US20230095547A1 - Method for inhibiting growth of bacteria - Google Patents
Method for inhibiting growth of bacteria Download PDFInfo
- Publication number
- US20230095547A1 US20230095547A1 US17/400,336 US202117400336A US2023095547A1 US 20230095547 A1 US20230095547 A1 US 20230095547A1 US 202117400336 A US202117400336 A US 202117400336A US 2023095547 A1 US2023095547 A1 US 2023095547A1
- Authority
- US
- United States
- Prior art keywords
- compound
- pkz18
- formula
- antibiotic
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000012010 growth Effects 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 64
- 241000894006 Bacteria Species 0.000 title claims abstract description 46
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 269
- 239000000203 mixture Substances 0.000 claims abstract description 52
- 241000192125 Firmicutes Species 0.000 claims abstract description 20
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 claims description 50
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical group O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 claims description 42
- 229930182566 Gentamicin Natural products 0.000 claims description 42
- 125000001072 heteroaryl group Chemical group 0.000 claims description 36
- 229940126575 aminoglycoside Drugs 0.000 claims description 32
- 125000003118 aryl group Chemical group 0.000 claims description 26
- 239000008194 pharmaceutical composition Substances 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 26
- 229930189077 Rifamycin Natural products 0.000 claims description 24
- 229960003292 rifamycin Drugs 0.000 claims description 24
- HJYYPODYNSCCOU-ODRIEIDWSA-N rifamycin SV Chemical compound OC1=C(C(O)=C2C)C3=C(O)C=C1NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@H](C)[C@@H](OC)\C=C\O[C@@]1(C)OC2=C3C1=O HJYYPODYNSCCOU-ODRIEIDWSA-N 0.000 claims description 24
- 229960001225 rifampicin Drugs 0.000 claims description 22
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 claims description 22
- 239000003910 polypeptide antibiotic agent Substances 0.000 claims description 18
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 17
- 229930193140 Neomycin Natural products 0.000 claims description 14
- 229960000318 kanamycin Drugs 0.000 claims description 14
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 claims description 14
- 229930182823 kanamycin A Natural products 0.000 claims description 14
- 229960004927 neomycin Drugs 0.000 claims description 14
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 13
- 150000002367 halogens Chemical class 0.000 claims description 13
- 229930027917 kanamycin Natural products 0.000 claims description 13
- 125000001424 substituent group Chemical group 0.000 claims description 12
- MYPYJXKWCTUITO-KIIOPKALSA-N chembl3301825 Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)C(O)[C@H](C)O1 MYPYJXKWCTUITO-KIIOPKALSA-N 0.000 claims description 9
- 230000032770 biofilm formation Effects 0.000 claims description 8
- 239000006071 cream Substances 0.000 claims description 8
- 239000002674 ointment Substances 0.000 claims description 8
- 230000003115 biocidal effect Effects 0.000 abstract description 71
- 239000003242 anti bacterial agent Substances 0.000 abstract description 59
- 230000000694 effects Effects 0.000 description 37
- 108020004566 Transfer RNA Proteins 0.000 description 36
- 239000003814 drug Substances 0.000 description 33
- 229940079593 drug Drugs 0.000 description 33
- 108010059993 Vancomycin Proteins 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 32
- 238000011282 treatment Methods 0.000 description 32
- 229960003165 vancomycin Drugs 0.000 description 32
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 32
- 229960002518 gentamicin Drugs 0.000 description 31
- 229940088710 antibiotic agent Drugs 0.000 description 27
- 230000001580 bacterial effect Effects 0.000 description 27
- 108090000623 proteins and genes Proteins 0.000 description 25
- 108020004422 Riboswitch Proteins 0.000 description 23
- 230000014509 gene expression Effects 0.000 description 20
- 108020003589 5' Untranslated Regions Proteins 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 230000001105 regulatory effect Effects 0.000 description 17
- 235000014469 Bacillus subtilis Nutrition 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 230000002195 synergetic effect Effects 0.000 description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 238000013518 transcription Methods 0.000 description 14
- 230000035897 transcription Effects 0.000 description 14
- 108020004999 messenger RNA Proteins 0.000 description 13
- 230000005764 inhibitory process Effects 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 11
- 230000003993 interaction Effects 0.000 description 11
- 239000006151 minimal media Substances 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 11
- -1 ammonium cations Chemical class 0.000 description 10
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 10
- 101150071168 glyQS gene Proteins 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 229920001817 Agar Polymers 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 239000008272 agar Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000010790 dilution Methods 0.000 description 9
- 239000012895 dilution Substances 0.000 description 9
- 101150067361 Aars1 gene Proteins 0.000 description 8
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 230000000844 anti-bacterial effect Effects 0.000 description 8
- 239000002775 capsule Substances 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- MINDHVHHQZYEEK-UHFFFAOYSA-N (E)-(2S,3R,4R,5S)-5-[(2S,3S,4S,5S)-2,3-epoxy-5-hydroxy-4-methylhexyl]tetrahydro-3,4-dihydroxy-(beta)-methyl-2H-pyran-2-crotonic acid ester with 9-hydroxynonanoic acid Natural products CC(O)C(C)C1OC1CC1C(O)C(O)C(CC(C)=CC(=O)OCCCCCCCCC(O)=O)OC1 MINDHVHHQZYEEK-UHFFFAOYSA-N 0.000 description 7
- 108010013198 Daptomycin Proteins 0.000 description 7
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 7
- 231100000135 cytotoxicity Toxicity 0.000 description 7
- 230000003013 cytotoxicity Effects 0.000 description 7
- 229960005484 daptomycin Drugs 0.000 description 7
- DOAKLVKFURWEDJ-QCMAZARJSA-N daptomycin Chemical compound C([C@H]1C(=O)O[C@H](C)[C@@H](C(NCC(=O)N[C@@H](CCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@H](CO)C(=O)N[C@H](C(=O)N1)[C@H](C)CC(O)=O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](CC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CCCCCCCCC)C(=O)C1=CC=CC=C1N DOAKLVKFURWEDJ-QCMAZARJSA-N 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 210000002540 macrophage Anatomy 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 229960003128 mupirocin Drugs 0.000 description 7
- 229930187697 mupirocin Natural products 0.000 description 7
- DDHVILIIHBIMQU-YJGQQKNPSA-L mupirocin calcium hydrate Chemical compound O.O.[Ca+2].C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1.C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1 DDHVILIIHBIMQU-YJGQQKNPSA-L 0.000 description 7
- 230000035899 viability Effects 0.000 description 7
- 108020005098 Anticodon Proteins 0.000 description 6
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 6
- 239000003974 emollient agent Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 101100480329 Enterococcus faecalis (strain TX4000 / JH2-2) tyrS1 gene Proteins 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 238000011529 RT qPCR Methods 0.000 description 5
- 241000191967 Staphylococcus aureus Species 0.000 description 5
- 239000004098 Tetracycline Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000002503 metabolic effect Effects 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000006187 pill Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 229960002180 tetracycline Drugs 0.000 description 5
- 229930101283 tetracycline Natural products 0.000 description 5
- 235000019364 tetracycline Nutrition 0.000 description 5
- 150000003522 tetracyclines Chemical class 0.000 description 5
- 239000001974 tryptic soy broth Substances 0.000 description 5
- 108010050327 trypticase-soy broth Proteins 0.000 description 5
- 101150101943 tyrS gene Proteins 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 4
- 238000003559 RNA-seq method Methods 0.000 description 4
- 241000191940 Staphylococcus Species 0.000 description 4
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 244000052616 bacterial pathogen Species 0.000 description 4
- 230000003833 cell viability Effects 0.000 description 4
- 229960005091 chloramphenicol Drugs 0.000 description 4
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 4
- 230000001332 colony forming effect Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 239000005414 inactive ingredient Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000002147 killing effect Effects 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 4
- 229960004023 minocycline Drugs 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 4
- 229960001019 oxacillin Drugs 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 229940049954 penicillin Drugs 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000007910 systemic administration Methods 0.000 description 4
- 239000007916 tablet composition Substances 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- 239000012049 topical pharmaceutical composition Substances 0.000 description 4
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 3
- WZRJTRPJURQBRM-UHFFFAOYSA-N 4-amino-n-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide;5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1.COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 WZRJTRPJURQBRM-UHFFFAOYSA-N 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 3
- 229930186147 Cephalosporin Natural products 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 206010013710 Drug interaction Diseases 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 108010015899 Glycopeptides Proteins 0.000 description 3
- 102000002068 Glycopeptides Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 239000004599 antimicrobial Substances 0.000 description 3
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 description 3
- 229960003644 aztreonam Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007978 cacodylate buffer Substances 0.000 description 3
- 239000007963 capsule composition Substances 0.000 description 3
- JSVCEVCSANKFDY-SFYZADRCSA-N carbacephem Chemical compound C1CC(C)=C(C(O)=O)N2C(=O)[C@@H](NC(=O)C)[C@H]21 JSVCEVCSANKFDY-SFYZADRCSA-N 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 229940124587 cephalosporin Drugs 0.000 description 3
- 150000001780 cephalosporins Chemical class 0.000 description 3
- 239000000890 drug combination Substances 0.000 description 3
- 230000008029 eradication Effects 0.000 description 3
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 3
- 229960005542 ethidium bromide Drugs 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 229940014259 gelatin Drugs 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000004941 influx Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 229960003085 meticillin Drugs 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229960000885 rifabutin Drugs 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000013715 transcription antitermination Effects 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 108700028939 Amino Acyl-tRNA Synthetases Proteins 0.000 description 2
- 102000052866 Amino Acyl-tRNA Synthetases Human genes 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- UGTJLJZQQFGTJD-UHFFFAOYSA-N Carbonylcyanide-3-chlorophenylhydrazone Chemical compound ClC1=CC=CC(NN=C(C#N)C#N)=C1 UGTJLJZQQFGTJD-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- 108010028921 Lipopeptides Proteins 0.000 description 2
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 101710146427 Probable tyrosine-tRNA ligase, cytoplasmic Proteins 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 102000018378 Tyrosine-tRNA ligase Human genes 0.000 description 2
- 101710107268 Tyrosine-tRNA ligase, mitochondrial Proteins 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 230000001355 anti-mycobacterial effect Effects 0.000 description 2
- 239000003926 antimycobacterial agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000010611 checkerboard assay Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229940047766 co-trimoxazole Drugs 0.000 description 2
- 230000007748 combinatorial effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 229960002433 cysteine Drugs 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- 239000003596 drug target Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229960003276 erythromycin Drugs 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229960001977 loracarbef Drugs 0.000 description 2
- JAPHQRWPEGVNBT-UTUOFQBUSA-N loracarbef Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)[NH3+])=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-N 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 239000003120 macrolide antibiotic agent Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- IAIWVQXQOWNYOU-FPYGCLRLSA-N nitrofural Chemical compound NC(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-FPYGCLRLSA-N 0.000 description 2
- 229960001907 nitrofurazone Drugs 0.000 description 2
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 229940056360 penicillin g Drugs 0.000 description 2
- 230000004983 pleiotropic effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229940069328 povidone Drugs 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 230000005180 public health Effects 0.000 description 2
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- ATEBXHFBFRCZMA-VXTBVIBXSA-N rifabutin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC(=C2N3)C(=O)C=4C(O)=C5C)C)OC)C5=C1C=4C2=NC13CCN(CC(C)C)CC1 ATEBXHFBFRCZMA-VXTBVIBXSA-N 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 206010040872 skin infection Diseases 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229960004659 ticarcillin Drugs 0.000 description 2
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 239000006150 trypticase soy agar Substances 0.000 description 2
- 230000007923 virulence factor Effects 0.000 description 2
- 239000000304 virulence factor Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- LITBAYYWXZOHAW-XDZRHBBOSA-N (2s,5r,6r)-6-[[(2r)-2-[(4-ethyl-2,3-dioxopiperazine-1-carbonyl)amino]-2-phenylacetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;(2s,3s,5r)-3-methyl-4,4,7-trioxo-3-(triazol-1-ylmethyl)-4$l^{6}-thia-1-azabicyclo[3.2.0]hept Chemical compound C([C@]1(C)S([C@H]2N(C(C2)=O)[C@H]1C(O)=O)(=O)=O)N1C=CN=N1.O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 LITBAYYWXZOHAW-XDZRHBBOSA-N 0.000 description 1
- VCOPTHOUUNAYKQ-WBTCAYNUSA-N (3s)-3,6-diamino-n-[[(2s,5s,8e,11s,15s)-15-amino-11-[(6r)-2-amino-1,4,5,6-tetrahydropyrimidin-6-yl]-8-[(carbamoylamino)methylidene]-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentazacyclohexadec-5-yl]methyl]hexanamide;(3s)-3,6-diamino-n-[[(2s,5s,8 Chemical compound N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](C)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1.N1C(=O)\C(=C/NC(N)=O)NC(=O)[C@H](CNC(=O)C[C@@H](N)CCCN)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CNC(=O)[C@@H]1[C@@H]1NC(N)=NCC1 VCOPTHOUUNAYKQ-WBTCAYNUSA-N 0.000 description 1
- XIYOPDCBBDCGOE-IWVLMIASSA-N (4s,4ar,5s,5ar,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylidene-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C=C1C2=CC=CC(O)=C2C(O)=C2[C@@H]1[C@H](O)[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O XIYOPDCBBDCGOE-IWVLMIASSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- SOVUOXKZCCAWOJ-HJYUBDRYSA-N (4s,4as,5ar,12ar)-9-[[2-(tert-butylamino)acetyl]amino]-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=C(NC(=O)CNC(C)(C)C)C(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O SOVUOXKZCCAWOJ-HJYUBDRYSA-N 0.000 description 1
- GUXHBMASAHGULD-SEYHBJAFSA-N (4s,4as,5as,6s,12ar)-7-chloro-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1([C@H]2O)=C(Cl)C=CC(O)=C1C(O)=C1[C@@H]2C[C@H]2[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]2(O)C1=O GUXHBMASAHGULD-SEYHBJAFSA-N 0.000 description 1
- HBUJYEUPIIJJOS-PBHICJAKSA-N (5r)-3-[4-[1-[(2s)-2,3-dihydroxypropanoyl]-3,6-dihydro-2h-pyridin-4-yl]-3,5-difluorophenyl]-5-(1,2-oxazol-3-yloxymethyl)-1,3-oxazolidin-2-one Chemical compound C1N(C(=O)[C@@H](O)CO)CCC(C=2C(=CC(=CC=2F)N2C(O[C@@H](COC3=NOC=C3)C2)=O)F)=C1 HBUJYEUPIIJJOS-PBHICJAKSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 1
- RXZBMPWDPOLZGW-XMRMVWPWSA-N (E)-roxithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=N/OCOCCOC)/[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 RXZBMPWDPOLZGW-XMRMVWPWSA-N 0.000 description 1
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 description 1
- NCCJWSXETVVUHK-ZYSAIPPVSA-N (z)-7-[(2r)-2-amino-2-carboxyethyl]sulfanyl-2-[[(1s)-2,2-dimethylcyclopropanecarbonyl]amino]hept-2-enoic acid;(5r,6s)-3-[2-(aminomethylideneamino)ethylsulfanyl]-6-[(1r)-1-hydroxyethyl]-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound C1C(SCC\N=C/N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21.CC1(C)C[C@@H]1C(=O)N\C(=C/CCCCSC[C@H](N)C(O)=O)C(O)=O NCCJWSXETVVUHK-ZYSAIPPVSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- PKDBCJSWQUOKDO-UHFFFAOYSA-M 2,3,5-triphenyltetrazolium chloride Chemical compound [Cl-].C1=CC=CC=C1C(N=[N+]1C=2C=CC=CC=2)=NN1C1=CC=CC=C1 PKDBCJSWQUOKDO-UHFFFAOYSA-M 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- ACTOXUHEUCPTEW-BWHGAVFKSA-N 2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-[(2s,3r,4r,5s,6r)-5-[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2s,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-o Chemical compound O([C@H]1/C=C/C=C/C[C@@H](C)OC(=O)C[C@@H](O)[C@@H]([C@H]([C@@H](CC=O)C[C@H]1C)O[C@H]1[C@@H]([C@H]([C@H](O[C@@H]2O[C@@H](C)[C@H](O)[C@](C)(O)C2)[C@@H](C)O1)N(C)C)O)OC)[C@@H]1CC[C@H](N(C)C)[C@@H](C)O1 ACTOXUHEUCPTEW-BWHGAVFKSA-N 0.000 description 1
- 125000006618 5- to 10-membered aromatic heterocyclic group Chemical group 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical class CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010060968 Arthritis infective Diseases 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical class [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108010065839 Capreomycin Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UQLLWWBDSUHNEB-CZUORRHYSA-N Cefaprin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CSC1=CC=NC=C1 UQLLWWBDSUHNEB-CZUORRHYSA-N 0.000 description 1
- GNWUOVJNSFPWDD-XMZRARIVSA-M Cefoxitin sodium Chemical compound [Na+].N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)CC1=CC=CS1 GNWUOVJNSFPWDD-XMZRARIVSA-M 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical class [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010078777 Colistin Proteins 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- FMTDIUIBLCQGJB-UHFFFAOYSA-N Demethylchlortetracyclin Natural products C1C2C(O)C3=C(Cl)C=CC(O)=C3C(=O)C2=C(O)C2(O)C1C(N(C)C)C(O)=C(C(N)=O)C2=O FMTDIUIBLCQGJB-UHFFFAOYSA-N 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- JWCSIUVGFCSJCK-CAVRMKNVSA-N Disodium Moxalactam Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CO[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C1=CC=C(O)C=C1 JWCSIUVGFCSJCK-CAVRMKNVSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- FMRHJJZUHUTGKE-UHFFFAOYSA-N Ethylhexyl salicylate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1O FMRHJJZUHUTGKE-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- UIOFUWFRIANQPC-JKIFEVAISA-N Floxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(F)C=CC=C1Cl UIOFUWFRIANQPC-JKIFEVAISA-N 0.000 description 1
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 description 1
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010051724 Glycine-tRNA Ligase Proteins 0.000 description 1
- 229920002306 Glycocalyx Polymers 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 102000019220 Glycyl-tRNA synthetases Human genes 0.000 description 1
- AIJTTZAVMXIJGM-UHFFFAOYSA-N Grepafloxacin Chemical compound C1CNC(C)CN1C(C(=C1C)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 AIJTTZAVMXIJGM-UHFFFAOYSA-N 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- JUZNIMUFDBIJCM-ANEDZVCMSA-N Invanz Chemical compound O=C([C@H]1NC[C@H](C1)SC=1[C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)NC1=CC=CC(C(O)=O)=C1 JUZNIMUFDBIJCM-ANEDZVCMSA-N 0.000 description 1
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 101100258806 Lactococcus lactis subsp. lactis (strain IL1403) glyQ gene Proteins 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- TYMRLRRVMHJFTF-UHFFFAOYSA-N Mafenide Chemical compound NCC1=CC=C(S(N)(=O)=O)C=C1 TYMRLRRVMHJFTF-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- 206010029803 Nosocomial infection Diseases 0.000 description 1
- 206010033109 Ototoxicity Diseases 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- UOZODPSAJZTQNH-UHFFFAOYSA-N Paromomycin II Natural products NC1C(O)C(O)C(CN)OC1OC1C(O)C(OC2C(C(N)CC(N)C2O)OC2C(C(O)C(O)C(CO)O2)N)OC1CO UOZODPSAJZTQNH-UHFFFAOYSA-N 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- ZVGNESXIJDCBKN-WUIGKKEISA-N R-Tiacumicin B Natural products O([C@@H]1[C@@H](C)O[C@H]([C@H]([C@H]1O)OC)OCC1=CC=CC[C@H](O)C(C)=C[C@@H]([C@H](C(C)=CC(C)=CC[C@H](OC1=O)[C@@H](C)O)O[C@H]1[C@H]([C@@H](O)[C@H](OC(=O)C(C)C)C(C)(C)O1)O)CC)C(=O)C1=C(O)C(Cl)=C(O)C(Cl)=C1CC ZVGNESXIJDCBKN-WUIGKKEISA-N 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 101100423624 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) leuS2 gene Proteins 0.000 description 1
- 229920002385 Sodium hyaluronate Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000004187 Spiramycin Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- NHUHCSRWZMLRLA-UHFFFAOYSA-N Sulfisoxazole Chemical compound CC1=NOC(NS(=O)(=O)C=2C=CC(N)=CC=2)=C1C NHUHCSRWZMLRLA-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 108010053950 Teicoplanin Proteins 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- HJLSLZFTEKNLFI-UHFFFAOYSA-N Tinidazole Chemical compound CCS(=O)(=O)CCN1C(C)=NC=C1[N+]([O-])=O HJLSLZFTEKNLFI-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ZWBTYMGEBZUQTK-PVLSIAFMSA-N [(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,32-tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(32),2,4,9,19,21,24,26,30-nonaene-28,4'-piperidine]-13-yl] acetate Chemical compound CO[C@H]1\C=C\O[C@@]2(C)Oc3c(C2=O)c2c4NC5(CCN(CC(C)C)CC5)N=c4c(=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)c(O)c2c(O)c3C ZWBTYMGEBZUQTK-PVLSIAFMSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000003349 alamar blue assay Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- BWZOPYPOZJBVLQ-UHFFFAOYSA-K aluminium glycinate Chemical compound O[Al+]O.NCC([O-])=O BWZOPYPOZJBVLQ-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 239000002647 aminoglycoside antibiotic agent Substances 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229940038195 amoxicillin / clavulanate Drugs 0.000 description 1
- 229940043312 ampicillin / sulbactam Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229940003446 arsphenamine Drugs 0.000 description 1
- VLAXZGHHBIJLAD-UHFFFAOYSA-N arsphenamine Chemical compound [Cl-].[Cl-].C1=C(O)C([NH3+])=CC([As]=[As]C=2C=C([NH3+])C(O)=CC=2)=C1 VLAXZGHHBIJLAD-UHFFFAOYSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 229960003623 azlocillin Drugs 0.000 description 1
- JTWOMNBEOCYFNV-NFFDBFGFSA-N azlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCNC1=O JTWOMNBEOCYFNV-NFFDBFGFSA-N 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- PPKJUHVNTMYXOD-PZGPJMECSA-N c49ws9n75l Chemical compound O=C([C@@H]1N(C2=O)CC[C@H]1S(=O)(=O)CCN(CC)CC)O[C@H](C(C)C)[C@H](C)\C=C\C(=O)NC\C=C\C(\C)=C\[C@@H](O)CC(=O)CC1=NC2=CO1.N([C@@H]1C(=O)N[C@@H](C(N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(=CC=2)N(C)C)C(=O)N2C[C@@H](CS[C@H]3C4CCN(CC4)C3)C(=O)C[C@H]2C(=O)N[C@H](C(=O)O[C@@H]1C)C=1C=CC=CC=1)=O)CC)C(=O)C1=NC=CC=C1O PPKJUHVNTMYXOD-PZGPJMECSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229960004602 capreomycin Drugs 0.000 description 1
- YZBQHRLRFGPBSL-RXMQYKEDSA-N carbapenem Chemical compound C1C=CN2C(=O)C[C@H]21 YZBQHRLRFGPBSL-RXMQYKEDSA-N 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- OLVCFLKTBJRLHI-AXAPSJFSSA-N cefamandole Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)[C@H](O)C=3C=CC=CC=3)[C@H]2SC1 OLVCFLKTBJRLHI-AXAPSJFSSA-N 0.000 description 1
- 229960003012 cefamandole Drugs 0.000 description 1
- 229960004350 cefapirin Drugs 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960003719 cefdinir Drugs 0.000 description 1
- RTXOFQZKPXMALH-GHXIOONMSA-N cefdinir Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 RTXOFQZKPXMALH-GHXIOONMSA-N 0.000 description 1
- 229960004069 cefditoren Drugs 0.000 description 1
- KMIPKYQIOVAHOP-YLGJWRNMSA-N cefditoren Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1\C=C/C=1SC=NC=1C KMIPKYQIOVAHOP-YLGJWRNMSA-N 0.000 description 1
- 229960002100 cefepime Drugs 0.000 description 1
- HVFLCNVBZFFHBT-ZKDACBOMSA-N cefepime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 HVFLCNVBZFFHBT-ZKDACBOMSA-N 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- SNBUBQHDYVFSQF-HIFRSBDPSA-N cefmetazole Chemical compound S([C@@H]1[C@@](C(N1C=1C(O)=O)=O)(NC(=O)CSCC#N)OC)CC=1CSC1=NN=NN1C SNBUBQHDYVFSQF-HIFRSBDPSA-N 0.000 description 1
- 229960003585 cefmetazole Drugs 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- SRZNHPXWXCNNDU-RHBCBLIFSA-N cefotetan Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CS[C@@H]21)C(O)=O)=O)C(=O)C1SC(=C(C(N)=O)C(O)=O)S1 SRZNHPXWXCNNDU-RHBCBLIFSA-N 0.000 description 1
- 229960005495 cefotetan Drugs 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- 229960005090 cefpodoxime Drugs 0.000 description 1
- WYUSVOMTXWRGEK-HBWVYFAYSA-N cefpodoxime Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC)C(O)=O)C(=O)C(=N/OC)\C1=CSC(N)=N1 WYUSVOMTXWRGEK-HBWVYFAYSA-N 0.000 description 1
- 229960002580 cefprozil Drugs 0.000 description 1
- 229960002588 cefradine Drugs 0.000 description 1
- 229960004828 ceftaroline fosamil Drugs 0.000 description 1
- UGHHNQFYEVOFIV-VRDMTWHKSA-N ceftaroline fosamil acetate Chemical compound CC(O)=O.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OCC)C=2N=C(NP(O)(O)=O)SN=2)CC=1SC(SC=1)=NC=1C1=CC=[N+](C)C=C1 UGHHNQFYEVOFIV-VRDMTWHKSA-N 0.000 description 1
- 229960004086 ceftibuten Drugs 0.000 description 1
- UNJFKXSSGBWRBZ-BJCIPQKHSA-N ceftibuten Chemical compound S1C(N)=NC(C(=C\CC(O)=O)\C(=O)N[C@@H]2C(N3C(=CCS[C@@H]32)C(O)=O)=O)=C1 UNJFKXSSGBWRBZ-BJCIPQKHSA-N 0.000 description 1
- 229960001991 ceftizoxime Drugs 0.000 description 1
- NNULBSISHYWZJU-LLKWHZGFSA-N ceftizoxime Chemical compound N([C@@H]1C(N2C(=CCS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 NNULBSISHYWZJU-LLKWHZGFSA-N 0.000 description 1
- VOAZJEPQLGBXGO-SDAWRPRTSA-N ceftobiprole Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(\C=C/4C(N([C@H]5CNCC5)CC\4)=O)CS[C@@H]32)C(O)=O)=O)=N1 VOAZJEPQLGBXGO-SDAWRPRTSA-N 0.000 description 1
- 229950004259 ceftobiprole Drugs 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- VUFGUVLLDPOSBC-XRZFDKQNSA-M cephalothin sodium Chemical compound [Na+].N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C([O-])=O)C(=O)CC1=CC=CS1 VUFGUVLLDPOSBC-XRZFDKQNSA-M 0.000 description 1
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229940090805 clavulanate Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229960004287 clofazimine Drugs 0.000 description 1
- WDQPAMHFFCXSNU-BGABXYSRSA-N clofazimine Chemical compound C12=CC=CC=C2N=C2C=C(NC=3C=CC(Cl)=CC=3)C(=N/C(C)C)/C=C2N1C1=CC=C(Cl)C=C1 WDQPAMHFFCXSNU-BGABXYSRSA-N 0.000 description 1
- 229960003346 colistin Drugs 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 229960003077 cycloserine Drugs 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 229960002488 dalbavancin Drugs 0.000 description 1
- 108700009376 dalbavancin Proteins 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229960002398 demeclocycline Drugs 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229960001585 dicloxacillin Drugs 0.000 description 1
- YFAGHNZHGGCZAX-JKIFEVAISA-N dicloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(Cl)C=CC=C1Cl YFAGHNZHGGCZAX-JKIFEVAISA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 229940015826 dihydroxyaluminum aminoacetate Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- NWOYIVRVSJDTLK-YSDBFZIDSA-L disodium;(2s,5r,6r)-6-[[(2r)-2-amino-2-phenylacetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate;(1r,4s)-3,3-dimethyl-2,2,6-trioxo-2$l^{6}-thiabicyclo[3.2.0]heptane-4-carboxylate Chemical compound [Na+].[Na+].O=S1(=O)C(C)(C)[C@H](C([O-])=O)C2C(=O)C[C@H]21.C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C([O-])=O)(C)C)=CC=CC=C1 NWOYIVRVSJDTLK-YSDBFZIDSA-L 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- QQQMUBLXDAFBRH-UHFFFAOYSA-N dodecyl 2-hydroxypropanoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)O QQQMUBLXDAFBRH-UHFFFAOYSA-N 0.000 description 1
- AVAACINZEOAHHE-VFZPANTDSA-N doripenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](CNS(N)(=O)=O)C1 AVAACINZEOAHHE-VFZPANTDSA-N 0.000 description 1
- 229960000895 doripenem Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229960002549 enoxacin Drugs 0.000 description 1
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229960002770 ertapenem Drugs 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 229960002001 ethionamide Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920000912 exopolymer Polymers 0.000 description 1
- 210000003195 fascia Anatomy 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229960000628 fidaxomicin Drugs 0.000 description 1
- ZVGNESXIJDCBKN-UUEYKCAUSA-N fidaxomicin Chemical compound O([C@@H]1[C@@H](C)O[C@H]([C@H]([C@H]1O)OC)OCC\1=C/C=C/C[C@H](O)/C(C)=C/[C@@H]([C@H](/C(C)=C/C(/C)=C/C[C@H](OC/1=O)[C@@H](C)O)O[C@H]1[C@H]([C@@H](O)[C@H](OC(=O)C(C)C)C(C)(C)O1)O)CC)C(=O)C1=C(O)C(Cl)=C(O)C(Cl)=C1CC ZVGNESXIJDCBKN-UUEYKCAUSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 229960004273 floxacillin Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 229960000308 fosfomycin Drugs 0.000 description 1
- YMDXZJFXQJVXBF-STHAYSLISA-N fosfomycin Chemical compound C[C@@H]1O[C@@H]1P(O)(O)=O YMDXZJFXQJVXBF-STHAYSLISA-N 0.000 description 1
- 229960003704 framycetin Drugs 0.000 description 1
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 1
- 229960001625 furazolidone Drugs 0.000 description 1
- PLHJDBGFXBMTGZ-WEVVVXLNSA-N furazolidone Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)OCC1 PLHJDBGFXBMTGZ-WEVVVXLNSA-N 0.000 description 1
- 229960004675 fusidic acid Drugs 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 229960003923 gatifloxacin Drugs 0.000 description 1
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 1
- 229960003170 gemifloxacin Drugs 0.000 description 1
- ZRCVYEYHRGVLOC-HYARGMPZSA-N gemifloxacin Chemical compound C1C(CN)C(=N/OC)/CN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1CC1 ZRCVYEYHRGVLOC-HYARGMPZSA-N 0.000 description 1
- 230000004034 genetic regulation Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000003969 glutathione Nutrition 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 101150049851 glyS gene Proteins 0.000 description 1
- 210000004517 glycocalyx Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 244000000059 gram-positive pathogen Species 0.000 description 1
- 229960000642 grepafloxacin Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 108090001052 hairpin ribozyme Proteins 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- MCAHMSDENAOJFZ-BVXDHVRPSA-N herbimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](OC)[C@@H](OC)C[C@H](C)[C@@H](OC)C2=CC(=O)C=C1C2=O MCAHMSDENAOJFZ-BVXDHVRPSA-N 0.000 description 1
- 229930193320 herbimycin Natural products 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical class [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 229960003943 hypromellose Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000035992 intercellular communication Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229960000829 kaolin Drugs 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 229960000433 latamoxef Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 101150021684 leuS gene Proteins 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 229960003907 linezolid Drugs 0.000 description 1
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229960002422 lomefloxacin Drugs 0.000 description 1
- ZEKZLJVOYLTDKK-UHFFFAOYSA-N lomefloxacin Chemical compound FC1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNC(C)C1 ZEKZLJVOYLTDKK-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229960003640 mafenide Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229960003194 meglumine Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 229940042016 methacycline Drugs 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960000198 mezlocillin Drugs 0.000 description 1
- YPBATNHYBCGSSN-VWPFQQQWSA-N mezlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCN(S(C)(=O)=O)C1=O YPBATNHYBCGSSN-VWPFQQQWSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000013580 millipore water Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 229960003702 moxifloxacin Drugs 0.000 description 1
- FABPRXSRWADJSP-MEDUHNTESA-N moxifloxacin Chemical compound COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 FABPRXSRWADJSP-MEDUHNTESA-N 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- JORAUNFTUVJTNG-BSTBCYLQSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Chemical compound CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O JORAUNFTUVJTNG-BSTBCYLQSA-N 0.000 description 1
- 229960003808 nadifloxacin Drugs 0.000 description 1
- JYJTVFIEFKZWCJ-UHFFFAOYSA-N nadifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)CCC3=C1N1CCC(O)CC1 JYJTVFIEFKZWCJ-UHFFFAOYSA-N 0.000 description 1
- 229960000515 nafcillin Drugs 0.000 description 1
- GPXLMGHLHQJAGZ-JTDSTZFVSA-N nafcillin Chemical compound C1=CC=CC2=C(C(=O)N[C@@H]3C(N4[C@H](C(C)(C)S[C@@H]43)C(O)=O)=O)C(OCC)=CC=C21 GPXLMGHLHQJAGZ-JTDSTZFVSA-N 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 230000007694 nephrotoxicity Effects 0.000 description 1
- 229960000808 netilmicin Drugs 0.000 description 1
- ZBGPYVZLYBDXKO-HILBYHGXSA-N netilmycin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@]([C@H](NC)[C@@H](O)CO1)(C)O)NCC)[C@H]1OC(CN)=CC[C@H]1N ZBGPYVZLYBDXKO-HILBYHGXSA-N 0.000 description 1
- 229960000564 nitrofurantoin Drugs 0.000 description 1
- NXFQHRVNIOXGAQ-YCRREMRBSA-N nitrofurantoin Chemical compound O1C([N+](=O)[O-])=CC=C1\C=N\N1C(=O)NC(=O)C1 NXFQHRVNIOXGAQ-YCRREMRBSA-N 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 229960003921 octisalate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000000424 optical density measurement Methods 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 229960001607 oritavancin Drugs 0.000 description 1
- 108010006945 oritavancin Proteins 0.000 description 1
- VHFGEBVPHAGQPI-MYYQHNLBSA-N oritavancin Chemical compound O([C@@H]1C2=CC=C(C(=C2)Cl)OC=2C=C3C=C(C=2O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O[C@@H]2O[C@@H](C)[C@H](O)[C@@](C)(NCC=4C=CC(=CC=4)C=4C=CC(Cl)=CC=4)C2)OC2=CC=C(C=C2Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]2C(=O)N[C@@H]1C(N[C@H](C1=CC(O)=CC(O)=C1C=1C(O)=CC=C2C=1)C(O)=O)=O)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@@H](O)[C@H](C)O1 VHFGEBVPHAGQPI-MYYQHNLBSA-N 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 239000002357 osmotic agent Substances 0.000 description 1
- 231100000262 ototoxicity Toxicity 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 229960001914 paromomycin Drugs 0.000 description 1
- UOZODPSAJZTQNH-LSWIJEOBSA-N paromomycin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO UOZODPSAJZTQNH-LSWIJEOBSA-N 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical class [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Chemical class 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- 229940104641 piperacillin / tazobactam Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 230000004260 plant-type cell wall biogenesis Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- CSOMAHTTWTVBFL-OFBLZTNGSA-N platensimycin Chemical compound C([C@]1([C@@H]2[C@@H]3C[C@@H]4C[C@@]2(C=CC1=O)C[C@@]4(O3)C)C)CC(=O)NC1=C(O)C=CC(C(O)=O)=C1O CSOMAHTTWTVBFL-OFBLZTNGSA-N 0.000 description 1
- CSOMAHTTWTVBFL-UHFFFAOYSA-N platensimycin Natural products O1C2(C)CC3(C=CC4=O)CC2CC1C3C4(C)CCC(=O)NC1=C(O)C=CC(C(O)=O)=C1O CSOMAHTTWTVBFL-UHFFFAOYSA-N 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001987 poloxamine Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- XDJYMJULXQKGMM-UHFFFAOYSA-N polymyxin E1 Natural products CCC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O XDJYMJULXQKGMM-UHFFFAOYSA-N 0.000 description 1
- KNIWPHSUTGNZST-UHFFFAOYSA-N polymyxin E2 Natural products CC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O KNIWPHSUTGNZST-UHFFFAOYSA-N 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229950004447 posizolid Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- ABBQGOCHXSPKHJ-WUKNDPDISA-N prontosil Chemical compound NC1=CC(N)=CC=C1\N=N\C1=CC=C(S(N)(=O)=O)C=C1 ABBQGOCHXSPKHJ-WUKNDPDISA-N 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229940052337 quinupristin/dalfopristin Drugs 0.000 description 1
- 229950009965 radezolid Drugs 0.000 description 1
- BTTNOGHPGJANSW-IBGZPJMESA-N radezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C1=CC=C(C=2C=CC(CNCC=3NN=NC=3)=CC=2)C(F)=C1 BTTNOGHPGJANSW-IBGZPJMESA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229960002599 rifapentine Drugs 0.000 description 1
- WDZCUPBHRAEYDL-GZAUEHORSA-N rifapentine Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N(CC1)CCN1C1CCCC1 WDZCUPBHRAEYDL-GZAUEHORSA-N 0.000 description 1
- 229960003040 rifaximin Drugs 0.000 description 1
- NZCRJKRKKOLAOJ-XRCRFVBUSA-N rifaximin Chemical compound OC1=C(C(O)=C2C)C3=C4N=C5C=C(C)C=CN5C4=C1NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@H](C)[C@@H](OC)\C=C\O[C@@]1(C)OC2=C3C1=O NZCRJKRKKOLAOJ-XRCRFVBUSA-N 0.000 description 1
- 229960005224 roxithromycin Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229960003600 silver sulfadiazine Drugs 0.000 description 1
- UEJSSZHHYBHCEL-UHFFFAOYSA-N silver(1+) sulfadiazinate Chemical compound [Ag+].C1=CC(N)=CC=C1S(=O)(=O)[N-]C1=NC=CC=N1 UEJSSZHHYBHCEL-UHFFFAOYSA-N 0.000 description 1
- 231100000245 skin permeability Toxicity 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 229940010747 sodium hyaluronate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008137 solubility enhancer Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 229960004954 sparfloxacin Drugs 0.000 description 1
- DZZWHBIBMUVIIW-DTORHVGOSA-N sparfloxacin Chemical compound C1[C@@H](C)N[C@@H](C)CN1C1=C(F)C(N)=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1F DZZWHBIBMUVIIW-DTORHVGOSA-N 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229960001294 spiramycin Drugs 0.000 description 1
- 235000019372 spiramycin Nutrition 0.000 description 1
- 229930191512 spiramycin Natural products 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960002673 sulfacetamide Drugs 0.000 description 1
- SKIVFJLNDNKQPD-UHFFFAOYSA-N sulfacetamide Chemical compound CC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 SKIVFJLNDNKQPD-UHFFFAOYSA-N 0.000 description 1
- 229960000973 sulfadimethoxine Drugs 0.000 description 1
- ZZORFUFYDOWNEF-UHFFFAOYSA-N sulfadimethoxine Chemical compound COC1=NC(OC)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ZZORFUFYDOWNEF-UHFFFAOYSA-N 0.000 description 1
- 229960005158 sulfamethizole Drugs 0.000 description 1
- VACCAVUAMIDAGB-UHFFFAOYSA-N sulfamethizole Chemical compound S1C(C)=NN=C1NS(=O)(=O)C1=CC=C(N)C=C1 VACCAVUAMIDAGB-UHFFFAOYSA-N 0.000 description 1
- 229960005404 sulfamethoxazole Drugs 0.000 description 1
- 229950008188 sulfamidochrysoidine Drugs 0.000 description 1
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 1
- 229960001940 sulfasalazine Drugs 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 230000006231 tRNA aminoacylation Effects 0.000 description 1
- XFALPSLJIHVRKE-GFCCVEGCSA-N tedizolid Chemical compound CN1N=NC(C=2N=CC(=CC=2)C=2C(=CC(=CC=2)N2C(O[C@@H](CO)C2)=O)F)=N1 XFALPSLJIHVRKE-GFCCVEGCSA-N 0.000 description 1
- 229960001608 teicoplanin Drugs 0.000 description 1
- 229960005240 telavancin Drugs 0.000 description 1
- 108010089019 telavancin Proteins 0.000 description 1
- ONUMZHGUFYIKPM-MXNFEBESSA-N telavancin Chemical compound O1[C@@H](C)[C@@H](O)[C@](NCCNCCCCCCCCCC)(C)C[C@@H]1O[C@H]1[C@H](OC=2C3=CC=4[C@H](C(N[C@H]5C(=O)N[C@H](C(N[C@@H](C6=CC(O)=C(CNCP(O)(O)=O)C(O)=C6C=6C(O)=CC=C5C=6)C(O)=O)=O)[C@H](O)C5=CC=C(C(=C5)Cl)O3)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](NC(=O)[C@@H](CC(C)C)NC)[C@H](O)C3=CC=C(C(=C3)Cl)OC=2C=4)O[C@H](CO)[C@@H](O)[C@@H]1O ONUMZHGUFYIKPM-MXNFEBESSA-N 0.000 description 1
- 229960003250 telithromycin Drugs 0.000 description 1
- LJVAJPDWBABPEJ-PNUFFHFMSA-N telithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)[C@@H](C)C(=O)O[C@@H]([C@]2(OC(=O)N(CCCCN3C=C(N=C3)C=3C=NC=CC=3)[C@@H]2[C@@H](C)C(=O)[C@H](C)C[C@@]1(C)OC)C)CC)[C@@H]1O[C@H](C)C[C@H](N(C)C)[C@H]1O LJVAJPDWBABPEJ-PNUFFHFMSA-N 0.000 description 1
- 229960001114 temocillin Drugs 0.000 description 1
- BVCKFLJARNKCSS-DWPRYXJFSA-N temocillin Chemical compound N([C@]1(OC)C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C=1C=CSC=1 BVCKFLJARNKCSS-DWPRYXJFSA-N 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 229960003053 thiamphenicol Drugs 0.000 description 1
- OTVAEFIXJLOWRX-NXEZZACHSA-N thiamphenicol Chemical compound CS(=O)(=O)C1=CC=C([C@@H](O)[C@@H](CO)NC(=O)C(Cl)Cl)C=C1 OTVAEFIXJLOWRX-NXEZZACHSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 101150046628 thrS gene Proteins 0.000 description 1
- 101150031421 thrS-cat gene Proteins 0.000 description 1
- 229960004089 tigecycline Drugs 0.000 description 1
- 229960005053 tinidazole Drugs 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 125000002640 tocopherol group Chemical class 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- LADGBHLMCUINGV-UHFFFAOYSA-N tricaprin Chemical compound CCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCC)COC(=O)CCCCCCCCC LADGBHLMCUINGV-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 229960000497 trovafloxacin Drugs 0.000 description 1
- WVPSKSLAZQPAKQ-CDMJZVDBSA-N trovafloxacin Chemical compound C([C@H]1[C@@H]([C@H]1C1)N)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F WVPSKSLAZQPAKQ-CDMJZVDBSA-N 0.000 description 1
- 238000003211 trypan blue cell staining Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 101150112181 valS gene Proteins 0.000 description 1
- ACWBQPMHZXGDFX-QFIPXVFZSA-N valsartan Chemical compound C1=CC(CN(C(=O)CCCC)[C@@H](C(C)C)C(O)=O)=CC=C1C1=CC=CC=C1C1=NN=NN1 ACWBQPMHZXGDFX-QFIPXVFZSA-N 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- KGPGQDLTDHGEGT-JCIKCJKQSA-N zeven Chemical compound C=1C([C@@H]2C(=O)N[C@H](C(N[C@H](C3=CC(O)=C4)C(=O)NCCCN(C)C)=O)[C@H](O)C5=CC=C(C(=C5)Cl)OC=5C=C6C=C(C=5O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@H](O5)C(O)=O)NC(=O)CCCCCCCCC(C)C)OC5=CC=C(C=C5)C[C@@H]5C(=O)N[C@H](C(N[C@H]6C(=O)N2)=O)C=2C(Cl)=C(O)C=C(C=2)OC=2C(O)=CC=C(C=2)[C@H](C(N5)=O)NC)=CC=C(O)C=1C3=C4O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]1O KGPGQDLTDHGEGT-JCIKCJKQSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/426—1,3-Thiazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/74—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
- A01N43/78—1,3-Thiazoles; Hydrogenated 1,3-thiazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/90—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P1/00—Disinfectants; Antimicrobial compounds or mixtures thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/7036—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin having at least one amino group directly attached to the carbocyclic ring, e.g. streptomycin, gentamycin, amikacin, validamycin, fortimicins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/494—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/005—Antimicrobial preparations
Definitions
- Antibiotic resistance is acknowledged as one of the world's greatest global public health challenges. For example, the spread of hospital-acquired infections, including Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA), is a major concern for public health. Despite ongoing research on therapeutic treatments and prevention of bacterial, especially nosocomial, infections, current efforts for curbing antimicrobial resistance have been insufficient to overcome the problem.
- MRSA methicillin-resistant Staphylococcus aureus
- Biofilm-associated infections are a leading cause of morbidity and mortality in hospitalized patients.
- the prevalence of Gram-positive bacterial, biofilm-associated infections has increased due to the extensive use of medical implant devices. Device surfaces become colonized with Gram-positive microbes that propagate and mature into a biofilm, an immobile, sessile microbial community encased in a protective, self-produced extracellular polymeric matrix (EPM).
- EPM extracellular polymeric matrix
- biofilms Compared to free-floating planktonic organisms, biofilms have the characteristics of a shared physical barrier, rapid intercellular communication, and biofilm-inducible virulence factors that are employed to withstand host stress responses.
- a method for inhibiting the growth of Gram-positive bacteria including contacting said bacteria with a first compound and a second compound, wherein the first compound is a compound of Formula I:
- R 1 is selected from hydrogen and C 1-3 alkyl
- R 2 is selected from hydrogen, C 1-3 alkyl, a 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring wherein said 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring is optionally substituted with 1, 2, or 3 substituents individually selected from C 1-6 alkyl and halogen, and a 6-membered aryl ring optionally substituted only with a single C 1-6 alkyl substituent; and the second compound is selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- R 1 represents a single bond. In another example, represents a double bond.
- R 1 is hydrogen. In still another example, R 1 is C 1-3 alkyl.
- R 2 is a 6-membered heteroaryl ring optionally substituted with 1, 2, or 3 substituents individually selected from C 1-6 alkyl and halogen. In still a further example, R 2 is a 6-membered heteroaryl ring substituted only with a single C 1-6 alkyl substituent.
- the compound of Formula I is selected from
- the second compound is an aminoglycoside.
- the aminoglycoside is selected from gentamycin, kanamycin, and neomycin.
- the second compound is a rifamycin.
- the rifamycin is rifampin.
- the second compound is a glycopeptide antibiotic.
- glycopeptide antibiotic is vancomycin.
- inhibiting the growth of Gram-positive bacteria includes inhibiting biofilm formation.
- contacting said bacteria with a first compound and a second compound includes applying said first compound and said second compound to a surface.
- applying includes applying a composition and the composition includes the first compound and the second compound.
- the surface is selected from a skin of a subject, a prosthetic device, a surgical instrument, a table surface, a bench surface, and a cart surface.
- the composition is selected from a cream, an ointment, and a solution.
- contacting said bacteria with said first compound and said second compound includes administering said first compound and said second compound to a subject.
- administering includes administering a composition and the composition includes said first compound and said second compound.
- administering is administering orally.
- administering is administering intravenously.
- the composition includes a pill, a capsule, or a solution.
- the composition comprises a single unit dosage.
- a pharmaceutical composition including a first compound and a second compound, wherein the first compound is a compound of Formula I:
- R 1 is selected from hydrogen and C 1-3 alkyl
- R 2 is selected from hydrogen, C 1-3 alkyl, a 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring wherein said 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring is optionally substituted with 1, 2, or 3 substituents individually selected from C 1-6 alkyl and halogen, and a 6-membered aryl ring optionally substituted only with a single C 1-6 alkyl substituent; and the second compound is selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- R 1 represents a single bond. In another example, represents a double bond.
- R 1 is hydrogen. In still another example, R 1 is C 1-3 alkyl.
- R 2 is a 6-membered heteroaryl ring optionally substituted with 1, 2, or 3 substituents individually selected from C 1-6 alkyl and halogen. In still a further example, R 2 is a 6-membered heteroaryl ring substituted only with a single C 1-6 alkyl substituent.
- the compound of Formula I is selected from
- the second compound is an aminoglycoside.
- the aminoglycoside is selected from gentamycin, kanamycin, and neomycin.
- the second compound is a rifamycin.
- the rifamycin is rifampin.
- the second compound is a glycopeptide antibiotic.
- glycopeptide antibiotic is vancomycin.
- the pharmaceutical composition is selected from a cream, an ointment, and a solution.
- the pharmaceutical composition includes a pill, a capsule, or a solution.
- the composition includes a single unit dosage.
- FIG. 1 shows a simplified T-box model in accordance with aspects of the present disclosure. Additional T-box hairpins and apical loop to tRNA elbow interaction are not shown.
- Top An aminoacylated tRNA cannot stabilize the antiterminator helix, and the thermodynamically more stable terminator hairpin is formed, causing termination of transcription.
- Middle A cognate, unacylated tRNA can stabilize the antiterminator helix, which allows transcription to continue.
- FIGS. 2 A- 2 D show a PKZ18 analog's effect on transcriptional read-through in minimal media in accordance with aspects of the present disclosure.
- FIG. 2 A shows a sketch of a T-box-regulated gene layout where the two primers used for testing are represented by arrows for the T-box containing 5′UTR (left pair of primers) and the ORF (right pair of primers).
- FIG. 2 B shows effect of PKZ18 analogs on transcriptional read-through of B. subtilis glyQS. Concentration is shown on the x axis, and an absence of a bar indicates no observed growth at that concentration.
- FIG. 2 C shows side-by-side treatment of B.
- FIGS. 3 A- 3 F show RNA sequencing of MRSA showing the mean of two biological replicates grown in minimal media in accordance with aspects of the present disclosure.
- FIG. 3 A shows a heatmap of the expression of the 12 T-box controlled genes or operons in S. aureus and their respective 5′UTRs (T-boxes) showing a comparison of the three treatments' effect on initiation (5′UTR) and read-through (ORF).
- FIG. 3 B shows data from panel A showing relative read-through (normalized to untreated and presented as a column graph).
- FIG. 3 C shows a heatmap of some other 5′UTR regulated genes: SA0769 and SA0011 are regulated by SAM riboswitches, SA1173 is a sigma B regulated CDS, SA0373 is regulated by a purine riboswitch, and SA1589 is a trans-encoded sRNA.
- FIGS. 3 D- 3 F show comparisons of antibiotic effect on overall change in gene expression in MRSA is shown.
- FIG. 3 D shows 4 ⁇ g/ml PKZ18-22 to untreated
- FIG. 3 E shows 8 ⁇ g/ml PKZ18-22 to untreated
- FIG. 3 F shows 4 ⁇ g/ml daptomycin to untreated.
- FIG. 4 shows combinatorial effects of PKZ18 analogs with various antibiotics in accordance with aspects of the present disclosure.
- Class-specific antibiotics, and their respective targets are listed.
- the MIC and MIC with PKZ18 analog are shown, and where multiple analogs were tested, they are shown in the same cell.
- Fold change refers to the standalone MIC to combinatorial MIC ratio of the antibiotics tested in conjunction with PKZ18 analogs.
- FIC refers to the fractional inhibitory concentration, a measurement of synergy, and the value is explained in the effect column.
- FIGS. 5 A- 5 D show cytotoxicity of PKZ18 analogs in accordance with aspects of the present disclosure. All values are normalized to an untreated sample. A drug concentration of 0 corresponds to the DMSO control used in each experiment.
- FIG. 5 A shows J774.16 murine macrophage metabolic activity as measured by alamarBlue after 48 hours of treatment.
- FIG. 5 B shows J774.16 murine macrophage metabolic activity as measured by alamarBlue after 72 hours of treatment.
- FIG. 5 C shows A549 human lung epithelial cells' metabolic activity as measured by alamarBlue after 48 hours of treatment.
- FIG. 5 D shows J774.16 murine macrophage viability measured by Trypan blue cell counting after 48 hours of treatment.
- FIG. 6 shows the MICs of various drugs against WT MRSA and PKZRSA1 in accordance with aspects of the present disclosure.
- FIGS. 7 A- 7 C show assessment of PKZ18-22 effect on Staphylococcus biofilms in accordance with aspects of the present disclosure.
- FIG. 7 A shows growth of S. aureus after 24 h exposure to PKZ18-22 vs. dosages of vancomycin in the minimum biofilm eradication (MBEC) biofilm model.
- FIG. 8 shows PKZ18-22—antibiotic synergy on S. aureus biofilm growth in accordance with aspects of the present disclosure.
- Top left Biofilm grown for 24 h with no treatment.
- Top middle Biofilm growth after 24 h exposure to 25 ⁇ g/mL PKZ18-22.
- Top right Growth after 24 h exposure to 4 ⁇ g/mL gentamicin.
- Bottom left Growth after 24 h exposure to 64 ⁇ g/mL gentamicin+25 ⁇ g/mL PKZ18-22.
- Bottom middle Growth after 24 h exposure to 4 ⁇ g/mL vancomycin.
- Bottom right Growth of S. aureus after 24 h exposure to 4 ⁇ g/mL vancomycin+25 ⁇ g/mL PKZ18-22.
- FIG. 9 shows synergistic activity of PKZ18-22 with rifampin.
- Top left Biofilm grown for 24 h with no treatment.
- Top middle Biofilm growth after 24 h exposure to 25 ⁇ g/mL PKZ18-22.
- Top right Growth after 24 h exposure to 0.001 ⁇ g/mL rifampin.
- Bottom left Growth after 24 h exposure to 0.001 ⁇ g/mL rifampin+25 ⁇ g/mL PKZ18-22.
- Bottom middle Growth after 24 h exposure to 0.005 ⁇ g/mL rifampin.
- Bottom right Growth after 24 h exposure to 0.005 ⁇ g/mL rifampin+25 ⁇ g/mL PKZ18-22
- FIGS. 10 , 11 , and 12 show synergy matrix scores in accordance with aspects of the present disclosure.
- FIG. 10 shows a synergy score matrix for drug combination of PKZ18-22 and gentamicin using a drug interaction Bliss reference model in accordance with aspects of the present disclosure. The highest drug synergy was observed with PKZ18-22 of 25 ⁇ g/mL and gentamicin concentrations of 16-64 ⁇ g/mL (p ⁇ 0.001).
- FIG. 11 shows a synergy score matrix for drug combination of PKZ18-22 and vancomycin. By definition all synergy scores above zero are synergistic.
- FIG. 12 shows a synergy score matrix for drug combination of PKZ18-22 and rifampin using a drug interaction Bliss model. Highest drug synergy observed with PKZ18-22 of 50 ⁇ g/mL and rifampin concentrations of 0.001-0.005 ⁇ g/mL (p ⁇ 0.001).
- FIGS. 13 A-B show PKZ18-22 plus gentamicin inhibition of biofilms in accordance with aspects of the present disclosure.
- FIG. 13 A shows S. aureus biofilm CFU/log 10 after 24 h of a single dose gentamicin, PKZ18-22, and the combination of gentamicin and PKZ18-22.
- the following asterisk values using a Student's t-test indicate: * indicates p ⁇ 0.05; *** indicates p ⁇ 0.001.
- FIG. 13 B shows after a single dose 24 h challenge, the combination of gentamicin/PKZ18-22 resulted in a cell reduction of ⁇ 5 logs, >99.9%. A significantly greater reduction when compared to each treatment alone.
- FIG. 14 shows a bar graph of S. aureus biofilm colony forming units following different treatments.
- 1 S. aureus biofilm colony forming units (CFU/log 10) growth not treated;
- 2 after 24 h of a single dose PKZ18-22 (25 ⁇ g/mL);
- 3 0.001 ⁇ g/mL rifampin;
- 4 0.001 ⁇ g/mL rifampin and PKZ18-22 (25 ⁇ g/mL);
- the combination of rifampin and PKZ18-22 produced a significantly greater reduction when compared to each treatment alone.
- alkyl is intended to include linear, branched, and cyclic hydrocarbon structures and combinations thereof. A combination would be, for example, cyclopropylmethyl.
- C 1-6 alkyl groups are those having one to six carbon atoms. Examples of C 1-6 alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like.
- Cycloalkyl (which includes cyclic hydrocarbon groups) is a subset of alkyl. Examples of cycloalkyl groups include c-propyl, c-butyl, c-pentyl, norbornyl and the like.
- Aryl and heteroaryl ring systems mean (i) a phenyl group (or benzene) or a monocyclic 5- or 6-membered heteroaromatic ring containing 1-4 heteroatoms selected from 0, N, and S; (ii) a bicyclic 9- or 10-membered aromatic or heteroaromatic ring system containing 0-4 heteroatoms selected from O, N, and S; or (iii) a tricyclic 13- or 14-membered aromatic or heteroaromatic ring system containing 0-5 heteroatoms selected from O, N, and S.
- the aromatic 6- to 14-membered carbocyclic rings include, e.g., benzene, naphthalene, indane, tetralin, and fluorene and the 5- to 10-membered aromatic heterocyclic rings include, e.g., imidazole, pyridine, indole, thiophene (thiene), benzopyranone, thiazole, furan, benzimidazole, quinoline, isoquinoline, quinoxaline, pyrimidine, pyrazine, tetrazole and pyrazole.
- aryl and heteroaryl refer to residues in which one or more rings are aromatic, but not all need be.
- biofilm means a group of microorganisms (one or multiple strains) surrounded by a viscous or gelatinous matrix of extracellular polymers (e.g. exopolymers or glycocalyx). These extracellular polymers are typically polysaccharides, but can also contain other biopolymers, which can be attached to either inert or biological surfaces.
- Standard biofilm microorganisms are bacteria that act as one or more of pathogens, indicator organisms, and spoilage organisms.
- Biofilm may include one or more of Gram-positive bacteria, Gram-negative bacteria, and other microorganisms.
- One or more composition or method disclosed herein may do or include one or more of prevent formation of biofilm, prevent growth or expansion of an existing biofilm, and reduce or remove some or all of an existing biofilm.
- halogen means fluorine, chlorine, bromine or iodine. In one embodiment, halogen may be fluorine or chlorine.
- heterocyclic group includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated heterocyclic ring systems.
- such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members.
- monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members.
- a particular non-limiting example is a morpholinyl group.
- Radicals and substituents are generally defined when introduced and retain that definition throughout the specification and in all independent claims.
- salt forms of the compounds of formulas (I), (II), and (III) are typically pharmaceutically acceptable salts, and examples of pharmaceutically acceptable salts are discussed in Berge et al. (1977) “Pharmaceutically Acceptable Salts,” J. Pharm. Sci., Vol. 66, pp. 1-19. However, salts that are not pharmaceutically acceptable may also be prepared as intermediate forms which may then be converted into pharmaceutically acceptable salts.
- pharmaceutically acceptable salt refers to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases.
- salts may be prepared from pharmaceutically acceptable non-toxic acids including inorganic and organic acids.
- Suitable pharmaceutically acceptable acid addition salts for the compounds of the present invention include acetic, adipic, alginic, ascorbic, aspartic, benzenesulfonic (besylate), benzoic, boric, butyric, camphoric, camphorsulfonic, carbonic, citric, ethanedisulfonic, ethanesulfonic, ethylenediaminetetraacetic, formic, fumaric, glucoheptonic, gluconic, glutamic, hydrobromic, hydrochloric, hydroiodic, hydroxynaphthoic, isethionic, lactic, lactobionic, laurylsulfonic, maleic, malic, mandelic, methanesulfonic, mucic, naphthylenesulfonic, nitric, oleic, pamoic, pantothenic, phosphoric, pivalic, polygalacturonic, salicylic, stearic, succin
- suitable pharmaceutically acceptable base addition salts for compounds that may be used in the present invention include, but are not limited to, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, arginine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine.
- Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium cations and carboxylate, sulfonate and phosphonate anions attached to alkyl having from 1 to 20 carbon atoms.
- One or more active compound or its pharmaceutically acceptable salt or solvate in a pharmaceutical composition as disclosed herein in general is in an amount of about 0.01-20% (w/w) for a topical formulation; about 0.1-5% for an injectable formulation, 0.1-5% for a patch formulation, about 1-90% for a tablet formulation, and 1-100% for a capsule formulation.
- a pharmaceutical composition may be in a dosage form such as tablets, capsules, granules, fine granules, powders, syrups, suppositories, injectable solutions, patches, or the like.
- a pharmaceutical composition can be an aerosol suspension of respirable particles comprising the active compound, which the subject inhales.
- the respirable particles can be liquid or solid, with a particle size sufficiently small to pass through the mouth and larynx upon inhalation. Examples may include particles having a size of about 1 to 10 microns, preferably 1-5 microns.
- One or more active compound may be incorporated into any acceptable carrier, including creams, gels, lotions or other types of suspensions that can stabilize the one or more active compounds and deliver it to the affected area by topical applications.
- An above pharmaceutical composition can be prepared by conventional methods.
- Pharmaceutically acceptable carriers which are inactive ingredients, can be selected by those skilled in the art using conventional criteria.
- Pharmaceutically acceptable carriers may include, but are not limited to, non-aqueous based solutions, suspensions, emulsions, microemulsions, micellar solutions, gels, and ointments.
- Pharmaceutically acceptable carriers may also contain ingredients that include, but are not limited to, saline and aqueous electrolyte solutions; ionic and nonionic osmotic agents such as sodium chloride, potassium chloride, glycerol, and dextrose; pH adjusters and buffers such as salts of hydroxide, phosphate, citrate, acetate, borate; and trolamine; antioxidants such as salts, acids and/or bases of bisulfite, sulfite, metabisulfite, thiosulfite, ascorbic acid, acetyl cysteine, cysteine, glutathione, butylated hydroxyanisole, butylated hydroxytoluene, tocopherols, and ascorbyl palmitate; surfactants such as lecithin, phospholipids, including but not limited to phosphatidylcholine, phosphatidylethanolamine and phosphatidyl inositiol; poloxamers
- Such pharmaceutically acceptable carriers may be preserved against bacterial contamination using well-known preservatives, these include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.
- preservatives include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.
- a tablet formulation or a capsule formulation including one or more active compound as disclosed herein may contain other excipients that have no bioactivity and no reaction with the active compound.
- Excipients of a tablet or a capsule may include fillers, binders, lubricants and glidants, disintegrators, wetting agents, and release rate modifiers. Binders promote the adhesion of particles of the formulation and are important for a tablet formulation.
- excipients of a tablet or a capsule include, but not limited to, carboxymethylcellulose, cellulose, ethylcellulose, hydroxypropylmethylcellulose, methylcellulose, karaya gum, starch, tragacanth gum, gelatin, magnesium stearate, titanium dioxide, poly(acrylic acid), and polyvinylpyrrolidone.
- a tablet formulation may contain inactive ingredients such as colloidal silicon dioxide, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and/or titanium dioxide.
- a capsule formulation may contain inactive ingredients such as gelatin, magnesium stearate, and/or titanium dioxide.
- a patch formulation may include some inactive ingredients such as 1,3-butylene glycol, dihydroxyaluminum aminoacetate, disodium edetate, D-sorbitol, gelatin, kaolin, methylparaben, polysorbate 80, povidone, propylene glycol, propylparaben, sodium carboxymethylcellulose, sodium polyacrylate, tartaric acid, titanium dioxide, and purified water.
- a patch formulation may also contain skin permeability enhancer such as lactate esters (e.g., lauryl lactate) or diethylene glycol monoethyl ether.
- Topical formulations including the one or more active compound as disclosed herein can be in a form of gel, cream, lotion, liquid, emulsion, ointment, spray, solution, and suspension.
- a one or more active ingredient in a topical formulation for example may include, but not be limited to, diethylene glycol monoethyl ether (emollient/permeation enhancer), DMSO (solubility enhancer), silicone elastomer (rheology/texture modifier), caprylic/capric triglyceride, (emollient), octisalate, (emollient/UV filter), silicone fluid (emollient/diluent), squalene (emollient), sunflower oil (emollient), and silicone dioxide (thickening agent).
- diethylene glycol monoethyl ether emollient/permeation enhancer
- DMSO solubility enhancer
- silicone elastomer rheology/texture modifier
- a pharmaceutical composition as disclosed herein may be applied by systemic administration or local administration.
- Systemic administration may include, but is not limited to oral, parenteral (such as intravenous, intramuscular, subcutaneous or rectal), and inhaled administration.
- parenteral such as intravenous, intramuscular, subcutaneous or rectal
- inhaled administration In systemic administration, the one or more active compound may first reach plasma and then be distributed into target tissues.
- Local administration includes topical administration.
- Dosing of the composition can vary according to a level or risk of infection or bacterial growth.
- plasma concentrations delivered of one or more active compound as disclosed herein may vary, and may include, without limitation, 1 ⁇ 10 10 -1 ⁇ 10′ moles/liter, or 1 ⁇ 10 ⁇ 8 -1 ⁇ 10 ⁇ 5 moles/liter, independently for each of the one or more active compound.
- One or more compound as disclosed herein may be administrated orally to a subject.
- the dosage for oral administration may be 0.1-100, 0.1-20, or 1-50 mg/kg/day, depending on a subject's age and condition.
- dosage for oral administration may be from 0.1-10, 0.5-10, 1-10, 1-5, or 5-50 mg/kg/day for a human subject.
- One or more active compound as disclosed herein may be applied orally to a human subject at 1-100, 10-50, 20-1000, 20-500, 100-800, or 200-600 mg/dosage, 1-4 times a day, independently for each of the one or more active compound.
- One or more active compound as disclosed herein may be administrated intravenously to a subject.
- Dosage for intravenous bolus injection or intravenous infusion may be 0.03 to 5 or 0.03 to 1 mg/kg/day independently for each of the one or more active compounds.
- One or more active compound as disclosed herein may be administrated subcutaneously to the subject.
- a dosage for subcutaneous administration may be 0.3-20, 0.3-3, or 0.1-1 mg/kg/day independently for each of the one or more active compounds.
- One or more active compound as disclosed herein may be applied topically to an area and rubbed into it.
- a composition including one or more active compound as disclosed herein may be topically applied at least 1 or 2 times a day, or 3 to 4 times per day, depending on the medical issue and the disease pathology.
- a topical composition comprises about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, 0.5-10, or 1-5% (w/w) of each of the one or more active compound, independently.
- 0.2-10 mL of topical composition may be applied to an individual per dose.
- one or more active compound as disclosed herein may pass through skin.
- the present invention is useful in treating a mammal subject, such as humans, horses, dogs and cats.
- the present invention is particularly useful in treating humans.
- compositions include a first compound of Formula I and a second compound selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- Methods include contacting the Gram-positive bacteria with such first compound and such second compound.
- contacting bacteria with such a first compound and such a second compound synergistically inhibits growth of the bacteria, such that an inhibitory effect on bacterial growth is more than a summation of effects of contacting a bacterium with each of the compounds without contacting the bacteria with the other of the compounds.
- Inhibitory effects of some non-limiting examples of compounds of Formula I on growth of bacteria are disclosed in U.S. Pat. No. 10,266,527, the entire contents of which is incorporated herein in its entirety.
- the riboswitch is a 5′- untranslated region (5′UTR) of a messenger RNA (mRNA) with a binding site for a ligand specific to that message. Binding of the ligand controls expression of the protein encoded by that mRNA via regulating transcription or translation. A riboswitch undergoes dynamic exchange between alternative conformations, each of which leads to a different biological result. Depending on the mRNA and its genetic regulation, the ligand can be a positive or negative effector of protein synthesis. A number of genes crucial to metabolite biosynthesis or transport are regulated in bacteria through the binding of the cognate metabolites to classes of mRNA riboswitches.
- riboswitches may be fundamentally alternative RNA drug targets because they have evolved over millions of years as structured receptors for the purpose of binding ligands. As a consequence, riboswitches form ligand-receptor interfaces with a level of structural complexity and selectivity that approaches that of proteins. In some bacterial pathogens, the downstream genes regulated by a riboswitch are essential for bacterial survival and virulence. Therefore, designing small molecules targeting this kind of riboswitch may yield a lethal effect to bacterial pathogens.
- riboswitches are unique to bacterial pathogens, and not found in humans. Similar to antibiotic resistance for protein-based targets, bacteria may also evolve resistance to riboswitch-targeting drugs through a mutation that disrupts binding to the riboswitch receptor. However, it may be difficult for a pathogen to evolve selective resistance to riboswitch-targeting antibiotics via a point mutation in the riboswitch.
- Reasons may include: (1) point mutations in riboswitches would also disrupt the native metabolite ligand binding, resulting in deregulation of the associated biosynthetic pathways; and (2) when several riboswitches of the same class are targeted by a single compound, mutations in each riboswitch would be necessary to produce resistance.
- aaRSs aminoacyl-tRNA synthetases
- the 5′UTR of the mRNA of the regulated aaRS gene exhibits a conservation of sequence and structural features. Segments of 5′UTR RNA can fold to form two alternative hairpin structures, an intrinsic transcription terminator or a competing transcription anti-terminator. Formation of the terminator hairpin prematurely terminates transcription.
- unacylated tRNA may be a positive effector of this regulatory riboswitch in its binding to the 5′UTR of the nascent mRNA, stabilizing the anti-terminator conformation, and leading to transcription of the downstream aaRS gene.
- Specificity of this 5′UTR:tRNA interaction may be determined, at least in part, by pairing of the tRNA's specific anticodon with a complementary codon sequence in the specifier loop, whereas stabilization of the anti-terminator may be dependent on base-pairing of the universal tRNA terminal (5′-NCCA-3′) with complementary residues (5′-UGGN-3′) in a 7-nt bulge of the anti-terminator.
- unacylated tRNA recognized by the nascent transcript may result in increased expression of aaRS genes, which continue to aminoacylate more tRNAs.
- a covalently bound amino acid of an aminoacylated tRNA may negate tRNA binding to the nascent mRNA and thus, an intrinsic terminator helix is formed and transcription is relinquished prior to the coding sequence of the mRNA.
- a specifier loop domain is located in the Stem I of the 5′UTR and contains nucleotides that are complementary to and pair with the tRNA anticodon.
- Stem I has two major common RNA structural motifs (loop E and K-turn motifs) and both are crucial for proper transcriptional regulation.
- the loop E motif in the specifier loop provides a stable platform that appears to help position the specifier nucleotides to accept the anticodon of the cognate tRNA. This motif is similar to that found in several prokaryotic and eukaryotic rRNAs and the hairpin ribozyme.
- the NMR-derived structure of a model Stem I in the 5′UTR of the tyrosyl-tRNA synthetase (tyrRS) mRNA supports the presence of the Loop E motif in the specifier loop.
- the single-strand specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove.
- the K-turn, or GA, sequence motif is joined to the specifier loop domain by a 3- to 5-bp helix.
- the NMR structure showed the K-turn sequence motif has several noncanonical base pairs typical of K-turn structures, but adopts an extended conformation. These motifs may create an intricate folding pocket in the specifier loop.
- the overall structure of the specifier loop may be well ordered, with only a few nucleotides exhibiting a moderate degree of mobility.
- the specifier nucleotide bases are stacked, but their Watson-Crick edges are not uniformly displayed.
- the 3′- two bases are rotated toward the minor groove and readily accessible to the tRNA anticodon, whereas the 5′- base is rotated toward the major groove with its base pairing edges pointing toward the helix axis.
- glycyl-tRNA synthetase glyQS
- determining the structure of the specifier loop of the glyQS riboswitch in the complex with tRNA may provide more relevant and accurate structural information for a novel therapeutic drug target.
- Disrupting tRNA:5′UTR interaction by targeting mRNA with a small molecule may result in the riboswitch conformation in the OFF position. Small molecule intervention would negate transcription of the downstream aaRS gene, and aaRS proteins critical to the pathogen's viability would not be synthesized, preventing further infection.
- the binding of small compounds to the glyQS stable platform region is thought to either deform the specifier loop or prevent the conformational change necessary for interaction with the anticodon and thus, inhibit the interaction of the nascent transcript with the tRNA. Transcription of the aaRS gene is then terminated.
- Compounds of Formula I as disclosed herein are believed to perturb the interaction of the specifier loop and tRNA anticodon stem and loop of a T-box riboswitch unique to Gram-positive bacteria and therefore, may be useful in the treatment of infection caused by Gram-positive bacteria.
- Specific tRNAs initially bind to a cognate codon in the specifier loop.
- An unacylated cognate tRNA may then stabilize an antiterminator helix in the mRNA downstream of stem I through base-pairing interactions with the conserved 3′ NCCA acceptor end of the tRNA and a conserved complementary sequence 5′-UGGN of the mRNA, the “T-box,” thus, allowing the RNA polymerase to continue transcription ( FIG. 1 , middle).
- charged or even slightly modified tRNA cannot stabilize the antiterminator helix, causing the thermodynamically more stable terminator hairpin to form and transcription to halt.
- compositions including a first compound, of Formula I, and a second compound, wherein the second compound may be any antibiotic other than a compound of Formula I.
- the second compound may be one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- a method of inhibiting growth of Gram-positive bacteria including contacting the bacteria with said first compound and said second compound.
- said first compound and said second compound may be considered an active pharmaceutical ingredient or an active pharmaceutical agent. Examples may include administering one or more composition including one or more compound as disclosed herein to a subject.
- a composition may include both of said first compound (i.e. a compound of Formula I) and said second compound (i.e., antibiotic other than a compound of Formula I).
- said first compound may be included in a first composition
- one or more of said second compound may be included in a second composition
- said first composition and said second composition may be separate compositions from each other.
- said first composition and said second composition may both be used for contacting a microorganism such as a bacterial species with said first and second compounds.
- a single composition including one or more of said first compound and one or more of said second compound may be used for contacting a microorganism such as a bacterium with said first and second compounds.
- a microorganism such as a bacterium
- Such one or more compounds may include, independently, and ointment, a cream, a pill, an injectable, a patch, a cleaning solution (such as for application to a surface), or any other example as disclosed herein.
- a biological surface may include any exterior surface of a subject (such as skin, orifice, or open wound) or internal surface of a subject (such as of an alimentary or other canal, a bladder, a duct, a vessel, a fascia, an osseous or cartilaginous surface including periosteal and endosteal surfaces, an internal organ or tissue membrane, a cavity, a ventricle, or other internal surface).
- a surgical or other wound, opening, or stoma in the skin or other biological membrane including without limitation for a transcutaneous implant, catheter (e.g.
- PICC line PICC line
- port PICC line
- a biological internal surface may be contacted by administering one or more composition systemically to a subject.
- a non-biological surface may include any surface on which a biofilm may form, including furniture, a cart, a tray, a bin, a pan, surgical tools or implements such as may be present in a surgical setting, gloves, drapes, curtains, clothes, footwear, walls, doors, floors, pipes, sinks, faucets, knobs, handles, handrails, lights, machines, electrical instruments, counters, seats, foodware, or any other surface.
- a non-biological surface may include a surface of an object for implant or insertion to a subject, such as any prosthetic, a needle, a guide, a catheter or line, a port, a pump, a monitor, a pin, a screw, a joint, an electrode, a stent, a tube, an aperture or window for monitoring or visualizing tissue or other subcutaneous tissue, a capsule, a camera, or other object.
- an object for implant or insertion to a subject such as any prosthetic, a needle, a guide, a catheter or line, a port, a pump, a monitor, a pin, a screw, a joint, an electrode, a stent, a tube, an aperture or window for monitoring or visualizing tissue or other subcutaneous tissue, a capsule, a camera, or other object.
- a method or composition as disclosed herein may include one or more of a first compound of Formula I and a second compound which second compound is an antibiotic other than a compound of Formula I. More than one compound of Formula I may be included, as may more than one antibiotic that is not a compound of Formula I.
- An antibiotic other than a compound of Formula I may include an aminoglycoside, such as amikacin, gentamicin, kanamycin, neomycin, netilmicin, tobramycin, paromomycin, streptomycin, spectinomycin, or another aminoglycoside.
- An antibiotic other than a compound of Formula I may include an ansamycin, such as geldanamycin, herbimycin, refimixin, or another ansamycin.
- An antibiotic other than a compound of Formula I may include a carbacephem, such as loracarbef, or another carbacephem.
- An antibiotic other than a compound of Formula I may include a carbapenem, such as ertapenem, doripenem, imipenem/cilastatin, meropenem, or another carbacephem.
- An antibiotic other than a compound of Formula I may include a cephalosporin, including a first-, second, third-, fourth, or fifth-generation cephalosporin, such as cefadroxil, cefazolin, cephradine, cephapirin, cephalothin, cefalexin, cefaclor, cefoxitin, cefotetan, cefamandole, cefmetazole, cefanocid, loracarbef, cefprozil, cefuroxime, cefixime, cefdinir, cefditoren, cefoperazone, cefotaxime, cefpodoxime, ceftadizime, ceftibuten, ceftizoxime, moxalactam, ceftriaxone, cefepime, ceftaroline fosamil, ceftobiprole, or another cephalosporin.
- cephalosporin including a first-, second, third-, fourth,
- An antibiotic other than a compound of Formula I may include a glycopeptide, such as teicoplanin, vancomycin, telavancin, dalbavancin, oritavancin, or another glycopeptide.
- An antibiotic other than a compound of Formula I may include a lincosamide, such as clindamycin, lincomycin, or another lincosamide.
- An antibiotic other than a compound of Formula I may include a lipopeptide, such as daptomycin or another lipopeptide.
- An antibiotic other than a compound of Formula I may include a macrolide, such as azithromycin, clarithromycin, erythromycin, roxithromycin, telithromycin, spiramycin, fidaxomicin, or another macrolide.
- An antibiotic other than a compound of Formula I may include a monobactam, such as aztreonam or another monobactam.
- An antibiotic other than a compound of Formula I may include a nitrofuran, such as furazolidone, nitrofurantoin, or another nitrofuran.
- An antibiotic other than a compound of Formula I may include an oxazolidinone, such as linezolid, posizolid, radezolid, torezolid, or another oxazolidinone.
- An antibiotic other than a compound of Formula I may include a penicillin, such as amoxicillin, ampicillin, azlocillin, dicloxacillin, flucloxacillin, mezlocillin, methicillin, nafcillin, oxacillin, penicillin G, penicillin V, piperacillin, penicillin G, temocillin, ticarcillin, or another penicillin.
- An antibiotic other than a compound of Formula I may include a penicillin combination, such as amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin/tazobactam, ticarcillin/clavulanate, or another penicillin combination.
- An antibiotic other than a compound of Formula I may include a polypeptide, such as bacitracin, colistin, polymyxin B, or another polypeptide.
- An antibiotic other than a compound of Formula I may include a quinolone/fluroroquinolone, such as ciprofloxacin, enoxacin, gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, nadifloxacin, nalidixic acid, norfloxacin, oflaxacin, trovafloxacin, grepafloxacin, sparfloxacin, temafloxican, or another quinolone/fluroroquinolone.
- An antibiotic other than a compound of Formula I may include a sulfonamide, such as mafenide, sulfacetamide, sulfadiazine, silver sulfadiazine, sulfadimethoxine, sulfamethizole, sulfamethoxazole, sulfanilimide, sulfasalazine, sulfasoxazole, trimethoprim-sulfamethoxazole (Co-trimoxazole) (TMP-SMX), sulfonamidochrysoidine, or another sulfonamide.
- a sulfonamide such as mafenide, sulfacetamide, sulfadiazine, silver sulfadiazine, sulfadimethoxine, sulfamethizole, sulfamethoxazole, sulfanilimide,
- An antibiotic other than a compound of Formula I may include a tetracycline, such as demeclocycline, doxycycline, metacycline, minocycline, oxytetracycline, tetracycline, or another tetracycline.
- a tetracycline such as demeclocycline, doxycycline, metacycline, minocycline, oxytetracycline, tetracycline, or another tetracycline.
- An antibiotic other than a compound of Formula I may include an anti-mycobacterial compound, such as clofazimine, dapsone, capreomycin, cycloserine, ethambutol, ethionamide, isoniazid, pyrazinamide, a rifamycin (such as rifampin, rifabutin, rifapentine, or rifaximin, or another rifamycin), streptomycin, or another anti-mycobacterial compound.
- an anti-mycobacterial compound such as clofazimine, dapsone, capreomycin, cycloserine, ethambutol, ethionamide, isoniazid, pyrazinamide, a rifamycin (such as rifampin, rifabutin, rifapentine, or rifaximin, or another rifamycin), streptomycin, or another anti-mycobacterial compound.
- An antibiotic other than a compound of Formula I may include arsphenamine, chloramphenicol, fosfomycin, fusidic acid, metronidazole, mupirocin, platensimycin, quinupristin/dalfopristin, thiamphenicol, tigecycline, tinidazole, trimethoprim, or another antibiotic other than a compound of Formula I.
- the first compound includes any one or more of, or a pharmaceutically acceptable salt of any one or more of,
- the compound including the antibiotic other than a compound of Formula I includes one or more of gentamycin, kanamycin, neomycin, rifamycin, and vancomycin. All combinations of one or more of these compounds of Formula I and one or more of these antibiotics other than Formula I are explicitly included in compositions as disclosed herein and for use in methods as disclosed herein and can easily by envisioned by a skilled person on the basis of the foregoing.
- a combination may include
- Inhibiting growth of bacteria may be ascertained by measuring an amount of bacteria before and after a period of time during which the bacteria are not contacted with a compound of Formula I or other antibiotic other than a compound of Formula I to identify an amount of bacterial growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I, measuring an amount of bacteria before and after a period of time during which the bacteria are contacted with a compound of Formula I and another antibiotic other than a compound of Formula I to identify an amount of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I, and comparing the amount of bacterial growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I.
- An amount of inhibition of bacterial growth is the difference between the former and the latter when the latter is less than the former.
- Growth in the presence of only one or the other of a compound of Formula I and an antibiotic other than a compound of Formula I may similarly be ascertained and compared to the amount of bacterial growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I.
- a synergistic effect of a compound of Formula I and an antibiotic other than a compound of Formula I may occur when the amount of inhibition of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I is greater than the sum of the amount of inhibition of bacterial growth in the presence of a compound of Formula I and absence of an antibiotic other than a compound of Formula I and the amount of inhibition of bacterial growth in the presence of an antibiotic other than a compound of Formula I and absence of a compound of Formula I.
- Inhibiting growth of biofilm may be ascertained by measuring an amount of biofilm before and after a period of time during which the biofilm is not contacted with a compound of Formula I or other antibiotic other than a compound of Formula I to identify an amount of biofilm growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I, measuring an amount of biofilm before and after a period of time during which the biofilm is contacted with a compound of Formula I and another antibiotic other than a compound of Formula I to identify an amount of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I, and comparing the amount of biofilm growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I.
- An amount of inhibition of biofilm growth is the difference between the former and the latter when the latter is less than the former. Growth in the presence of only one or the other of a compound of Formula I and an antibiotic other than a compound of Formula I may similarly be ascertained and compared to the amount of biofilm growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I.
- a synergistic effect of a compound of Formula I and an antibiotic other than a compound of Formula I may occur when the amount of inhibition of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I is greater than the sum of the amount of inhibition of biofilm growth in the presence of a compound of Formula I and absence of an antibiotic other than a compound of Formula I and the amount of inhibition of biofilm growth in the presence of an antibiotic other than a compound of Formula I and absence of a compound of Formula I.
- PKZ18 All chemicals, including novel PKZ18 analogs, were obtained from commercial sources. Novel analogs were selected based on availability and semblance to PKZ18 and PKZ18-22. All antimicrobials were resuspended in dimethyl sulfoxide (DMSO) unless otherwise specified and verified by mass spectrometry (MS).
- DMSO dimethyl sulfoxide
- A549 human lung epithelial cells (grown in Ham's F12 media [Gibco] with 0.00146 g/liter L-glutamine and 10% fetal bovine serum [FBS; Gibco] added) and J774.16 murine macrophages (grown in J7 media with 74% Dulbecco's modified Eagle medium [DMEM; Gibco]) with 0.584 g/liter L-glutamine added, 20% FBS, 5% NCTC-109 [Gibco], and 1% nonessential amino acids) were used for cytotoxicity assays.
- DMEM Dulbecco's modified Eagle medium
- Bacillus subtilis 168 Bacillus subtilis 1A5, Staphylococcus aureus 4220, Staphylococcus aureus N315 (MRSA isolate), and Escherichia coli BL21.
- Bacillus subtilis 1A5 and S. aureus N315 were used in qRT-PCR experiments.
- the abovementioned bacterial strains were used in other experiments as specified.
- Bacteria were grown on plain Luria-Bertani (LB) or brain heart infusion (BHI) agar except for MRSA, which was grown on BHI agar with 20 ⁇ g/ml erythromycin. Liquid cultures were grown in BHI or minimal media (Spizizen minimal medium for B. subtilis and SSM9PR [60] for S. aureus ) with the desired antibiotic or solvent control.
- RNA extraction and cDNA preparation were conducted as previously reported.
- guanidine thiocyanate 0.5 M final concentration
- pelleted bacterial cultures were resuspended in TRIzol, lysed by beat beating with zirconia beads, and centrifuged.
- Thermodynamic parameters were derived from four UV-monitored destabilizations and four renaturations of chemically synthesized wild-type and mutant truncated B. subtilis glyQS Stem I specifier loops in the absence and presence of PKZ18 (10 mM Na 2 HPO 4 and 10 mM KH 2 PO 4 ; final pH 6.8).
- the absorbance was collected at 260 nm and was performed using a Varian Cary 3 UV-visible spectrophotometer equipped with a Peltier temperature control accessory. The temperature was increased at a rate of 1° C. per minute from 5 to 85° C.
- Absorbance data at 260 nm were collected as a function of temperature at a rate of four data points per minute. All experiments were performed simultaneously with a control cell containing buffer only. The error calculated is the error of the mean.
- MICs were determined essentially as previously described (Frohlich K M, Weintraub S F, Bell J T, Todd G C, Vare V Y P, Schneider R, Kloos Z A, Tabe E S, Cantara W A, Stark C J, Onwuanaibe U J, Duffy B C, Basanta-Sanchez M, Kitchen D B, McDonough K A, Agris P F. 2019. Discovery of small-molecule antibiotics against a unique tRNA-mediated regulation of transcription in Gram-positive bacteria. ChemMedChem 14:758-769). In short, cultures were grown overnight in the appropriate media, diluted to A 620 of 0.1, grown for 3 hours, and again diluted to A 620 of 0.1.
- Cultures were then diluted 10-fold, of which 5 ⁇ l were added to each well of the 96-well plate used for the experiment except the media control wells.
- the initial well inoculum was 7.5 ⁇ 10 5 bacteria for S. aureus and 2.5 ⁇ 10 5 bacteria for B. subtilis (bacterial numbers were measured by OD).
- the 96-well plate was organized as follows. Media (100 ⁇ l) were added to all wells. Stock solutions (100 ⁇ l) containing 2 times the highest concentration of antibiotics to be tested were loaded to column 1, with two technical repeats per drug. The plate was serially diluted 2-fold from left to right, and media after the last dilution were discarded, so each well had a final volume of 100 ⁇ l.
- the following controls were included: vehicle control (DMSO, chloroform, ethanol, etc.), cells in plain media, and media control (no cells).
- vehicle control DMSO, chloroform, ethanol, etc.
- cells in plain media DMSO, chloroform, ethanol, etc.
- media control no cells.
- the initial optical density (A 620 ) of the 96-well plate was determined, the plate was grown for 16 to 24 hours, and at that time, the final optical densities (A 620 ) were read. The initial reading was subtracted from the final reading, and the technical replicates were averaged. MICs of PKZ18 and analogs were compared to clinically used antibiotics such as gentamicin.
- MBC minimal bactericidal concentration
- alamarBlue was purchased (Thermo Scientific) and used according to the manufacturer's directions. In short, 50,000 cells of either A549 or J774.16 were added into a 96-well plate in 200 ⁇ l and left to adhere overnight. As a control, we used a 96-well plate with the desired drugs at 2 ⁇ the final concentrations in 160 ⁇ l without adding cells. The cells' medium was removed, and 100 ⁇ l fresh medium was added, followed by 100 ⁇ l of 2 ⁇ drug from the corresponding wells in the drug plate. Media were added to the drug plate to reduce the concentrations to 1 ⁇ , and the cells were incubated at 37° C. for 48 or 72 hours.
- alamarBlue was added at 10 ⁇ l per 100 ⁇ l, and the fluorescence of both plates at 590 nm was read after overnight incubation. The drug plate fluorescence was subtracted from the cells' plate respective values, and the data were normalized to untreated cells' reading. All plates included a vehicle control used as the 0- ⁇ g/ml value for each drug tested. All concentrations were tested in triplicate and included at least three biological replicates. A media control, untreated control, a killing control, and a vehicle control were always included.
- cytotoxicity of synergistic or additive MICs of PKZ18 analogs and a common antibiotic (co-MIC) on eukaryotic cells was tested on A549 cells as above, but the two plates were set up identically to the checkerboard assay so that the final concentrations tested corresponded to those tested against MRSA.
- J774.16 cells were grown in J7 medium from a fresh passage in a 1:4 dilution of 70 to 80% confluent cells. The cells were allowed to adhere in 6-well plates overnight. The medium was replaced, and drugs were added to desired concentrations in a total volume of 5 ml/well. A media control, untreated control, a killing control of Triton X-100, and a vehicle control were always included. After 48 hours treatment, medium was removed, and fresh media and Trypan blue were added 1:1 in a final volume of 400 ⁇ l. Cells, 100 to 200, from two areas of each well were counted and the data averaged and normalized against untreated cells. The vehicle control served as the 0.0- ⁇ g/ml value. At least three biological replicates were included for each drug at each concentration.
- S. aureus N315 cultures were prepared identically to MIC determination in BHI media. The co-MICs were determined using the checkerboard method. In short, antibiotics to be tested with PKZ18 analogs were diluted 2-fold top to bottom (A to G rows) in a 96-well plate, PKZ18 analogs were diluted 2-fold right to left (columns 11-2 of the 96-well plate), and column 12 was used for vector, media, and growth controls. Each drug was therefore tested by itself and with every dilution of the other drug.
- fractional inhibitory concentration should be below 0.5, additive or indifferent effects are considered in an FIC range of 0.5 to ⁇ 4, and an FIC value above 4 is considered antagonistic.
- Fluctuation assays were performed using S. aureus N315 and B. subtilis 168 with both PKZ18-22 and PKZ18 on BHI agar plates. Gentamicin on BHI agar was used as a control. In short, MRSA and B. subtilis were grown overnight in BHI, and 3-hour day cultures at the optical density of A 620 of 0.1 were started for both organisms. The optical density after 3 hours of growth was measured; cultures were then pelleted and resuspended to give 10 11 CFU/ml by optical density.
- CFU of 10 11 per OD were plated in total; 100 ⁇ l of the cells were then plated on BHI agar containing either 128 ⁇ g/ml PKZ18 or 64 ⁇ g/ml PKZ18-22. Serial dilutions of the cells were plated on plain BHI agar in order to calculate the CFU/ml, which was calculated as the number of colonies found on the plates divided by the total number of bacteria plated.
- CFU means colony forming units, a measure of live bacteria.
- Efflux activity of the PKZ18-22-resistant MRSA was compared to WT N315. Briefly, cultures were resuspended in phosphate-buffered saline (PBS) and loaded with ethidium bromide for 30 minutes. The cells were then resuspended in cold PBS and transferred onto a 96-well plate in the presence or absence of efflux inhibitors (100 ⁇ M carbonyl cyanide m-chlorophenylhydrazone [CCCP] or Verapamil) and 0.4% glucose, and the efflux activity was monitored by measuring the fluorescence of ethidium bromide every 60 seconds for 60 minutes. The activity was normalized to the highest fluorescence reading observed.
- PBS phosphate-buffered saline
- CCCP carbonyl cyanide m-chlorophenylhydrazone
- WT MRSA and resistant strains were grown overnight in BHI and diluted to an optical density of A 620 of 2.0, and both strains were split into three 10-ml cultures with either 64 or 128 ⁇ g/ml of PKZ18-22 or 10 ⁇ g/ml vancomycin added. The optical density at 620 nm was taken every hour for the first 6 hours and a final time point after 24 hours. Dilutions of 0-, 3-, 6-, and 24-h samples of PKZ18-22 treated cultures were plated on BHI agar to determine total CFU of bacteria.
- MRSA and resistant strains were grown overnight in BHI and diluted to an optical density of A 620 of 2.0, and both strains were split into three 10-ml cultures with either 64 or 128 ⁇ g/ml of PKZ18-22 or 10 ⁇ g/ml vancomycin added. The optical density at 620 nm was taken every hour for the first 6 hours and a final time point after 24 hours. Dilutions of 0-, 3-, 6-, and 24-h samples of PKZ18-22 treated cultures were plated on BHI agar to determine total CFU of bacteria.
- Biofilm formation starts from planktonic bacteria, followed by adhesion to an organic or abiotic surface. Following the initial adhesion, sessile microcolonies form and extracellular polymeric substance (EPS) is secreted. Bacteria embedded in EPS often enter a “stationary-like” phase or persister status, making them less susceptible to conventional antibiotics that target growing cells.
- An overnight culture of S. aureus was diluted to 1 ⁇ 10′ cells/mL in tryptic soy broth (TSB) supplemented with 10% human plasma (Innovative Research, Novi, Mich. USA) and added to the wells of an MBECTM-HTP Assay Biofilm Innoculator (Innovotech, Edmonton, AB, Canada).
- the plate was incubated overnight at 37° C. and shaken at 125 rpm. After 24 h of growth the lid of the plate was removed, rinsed with PBS, and transferred to a standard 96-well plate containing dilutions of PKZ18-22 and vancomycin prepared in TSB. Control wells were without a COMPOUND OF Formula I.
- the treatment plate was incubated for 24 h at 37° C. after which the lid was removed, rinsed with PBS, and placed in a new 96-well plate containing TSB. The biofilm was removed from the assay lid into the recovery plate wells by sonication, a new plate cover was added, and the viability of the biofilm was determined after 24 h of incubation at 37° C.
- MBC colony forming unit
- the MBC is the lowest concentration of an antibacterial agent required to kill a particular bacterium.
- the peg lid from the MBEC assay was removed from the challenge plate and 20 ⁇ L of medium from each well of the challenge plate was removed and added to a new sterile 96-well plate filled with 180 ⁇ L TSB. The new 96-well plate was then covered with a regular lid and allowed to incubate for 24 h before MBC values were determined using an automated plate reader to obtain optical density measurements at 600 nm (OD 600 ).
- an overnight culture of S. aureus was diluted to 1 ⁇ 10 5 cells/mL in cation-adjusted Mueller Hinton broth (MHB) supplemented with 1% human plasma and added to the wells of an MBEC plate.
- MHB Mueller Hinton broth
- the plate was incubated overnight at 37° C. and shaken at 125 rpm. Following biofilm growth, the lid was then transferred to a standard 96-well plate in which dilutions of PKZ18-22 and the designated antibiotics were prepared individually and in combination in MHB.
- the treatment plate was incubated for 24 h at 37° C. After incubation, the lid was removed and rinsed in PBS.
- a tetrazolium (2,3,5-triphenyl tetrazolium chloride, TTC) assay was performed to assess metabolic activity and viability.
- the lid was rinsed in PBS, transferred to a 96-well plate containing a 0.01% TTC solution in MHB, and incubated at 37° C. overnight.
- pegs were snapped off the lid using sterile tweezers and placed in 1.5 mL Eppendorf tubes containing 200 ⁇ L PBS. Biofilm was disrupted from the pegs by sonicating the tubes for 15 min (Branson M8800H, Branson Ultrasonics, West Chester, Pa., USA), followed by vortexing for 10 s. Three independent serial dilutions were prepared for each sample and plated on tryptic soy agar (TSA) plates that were incubated overnight at 37° C. The plates were then imaged and colonies counted on a ColonyDoc-ItTM Imaging station (UVP, Analytik Jena, Beverly, Mass., USA).
- TSA tryptic soy agar
- Pegs designated for scanning electron microscopy were snapped off the lid using sterile tweezers and fixed with a 2.5% glutaraldehyde solution (MilliporeSigma, St. Louis, Mo., USA) in 0.2 M sodium cacodylate buffer, pH 7.4 (Electron Microscopy Sciences, Hatfield, Pa., USA) for at least 24 h at 4° C. The pegs were then removed from the fixative and rinsed in cacodylate buffer. The pegs were post-fixed for 1 h with 2% osmium tetroxide (Ted Pella, Inc., Redding, Calif., USA) and then washed again with cacodylate buffer.
- 2% osmium tetroxide Ted Pella, Inc., Redding, Calif., USA
- the pegs were dehydrated in increasing concentrations of ethanol (30%, 50%, 70%, 90%, 100%) and then allowed to air dry overnight. After drying, the pegs were mounted on stubs and sputter coated with gold using a Denton Desk V vacuum sputter system and imaged on a FEI XL30 scanning electron microscope.
- Pegs designated for confocal microscopy were snapped off the lid using sterile tweezers and stained with a SYTO 9/propidium iodide (LIVE/DEAD, BacLight; Invitrogen, Waltham, Mass., USA) solution. The pegs were incubated, covered from the light, for 20 min. After incubation, the pegs were rinsed in PBS and placed on 50 mm glass-bottom dishes (MatTek, Ashland, Mass., USA). The pegs were imaged using a Leica SP5 Inverted Confocal Microscope (Leica Microsystems, Buffalo Grove, Ill., USA) at a resolution of 512 ⁇ 512 pixels using a 63 ⁇ water immersion objective (63 ⁇ /1.2W).
- Leica SP5 Inverted Confocal Microscope Leica Microsystems, Buffalo Grove, Ill., USA
- PKZ18 binds with low micromolar dissociation constants to chemically synthesized truncated stem I constructs of the Bacillus subtilis glyQS and tyrS T-boxes. Analysis of the UV thermodynamics of two new stem I constructs (not shown) confirmed binding to the stem I specifier loop. PKZ18 thermally destabilized the RNA (change in melting temperature [ ⁇ T m ], —18.52° C.; free energy [ ⁇ G], +3.41 kcal mol ⁇ 1 ) when bound to the RNA comprised of the wild-type sequence of the truncated glyQS stem I with the specifier loop.
- PKZ18 did not affect the thermodynamic parameters of a similarly sized construct that has the gly codon but lacks the specifier loop ( ⁇ T m , —0.33; ⁇ G, +0.22) (not shown). This result establishes that PKZ18 binding to stem I occurs within the specifier loop.
- PKZ18-22 is bactericidal against both B. subtilis 168 and MRSA and this activity correlates with a reduced MIC due to the extension of the carbon tail on the benzene para to the thiazole. See Table 2.
- b Gram-negative control-showing drugs do not target an organism that does not contain T-boxes.
- c Confirmation of inhibition of T-box mechanism from qRT-PCR assay. Different chemical moieties are listed corresponding to the three locations where changes to the compound identified in Table I as PKZ18-00 (also referred to herein as PKZ18) were made. The MIC and MBC against the Gram-positive MRSA, as well as the Gram-negative E. coli , are shown. PKZ18-52 and PKZ18-53 have a norbornene moiety instead of norbornane.
- PKZ18 is active against B. subtilis 1A5 grown in minimal media at much lower concentrations than the reported MIC. In contrast, media-dependent antimicrobial activity against Escherichia coli has been reported by others where the antibiotic loses efficacy in nutrient-limiting conditions. To measure the effect of growth media on activity, we compared the MIC of parent PKZ18 against both B. subtilis 168 and S. aureus 4220 in rich versus minimal media. The MICs of PKZ18 were 8- ( B. subtilis 168) and 4-fold ( S. aureus 4220) lower when the cultures were grown in minimal versus rich media.
- PKZ18-22 exhibited a 4-fold reduction in MIC
- PKZ18-52 and PKZ18-53 had 2-fold reductions against the MRSA strain S. aureus N315 in minimal compared to rich media.
- gentamicin and mupirocin had increased MICs in minimal media compared to rich media against S. aureus N315.
- FIGS. 2 A and 2 B Additionally, PKZ18-22, PKZ18-52, and PKZ18-53 inhibited B. subtilis 1A5 read-through significantly better than PKZ18 (at 4 ⁇ g/ml of each drug) when the bacteria were grown side by side in the same biological replicate assay.
- FIG. 2 C These compounds of Formula I inhibited culture growth, and no RNA could be obtained at 12 ⁇ g/ml where PKZ18 was previously shown to be most active.
- RNA sequencing was used to determine if native expression of T-box-controlled genes was affected by PKZ18-22 in MRSA.
- ORFs open reading frames
- the expression of 8 out of the 12 genes under T-box control was reduced, one remained at untreated levels when tested at 8 ⁇ g/ml PKZ18-22, and three remained at untreated levels with either 4 or 8 ⁇ g/ml PKZ18-22 ( FIG. 3 A ), indicating an inhibitory effect by PKZ18-22 on the T-box-regulated genes with decreased expression.
- Elevated 5′-UTR expression for several T-box-mediated genes following PKZ18-22 treatment further indicated an increase in transcriptional initiation with early termination in the presence of PKZ18-22 ( FIG. 3 A ).
- FIGS. 3 A- 3 B The cysteine and histidine T-boxes (cysE-cysS and hisS-aspS operons, respectively) were inhibited only by the higher concentration of PKZ18-22. Read-through of alaS was not inhibited, but 8 ⁇ g/ml of PKZ18-22 was sufficient to maintain expression at the same level as 4 ⁇ g/ml in spite of increased transcription initiation ( FIGS. 3 A- 3 B ).
- T-box-regulated gene in MRSA that does not transcribe an aaRS gene, hom, is preceded by a methionine T-box and was expressed at counts too low to allow conclusions.
- At least 40 genes or operons are controlled by riboswitches or riboswitch-like RNA elements in S. aureus .
- Treatment was expected to cause a large depletion of aminoacylated tRNAs with the possibility of pleiotropic changes in native gene expression as a stress reaction.
- Treatment with PKZ18-22 resulted in a large overall change in expression, which was similar to that associated with daptomycin ( FIGS. 3 D- 3 F ). Volcano plots of the three treatments also indicate a large pleiotropic effect by all treatments (not shown).
- PKZ18-22 was synergistic with neomycin B and with kanamycin A (fractional inhibitory concentration [FIC], 0.38), and PKZ18-22, PKZ18-52, and PKZ18-53 were all synergistic with gentamicin (FIC, 0.38) ( FIG. 4 ). However, interaction between streptomycin and PKZ18-22 was only additive (FIC, 0.75). Additionally, both the beta-lactam antibiotic ampicillin and the ribosome-targeting chloramphenicol showed additive effects with PKZ18-22 and PKZ18-53 (FIC, 0.75).
- PKZ18 analogs No combinatorial effects were observed with PKZ18 analogs and the other drugs tested, including some antibiotics commonly used to treat MRSA, namely, mupirocin, vancomycin, oxacillin, and daptomycin. No antagonistic interactions with PKZ18 analogs were discovered.
- PKZRSA1 The mutant emerging from the fluctuation assay (named PKZRSA1) was sequenced for the tyrosine T-box, but no mutations were found. We confirmed the mutant was resistant with a kill curve assay where the mutant, but not the wild type (WT), grew through in the presence of PKZ18-22 (not shown).
- the levels of live cells compared to optical density (OD) remained constant with 64 ⁇ g/ml of PKZ18-22 and slightly decreased with 128 ⁇ g/ml, but both concentrations caused the number of live WT MRSA relative to optical density to decrease (not shown), indicating a truly resistant mutant.
- PKZRSA1 showed a 2-fold increase in the MIC against all PKZ18 analogs tested and also exhibited a 2-fold increase in MIC against gentamicin.
- the MICs of the aminoglycosides rose 2- or 4-fold against the mutant compared to the WT, and the MICs of the cell wall-targeting antibiotics vancomycin and oxacillin also increased. Vancomycin had a 2-fold increase in its MIC against the mutant, whereas 16 times more oxacillin was needed to inhibit the growth of PKZ18-22-resistant MRSA than WT MRSA.
- Mupirocin, tetracycline, daptomycin, and rifampin showed no change in the MIC between WT and PKZRSA1.
- the MIC of chloramphenicol was 2-fold lower for PKZRSA1 than the WT MRSA ( FIG. 6 ).
- the media-dependent activity of antibiotics was not tested against PKZRSA1; however, the FIC of PKZ18-22 and gentamicin was 0.38 in both rich and minimal media against WT MRSA (data not shown).
- PKZ18-22 activity against known biofilm-producing methicillin-resistant Staphylococcus aureus was evaluated using an established MBECTM-HTP biofilm model (Innovotech) for studies of implant-associated infections.
- PKZ18-22 (256 ⁇ g/mL) demonstrated improved potency when compared to vancomycin (1024 ⁇ g/mL) at a similar molar concentration.
- Vancomycin has long been considered an antibiotic of last resort against Gram-positive antibiotic-resistant bacteria and has been shown to be most valuable in treating PJIs. It is a glycopeptide and hinders bacterial growth by inhibiting peptidoglycan cross linkage during bacterial cell wall synthesis.
- FIG. 7 A We compared the minimum biofilm eradication concentrations (MBEC) efficacy over a range of concentrations for PKZ18-22 and vancomycin against Staphylococcus biofilms (same parameters as FIG. 2 C : inoculum, media concentration, etc., except plates read at 600 instead of 625) ( FIG. 7 A ).
- a 1.024 mg/mL concentration of vancomycin is a concentration of approximately 0.7 mM.
- a concentration of 1.024 mg/mL of PKZ18-22 is approximately 2.6 mM.
- a concentration of 256 ⁇ g/mL of PKZ18-22 is similar to a 1024 ⁇ g/mL concentration of vancomycin. The highest concentration of vancomycin was not effective.
- the Bliss independence model was used to analyze the activity of PKZ18-22 in combination with established antibiotics such as gentamicin, rifampin, and minocycline.
- the combination of PKZ18-22 (25 ⁇ g/mL) and gentamicin (64 ⁇ g/mL) demonstrated superior potency against a MRSA (ATCC 29213) biofilm when compared with each using an established MBECTM-HTP biofilm model. Synergistic combinations with a measured score higher than 25 were classified as positive.
- the highest synergy score of 87 was achieved using a combination of PKZ18-22 (25 ⁇ g/mL) and gentamicin (16 ⁇ g/mL and 64 ⁇ g/mL). These highly synergistic effects were not observed in any of the PKZ18-22 and vancomycin combinations, which reached a maximal synergy score of only 43 (PKZ18-22, 25 ⁇ g/mL and vancomycin, 4 ⁇ g/mL).
- Combinatorial usage of compounds of Formula I with aminoglycosides significantly as disclosed herein reduced the concentrations of both drugs needed to inhibit bacterial growth.
- Aminoglycosides can have drastic side effects, including nephrotoxicity and ototoxicity that leads to permanent damage to the inner ear.
- Combining aminoglycoside use with use of a compound of Formula I as disclosed herein advantageously enhances a therapeutic effectiveness of aminoglycosides at less toxic levels.
- Compounds of Formula I as disclosed herein alone or as a topical formulation or other combination with an aminoglycoside may be a potent therapy for skin infections caused by Gram-positive bacteria such as MRSA. Drugs that can be toxic systemically or do not meet the Lipinski rule of five are commonly used as topical treatments. For example, mupirocin is used as a 2% (0.4 M) solution to treat skin infections, and the formulation for neomycin is 0.5% by mass (3 mM). Activity of compounds of Formula I in nutrient-limited conditions may provide an additional benefit for treatment. Antibiotics need to be functional in nutrient-limited growth environments such as the skin, where the body attempts to gain nutritional immunity and nutrient depletion for pathogens during infection. Synergy of compounds of Formula I as disclosed herein with some aminoglycosides may be especially useful in this context. Aminoglycosides were less effective in nutrient-limited environments than in rich media.
- biofilm growth is susceptible to a compound of Formula I.
- Compounds of Formula I are capable of penetrating, in effective concentrations, the EPM.
- a compound of Formula I is found to be effective against biofilms and thwarts drug resistance.
- a compound of Formula I as disclosed herein inhibits biofilm growth synergistically with other antibiotics.
- Embodiment 1 A method for inhibiting the growth of Gram-positive bacteria, including contacting said bacteria with a first compound and a second compound, wherein the first compound is a compound of Formula I:
- Embodiment 9 The method of any one of embodiments 1 through 8, wherein the second compound is an aminoglycoside.
- Embodiment 10. The method of embodiment 9, wherein the aminoglycoside is selected from gentamycin, kanamycin, and neomycin.
- Embodiment 11. The method of any one of embodiments 1 through 8, wherein the second compound is a rifamycin.
- Embodiment 12. The method of embodiment 11, wherein the rifamycin is rifampin.
- Embodiment 13 The method of any one of embodiments 1 through 8, wherein the second compound is a glycopeptide antibiotic.
- Embodiment 14. The method of embodiment 13, wherein the glycopeptide antibiotic is vancomycin.
- Embodiment 19 wherein applying includes applying a composition and the composition includes the first compound and the second compound.
- Embodiment 21 The method of embodiment 19 or 20, wherein the surface is selected from a skin of a subject, a prosthetic device, a surgical instrument, a table surface, a bench surface, and a cart surface.
- Embodiment 22 The method of embodiment 20 or 21, wherein the composition is selected from a cream, an ointment, and a solution.
- Embodiment 23 The method of any one of embodiments 1 through 18, wherein contacting said bacteria with said first compound and said second compound includes administering said first compound and said second compound to a subject.
- Embodiment 24 The method of any one of embodiments 1 through 18, wherein contacting said bacteria with said first compound and said second compound includes administering said first compound and said second compound to a subject.
- administering includes administering a composition and the composition including said first compound and said second compound.
- Embodiment 25 The method of embodiment 23 or 24, wherein administering is administering orally.
- Embodiment 26 The method of embodiment 23 or 24, wherein administering is administering intravenously.
- Embodiment 27 The method of any one of embodiments 24 through 26, wherein the composition includes a pill, a capsule, or a solution.
- Embodiment 28 The method of any one of embodiments 24 through 28, wherein the composition includes a single unit dosage.
- Embodiment 29 The composition of any one of embodiments 20, 22, 24, 27, and 28.
- Embodiment 30 A pharmaceutical composition, including
- the first compound is a compound of Formula I:
- R 1 is selected from hydrogen and C 1-3 alkyl
- R 2 is selected from hydrogen, C 1-3 alkyl, a 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring wherein said 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring is optionally substituted with 1, 2, or 3 substituents individually selected from C 1-6 alkyl and halogen, and a 6-membered aryl ring optionally substituted only with a single C 1-6 alkyl substituent,
- the second compound is selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- Embodiment 31 The pharmaceutical composition of embodiment 30, wherein represents a single bond.
- Embodiment 32 The pharmaceutical composition of embodiment 30, wherein represents a double bond.
- Embodiment 33 The pharmaceutical composition of any one of embodiments 30 through 32, wherein R 1 is hydrogen.
- Embodiment 34 The pharmaceutical composition of any one of embodiments 30 through 32, wherein R 1 is C 1-3 alkyl.
- Embodiment 35 The pharmaceutical composition of any one of embodiments 30 through 34, wherein R 2 is a 6-membered heteroaryl ring optionally substituted with 1, 2, or 3 substituents individually selected from C 1-6 alkyl and halogen.
- Embodiment 36 The pharmaceutical composition of embodiment 30, wherein represents a single bond.
- Embodiment 32 The pharmaceutical composition of embodiment 30, wherein represents a double bond.
- Embodiment 33 The pharmaceutical composition of any one of embodiments 30 through 32, wherein R 1 is hydrogen.
- Embodiment 34 The pharmaceutical composition of any one of embodiments 30 through 32, wherein R 1
- Embodiment 38 The pharmaceutical composition of any one of embodiments 30 through 37, wherein the second compound is an aminoglycoside.
- Embodiment 39 The pharmaceutical composition of embodiment 38, wherein the aminoglycoside is selected from gentamycin, kanamycin, and neomycin.
- Embodiment 40 The pharmaceutical composition of any one of embodiments 30 through 37, wherein the second compound is a rifamycin.
- the pharmaceutical composition of embodiment 40, wherein the rifamycin is rifampin.
- Embodiment 42 The pharmaceutical composition of any one of embodiments 30 through 37, wherein the second compound is a glycopeptide antibiotic.
- Embodiment 43 The pharmaceutical composition of embodiment 42, wherein the glycopeptide antibiotic is vancomycin.
- Embodiment 44 The pharmaceutical composition of any one of embodiments 30 through 43, wherein the composition is selected from a cream, an ointment, and a solution.
- Embodiment 45 The pharmaceutical composition of any one of embodiments 30 through 44, wherein the composition includes a pill, a capsule, or a solution.
- Embodiment 46 The pharmaceutical composition of any one of embodiments 30 through 45, wherein the composition includes a single unit dosage.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- Pest Control & Pesticides (AREA)
- Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Birds (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- This invention was made with Government support under grant number CHE-1929741 awarded by the National Science Foundation. The Government has certain rights in the invention.
- Antibiotic resistance is acknowledged as one of the world's greatest global public health challenges. For example, the spread of hospital-acquired infections, including Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA), is a major concern for public health. Despite ongoing research on therapeutic treatments and prevention of bacterial, especially nosocomial, infections, current efforts for curbing antimicrobial resistance have been insufficient to overcome the problem.
- Mainstays of antibiotic therapy against bacterial pathogens involve blocking bacterial growth, either by inhibiting cell wall, protein, or DNA syntheses, or by hindering critical metabolic processes. The majority of current antibiotics affect the same cellular processes that have been targeted by previous iterations of the various classes of antibiotics. Unfortunately, drug effectiveness has been severely compromised due to rapid emergence of resistance. In the case of S. aureus, resistance readily occurs through a variety of mechanisms, such as enzymatic inactivation, altered binding affinities, antibiotic trapping, efflux pumps, acquisition of chromosomal cassettes (mec elements), or spontaneous mutation with positive selection, in response to the exposure of each new antibiotic. Four new antibiotics were approved by the U.S. Food and Drug Administration (FDA) in 2018, but all are new iterations of antibiotics from existing classes; hence, emergence of resistance is likely. The present disclosure is directed to overcoming these and other deficiencies in the art.
- Microbial biofilm formation and homeostasis constitute a major virulence factor in human infections. Biofilm-associated infections are a leading cause of morbidity and mortality in hospitalized patients. The prevalence of Gram-positive bacterial, biofilm-associated infections has increased due to the extensive use of medical implant devices. Device surfaces become colonized with Gram-positive microbes that propagate and mature into a biofilm, an immobile, sessile microbial community encased in a protective, self-produced extracellular polymeric matrix (EPM). Compared to free-floating planktonic organisms, biofilms have the characteristics of a shared physical barrier, rapid intercellular communication, and biofilm-inducible virulence factors that are employed to withstand host stress responses. This defensive EPM infrastructure, combined with a slowed metabolism, minimal replication, and emergence of multi-drug resistant bacteria, make biofilm-associated infections notoriously difficult to eradicate. Bacteria growing in a biofilm can evade the host immune system and are up to 1000-fold more resistant to antibiotic therapy compared to their planktonic counterparts. Gram-positive bacteria such as Staphylococcus aureus and streptococcal species are the most common microbes identified with biofilm-associated infections such as periprosthetic joint infections (70-80% of PJIs).
- The present disclosure includes improvements to address such shortcomings. In an aspect, provided is a method for inhibiting the growth of Gram-positive bacteria, including contacting said bacteria with a first compound and a second compound, wherein the first compound is a compound of Formula I:
- or a pharmaceutically acceptable salt thereof, wherein represents a single or double bond; R1 is selected from hydrogen and C1-3 alkyl; and R2 is selected from hydrogen, C1-3 alkyl, a 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring wherein said 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring is optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen, and a 6-membered aryl ring optionally substituted only with a single C1-6 alkyl substituent; and the second compound is selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- In an example, represents a single bond. In another example, represents a double bond. In yet another example, R1 is hydrogen. In still another example, R1 is C1-3 alkyl. In a further example, R2 is a 6-membered heteroaryl ring optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen. In still a further example, R2 is a 6-membered heteroaryl ring substituted only with a single C1-6 alkyl substituent.
- In another example, the compound of Formula I is selected from
- In another example, the second compound is an aminoglycoside. In an example, the aminoglycoside is selected from gentamycin, kanamycin, and neomycin. In yet another example, the second compound is a rifamycin. In an example, the rifamycin is rifampin. In still another example, the second compound is a glycopeptide antibiotic. In another example, glycopeptide antibiotic is vancomycin.
- In an example, inhibiting the growth of Gram-positive bacteria includes inhibiting biofilm formation. In another example, contacting said bacteria with a first compound and a second compound includes applying said first compound and said second compound to a surface. In yet another example, applying includes applying a composition and the composition includes the first compound and the second compound. In still another example, the surface is selected from a skin of a subject, a prosthetic device, a surgical instrument, a table surface, a bench surface, and a cart surface.
- In another example, the composition is selected from a cream, an ointment, and a solution. In yet another example, contacting said bacteria with said first compound and said second compound includes administering said first compound and said second compound to a subject. In another example, administering includes administering a composition and the composition includes said first compound and said second compound. In another example, administering is administering orally. In another example, administering is administering intravenously. In still another example, the composition includes a pill, a capsule, or a solution. In a further example, the composition comprises a single unit dosage.
- In another aspect, provided is a pharmaceutical composition including a first compound and a second compound, wherein the first compound is a compound of Formula I:
- or a pharmaceutically acceptable salt thereof, wherein represents a single or double bond; R1 is selected from hydrogen and C1-3 alkyl; and R2 is selected from hydrogen, C1-3 alkyl, a 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring wherein said 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring is optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen, and a 6-membered aryl ring optionally substituted only with a single C1-6 alkyl substituent; and the second compound is selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- In an example, represents a single bond. In another example, represents a double bond. In yet another example, R1 is hydrogen. In still another example, R1 is C1-3 alkyl. In a further example, R2 is a 6-membered heteroaryl ring optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen. In still a further example, R2 is a 6-membered heteroaryl ring substituted only with a single C1-6 alkyl substituent.
- In another example, the compound of Formula I is selected from
- In another example, the second compound is an aminoglycoside. In an example, the aminoglycoside is selected from gentamycin, kanamycin, and neomycin. In yet another example, the second compound is a rifamycin. In an example, the rifamycin is rifampin. In still another example, the second compound is a glycopeptide antibiotic. In another example, glycopeptide antibiotic is vancomycin.
- In another example, the pharmaceutical composition is selected from a cream, an ointment, and a solution. In an example, the pharmaceutical composition includes a pill, a capsule, or a solution. In a further example, the composition includes a single unit dosage.
- The patent application filed contains at least one drawing executed in color. Copies of this patent or patent application publication with colored drawings will be provided by the Office upon request and payment of the necessary fee.
- These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings, wherein:
-
FIG. 1 shows a simplified T-box model in accordance with aspects of the present disclosure. Additional T-box hairpins and apical loop to tRNA elbow interaction are not shown. Top: An aminoacylated tRNA cannot stabilize the antiterminator helix, and the thermodynamically more stable terminator hairpin is formed, causing termination of transcription. Middle: A cognate, unacylated tRNA can stabilize the antiterminator helix, which allows transcription to continue. Bottom: PKZ analogs binding to the specifier loop prevent codon-anticodon interaction resulting in transcriptional termination. -
FIGS. 2A-2D show a PKZ18 analog's effect on transcriptional read-through in minimal media in accordance with aspects of the present disclosure.FIG. 2A shows a sketch of a T-box-regulated gene layout where the two primers used for testing are represented by arrows for the T-box containing 5′UTR (left pair of primers) and the ORF (right pair of primers).FIG. 2B shows effect of PKZ18 analogs on transcriptional read-through of B. subtilis glyQS. Concentration is shown on the x axis, and an absence of a bar indicates no observed growth at that concentration.FIG. 2C shows side-by-side treatment of B. subtilis 1A5 with different PKZ18 analogs on the same biological replicate showing a direct comparison of the novel analogs' improved activity compared to PKZ18 as measured by reduced read-through of glyQS. Due to a limited amount of PKZ18-52, the bar is representative of one biological replicate.FIG. 2D shows effect of PKZ18-22 on transcriptional read-through on the T-box-regulated ileS (n=3) and tyrS (n=2) in WT MRSA. -
FIGS. 3A-3F show RNA sequencing of MRSA showing the mean of two biological replicates grown in minimal media in accordance with aspects of the present disclosure.FIG. 3A shows a heatmap of the expression of the 12 T-box controlled genes or operons in S. aureus and their respective 5′UTRs (T-boxes) showing a comparison of the three treatments' effect on initiation (5′UTR) and read-through (ORF).FIG. 3B shows data from panel A showing relative read-through (normalized to untreated and presented as a column graph). -
FIG. 3C shows a heatmap of some other 5′UTR regulated genes: SA0769 and SA0011 are regulated by SAM riboswitches, SA1173 is a sigma B regulated CDS, SA0373 is regulated by a purine riboswitch, and SA1589 is a trans-encoded sRNA.FIGS. 3D-3F show comparisons of antibiotic effect on overall change in gene expression in MRSA is shown.FIG. 3D shows 4 μg/ml PKZ18-22 to untreated,FIG. 3E shows 8 μg/ml PKZ18-22 to untreated, andFIG. 3F shows 4 μg/ml daptomycin to untreated. -
FIG. 4 shows combinatorial effects of PKZ18 analogs with various antibiotics in accordance with aspects of the present disclosure. Class-specific antibiotics, and their respective targets are listed. The MIC and MIC with PKZ18 analog are shown, and where multiple analogs were tested, they are shown in the same cell. Fold change refers to the standalone MIC to combinatorial MIC ratio of the antibiotics tested in conjunction with PKZ18 analogs. FIC refers to the fractional inhibitory concentration, a measurement of synergy, and the value is explained in the effect column. -
FIGS. 5A-5D show cytotoxicity of PKZ18 analogs in accordance with aspects of the present disclosure. All values are normalized to an untreated sample. A drug concentration of 0 corresponds to the DMSO control used in each experiment.FIG. 5A shows J774.16 murine macrophage metabolic activity as measured by alamarBlue after 48 hours of treatment.FIG. 5B shows J774.16 murine macrophage metabolic activity as measured by alamarBlue after 72 hours of treatment.FIG. 5C shows A549 human lung epithelial cells' metabolic activity as measured by alamarBlue after 48 hours of treatment.FIG. 5D shows J774.16 murine macrophage viability measured by Trypan blue cell counting after 48 hours of treatment. -
FIG. 6 shows the MICs of various drugs against WT MRSA and PKZRSA1 in accordance with aspects of the present disclosure. -
FIGS. 7A-7C show assessment of PKZ18-22 effect on Staphylococcus biofilms in accordance with aspects of the present disclosure.FIG. 7A shows growth of S. aureus after 24 h exposure to PKZ18-22 vs. dosages of vancomycin in the minimum biofilm eradication (MBEC) biofilm model. Scanning electron micrographs of peg surfaces:FIG. 7B shows no treatment andFIG. 7C shows treatment with PKZ18-22. -
FIG. 8 shows PKZ18-22—antibiotic synergy on S. aureus biofilm growth in accordance with aspects of the present disclosure. Top left: Biofilm grown for 24 h with no treatment. Top middle: Biofilm growth after 24 h exposure to 25 μg/mL PKZ18-22. Top right: Growth after 24 h exposure to 4 μg/mL gentamicin. Bottom left: Growth after 24 h exposure to 64 μg/mL gentamicin+25 μg/mL PKZ18-22. Bottom middle: Growth after 24 h exposure to 4 μg/mL vancomycin. Bottom right: Growth of S. aureus after 24 h exposure to 4 μg/mL vancomycin+25 μg/mL PKZ18-22. -
FIG. 9 shows synergistic activity of PKZ18-22 with rifampin. Top left: Biofilm grown for 24 h with no treatment. Top middle: Biofilm growth after 24 h exposure to 25 μg/mL PKZ18-22. Top right: Growth after 24 h exposure to 0.001 μg/mL rifampin. Bottom left: Growth after 24 h exposure to 0.001 μg/mL rifampin+25 μg/mL PKZ18-22. Bottom middle: Growth after 24 h exposure to 0.005 μg/mL rifampin. Bottom right: Growth after 24 h exposure to 0.005 μg/mL rifampin+25 μg/mL PKZ18-22 -
FIGS. 10, 11, and 12 show synergy matrix scores in accordance with aspects of the present disclosure.FIG. 10 shows a synergy score matrix for drug combination of PKZ18-22 and gentamicin using a drug interaction Bliss reference model in accordance with aspects of the present disclosure. The highest drug synergy was observed with PKZ18-22 of 25 μg/mL and gentamicin concentrations of 16-64 μg/mL (p<0.001).FIG. 11 shows a synergy score matrix for drug combination of PKZ18-22 and vancomycin. By definition all synergy scores above zero are synergistic. Synergy scores of PKZ18-22 and vancomycin exhibited significantly lower effects compared to PKZ18-22 and gentamicin. The highest synergy score for vancomycin was observed at 4 μg/mL vancomycin+25 μg/mL PKZ18-22. Asterisks indicate level of confidence in results, probability of obtaining test results: * indicates p<0.05; ** indicates p<0.001; *** indicates p<0.0001.FIG. 12 shows a synergy score matrix for drug combination of PKZ18-22 and rifampin using a drug interaction Bliss model. Highest drug synergy observed with PKZ18-22 of 50 μg/mL and rifampin concentrations of 0.001-0.005 μg/mL (p<0.001). -
FIGS. 13A-B show PKZ18-22 plus gentamicin inhibition of biofilms in accordance with aspects of the present disclosure.FIG. 13A shows S. aureus biofilm CFU/log 10 after 24 h of a single dose gentamicin, PKZ18-22, and the combination of gentamicin and PKZ18-22. The following asterisk values using a Student's t-test indicate: * indicates p<0.05; *** indicates p<0.001.FIG. 13B shows after a single dose 24 h challenge, the combination of gentamicin/PKZ18-22 resulted in a cell reduction of ˜5 logs, >99.9%. A significantly greater reduction when compared to each treatment alone. -
FIG. 14 shows a bar graph of S. aureus biofilm colony forming units following different treatments. 1=S. aureus biofilm colony forming units (CFU/log 10) growth not treated; 2=after 24 h of a single dose PKZ18-22 (25 μg/mL); 3=0.001 μg/mL rifampin; 4=0.001 μg/mL rifampin and PKZ18-22 (25 μg/mL); 5=0.005 μg/mL rifampin; 6=0.005 μg/mL rifampin and PKZ18-22 (25 μg/mL). After single dose 24 h challenge, the combination of rifampin and PKZ18-22 produced a significantly greater reduction when compared to each treatment alone. - All patents, publications, applications and other references cited herein are hereby incorporated by reference into the present application.
- As used herein, the following definitions shall apply unless otherwise indicated. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in “Organic Chemistry”, Thomas Sorrell, University Science Books, Sausalito: 1999, and “March's Advanced Organic Chemistry”, 5th Ed., Ed.: Smith, M. B. and March, J., John Wiley & Sons, New York: 2001, which are herein incorporated by reference in their entirety.
- Unless otherwise specified, alkyl is intended to include linear, branched, and cyclic hydrocarbon structures and combinations thereof. A combination would be, for example, cyclopropylmethyl. C1-6 alkyl groups are those having one to six carbon atoms. Examples of C1-6 alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like. Cycloalkyl (which includes cyclic hydrocarbon groups) is a subset of alkyl. Examples of cycloalkyl groups include c-propyl, c-butyl, c-pentyl, norbornyl and the like.
- Aryl and heteroaryl ring systems mean (i) a phenyl group (or benzene) or a monocyclic 5- or 6-membered heteroaromatic ring containing 1-4 heteroatoms selected from 0, N, and S; (ii) a bicyclic 9- or 10-membered aromatic or heteroaromatic ring system containing 0-4 heteroatoms selected from O, N, and S; or (iii) a tricyclic 13- or 14-membered aromatic or heteroaromatic ring system containing 0-5 heteroatoms selected from O, N, and S. The aromatic 6- to 14-membered carbocyclic rings include, e.g., benzene, naphthalene, indane, tetralin, and fluorene and the 5- to 10-membered aromatic heterocyclic rings include, e.g., imidazole, pyridine, indole, thiophene (thiene), benzopyranone, thiazole, furan, benzimidazole, quinoline, isoquinoline, quinoxaline, pyrimidine, pyrazine, tetrazole and pyrazole. As used herein aryl and heteroaryl refer to residues in which one or more rings are aromatic, but not all need be.
- The term “biofilm” means a group of microorganisms (one or multiple strains) surrounded by a viscous or gelatinous matrix of extracellular polymers (e.g. exopolymers or glycocalyx). These extracellular polymers are typically polysaccharides, but can also contain other biopolymers, which can be attached to either inert or biological surfaces. Standard biofilm microorganisms are bacteria that act as one or more of pathogens, indicator organisms, and spoilage organisms. Biofilm may include one or more of Gram-positive bacteria, Gram-negative bacteria, and other microorganisms. One or more composition or method disclosed herein may do or include one or more of prevent formation of biofilm, prevent growth or expansion of an existing biofilm, and reduce or remove some or all of an existing biofilm.
- The term “halogen” (or “halo”) means fluorine, chlorine, bromine or iodine. In one embodiment, halogen may be fluorine or chlorine.
- The term “heterocyclic group” includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated heterocyclic ring systems. In general, such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members. Examples of monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members. A particular non-limiting example is a morpholinyl group.
- Radicals and substituents (Rn) are generally defined when introduced and retain that definition throughout the specification and in all independent claims.
- The salt forms of the compounds of formulas (I), (II), and (III) are typically pharmaceutically acceptable salts, and examples of pharmaceutically acceptable salts are discussed in Berge et al. (1977) “Pharmaceutically Acceptable Salts,” J. Pharm. Sci., Vol. 66, pp. 1-19. However, salts that are not pharmaceutically acceptable may also be prepared as intermediate forms which may then be converted into pharmaceutically acceptable salts.
- The term “pharmaceutically acceptable salt” refers to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases. When the compounds used in the present invention are basic, salts may be prepared from pharmaceutically acceptable non-toxic acids including inorganic and organic acids. Suitable pharmaceutically acceptable acid addition salts for the compounds of the present invention include acetic, adipic, alginic, ascorbic, aspartic, benzenesulfonic (besylate), benzoic, boric, butyric, camphoric, camphorsulfonic, carbonic, citric, ethanedisulfonic, ethanesulfonic, ethylenediaminetetraacetic, formic, fumaric, glucoheptonic, gluconic, glutamic, hydrobromic, hydrochloric, hydroiodic, hydroxynaphthoic, isethionic, lactic, lactobionic, laurylsulfonic, maleic, malic, mandelic, methanesulfonic, mucic, naphthylenesulfonic, nitric, oleic, pamoic, pantothenic, phosphoric, pivalic, polygalacturonic, salicylic, stearic, succinic, sulfuric, tannic, tartaric acid, teoclatic, p-toluenesulfonic, and the like. When the compounds contain an acidic side chain, suitable pharmaceutically acceptable base addition salts for compounds that may be used in the present invention include, but are not limited to, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, arginine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium cations and carboxylate, sulfonate and phosphonate anions attached to alkyl having from 1 to 20 carbon atoms.
- One or more active compound or its pharmaceutically acceptable salt or solvate in a pharmaceutical composition as disclosed herein in general is in an amount of about 0.01-20% (w/w) for a topical formulation; about 0.1-5% for an injectable formulation, 0.1-5% for a patch formulation, about 1-90% for a tablet formulation, and 1-100% for a capsule formulation.
- A pharmaceutical composition may be in a dosage form such as tablets, capsules, granules, fine granules, powders, syrups, suppositories, injectable solutions, patches, or the like. A pharmaceutical composition can be an aerosol suspension of respirable particles comprising the active compound, which the subject inhales. The respirable particles can be liquid or solid, with a particle size sufficiently small to pass through the mouth and larynx upon inhalation. Examples may include particles having a size of about 1 to 10 microns, preferably 1-5 microns.
- One or more active compound may be incorporated into any acceptable carrier, including creams, gels, lotions or other types of suspensions that can stabilize the one or more active compounds and deliver it to the affected area by topical applications. An above pharmaceutical composition can be prepared by conventional methods.
- Pharmaceutically acceptable carriers, which are inactive ingredients, can be selected by those skilled in the art using conventional criteria. Pharmaceutically acceptable carriers may include, but are not limited to, non-aqueous based solutions, suspensions, emulsions, microemulsions, micellar solutions, gels, and ointments. Pharmaceutically acceptable carriers may also contain ingredients that include, but are not limited to, saline and aqueous electrolyte solutions; ionic and nonionic osmotic agents such as sodium chloride, potassium chloride, glycerol, and dextrose; pH adjusters and buffers such as salts of hydroxide, phosphate, citrate, acetate, borate; and trolamine; antioxidants such as salts, acids and/or bases of bisulfite, sulfite, metabisulfite, thiosulfite, ascorbic acid, acetyl cysteine, cysteine, glutathione, butylated hydroxyanisole, butylated hydroxytoluene, tocopherols, and ascorbyl palmitate; surfactants such as lecithin, phospholipids, including but not limited to phosphatidylcholine, phosphatidylethanolamine and phosphatidyl inositiol; poloxamers and poloxamines, polysorbates such as
polysorbate 80,polysorbate 60, andpolysorbate 20, polyethers such as polyethylene glycols and polypropylene glycols; polyvinyls such as polyvinyl alcohol and povidone; cellulose derivatives such as methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and hydroxypropyl methylcellulose and their salts; petroleum derivatives such as mineral oil and white petrolatum; fats such as lanolin, peanut oil, palm oil, soybean oil; mono-, di-, and triglycerides; polymers of acrylic acid such as carboxypolymethylene gel, and hydrophobically modified cross-linked acrylate copolymer; polysaccharides such as dextrans and glycosaminoglycans such as sodium hyaluronate. Such pharmaceutically acceptable carriers may be preserved against bacterial contamination using well-known preservatives, these include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use. - For example, a tablet formulation or a capsule formulation including one or more active compound as disclosed herein may contain other excipients that have no bioactivity and no reaction with the active compound. Excipients of a tablet or a capsule may include fillers, binders, lubricants and glidants, disintegrators, wetting agents, and release rate modifiers. Binders promote the adhesion of particles of the formulation and are important for a tablet formulation. Examples of excipients of a tablet or a capsule include, but not limited to, carboxymethylcellulose, cellulose, ethylcellulose, hydroxypropylmethylcellulose, methylcellulose, karaya gum, starch, tragacanth gum, gelatin, magnesium stearate, titanium dioxide, poly(acrylic acid), and polyvinylpyrrolidone. For example, a tablet formulation may contain inactive ingredients such as colloidal silicon dioxide, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and/or titanium dioxide. A capsule formulation may contain inactive ingredients such as gelatin, magnesium stearate, and/or titanium dioxide.
- For example, a patch formulation may include some inactive ingredients such as 1,3-butylene glycol, dihydroxyaluminum aminoacetate, disodium edetate, D-sorbitol, gelatin, kaolin, methylparaben,
polysorbate 80, povidone, propylene glycol, propylparaben, sodium carboxymethylcellulose, sodium polyacrylate, tartaric acid, titanium dioxide, and purified water. A patch formulation may also contain skin permeability enhancer such as lactate esters (e.g., lauryl lactate) or diethylene glycol monoethyl ether. - Topical formulations including the one or more active compound as disclosed herein can be in a form of gel, cream, lotion, liquid, emulsion, ointment, spray, solution, and suspension. A one or more active ingredient in a topical formulation for example may include, but not be limited to, diethylene glycol monoethyl ether (emollient/permeation enhancer), DMSO (solubility enhancer), silicone elastomer (rheology/texture modifier), caprylic/capric triglyceride, (emollient), octisalate, (emollient/UV filter), silicone fluid (emollient/diluent), squalene (emollient), sunflower oil (emollient), and silicone dioxide (thickening agent).
- A pharmaceutical composition as disclosed herein may be applied by systemic administration or local administration. Systemic administration may include, but is not limited to oral, parenteral (such as intravenous, intramuscular, subcutaneous or rectal), and inhaled administration. In systemic administration, the one or more active compound may first reach plasma and then be distributed into target tissues. Local administration includes topical administration.
- Dosing of the composition can vary according to a level or risk of infection or bacterial growth. For systemic administration, plasma concentrations delivered of one or more active compound as disclosed herein may vary, and may include, without limitation, 1×1010-1×10′ moles/liter, or 1×10−8-1×10−5 moles/liter, independently for each of the one or more active compound.
- One or more compound as disclosed herein may be administrated orally to a subject. The dosage for oral administration may be 0.1-100, 0.1-20, or 1-50 mg/kg/day, depending on a subject's age and condition. For example, dosage for oral administration may be from 0.1-10, 0.5-10, 1-10, 1-5, or 5-50 mg/kg/day for a human subject. One or more active compound as disclosed herein may be applied orally to a human subject at 1-100, 10-50, 20-1000, 20-500, 100-800, or 200-600 mg/dosage, 1-4 times a day, independently for each of the one or more active compound.
- One or more active compound as disclosed herein may be administrated intravenously to a subject. Dosage for intravenous bolus injection or intravenous infusion may be 0.03 to 5 or 0.03 to 1 mg/kg/day independently for each of the one or more active compounds.
- One or more active compound as disclosed herein may be administrated subcutaneously to the subject. A dosage for subcutaneous administration may be 0.3-20, 0.3-3, or 0.1-1 mg/kg/day independently for each of the one or more active compounds.
- One or more active compound as disclosed herein may be applied topically to an area and rubbed into it. A composition including one or more active compound as disclosed herein may be topically applied at least 1 or 2 times a day, or 3 to 4 times per day, depending on the medical issue and the disease pathology. A topical composition comprises about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, 0.5-10, or 1-5% (w/w) of each of the one or more active compound, independently. In an example, 0.2-10 mL of topical composition may be applied to an individual per dose. In an example, one or more active compound as disclosed herein may pass through skin.
- Those of skill in the art will recognize that a wide variety of delivery mechanisms are also suitable for the present invention.
- The present invention is useful in treating a mammal subject, such as humans, horses, dogs and cats. The present invention is particularly useful in treating humans.
- The following examples further illustrate the present invention. These examples are intended merely to be illustrative of the present invention and are not to be construed as being limiting.
- This disclosure relates to compositions and methods for inhibiting the growth of Gram-positive bacteria. Compositions include a first compound of Formula I and a second compound selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic. Methods include contacting the Gram-positive bacteria with such first compound and such second compound. As disclosed herein, in examples contacting bacteria with such a first compound and such a second compound synergistically inhibits growth of the bacteria, such that an inhibitory effect on bacterial growth is more than a summation of effects of contacting a bacterium with each of the compounds without contacting the bacteria with the other of the compounds. Inhibitory effects of some non-limiting examples of compounds of Formula I on growth of bacteria are disclosed in U.S. Pat. No. 10,266,527, the entire contents of which is incorporated herein in its entirety.
- The riboswitch is a 5′- untranslated region (5′UTR) of a messenger RNA (mRNA) with a binding site for a ligand specific to that message. Binding of the ligand controls expression of the protein encoded by that mRNA via regulating transcription or translation. A riboswitch undergoes dynamic exchange between alternative conformations, each of which leads to a different biological result. Depending on the mRNA and its genetic regulation, the ligand can be a positive or negative effector of protein synthesis. A number of genes crucial to metabolite biosynthesis or transport are regulated in bacteria through the binding of the cognate metabolites to classes of mRNA riboswitches. As disclosed herein, riboswitches may be fundamentally alternative RNA drug targets because they have evolved over millions of years as structured receptors for the purpose of binding ligands. As a consequence, riboswitches form ligand-receptor interfaces with a level of structural complexity and selectivity that approaches that of proteins. In some bacterial pathogens, the downstream genes regulated by a riboswitch are essential for bacterial survival and virulence. Therefore, designing small molecules targeting this kind of riboswitch may yield a lethal effect to bacterial pathogens.
- Several riboswitches are unique to bacterial pathogens, and not found in humans. Similar to antibiotic resistance for protein-based targets, bacteria may also evolve resistance to riboswitch-targeting drugs through a mutation that disrupts binding to the riboswitch receptor. However, it may be difficult for a pathogen to evolve selective resistance to riboswitch-targeting antibiotics via a point mutation in the riboswitch. Reasons may include: (1) point mutations in riboswitches would also disrupt the native metabolite ligand binding, resulting in deregulation of the associated biosynthetic pathways; and (2) when several riboswitches of the same class are targeted by a single compound, mutations in each riboswitch would be necessary to produce resistance.
- Maintenance of appropriate pools of aminoacylated tRNAs for protein synthesis is essential for bacterial viability. This requires not only balanced levels of tRNAs, but also their cognate aminoacyl-tRNA synthetases (aaRSs) that catalyze the tRNA aminoacylation. In Gram-positive bacteria, including MRSA, transcription of most aaRS genes is uniquely regulated by the specific tRNA substrate binding to the 5′UTR of the nascent mRNA. Though the size of tRNA as a regulatory ligand contrasts greatly with the more common small metabolite-regulated riboswitches, the tRNA-dependent riboswitch operates similarly in that the completion of transcription is controlled through a resulting conformational change. Similar to other T-box family genes, the 5′UTR of the mRNA of the regulated aaRS gene exhibits a conservation of sequence and structural features. Segments of 5′UTR RNA can fold to form two alternative hairpin structures, an intrinsic transcription terminator or a competing transcription anti-terminator. Formation of the terminator hairpin prematurely terminates transcription.
- As disclosed herein, unacylated tRNA may be a positive effector of this regulatory riboswitch in its binding to the 5′UTR of the nascent mRNA, stabilizing the anti-terminator conformation, and leading to transcription of the downstream aaRS gene. Specificity of this 5′UTR:tRNA interaction may be determined, at least in part, by pairing of the tRNA's specific anticodon with a complementary codon sequence in the specifier loop, whereas stabilization of the anti-terminator may be dependent on base-pairing of the universal tRNA terminal (5′-NCCA-3′) with complementary residues (5′-UGGN-3′) in a 7-nt bulge of the anti-terminator. In response to a decreased pool of aminoacylated tRNA, unacylated tRNA recognized by the nascent transcript may result in increased expression of aaRS genes, which continue to aminoacylate more tRNAs. A covalently bound amino acid of an aminoacylated tRNA may negate tRNA binding to the nascent mRNA and thus, an intrinsic terminator helix is formed and transcription is relinquished prior to the coding sequence of the mRNA.
- A specifier loop domain is located in the Stem I of the 5′UTR and contains nucleotides that are complementary to and pair with the tRNA anticodon. Stem I has two major common RNA structural motifs (loop E and K-turn motifs) and both are crucial for proper transcriptional regulation. The loop E motif in the specifier loop provides a stable platform that appears to help position the specifier nucleotides to accept the anticodon of the cognate tRNA. This motif is similar to that found in several prokaryotic and eukaryotic rRNAs and the hairpin ribozyme. The NMR-derived structure of a model Stem I in the 5′UTR of the tyrosyl-tRNA synthetase (tyrRS) mRNA supports the presence of the Loop E motif in the specifier loop. The single-strand specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove. The K-turn, or GA, sequence motif is joined to the specifier loop domain by a 3- to 5-bp helix. The NMR structure showed the K-turn sequence motif has several noncanonical base pairs typical of K-turn structures, but adopts an extended conformation. These motifs may create an intricate folding pocket in the specifier loop. The overall structure of the specifier loop may be well ordered, with only a few nucleotides exhibiting a moderate degree of mobility. The specifier nucleotide bases are stacked, but their Watson-Crick edges are not uniformly displayed. The 3′- two bases are rotated toward the minor groove and readily accessible to the tRNA anticodon, whereas the 5′- base is rotated toward the major groove with its base pairing edges pointing toward the helix axis.
- As the specific recognition of the cognate unacylated tRNA can occur in the absence of any other cellular factors for the glycyl-tRNA synthetase (glyQS) 5′UTR, determining the structure of the specifier loop of the glyQS riboswitch in the complex with tRNA may provide more relevant and accurate structural information for a novel therapeutic drug target. Disrupting tRNA:5′UTR interaction by targeting mRNA with a small molecule may result in the riboswitch conformation in the OFF position. Small molecule intervention would negate transcription of the downstream aaRS gene, and aaRS proteins critical to the pathogen's viability would not be synthesized, preventing further infection.
- Without wishing to be bound by theory, the binding of small compounds to the glyQS stable platform region is thought to either deform the specifier loop or prevent the conformational change necessary for interaction with the anticodon and thus, inhibit the interaction of the nascent transcript with the tRNA. Transcription of the aaRS gene is then terminated.
- Compounds of Formula I as disclosed herein are believed to perturb the interaction of the specifier loop and tRNA anticodon stem and loop of a T-box riboswitch unique to Gram-positive bacteria and therefore, may be useful in the treatment of infection caused by Gram-positive bacteria.
- Referring to
FIG. 1 , Specific tRNAs initially bind to a cognate codon in the specifier loop. An unacylated cognate tRNA may then stabilize an antiterminator helix in the mRNA downstream of stem I through base-pairing interactions with the conserved 3′ NCCA acceptor end of the tRNA and a conservedcomplementary sequence 5′-UGGN of the mRNA, the “T-box,” thus, allowing the RNA polymerase to continue transcription (FIG. 1 , middle). Conversely, charged or even slightly modified tRNA cannot stabilize the antiterminator helix, causing the thermodynamically more stable terminator hairpin to form and transcription to halt. - Inhibitory effects of some non-limiting examples of compounds of Formula I on growth of bacteria are disclosed in U.S. Pat. No. 10,266,527, the entire contents of which is incorporated herein in its entirety. Some non-limiting examples compounds, including but not limited to some compounds of Formula I, as disclosed herein are shown in Table 1:
-
TABLE 1 Examples of compound structures: PKZ Analog T-Box Number R3 R4 R5 targetinga PKZ18-00 R3—CH3 Yes PKZ18-21 R3—H Yes PKZ18-22 R3—H Yes PKZ18-52 R3—CH3 Yes PKZ18-53 R3—CH3 Yes PKZ18-54 R3—CH3 No PKZ18-55 R3—H No PKZ18-56 R3—CH3 No PKZ18-57 R3—CH3 No PKZ18-58 R3—H No a= Confirmation of inhibition of T-box mechanism from qRT-PCR assay. - Disclosed are compositions including a first compound, of Formula I, and a second compound, wherein the second compound may be any antibiotic other than a compound of Formula I. In an example, the second compound may be one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic. Also provided is a method of inhibiting growth of Gram-positive bacteria, including contacting the bacteria with said first compound and said second compound. In an example, said first compound and said second compound may be considered an active pharmaceutical ingredient or an active pharmaceutical agent. Examples may include administering one or more composition including one or more compound as disclosed herein to a subject.
- In an example, a composition may include both of said first compound (i.e. a compound of Formula I) and said second compound (i.e., antibiotic other than a compound of Formula I). In another example, one or more examples of said first compound may be included in a first composition, and one or more of said second compound may be included in a second composition, and said first composition and said second composition may be separate compositions from each other. In accordance with a method as disclosed herein, said first composition and said second composition may both be used for contacting a microorganism such as a bacterial species with said first and second compounds. Or, a single composition including one or more of said first compound and one or more of said second compound may be used for contacting a microorganism such as a bacterium with said first and second compounds. Such one or more compounds may include, independently, and ointment, a cream, a pill, an injectable, a patch, a cleaning solution (such as for application to a surface), or any other example as disclosed herein.
- Compounds as disclosed herein may be applied to any biological or non-biological surface for inhibiting growth of bacteria, such as Gram-positive bacteria. A biological surface may include any exterior surface of a subject (such as skin, orifice, or open wound) or internal surface of a subject (such as of an alimentary or other canal, a bladder, a duct, a vessel, a fascia, an osseous or cartilaginous surface including periosteal and endosteal surfaces, an internal organ or tissue membrane, a cavity, a ventricle, or other internal surface). A surgical or other wound, opening, or stoma in the skin or other biological membrane, including without limitation for a transcutaneous implant, catheter (e.g. PICC line), port, etc., may be contacted or cleaned with one or more composition including one or both type of compound as disclosed herein. A biological internal surface may be contacted by administering one or more composition systemically to a subject. A non-biological surface may include any surface on which a biofilm may form, including furniture, a cart, a tray, a bin, a pan, surgical tools or implements such as may be present in a surgical setting, gloves, drapes, curtains, clothes, footwear, walls, doors, floors, pipes, sinks, faucets, knobs, handles, handrails, lights, machines, electrical instruments, counters, seats, foodware, or any other surface. A non-biological surface may include a surface of an object for implant or insertion to a subject, such as any prosthetic, a needle, a guide, a catheter or line, a port, a pump, a monitor, a pin, a screw, a joint, an electrode, a stent, a tube, an aperture or window for monitoring or visualizing tissue or other subcutaneous tissue, a capsule, a camera, or other object.
- A method or composition as disclosed herein may include one or more of a first compound of Formula I and a second compound which second compound is an antibiotic other than a compound of Formula I. More than one compound of Formula I may be included, as may more than one antibiotic that is not a compound of Formula I. An antibiotic other than a compound of Formula I may include an aminoglycoside, such as amikacin, gentamicin, kanamycin, neomycin, netilmicin, tobramycin, paromomycin, streptomycin, spectinomycin, or another aminoglycoside. An antibiotic other than a compound of Formula I may include an ansamycin, such as geldanamycin, herbimycin, refimixin, or another ansamycin. An antibiotic other than a compound of Formula I may include a carbacephem, such as loracarbef, or another carbacephem. An antibiotic other than a compound of Formula I may include a carbapenem, such as ertapenem, doripenem, imipenem/cilastatin, meropenem, or another carbacephem.
- An antibiotic other than a compound of Formula I may include a cephalosporin, including a first-, second, third-, fourth, or fifth-generation cephalosporin, such as cefadroxil, cefazolin, cephradine, cephapirin, cephalothin, cefalexin, cefaclor, cefoxitin, cefotetan, cefamandole, cefmetazole, cefanocid, loracarbef, cefprozil, cefuroxime, cefixime, cefdinir, cefditoren, cefoperazone, cefotaxime, cefpodoxime, ceftadizime, ceftibuten, ceftizoxime, moxalactam, ceftriaxone, cefepime, ceftaroline fosamil, ceftobiprole, or another cephalosporin.
- An antibiotic other than a compound of Formula I may include a glycopeptide, such as teicoplanin, vancomycin, telavancin, dalbavancin, oritavancin, or another glycopeptide. An antibiotic other than a compound of Formula I may include a lincosamide, such as clindamycin, lincomycin, or another lincosamide. An antibiotic other than a compound of Formula I may include a lipopeptide, such as daptomycin or another lipopeptide. An antibiotic other than a compound of Formula I may include a macrolide, such as azithromycin, clarithromycin, erythromycin, roxithromycin, telithromycin, spiramycin, fidaxomicin, or another macrolide. An antibiotic other than a compound of Formula I may include a monobactam, such as aztreonam or another monobactam. An antibiotic other than a compound of Formula I may include a nitrofuran, such as furazolidone, nitrofurantoin, or another nitrofuran. An antibiotic other than a compound of Formula I may include an oxazolidinone, such as linezolid, posizolid, radezolid, torezolid, or another oxazolidinone.
- An antibiotic other than a compound of Formula I may include a penicillin, such as amoxicillin, ampicillin, azlocillin, dicloxacillin, flucloxacillin, mezlocillin, methicillin, nafcillin, oxacillin, penicillin G, penicillin V, piperacillin, penicillin G, temocillin, ticarcillin, or another penicillin. An antibiotic other than a compound of Formula I may include a penicillin combination, such as amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin/tazobactam, ticarcillin/clavulanate, or another penicillin combination.
- An antibiotic other than a compound of Formula I may include a polypeptide, such as bacitracin, colistin, polymyxin B, or another polypeptide. An antibiotic other than a compound of Formula I may include a quinolone/fluroroquinolone, such as ciprofloxacin, enoxacin, gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, nadifloxacin, nalidixic acid, norfloxacin, oflaxacin, trovafloxacin, grepafloxacin, sparfloxacin, temafloxican, or another quinolone/fluroroquinolone. An antibiotic other than a compound of Formula I may include a sulfonamide, such as mafenide, sulfacetamide, sulfadiazine, silver sulfadiazine, sulfadimethoxine, sulfamethizole, sulfamethoxazole, sulfanilimide, sulfasalazine, sulfasoxazole, trimethoprim-sulfamethoxazole (Co-trimoxazole) (TMP-SMX), sulfonamidochrysoidine, or another sulfonamide. An antibiotic other than a compound of Formula I may include a tetracycline, such as demeclocycline, doxycycline, metacycline, minocycline, oxytetracycline, tetracycline, or another tetracycline.
- An antibiotic other than a compound of Formula I may include an anti-mycobacterial compound, such as clofazimine, dapsone, capreomycin, cycloserine, ethambutol, ethionamide, isoniazid, pyrazinamide, a rifamycin (such as rifampin, rifabutin, rifapentine, or rifaximin, or another rifamycin), streptomycin, or another anti-mycobacterial compound. An antibiotic other than a compound of Formula I may include arsphenamine, chloramphenicol, fosfomycin, fusidic acid, metronidazole, mupirocin, platensimycin, quinupristin/dalfopristin, thiamphenicol, tigecycline, tinidazole, trimethoprim, or another antibiotic other than a compound of Formula I.
- All combinations of one or more of all compounds of Formula I and of one or more of all antibiotics other than a compound of Formula I are explicitly included in compositions disclosed herein and for use in methods disclosed herein and can be easily envisioned by any skilled person from the foregoing.
- In an example, the first compound includes any one or more of, or a pharmaceutically acceptable salt of any one or more of,
- In an example, the compound including the antibiotic other than a compound of Formula I includes one or more of gentamycin, kanamycin, neomycin, rifamycin, and vancomycin. All combinations of one or more of these compounds of Formula I and one or more of these antibiotics other than Formula I are explicitly included in compositions as disclosed herein and for use in methods as disclosed herein and can easily by envisioned by a skilled person on the basis of the foregoing. A combination may include
- and gentamycin, kanamycin, neomycin, rifamycin, and vancomycin, or
- and gentamycin, kanamycin, neomycin, rifamycin, and vancomycin, or
- and gentamycin, kanamycin, neomycin, rifamycin, and vancomycin, as nonlimiting examples.
- Inhibiting growth of bacteria may be ascertained by measuring an amount of bacteria before and after a period of time during which the bacteria are not contacted with a compound of Formula I or other antibiotic other than a compound of Formula I to identify an amount of bacterial growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I, measuring an amount of bacteria before and after a period of time during which the bacteria are contacted with a compound of Formula I and another antibiotic other than a compound of Formula I to identify an amount of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I, and comparing the amount of bacterial growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I. An amount of inhibition of bacterial growth is the difference between the former and the latter when the latter is less than the former. Growth in the presence of only one or the other of a compound of Formula I and an antibiotic other than a compound of Formula I may similarly be ascertained and compared to the amount of bacterial growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I. A synergistic effect of a compound of Formula I and an antibiotic other than a compound of Formula I may occur when the amount of inhibition of bacterial growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I is greater than the sum of the amount of inhibition of bacterial growth in the presence of a compound of Formula I and absence of an antibiotic other than a compound of Formula I and the amount of inhibition of bacterial growth in the presence of an antibiotic other than a compound of Formula I and absence of a compound of Formula I.
- Inhibiting growth of biofilm may be ascertained by measuring an amount of biofilm before and after a period of time during which the biofilm is not contacted with a compound of Formula I or other antibiotic other than a compound of Formula I to identify an amount of biofilm growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I, measuring an amount of biofilm before and after a period of time during which the biofilm is contacted with a compound of Formula I and another antibiotic other than a compound of Formula I to identify an amount of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I, and comparing the amount of biofilm growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I. An amount of inhibition of biofilm growth is the difference between the former and the latter when the latter is less than the former. Growth in the presence of only one or the other of a compound of Formula I and an antibiotic other than a compound of Formula I may similarly be ascertained and compared to the amount of biofilm growth in the absence of a compound of Formula I and another antibiotic other than a compound of Formula I with the amount of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I. A synergistic effect of a compound of Formula I and an antibiotic other than a compound of Formula I may occur when the amount of inhibition of biofilm growth in the presence of a compound of Formula I and another antibiotic other than a compound of Formula I is greater than the sum of the amount of inhibition of biofilm growth in the presence of a compound of Formula I and absence of an antibiotic other than a compound of Formula I and the amount of inhibition of biofilm growth in the presence of an antibiotic other than a compound of Formula I and absence of a compound of Formula I.
- The following examples are intended to illustrate particular examples of the present disclosure, but are by no means intended to limit the scope thereof
- Materials and Methods
- All chemicals, including novel PKZ18 analogs, were obtained from commercial sources. Novel analogs were selected based on availability and semblance to PKZ18 and PKZ18-22. All antimicrobials were resuspended in dimethyl sulfoxide (DMSO) unless otherwise specified and verified by mass spectrometry (MS).
- Strains and media:
- A549 human lung epithelial cells (grown in Ham's F12 media [Gibco] with 0.00146 g/liter L-glutamine and 10% fetal bovine serum [FBS; Gibco] added) and J774.16 murine macrophages (grown in J7 media with 74% Dulbecco's modified Eagle medium [DMEM; Gibco]) with 0.584 g/liter L-glutamine added, 20% FBS, 5% NCTC-109 [Gibco], and 1% nonessential amino acids) were used for cytotoxicity assays. The following bacterial strains were used in the assays: Bacillus subtilis 168, Bacillus subtilis 1A5, Staphylococcus aureus 4220, Staphylococcus aureus N315 (MRSA isolate), and Escherichia coli BL21. Bacillus subtilis 1A5 and S. aureus N315 were used in qRT-PCR experiments. The abovementioned bacterial strains were used in other experiments as specified. Bacteria were grown on plain Luria-Bertani (LB) or brain heart infusion (BHI) agar except for MRSA, which was grown on BHI agar with 20 μg/ml erythromycin. Liquid cultures were grown in BHI or minimal media (Spizizen minimal medium for B. subtilis and SSM9PR [60] for S. aureus) with the desired antibiotic or solvent control.
- Primers:
- Sample preparation of RNA and cDNA. RNA extraction and cDNA preparation were conducted as previously reported. In short, guanidine thiocyanate (0.5 M final concentration)-treated and pelleted bacterial cultures were resuspended in TRIzol, lysed by beat beating with zirconia beads, and centrifuged.
- The solution was transferred to fresh tubes, and the RNA was extracted with chloroform. The RNA was then pelleted with 100% isopropanol and washed with ice-cold 70% ethanol, resuspended in Millipore water, DNase treated, and extracted with another isopropanol precipitation and ethanol wash. The resulting RNA was quantified using a NanoDrop 3300 (Thermo Fisher), and the quality was assessed by running 1 μg on a denaturing agarose gel. DNA contamination was tested for by PCR followed by agarose gel electrophoresis. cDNA was generated from 1 μg of high-quality RNA using the SuperScript III reverse transcriptase protocol for random primers (Thermo Fisher).
- Thermodynamic Stability Measurements with PKZ18 Analogs:
- Thermodynamic parameters were derived from four UV-monitored destabilizations and four renaturations of chemically synthesized wild-type and mutant truncated B. subtilis glyQS Stem I specifier loops in the absence and presence of PKZ18 (10 mM Na2HPO4 and 10 mM KH2PO4; final pH 6.8). The absorbance was collected at 260 nm and was performed using a
Varian Cary 3 UV-visible spectrophotometer equipped with a Peltier temperature control accessory. The temperature was increased at a rate of 1° C. per minute from 5 to 85° C. Absorbance data at 260 nm were collected as a function of temperature at a rate of four data points per minute. All experiments were performed simultaneously with a control cell containing buffer only. The error calculated is the error of the mean. - qRT-PCR:
- Either 2-fold or 10-fold dilutions of cDNA were used, and amplification was monitored with Evagreen dye. The expression was normalized to either 23S (B. subtilis 1A5) or 16S (MRSA) and reported as percentage read-through of the T-boxes tested for, calculated using the threshold cycle (2−ΔΔCT) method.
- Minimum inhibitory and bactericidal concentration determinations:
- MICs were determined essentially as previously described (Frohlich K M, Weintraub S F, Bell J T, Todd G C, Vare V Y P, Schneider R, Kloos Z A, Tabe E S, Cantara W A, Stark C J, Onwuanaibe U J, Duffy B C, Basanta-Sanchez M, Kitchen D B, McDonough K A, Agris P F. 2019. Discovery of small-molecule antibiotics against a unique tRNA-mediated regulation of transcription in Gram-positive bacteria. ChemMedChem 14:758-769). In short, cultures were grown overnight in the appropriate media, diluted to A620 of 0.1, grown for 3 hours, and again diluted to A620 of 0.1. Cultures were then diluted 10-fold, of which 5 μl were added to each well of the 96-well plate used for the experiment except the media control wells. The initial well inoculum was 7.5×105 bacteria for S. aureus and 2.5×105 bacteria for B. subtilis (bacterial numbers were measured by OD). The 96-well plate was organized as follows. Media (100 μl) were added to all wells. Stock solutions (100 μl) containing 2 times the highest concentration of antibiotics to be tested were loaded to
column 1, with two technical repeats per drug. The plate was serially diluted 2-fold from left to right, and media after the last dilution were discarded, so each well had a final volume of 100 μl. The following controls were included: vehicle control (DMSO, chloroform, ethanol, etc.), cells in plain media, and media control (no cells). The initial optical density (A620) of the 96-well plate was determined, the plate was grown for 16 to 24 hours, and at that time, the final optical densities (A620) were read. The initial reading was subtracted from the final reading, and the technical replicates were averaged. MICs of PKZ18 and analogs were compared to clinically used antibiotics such as gentamicin. - For minimal bactericidal concentration (MBC) testing, the wells from the above 96-well plate, which showed no growth, were plated on drug-free rich media agar plates and incubated for 16 to 24 hours, at which point they were imaged and colonies were counted.
- alamarBlue Cell Redox Activity:
- alamarBlue was purchased (Thermo Scientific) and used according to the manufacturer's directions. In short, 50,000 cells of either A549 or J774.16 were added into a 96-well plate in 200 μl and left to adhere overnight. As a control, we used a 96-well plate with the desired drugs at 2× the final concentrations in 160 μl without adding cells. The cells' medium was removed, and 100 μl fresh medium was added, followed by 100 μl of 2× drug from the corresponding wells in the drug plate. Media were added to the drug plate to reduce the concentrations to 1λ, and the cells were incubated at 37° C. for 48 or 72 hours. alamarBlue was added at 10 μl per 100 μl, and the fluorescence of both plates at 590 nm was read after overnight incubation. The drug plate fluorescence was subtracted from the cells' plate respective values, and the data were normalized to untreated cells' reading. All plates included a vehicle control used as the 0-μg/ml value for each drug tested. All concentrations were tested in triplicate and included at least three biological replicates. A media control, untreated control, a killing control, and a vehicle control were always included.
- The cytotoxicity of synergistic or additive MICs of PKZ18 analogs and a common antibiotic (co-MIC) on eukaryotic cells was tested on A549 cells as above, but the two plates were set up identically to the checkerboard assay so that the final concentrations tested corresponded to those tested against MRSA.
- Trypan Blue Cell Viability Counting:
- J774.16 cells were grown in J7 medium from a fresh passage in a 1:4 dilution of 70 to 80% confluent cells. The cells were allowed to adhere in 6-well plates overnight. The medium was replaced, and drugs were added to desired concentrations in a total volume of 5 ml/well. A media control, untreated control, a killing control of Triton X-100, and a vehicle control were always included. After 48 hours treatment, medium was removed, and fresh media and Trypan blue were added 1:1 in a final volume of 400 μl. Cells, 100 to 200, from two areas of each well were counted and the data averaged and normalized against untreated cells. The vehicle control served as the 0.0-μg/ml value. At least three biological replicates were included for each drug at each concentration.
- Checkerboard Assay and FIC:
- S. aureus N315 cultures were prepared identically to MIC determination in BHI media. The co-MICs were determined using the checkerboard method. In short, antibiotics to be tested with PKZ18 analogs were diluted 2-fold top to bottom (A to G rows) in a 96-well plate, PKZ18 analogs were diluted 2-fold right to left (columns 11-2 of the 96-well plate), and
column 12 was used for vector, media, and growth controls. Each drug was therefore tested by itself and with every dilution of the other drug. - The synergistic and additive interactions were determined based on determined cutoffs using the equation
-
- where MICAB is the lowest possible concentration of both drugs combined where there is no growth, and MICA and MICB are the MIC values of the individual drugs. For a synergistic drug interaction, the fractional inhibitory concentration (FIC) should be below 0.5, additive or indifferent effects are considered in an FIC range of 0.5 to <4, and an FIC value above 4 is considered antagonistic.
- Antibiotic Resistance Frequency (Fluctuation Assay:
- Fluctuation assays were performed using S. aureus N315 and B. subtilis 168 with both PKZ18-22 and PKZ18 on BHI agar plates. Gentamicin on BHI agar was used as a control. In short, MRSA and B. subtilis were grown overnight in BHI, and 3-hour day cultures at the optical density of A620 of 0.1 were started for both organisms. The optical density after 3 hours of growth was measured; cultures were then pelleted and resuspended to give 1011 CFU/ml by optical density. CFU of 1011 per OD were plated in total; 100 μl of the cells were then plated on BHI agar containing either 128 μg/ml PKZ18 or 64 μg/ml PKZ18-22. Serial dilutions of the cells were plated on plain BHI agar in order to calculate the CFU/ml, which was calculated as the number of colonies found on the plates divided by the total number of bacteria plated. CFU means colony forming units, a measure of live bacteria.
- Efflux Activity:
- Efflux activity of the PKZ18-22-resistant MRSA was compared to WT N315. Briefly, cultures were resuspended in phosphate-buffered saline (PBS) and loaded with ethidium bromide for 30 minutes. The cells were then resuspended in cold PBS and transferred onto a 96-well plate in the presence or absence of efflux inhibitors (100 μM carbonyl cyanide m-chlorophenylhydrazone [CCCP] or Verapamil) and 0.4% glucose, and the efflux activity was monitored by measuring the fluorescence of ethidium bromide every 60 seconds for 60 minutes. The activity was normalized to the highest fluorescence reading observed.
- Kill Curves for Resistance Testing:
- WT MRSA and resistant strains were grown overnight in BHI and diluted to an optical density of A620 of 2.0, and both strains were split into three 10-ml cultures with either 64 or 128 μg/ml of PKZ18-22 or 10 μg/ml vancomycin added. The optical density at 620 nm was taken every hour for the first 6 hours and a final time point after 24 hours. Dilutions of 0-, 3-, 6-, and 24-h samples of PKZ18-22 treated cultures were plated on BHI agar to determine total CFU of bacteria.
- RNA Sequencing and Bioinformatic Analyses:
- MRSA and resistant strains were grown overnight in BHI and diluted to an optical density of A620 of 2.0, and both strains were split into three 10-ml cultures with either 64 or 128 μg/ml of PKZ18-22 or 10 μg/ml vancomycin added. The optical density at 620 nm was taken every hour for the first 6 hours and a final time point after 24 hours. Dilutions of 0-, 3-, 6-, and 24-h samples of PKZ18-22 treated cultures were plated on BHI agar to determine total CFU of bacteria.
- Determining if Biofilm Formation is Susceptible to PKZ18 Analogs In Vitro
- Biofilm formation starts from planktonic bacteria, followed by adhesion to an organic or abiotic surface. Following the initial adhesion, sessile microcolonies form and extracellular polymeric substance (EPS) is secreted. Bacteria embedded in EPS often enter a “stationary-like” phase or persister status, making them less susceptible to conventional antibiotics that target growing cells. An overnight culture of S. aureus (ATCC 29213) was diluted to 1×10′ cells/mL in tryptic soy broth (TSB) supplemented with 10% human plasma (Innovative Research, Novi, Mich. USA) and added to the wells of an MBEC™-HTP Assay Biofilm Innoculator (Innovotech, Edmonton, AB, Canada). The plate was incubated overnight at 37° C. and shaken at 125 rpm. After 24 h of growth the lid of the plate was removed, rinsed with PBS, and transferred to a standard 96-well plate containing dilutions of PKZ18-22 and vancomycin prepared in TSB. Control wells were without a COMPOUND OF Formula I. The treatment plate was incubated for 24 h at 37° C. after which the lid was removed, rinsed with PBS, and placed in a new 96-well plate containing TSB. The biofilm was removed from the assay lid into the recovery plate wells by sonication, a new plate cover was added, and the viability of the biofilm was determined after 24 h of incubation at 37° C. by reading the OD at 625 nm. Three independent experiments were conducted. Concentrations of interest were followed up with colony forming unit (CFU) recovery and scanning electron microscopy analysis. After conclusion of the MBEC assay, the minimum bactericidal concentration (MBC) was determined. The MBC is the lowest concentration of an antibacterial agent required to kill a particular bacterium. The peg lid from the MBEC assay was removed from the challenge plate and 20 μL of medium from each well of the challenge plate was removed and added to a new sterile 96-well plate filled with 180 μL TSB. The new 96-well plate was then covered with a regular lid and allowed to incubate for 24 h before MBC values were determined using an automated plate reader to obtain optical density measurements at 600 nm (OD600).
- Determine the Synergy of Different PKZ18 Analogs and Antibiotic Combinations to Treat Established Staphylococcus Biofilms In Vitro
- Bacteria growing in a biofilm matrix are intrinsically more resistant to environmental agents and have been shown to tolerate antibiotic concentrations 10- to 1000-fold higher than the corresponding planktonic counterpart. This inherent resistance of bacteria in biofilms and the emergence of antibiotic-resistant bacteria has necessitated the drive to explore competent novel antimicrobial agents such as PKZ18 and the development of combinations of these novel antimicrobial agents with established antibiotics. We determined the minimum biofilm eradication concentration (MBEC) of compounds of Formula I in combination with vancomycin, gentamicin, rifampin, and tetracycline. Three independent experiments were conducted and required a checkerboard dilution to test various concentrations of the following combinations (compound of Formula I+each antibiotic) against S. aureus utilizing an established MBEC™-HTP biofilm model (Innovotech).
- Briefly, an overnight culture of S. aureus was diluted to 1×105 cells/mL in cation-adjusted Mueller Hinton broth (MHB) supplemented with 1% human plasma and added to the wells of an MBEC plate. The plate was incubated overnight at 37° C. and shaken at 125 rpm. Following biofilm growth, the lid was then transferred to a standard 96-well plate in which dilutions of PKZ18-22 and the designated antibiotics were prepared individually and in combination in MHB. The treatment plate was incubated for 24 h at 37° C. After incubation, the lid was removed and rinsed in PBS. Following treatment, a tetrazolium (2,3,5-triphenyl tetrazolium chloride, TTC) assay was performed to assess metabolic activity and viability. The lid was rinsed in PBS, transferred to a 96-well plate containing a 0.01% TTC solution in MHB, and incubated at 37° C. overnight. To dissolve the stain from the pegs, the lid was placed in a 96-well plate containing 96% ethanol and the OD of the wells was then read at 490 nm. Data was analyzed with the Bliss independence model using the Combenefit software. The most promising combinations were further investigated with CFU recovery and confocal microscopy analysis.
- CFU Recovery
- After rinsing in PBS, designated pegs were snapped off the lid using sterile tweezers and placed in 1.5 mL Eppendorf tubes containing 200 μL PBS. Biofilm was disrupted from the pegs by sonicating the tubes for 15 min (Branson M8800H, Branson Ultrasonics, West Chester, Pa., USA), followed by vortexing for 10 s. Three independent serial dilutions were prepared for each sample and plated on tryptic soy agar (TSA) plates that were incubated overnight at 37° C. The plates were then imaged and colonies counted on a ColonyDoc-It™ Imaging station (UVP, Analytik Jena, Beverly, Mass., USA).
- Scanning Electron Microscopy
- Pegs designated for scanning electron microscopy were snapped off the lid using sterile tweezers and fixed with a 2.5% glutaraldehyde solution (MilliporeSigma, St. Louis, Mo., USA) in 0.2 M sodium cacodylate buffer, pH 7.4 (Electron Microscopy Sciences, Hatfield, Pa., USA) for at least 24 h at 4° C. The pegs were then removed from the fixative and rinsed in cacodylate buffer. The pegs were post-fixed for 1 h with 2% osmium tetroxide (Ted Pella, Inc., Redding, Calif., USA) and then washed again with cacodylate buffer. The pegs were dehydrated in increasing concentrations of ethanol (30%, 50%, 70%, 90%, 100%) and then allowed to air dry overnight. After drying, the pegs were mounted on stubs and sputter coated with gold using a Denton Desk V vacuum sputter system and imaged on a FEI XL30 scanning electron microscope.
- Confocal Laser Scanning Imaging
- Pegs designated for confocal microscopy were snapped off the lid using sterile tweezers and stained with a
SYTO 9/propidium iodide (LIVE/DEAD, BacLight; Invitrogen, Waltham, Mass., USA) solution. The pegs were incubated, covered from the light, for 20 min. After incubation, the pegs were rinsed in PBS and placed on 50 mm glass-bottom dishes (MatTek, Ashland, Mass., USA). The pegs were imaged using a Leica SP5 Inverted Confocal Microscope (Leica Microsystems, Buffalo Grove, Ill., USA) at a resolution of 512×512 pixels using a 63× water immersion objective (63×/1.2W). - PKZ18 binds with low micromolar dissociation constants to chemically synthesized truncated stem I constructs of the Bacillus subtilis glyQS and tyrS T-boxes. Analysis of the UV thermodynamics of two new stem I constructs (not shown) confirmed binding to the stem I specifier loop. PKZ18 thermally destabilized the RNA (change in melting temperature [ΔTm], —18.52° C.; free energy [ΔΔG], +3.41 kcal mol−1) when bound to the RNA comprised of the wild-type sequence of the truncated glyQS stem I with the specifier loop. However, PKZ18 did not affect the thermodynamic parameters of a similarly sized construct that has the gly codon but lacks the specifier loop (ΔTm, —0.33; ΔΔG, +0.22) (not shown). This result establishes that PKZ18 binding to stem I occurs within the specifier loop.
- We compared PKZ18 analogs with variations in chemical structure to better define moieties that contribute to increased efficacy. See Table 1. PKZ18-22 is bactericidal against both B. subtilis 168 and MRSA and this activity correlates with a reduced MIC due to the extension of the carbon tail on the benzene para to the thiazole. See Table 2.
-
TABLE 2 Bactericidal effects of compounds MIC(MBC)a MIC(MBC)b PKZ Analog S. aureus N315 E. coli T-Box Number drug in μg/mL drug in μg/mL targeting PKZ 18-00 64 (>256) >256 (>256) Yes PKZ 18-21 64 (>256) >256 (>256) Yes PKZ 18-22 32 (64) >256 (>256) Yes PKZ 18-52 32 (64) >256 (>256) Yes PKZ 18-53 32 (64) >256 (>256) Yes PKZ 18-54 128 (256) >256 (>256) No PKZ 18-55 >256 (>256) >256 (>256) No PKZ 18-56 >256 (>256) >256 (>256) No PKZ 18-57 >256 (>256) >256 (>256) No PKZ 18-58 NT (NT) NT (NT) No a= Drug concentrations are represented in micrograms per milliliter against S. aureus N315 and E. coli. b= Gram-negative control-showing drugs do not target an organism that does not contain T-boxes. c= Confirmation of inhibition of T-box mechanism from qRT-PCR assay.
Different chemical moieties are listed corresponding to the three locations where changes to the compound identified in Table I as PKZ18-00 (also referred to herein as PKZ18) were made. The MIC and MBC against the Gram-positive MRSA, as well as the Gram-negative E. coli, are shown. PKZ18-52 and PKZ18-53 have a norbornene moiety instead of norbornane. - The reduced MIC, however, was lost by changing the bridge C7 of the norbornane to an oxygen. Comparison of PKZ18-54 with PKZ18-57 suggests that a straight aliphatic chain para to the thiazole enhances activity (PKZ18-54) compared to that of a branched chain (PKZ18-57). Increasing the polarity, as with the ether in PKZ18-55, nullified activity. The substitution of norbornene for the norbornane maintained the bioactivity, making further derivatizations possible by way of additions to the double bond. The methyl group at
position 5 of the thiazole, or the absence thereof, had no effect on activity, as shown by MIC and minimal bactericidal concentration (MBC) values with PKZ18-22 and PKZ18-53. - PKZ18 is active against B. subtilis 1A5 grown in minimal media at much lower concentrations than the reported MIC. In contrast, media-dependent antimicrobial activity against Escherichia coli has been reported by others where the antibiotic loses efficacy in nutrient-limiting conditions. To measure the effect of growth media on activity, we compared the MIC of parent PKZ18 against both B. subtilis 168 and S. aureus 4220 in rich versus minimal media. The MICs of PKZ18 were 8- (B. subtilis 168) and 4-fold (S. aureus 4220) lower when the cultures were grown in minimal versus rich media. Similarly, PKZ18-22 exhibited a 4-fold reduction in MIC, while PKZ18-52 and PKZ18-53 had 2-fold reductions against the MRSA strain S. aureus N315 in minimal compared to rich media. See Table 3. In contrast, gentamicin and mupirocin had increased MICs in minimal media compared to rich media against S. aureus N315.
-
TABLE 3 Media-dependent activity of drugs d MIC (μg/ml) against MIC (μg/ml) against B. subtilis 168 in: S. aureus in: Drug Rich media Minimal media Rich media Minimal media PKZ18 64 8 64a 16a PKZ18-22 16 4 32b 8b PKZ18-52 NTc NT 16-32b 16b PKZ18-53 NT NT 32b 16b Gentamicin 0.125 0.25 0.5b 2.0b Mupirocin NT NT 0.25b 1.0b a= S. aureus 4220. b= S. aureus N315. c= NT, not tested; d = PKZ18 analogs are more effective in minimal media against both B. subtilis and S. aureus, whereas gentamicin and mupirocin are more effective in rich media. - PKZ18-21, PKZ18-22, PKZ18-52, and PKZ18-53 inhibited T-box-controlled expression of glyQS in the glycine auxotroph B. subtilis 1A5, with increasing concentrations showing increased termination of read-through by reverse transcription-quantitative PCR (qRT-PCR).
FIGS. 2A and 2B . Additionally, PKZ18-22, PKZ18-52, and PKZ18-53 inhibited B. subtilis 1A5 read-through significantly better than PKZ18 (at 4 μg/ml of each drug) when the bacteria were grown side by side in the same biological replicate assay.FIG. 2C . These compounds of Formula I inhibited culture growth, and no RNA could be obtained at 12 μg/ml where PKZ18 was previously shown to be most active. - RNA sequencing was used to determine if native expression of T-box-controlled genes was affected by PKZ18-22 in MRSA. We compared the expression of the 5′ UTR of T-box-regulated genes to the expression of their open reading frames (ORFs). The expression of 8 out of the 12 genes under T-box control was reduced, one remained at untreated levels when tested at 8 μg/ml PKZ18-22, and three remained at untreated levels with either 4 or 8 μg/ml PKZ18-22 (
FIG. 3A ), indicating an inhibitory effect by PKZ18-22 on the T-box-regulated genes with decreased expression. Elevated 5′-UTR expression for several T-box-mediated genes following PKZ18-22 treatment further indicated an increase in transcriptional initiation with early termination in the presence of PKZ18-22 (FIG. 3A ). We then ratioed the reads from the ORF to the read numbers in the 5′ UTR for each gene to represent relative read-through and normalized the data to the untreated control. There was a reduction in read-throughs of glyS (P=0.004311), ileS (P=0.010565), leuS (P=0.013825), pheST (P=0.001594), serS (P=0.005975), thrS (P=0.000019), and valS (P=0.000566), indicating inhibition of these T-boxes by both concentrations of PKZ18-22; the P values shown in parentheses after each gene are for 8 μg/ml treatment based on a t test comparing the read-through to the untreated sample (FIG. 3B ). These were also all significant hits for the 8-μg/ml PKZ18-22 treatment (not shown). Expression and read-through of tyrS was reduced, but the read-through reduction was not statistically significant (FIGS. 3A-3B ). The cysteine and histidine T-boxes (cysE-cysS and hisS-aspS operons, respectively) were inhibited only by the higher concentration of PKZ18-22. Read-through of alaS was not inhibited, but 8 μg/ml of PKZ18-22 was sufficient to maintain expression at the same level as 4 μg/ml in spite of increased transcription initiation (FIGS. 3A-3B ). The only T-box-regulated gene in MRSA that does not transcribe an aaRS gene, hom, is preceded by a methionine T-box and was expressed at counts too low to allow conclusions. We used 4 μg/ml of daptomycin as a control antibiotic. It did not significantly affect initiation of T-box-controlled genes, but expression and read-through with daptomycin were lower than untreated for many of the genes (FIGS. 3A-3B ). - At least 40 genes or operons are controlled by riboswitches or riboswitch-like RNA elements in S. aureus. We confirmed the T-box-specific activity of PKZ18-22 by comparing the 5′ UTR expression and ORF expression of other riboswitch-controlled genes. No clear trends with PKZ18-22 treatment were evident, and relative read-through of the tested genes did not significantly change with treatment (
FIG. 3C ). Treatment was expected to cause a large depletion of aminoacylated tRNAs with the possibility of pleiotropic changes in native gene expression as a stress reaction. Treatment with PKZ18-22 resulted in a large overall change in expression, which was similar to that associated with daptomycin (FIGS. 3D-3F ). Volcano plots of the three treatments also indicate a large pleiotropic effect by all treatments (not shown). - Comparison of the relative read-through of ileS and tyrS in MRSA grown in minimal media showed that PKZ18-22 at 4 μg/ml caused a decrease in the read-through of both genes, consistent with PKZ18-22 working as an inhibitor of the T-box mechanism (
FIG. 2D ). A similar but less pronounced trend was observed when MRSA was grown in rich media and treated with 8 μg/ml of PKZ18-22. The read-through of both ileS and tyrS was reduced compared to that in untreated MRSA (not shown). However, expression of the genes is reduced in nutrient-rich conditions, as the pool of uncharged tRNAs tends to be relatively low as well. - PKZ18-22 was synergistic with neomycin B and with kanamycin A (fractional inhibitory concentration [FIC], 0.38), and PKZ18-22, PKZ18-52, and PKZ18-53 were all synergistic with gentamicin (FIC, 0.38) (
FIG. 4 ). However, interaction between streptomycin and PKZ18-22 was only additive (FIC, 0.75). Additionally, both the beta-lactam antibiotic ampicillin and the ribosome-targeting chloramphenicol showed additive effects with PKZ18-22 and PKZ18-53 (FIC, 0.75). No combinatorial effects were observed with PKZ18 analogs and the other drugs tested, including some antibiotics commonly used to treat MRSA, namely, mupirocin, vancomycin, oxacillin, and daptomycin. No antagonistic interactions with PKZ18 analogs were discovered. - Synergy observed between PKZ18-22 and gentamicin was substantial, with a 4-fold decrease in the MIC of PKZ18-22 and an 8-fold decrease in the MIC of gentamicin. Similar effects were observed for the combinations of PKZ18-22 with neomycin or with kanamycin, PKZ18-52 with gentamicin, and PKZ18-53 with gentamicin. Due to limited supply of the novel analogs, not all combinations were tested with all the analogs; however, the analogs used replicated the effect PKZ18-22 had on the MICS of the drugs with which they were tested.
- Compounds of Formula I were tested for cytotoxicity against A549 human lung epithelial cells as well as against J774.16 murine macrophages by measuring both the redox potential of alamarBlue as an indicator of metabolic function and trypan blue staining for cell viability. After 48 hours of treatment, PKZ18 increased cellular redox activity at 64 μg/ml but decreased after 72 hours (
FIGS. 5A-5B ) and PKZ18 caused a near-total reduction of redox activity at 128 μg/ml after 48 hours (FIGS. 5A-5C ), i.e., cytotoxicity at 2-fold above the MIC. Other analogs showed increased redox activity at 128 μg/ml and a complete loss of redox activity at 256 μg/ml, indicative of stress and killing, respectively (FIG. 5C ). The data are consistent between the two cell lines tested, although we were not able to test J774.16 cells at 256 μg/ml due to their low tolerance to dimethyl sulfoxide (DMSO) (FIGS. 5A and 5B ). The data from the alamarBlue assay indicated lower cytotoxicity of the analogs than compound PKZ18, where PKZ18 showed cytotoxicity at the MIC, and the analogs were 2- to 4-fold above the MIC. - Cell viability measured by trypan blue cell staining of the macrophages showed that the cells retained a 76% viability with PKZ18 at 64 μg/ml, while there was 82 to 98% cell viability with PKZ18-22, PKZ18-52, PKZ18-53, and PKZ18-54. Macrophage viability was only 25% after treating with 128 μg/ml PKZ18 for 48 hours, but it was 43 to 65% with the other analogs.
FIG. 5D . - Synergistic concentrations at which the PKZ18 analogs were effective with the aminoglycosides, as well as ampicillin and chloramphenicol, showed no change in metabolic activity of A549 cells, indicating that the combinatorial concentrations required for inhibiting bacterial growth are nontoxic to human lung epithelial cells (not shown)
- To measure resistance, we tested PKZ18-22 or gentamicin against MRSA and used B. subtilis as a control. MRSA exposed to MBC levels (64 μg/ml) of PKZ18-22 did not readily form resistant colonies, with only one colony recovered from a total of 1.8×1011 CFU plated, giving a resistance frequency of 5.6×10−12. In comparison, MRSA plated on 10 μg/ml gentamicin (20× MIC and 5× MBC against MRSA) showed a resistance frequency of 1.6×10−7. This clearly demonstrates that PKZ18-22 is highly refractory to resistance, consistent with the RNA sequencing results that PKZ18-22 targets multiple T-boxes simultaneously. No PKZ18-resistant colonies were found. Additionally, B. subtilis did not generate resistant colonies against either PKZ18 or PKZ18-22. The mutant emerging from the fluctuation assay (named PKZRSA1) was sequenced for the tyrosine T-box, but no mutations were found. We confirmed the mutant was resistant with a kill curve assay where the mutant, but not the wild type (WT), grew through in the presence of PKZ18-22 (not shown). The levels of live cells compared to optical density (OD) remained constant with 64 μg/ml of PKZ18-22 and slightly decreased with 128 μg/ml, but both concentrations caused the number of live WT MRSA relative to optical density to decrease (not shown), indicating a truly resistant mutant. We used an ethidium bromide fluorescence-based assay to measure efflux and influx to determine if PKZRSA1 had altered influx or efflux activity. No differences in either efflux or influx were observed, so this is unlikely to be the cause for resistance.
- PKZRSA1 showed a 2-fold increase in the MIC against all PKZ18 analogs tested and also exhibited a 2-fold increase in MIC against gentamicin. We screened PKZRSA1 against a wide variety of antibacterial compounds to see if it was more resistant against other drugs. The MICs of the aminoglycosides rose 2- or 4-fold against the mutant compared to the WT, and the MICs of the cell wall-targeting antibiotics vancomycin and oxacillin also increased. Vancomycin had a 2-fold increase in its MIC against the mutant, whereas 16 times more oxacillin was needed to inhibit the growth of PKZ18-22-resistant MRSA than WT MRSA. Mupirocin, tetracycline, daptomycin, and rifampin, however, showed no change in the MIC between WT and PKZRSA1. Surprisingly, the MIC of chloramphenicol was 2-fold lower for PKZRSA1 than the WT MRSA (
FIG. 6 ). The media-dependent activity of antibiotics was not tested against PKZRSA1; however, the FIC of PKZ18-22 and gentamicin was 0.38 in both rich and minimal media against WT MRSA (data not shown). - PKZ18-22 activity against known biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) was evaluated using an established MBEC™-HTP biofilm model (Innovotech) for studies of implant-associated infections. PKZ18-22 (256 μg/mL) demonstrated improved potency when compared to vancomycin (1024 μg/mL) at a similar molar concentration. Vancomycin has long been considered an antibiotic of last resort against Gram-positive antibiotic-resistant bacteria and has been shown to be most valuable in treating PJIs. It is a glycopeptide and hinders bacterial growth by inhibiting peptidoglycan cross linkage during bacterial cell wall synthesis. Resistance emerges by the bacterium substituting an amino acid in a cell-wall component, preventing vancomycin from binding. The mean recovery growth of the PKZ18-22-treated S. aureus was 4.3 log10 CFU/mL versus 5.2 log10 CFU/mL for the vancomycin-treated pegs on which the biofilms were grown (p=0.01;
FIG. 7A ). This corresponded to a 2.5 log reduction in CFU/mL for the PKZ18-22-treated biofilms compared to 1.6 for the vancomycin-treated samples. We compared the minimum biofilm eradication concentrations (MBEC) efficacy over a range of concentrations for PKZ18-22 and vancomycin against Staphylococcus biofilms (same parameters asFIG. 2C : inoculum, media concentration, etc., except plates read at 600 instead of 625) (FIG. 7A ). A 1.024 mg/mL concentration of vancomycin is a concentration of approximately 0.7 mM. A concentration of 1.024 mg/mL of PKZ18-22 is approximately 2.6 mM. A concentration of 256 μg/mL of PKZ18-22 is similar to a 1024 μg/mL concentration of vancomycin. The highest concentration of vancomycin was not effective. We checked the efficacy over a range of concentrations for PKZ18-22 and vancomycin against planktonic growth of Staphylococcus. There was no growth with vancomycin; PKZ18-22 exhibited a killing curve. Using scanning electron microscopy, we saw that the PKZ18 treated biofilms differed in cell morphology, thickness, and population density compared with the untreated biofilms (FIG. 7B, 7C ). - Referring to
FIGS. 8, 10, and 11 , the Bliss independence model was used to analyze the activity of PKZ18-22 in combination with established antibiotics such as gentamicin, rifampin, and minocycline. The combination of PKZ18-22 (25 μg/mL) and gentamicin (64 μg/mL) demonstrated superior potency against a MRSA (ATCC 29213) biofilm when compared with each using an established MBEC™-HTP biofilm model. Synergistic combinations with a measured score higher than 25 were classified as positive. The highest synergy score of 87 was achieved using a combination of PKZ18-22 (25 μg/mL) and gentamicin (16 μg/mL and 64 μg/mL). These highly synergistic effects were not observed in any of the PKZ18-22 and vancomycin combinations, which reached a maximal synergy score of only 43 (PKZ18-22, 25 μg/mL and vancomycin, 4 μg/mL). - The most promising combination of PKZ18-22 (25 μg/mL) and gentamicin (64 μg/mL) produced an almost 5 log reduction in CFU/mL in biofilm growth after 24 h exposure (
FIGS. 13A-13B ). Similar results noted with PKZ18-22 and rifampin (FIGS. 9, 12, and 14 ). PKZ18-22 concentrations at 25 and 50 μg/mL showed the highest synergy. These highly synergistic effects were not observed in any of the PKZ18-22 and vancomycin combinations. The highest synergy with vancomycin and PKZ18-22, with a score of 43, was noted with a combination of PKZ18-22 (25 μg/mL) and vancomycin (4 μg/mL). When focusing on the most promising combination of PKZ18-22 (25 μg/mL) and gentamicin (64 μg/mL), there was an almost ˜5 log reduction after 24 h exposure. The combination of PKZ18-22 with gentamicin exhibited a greater clinical potential to treat methicillin-susceptible S. aureus biofilms when compared to any of the PKZ18-22 and vancomycin tested concentrations. After a single dose 24 h challenge, the combination of minocycline and PKZ18-22 did not produce a significantly greater reduction when compared to each treatment alone. Thus, PKZ18-22 was not synergistic with minocycline. - Combinatorial usage of compounds of Formula I with aminoglycosides significantly as disclosed herein reduced the concentrations of both drugs needed to inhibit bacterial growth. Aminoglycosides can have drastic side effects, including nephrotoxicity and ototoxicity that leads to permanent damage to the inner ear. Combining aminoglycoside use with use of a compound of Formula I as disclosed herein advantageously enhances a therapeutic effectiveness of aminoglycosides at less toxic levels.
- Compounds of Formula I as disclosed herein alone or as a topical formulation or other combination with an aminoglycoside may be a potent therapy for skin infections caused by Gram-positive bacteria such as MRSA. Drugs that can be toxic systemically or do not meet the Lipinski rule of five are commonly used as topical treatments. For example, mupirocin is used as a 2% (0.4 M) solution to treat skin infections, and the formulation for neomycin is 0.5% by mass (3 mM). Activity of compounds of Formula I in nutrient-limited conditions may provide an additional benefit for treatment. Antibiotics need to be functional in nutrient-limited growth environments such as the skin, where the body attempts to gain nutritional immunity and nutrient depletion for pathogens during infection. Synergy of compounds of Formula I as disclosed herein with some aminoglycosides may be especially useful in this context. Aminoglycosides were less effective in nutrient-limited environments than in rich media.
- Synergy between compounds of Formula I and other antibiotics such as, without limitation, aminoglycosides as disclosed herein is surprising and advantageous. As disclosed herein, MRSA developed resistance against a compound of Formula I at a surprisingly low frequency compared to most clinically used antibiotics. As disclosed herein, compounds of Formula I provide a promising avenue of targeting Gram-positive pathogens, as they are refractory to resistance, have multiple cellular targets, and can be used in combination with aminoglycoside antibiotics
- As disclosed herein, biofilm growth is susceptible to a compound of Formula I. Compounds of Formula I are capable of penetrating, in effective concentrations, the EPM. As disclosed herein a compound of Formula I is found to be effective against biofilms and thwarts drug resistance. Surprisingly and advantageously, a compound of Formula I as disclosed herein inhibits biofilm growth synergistically with other antibiotics.
- Included in the present disclosure are the following, non-limiting examples of embodiments:
- Embodiment 1. A method for inhibiting the growth of Gram-positive bacteria, including contacting said bacteria with a first compound and a second compound, wherein the first compound is a compound of Formula I:
- or a pharmaceutically acceptable salt thereof, wherein
-
- represents a single or double bond,
- R1 is selected from hydrogen and C1-3 alkyl,
- R2 is selected from hydrogen, C1-3 alkyl, a 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring wherein said 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring is optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen, and a 6-membered aryl ring optionally substituted only with a single C1-6 alkyl substituent,
- the second compound is selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
Embodiment 2. The method ofembodiment 1, wherein represents a single bond.
Embodiment 3. The method ofembodiment 1, wherein represents a double bond.
Embodiment 4. The method of any one ofembodiments 1 through 3, wherein R1 is hydrogen.
Embodiment 5. The method of any one ofembodiments 1 through 3, wherein R1 is C1-3 alkyl.
Embodiment 6. The method of any one ofembodiments 1 through 5, wherein R2 is a 6-membered heteroaryl ring optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen.
Embodiment 7. The method of any one ofembodiments 1 through 6, wherein R2 is a 6-membered heteroaryl ring substituted only with a single C1-6 alkyl substituent.
Embodiment 8. The method of any one ofembodiments 1 through 7, wherein the compound of Formula I is selected from
-
Embodiment 9. The method of any one ofembodiments 1 through 8, wherein the second compound is an aminoglycoside.
Embodiment 10. The method ofembodiment 9, wherein the aminoglycoside is selected from gentamycin, kanamycin, and neomycin.
Embodiment 11. The method of any one ofembodiments 1 through 8, wherein the second compound is a rifamycin.
Embodiment 12. The method ofembodiment 11, wherein the rifamycin is rifampin.
Embodiment 13. The method of any one ofembodiments 1 through 8, wherein the second compound is a glycopeptide antibiotic.
Embodiment 14. The method ofembodiment 13, wherein the glycopeptide antibiotic is vancomycin.
Embodiment 15. The method of any one ofembodiments 1 through 14, wherein inhibiting the growth of Gram-positive bacteria includes inhibiting biofilm formation.
Embodiment 16. The method of any one ofembodiments 9 through 14 wherein inhibiting the growth of Gram-positive bacteria includes inhibiting biofilm formation.
Embodiment 17. The method ofembodiment 8, wherein the second compound is an aminoglycoside.
Embodiment 18. The method ofembodiment 8, wherein the second compound is selected from gentamycin, kanamycin, and neomycin.
Embodiment 19. The method of any one ofembodiments 1 through 18, wherein contacting said bacteria with a first compound and a second compound includes applying said first compound and said second compound to a surface.
Embodiment 20. The method of embodiment 19, wherein applying includes applying a composition and the composition includes the first compound and the second compound.
Embodiment 21. The method ofembodiment 19 or 20, wherein the surface is selected from a skin of a subject, a prosthetic device, a surgical instrument, a table surface, a bench surface, and a cart surface.
Embodiment 22. The method ofembodiment 20 or 21, wherein the composition is selected from a cream, an ointment, and a solution.
Embodiment 23. The method of any one ofembodiments 1 through 18, wherein contacting said bacteria with said first compound and said second compound includes administering said first compound and said second compound to a subject.
Embodiment 24. The method of embodiment 23, wherein administering includes administering a composition and the composition including said first compound and said second compound.
Embodiment 25. The method ofembodiment 23 or 24, wherein administering is administering orally.
Embodiment 26. The method ofembodiment 23 or 24, wherein administering is administering intravenously.
Embodiment 27. The method of any one ofembodiments 24 through 26, wherein the composition includes a pill, a capsule, or a solution.
Embodiment 28. The method of any one ofembodiments 24 through 28, wherein the composition includes a single unit dosage.
Embodiment 29. The composition of any one ofembodiments
Embodiment 30. A pharmaceutical composition, including - a first compound and a second compound, wherein
- the first compound is a compound of Formula I:
- or a pharmaceutically acceptable salt thereof, wherein
-
- R1 is selected from hydrogen and C1-3 alkyl,
- R2 is selected from hydrogen, C1-3 alkyl, a 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring wherein said 5-membered aryl or heteroaryl ring or 6-membered heteroaryl ring is optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen, and a 6-membered aryl ring optionally substituted only with a single C1-6 alkyl substituent,
- the second compound is selected from one or more of an aminoglycoside, a rifamycin, and a glycopeptide antibiotic.
- Embodiment 31. The pharmaceutical composition of
embodiment 30, wherein represents a single bond.
Embodiment 32. The pharmaceutical composition ofembodiment 30, wherein represents a double bond.
Embodiment 33. The pharmaceutical composition of any one ofembodiments 30 through 32, wherein R1 is hydrogen.
Embodiment 34. The pharmaceutical composition of any one ofembodiments 30 through 32, wherein R1 is C1-3 alkyl.
Embodiment 35. The pharmaceutical composition of any one ofembodiments 30 through 34, wherein R2 is a 6-membered heteroaryl ring optionally substituted with 1, 2, or 3 substituents individually selected from C1-6 alkyl and halogen.
Embodiment 36. The pharmaceutical composition of any one ofembodiments 30 through 35, wherein R2 is a 6-membered heteroaryl ring substituted only with a single C1-6 alkyl substituent.
Embodiment 37. The pharmaceutical composition of any one ofembodiments 30 through 36, wherein the compound of Formula I is selected from - Embodiment 38. The pharmaceutical composition of any one of
embodiments 30 through 37, wherein the second compound is an aminoglycoside.
Embodiment 39. The pharmaceutical composition of embodiment 38, wherein the aminoglycoside is selected from gentamycin, kanamycin, and neomycin.
Embodiment 40. The pharmaceutical composition of any one ofembodiments 30 through 37, wherein the second compound is a rifamycin.
Embodiment 41. The pharmaceutical composition ofembodiment 40, wherein the rifamycin is rifampin.
Embodiment 42. The pharmaceutical composition of any one ofembodiments 30 through 37, wherein the second compound is a glycopeptide antibiotic.
Embodiment 43. The pharmaceutical composition of embodiment 42, wherein the glycopeptide antibiotic is vancomycin.
Embodiment 44. The pharmaceutical composition of any one ofembodiments 30 through 43, wherein the composition is selected from a cream, an ointment, and a solution.
Embodiment 45. The pharmaceutical composition of any one ofembodiments 30 through 44, wherein the composition includes a pill, a capsule, or a solution.
Embodiment 46. The pharmaceutical composition of any one ofembodiments 30 through 45, wherein the composition includes a single unit dosage.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/400,336 US11617741B1 (en) | 2021-08-12 | 2021-08-12 | Method for inhibiting growth of bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/400,336 US11617741B1 (en) | 2021-08-12 | 2021-08-12 | Method for inhibiting growth of bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
US20230095547A1 true US20230095547A1 (en) | 2023-03-30 |
US11617741B1 US11617741B1 (en) | 2023-04-04 |
Family
ID=85718761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/400,336 Active 2041-11-19 US11617741B1 (en) | 2021-08-12 | 2021-08-12 | Method for inhibiting growth of bacteria |
Country Status (1)
Country | Link |
---|---|
US (1) | US11617741B1 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6706869B1 (en) | 1998-02-11 | 2004-03-16 | Wyeth | Map kinase phosphatases and polynucleotides encoding them |
US20040031072A1 (en) | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
US20040142325A1 (en) | 2001-09-14 | 2004-07-22 | Liat Mintz | Methods and systems for annotating biomolecular sequences |
US7460960B2 (en) | 2002-05-10 | 2008-12-02 | Epitome Biosystems, Inc. | Proteome epitope tags and methods of use thereof in protein modification analysis |
JP2005097195A (en) | 2003-09-25 | 2005-04-14 | Institute Of Physical & Chemical Research | Pharmaceutical composition |
US20050255491A1 (en) | 2003-11-13 | 2005-11-17 | Lee Frank D | Small molecule and peptide arrays and uses thereof |
US8299318B2 (en) | 2007-07-05 | 2012-10-30 | Ceres, Inc. | Nucleotide sequences and corresponding polypeptides conferring modulated plant characteristics |
WO2009075860A2 (en) | 2007-12-12 | 2009-06-18 | Monsanto Technology, Llc | Transgenic plants with enhanced agronomic traits |
CA2779846A1 (en) | 2009-11-04 | 2011-05-12 | Novartis Ag | Positively charged species as binding reagents in the separation of protein aggregates from monomers |
US10266527B2 (en) | 2013-07-23 | 2019-04-23 | The Research Foundation For The State University Of Albany | T-box riboswitch-binding anti-bacterial compounds |
WO2015061339A2 (en) | 2013-10-21 | 2015-04-30 | The Research Foundation For The State University Of New York | Peptide inhibitor of hiv reverse transcription |
-
2021
- 2021-08-12 US US17/400,336 patent/US11617741B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11617741B1 (en) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2017201670B2 (en) | A composition comprising an antibiotic and a dispersant or an anti-adhesive agent | |
JP5390186B2 (en) | Antibacterial compounds with broad antibacterial spectrum | |
JP2020050676A (en) | Antibacterial therapeutics and prophylactics | |
JP2007502861A (en) | Antibacterial methods and compositions | |
RU2625305C2 (en) | Solid forms of gyrase inhibitor (r)-1-ethyl-3-[6-fluoro-5-[2-(1-hydroxy-1-methyl-ethyl) pyrimidin-5-yl]-7-(tetrahydrofuran-2-yl)-1h-benzimidazol-2-yl] urea | |
US20230330065A1 (en) | RelA Inhibitors for Biofilm Disruption | |
JP2017529357A (en) | Gold (I) -phosphine compounds as antibacterial agents | |
JP2005509594A (en) | NAD synthetase inhibitors and uses thereof | |
KR20170012288A (en) | I- gold iphosphine compounds as antibacterial agents | |
BG108548A (en) | Heterocyclic compounds and their use as d-alanyl-d-alanine ligase inhibitors | |
KR20080028459A (en) | Quinoline derivatives as antibacterial agents | |
US9464032B2 (en) | Use of polyaminoisoprenyl derivatives in antibiotic or antiseptic treatment | |
US11617741B1 (en) | Method for inhibiting growth of bacteria | |
AU2015339039B2 (en) | Synergistic compositions for treating microbial infections | |
EP3027213A1 (en) | Compositions for ameliorating and/or preventing adverse side effects in antibiotic therapy | |
JP2019502667A (en) | Antibacterial compound | |
US9393250B2 (en) | Phthalocyanine compounds useful as RecA inhibitors and methods of using same | |
US11555010B2 (en) | Diamide antimicrobial agents | |
STEFAŃSKA et al. | PJM ONLINE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: DUKE UNIVERSITY, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGRIS, PAUL;REEL/FRAME:057321/0789 Effective date: 20210810 Owner name: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARE, VILLE;REEL/FRAME:057296/0084 Effective date: 20210812 Owner name: DUKE UNIVERSITY, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEYLER, THORSTEN;REEL/FRAME:057295/0860 Effective date: 20210813 Owner name: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHNEIDER, RYAN;REEL/FRAME:057295/0708 Effective date: 20210809 Owner name: HEALTH RESEARCH, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCDONOUGH, KATHLEEN;REEL/FRAME:057295/0987 Effective date: 20210812 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |