, UBC, UEC 129 VLYDKDAVYV AML, CLL, CRC, HNSCC, NHL, OC, UBC, UEC 130 NLWGGQGLLGV BRCA, GBC, GBM, GC, HCC, OC, PRCA, UEC 131 LLKEFVQRV BRCA, CRC, HCC, HNSCC, OC, OSCAR 132 ALWLVDPLTV CLL, CRC, GBM, HCC 133 MTLPVDAVISV CLL, CRC, HCC, HNSCC, NHL, PRCA, UEC 134 AAEIGDKSWLY GC, MEL, NHL, UEC 135 ASEDSVLLY GBM, GC, MEL, NHL, OSCAR, PRCA, 136 ATDLVVLDRY GBM, GC, HCC, MEL, NHL, OSCAR, PRCA, UEC 137 ATSKFMEFY GBM, MEL, OC, PRCA, UEC 139 ECDMAFHIY MEL, OC 140 ESDREELNY GC, PRCA 141 ESDVGVVVY GBM, GC 142 EVAEPSVLFDLY GC, MEL, NHL, OC, UEC 144 FLDSQNLSAY GC 145 FVDKPVAY GBM, GC, MEL 146 GLNTGSALSY GC, OC 148 GTEFTTILY GC, NHL, OSCAR, PRCA 149 GTEFTTVLY GC, HNSCC, MEL, OSCAR, PRCA 150 GTELLSLVY GC, MEL, NHL, OC, PRCA, UEC 152 HTDSLHLLI GC, MEL, OC 154 LLDISQKNLY GBM, NHL, PRCA 155 LLDPNPHMY PRCA 156 LLDSLREQY GC, NHL, OSCAR 157 LMDRPIFY GBM, GC, MEL, NHL 159 LSDTSVIQFY GBM, GC, HCC, MEL, NHL, PRCA 160 LTEAVLNRY OC 161 LVDDGTHGQY GBM, GC, MEL 162 LVDNSIRELQY GC, HCC, MEL, NHL, OC, UEC 163 NSDSSLTLREFY HCC, PRCA 166 NTQITDIGRY MEL 167 QSDPGTSVLGY GBM 169 RLDTPLYFSY MEL, OC 170 RSDDTAVYY CLL, GC, HCC, NHL, PRCA, UEC 172 RTDSCSSAQAQY MEL 173 RTEFNLNQY GBC, GC, MEL, UEC 177 SSDEVNFLVY GC, MEL, OC, UEC 178 SSDSSTLPKL GC, OC, PRCA 179 STAKSATWTY PRCA 180 STDPWIQMAY GBM, GC, MEL 181 TADGKTYYY GBM, HCC, MEL, PRCA 182 TDYHVRVY GBM, PRCA 184 TSAHPEDSSFY GC, NHL, PRCA 186 TTDIIEKY GC, MEL, 187 VADLHLYLY GC, MEL, OC, PRCA, RCC 190 VTDGINPLIDRY MEL 191 VTDGSLYEGVAY GC, MEL, UEC 192 VTEESFDSKFY GC 193 VTEFSLNTY GBC, GC, MEL, OC, OSCAR, UEC 196 WMFFVINY UEC 197 YADTVRPEFY OC 198 YLDPVQRDLY GBM, GC, HCC, MEL, NHL, OC, UEC 202 KLAELEGALQK MEL, OC, UEC 204 AVFDKFIRY GBM 207 RSFNGLLTMY MEL, OC 210 ATSGVPVYK UEC 211 TVNPVAIHK GBM, NHL, OC, PRCA, UEC 212 KAYEQVMHY UEC 213 LNINMTSPMGTK GBM, GC, MEL, NHL, PACA 214 RTMSEAALVRK GC, NHL, OC, PRCA, UEC 215 MMFSGPQILKL MEL 216 KLYAWELAF AML, GBM, MEL, OC, PRCA 217 RILNQILYY AML, GBM, GC, HCC, MEL, NHL, PRCA, UEC 218 KTLVAELLILK AML, NHL, UEC 219 RLRSSLVFK UEC 220 SPSVSQLSVL UEC 235 MPLKHYLLL MEL, NHL, OC, UEC 237 RPAATAVISL GBM, NHL, OC 244 FPYVRDFVM GBC, MEL, NHL, OC, UEC 247 RALLARLLL NHL 251 VPRSSGQTV BRCA, GBM, UEC 255 MPLLENLYL OC, UEC 256 SPRVPSIEL NHL 259 RPPAAGLRGISL GBM 260 YPQHPGLNA BRCA, GBM, GC, NHL 262 SAYPQRLEI GC 263 HPAPYGDLL UEC 271 MPLPWSLALP MEL 273 MPLLWLRGF UEC 274 TPYQEHVAL OC 275 APHPPLSVV AML, BRCA, MEL 276 LPRAGGAFL NHL, OC, RCC, UEC 277 MPLFEPRVF OC, UEC 278 HPMIDINGHVF UEC 280 VPISEEGTPVL MEL, OC, PRCA, UEC 281 RPRAPVTPA GBM 282 MPQIETRVIL UEC 283 RPHSLSSEL AML, NHL 284 FPVTSIFHTF MEL, OC, UEC 285 FPSFLTNSL AML 286 VPTLRSEL OC 288 FPQKFIDLL UEC 289 VPENHSVAL UEC 290 APYRPPDISL BRCA 292 SPQRLRGLLL NHL 293 RPRSALPRLLLP NHL, UEC 295 KPEGTRIAV NHL, UEC 296 MPMQDIKM UEC 300 VASPKHCVL OC 301 YMHKLLVL AML, NHL, OC, PRCA, UEC 305 ALKLRVAVL NHL 306 ILKVKVGL MEL, OC 308 MLKQKVEEL OSCAR 311 EIRIRVVQM MEL, NHL, OC, PRCA 313 ELKKKEYEEL NHL 314 AIISRLVAL NHL, OSCAR, UBC 316 VIKEKALTL NHL, OC, PRCA, RCC 318 EAAIRSVEL GBM, MEL, NHL, OC 321 AEMLESVIKNY NHL 322 KEVDPAGHSY NHL 323 SEFMQVIF NHL 328 FEYDFLLQRI UEC 330 KEGDLGGKQW NHL 335 KELEATKQY MEL, NHL 337 TENRYCVQL HCC 342 HEFSSPSHL NHL 343 TEFTTVLY GBM, NHL, PRCA 345 IEFIHPQAF GBM, GC, NHL, PRCA 347 ALNPYQYQY UEC 348 AEIQGNINHV UEC 351 EEVNYINTF AML, MEL, NHL, OC 354 TEDPTILRI GC, HCC, OC, PRCA, UEC 356 EEGRVYLF GBM, PRCA 357 RELENCFQIQ UEC 359 DELFSIALY NHL 363 AELDKLTSV GBM, UEC 366 AENLFRAF GBM, NHL, OC 367 GEVHPSEMI UEC 368 GEFPVRVQV AML, GC, OC, UEC 370 YEDLSQKY GBM, NHL, OC 371 GELALKKKI UEC 372 TEGIIMKDF OC, PRCA, RCC, UEC 373 MEMQKSPVF NHL, OC 374 DEVNFLVY CCC, GBC, GBM, NHL, OC, PRCA 375 VYSDLHAFYY GBM, GC, HCC, MEL, PRCA 376 KYVKDFHKF AML, OC, PRCA, UEC 377 VYVGAVNRI GC, HCC, PRCA 378 KFLGPAEHLTF OC 379 NYIVPDKQIF GBM, GC, HCC, MEL, OC, PRCA 380 VFQEKHHVI PRCA 381 TYSKKHFRI MEL, OC 382 IYHSHHPTL AML, MEL, NHL, OC, UEC 383 RYKQDVERF AML, MEL, OC, PRCA, UEC 384 KYVKVFDKF AML, UEC 385 MYINEVERL GBM, MEL, OC, PRCA, UEC 386 VYNDHSIYVW AML, GBM, HCC, MEL, NHL, PRCA, UEC 387 RWLPQKNAAQF AML, GC, HCC, MEL, OC, RCC, UEC 388 FSIPEGALVAV AML, CCC, CLL, CRC, GBC, GC, HCC, HNSCC, MEL, NHL, OC, OSCAR, PRCA, RCC, UBC, UEC 389 TLMEQPLTTL AML, BRCA, CRC, HCC, HNSCC, NHL, OC, PRCA, UEC 390 HIMPTVHTV BRCA, CLL, GBM, HCC, HNSCC, MEL, NHL, OC, OSCAR, UBC, UEC 391 SLIDMRGIETV BRCA, CLL, GBM, HCC, HNSCC, OC, UBC 392 SLFKDQMEL AML, BRCA, CLL, CRC, GBM, HCC, MEL, NHL, OC, PRCA, RCC, UBC, UEC 393 ILLPYLQTL AML, BRCA, CLL, CRC, GBM, HCC, HNSCC, NHL, OC 394 ASEAEMRLFY GBM, GC, MEL, NHL 395 ASEASRLAHY GBM, GC, NHL, PRCA, UEC 396 ASEFGNHYLY GBM, GC, MEL, UEC 397 ASEITSKGASLY GBM, GC, HCC, MEL, OC, PRCA 398 ASEQQALHTVQY GBM, GC, MEL, NHL, PRCA, UEC 399 ATDIPCLLY MEL 400 ATDISRQNEY GBM, GC, NHL, OC 401 DSDESYMEKSLY GC 402 DTDSQRLAY GBM, GC, MEL 403 ELDSKVEVLTY GBM, GC, MEL, OC, PRCA 404 ETARKFLYY GBM 405 ETEEGIYWRY GC 406 ETEQTKFWDY GBM, GC, MEL, OC, RCC, UEC 407 FSDNDKLYLY GBM, GC, MEL, NHL, PRCA, UEC 408 FTEQWTDGY GBM, GC, OC, OSCAR, PRCA, 409 FVDPLVTNY GBM, GC, HCC, MEL, NHL, OC, OSCAR, PRCA, RCC 410 GSDHQSPSSSSY GBM, GC, MEL, OC, PRCA, 411 GTVYEDLRY GBM, GC, HCC, MEL, NHL, OC, OSCAR 412 ILDEVIMGY GBM, GC, MEL, NHL, OC, OSCAR 413 ISDRYYTALY GBM, GC, PRCA, UEC 414 KTDESLTKY GC, NHL, PRCA 415 LLDPRSYHTY GC, NHL 416 LLDTAQKNLY GBM, NHL, PRCA 417 LLEDKHFQSY GBM, GC, HCC, MEL, NHL, OC, PRCA, UEC 418 LSDPSGPKSY GBM, HCC, PRCA 419 LSELKPMSY GBM, GC, HCC, MEL, OSCAR, PRCA, RCC, UEC 420 LTEDKETLQY GC, HCC, MEL, NHL, PRCA 421 LTELLERAAFY GC, MEL, NHL, UEC 422 MIDVTKSYY GBM, GC, MEL, NHL, OC, OSCAR, PRCA, UEC 423 NLDAVHDITVAY GC, MEL, PRCA, UEC 424 NLDEEKQLLY MEL, PRCA 425 NLDIIQQEY GBM, GC, HCC, MEL, NHL, OC, OSCAR, PRCA, UEC 426 NLDQATRVAY NHL 427 NSDEQKITEMVY GC 428 NSELSCQLY GBM, GC, MEL, RCC 429 NTEDSSMSGYLY GC, MEL, 430 NTEGLHHLY GBM, HCC, MEL, PRCA 431 NTSDMMGRMSY GC, MEL, NHL, OC, 432 NVDPVQHTY GBM, GC, HCC, HNSCC, MEL, NHL, OC, OSCAR, PRCA, RCC, UEC 433 QIDTGENLY GC, MEL 434 QTDCAPNNGY GBM, GC, MEL, PRCA 435 QTDDTWRTEY GBM, GC, MEL, NHL, PRCA 436 QTETGTPYMLY GBM, GC, MEL, NHL, OC, OSCAR, PRCA, UEC 437 STDGKHWWEY GC, MEL, NHL, PRCA 438 STDNFNCKY GC, HCC, MEL 439 TLDAGKFQIY GC, HCC, MEL, NHL, PRCA, UEC 440 TLDENPGVRY GBM, GC, HCC, MEL, NHL, PRCA, UEC 441 TLDSALNAASYY GBM, GC, MEL, NHL, PRCA, RCC 442 TSDFSRFTNY GBM 443 TTDFPSESSFEY GC, MEL, NHL, OC, PRCA, UEC 444 TTDTVIRSY GC, MEL, UEC 445 VLDQGKITEY GBM, HCC 446 VTAQVVGTERY GC, MEL 447 VVDEDHELIY GBM 448 YLDIPNPRY GBM, MEL, RCC 449 YLDRGTGNVSFY GBM, GC, HCC, MEL, PRCA, RCC 450 YSDDGQKWTVY MEL 451 YSDSLVQKGY GBM, GC, HCC, OC, PRCA, UEC 452 YVDAVLGKGHQY GBM, GC, MEL, NHL, OC, PRCA, UEC 453 AINTSIKNK PRCA 454 KVYTPSISK GBM, HCC, MEL, UEC 455 RIADIFVKK GC, MEL, NHL, OC, UEC 456 SMFTAILKK AML, MEL, NHL, OC, UEC 457 SINKPTSER GBM 458 GIADFVLKY AML, BRCA, GBM, MEL, NHL, UEC 461 RPILIIVTL NHL 464 YPRPGTPAA AML, GC, MEL, NHL, OC, RCC 465 VPRPIFSQL NHL 468 SPMYGQAGL RCC 469 YPENGVVQM AML, OC 470 SPNSYFRVL RCC 471 KPRPDVTNEL NHL 472 NPRATDAQL AML 473 LPRALLSSL NHL, OC 474 LPRLLPAL AML, NHL 476 AEEEIMKKI NHL 477 QENSYQSRL OC 479 AEIQPQTQV UEC 480 GEVSGLTKDF MEL, NHL, OC 481 RELQHEHSL OC 482 TEREWADEW AML, MEL, NHL, OC, RCC 483 EENDQSTHKW MEL, NHL, OC, RCC, UEC 484 AEVGFVRFF AML, MEL, NHL, OC 485 SEIEDSTKQVF MEL, NHL, OC 486 SEDDPILQI NHL, OC, UEC 487 AEDQLHHSF AML, NHL 488 TEFPIIKMY AML, MEL, NHL, OC, PRCA - Expression Profiling of Genes Encoding the Peptides of the Invention
- Over-presentation or specific presentation of a peptide on tumor cells compared to normal cells is sufficient for its usefulness in immunotherapy, and some peptides are tumor-specific despite their source protein occurring also in normal tissues. Still, mRNA expression profiling adds an additional level of safety in selection of peptide targets for immunotherapies. Especially for therapeutic options with high safety risks, such as affinity-matured TCRs, the ideal target peptide will be derived from a protein that is unique to the tumor and not found on normal tissues.
- RNA Sources and Preparation
- Surgically removed tissue specimens were provided as indicated above (see Example 1) after written informed consent had been obtained from each patient. Tumor tissue specimens were snap-frozen immediately after surgery and later homogenized with mortar and pestle under liquid nitrogen. Total RNA was prepared from these samples using TRI Reagent (Ambion, Darmstadt, Germany) followed by a cleanup with RNeasy (QIAGEN, Hilden, Germany); both methods were performed according to the manufacturer's protocol.
- Total RNA from healthy human tissues for RNASeq experiments was obtained from: Asterand (Detroit, Mich., USA & Royston, Herts, UK); Bio-Options Inc. (Brea, Calif., USA); BioCat GmbH (Heidelberg, Germany); BioServe (Beltsville, Md., USA); Capital BioScience Inc. (Rockville, Md., USA); Geneticist Inc. (Glendale, Calif., USA); Heidelberg University Hospital (Thoraxklinik, Heidelberg, Germany); Istituto Nazionale Tumori “Pascale” (Naples, Italy); ProteoGenex Inc. (Culver City, Calif., USA).
- Total RNA from tumor tissues for RNASeq experiments was obtained from: Asterand (Detroit, Mich., USA & Royston, Herts, UK); Geneticist Inc. (Glendale, Calif., USA); ProteoGenex Inc. (Culver City, Calif., USA); Tissue Solutions Ltd (Glasgow, UK); University Hospital Bonn (Bonn, Germany); University Hospital Tübingen (Tübingen, Germany).
- Quality and quantity of all RNA samples were assessed on an Agilent 2100 Bioanalyzer (Agilent, Waldbronn, Germany) using the RNA 6000 Pico LabChip Kit (Agilent).
- RNAseq Experiments
- Gene expression analysis of—tumor and normal tissue RNA samples was performed by next generation sequencing (RNAseq) by CeGaT (Tübingen, Germany). Briefly, sequencing libraries are prepared using the Illumina HiSeq v4 reagent kit according to the provider's protocol (Illumina Inc., San Diego, Calif., USA), which includes RNA fragmentation, cDNA conversion and addition of sequencing adaptors. Libraries derived from multiple samples are mixed equimolar and sequenced on the Illumina HiSeq 2500 sequencer according to the manufacturer's instructions, generating 50 bp single end reads. Processed reads are mapped to the human genome (GRCh38) using the STAR software. Expression data are provided on transcript level as RPKM (Reads Per Kilobase per Million mapped reads, generated by the software Cufflinks) and on exon level (total reads, generated by the software Bedtools), based on annotations of the ensembl sequence database (Ensembl77). Exon reads are normalized for exon length and alignment size to obtain RPKM values.
- Exemplary expression profiles of source genes of the present invention that are highly over-expressed or exclusively expressed in lung cancer (including NSCLC and SCLC) are shown in
FIGS. 2A through 2N . Expression scores for further exemplary genes are shown in Table 9. -
TABLE 9 Expression scores. The table lists peptides from genes that are very highly over- expressed in lung cancer tissues (NSCLCadeno = non-small cell lung carcinoma adenocarcinoma; NSCLCsquam = non-small cell lung carcinoma squamous cell; NSCLCother = non-small cell lung carcinoma, other subtypes; SCLC = small cell lung carcinoma) compared to a panel of normal tissues (+++), highly over-expressed in tumors compared to a panel of normal tissues (++) or over-expressed in tumors compared to a panel of normal tissues (+).The baseline for this score was calculated from measurements of the following relevant normal tissues: adipose tissue, adrenal gland, bile duct, blood cells, blood vessels, bone marrow, brain, cartilage, esophagus, eye, gallbladder, heart, head&neck, kidney, large intestine, liver, lung, lymph node, nerve, parathyroid, pancreas, pituitary, pleura, skeletal muscle, skin, small intestine, spleen, stomach, thyroid gland, trachea, urinary bladder, ureter. In case expression data for several samples of the same tissue type were available, the arithmetic mean of all respective samples was used for the calculation. SEQ ID Gene Expression No Sequence NSCLCadeno NSCLCsquam NSCLCother SCLC 1 QYDPTPLTW +++ +++ + + 2 VWSNVTPLKF +++ +++ + +++ 3 YLEKFYGL +++ +++ +++ 4 SYEKVINYL +++ +++ 5 RYMKKDYLI +++ 6 KYKDYFPVI + +++ ++ 7 VQQWSVAVF +++ 8 PFLPPAACFF +++ 9 RILRFPWQL +++ ++ 10 VWSDVTPLNF ++ +++ 11 YYSKSVGFMQW ++ 12 STIRGELFFF ++ ++ 13 HYTYILEVF ++ ++ 14 SYSSCYSF ++ 15 KYALLLQDL + ++ 16 TYNPDFSSL ++ 17 YYADKKTFIVL + ++ + 18 DYIGSVEKW + + 19 ILKEDPFLF + 20 EFTTVLYNF + 21 SYEVRSTF + + + 22 TQPGDWTLF + 23 KFIISDWRF + 24 MYPDLSELLM + + 25 SYNGYVFYL + + 26 KTPTNYYLF + 27 NYTLYPITF + 28 YYSIISHTL + + 29 VYPLLSRLYW + + 30 QYLPGWTVLF + 31 QYQNVLTLW + 32 SLPDLTPTF + + 33 KSSVIASLLF + 34 MQPRMFFLF + + 35 KYLEESVWL + 36 KQMEDGHTLF + 37 QWPWQASLQF + 38 KYTNWKAFL + 39 LIFMLANVF + 40 QYEPPSAPSTTF + 41 VIYFMGAIF + 42 TLPNTIYRF + + 43 IQMDEPMAF + 44 AYLSAVGTF + 45 KYFVPPQLF + 46 AFPVTSIFHTF + + 47 KYADYFLEV + 48 VFIDHPVHLKF + 49 LYISEVRNI + 50 SYPELVKMVW + 51 KYALLLQEL + 52 KYMKIFHKF + 53 KYITNLEDL + 54 LLIKLLQTF + 55 RWMDQRLVF + 56 VYMIEPLEL + 57 YPSHQEF + 84 YVDINTFRL +++ +++ + +++ 85 YIDEFQSLV ++ 86 FVIDGFDEL ++ ++ ++ 87 TLYPYQISQL ++ ++ + ++ 88 VQMVITEAQKV ++ ++ 89 ILSTTMVTV ++ ++ + + 90 FLLMHPSI ++ 91 FALPGLLHA ++ ++ 92 NLRDLLSEV ++ ++ + + 93 TLQEKILQV ++ 94 VLPDIETLIGV ++ ++ 95 ITIGVLARV ++ 96 HLVGGLHTV + 97 VLALVNSTV + 98 LQSSGLTLLL + + + 99 FLKEKVPGI + 100 RQYPTPFQL + + 101 FIISDWRFVL + 102 SLLEQAIAL + 103 FLYYPDPVL + 104 GMLDIFWGV + 105 SLLTHIPTA + 106 FIIDTTYPAYV + 107 LLQGAIESV + 108 MIIALSLYI + + 109 LLLGSIGLLGV + 110 LLADFQALL + 111 ALCLLLHLL + 112 SVSDGIHSV + 113 AVLTGLVEV + 114 ILDERQVLL + + 115 MLLETQDALYV + + 116 VLMEENSKL + 117 FLDPNARPLV + 118 ALSSVLHSI + 119 RTADITVTV + + 120 ALLANLPAV + + 121 ALVDTLTGI + 122 ALLEMFPEITV + 123 LMAFFLAVV + 124 SVASVLLYL + 138 DSDSCHFNY ++ 139 ECDMAFHIY + 140 ESDREELNY + 143 FIDYPKKEDY ++ + 146 GLNTGSALSY ++ + 147 GSSDSSTLPKL + 148 GTEFTTILY + 149 GTEFTTVLY + 150 GTELLSLVY + 153 KLDRSVFTAY ++ 155 LLDPNPHMY + ++ 158 LSDLLKQGY ++ + 160 LTEAVLNRY ++ ++ + ++ 163 NSDSSLTLREFY + + 164 NTDNNLAVY +++ +++ + 165 NTDPTAPPY + + 166 NTQITDIGRY + + 167 QSDPGTSVLGY + 168 QTDHPQPILDRY + ++ 171 RSDPVTLNVLY ++ 172 RTDSCSSAQAQY + 174 SADDIRGIQSLY +++ +++ + +++ 175 SDVTPLTF +++ ++ 176 SRTINVSNLY + + 177 SSDEVNFLVY + + 178 SSDSSTLPKL + 179 STAKSATWTY ++ 183 TLEDIATSHLY + 185 TSDSNLNKY ++ 188 VSDAKLDKY + 189 VSDSECLSRY +++ +++ 190 VTDGINPLIDRY ++ 192 VTEESFDSKFY + 193 VTEFSLNTY ++ + 194 WADTKMIEY ++ + 195 VVDSVGGYLY + ++ 199 YLPQHTIETY + 200 YSDEDVTKY + ++ 201 YVGKEHMFY +++ +++ 202 KLAELEGALQK +++ + 203 KVKDTPGLGK ++ ++ + + 204 AVFDKFIRY ++ 205 SLDGAARPK + + ++ 206 KLIDLSQVMY + 207 RSFNGLLTMY + + 208 GLASRILDAK + + 209 RTQIPMSEK + 210 ATSGVPVYK + + 211 TVNPVAIHK + 212 KAYEQVMHY + 213 LNINMTSPMGTK + 214 RTMSEAALVRK + 215 MMFSGPQILKL + 216 KLYAWELAF + 217 RILNQILYY + 218 KTLVAELLILK + + 219 RLRSSLVFK + 220 SPSVSQLSVL ++ +++ +++ 221 VPDVAQFVL +++ +++ 222 NPFYPEVEL +++ +++ 223 YPKDIYSSF ++ +++ 224 GPQPWHAAL +++ ++ + 225 LPFDGPGGIL +++ ++ 226 SPRMSGLLSQT +++ 227 YPRGNHWAVGH +++ 228 YPRGNHWAVGHL +++ 229 VPLPAGGGTV +++ 230 VPLPAGGGTVL +++ 231 RPRALRDLQL + ++ + 232 RPRALRDLQLL + ++ + 233 KPYQGNPTF ++ 234 RAKNAGVTI ++ ++ 235 MPLKHYLLL ++ 236 RVRGGEDGDRAL ++ 237 RPAATAVISL ++ ++ 238 KPGPPWAAF ++ 239 YVPSASLFML + ++ 240 SPREVTTVL ++ 241 SARLATDAL ++ 242 SPRWLPVSL ++ 243 RPIENRILIL + ++ 244 FPYVRDFVM ++ + 245 RIREHVPQL ++ + 246 TPLPAVIVL + ++ 247 RALLARLLL ++ + 248 IPNWARQDL ++ + 249 VPSSRILQL ++ + 250 SPRDFLSGL ++ 251 VPRSSGQTV + + ++ 252 SPDIRNTTV ++ 253 RVIDAVRFTL ++ 254 NPFPHLITL + + + 255 MPLLENLYL + + 256 SPRVPSIEL + 257 LPRIPFADV + + ++ 258 LPRGPLASL + + 259 RPPAAGLRGISL + 260 YPQHPGLNA + + 261 APSARVGVC + + + 262 SAYPQRLEI + 263 HPAPYGDLL + + 264 RPILIHTL + 265 SPRQPPRLV + 266 HAYPPGPGL + 267 HPELVNHIVF + 268 YPLFRGINL + + 269 APRAPRLML + 270 APGPRFLVT + + 271 MPLPWSLALP + 272 MPLPWSLALPL + 273 MPLLWLRGF + + + 274 TPYQEHVAL + 275 APHPPLSW + 276 LPRAGGAFL + + 277 MPLFEPRVF + + + 278 HPMIDINGIIVF + + 279 SPARASPAL + 280 VPISEEGTPVL + 281 RPRAPVTPA + 282 MPQIETRVIL + + 283 RPHSLSSEL + + 284 FPVTSIFHTF + + 285 FPSFLTNSL + 286 VPTLRSEL + 287 APREEQQRSL + 288 FPQKFIDLL + 289 VPENHSVAL + 290 APYRPPDISL + 296 MPMQDIKM +++ +++ +++ 297 RAQLKLVAL +++ 298 FNKRKPLSL + ++ + 299 MAQFKEISL + ++ + 300 VASPKHCVL ++ ++ + + 301 YMHKLLVL ++ 302 HLLQKQTSI ++ 303 LPFPKFTV ++ 304 ELKKLYCQI + 305 ALKLRVAVL + 306 ILKVKVGL + 307 ILLPRTVSL + + 308 MLKQKVEEL + 309 DAIQRKYSC + 310 LPPKKFVL + 311 EIRIRWQM + 312 EAMLRNKEL + 313 ELKKKEYEEL + 314 AIISRLVAL + 319 AEMLERVIKNY ++ +++ +++ 320 MEVDPIGHVYIF +++ +++ +++ 321 AEMLESVIKNY + +++ +++ 322 KEVDPAGHSY +++ +++ 323 SEFMQVIF +++ +++ 324 TDSIHAWTF +++ 325 QEQDVDLVQKY +++ +++ 326 QEMQHFLGL +++ +++ +++ 327 YEIEARNQVF +++ +++ +++ 328 FEYDFLLQRI ++ +++ +++ 329 NEHPSNNW ++ +++ 330 KEGDLGGKQW ++ ++ + + 331 EDAQGHIW ++ ++ 332 MEVPVIKI + ++ + ++ 333 AETLSTIQI ++ ++ + 334 AEDEPAAAHL ++ ++ + + 335 KELEATKQY ++ ++ + 336 ASSSGPMRWW ++ ++ 337 TENRYCVQL ++ 338 SEGSEPALLHSW ++ 339 SEPALLHSW ++ 340 TEFSLNTY ++ + 341 EEIEGKGSFTYF ++ 342 HEFSSPSHL ++ 343 TEFTTVLY + 344 EEATGQFHVY + 345 IEFIHPQAF + + 346 VEAPGPVHVYW + + + 347 ALNPYQYQY + 348 AEIQGNINHV + 349 AEQDMRELTY + 350 GECDVFKEIL + 351 EEVNYINTF + 352 NEVLTYIKF + 353 GEIIMQNNW + 354 TEDPTILRI + 355 SDMVRFHLF + + + 356 EEGRVYLF + + 357 RELENCFQIQ + 358 KEADIHFLI + + + 359 DELFSIALY + 360 AEVPTGVII + 361 SENLFFASF + 362 SEKGVIQVY + 363 AELDKLTSV + 364 AETPIQNVI + 365 SEMNVNMKY + 366 AENLFRAF + + 367 GEVHPSEMI + + 368 GEFPVRVQV + 369 EEIERFFKL + 370 YEDLSQKY + 371 GELALKKKI + 372 TEGIIMKDF + 373 MEMQKSPVF + 374 DEVNFLVY + + 375 VYSDLHAFYY ++ 376 KYVKDFHKF + 377 VYVGAVNRI + 378 KFLGPAEHLTF + 388 FSIPEGALVAV + 389 TLMEQPLTTL + 401 DSDESYMEKSLY + 402 DTDSQRLAY + 405 ETEEGIYWRY ++ 409 FVDPLVTNY + 419 LSELKPMSY + 427 NSDEQKITEMVY + 429 NTEDSSMSGYLY + 432 NVDPVQHTY + 438 STDNFNCKY + + 442 TSDFSRFTNY + 450 YSDDGQKWTVY ++ 454 KVYTPSISK + 455 RIADIFVKK + + 456 SMFTAILKK + 457 SINKPTSER + 458 GIADFVLKY + 459 RPMQQARAQL +++ 460 MPMAGDMNGL ++ 461 RPILIIVTL + 462 RPFHTRATV ++ ++ + + 463 TPKAGPTL ++ ++ + + 464 YPRPGTPAA + 465 VPRPIFSQL + 466 APYKSVTSL + + 467 KPFSSFTSM + 468 SPMYGQAGL + 469 YPENGVVQM + 470 SPNSYFRVL + 471 KPRPDVTNEL + 472 NPRATDAQL + 476 AEEEIMKKI +++ +++ + +++ 477 QENSYQSRL ++ +++ 478 SEIEQEIGSL ++ ++ 479 AEIQPQTQV + + + 480 GEVSGLTKDF + 481 RELQHEHSL + + 482 TEREWADEW + 483 EENDQSTHKW + 484 AEVGFVRFF + 485 SEIEDSTKQVF + 486 SEDDPILQI + 487 AEDQLHHSF + 488 TEFPIIKMY + 489 SEIGKAVGF + - In Vitro Immunogenicity for MHC Class I Presented Peptides
- In order to obtain information regarding the immunogenicity of the TUMAPs of the present invention, the inventors performed investigations using an in vitro T-cell priming assay based on repeated stimulations of CD8+ T cells with artificial antigen presenting cells (aAPCs) loaded with peptide/MHC complexes and anti-CD28 antibody. This way the inventors could show immunogenicity for HLA-A*02:01, HLA-A*24:02, HLA-A*01:01, HLA-A*03:01, HLA-B*07:02, HLA-B*08:01 and HLA-B*44:02 restricted TUMAPs of the invention, demonstrating that these peptides are T-cell epitopes against which CD8+ precursor T cells exist in humans (Table 10a and Table 10b).
- In Vitro Priming of CD8+ T Cells
- In order to perform in vitro stimulations by artificial antigen presenting cells loaded with peptide-MHC complex (pMHC) and anti-CD28 antibody, the inventors first isolated CD8+ T cells from fresh HLA-
A* 02, HLA-A* 24, HLA-A* 01, HLA-A* 03, HLA-B* 07, HLA-B*08 or HLA-B*44 leukapheresis products via positive selection using CD8 microbeads (Miltenyi Biotec, Bergisch-Gladbach, Germany) of healthy donors obtained from the University clinics Mannheim, Germany, after informed consent. - PBMCs and isolated CD8+ lymphocytes were incubated in T-cell medium (TCM) until use consisting of RPMI-Glutamax (Invitrogen, Karlsruhe, Germany) supplemented with 10% heat inactivated human AB serum (PAN-Biotech, Aidenbach, Germany), 100 U/ml Penicillin/100 μg/ml Streptomycin (Cambrex, Cologne, Germany), 1 mM sodium pyruvate (CC Pro, Oberdorla, Germany), 20 μg/ml Gentamycin (Cambrex). 2.5 ng/ml IL-7 (PromoCell, Heidelberg, Germany) and 10 U/ml IL-2 (Novartis Pharma, Nürnberg, Germany) were also added to the TCM at this step.
- Generation of pMHC/anti-CD28 coated beads, T-cell stimulations and readout was performed in a highly defined in vitro system using four different pMHC molecules per stimulation condition and 8 different pMHC molecules per readout condition.
- The purified co-stimulatory mouse IgG2a anti human CD28 Ab 9.3 (Jung et al., 1987) was chemically biotinylated using Sulfo-N-hydroxysuccinimidobiotin as recommended by the manufacturer (Perbio, Bonn, Germany). Beads used were 5.6 μm diameter streptavidin coated polystyrene particles (Bangs Laboratories, Illinois, USA).
- pMHC used for positive and negative control stimulations were A*02:01/MLA-001 (peptide ELAGIGILTV (SEQ ID NO. 532) from modified Melan-A/MART-1) and A*02:01/DDX5-001 (YLLPAIVHI from DDX5, SEQ ID NO. 533), respectively.
- 800.000 beads/200 μl were coated in 96-well plates in the presence of 4×12.5 ng different biotin-pMHC, washed and 600 ng biotin anti-CD28 were added subsequently in a volume of 200 μl. Stimulations were initiated in 96-well plates by co-incubating 1×106 CD8+ T cells with 2×105 washed coated beads in 200 μl TCM supplemented with 5 ng/ml IL-12 (PromoCell) for 3 days at 37° C. Half of the medium was then exchanged by fresh TCM supplemented with 80 U/ml IL-2 and incubating was continued for 4 days at 37° C. This stimulation cycle was performed for a total of three times. For the pMHC multimer readout using 8 different pMHC molecules per condition, a two-dimensional combinatorial coding approach was used as previously described (Andersen et al., 2012) with minor modifications encompassing coupling to 5 different fluorochromes. Finally, multimeric analyses were performed by staining the cells with Live/dead near IR dye (Invitrogen, Karlsruhe, Germany), CD8-FITC antibody clone SK1 (BD, Heidelberg, Germany) and fluorescent pMHC multimers. For analysis, a BD LSRII SORP cytometer equipped with appropriate lasers and filters was used. Peptide specific cells were calculated as percentage of total CD8+ cells. Evaluation of multimeric analysis was done using the FlowJo software (Tree Star, Oreg., USA). In vitro priming of specific multimer+CD8+ lymphocytes was detected by comparing to negative control stimulations. Immunogenicity for a given antigen was detected if at least one evaluable in vitro stimulated well of one healthy donor was found to contain a specific CD8+ T-cell line after in vitro stimulation (i.e. this well contained at least 1% of specific multimer+ among CD8+ T-cells and the percentage of specific multimer+ cells was at least 10× the median of the negative control stimulations).
- In Vitro Immunogenicity for Lung Cancer (Including NSCLC and SCLC) Peptides
- For tested HLA class I peptides, in vitro immunogenicity could be demonstrated by generation of peptide specific T-cell lines. Exemplary flow cytometry results after TUMAP-specific multimer staining for 16 peptides of the invention are shown in
FIGS. 3A through 11B together with corresponding negative controls. Results for 152 peptides from the invention are summarized in Table 10a and Table 10b. -
TABLE 10a in vitro immunogenicity of HLA class I peptides of the invention Exemplary results of in vitro immunogenicity experiments conducted by the applicant for the peptides of the invention. <20% = +; 20%-49% = ++; 50%-69% = +++; > = 70% = ++++ Wells positive Seq ID No Sequence [%] 491 KYLEKYYNL ++ 492 NYEDHFPLL ++ 493 TYKYVDINTF + 494 RYLEKFYGL + 495 SYNDALLTF +++ 496 VFMKDGFFYF + 498 EYIRALQQL + 500 VWSDVTPLTF + 504 VYEKNGYIYF ++++ 510 KVLEHVVRV + 513 KLVELEHTL + 515 KIFEMLEGV + 516 YTFSGDVQL + 519 KIQEILTQV + 520 KIQEMQHFL + 525 RLDDLKMTV + 528 RLLDSVSRL + -
TABLE 10b in vitro immunogenicity of HLA class I peptides of the invention Exemplary results of in vitro immunogenicity experiments conducted by the applicant for the peptides of the invention. <20% = +; 20%-49% = ++; 50%-69% = +++; > = 70% = ++++ Seq ID No Sequence Wells positive [%] HLA 136 ATDLVVLDRY ″+″ A*01 143 FIDYPKKEDY ″+″ A*01 153 KLDRSVFTAY ″++++″ A*01 160 LTEAVLNRY ″++″ A*01 164 NTDNNLAVY ″+″ A*01 173 RTEFNLNQY ″++++″ A*01 174 SADDIRGIQSLY ″+″ A*01 185 TSDSNLNKY ″+″ A*01 187 VADLHLYLY ″+++″ A*01 189 VSDSECLSRY ″++″ A*01 193 VTEFSLNTY ″+″ A*01 201 YVGKEHMFY ″+″ A*01 395 ASEASRLAHY ″++″ A*01 398 ASEQQALHTVQY ″+″ A*01 405 ETEEGIYWRY ″+″ A*01 430 NTEGLHHLY ″+″ A*01 436 QTETGTPYMLY ″+″ A*01 451 YSDSLVQKGY ″+″ A*01 452 YVDAVLGKGHQY ″+″ A*01 84 YVDINTFRL ″+″ A*02 85 YIDEFQSLV ″++″ A*02 87 TLYPYQISQL ″++″ A*02 88 VQMVITEAQKV ″++″ A*02 89 ILSTTMVTV ″+++″ A*02 93 TLQEKILQV ″+″ A*02 94 VLPDIETLIGV ″+++″ A*02 95 ITIGVLARV ″++++″ A*02 96 HLVGGLHTV ″+++″ A*02 97 VLALVNSTV ″+++″ A*02 101 FIISDWRFVL ″+″ A*02 125 VLQPFLPSI ″++++″ A*02 127 GLDGSLVFL ″++″ A*02 128 FLGTTPTL ″+″ A*02 129 VLYDKDAVYV ″++″ A*02 130 NLWGGQGLLGV ″+″ A*02 131 LLKEFVQRV ″++++″ A*02 132 ALWLVDPLTV ″+++″ A*02 133 MTLPVDAVISV ″+″ A*02 392 SLFKDQMEL ″+″ A*02 393 ILLPYLQTL ″+″ A*02 205 SLDGAARPK ″++″ A*03 208 GLASRILDAK ″+″ A*03 209 RTQIPMSEK ″+″ A*03 210 ATSGVPVYK ″++++″ A*03 214 RTMSEAALVRK ″+″ A*03 218 KTLVAELLILK ″+″ A*03 1 QYDPTPLTW ″+″ A*24 2 VWSNVTPLKF ″+″ A*24 4 SYEKVINYL ″+″ A*24 6 KYKDYFPVI ″+″ A*24 8 PFLPPAACFF ″+″ A*24 10 VWSDVTPLNF ″+″ A*24 11 YYSKSVGFMQW ″++″ A*24 13 HYTYILEVF ″+++″ A*24 15 KYALLLQDL ″+++″ A*24 16 TYNPDFSSL ″+″ A*24 59 KYSTTFFMV ″++″ A*24 60 TYLSIFDQL ″+″ A*24 61 NYAENILTL ″++″ A*24 62 LYQEILAQL ″+″ A*24 65 VYPASKMFPFI ″+″ A*24 66 IYFRDSSFL ″++″ A*24 72 RYEGILYTI ″+″ A*24 76 WYGWHFPEL ″+″ A*24 79 RYLADLPTL ″+″ A*24 83 TYCQNIKEF ″+″ A*24 375 VYSDLHAFYY ″+″ A*24 379 NYIVPDKQIF ″+″ A*24 380 VFQEKHHVI ″+″ A*24 383 RYKQDVERF ″+++″ A*24 384 KYVKVFDKF ″+++″ A*24 386 VYNDHSIYVW ″++″ A*24 220 SPSVSQLSVL ″++++″ B*07 221 VPDVAQFVL ″++″ B*07 222 NPFYPEVEL ″+″ B*07 223 YPKDIYSSF ″++″ B*07 224 GPQPWHAAL ″++″ B*07 225 LPFDGPGGIL ″++++″ B*07 226 SPRMSGLLSQT ″+++″ B*07 228 YPRGNHWAVGHL ″++″ B*07 231 RPRALRDLQL ″++″ B*07 232 RPRALRDLQLL ″+++″ B*07 233 KPYQGNPTF ″+″ B*07 237 RPAATAVISL ″+″ B*07 241 SARLATDAL ″+++″ B*07 242 SPRWLPVSL ″++++″ B*07 244 FPYVRDFVM ″+″ B*07 245 RIREHVPQL ″++″ B*07 248 IPNWARQDL ″++++″ B*07 249 VPSSRILQL ″+++″ B*07 250 SPRDFLSGL ″+″ B*07 252 SPDIRNTTV ″+″ B*07 274 TPYQEHVAL ″+″ B*07 285 FPSFLTNSL ″++++″ B*07 292 SPQRLRGLLL ″+++″ B*07 293 RPRSALPRLLLP ″++″ B*07 294 GPTPNTGAAL ″+++″ B*07 460 MPMAGDMNGL ″++″ B*07 462 RPFHTRATV ″++″ B*07 463 TPKAGPTL ″+″ B*07 473 LPRALLSSL ″++″ B*07 474 LPRLLPAL ″+++″ B*07 320 MEVDPIGHVYIF ″+″ B*44 322 KEVDPAGHSY ″++″ B*44 323 SEFMQVIF ″+″ B*44 325 QEQDVDLVQKY ″+″ B*44 326 QEMQHFLGL ″+″ B*44 328 FEYDFLLQRI ″+″ B*44 329 NEHPSNNW ″+″ B*44 330 KEGDLGGKQW ″+″ B*44 331 EDAQGHIW ″++″ B*44 333 AETLSTIQI ″+″ B*44 334 AEDEPAAAHL ″+″ B*44 337 TENRYCVQL ″++″ B*44 338 SEGSEPALLHSW ″+″ B*44 339 SEPALLHSW ″++″ B*44 342 HEFSSPSHL ″+″ B*44 476 AEEEIMKKI ″+″ B*44 477 QENSYQSRL ″+″ B*44 297 RAQLKLVAL ″+″ B*08 298 FNKRKPLSL ″+″ B*08 299 MAQFKEISL ″++++″ B*08 300 VASPKHCVL ″+″ B*08 303 LPFPKFTV ″++″ B*08 305 ALKLRVAVL ″+″ B*08 306 ILKVKVGL ″+″ B*08 307 ILLPRTVSL ″+″ B*08 308 MLKQKVEEL ″+″ B*08 311 EIRIRVVQM ″+″ B*08 312 EAMLRNKEL ″+″ B*08 313 ELKKKEYEEL ″+″ B*08 314 AIISRLVAL ″++″ B*08 315 DIYQRALNL ″+″ B*08 316 VIKEKALTL ″+″ B*08 318 EAAIRSVEL ″++″ B*08 - Synthesis of Peptides
- All peptides were synthesized using standard and well-established solid phase peptide synthesis using the Fmoc-strategy. Identity and purity of each individual peptide have been determined by mass spectrometry and analytical RP-HPLC. The peptides were obtained as white to off-white lyophilizes (trifluoro acetate salt) in purities of >50%. All TUMAPs are preferably administered as trifluoro-acetate salts or acetate salts, other salt-forms are also possible.
- MHC Binding Assays
- Candidate peptides for T cell based therapies according to the present invention were further tested for their MHC binding capacity (affinity). The individual peptide-MHC complexes were produced by UV-ligand exchange, where a UV-sensitive peptide is cleaved upon UV-irradiation, and exchanged with the peptide of interest as analyzed. Only peptide candidates that can effectively bind and stabilize the peptide-receptive MHC molecules prevent dissociation of the MHC complexes. To determine the yield of the exchange reaction, an ELISA was performed based on the detection of the light chain (β2m) of stabilized MHC complexes. The assay was performed as generally described in Rodenko et al. (Rodenko et al., 2006).
- 96 well MAXISorp plates (NUNC) were coated over night with 2 ug/ml streptavidin in PBS at room temperature, washed 4× and blocked for 1 h at 37° C. in 2% BSA containing blocking buffer. Refolded HLA-A*02:01/MLA-001 monomers served as standards, covering the range of 15-500 ng/ml. Peptide-MHC monomers of the UV-exchange reaction were diluted 100-fold in blocking buffer. Samples were incubated for 1 h at 37° C., washed four times, incubated with 2 ug/ml HRP conjugated anti-β2m for 1 h at 37° C., washed again and detected with TMB solution that is stopped with NH2SO4. Absorption was measured at 450 nm. Candidate peptides that show a high exchange yield (preferably higher than 50%, most preferred higher than 75%) are generally preferred for a generation and production of antibodies or fragments thereof, and/or T cell receptors or fragments thereof, as they show sufficient avidity to the MHC molecules and prevent dissociation of the MHC complexes.
-
TABLE 11 MHC class I binding scores. Binding of HLA-class I restricted peptides to HLA-A*01 was ranged by peptide exchange yield: >10% = +; >20% = ++; >50 = +++; >75% = ++++ Seq ID No Sequence Peptide exchange 134 AAEIGDKSWLY ″++++″ 135 ASEDSVLLY ″++++″ 136 ATDLVVLDRY ″++++″ 137 ATSKFMEFY ″++++″ 138 DSDSCHFNY ″++++″ 139 ECDMAFHIY ″++++″ 140 ESDREELNY ″+++″ 141 ESDVGVVVY ″+++″ 142 EVAEPSVLFDLY ″++++″ 143 FIDYPKKEDY ″++++″ 144 FLDSQNLSAY ″++++″ 145 FVDKPVAY ″++++″ 146 GLNTGSALSY ″++″ 147 GSSDSSTLPKL ″++″ 148 GTEFTTILY ″++++″ 149 GTEFTTVLY ″++++″ 150 GTELLSLVY ″++++″ 151 HSDLKVGEY ″+++″ 152 HTDSLHLLI ″+++″ 153 KLDRSVFTAY ″+++″ 154 LLDISQKNLY ″+++″ 155 LLDPNPHMY ″++++″ 156 LLDSLREQY ″+++″ 157 LMDRPIFY ″++++″ 158 LSDLLKQGY ″++++″ 159 LSDTSVIQFY ″++++″ 160 LTEAVLNRY ″+++″ 161 LVDDGTHGQY ″+++″ 162 LVDNSIRELQY ″+++″ 163 NSDSSLTLREFY ″+++″ 164 NTDNNLAVY ″++++″ 165 NTDPTAPPY ″+++″ 166 NTQITDIGRY ″+++″ 167 QSDPGTSVLGY ″+++″ 168 QTDHPQPILDRY ″++++″ 169 RLDTPLYFSY ″++++″ 170 RSDDTAVYY ″++++″ 171 RSDPVTLNVLY ″++++″ 172 RTDSCSSAQAQY ″+++″ 173 RTEFNLNQY ″++++″ 174 SADDIRGIQSLY ″++++″ 176 SRTINVSNLY ″+++″ 177 SSDEVNFLVY ″++++″ 178 SSDSSTLPKL ″++″ 179 STAKSATWTY ″++++″ 180 STDPWIQMAY ″++++″ 181 TADGKTYYY ″+++″ 182 TDYHVRVY ″+++″ 183 TLEDIATSHLY ″++++″ 184 TSAHPEDSSFY ″+++″ 185 TSDSNLNKY ″++++″ 186 TTDIIEKY ″+++″ 187 VADLHLYLY ″+++″ 188 VSDAKLDKY ″+++″ 189 VSDSECLSRY ″++++″ 190 VTDGINPLIDRY ″+++″ 191 VTDGSLYEGVAY ″++++″ 192 VTEESFDSKFY ″++++″ 193 VTEFSLNTY ″++++″ 194 VVADTKMIEY ″+″ 195 VVDSVGGYLY ″++++″ 196 WMFFVINY ″+″ 197 YADTVRPEFY ″+++″ 198 YLDPVQRDLY ″++++″ 199 YLPQHTIETY ″++″ 200 YSDEDVTKY ″++++″ 201 YVGKEHMFY ″++++″ 394 ASEAEMRLFY ″++++″ 395 ASEASRLAHY ″++++″ 396 ASEFGNHYLY ″++++″ 397 ASEITSKGASLY ″++++″ 398 ASEQQALHTVQY ″++++″ 399 ATDIPCLLY ″++++″ 400 ATDISRQNEY ″+++″ 401 DSDESYMEKSLY ″++++″ 402 DTDSQRLAY ″+++″ 403 ELDSKVEVLTY ″+++″ 404 ETARKFLYY ″++++″ 405 ETEEGIYWRY ″++++″ 406 ETEQTKFWDY ″++++″ 407 FSDNDKLYLY ″++++″ 408 FTEQWTDGY ″+++″ 409 FVDPLVTNY ″++++″ 410 GSDHQSPSSSSY ″++++″ 411 GTVYEDLRY ″++++″ 412 ILDEVIMGY ″++++″ 413 ISDRYYTALY ″++++″ 414 KTDESLTKY ″+++″ 415 LLDPRSYHTY ″+++″ 416 LLDTAQKNLY ″++++″ 417 LLEDKHFQSY ″++++″ 418 LSDPSGPKSY ″+++″ 419 LSELKPMSY ″++++″ 420 LTEDKETLQY ″++++″ 421 LTELLERAAFY ″++++″ 422 MIDVTKSYY ″++++″ 423 NLDAVHDITVAY ″++++″ 424 NLDEEKQLLY ″+++″ 425 NLDIIQQEY ″++++″ 426 NLDQATRVAY ″+++″ 427 NSDEQKITEMVY ″++++″ 428 NSELSCQLY ″++++″ 429 NTEDSSMSGYLY ″++++″ 430 NTEGLHHLY ″++++″ 431 NTSDMMGRMSY ″++++″ 432 NVDPVQHTY ″+++″ 433 QIDTGENLY ″++++″ 434 QTDCAPNNGY ″++++″ 435 QTDDTWRTEY ″++++″ 436 QTETGTPYMLY ″++++″ 437 STDGKHWWEY ″++++″ 438 STDNFNCKY ″+++″ 439 TLDAGKFQIY ″+++″ 440 TLDENPGVRY ″+++″ 441 TLDSALNAASYY ″++++″ 442 TSDFSRFTNY ″++++″ 443 TTDFPSESSFEY ″++++″ 444 TTDTVIRSY ″+++″ 445 VLDQGKITEY ″+++″ 446 VTAQVVGTERY ″++++″ 447 VVDEDHELIY ″+++″ 448 YLDIPNPRY ″+++″ 449 YLDRGTGNVSFY ″++++″ 450 YSDDGQKWTVY ″++++″ 451 YSDSLVQKGY ″++++″ 452 YVDAVLGKGHQY ″++++″ -
TABLE 12 MHC class I binding scores. Binding of HLA-class I restricted peptides to HLA-A*02 was ranged by peptide exchange yield: >10% = +; >20% = ++; >50 = +++; >75% = ++++ Seq ID No Sequence Peptide exchange 84 YVDINTFRL ″++++″ 85 YIDEFQSLV ″++++″ 86 FVIDGFDEL ″++++″ 87 TLYPYQISQL ″++++″ 88 VQMVITEAQKV ″++++″ 89 ILSTTMVTV ″++++″ 91 FALPGLLHA ″+++″ 92 NLRDLLSEV ″+++″ 93 TLQEKILQV ″++++″ 94 VLPDIETLIGV ″++++″ 95 ITIGVLARV ″++++″ 96 HLVGGLHTV ″++++″ 97 VLALVNSTV ″++++″ 98 LQSSGLTLLL ″++++″ 99 FLKEKVPGI ″++++″ 100 RQYPTPFQL ″++++″ 101 FIISDWRFVL ″+++″ 102 SLLEQAIAL ″++++″ 103 FLYYPDPVL ″++++″ 104 GMLDIFWGV ″++++″ 105 SLLTHIPTA ″++++″ 106 FIIDTTYPAYV ″++++″ 107 LLQGAIESV ″++++″ 109 LLLGSIGLLGV ″++++″ 110 LLADFQALL ″++++″ 111 ALCLLLHLL ″+″ 112 SVSDGIHSV ″++++″ 113 AVLTGLVEV ″++++″ 114 ILDERQVLL ″++++″ 115 MLLETQDALYV ″++++″ 116 VLMEENSKL ″++++″ 117 FLDPNARPLV ″++++″ 118 ALSSVLHSI ″++++″ 119 RTADITVTV ″++++″ 120 ALLANLPAV ″++++″ 121 ALVDTLTGI ″++++″ 122 ALLEMFPEITV ″++++″ 123 LMAFFLAVV ″++″ 124 SVASVLLYL ″++++″ 125 VLQPFLPSI ″++++″ 126 FLSTVTSV ″++++″ 127 GLDGSLVFL ″++++″ 128 FLGTTPTL ″++++″ 129 VLYDKDAVYV ″++++″ 130 NLWGGQGLLGV ″++++″ 131 LLKEFVQRV ″++++″ 132 ALWLVDPLTV ″++++″ 133 MTLPVDAVISV ″++++″ 388 FSIPEGALVAV ″++++″ 389 TLMEQPLTTL ″++++″ 390 HIMPTVHTV ″++++″ 391 SLIDMRGIETV ″++++″ 392 SLFKDQMEL ″++++″ 393 ILLPYLQTL ″++++″ -
TABLE 13 MHC class I binding scores. Binding of HLA-class I restricted peptides to HLA- A* 03 was ranged bypeptide exchange yield: >10% = +; >20% = ++; >50 = +++; >75% = ++++ Seq ID No Sequence Peptide exchange 202 KLAELEGALQK ″++++″ 203 KVKDTPGLGK ″++++″ 204 AVFDKFIRY ″++++″ 205 SLDGAARPK ″++++″ 206 KLIDLSQVMY ″++++″ 207 RSFNGLLTMY ″++++″ 208 GLASRILDAK ″++++″ 209 RTQIPMSEK ″++++″ 210 ATSGVPVYK ″++++″ 211 TVNPVAIHK ″++++″ 212 KAYEQVMHY ″++++″ 214 RTMSEAALVRK ″++++″ 215 MMFSGPQILKL ″++++″ 216 KLYAWELAF ″+++″ 217 RILNQILYY ″++++″ 218 KTLVAELLILK ″+++″ 219 RLRSSLVFK ″++++″ 453 AINTSIKNK ″++++″ 454 KVYTPSISK ″++++″ 455 RIADIFVKK ″++++″ 456 SMFTAILKK ″++++″ 457 SINKPTSER ″++++″ 458 GIADFVLKY ″++++″ -
TABLE 14 MHC class I binding scores. Binding of HLA-class I restricted peptides to HLA-A*24 was ranged by peptide exchange yield: >10% = +; >20% = ++; >50 = +++; >75% = ++++ Seq ID No Sequence Peptide exchange 1 QYDPTPLTW ″++++″ 2 VWSNVTPLKF ″++++″ 3 YLEKFYGL ″++″ 4 SYEKVINYL ″++++″ 5 RYMKKDYLI ″++++″ 6 KYKDYFPVI ″++++″ 7 VQQWSVAVF ″+++″ 8 PFLPPAACFF ″++++″ 10 VWSDVTPLNF ″++++″ 11 YYSKSVGFMQW ″++++″ 12 STIRGELFFF ″+″ 13 HYTYILEVF ″++++″ 14 SYSSCYSF ″+++″ 15 KYALLLQDL ″++++″ 16 TYNPDFSSL ″+++″ 17 YYADKKTFIVL ″+++″ 18 DYIGSVEKW ″++++″ 19 ILKEDPFLF ″+″ 20 EFTTVLYNF ″++++″ 21 SYEVRSTF ″+++″ 22 TQPGDWTLF ″++++″ 23 KFIISDWRF ″++++″ 24 MYPDLSELLM ″++++″ 25 SYNGYVFYL ″++++″ 26 KTPTNYYLF ″++++″ 27 NYTLYPITF ″++++″ 28 YYSIISHTL ″++++″ 29 VYPLLSRLYW ″++++″ 30 QYLPGWTVLF ″++++″ 31 QYQNVLTLW ″++++″ 32 SLPDLTPTF ″++++″ 33 KSSVIASLLF ″+++″ 34 MQPRMFFLF ″++++″ 35 KYLEESVWL ″++++″ 36 KQMEDGHTLF ″++″ 37 QWPWQASLQF ″++++″ 38 KYTNWKAFL ″++++″ 39 LIFMLANVF ″+″ 40 QYEPPSAPSTTF ″+++″ 42 TLPNTIYRF ″++++″ 43 IQMDEPMAF ″+″ 44 AYLSAVGTF ″++++″ 45 KYFVPPQLF ″++++″ 46 AFPVTSIFHTF ″++++″ 47 KYADYFLEV ″++++″ 48 VFIDHPVHLKF ″++++″ 49 LYISEVRNI ″++++″ 50 SYPELVKMVW ″++++″ 51 KYALLLQEL ″++++″ 52 KYMKIFHKF ″++++″ 53 KYITNLEDL ″++++″ 54 LLIKLLQTF ″+++″ 55 RWMDQRLVF ″++++″ 56 VYMIEPLEL ″++++″ 57 YPSIIQEF ″++++″ 58 QFAAPLRGIYF ″++++″ 59 KYSTTFFMV ″++″ 60 TYLSIFDQL ″+++″ 61 NYAENILTL ″+++″ 62 LYQEILAQL ″++++″ 63 VMPSDSFFF ″++++″ 64 NYAIFDEGHML ″++++″ 65 VYPASKMFPFI ″++++″ 66 IYFRDSSFL ″++++″ 67 RYPGKFYRV ″++++″ 68 IYQQIIQTY ″++++″ 69 IMPEKFEFW ″++++″ 70 PYTNYTFDF ″++++″ 71 SYMVLAPVF ″++++″ 72 RYEGILYTI ″++++″ 73 SYIGLPLTL ″+++″ 74 VYDQYFITL ″++++″ 75 NYIYSISVF ″++++″ 76 WYGWHFPEL ″+++″ 77 AYTLLGHEFV ″+″ 78 TWFPKTPMLF ″++++″ 79 RYLADLPTL ″++++″ 80 YYSPLRDLL ″++++″ 81 LYPEGLRLL ″++++″ 82 RFLPSPVVI ″++++″ 83 TYCQNIKEF ″++++″ 375 VYSDLHAFYY ″++++″ 376 KYVKDFHKF ″++++″ 377 VYVGAVNRI ″++++″ 378 KFLGPAEHLTF ″++++″ 379 NYIVPDKQIF ″+++″ 380 VFQEKHHVI ″+++″ 381 TYSKKHFRI ″++++″ 382 IYHSHHPTL ″+++″ 383 RYKQDVERF ″+++″ 384 KYVKVFDKF ″++++″ 385 MYINEVERL ″++++″ 386 VYNDHSIYVW ″++++″ 387 RWLPQKNAAQF ″+++″ -
TABLE 15 MHC class I binding scores. Binding of HLA-class I restricted peptides to HLA-B*07 was ranged by peptide exchange yield: >10% = +; >20% = ++; >50 = +++; >75% = ++++ Seq ID No Sequence Peptide exchange 220 SPSVSQLSVL ″++++″ 221 VPDVAQFVL ″++++″ 222 NPFYPEVEL ″+++″ 223 YPKDIYSSF ″++++″ 224 GPQPWHAAL ″++++″ 225 LPFDGPGGIL ″++++″ 226 SPRMSGLLSQT ″++++″ 227 YPRGNHWAVGH ″++++″ 228 YPRGNHWAVGHL ″++++″ 229 VPLPAGGGTV ″+++″ 230 VPLPAGGGTVL ″+++″ 231 RPRALRDLQL ″++++″ 232 RPRALRDLQLL ″++++″ 233 KPYQGNPTF ″++++″ 234 RAKNAGVTI ″++++″ 235 MPLKHYLLL ″++++″ 236 RVRGGEDGDRAL ″++++″ 237 RPAATAVISL ″+++″ 238 KPGPPWAAF ″++++″ 239 YVPSASLFML ″++++″ 240 SPREVTTVL ″++++″ 241 SARLATDAL ″++++″ 242 SPRWLPVSL ″++++″ 243 RPIENRILIL ″++++″ 244 FPYVRDFVM ″++++″ 245 RIREHVPQL ″+++″ 246 TPLPAVIVL ″++++″ 247 RALLARLLL ″+++″ 248 IPNWARQDL ″++++″ 249 VPSSRILQL ″++++″ 250 SPRDFLSGL ″++++″ 251 VPRSSGQTV ″++++″ 252 SPDIRNTTV ″++++″ 253 RVIDAVRFTL ″+++″ 254 NPFPHLITL ″++++″ 255 MPLLENLYL ″++++″ 256 SPRVPSIEL ″++++″ 257 LPRIPFADV ″++++″ 258 LPRGPLASL ″++++″ 259 RPPAAGLRGISL ″++++″ 260 YPQHPGLNA ″+++″ 261 APSARVGVC ″+++″ 262 SAYPQRLEI ″+″ 263 HPAPYGDLL ″++++″ 265 SPRQPPRLV ″++++″ 267 HPELVNHIVF ″++″ 268 YPLFRGINL ″++++″ 269 APRAPRLML ″++++″ 270 APGPRFLVT ″++++″ 271 MPLPWSLALP ″+++″ 272 MPLPWSLALPL ″++++″ 273 MPLLWLRGF ″++″ 274 TPYQEHVAL ″+++″ 275 APHPPLSVV ″+++″ 276 LPRAGGAFL ″+++″ 278 HPMIDINGIIVF ″++″ 279 SPARASPAL ″+++″ 280 VPISEEGTPVL ″+++″ 281 RPRAPVTPA ″++++″ 282 MPQIETRVIL ″+++″ 283 RPHSLSSEL ″++++″ 284 FPVTSIFHTF ″++″ 285 FPSFLTNSL ″++++″ 286 VPTLRSEL ″++++″ 287 APREEQQRSL ″+++″ 288 FPQKFIDLL ″++″ 289 VPENHSVAL ″++++″ 290 APYRPPDISL ″++++″ 291 SPQRLRGLL ″++++″ 292 SPQRLRGLLL ″+++″ 293 RPRSALPRLLLP ″++++″ 294 GPTPNTGAAL ″++++″ 295 KPEGTRIAV ″++++″ 459 RPMQQARAQL ″+++″ 460 MPMAGDMNGL ″++++″ 462 RPFHTRATV ″++++″ 463 TPKAGPTL ″++++″ 464 YPRPGTPAA ″++++″ 465 VPRPIFSQL ″++++″ 466 APYKSVTSL ″++++″ 467 KPFSSFTSM ″++++″ 468 SPMYGQAGL ″++++″ 469 YPENGVVQM ″++″ 470 SPNSYFRVL ″++++″ 471 KPRPDVTNEL ″++++″ 472 NPRATDAQL ″++++″ 473 LPRALLSSL ″++++″ 474 LPRLLPAL ″++++″ 475 RPHKPGLYL ″++++″ -
TABLE 16 MHC class I binding scores. Binding of HLA-class I restricted peptides to HLA- B* 08 was ranged bypeptide exchange yield: >10% = +; >20% = ++; >50 = +++; >75% = ++++ Seq ID No Sequence Peptide exchange 296 MPMQDIKM ″++++″ 297 RAQLKLVAL ″++++″ 298 FNKRKPLSL ″+++″ 299 MAQFKEISL ″++++″ 300 VASPKHCVL ″+++″ 301 YMHKLLVL ″++++″ 302 HLLQKQTSI ″+++″ 303 LPFPKFTV ″++++″ 304 ELKKLYCQI ″++++″ 305 ALKLRVAVL ″++++″ 306 ILKVKVGL ″++++″ 307 ILLPRTVSL ″++++″ 308 MLKQKVEEL ″++++″ 309 DAIQRKYSC ″+++″ 310 LPPKKFVL ″++++″ 311 EIRIRVVQM ″++++″ 312 EAMLRNKEL ″++++″ 313 ELKKKEYEEL ″++++″ 314 AIISRLVAL ″++++″ 315 DIYQRALNL ″++++″ 316 VIKEKALTL ″+++″ 317 LVKVKVLL ″++++″ 318 EAAIRSVEL ″++++″ -
TABLE 17 MHC class I binding scores. Binding of HLA-class I restricted peptides to HLA-B*44 was ranged by peptide exchange yield: >10% = +; >20% = ++; >50 = +++; >75% = ++++ Seq ID No Sequence Peptide exchange 319 AEMLERVIKNY ″++++″ 320 MEVDPIGHVYIF ″++++″ 321 AEMLESVIKNY ″+++″ 322 KEVDPAGHSY ″++″ 323 SEFMQVIF ″+++″ 324 TDSIHAWTF ″+++″ 325 QEQDVDLVQKY ″++″ 326 QEMQHFLGL ″+++″ 327 YEIEARNQVF ″+++″ 328 FEYDFLLORI ″++++″ 329 NEHPSNNW ″+++″ 330 KEGDLGGKQW ″+++″ 331 EDAQGHIW ″+++″ 332 MEVPVIKI ″++″ 333 AETLSTIQI ″+++″ 334 AEDEPAAAHL ″++″ 335 KELEATKQY ″++″ 336 ASSSGPMRWW ″++″ 337 TENRYCVQL ″++++″ 338 SEGSEPALLHSW ″+++″ 339 SEPALLHSW ″+++″ 340 TEFSLNTY — 341 EEIEGKGSFTYF ″+++″ 342 HEFSSPSHL ″+++″ 343 TEFTTVLY ″++″ 344 EEATGQFHVY ″+++″ 345 IEFIHPQAF ″++++″ 346 VEAPGPVHVYW ″++++″ 347 ALNPYQYQY ″+++″ 348 AEIQGNINHV ″+++″ 349 AEQDMRELTY ″+++″ 350 GECDVFKEIL ″+++″ 351 EEVNYINTF ″+++″ 352 NEVLTYIKF ″++++″ 353 GEIIMQNNW ″++++″ 354 TEDPTILRI ″+++″ 355 SDMVRFHLF ″++″ 356 EEGRVYLF ″+++″ 357 RELENCFQIQ ″+++″ 358 KEADIHFLI ″++++″ 359 DELFSIALY ″++++″ 360 AEVPTGVII ″+++″ 361 SENLFFASF ″++++″ 362 SEKGVIQVY ″+++″ 363 AELDKLTSV ″+++″ 364 AETPIQNVI ″+++″ 365 SEMNVNMKY ″++++″ 366 AENLFRAF ″++″ 367 GEVHPSEMI ″+++″ 368 GEFPVRVQV ″++″ 369 EEIERFFKL ″+++″ 370 YEDLSQKY ″+″ 371 GELALKKKI ″++″ 372 TEGIIMKDF ″++″ 373 MEMQKSPVF ″+++″ 374 DEVNFLVY ″+″ 476 AEEEIMKKI ″++″ 477 QENSYQSRL ″+++″ 478 SEIEQEIGSL ″+++″ 479 AEIQPQTQV ″+++″ 480 GEVSGLTKDF ″++″ 481 RELQHEHSL ″+++″ 482 TEREWADEW ″+++″ 483 EENDQSTHKW ″+++″ 484 AEVGFVRFF ″++++″ 485 SEIEDSTKQVF ″+++″ 486 SEDDPILQI ″+++″ 487 AEDQLHHSF ″+++″ 488 TEFPIIKMY ″++″ 489 SEIGKAVGF ″++++″ -
- Allison, J. P. et al., Science 270 (1995): 932-933
- Andersen, R. S. et al., Nat. Protoc. 7 (2012): 891-902
- Appay, V. et al., Eur. J Immunol. 36 (2006): 1805-1814
- Banchereau, J. et al., Cell 106 (2001): 271-274
- Beatty, G. et al., J Immunol 166 (2001): 2276-2282
- Beggs, J. D., Nature 275 (1978): 104-109
- Benjamini, Y. et al., Journal of the Royal Statistical Society. Series B (Methodological), Vol. 57 (1995): 289-300
- Boulter, J. M. et al., Protein Eng 16 (2003): 707-711
- Braumuller, H. et al., Nature (2013)
- Brossart, P. et al., Blood 90 (1997): 1594-1599
- Bruckdorfer, T. et al., Curr. Pharm. Biotechnol. 5 (2004): 29-43
- Card, K. F. et al., Cancer Immunol Immunother. 53 (2004): 345-357
- Cohen, C. J. et al., J Mol Recognit. 16 (2003a): 324-332
- Cohen, C. J. et al., J Immunol 170 (2003b): 4349-4361
- Cohen, S. N. et al., Proc. Natl. Acad. Sci. U.S.A 69 (1972): 2110-2114
- Coligan, J. E. et al., Current Protocols in Protein Science (1995)
- Colombetti, S. et al., J Immunol. 176 (2006): 2730-2738
- Dengjel, J. et al., Clin Cancer Res 12 (2006): 4163-4170
- Denkberg, G. et al., J Immunol 171 (2003): 2197-2207
- Falk, K. et al., Nature 351 (1991): 290-296
- Follenzi, A. et al., Nat Genet. 25 (2000): 217-222
- Fong, L. et al., Proc. Natl. Acad. Sci. U.S.A 98 (2001): 8809-8814
- Gabrilovich, D. I. et al., Nat Med. 2 (1996): 1096-1103
- Gattinoni, L. et al., Nat Rev. Immunol 6 (2006): 383-393
- Gnjatic, S. et al., Proc Natl. Acad. Sci. U.S.A 100 (2003): 8862-8867
- Godkin, A. et al., Int. Immunol 9 (1997): 905-911
- Gragert, L. et al., Hum. Immunol. 74 (2013): 1313-1320
- Green, M. R. et al., Molecular Cloning, A Laboratory Manual 4th (2012)
- Greenfield, E. A., Antibodies: A Laboratory Manual 2nd (2014)
- Gustafsson, C. et al., Trends Biotechnol. 22 (2004): 346-353
- Hwang, M. L. et al., J Immunol. 179 (2007): 5829-5838
- Jung, G. et al., Proc Natl Acad Sci USA 84 (1987): 4611-4615
- Kibbe, A. H., Handbook of Pharmaceutical Excipients rd (2000)
- Krieg, A. M., Nat Rev. Drug Discov. 5 (2006): 471-484
- Kuball, J. et al., Blood 109 (2007): 2331-2338
- Liddy, N. et al., Nat Med. 18 (2012): 980-987
- Ljunggren, H. G. et al., J Exp. Med. 162 (1985): 1745-1759
- Longenecker, B. M. et al., Ann N.Y. Acad. Sci. 690 (1993): 276-291
- Lonsdale, J., Nat. Genet. 45 (2013): 580-585
- Lukas, T. J. et al., Proc. Natl. Acad. Sci. U.S.A 78 (1981): 2791-2795
- Lundblad, R. L., Chemical Reagents for Protein Modification 3rd (2004)
- Meziere, C. et al., J Immunol 159 (1997): 3230-3237
- Morgan, R. A. et al., Science 314 (2006): 126-129
- Mortara, L. et al., Clin Cancer Res. 12 (2006): 3435-3443
- Mueller, L. N. et al., J Proteome. Res 7 (2008): 51-61
- Mueller, L. N. et al., Proteomics. 7 (2007): 3470-3480
- Mumberg, D. et al., Proc. Natl. Acad. Sci. U.S.A 96 (1999): 8633-8638
- Pinheiro, J. et al., nlme: Linear and Nonlinear Mixed Effects Models (http://CRAN.R-project.org/packe=nlme) (2015)
- Plebanski, M. et al., Eur. J Immunol 25 (1995): 1783-1787
- Porta, C. et al., Virology 202 (1994): 949-955
- Rammensee, H. et al., Immunogenetics 50 (1999): 213-219
- Reinmuth, N. et al., Dtsch. Med. Wochenschr. 140 (2015): 329-333
- Rini, B. I. et al., Cancer 107 (2006): 67-74
- Rock, K. L. et al., Science 249 (1990): 918-921
- Rodenko, B. et al., Nat Protoc. 1 (2006): 1120-1132
- S3-Leitlinie Lungenkarzinom, 020/007, (2011)
- Saiki, R. K. et al., Science 239 (1988): 487-491
- Schmitt, T. M. et al., Hum. Gene Ther. 20 (2009): 1240-1248
- Scholten, K. B. et al., Clin Immunol. 119 (2006): 135-145
- Seeger, F. H. et al., Immunogenetics 49 (1999): 571-576 SEER Stat facts, (2014), http://seer.cancer.gov/Shepherd,
- F. A. et al., J Clin. Oncol. 31 (2013): 2173-2181
- Sherman, F. et al., Laboratory Course Manual for Methods in Yeast Genetics (1986)
- Singh-Jasuja, H. et al., Cancer Immunol. Immunother. 53 (2004): 187-195
- Small, E. J. et al., J Clin Oncol. 24 (2006): 3089-3094
- Sturm, M. et al., BMC. Bioinformatics. 9 (2008): 163
- Teufel, R. et al., Cell Mol Life Sci. 62 (2005): 1755-1762
- Tran, E. et al., Science 344 (2014): 641-645
- Travis, W. D. et al., J Clin. Oncol. 31 (2013): 992-1001
- Walter, S. et al., J Immunol 171 (2003): 4974-4978
- Walter, S. et al., Nat Med. 18 (2012): 1254-1261
- Willcox, B. E. et al., Protein Sci. 8 (1999): 2418-2423
- World Cancer Report, (2014)
- Zaremba, S. et al., Cancer Res. 57 (1997): 4570-4577
- Zufferey, R. et al., J Virol. 73 (1999): 2886-2892
Claims (20)
1. A peptide consisting of the amino acid sequence SYNGYVFYL (SEQ ID NO: 25) in the form of a pharmaceutically acceptable salt.
2. The peptide of claim 1 , wherein said peptide has the ability to bind to an MHC class-I molecule, and wherein said peptide, when bound to said MHC, is capable of being recognized by CD8 T cells.
3. The peptide of claim 1 , wherein the pharmaceutically acceptable salt is chloride salt.
4. The peptide of claim 1 , wherein the pharmaceutically acceptable salt is acetate salt.
5. A composition comprising the peptide of claim 1 , wherein the composition comprises an adjuvant and a pharmaceutically acceptable carrier.
6. The composition of claim 5 , wherein the peptide is in the form of a chloride salt.
7. The composition of claim 5 , wherein the peptide is in the form of an acetate salt.
8. The composition of claim 5 wherein the adjuvant is selected from the group consisting of anti-CD40 antibody, imiquimod, resiquimod, GM-CSF, cyclophosphamide, sunitinib, bevacizumab, interferon-alpha, interferon-beta, CpG oligonucleotides and derivatives, poly-(I:C) and derivatives, RNA, sildenafil, particulate formulations with poly(lactide co-glycolide) (PLG), virosomes, interleukin (IL)-1, IL-2, IL-4, IL-7, IL-12, IL-13, IL-15, IL-21, and IL-23.
9. The composition of claim 8 , wherein the adjuvant is IL-2.
10. The composition of claim 8 , wherein the adjuvant is IL-7.
11. The composition of claim 8 , wherein the adjuvant is IL-12.
12. The composition of claim 8 , wherein the adjuvant is IL-15.
13. The composition of claim 8 , wherein the adjuvant is IL-21.
14. A pegylated peptide consisting of the amino acid sequence of SYNGYVFYL (SEQ ID NO: 25) or a pharmaceutically acceptable salt thereof.
15. The peptide of claim 14 , wherein the pharmaceutically acceptable salt is chloride salt.
16. The peptide of claim 14 , wherein the pharmaceutically acceptable salt is acetate salt.
17. A composition comprising the pegylated peptide of claim 14 or pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
18. The composition of claim 5 , wherein the pharmaceutically acceptable carrier is selected from the group consisting of saline, Ringer's solution, dextrose solution, and sustained release preparation.
19. The peptide in the form of a pharmaceutically acceptable salt of claim 1 , wherein said peptide is produced by solid phase peptide synthesis or produced by a yeast cell or bacterial cell expression system.
20. A composition comprising the peptide of claim 1 , wherein the composition is a pharmaceutical composition and comprises water and a buffer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/933,353 US20230109584A1 (en) | 2017-07-07 | 2022-09-19 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762529758P | 2017-07-07 | 2017-07-07 | |
DE102017115301.2 | 2017-07-07 | ||
DE102017115301 | 2017-07-07 | ||
US16/026,707 US10800823B2 (en) | 2017-07-07 | 2018-07-03 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US16/913,788 US11001616B2 (en) | 2017-07-07 | 2020-06-26 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/227,885 US11168122B2 (en) | 2017-07-07 | 2021-04-12 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/371,755 US11866473B2 (en) | 2017-07-07 | 2021-07-09 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/860,600 US20220348621A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/877,515 US20220363730A1 (en) | 2017-07-07 | 2022-07-29 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/929,347 US20230116279A1 (en) | 2017-07-07 | 2022-09-02 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/933,353 US20230109584A1 (en) | 2017-07-07 | 2022-09-19 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/929,347 Continuation US20230116279A1 (en) | 2017-07-07 | 2022-09-02 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230109584A1 true US20230109584A1 (en) | 2023-04-06 |
Family
ID=62904428
Family Applications (47)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/387,610 Active US10472402B2 (en) | 2017-07-07 | 2019-04-18 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US16/584,022 Active US10597434B2 (en) | 2017-07-07 | 2019-09-26 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US16/776,244 Active US10711048B2 (en) | 2017-07-07 | 2020-01-29 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US16/864,897 Active US10836806B2 (en) | 2017-07-07 | 2020-05-01 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/371,826 Active US11279740B2 (en) | 2017-07-07 | 2021-07-09 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/371,871 Active US11279741B2 (en) | 2017-07-07 | 2021-07-09 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/377,905 Active US11261224B2 (en) | 2017-07-07 | 2021-07-16 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/377,867 Active US11292821B2 (en) | 2017-07-07 | 2021-07-16 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/465,597 Active US11352401B1 (en) | 2017-07-07 | 2021-09-02 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/477,869 Active US11370817B2 (en) | 2017-07-07 | 2021-09-17 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/561,051 Active US11414470B2 (en) | 2017-07-07 | 2021-12-23 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/570,943 Active US11407798B2 (en) | 2017-07-07 | 2022-01-07 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/576,714 Active US11618774B2 (en) | 2017-07-07 | 2022-01-14 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/581,260 Active US11414471B2 (en) | 2017-07-07 | 2022-01-21 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/587,387 Active US11414472B2 (en) | 2017-07-07 | 2022-01-28 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/665,199 Active US11414473B2 (en) | 2017-07-07 | 2022-02-04 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/669,601 Active US11427622B2 (en) | 2017-07-07 | 2022-02-11 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/674,910 Active US11459365B2 (en) | 2017-07-07 | 2022-02-18 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/681,107 Active US11459366B2 (en) | 2017-07-07 | 2022-02-25 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/687,307 Active US11498948B2 (en) | 2017-07-07 | 2022-03-04 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/693,316 Active US11479589B2 (en) | 2017-07-07 | 2022-03-11 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/843,733 Pending US20230040789A1 (en) | 2017-07-07 | 2022-06-17 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,803 Pending US20220363729A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,840 Pending US20230100686A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,600 Pending US20220348621A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,827 Pending US20220348622A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/871,615 Pending US20220389068A1 (en) | 2017-07-07 | 2022-07-22 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/871,724 Pending US20230125179A1 (en) | 2017-07-07 | 2022-07-22 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/877,535 Pending US20230051523A1 (en) | 2017-07-07 | 2022-07-29 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/877,515 Pending US20220363730A1 (en) | 2017-07-07 | 2022-07-29 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/886,752 Pending US20230002461A1 (en) | 2017-07-07 | 2022-08-12 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/819,470 Pending US20230287069A1 (en) | 2017-07-07 | 2022-08-12 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/820,824 Pending US20230174602A1 (en) | 2017-07-07 | 2022-08-18 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/820,821 Pending US20230148369A1 (en) | 2017-07-07 | 2022-08-18 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/822,657 Pending US20230021673A1 (en) | 2017-07-07 | 2022-08-26 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/822,653 Pending US20230094553A1 (en) | 2017-07-07 | 2022-08-26 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/929,344 Pending US20230094286A1 (en) | 2017-07-07 | 2022-09-02 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/929,347 Pending US20230116279A1 (en) | 2017-07-07 | 2022-09-02 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/930,891 Pending US20230035702A1 (en) | 2017-07-07 | 2022-09-09 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/933,353 Pending US20230109584A1 (en) | 2017-07-07 | 2022-09-19 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/933,298 Pending US20230043654A1 (en) | 2017-07-07 | 2022-09-19 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/934,663 Pending US20230192791A1 (en) | 2017-07-07 | 2022-09-23 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/934,747 Pending US20230042253A1 (en) | 2017-07-07 | 2022-09-23 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/934,673 Pending US20230046543A1 (en) | 2017-07-07 | 2022-09-23 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US18/297,076 Pending US20230279066A1 (en) | 2017-07-07 | 2023-04-07 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US18/314,878 Pending US20230340046A1 (en) | 2017-07-07 | 2023-05-10 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US18/448,614 Pending US20230382964A1 (en) | 2017-07-07 | 2023-08-11 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
Family Applications Before (39)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/387,610 Active US10472402B2 (en) | 2017-07-07 | 2019-04-18 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US16/584,022 Active US10597434B2 (en) | 2017-07-07 | 2019-09-26 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US16/776,244 Active US10711048B2 (en) | 2017-07-07 | 2020-01-29 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US16/864,897 Active US10836806B2 (en) | 2017-07-07 | 2020-05-01 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/371,826 Active US11279740B2 (en) | 2017-07-07 | 2021-07-09 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/371,871 Active US11279741B2 (en) | 2017-07-07 | 2021-07-09 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/377,905 Active US11261224B2 (en) | 2017-07-07 | 2021-07-16 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/377,867 Active US11292821B2 (en) | 2017-07-07 | 2021-07-16 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/465,597 Active US11352401B1 (en) | 2017-07-07 | 2021-09-02 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/477,869 Active US11370817B2 (en) | 2017-07-07 | 2021-09-17 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/561,051 Active US11414470B2 (en) | 2017-07-07 | 2021-12-23 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/570,943 Active US11407798B2 (en) | 2017-07-07 | 2022-01-07 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/576,714 Active US11618774B2 (en) | 2017-07-07 | 2022-01-14 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/581,260 Active US11414471B2 (en) | 2017-07-07 | 2022-01-21 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/587,387 Active US11414472B2 (en) | 2017-07-07 | 2022-01-28 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/665,199 Active US11414473B2 (en) | 2017-07-07 | 2022-02-04 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/669,601 Active US11427622B2 (en) | 2017-07-07 | 2022-02-11 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/674,910 Active US11459365B2 (en) | 2017-07-07 | 2022-02-18 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/681,107 Active US11459366B2 (en) | 2017-07-07 | 2022-02-25 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/687,307 Active US11498948B2 (en) | 2017-07-07 | 2022-03-04 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/693,316 Active US11479589B2 (en) | 2017-07-07 | 2022-03-11 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
US17/843,733 Pending US20230040789A1 (en) | 2017-07-07 | 2022-06-17 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,803 Pending US20220363729A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,840 Pending US20230100686A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,600 Pending US20220348621A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/860,827 Pending US20220348622A1 (en) | 2017-07-07 | 2022-07-08 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/871,615 Pending US20220389068A1 (en) | 2017-07-07 | 2022-07-22 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/871,724 Pending US20230125179A1 (en) | 2017-07-07 | 2022-07-22 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/877,535 Pending US20230051523A1 (en) | 2017-07-07 | 2022-07-29 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/877,515 Pending US20220363730A1 (en) | 2017-07-07 | 2022-07-29 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/886,752 Pending US20230002461A1 (en) | 2017-07-07 | 2022-08-12 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/819,470 Pending US20230287069A1 (en) | 2017-07-07 | 2022-08-12 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/820,824 Pending US20230174602A1 (en) | 2017-07-07 | 2022-08-18 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/820,821 Pending US20230148369A1 (en) | 2017-07-07 | 2022-08-18 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/822,657 Pending US20230021673A1 (en) | 2017-07-07 | 2022-08-26 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/822,653 Pending US20230094553A1 (en) | 2017-07-07 | 2022-08-26 | Peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/929,344 Pending US20230094286A1 (en) | 2017-07-07 | 2022-09-02 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/929,347 Pending US20230116279A1 (en) | 2017-07-07 | 2022-09-02 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/930,891 Pending US20230035702A1 (en) | 2017-07-07 | 2022-09-09 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/933,298 Pending US20230043654A1 (en) | 2017-07-07 | 2022-09-19 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/934,663 Pending US20230192791A1 (en) | 2017-07-07 | 2022-09-23 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/934,747 Pending US20230042253A1 (en) | 2017-07-07 | 2022-09-23 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US17/934,673 Pending US20230046543A1 (en) | 2017-07-07 | 2022-09-23 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US18/297,076 Pending US20230279066A1 (en) | 2017-07-07 | 2023-04-07 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US18/314,878 Pending US20230340046A1 (en) | 2017-07-07 | 2023-05-10 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US18/448,614 Pending US20230382964A1 (en) | 2017-07-07 | 2023-08-11 | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
Country Status (17)
Country | Link |
---|---|
US (47) | US10472402B2 (en) |
EP (2) | EP4316597A2 (en) |
JP (2) | JP2020530759A (en) |
KR (1) | KR20200026898A (en) |
CN (1) | CN110785183B (en) |
AU (3) | AU2018297578C1 (en) |
BR (1) | BR112019028070A2 (en) |
CA (1) | CA3068852A1 (en) |
CL (4) | CL2020000020A1 (en) |
CO (1) | CO2020001141A2 (en) |
CR (4) | CR20210169A (en) |
IL (2) | IL271895A (en) |
MX (2) | MX2019015879A (en) |
PE (1) | PE20200693A1 (en) |
PH (1) | PH12020500051A1 (en) |
SG (1) | SG11201913302SA (en) |
TW (1) | TW201906859A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4316597A2 (en) | 2017-07-07 | 2024-02-07 | immatics biotechnologies GmbH | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US10800823B2 (en) | 2017-07-07 | 2020-10-13 | Immatics Biotechnologies Gmbh | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
CN111732629B (en) * | 2020-06-19 | 2022-05-03 | 完美(广东)日用品有限公司 | Oligopeptide, weight-losing composition, preparation method and application |
CN114019165B (en) * | 2022-01-05 | 2022-04-01 | 首都医科大学附属北京妇产医院 | Polypeptide chip or kit and application thereof in diagnosing non-small cell lung cancer |
CN115785212B (en) * | 2022-06-10 | 2024-08-30 | 河北博海生物工程开发有限公司 | Lung cancer specific molecular target 03 and application thereof |
Family Cites Families (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4440859A (en) | 1977-05-27 | 1984-04-03 | The Regents Of The University Of California | Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms |
US4704362A (en) | 1977-11-08 | 1987-11-03 | Genentech, Inc. | Recombinant cloning vehicle microbial polypeptide expression |
ES487106A0 (en) | 1978-12-22 | 1981-05-16 | Biogen Nv | A METHOD FOR PRODUCING AT LEAST ONE POLYPEPTIDE SHOWING HBV ANTIGENICITY |
US4530901A (en) | 1980-01-08 | 1985-07-23 | Biogen N.V. | Recombinant DNA molecules and their use in producing human interferon-like polypeptides |
US4342566A (en) | 1980-02-22 | 1982-08-03 | Scripps Clinic & Research Foundation | Solid phase anti-C3 assay for detection of immune complexes |
US4678751A (en) | 1981-09-25 | 1987-07-07 | Genentech, Inc. | Hybrid human leukocyte interferons |
US4766075A (en) | 1982-07-14 | 1988-08-23 | Genentech, Inc. | Human tissue plasminogen activator |
US4582800A (en) | 1982-07-12 | 1986-04-15 | Hoffmann-La Roche Inc. | Novel vectors and method for controlling interferon expression |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4757006A (en) | 1983-10-28 | 1988-07-12 | Genetics Institute, Inc. | Human factor VIII:C gene and recombinant methods for production |
US4677063A (en) | 1985-05-02 | 1987-06-30 | Cetus Corporation | Human tumor necrosis factor |
US4810648A (en) | 1986-01-08 | 1989-03-07 | Rhone Poulenc Agrochimie | Haloarylnitrile degrading gene, its use, and cells containing the gene |
US4897445A (en) | 1986-06-27 | 1990-01-30 | The Administrators Of The Tulane Educational Fund | Method for synthesizing a peptide containing a non-peptide bond |
ES2108460T3 (en) | 1993-06-03 | 1997-12-16 | Therapeutic Antibodies Inc | FRAGMENTS OF ANTIBODIES IN THERAPEUTICS. |
AUPM322393A0 (en) | 1993-12-24 | 1994-01-27 | Austin Research Institute, The | Mucin carbohydrate compounds and their use in immunotherapy |
PT879282E (en) | 1996-01-17 | 2003-11-28 | Imp College Innovations Ltd | IMMUNOTHERAPY USING CITOTOXIC T-LYMPHOCYTES (CTL) |
US5849589A (en) | 1996-03-11 | 1998-12-15 | Duke University | Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells |
US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
EP1194542A1 (en) | 1999-03-02 | 2002-04-10 | Ludwig Institute For Cancer Research | Cloning of cdna of mage's 5,8,9 and 11 and their uses in diagnosis of cancer |
AU1230201A (en) | 1999-10-25 | 2001-05-08 | Millennium Pharmaceuticals, Inc. | 27875 a human adam-ts homolog |
US6934639B1 (en) | 2000-02-25 | 2005-08-23 | Wyeth | Methods for designing agents that interact with MMP-13 |
US20040191260A1 (en) | 2003-03-26 | 2004-09-30 | Technion Research & Development Foundation Ltd. | Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof |
AU785493B2 (en) | 2000-03-27 | 2008-01-03 | Technion Research & Development Foundation Ltd. | Single chain class I major histo-compatibility complexes, constructs encoding same and methods of generating same |
AUPQ776100A0 (en) * | 2000-05-26 | 2000-06-15 | Australian National University, The | Synthetic molecules and uses therefor |
CN101712721A (en) | 2000-06-05 | 2010-05-26 | 阿尔托生物科学有限公司 | T cell receptor fusions and conjugates and methods of use thereof |
US20040142325A1 (en) | 2001-09-14 | 2004-07-22 | Liat Mintz | Methods and systems for annotating biomolecular sequences |
US6992176B2 (en) | 2002-02-13 | 2006-01-31 | Technion Research & Development Foundation Ltd. | Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease |
CA2476625A1 (en) | 2002-02-20 | 2003-08-28 | Dyax Corp. | Mhc-peptide complex binding ligands |
JP4436319B2 (en) | 2002-10-09 | 2010-03-24 | メディジーン リミテッド | Single-chain recombinant T cell receptor |
EP2048159B1 (en) | 2002-11-09 | 2014-01-01 | Immunocore Ltd. | T cell receptor display |
GB0304068D0 (en) | 2003-02-22 | 2003-03-26 | Avidex Ltd | Substances |
KR100568755B1 (en) * | 2003-04-03 | 2006-04-07 | 주식회사 리젠 바이오텍 | Agent for inhibiting angiogenesis, containing peptides which comprise YH motif as effective component |
DE102005013846A1 (en) * | 2005-03-24 | 2006-10-05 | Ganymed Pharmaceuticals Ag | Identification of surface-associated antigens for tumor diagnosis and therapy |
DE102005041616B4 (en) | 2005-09-01 | 2011-03-17 | Johannes-Gutenberg-Universität Mainz | Melanoma associated MHC class I associated oligopeptides and polynucleotides encoding them and their uses |
DK1806359T3 (en) | 2005-09-05 | 2010-06-14 | Immatics Biotechnologies Gmbh | Tumor-associated peptides promiscuously bound to human leukocyte antigen (HLA) class II molecules |
ATE545708T1 (en) | 2005-11-14 | 2012-03-15 | Univ Laval | CANCER ANTIGEN MAGE-A9 AND USES THEREOF |
US20090263574A1 (en) | 2008-04-21 | 2009-10-22 | Quinn Daniel E | Method of restoring an article |
NO2119726T3 (en) * | 2008-05-14 | 2015-05-23 | ||
GB0910725D0 (en) | 2009-06-22 | 2009-08-05 | Heptares Therapeutics Ltd | Mutant proteins and methods for producing them |
GB201006360D0 (en) | 2010-04-16 | 2010-06-02 | Immatics Biotechnologies Gmbh | Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development |
BR112013001637A2 (en) | 2010-07-22 | 2016-05-24 | Glaxosmithkline Biolog Sa | antigen-binding protein, nucleic acid molecule, expression vector, recombinant host cell, methods for producing antigen-binding protein, and for detecting mage-a3 and / or mage-a6 in formalin-fixed, paraffin-infiltrated human tissue . |
WO2012048291A2 (en) * | 2010-10-08 | 2012-04-12 | Proteapex Therapeutics Llc | Compositions and methods for inhibition of mmp:mmp-substrate interactions |
CA2816225A1 (en) | 2010-10-26 | 2012-05-03 | Technion Research & Development Foundation Ltd. | Antibodies which bind soluble t-cell receptor ligands |
WO2013057586A1 (en) | 2011-10-19 | 2013-04-25 | Oslo Universitetssykehus Hf | Compositions and methods for producing soluble t - cell receptors |
US9091651B2 (en) * | 2011-12-21 | 2015-07-28 | Integrated Diagnostics, Inc. | Selected reaction monitoring assays |
US9303079B2 (en) * | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
WO2013151664A1 (en) * | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of proteins |
WO2014071978A1 (en) | 2012-11-08 | 2014-05-15 | Roche Diagnostics Gmbh | Nucleic acids encoding chimeric polypeptides for library screening |
EP2808392A1 (en) | 2013-05-28 | 2014-12-03 | Rheinische Friedrich-Wilhelms-Universität Bonn | Aptamers and use of the aptamers in the diagnosis and treatment of cancer |
TWI819228B (en) * | 2013-08-05 | 2023-10-21 | 德商伊瑪提克斯生物科技有限公司 | Novel peptides, cells, and their use against several tumors, methods for production thereof and pharmaceutical composition comprising the same |
GB201319446D0 (en) | 2013-11-04 | 2013-12-18 | Immatics Biotechnologies Gmbh | Personalized immunotherapy against several neuronal and brain tumors |
WO2016179006A1 (en) | 2015-05-01 | 2016-11-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods of isolating t cells and t cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood |
EP3297660A2 (en) * | 2015-05-20 | 2018-03-28 | The Broad Institute Inc. | Shared neoantigens |
GB201517538D0 (en) | 2015-10-05 | 2015-11-18 | Immatics Biotechnologies Gmbh | Novel peptides and combination of peptides for use in immunotherapy against small cell lung cancer and other cancers |
GB201520559D0 (en) * | 2015-11-23 | 2016-01-06 | Immunocore Ltd & Adaptimmune Ltd | Peptides |
GB201520579D0 (en) | 2015-11-23 | 2016-01-06 | Immunocore Ltd & Adaptimmune Ltd | Peptides |
JP7076076B2 (en) * | 2016-03-03 | 2022-05-27 | 東亞合成株式会社 | Diagnosis method of amyotrophic lateral sclerosis using signal peptide as an index |
CA3059644A1 (en) * | 2017-04-10 | 2018-10-18 | Immatics Biotechnologies Gmbh | Peptides and combination thereof for use in the immunotherapy against cancers |
SG10202100326SA (en) * | 2017-04-10 | 2021-02-25 | Immatics Biotechnologies Gmbh | Peptides and combination of peptides for use in immunotherapy against leukemias and other cancers |
RU2020103379A (en) * | 2017-07-04 | 2021-08-04 | Куревак Аг | NEW NUCLEIC ACID MOLECULES |
EP4316597A2 (en) * | 2017-07-07 | 2024-02-07 | immatics biotechnologies GmbH | Novel peptides and combination of peptides for use in immunotherapy against lung cancer, including nsclc, sclc and other cancers |
US10800823B2 (en) * | 2017-07-07 | 2020-10-13 | Immatics Biotechnologies Gmbh | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
EP3796923A4 (en) * | 2018-05-18 | 2022-03-09 | Children's National Medical Center | Improved targeted t-cell therapy |
US11945850B2 (en) * | 2018-09-17 | 2024-04-02 | Immatics Biotechnologies Gmbh | B*44 restricted peptides for use in immunotherapy against cancers and related methods |
-
2018
- 2018-07-03 EP EP23216393.1A patent/EP4316597A2/en active Pending
- 2018-07-03 CR CR20210169A patent/CR20210169A/en unknown
- 2018-07-03 EP EP18740138.5A patent/EP3648790A1/en active Pending
- 2018-07-03 JP JP2019571705A patent/JP2020530759A/en active Pending
- 2018-07-03 CR CR20210167A patent/CR20210167A/en unknown
- 2018-07-03 AU AU2018297578A patent/AU2018297578C1/en not_active Expired - Fee Related
- 2018-07-03 KR KR1020207001447A patent/KR20200026898A/en not_active Application Discontinuation
- 2018-07-03 BR BR112019028070-7A patent/BR112019028070A2/en unknown
- 2018-07-03 TW TW107122872A patent/TW201906859A/en unknown
- 2018-07-03 MX MX2019015879A patent/MX2019015879A/en unknown
- 2018-07-03 CA CA3068852A patent/CA3068852A1/en active Pending
- 2018-07-03 CN CN201880041940.1A patent/CN110785183B/en active Active
- 2018-07-03 PE PE2020000025A patent/PE20200693A1/en unknown
- 2018-07-03 SG SG11201913302SA patent/SG11201913302SA/en unknown
- 2018-07-03 CR CR20210168A patent/CR20210168A/en unknown
- 2018-07-03 CR CR20200059A patent/CR20200059A/en unknown
-
2019
- 2019-04-18 US US16/387,610 patent/US10472402B2/en active Active
- 2019-09-26 US US16/584,022 patent/US10597434B2/en active Active
- 2019-12-20 MX MX2022005897A patent/MX2022005897A/en unknown
-
2020
- 2020-01-03 CL CL2020000020A patent/CL2020000020A1/en unknown
- 2020-01-06 PH PH12020500051A patent/PH12020500051A1/en unknown
- 2020-01-07 IL IL271895A patent/IL271895A/en unknown
- 2020-01-29 US US16/776,244 patent/US10711048B2/en active Active
- 2020-01-31 CO CONC2020/0001141A patent/CO2020001141A2/en unknown
- 2020-05-01 US US16/864,897 patent/US10836806B2/en active Active
-
2021
- 2021-07-09 US US17/371,826 patent/US11279740B2/en active Active
- 2021-07-09 US US17/371,871 patent/US11279741B2/en active Active
- 2021-07-16 US US17/377,905 patent/US11261224B2/en active Active
- 2021-07-16 US US17/377,867 patent/US11292821B2/en active Active
- 2021-09-02 US US17/465,597 patent/US11352401B1/en active Active
- 2021-09-17 US US17/477,869 patent/US11370817B2/en active Active
- 2021-12-23 US US17/561,051 patent/US11414470B2/en active Active
-
2022
- 2022-01-07 US US17/570,943 patent/US11407798B2/en active Active
- 2022-01-14 US US17/576,714 patent/US11618774B2/en active Active
- 2022-01-21 US US17/581,260 patent/US11414471B2/en active Active
- 2022-01-28 US US17/587,387 patent/US11414472B2/en active Active
- 2022-02-04 US US17/665,199 patent/US11414473B2/en active Active
- 2022-02-11 US US17/669,601 patent/US11427622B2/en active Active
- 2022-02-18 US US17/674,910 patent/US11459365B2/en active Active
- 2022-02-25 US US17/681,107 patent/US11459366B2/en active Active
- 2022-03-04 US US17/687,307 patent/US11498948B2/en active Active
- 2022-03-11 US US17/693,316 patent/US11479589B2/en active Active
- 2022-03-16 CL CL2022000641A patent/CL2022000641A1/en unknown
- 2022-03-16 CL CL2022000642A patent/CL2022000642A1/en unknown
- 2022-05-16 AU AU2022203259A patent/AU2022203259B2/en active Active
- 2022-06-17 US US17/843,733 patent/US20230040789A1/en active Pending
- 2022-07-08 US US17/860,803 patent/US20220363729A1/en active Pending
- 2022-07-08 US US17/860,840 patent/US20230100686A1/en active Pending
- 2022-07-08 US US17/860,600 patent/US20220348621A1/en active Pending
- 2022-07-08 US US17/860,827 patent/US20220348622A1/en active Pending
- 2022-07-22 US US17/871,615 patent/US20220389068A1/en active Pending
- 2022-07-22 US US17/871,724 patent/US20230125179A1/en active Pending
- 2022-07-29 US US17/877,535 patent/US20230051523A1/en active Pending
- 2022-07-29 US US17/877,515 patent/US20220363730A1/en active Pending
- 2022-08-12 US US17/886,752 patent/US20230002461A1/en active Pending
- 2022-08-12 US US17/819,470 patent/US20230287069A1/en active Pending
- 2022-08-18 US US17/820,824 patent/US20230174602A1/en active Pending
- 2022-08-18 US US17/820,821 patent/US20230148369A1/en active Pending
- 2022-08-26 US US17/822,657 patent/US20230021673A1/en active Pending
- 2022-08-26 US US17/822,653 patent/US20230094553A1/en active Pending
- 2022-09-02 US US17/929,344 patent/US20230094286A1/en active Pending
- 2022-09-02 US US17/929,347 patent/US20230116279A1/en active Pending
- 2022-09-09 US US17/930,891 patent/US20230035702A1/en active Pending
- 2022-09-19 US US17/933,353 patent/US20230109584A1/en active Pending
- 2022-09-19 US US17/933,298 patent/US20230043654A1/en active Pending
- 2022-09-23 US US17/934,663 patent/US20230192791A1/en active Pending
- 2022-09-23 US US17/934,747 patent/US20230042253A1/en active Pending
- 2022-09-23 US US17/934,673 patent/US20230046543A1/en active Pending
-
2023
- 2023-04-07 US US18/297,076 patent/US20230279066A1/en active Pending
- 2023-05-10 US US18/314,878 patent/US20230340046A1/en active Pending
- 2023-07-04 AU AU2023204282A patent/AU2023204282A1/en active Pending
- 2023-07-09 IL IL304321A patent/IL304321A/en unknown
- 2023-08-11 US US18/448,614 patent/US20230382964A1/en active Pending
- 2023-09-20 JP JP2023152293A patent/JP2024001045A/en active Pending
-
2024
- 2024-02-21 CL CL2024000530A patent/CL2024000530A1/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11618774B2 (en) | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers | |
US11866473B2 (en) | Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC, SCLC and other cancers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IMMATICS BIOTECHNOLOGIES GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SONG, COLETTE;SCHOOR, OLIVER;FRITSCHE, JENS;AND OTHERS;SIGNING DATES FROM 20180606 TO 20180626;REEL/FRAME:061155/0359 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |