US20230093781A9 - Vehicular thermal management system - Google Patents

Vehicular thermal management system Download PDF

Info

Publication number
US20230093781A9
US20230093781A9 US16/995,129 US202016995129A US2023093781A9 US 20230093781 A9 US20230093781 A9 US 20230093781A9 US 202016995129 A US202016995129 A US 202016995129A US 2023093781 A9 US2023093781 A9 US 2023093781A9
Authority
US
United States
Prior art keywords
flow path
coolant
door drive
electrical component
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/995,129
Other versions
US20220048357A1 (en
US11584190B2 (en
Inventor
Sang Shin Lee
Man Ju Oh
Uk Il YANG
Jae Woong Kim
So La CHUNG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp filed Critical Hyundai Motor Co
Assigned to HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION reassignment HYUNDAI MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUNG, SO LA, KIM, JAE WOONG, LEE, SANG SHIN, OH, MAN JU, YANG, UK IL
Publication of US20220048357A1 publication Critical patent/US20220048357A1/en
Application granted granted Critical
Publication of US11584190B2 publication Critical patent/US11584190B2/en
Publication of US20230093781A9 publication Critical patent/US20230093781A9/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • B60H1/0005Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment the air being firstly cooled and subsequently heated or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • B60H1/00778Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed the input being a stationary vehicle position, e.g. parking or stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00842Damper doors, e.g. position control the system comprising a plurality of damper doors; Air distribution between several outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3208Vehicle drive related control of the compressor drive means, e.g. for fuel saving purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a vehicular thermal management system, and more particularly, to a vehicular thermal management system configured to perform thermal management of a passenger space, electrical components and a high-voltage battery of a vehicle including a first vehicle body having the passenger space therein and a second vehicle body combined with the first vehicle body so as to define the entirety of the vehicle.
  • a conventional internal-combustion engine vehicle does not need additional energy for warming the indoor space thereof because it is possible to warm the indoor space in the vehicle using waste heat generated by the engine.
  • the indoor space must be warmed using additional energy, thus increasing fuel consumption. This reduces the distance that the electrical vehicle is capable of traveling, leading to more frequent charging of the battery, which is problematic.
  • a concept by which a vehicle is constituted by a first vehicle body, which can be applied in common to many kinds of vehicles, and a second vehicle body, which is combined with the first vehicle body so as to constitute the entire body of the vehicle have been proposed.
  • a first vehicle body which is provided with electrical components, a battery and the like, which are applied in common to electrical vehicles
  • a second vehicle body which defines a passenger space therein and is combined with the first vehicle body so as to constitute the entirety of the body of the vehicle, are combined with each other.
  • the present disclosure has been made in view of the above problems, and it is an object of the present disclosure to provide a vehicular thermal management system capable of efficiently performing thermal management of a passenger space, an electrical component and a high-voltage battery in a vehicle composed of a first vehicle body and a second vehicle body combined with the first vehicle body.
  • a vehicular thermal management system including: an indoor-air-conditioner, which is disposed a first vehicle body having a passenger space and including a compressor, a first condenser, an evaporator, a blower and a refrigerant line, through which refrigerant circulates so as to supply air that has passed through the evaporator from the blower to the passenger space; and a component-air-conditioner, which is disposed a second vehicle body combinable with the first vehicle body as a body of a vehicle and including an electrical component line configured to cool an electrical component of the vehicle and a first battery line configured to cool a high-voltage battery including a chiller, the chiller extending toward the first vehicle body and configured to be disposed behind the evaporator when the first vehicle body is combined with the second vehicle body to supply air that has passed through the evaporator to the passenger space through an end of the chiller.
  • the indoor-air-conditioner may further include at least one of a first flow path, through which the air that has passed through the evaporator from the blower is discharged, a second flow path, which is positioned under the first flow path and an outlet portion of which converges with an outlet portion of the first flow path, a first valve disposed between the first condenser and the evaporator, an electrical heater for warming the air supplied to the passenger space, a second condenser to which refrigerant output from the compressor is input, and a second valve disposed between the second condenser and the first condenser, the component-air-conditioner may further include a battery-cooling-water heater for heating coolant circulating in the first battery line, a first radiator for cooling coolant circulating in the electrical component line, and a second radiator for cooling the coolant circulating in the first battery line, and the end of the chiller may be positioned in the second flow path.
  • the vehicular thermal management system may further include a first door configured to selectively close one of the first flow path and the second flow path or to simultaneously open both the first flow path and the second flow path, and a first door drive for driving the first door.
  • the compressor When there is a need to cool both the passenger space and the electrical component, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and the coolant in the electrical component line may be circulated, or the compressor may be activated, the second valve may be opened, refrigerant output from the first flow path through the first valve may be expanded, the second flow path may be closed through the first door drive, and the coolant in the electrical component line may be circulated.
  • the compressor When there is a need to cool all of the passenger space, the electrical component and the high-voltage battery, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and the coolant in the electrical component line and the first battery line may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, and the coolant in the electrical component line and the coolant in the first battery line may be circulated.
  • the compressor When there is a need to cool the high-voltage battery during charging of the high-voltage battery and to cool the passenger space, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and coolant in a second battery line provided at a charging station for charging the high-voltage battery may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, and the coolant in the second battery line connected to the charging station may be circulated.
  • coolant in a second battery line connected to a charging station for charging the high-voltage battery may be circulated.
  • the electrical heater When there is a need to warm the passenger space and cool the electric component, the electrical heater may be activated, the first flow path may be closed through the first door drive and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive and the coolant in the electrical component line may be circulated.
  • the electrical heater When there is a need to warm the passenger space, cool the electrical component and warm the high-voltage battery, the electrical heater may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first and second flow paths may be opened through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated.
  • the electrical heater When there is a need to warm the passenger space and to warm the high-voltage battery during charging of the high-voltage battery, the electrical heater may be activated, the first flow path may be closed through the first door drive, and the coolant in the second battery line connected to a charging station may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, and coolant in a second battery line connected to a charging station may be circulated.
  • the compressor and the electrical heater may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first and second flow paths may be opened through the first door drive, and the coolant in the electrical component line may be circulated.
  • the compressor and the electrical heater When there is a need to warm and dehumidify the passenger space and cool the electrical component, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the first flow path may be closed through the first door drive, and the coolant in the electrical component line may be circulated.
  • the compressor and the electrical heater When there is a need to warm and dehumidify the passenger space, cool the electrical component and warm the high-voltage battery, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the battery line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated.
  • the indoor-air-conditioner may further include at least one of a first flow path through which the air that has passed through the evaporator from the blower is discharged, a second flow path, an outlet portion of which converges with an outlet portion of the first flow path, a third flow path, which is branched from the second flow path so as to be positioned under the second flow path and an outlet portion of which converges with the outlet portion of the first flow path and the outlet portion of the second flow path, a first valve disposed between the first condenser and the evaporator, an electrical heater for warming the air supplied to the passenger space, a second condenser to which the refrigerant output from the compressor is input, and a second valve disposed between the second condenser and the first condenser, the component-air-conditioner may further include at least one of a battery-cooling-water heater for heating the coolant circulating in the first battery line, a first radiator for cooling the coolant circulating in the electrical component line and a second radiator for cooling
  • the vehicular thermal management system may further include a first door configured to selectively close one of the first flow path and the second flow path or to simultaneously open both the first flow path and the second flow path, a first door drive for driving the first door, a second door configured to connect the second flow path to the third flow path or to separate the second flow path from the third flow path, and a second door drive for driving the second door.
  • the compressor When there is a need to cool both the passenger space and the electrical component, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the refrigerant in the electrical component line may be circulated.
  • the compressor When there is a need to cool all of the passenger space, the electrical component and the high-voltage battery, the compressor may be activated, the second flow path may be closed through the first door drive, the second flow path may be connected to the third flow path through the second door drive, and the coolant in the electrical component line and the first battery line may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, the second flow path may be connected to the third flow path through the second door drive, and the coolant in the electrical component line and the first battery line may be circulated.
  • the compressor When there is a need to cool the high-voltage battery during charging of the high-voltage battery and to cool the passenger space, the compressor may be activated, the second flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and coolant in a second battery line, provided in a charging station for charging the high-voltage battery, may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the second battery line provided in the charging station may be circulated.
  • the coolant in a second battery line provided in a charging station for charging the high-voltage battery may be circulated.
  • the electrical heater When there is a need to warm the passenger space and cool the electrical component, the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated.
  • the electrical heater When there is a need to warm the passenger space, cool the electrical component and warm the high-voltage battery, the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the battery line may be circulated, or the compressor and the electrical heater may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the battery line may be circulated.
  • the electrical heater When there is a need to warm the passenger space and the high-voltage battery during charging of the high-voltage battery, the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and coolant in a second battery line provided in a charging station may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated and the coolant in the second battery line provided in the charging station may be circulated.
  • the compressor and the electrical heater may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated.
  • the compressor and the electrical heater When there is a need to warm and dehumidify the passenger space and to cool the electrical component, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated.
  • the compressor and the electrical heater When there is a need to warm and dehumidify the passenger space, cool the electrical component and warm the high-voltage battery, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the refrigerant in the first battery line may be circulated.
  • FIG. 1 is a schematic view illustrating a vehicular thermal management system according to a first exemplary embodiment of the present disclosure
  • FIGS. 2 to 12 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the first exemplary embodiment of the present disclosure
  • FIG. 13 is a schematic view illustrating a vehicular thermal management system according to a second exemplary embodiment of the present disclosure
  • FIGS. 14 to 24 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the second exemplary embodiment of the present disclosure
  • FIG. 25 is a schematic view illustrating a vehicular thermal management system according to a third exemplary embodiment of the present disclosure.
  • FIGS. 26 to 36 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the third exemplary embodiment of the present disclosure
  • FIG. 37 is a schematic view illustrating a vehicular thermal management system according to a fourth exemplary embodiment of the present disclosure.
  • FIGS. 38 to 48 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the fourth exemplary embodiment of the present disclosure
  • FIG. 49 is a view illustrating control conditions in individual modes of the vehicular thermal management systems according to the first to fourth exemplary embodiments of the present disclosure.
  • FIG. 50 is a view illustrating a vehicular thermal management system provided in a charging station according to an exemplary embodiment of the present disclosure.
  • FIG. 1 the overall construction of a vehicular thermal management system according to a first exemplary embodiment of the present disclosure will be described with reference to FIG. 1 , and the operations and the flow of refrigerant and coolant in individual modes of the vehicular thermal management system according to the first exemplary embodiment of the present disclosure will be described with reference to FIGS. 2 to 12 .
  • the vehicular thermal management system may include an indoor-air-conditioner 100 and a component-air-conditioner 200 .
  • the indoor-air-conditioner 100 is provided in a first vehicle body 10 having a passenger space therein.
  • the indoor-air-conditioner 100 may include a compressor 110 , a first condenser 120 , an evaporator 130 and a refrigerant line 140 through which refrigerant circulates.
  • the air that has passed through the evaporator 100 from a blower 150 may be supplied to the passenger space.
  • the indoor-air-conditioner 100 may further include a first flow path 160 , through which the air that has passed through the evaporator 130 from the blower 150 is discharged, a second flow path 170 , which is positioned under the first flow path 160 and which converges at an outlet portion thereof with an outlet portion of the first flow path 160 , a first valve 180 disposed between the first condenser 120 and the evaporator 130 , and an electrical heater 190 for heating the air supplied to the passenger space.
  • a first flow path 160 through which the air that has passed through the evaporator 130 from the blower 150 is discharged
  • a second flow path 170 which is positioned under the first flow path 160 and which converges at an outlet portion thereof with an outlet portion of the first flow path 160
  • a first valve 180 disposed between the first condenser 120 and the evaporator 130
  • an electrical heater 190 for heating the air supplied to the passenger space.
  • the indoor-air-conditioner 100 may further include a first door 193 , configured to selectively close the first flow path 160 or the second flow path 170 or to open both the first flow path 160 and the second flow path 170 , and a first door drive 194 for driving the first door 193 .
  • the component-air-conditioner 200 is provided at a second vehicle body 20 , which is combined with the first vehicle body 10 so as to constitute the body of the vehicle. Furthermore, the component-air-conditioner 200 includes an electrical components line 220 for cooling a component 210 of the vehicle and a first battery line 240 for cooling a high-voltage battery 230 .
  • the first battery line 240 includes a chiller 250 . As illustrated in FIG. 1 , the chiller 250 extends at the end thereof to the first vehicle body 10 so as to be positioned behind the first vehicle body when the first vehicle body 10 is combined with the second vehicle body 250 . More specifically, the end of the chiller 250 may be positioned in the second flow path 170 .
  • the chiller 250 may include an air chiller.
  • the end of the chiller 250 is disposed behind the evaporator 130 such that the air that has passed through the evaporator 130 enters into the flow path, which communicates with the passenger space, the air that has passed through the evaporator 130 may exchange heat with the end of the chiller 250 .
  • the component-air-conditioner 200 may further include a battery-cooling-water heater 260 for heating the coolant circulating in the first battery line 240 , a first radiator 275 for cooling the coolant circulating in the electrical component line 220 , a second radiator 270 for cooling the coolant circulating in the first battery line 240 , a first pump 280 for circulating the coolant in the electrical component line 220 , a second pump 290 for circulating the coolant in the first battery line 240 , a third pump 420 for circulating the coolant in the second battery line 410 .
  • the first radiator 275 and the second radiator 270 may be positioned underneath or at the front of the vehicle so as to be cooled by wind caused by traveling.
  • a controller 300 may efficiently perform thermal management of the passenger space, the electrical component 210 and the high-voltage battery 230 by controlling the driving of the compressor 110 , the electrical heater and the first door drive 194 of the indoor-air-conditioner 100 and the driving of the first pump 280 , the second pump 290 and the battery-cooling-water heater 260 of the component-air-conditioner 200 based on the individual control conditions shown in FIG. 49 .
  • the electrical component 210 and the high-voltage battery 230 when there is a need to cool the passenger space, the electrical component 210 and the high-voltage battery 230 while traveling at high temperature, as in the summer months such that temperatures of the passenger space, the electrical component 210 , and the high-voltage battery 230 are higher than a reference temperature, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to the passenger space and thus to cool the passenger space by activating the compressor and then simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194 .
  • the controller 300 may perform control so as to communicate with a control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410 .
  • the charging station 400 for charging the high-voltage battery 230 may be provided with a thermal management system as shown in FIG. 50 . While the high-voltage battery 230 of the vehicle is charged, the coolant in the second battery line 410 is cooled through the thermal management system provided in the charging station 400 and the cooled water is circulated through the second battery line 410 , thereby cooling the high-voltage battery 230 .
  • the thermal management system provided in the charging station 400 may be a heat exchanger, which is well known in the art.
  • the indoor-air-conditioner 100 of the vehicular thermal management system according to the second exemplary embodiment of the present disclosure may further include a second condenser 191 to which the refrigerant output from the compressor 110 is input and a second valve 192 disposed between the second condenser 191 and the first condenser 120 , in contrast with the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment. Since the remaining construction of the indoor-air-conditioner 100 is substantially the same as the construction of the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment, which has been described above, a detailed description thereof is omitted.
  • the reason why the second flow path 170 is closed through the first door drive 194 is to improve the performance of cooling the passenger space by preventing the heat generated during cooling of the refrigerant in the second condenser 191 from being supplied to the passenger space through the second flow path 170 .
  • the electrical component 210 and the high-voltage battery 230 when there is a need to cool all of the passenger space, the electrical component 210 and the high-voltage battery 230 at high temperatures, as in the summer months, it is possible to supply the cool air to the passenger space through the first flow path 160 from the blower 150 and thus to cool the passenger space by activating the compressor 110 , opening the second valve 192 , expanding the refrigerant output from the first condenser 120 through the first valve 180 and closing the second flow path 170 through the first door drive 194 , it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 , and it is further possible to cool the coolant in the first battery line 240 through the second radiator 270 and thus to cool the high-voltage battery 230 by circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300
  • the controller 300 may perform control so as to communicate with the control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410 .
  • FIG. 25 is a schematic view illustrating a vehicular thermal management system according to a third exemplary embodiment of the present disclosure.
  • the vehicular thermal management system may include an indoor-air-conditioner 100 and a component-air-conditioner 200 .
  • the indoor-air-condition unit 100 of the vehicular thermal management system according to the third exemplary embodiment of the present disclosure may further include a third flow path 195 , which is branched from the second flow path 170 so as to be positioned thereunder and an outlet portion of which converges with outlet portions of the first flow path 160 and the second flow path 170 , a second door 196 configured to connect the second flow path 170 to the third flow path 195 or to separate the second flow path 170 from the third flow path 195 , and a second door drive 197 configured to drive the second door 196 , unlike the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment.
  • the end of the chiller 250 may be positioned in the third flow path 195 , as illustrated in FIG. 25 .
  • the indoor-air-conditioner 100 of the vehicular thermal management system is constructed such that the end of the chiller 250 is positioned in the third flow path 195 when the first vehicle body 10 is combined with the second vehicle body 20 and the second flow path 170 and the third flow path 195 are connected to each other or separated from each other through the second door drive 197 , thereby allowing heat exchange between the air that has passed through the evaporator 130 from the blower 150 and the end of the chiller 250 to be selectively performed depending on the traveling conditions, it is possible to more efficiently perform thermal management of a vehicle.
  • the indoor-air-conditioner 100 Since the remaining construction and features of the indoor-air-conditioner 100 are substantially the same as those of the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment, which has been described above, a detailed description thereof is omitted.
  • the electrical component 210 and the high-voltage battery 230 when there is a need to cool all of the passenger space, the electrical component 210 and the high-voltage battery 230 while traveling at high temperature, as in the summer months, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to the passenger space and thus to cool the passenger space by activating the compressor 110 , closing the second flow path 1709 through the first door drive 194 and connecting the second flow path 170 to the third flow path 195 through the second door drive 197 , it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 , and it is further possible to cool the coolant in the first battery line 240 through the second radiator 270 and thus to cool the high-voltage battery 230 by circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300
  • the controller 300 may perform control so as to communicate with a control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410 .
  • FIG. 37 is a schematic view illustrating a vehicular thermal management system according to a fourth exemplary embodiment of the present disclosure.
  • the vehicular thermal management system according to the fourth embodiment of the present disclosure may include an indoor-air-conditioner 100 and a component-air-conditioner 200 .
  • the vehicular thermal management system according to the fourth exemplary embodiment of the present disclosure may further include a second condenser 191 to which the refrigerant output from the compressor 110 is input and a second valve 192 disposed between the second condenser 191 and the first condenser 120 , unlike the indoor-air-conditioner 100 of the vehicular thermal management system according to the third exemplary embodiment.
  • the indoor-air-conditioner 100 Since the remaining construction and features of the indoor-air-conditioner 100 are substantially the same as those of the indoor-air-conditioner 100 of the vehicular thermal management system according to the third exemplary embodiment, which has been described above, a detailed description thereof is omitted.
  • the reason why the second flow path 170 is closed through the first door drive 194 and the second flow path 170 is separated from the third flow path 195 through the second door drive 197 is to prevent the heat generated during cooling of the refrigerant in the condenser from being supplied to the passenger space through the second flow path 170 and to prevent discharge of the cool air from the blower 150 through the third flow path 195 , thereby improving performance of cooling the passenger space.
  • the electrical component 210 and the high-voltage battery 230 when there is a need to cool all of the passenger space, the electrical component 210 and the high-voltage battery 230 while traveling at high temperature, as in the summer months, it is possible to supply the cool air to the passenger space through the first flow path 160 from the blower 150 and thus to cool the passenger space by activating the compressor 110 , opening the second valve 192 , expanding the refrigerant output from the first condenser 120 through the first valve 180 , closing the second flow path 170 through the first door drive 194 and connecting the second flow path 170 to the third flow path 195 through the second door drive 197 , it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 , and it is further possible to cool the coolant in the first battery line 240 through the second radiator 270 and thus to cool the high-voltage battery 230 by circulating the
  • the present disclosure is capable of cooling the coolant in the first battery line 240 by connecting the second flow path 170 to the third flow path 195 through the second door drive 197 so as to allow the cool air from the blower 150 to exchange heat with the chiller 250 positioned in the third flow path 195 .
  • the controller 300 may perform control so as to communicate with a control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410 .
  • the vehicular thermal management system is capable of efficiently perform thermal management of the passenger space, the electrical component and the high-voltage battery in a vehicle composed of a first vehicle body and a second vehicle body combined with the first vehicle body.

Abstract

A vehicular thermal management system includes: an indoor-air-conditioner disposed in a first vehicle body having a passenger space and including a compressor, a first condenser, an evaporator, a blower, and a refrigerant line; and a component-air-conditioner disposed in a second vehicle body combinable with the first vehicle body and including an electrical component line for cooling an electrical component of the vehicle and a first battery line for cooling a high-voltage battery including a chiller which extends toward the first vehicle body to be disposed behind the evaporator when the first vehicle body is combined with the second vehicle body.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of priority to Korean Patent Application No. 10-2020-0028266, filed on Mar. 6, 2020 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to a vehicular thermal management system, and more particularly, to a vehicular thermal management system configured to perform thermal management of a passenger space, electrical components and a high-voltage battery of a vehicle including a first vehicle body having the passenger space therein and a second vehicle body combined with the first vehicle body so as to define the entirety of the vehicle.
  • BACKGROUND
  • In recent years, the trend is toward the popularization of electrical vehicles or the like as eco-friendly vehicles on account of environmental issues affecting internal-combustion vehicles. A conventional internal-combustion engine vehicle does not need additional energy for warming the indoor space thereof because it is possible to warm the indoor space in the vehicle using waste heat generated by the engine. However, because an electrical vehicle or the like is not provided with an engine serving as heat source, the indoor space must be warmed using additional energy, thus increasing fuel consumption. This reduces the distance that the electrical vehicle is capable of traveling, leading to more frequent charging of the battery, which is problematic.
  • With the motorization of vehicles, the need for thermal management of electrical components such as a high-voltage battery and a motor as well as the indoor space of the vehicle are newly required. Specifically, in an electrical vehicle, because the indoor space, the battery and the electrical components have different air-conditioning needs, there is need for a technology capable of independently responding to the different needs and of efficiently reconciling the different needs so as to achieve maximal energy conservation. Accordingly, concepts for integrated vehicular thermal management, which is capable of increasing heating efficiency by performing independent thermal management for individual components of a vehicle and by integrally performing the overall thermal management, have been proposed.
  • In these days, a concept by which a vehicle is constituted by a first vehicle body, which can be applied in common to many kinds of vehicles, and a second vehicle body, which is combined with the first vehicle body so as to constitute the entire body of the vehicle, have been proposed. Specifically, in order to constitute the complete body of an electrical vehicle, a first vehicle body, which is provided with electrical components, a battery and the like, which are applied in common to electrical vehicles, and a second vehicle body, which defines a passenger space therein and is combined with the first vehicle body so as to constitute the entirety of the body of the vehicle, are combined with each other.
  • Vehicular thermal management systems that have been proposed to date are associated only with a vehicle in which an indoor space, electrical components and a battery are included in a single vehicle body. Therefore, there is a need to develop technology for a vehicular thermal management system that is applicable to the above-mentioned kind of vehicle, which is composed of a first vehicle body and a second vehicle body.
  • Details described as the background art are intended merely for the purpose of promoting an understanding of the background of the present disclosure, and should not be construed as an acknowledgment of the prior art that is previously known to those of ordinary skill in the art.
  • SUMMARY
  • The present disclosure has been made in view of the above problems, and it is an object of the present disclosure to provide a vehicular thermal management system capable of efficiently performing thermal management of a passenger space, an electrical component and a high-voltage battery in a vehicle composed of a first vehicle body and a second vehicle body combined with the first vehicle body.
  • In accordance with an aspect of the present disclosure, the above and other objects can be accomplished by the provision of a vehicular thermal management system including: an indoor-air-conditioner, which is disposed a first vehicle body having a passenger space and including a compressor, a first condenser, an evaporator, a blower and a refrigerant line, through which refrigerant circulates so as to supply air that has passed through the evaporator from the blower to the passenger space; and a component-air-conditioner, which is disposed a second vehicle body combinable with the first vehicle body as a body of a vehicle and including an electrical component line configured to cool an electrical component of the vehicle and a first battery line configured to cool a high-voltage battery including a chiller, the chiller extending toward the first vehicle body and configured to be disposed behind the evaporator when the first vehicle body is combined with the second vehicle body to supply air that has passed through the evaporator to the passenger space through an end of the chiller.
  • The indoor-air-conditioner may further include at least one of a first flow path, through which the air that has passed through the evaporator from the blower is discharged, a second flow path, which is positioned under the first flow path and an outlet portion of which converges with an outlet portion of the first flow path, a first valve disposed between the first condenser and the evaporator, an electrical heater for warming the air supplied to the passenger space, a second condenser to which refrigerant output from the compressor is input, and a second valve disposed between the second condenser and the first condenser, the component-air-conditioner may further include a battery-cooling-water heater for heating coolant circulating in the first battery line, a first radiator for cooling coolant circulating in the electrical component line, and a second radiator for cooling the coolant circulating in the first battery line, and the end of the chiller may be positioned in the second flow path.
  • The vehicular thermal management system may further include a first door configured to selectively close one of the first flow path and the second flow path or to simultaneously open both the first flow path and the second flow path, and a first door drive for driving the first door.
  • When there is a need to cool both the passenger space and the electrical component, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and the coolant in the electrical component line may be circulated, or the compressor may be activated, the second valve may be opened, refrigerant output from the first flow path through the first valve may be expanded, the second flow path may be closed through the first door drive, and the coolant in the electrical component line may be circulated.
  • When there is a need to cool all of the passenger space, the electrical component and the high-voltage battery, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and the coolant in the electrical component line and the first battery line may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, and the coolant in the electrical component line and the coolant in the first battery line may be circulated.
  • When there is a need to cool the high-voltage battery during charging of the high-voltage battery and to cool the passenger space, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and coolant in a second battery line provided at a charging station for charging the high-voltage battery may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, and the coolant in the second battery line connected to the charging station may be circulated.
  • When there is a need to perform cool or warm the high-voltage battery during charging of the high-voltage battery, coolant in a second battery line connected to a charging station for charging the high-voltage battery may be circulated.
  • When there is a need to warm the passenger space and cool the electric component, the electrical heater may be activated, the first flow path may be closed through the first door drive and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive and the coolant in the electrical component line may be circulated.
  • When there is a need to warm the passenger space, cool the electrical component and warm the high-voltage battery, the electrical heater may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first and second flow paths may be opened through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated.
  • When there is a need to warm the passenger space and to warm the high-voltage battery during charging of the high-voltage battery, the electrical heater may be activated, the first flow path may be closed through the first door drive, and the coolant in the second battery line connected to a charging station may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, and coolant in a second battery line connected to a charging station may be circulated.
  • When there is a need to dehumidify the passenger space and coo the electrical component, the compressor and the electrical heater may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first and second flow paths may be opened through the first door drive, and the coolant in the electrical component line may be circulated.
  • When there is a need to warm and dehumidify the passenger space and cool the electrical component, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the first flow path may be closed through the first door drive, and the coolant in the electrical component line may be circulated.
  • When there is a need to warm and dehumidify the passenger space, cool the electrical component and warm the high-voltage battery, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the battery line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated.
  • The indoor-air-conditioner may further include at least one of a first flow path through which the air that has passed through the evaporator from the blower is discharged, a second flow path, an outlet portion of which converges with an outlet portion of the first flow path, a third flow path, which is branched from the second flow path so as to be positioned under the second flow path and an outlet portion of which converges with the outlet portion of the first flow path and the outlet portion of the second flow path, a first valve disposed between the first condenser and the evaporator, an electrical heater for warming the air supplied to the passenger space, a second condenser to which the refrigerant output from the compressor is input, and a second valve disposed between the second condenser and the first condenser, the component-air-conditioner may further include at least one of a battery-cooling-water heater for heating the coolant circulating in the first battery line, a first radiator for cooling the coolant circulating in the electrical component line and a second radiator for cooling the coolant circulating in the first battery line, and the end of the chiller may be positioned in the third flow path.
  • The vehicular thermal management system may further include a first door configured to selectively close one of the first flow path and the second flow path or to simultaneously open both the first flow path and the second flow path, a first door drive for driving the first door, a second door configured to connect the second flow path to the third flow path or to separate the second flow path from the third flow path, and a second door drive for driving the second door.
  • When there is a need to cool both the passenger space and the electrical component, the compressor may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the refrigerant in the electrical component line may be circulated.
  • When there is a need to cool all of the passenger space, the electrical component and the high-voltage battery, the compressor may be activated, the second flow path may be closed through the first door drive, the second flow path may be connected to the third flow path through the second door drive, and the coolant in the electrical component line and the first battery line may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, the second flow path may be connected to the third flow path through the second door drive, and the coolant in the electrical component line and the first battery line may be circulated.
  • When there is a need to cool the high-voltage battery during charging of the high-voltage battery and to cool the passenger space, the compressor may be activated, the second flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and coolant in a second battery line, provided in a charging station for charging the high-voltage battery, may be circulated, or the compressor may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the second flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the second battery line provided in the charging station may be circulated.
  • When there is a need to cool or warm the high-voltage battery during charging of the high-voltage battery, the coolant in a second battery line provided in a charging station for charging the high-voltage battery may be circulated.
  • When there is a need to warm the passenger space and cool the electrical component, the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated.
  • When there is a need to warm the passenger space, cool the electrical component and warm the high-voltage battery, the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the battery line may be circulated, or the compressor and the electrical heater may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the battery line may be circulated.
  • When there is a need to warm the passenger space and the high-voltage battery during charging of the high-voltage battery, the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and coolant in a second battery line provided in a charging station may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated and the coolant in the second battery line provided in the charging station may be circulated.
  • When there is a need to dehumidify the passenger space and to cool the electrical component, the compressor and the electrical heater may be activated, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, both the first flow path and the second flow path may be simultaneously opened through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated.
  • When there is a need to warm and dehumidify the passenger space and to cool the electrical component, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive and the coolant in the electrical component line may be circulated, or the compressor and the electrical heater may be activated, the second valve may be opened, the refrigerant output from the first condenser through the first valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, and the coolant in the electrical component line may be circulated.
  • When there is a need to warm and dehumidify the passenger space, cool the electrical component and warm the high-voltage battery, the compressor and the electrical heater may be activated, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the coolant in the first battery line may be circulated, or the compressor and the electrical heater may be activated, the first valve may be opened, the refrigerant output from the second condenser through the second valve may be expanded, the first flow path may be closed through the first door drive, the second flow path may be separated from the third flow path through the second door drive, the coolant in the electrical component line may be circulated, the battery-cooling-water heater may be activated, and the refrigerant in the first battery line may be circulated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a schematic view illustrating a vehicular thermal management system according to a first exemplary embodiment of the present disclosure;
  • FIGS. 2 to 12 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the first exemplary embodiment of the present disclosure;
  • FIG. 13 is a schematic view illustrating a vehicular thermal management system according to a second exemplary embodiment of the present disclosure;
  • FIGS. 14 to 24 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the second exemplary embodiment of the present disclosure;
  • FIG. 25 is a schematic view illustrating a vehicular thermal management system according to a third exemplary embodiment of the present disclosure;
  • FIGS. 26 to 36 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the third exemplary embodiment of the present disclosure;
  • FIG. 37 is a schematic view illustrating a vehicular thermal management system according to a fourth exemplary embodiment of the present disclosure;
  • FIGS. 38 to 48 are views illustrating operations and flows of refrigerant and coolant in individual modes of the vehicular thermal management system according to the fourth exemplary embodiment of the present disclosure;
  • FIG. 49 is a view illustrating control conditions in individual modes of the vehicular thermal management systems according to the first to fourth exemplary embodiments of the present disclosure; and
  • FIG. 50 is a view illustrating a vehicular thermal management system provided in a charging station according to an exemplary embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • Hereinbelow, exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings. Unless otherwise defined, all terms including technical and scientific terms used herein have the same meanings as those commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having meanings consistent with their meaning in the context of the relevant art and the present disclosure, and are not to be interpreted in an idealized or overly formal sense unless expressly so defined herein.
  • Specific structural and functional descriptions of embodiments of the present disclosure disclosed herein are only for illustrative purposes of the exemplary embodiments of the present disclosure, and the present description is not intended to represent all of the technical spirit of the present disclosure. On the contrary, the present disclosure is intended to cover not only the exemplary embodiments, but also various alternatives, modifications, equivalents and other embodiments that may be included within the spirit and scope of the present disclosure as defined by the appended claims.
  • Hereinafter, the overall construction of a vehicular thermal management system according to a first exemplary embodiment of the present disclosure will be described with reference to FIG. 1 , and the operations and the flow of refrigerant and coolant in individual modes of the vehicular thermal management system according to the first exemplary embodiment of the present disclosure will be described with reference to FIGS. 2 to 12 .
  • Referring to FIG. 1 , the vehicular thermal management system according to the first exemplary embodiment of the present disclosure may include an indoor-air-conditioner 100 and a component-air-conditioner 200.
  • The indoor-air-conditioner 100 is provided in a first vehicle body 10 having a passenger space therein. The indoor-air-conditioner 100 may include a compressor 110, a first condenser 120, an evaporator 130 and a refrigerant line 140 through which refrigerant circulates. The air that has passed through the evaporator 100 from a blower 150 may be supplied to the passenger space.
  • The indoor-air-conditioner 100 may further include a first flow path 160, through which the air that has passed through the evaporator 130 from the blower 150 is discharged, a second flow path 170, which is positioned under the first flow path 160 and which converges at an outlet portion thereof with an outlet portion of the first flow path 160, a first valve 180 disposed between the first condenser 120 and the evaporator 130, and an electrical heater 190 for heating the air supplied to the passenger space.
  • In addition, the indoor-air-conditioner 100 may further include a first door 193, configured to selectively close the first flow path 160 or the second flow path 170 or to open both the first flow path 160 and the second flow path 170, and a first door drive 194 for driving the first door 193.
  • The component-air-conditioner 200 is provided at a second vehicle body 20, which is combined with the first vehicle body 10 so as to constitute the body of the vehicle. Furthermore, the component-air-conditioner 200 includes an electrical components line 220 for cooling a component 210 of the vehicle and a first battery line 240 for cooling a high-voltage battery 230. Here, the first battery line 240 includes a chiller 250. As illustrated in FIG. 1 , the chiller 250 extends at the end thereof to the first vehicle body 10 so as to be positioned behind the first vehicle body when the first vehicle body 10 is combined with the second vehicle body 250. More specifically, the end of the chiller 250 may be positioned in the second flow path 170. In the exemplary embodiment, the chiller 250 may include an air chiller.
  • As mentioned above, according to the exemplary embodiment of the present disclosure, since the end of the chiller 250 is disposed behind the evaporator 130 such that the air that has passed through the evaporator 130 enters into the flow path, which communicates with the passenger space, the air that has passed through the evaporator 130 may exchange heat with the end of the chiller 250.
  • The component-air-conditioner 200 may further include a battery-cooling-water heater 260 for heating the coolant circulating in the first battery line 240, a first radiator 275 for cooling the coolant circulating in the electrical component line 220, a second radiator 270 for cooling the coolant circulating in the first battery line 240, a first pump 280 for circulating the coolant in the electrical component line 220, a second pump 290 for circulating the coolant in the first battery line 240, a third pump 420 for circulating the coolant in the second battery line 410. Here, the first radiator 275 and the second radiator 270 may be positioned underneath or at the front of the vehicle so as to be cooled by wind caused by traveling.
  • A controller 300 may efficiently perform thermal management of the passenger space, the electrical component 210 and the high-voltage battery 230 by controlling the driving of the compressor 110, the electrical heater and the first door drive 194 of the indoor-air-conditioner 100 and the driving of the first pump 280, the second pump 290 and the battery-cooling-water heater 260 of the component-air-conditioner 200 based on the individual control conditions shown in FIG. 49 .
  • Referring to FIGS. 2 to 12 and FIG. 49 , the operations and the flows of the refrigerant and the coolant in the individual modes of the thermal management system according to the first exemplary embodiment of the present disclosure will now be described.
  • When there is a need to cool the passenger space and the electrical component 210 while traveling at high temperature, for example, in the summer months such that temperatures of the passenger space and the electrical component 210 are higher than a reference temperature, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to cool the passenger space by activating the compressor 110 and by opening the first flow path 160 and the second flow path 170 by means of the first door drive 194, and it is possible to cool the coolant in the electrical component line 220 to cool the electrical component 210 through the first radiator 275 by circulating the coolant in the electrical component line 220 through activation of the firs pump 280 under the control of the controller 300, as illustrated in FIG. 2 .
  • Furthermore, when there is a need to cool the passenger space, the electrical component 210 and the high-voltage battery 230 while traveling at high temperature, as in the summer months such that temperatures of the passenger space, the electrical component 210, and the high-voltage battery 230 are higher than a reference temperature, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to the passenger space and thus to cool the passenger space by activating the compressor and then simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194. In addition, it is possible to cool the coolant in the electrical component line 220 and thus to cool the electrical component 210 through the first radiator 275 by circulating the coolant in the electrical component line 220 through activation of the first pump 280. It is further possible to cool the coolant in the first battery line 240 and thus to cool the high-voltage battery 230 by circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 3 .
  • Furthermore, when there is a need to cool the high-voltage battery 230 and the passenger space during charging of the high-voltage battery 230, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to the passenger space and thus to cool the passenger space by activating the compressor 110 and simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194. Further, it is possible to cool the high-voltage battery 230 by circulating the coolant in a second battery line 410 provided in a charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 4 . Here, when the high-voltage battery 230 is charged, the controller 300 may perform control so as to communicate with a control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410.
  • The charging station 400 for charging the high-voltage battery 230 may be provided with a thermal management system as shown in FIG. 50 . While the high-voltage battery 230 of the vehicle is charged, the coolant in the second battery line 410 is cooled through the thermal management system provided in the charging station 400 and the cooled water is circulated through the second battery line 410, thereby cooling the high-voltage battery 230. Here, the thermal management system provided in the charging station 400 may be a heat exchanger, which is well known in the art.
  • When there is a need to cool or warm the high-voltage battery 230 while the high-voltage battery 230 is being charged, it is possible to cool or warm the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230, as illustrated in FIGS. 5 and 9 .
  • Furthermore, when there is a need to warm the passenger space and cool the electrical component 210 while traveling at low temperatures, as in the winter months in which the temperature of the passenger space is higher and the temperature of the electrical component 210 is lower than the reference temperature, it is possible to supply warmed air that has passed through the electrical heater 190 from the blower 150 to the passenger space by activating the electrical heater 190 and closing the first flow path 160 using the first door drive 194 without activating the compressor 110, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 6 .
  • Furthermore, when there is a need to warm the passenger space, cool the electrical component 210, and warm the high-voltage battery 230 while traveling at low temperatures, for example, in the winter months in which the temperatures of the passenger space and the high-voltage battery 230 higher and the temperature of the electrical component 210 is lower than the reference temperature, it is possible to supply warmed air that has passed through the electrical heater 190 from the blower 150 and thus to warm the passenger space by activating the electrical heater 190 and then simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194. In addition, it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by activating the first pump 280 and then circulating the coolant in the electrical component line 220. Further, it is possible to circulate the coolant in the first battery line 240 and thus to warm the high-voltage battery 230 by activating the battery-cooling-water heater 260 and the second pump 290 under the control of the controller 300, as illustrated in FIG. 7 .
  • Furthermore, when there is a need to warm both the passenger space and the high-voltage battery 230 during charging of the high-voltage battery 230, it is possible to supply the warmed air that has passed through the electrical heater 190 from the blower 150 to the passenger space and thus to warm the passenger space by activating the electrical heater 190 and then closing the first flow path 160 through the first door drive 194, and it is further possible to cool the high-voltage battery 230 by circulating the coolant in the second battery line 410, provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 8 .
  • Furthermore, when there is a need to dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to dehumidify the passenger space by activating the compressor 110 and the electrical heater 190 and then simultaneously opening both the first flow path 160 and the second flow path 170, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 10 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater 190 and then closing the first flow path 160 through the first door drive 194, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 11 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space, cool the electrical component 210, and warm the high-voltage battery 230, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater 190 and then closing the first flow path 160 through the first door drive 194, it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280, and it is further possible to circulate the coolant in the first battery line 2140 and thus to warm the high-voltage battery 230 by activating the battery-cooling-water heater 260 and then activating the second pump 290 under the control of the controller 300, as illustrated in FIG. 12 .
  • Referring to FIG. 13 , a vehicular thermal management system according to a second exemplary embodiment of the present disclosure may include an indoor-air-conditioner 100 and a component-air-conditioner 200.
  • The indoor-air-conditioner 100 of the vehicular thermal management system according to the second exemplary embodiment of the present disclosure may further include a second condenser 191 to which the refrigerant output from the compressor 110 is input and a second valve 192 disposed between the second condenser 191 and the first condenser 120, in contrast with the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment. Since the remaining construction of the indoor-air-conditioner 100 is substantially the same as the construction of the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment, which has been described above, a detailed description thereof is omitted.
  • Furthermore, since the construction and the features of the component-air-conditioner 200 of the vehicular thermal management system according to the second exemplary embodiment of the present disclosure is substantially the same as the construction and the features of the component-air-conditioner 200 of the vehicular thermal management system according to the first exemplary embodiment, a detailed description thereof is omitted.
  • Referring to FIGS. 14 to 24 and FIG. 49 , the operations and the flows of the refrigerant and the coolant in the individual modes of the thermal management system according to the second exemplary embodiment of the present disclosure will now be described.
  • When there is a need to cool the passenger space and cool the electrical component 210 while traveling at high temperature, as in the summer months, it is possible to supply the cool air to the passenger space through the first flow path 160 from the blower 150 and thus to cool the passenger space by activating the compressor 110, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180 and closing the second flow path 170 through the first door drive 194, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 14 .
  • Here, the reason why the second flow path 170 is closed through the first door drive 194 is to improve the performance of cooling the passenger space by preventing the heat generated during cooling of the refrigerant in the second condenser 191 from being supplied to the passenger space through the second flow path 170.
  • Furthermore, when there is a need to cool all of the passenger space, the electrical component 210 and the high-voltage battery 230 at high temperatures, as in the summer months, it is possible to supply the cool air to the passenger space through the first flow path 160 from the blower 150 and thus to cool the passenger space by activating the compressor 110, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180 and closing the second flow path 170 through the first door drive 194, it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280, and it is further possible to cool the coolant in the first battery line 240 through the second radiator 270 and thus to cool the high-voltage battery 230 by circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 15 .
  • Furthermore, when there is a need to cool both the high-voltage battery 230 and the passenger space during charging of the high-voltage battery 230, it is possible to supply cool air to the passenger space through the first flow path 160 from the blower 150 and thus to cool the passenger space by activating the compressor 110, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180 and closing the second flow path 170 through the first door drive 194. Further, it is possible to cool the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 16 . Here, when the high-voltage battery 230 is charged, the controller 300 may perform control so as to communicate with the control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410.
  • Furthermore, when there is a need to perform cooling or warming of the high-voltage battery 230 during charging of the high-voltage battery 230, it is possible to cool or warm the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIGS. 17 and 21 .
  • Furthermore, when there is a need to cool the passenger space and warm the electrical component while traveling at low temperatures, as in the winter months, it is possible to supply the warmed air that has passed through the second condenser 191 and the electrical heater 190 from the blower 150 to the passenger space to thus cool the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192 and closing the first flow path 160 through the first door drive 194, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 18 .
  • Furthermore, when there is a need to warm the passenger space, cool the electrical component 210, and warm the high-voltage battery 230 under low temperature, as in the winter months, it is possible to supply the warmed air that has passed through the second condenser 191 and the electrical heater 190 from the blower 150 to the passenger space and thus to warm the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192 and opening the first flow path 160 and the second flow path 170 through the first door drive 194, it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280, and it is possible to warm the high-voltage battery 230 by activating the battery-cooling-water heater 260 and circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 19 .
  • Furthermore, when there is a need to warm both the passenger space and the high-voltage battery 230 during charging of the high-voltage battery 230, it is possible to supply the warmed air that has passed through the second condenser 191 and the electrical heater 190 from the blower 150 and thus to warm the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192 and closing the first flow path 160 through the first door drive 194, and it is possible to cool the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 20 .
  • Furthermore, when there is a need to dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to dehumidify the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192 and simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 22 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192 and closing the first flow path 160 through the first door drive 194, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 under the control of the controller 300, as illustrated in FIG. 23 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space, cool the electrical component 210, and warm the high-voltage battery 230, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192 and closing the first flow path 160 through the first door drive 194, and it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280. It is further possible to warm the high-voltage battery 230 by activating the battery-cooling-water heater 260 and circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 24 .
  • FIG. 25 is a schematic view illustrating a vehicular thermal management system according to a third exemplary embodiment of the present disclosure.
  • Referring to FIG. 25 , the vehicular thermal management system according to the third exemplary embodiment of the present disclosure may include an indoor-air-conditioner 100 and a component-air-conditioner 200.
  • The indoor-air-condition unit 100 of the vehicular thermal management system according to the third exemplary embodiment of the present disclosure may further include a third flow path 195, which is branched from the second flow path 170 so as to be positioned thereunder and an outlet portion of which converges with outlet portions of the first flow path 160 and the second flow path 170, a second door 196 configured to connect the second flow path 170 to the third flow path 195 or to separate the second flow path 170 from the third flow path 195, and a second door drive 197 configured to drive the second door 196, unlike the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment. In the vehicular thermal management system according to the third exemplary embodiment of the present disclosure, the end of the chiller 250 may be positioned in the third flow path 195, as illustrated in FIG. 25 .
  • As mentioned above, since the indoor-air-conditioner 100 of the vehicular thermal management system according to the third exemplary embodiment of the present disclosure is constructed such that the end of the chiller 250 is positioned in the third flow path 195 when the first vehicle body 10 is combined with the second vehicle body 20 and the second flow path 170 and the third flow path 195 are connected to each other or separated from each other through the second door drive 197, thereby allowing heat exchange between the air that has passed through the evaporator 130 from the blower 150 and the end of the chiller 250 to be selectively performed depending on the traveling conditions, it is possible to more efficiently perform thermal management of a vehicle.
  • Since the remaining construction and features of the indoor-air-conditioner 100 are substantially the same as those of the indoor-air-conditioner 100 of the vehicular thermal management system according to the first exemplary embodiment, which has been described above, a detailed description thereof is omitted.
  • In addition, since the construction and the features of the component-air-conditioner 200 of the vehicular thermal management system according to the third exemplary embodiment of the present disclosure are substantially the same as those of the component-air-conditioner 200 of the vehicular thermal management system according to the first embodiment of the present disclosure, which has been described above, a detailed description thereof is omitted.
  • Referring to FIGS. 26 to 36 and FIG. 49 , the operations and the flows of the refrigerant and the coolant in individual modes of the vehicular thermal management system according to the third exemplary embodiment of the present disclosure will now be described.
  • When there is a need to cool both the passenger space and the electrical component while traveling at high temperature, for example, in the summer months, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to the passenger space and thus to cool the passenger space by activating the compressor 110, simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 26 .
  • Furthermore, when there is a need to cool all of the passenger space, the electrical component 210 and the high-voltage battery 230 while traveling at high temperature, as in the summer months, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to the passenger space and thus to cool the passenger space by activating the compressor 110, closing the second flow path 1709 through the first door drive 194 and connecting the second flow path 170 to the third flow path 195 through the second door drive 197, it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280, and it is further possible to cool the coolant in the first battery line 240 through the second radiator 270 and thus to cool the high-voltage battery 230 by circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 27 .
  • Furthermore, when there is a need to cool both the high-voltage battery 230 and the passenger space during charging of the high-voltage battery 230, it is possible to supply the cooled air that has passed through the evaporator 130 from the blower 150 to the passenger space and thus to cool the passenger space by activating the compressor 110, closing the second flow path 170 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197. It is also possible to cool the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 28 . Here, when the high-voltage battery 230 is charged, the controller 300 may perform control so as to communicate with a control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410.
  • Furthermore, when there is a need to cool or warm the high-voltage battery 230 during charging of the high-voltage battery 230, it is possible to cool or warm the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIGS. 29 and 33 .
  • Furthermore, when there is a need to warm the passenger space and cool the electrical component while traveling at lower temperatures, as in the winter months, it is possible to supply the warmed air that has passed through the electrical heater 190 from the blower 150 to the passenger space and thus to warm the passenger space by activating the electrical heater, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 30 .
  • Furthermore, when there is a need to warm the passenger space, cool the electrical component 210, and warm the high-voltage battery 230 while traveling at low temperatures, as in the winter months, it is possible to supply the warmed air that has passed through the electrical heater 190 from the blower 150 to the passenger space and thus to warm the passenger space by activating the electrical heater, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second drive. It is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through the first pump 280. Further, it is possible to warm the high-voltage battery 230 by activating the battery-cooling-water heater 260 and circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 31 .
  • Furthermore, when there is a need to warm both the passenger space and the high-voltage battery 230 during charging of the high-voltage battery 230, it is possible to supply the warmed air that has passed through the electrical heater 190 from the blower 150 and thus to warm the passenger space by activating the electrical heater, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is also possible to cool the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 32 .
  • Furthermore, when there is a need to dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to dehumidify the passenger space by activating the compressor 110 and the electrical heater, simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is also possible to cool the coolant in the electrical component line 220 through the first radiator and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 34 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 35 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space, cool the electrical component 210, and warm the high-voltage battery 230, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 by activation of the first pump 280, and it is further possible to warm the high-voltage battery 230 by circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 36 .
  • FIG. 37 is a schematic view illustrating a vehicular thermal management system according to a fourth exemplary embodiment of the present disclosure. Referring to FIG. 37 , the vehicular thermal management system according to the fourth embodiment of the present disclosure may include an indoor-air-conditioner 100 and a component-air-conditioner 200.
  • The vehicular thermal management system according to the fourth exemplary embodiment of the present disclosure may further include a second condenser 191 to which the refrigerant output from the compressor 110 is input and a second valve 192 disposed between the second condenser 191 and the first condenser 120, unlike the indoor-air-conditioner 100 of the vehicular thermal management system according to the third exemplary embodiment.
  • Since the remaining construction and features of the indoor-air-conditioner 100 are substantially the same as those of the indoor-air-conditioner 100 of the vehicular thermal management system according to the third exemplary embodiment, which has been described above, a detailed description thereof is omitted.
  • In addition, since the construction and the features of the component-air-conditioner 200 of the vehicular thermal management system according to the fourth exemplary embodiment of the present disclosure are substantially the same as those of the component-air-conditioner 200 of the vehicular thermal management system according to the first exemplary embodiment of the present disclosure, which has been described above, a detailed description thereof is omitted.
  • Referring to FIGS. 38 to 48 and FIG. 49 , the operations and the flow of the refrigerant and the coolant in individual modes of the vehicular thermal management system according to the fourth exemplary embodiment of the present disclosure will now be described.
  • When there is a need to cool both the passenger space and the electrical component 210 while traveling at high temperature, as in the summer months, it is possible to supply the cool air to the passenger space from the blower 150 through the first flow path 195 and thus to cool the passenger space by activating the compressor 110, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180, closing the second flow path 170 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 38 .
  • Here, the reason why the second flow path 170 is closed through the first door drive 194 and the second flow path 170 is separated from the third flow path 195 through the second door drive 197 is to prevent the heat generated during cooling of the refrigerant in the condenser from being supplied to the passenger space through the second flow path 170 and to prevent discharge of the cool air from the blower 150 through the third flow path 195, thereby improving performance of cooling the passenger space.
  • Furthermore, when there is a need to cool all of the passenger space, the electrical component 210 and the high-voltage battery 230 while traveling at high temperature, as in the summer months, it is possible to supply the cool air to the passenger space through the first flow path 160 from the blower 150 and thus to cool the passenger space by activating the compressor 110, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180, closing the second flow path 170 through the first door drive 194 and connecting the second flow path 170 to the third flow path 195 through the second door drive 197, it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280, and it is further possible to cool the coolant in the first battery line 240 through the second radiator 270 and thus to cool the high-voltage battery 230 by circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 39 .
  • There may be a limitation on the ability of the second radiator 270 to cool the coolant in the first battery line 240 at high temperatures, as in the summer months. In order to solve this problem, the present disclosure is capable of cooling the coolant in the first battery line 240 by connecting the second flow path 170 to the third flow path 195 through the second door drive 197 so as to allow the cool air from the blower 150 to exchange heat with the chiller 250 positioned in the third flow path 195.
  • Furthermore, when there is a need to cool the high-voltage battery 230 during charging of the high-voltage battery 230 and cooling of the passenger space, it is possible to supply the cool air to the passenger space through the first flow path 160 from the blower 150 and thus to cool the passenger space by activating the compressor 110, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180, closing the second flow path 170 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is possible to cool the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 40 . Here, when the high-voltage battery 230 is charged, the controller 300 may perform control so as to communicate with a control unit (not shown) of a thermal management system provided in the charging station 400 so as to activate the thermal management system, thereby circulating the coolant in the second battery line 410.
  • Furthermore, when there is a need to cool or warm the high-voltage battery 230 during charging of the high-voltage battery 230, it is possible to cool or warm the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIGS. 41 and 45 .
  • Furthermore, when there is a need to warm the passenger space and cool the electrical component 210 while traveling at low temperatures, as in the winter months, it is possible to supply the warmed air that has passed through the second condenser 191 and the electrical heater 190 from the blower 150 to the passenger space and thus to warm the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192, closing the first flow path through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 42 .
  • Furthermore, when there is a need to warm the passenger space, cool the electrical component 210, and warm the high-voltage battery 230 while traveling at low temperatures, as in the winter months, it is possible to supply the warmed air that has passed through the second condenser 191 and the electrical heater 190 from the blower 150 to the passenger space and thus to warm the passenger space by activating the compressor 110 and the electrical heater, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280, and it is further possible to warm the high-voltage battery 230 by activating the battery-cooling-water heater 260 and circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 43 .
  • Furthermore, when there is a need to warm both the passenger space and the high-voltage battery 230 during charging of the high-voltage battery 230, it is possible to supply the warmed air that has passed through the second condenser 191 and the electrical heater 190 from the blower 150 to the passenger space and thus to warm the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 187, and it is possible to cool the high-voltage battery 230 by circulating the coolant in the second battery line 410 provided in the charging station 400 for charging the high-voltage battery 230 under the control of the controller 300, as illustrated in FIG. 44 .
  • Furthermore, when there is a need to dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to dehumidify the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192, simultaneously opening both the first flow path 160 and the second flow path 170 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 46 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space and to cool the electrical component 210, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater, opening the second valve 192, expanding the refrigerant output from the first condenser 120 through the first valve 180, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197, and it is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 222 through activation of the first pump 280 under the control of the controller 300, as illustrated in FIG. 47 .
  • Furthermore, when there is a need to warm and dehumidify the passenger space, cool the electrical component 210, and warm the high-voltage battery 230, it is possible to supply the warmed air that has passed through the evaporator 130 and the electrical heater 190 from the blower 150 and thus has a reduced humidity to the passenger space and thus to warm and dehumidify the passenger space by activating the compressor 110 and the electrical heater, opening the first valve 180, expanding the refrigerant output from the second condenser 191 through the second valve 192, closing the first flow path 160 through the first door drive 194 and separating the second flow path 170 from the third flow path 195 through the second door drive 197. It is also possible to cool the coolant in the electrical component line 220 through the first radiator 275 and thus to cool the electrical component 210 by circulating the coolant in the electrical component line 220 through activation of the first pump 280, and it is further possible to warm the high-voltage battery 230 by activating the battery-cooling-water heater 260 and circulating the coolant in the first battery line 240 through activation of the second pump 290 under the control of the controller 300, as illustrated in FIG. 48 .
  • As is apparent from the above description, the vehicular thermal management system according to the present disclosure is capable of efficiently perform thermal management of the passenger space, the electrical component and the high-voltage battery in a vehicle composed of a first vehicle body and a second vehicle body combined with the first vehicle body.
  • Although the exemplary embodiments of the present disclosure have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (25)

What is claimed is:
1. A vehicular thermal management system comprising:
an indoor-air-conditioner disposed in a first vehicle body having a passenger space therein, the indoor-air-conditioner including a compressor, a first condenser, an evaporator, a blower, and a refrigerant line through which refrigerant circulates, so as to supply air that has passed through the evaporator from the blower to the passenger space; and
a component-air-conditioner disposed in a second vehicle body that is combinable with the first vehicle body as a body of a vehicle, the component-air-conditioner including an electrical component line configured to cool an electrical component of the vehicle and a first battery line configured to cool a high-voltage battery,
wherein the high-voltage battery includes a chiller extending toward the first vehicle body, and
wherein, when the first vehicle body is combined with the second vehicle body, the chiller is configured to be disposed behind the evaporator and configured to supply air that has passed through the evaporator to the passenger space through an end of the chiller.
2. The vehicular thermal management system according to claim 1, wherein the indoor-air-conditioner further includes at least one of a first flow path through which air that has passed through the evaporator from the blower is discharged, a second flow path defined under the first flow path such that an outlet portion of the second flow path converges with an outlet portion of the first flow path, a first valve disposed between the first condenser and the evaporator, an electrical heater for warming air supplied to the passenger space, a second condenser to which refrigerant outputted from the compressor is input, or a second valve disposed between the second condenser and the first condenser,
wherein the component-air-conditioner further includes a battery-cooling-water heater for heating coolant circulating in the first battery line, a first radiator for cooling coolant circulating in the electrical component line, and a second radiator for cooling coolant circulating in the first battery line, and
wherein the end of the chiller is arranged in the second flow path.
3. The vehicular thermal management system according to claim 2, further comprising:
a first door configured to at least one of selectively close one of the first flow path and the second flow path or simultaneously open both the first flow path and the second flow path; and
a first door drive for driving the first door.
4. The vehicular thermal management system according to claim 3, wherein, when temperatures of the passenger space and the electrical component are higher than a reference temperature,
the compressor is activated, and the first flow path and the second flow path are simultaneously opened by the first door drive such that coolant in the electrical component line is circulated, or
the compressor is activated, the second valve is opened, refrigerant outputted from the first flow path through the first valve is expanded, and the second flow path is closed by the first door drive, such that coolant in the electrical component line is circulated.
5. The vehicular thermal management system according to claim 3, wherein, when temperatures of the passenger space, the electrical component, and the high-voltage battery are higher than a reference temperature,
the compressor is activated, and both the first flow path and the second flow path are simultaneously opened by the first door drive, such that coolant in the electrical component line and the first battery line is circulated, or
the compressor is activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, and the second flow path is closed by the first door drive, such that coolant in the electrical component line and coolant in the first battery line are circulated.
6. The vehicular thermal management system according to claim 3, wherein, when temperatures of the high-voltage battery and the passenger space are higher than a reference temperature during charging of the high-voltage battery,
the compressor is activated, and both the first flow path and the second flow path are simultaneously opened through the first door drive, such that coolant in a second battery line of a charging station for charging the high-voltage battery is circulated, or
the compressor is activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, and the second flow path is closed by the first door drive, such that coolant in the second battery line connected to the charging station is circulated.
7. The vehicular thermal management system according to claim 3, wherein a charging station for charging the high-voltage battery is connected to a second battery line through which coolant circulates during charging of the high-voltage battery.
8. The vehicular thermal management system according to claim 3, wherein, when a temperature of the passenger space is lower and a temperature of the electric component is higher than a reference temperature,
the electrical heater is activated, and the first flow path is closed by the first door drive, such that the coolant in the electrical component line is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, and the first flow path is closed by the first door drive, such that coolant in the electrical component line is circulated.
9. The vehicular thermal management system according to claim 3, wherein, when a temperature of the passenger space is lower, a temperature of the electrical component is higher, and a temperature of the high-voltage battery is lower than a reference temperature,
the electrical heater is activated, both the first flow path and the second flow path are simultaneously opened by the first door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated and coolant in the first battery line is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, the first and second flow paths are opened by the first door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated and coolant in the first battery line is circulated.
10. The vehicular thermal management system according to claim 3, wherein, when temperatures of the passenger space and the high-voltage battery are lower than a reference temperature during charging of the high-voltage battery,
the electrical heater is activated, and the first flow path is closed by the first door drive, such that coolant in a second battery line connected to a charging station is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, and the first flow path is closed by the first door drive, such that coolant in the second battery line connected to the charging station is circulated.
11. The vehicular thermal management system according to claim 3, wherein, when a humidity of the passenger space is higher than a reference humidity and a temperature of the electrical component is higher than a reference temperature,
the compressor and the electrical heater are activated, and both the first flow path and the second flow path are simultaneously opened by the first door drive, such that coolant in the electrical component line is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, and the first and second flow paths are opened by the first door drive, such that coolant in the electrical component line is circulated.
12. The vehicular thermal management system according to claim 3, wherein, when a temperature of the passenger space is lower and a temperature of the electrical component is higher than a reference temperature and a humidity of the passenger space is higher than a reference humidity,
the compressor and the electrical heater are activated, and the first flow path is closed by the first door drive, such that coolant in the electrical component line is circulated, or
the compressor and the electrical heater are activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, and the first flow path is closed by the first door drive, such that coolant in the electrical component line is circulated.
13. The vehicular thermal management system according to claim 3, wherein, when a temperature of the passenger space is lower, a temperature of the electrical component higher and a temperature of the high-voltage battery is lower than a reference temperature and a humidity of the passenger space is higher than a reference humidity,
the compressor and the electrical heater are activated, the first flow path is closed by the first door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated coolant in the battery line is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, the first flow path is closed by the first door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated and coolant in the first battery line is circulated.
14. The vehicular thermal management system according to claim 1, wherein the indoor-air-conditioner further includes at least one of a first flow path through which air that has passed through the evaporator from the blower is discharged, a second flow path having an outlet portion that converges with an outlet portion of the first flow path, a third flow path branched from the second flow path and arranged under the second flow path, the third flow path having an outlet portion that converges with the outlet portion of the first flow path and the outlet portion of the second flow path, a first valve disposed between the first condenser and the evaporator, an electrical heater for warming air supplied to the passenger space, a second condenser to which refrigerant outputted from the compressor is input, or a second valve disposed between the second condenser and the first condenser,
wherein the component-air-conditioner further includes at least one of a battery-cooling-water heater for heating coolant circulating in the first battery line, a first radiator for cooling coolant circulating in the electrical component line, or a second radiator for cooling coolant circulating in the first battery line, and
wherein the end of the chiller is arranged in the third flow path.
15. The vehicular thermal management system according to claim 1, further comprising:
a first door configured to selectively close one of the first flow path and the second flow path or simultaneously open both the first flow path and the second flow path;
a first door drive for driving the first door;
a second door configured to connect the second flow path to the third flow path or to separate the second flow path from the third flow path; and
a second door drive for driving the second door.
16. The vehicular thermal management system according to claim 15, wherein, when temperatures of the passenger space and the electrical component are higher than a reference temperature,
the compressor is activated, both the first flow path and the second flow path are simultaneously opened by the first door drive, and the second flow path is separated from the third flow path by the second door drive, such that coolant in the electrical component line is circulated, or
the compressor is activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, and the second flow path is closed by the first door drive, and the second flow path is separated from the third flow path by the second door drive such that refrigerant in the electrical component line is circulated.
17. The vehicular thermal management system according to claim 15, wherein, when temperatures of the passenger space, the electrical component, and the high-voltage battery are higher than a reference temperature,
the compressor is activated, the second flow path is closed by the first door drive, and the second flow path is connected to the third flow path by the second door drive, such that coolant in the electrical component line and the first battery line is circulated, or
the compressor is activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, the second flow path is closed by the first door drive, and the second flow path is connected to the third flow path by the second door drive, such that coolant in the electrical component line and the first battery line is circulated.
18. The vehicular thermal management system according to claim 15, wherein, when temperatures of the high-voltage battery during charging of the high-voltage battery and the passenger space are higher than a reference temperature,
the compressor is activated, and the second flow path is closed by the first door drive, and the second flow path is separated from the third flow path through the second door drive, such that coolant in a second battery line connected to a charging station for charging the high-voltage battery is circulated, or
the compressor is activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, and the second flow path is closed by the first door drive, the second flow path is separated from the third flow path by the second door drive such that coolant in the second battery line connected to the charging station is circulated.
19. The vehicular thermal management system according to claim 15, a charging station for charging the high-voltage battery is connected to a second battery line through which coolant circulates during charging of the high-voltage battery.
20. The vehicular thermal management system according to claim 15, wherein, when a temperature of the passenger space is lower than and a temperature of the electrical component is higher than a reference temperature,
the electrical heater is activated, the first flow path is closed by the first door drive, and the second flow path is separated from the third flow path by the second door drive, such that coolant in the electrical component line is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, the first flow path is closed by the first door drive, and the second flow path is separated from the third flow path by the second door drive, such that coolant in the electrical component line is circulated.
21. The vehicular thermal management system according to claim 15, wherein, when a temperature of the passenger space is lower, a temperature of the electrical component is higher, and a temperature of the high-voltage battery is lower than a reference temperature,
the electrical heater is activated, the first flow path is closed by the first door drive, the second flow path is separated from the third flow path by the second door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated and coolant in the battery line is circulated, or
the compressor and the electrical heater are activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, the first flow path is closed by the first door drive, the second flow path is separated from the third flow path by the second door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated and coolant in the battery line is circulated.
22. The vehicular thermal management system according to claim 15, wherein, when temperatures of the passenger space and the high-voltage battery are higher than a reference temperature during charging of the high-voltage battery,
the electrical heater is activated, the first flow path is closed by the first door drive, the second flow path is separated from the third flow path by the second door drive, such that coolant in a second battery line connected to a charging station is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, the first flow path is closed through the first door drive, and the second flow path is separated from the third flow path through the second door drive, such that coolant in the electrical component line is circulated and coolant in the second battery line provided connected to the charging station is circulated.
23. The vehicular thermal management system according to claim 15, wherein, when a humidity of the passenger space is higher than a reference humidity and a temperature of the electrical component is higher than a reference temperature,
the compressor and the electrical heater are activated, both the first flow path and the second flow path are simultaneously opened by the first door drive, and the second flow path is separated from the third flow path by the second door drive, such that coolant in the electrical component line is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser through the second valve is expanded, both the first flow path and the second flow path are simultaneously opened by the first door drive, and the second flow path is separated from the third flow path by the second door drive, such that coolant in the electrical component line is circulated.
24. The vehicular thermal management system according to claim 15, wherein, when a temperature of the passenger space is lower and a temperature of the electrical component is higher than a reference temperature and a humidity of the passenger space is higher than a reference humidity,
the compressor and the electrical heater are activated, the first flow path is closed by the first door drive, and the second flow path is separated from the third flow path by the second door drive, such that coolant in the electrical component line is circulated, or
the compressor and the electrical heater are activated, the second valve is opened, refrigerant outputted from the first condenser through the first valve is expanded, the first flow path is closed by the first door drive, and the second flow path is separated from the third flow path by the second door drive, such that coolant in the electrical component line is circulated.
25. The vehicular thermal management system according to claim 15, wherein, when a temperature of the passenger space is lower, a temperature of the electrical component is higher and a temperature of the high-voltage battery is lower than a reference temperature, and a humidity of the passenger space is higher than a reference humidity,
the compressor and the electrical heater are activated, the first flow path is closed by the first door drive, the second flow path is separated from the third flow path by the second door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated and coolant in the first battery line is circulated, or
the compressor and the electrical heater are activated, the first valve is opened, refrigerant outputted from the second condenser by the second valve is expanded, the first flow path is closed by the first door drive, the second flow path is separated from the third flow path by the second door drive, and the battery-cooling-water heater is activated, such that coolant in the electrical component line is circulated and refrigerant in the first battery line is circulated.
US16/995,129 2020-03-06 2020-08-17 Vehicular thermal management system Active 2040-10-16 US11584190B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200028266A KR20210113506A (en) 2020-03-06 2020-03-06 Thermal management system for vehicle
KR10-2020-0028266 2020-03-06

Publications (3)

Publication Number Publication Date
US20220048357A1 US20220048357A1 (en) 2022-02-17
US11584190B2 US11584190B2 (en) 2023-02-21
US20230093781A9 true US20230093781A9 (en) 2023-03-23

Family

ID=77524391

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/995,129 Active 2040-10-16 US11584190B2 (en) 2020-03-06 2020-08-17 Vehicular thermal management system

Country Status (3)

Country Link
US (1) US11584190B2 (en)
KR (1) KR20210113506A (en)
CN (1) CN113352840A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390137B2 (en) * 2020-01-15 2022-07-19 Ford Global Technologies, Llc Thermal management for electrified vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3658838B2 (en) 1996-03-01 2005-06-08 株式会社デンソー Air conditioner for vehicles
JP2001039149A (en) 1999-07-30 2001-02-13 Mazda Motor Corp Air conditioner of vehicle
KR100410783B1 (en) 2001-11-07 2003-12-18 현대자동차주식회사 Heating apparatus for rear passenger space of bus
JP2011073536A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Thermodynamic cycle system for moving vehicle
JP5532029B2 (en) * 2011-08-30 2014-06-25 株式会社デンソー Air conditioner for vehicles
JP2020026197A (en) * 2018-08-10 2020-02-20 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air-conditioning system

Also Published As

Publication number Publication date
US20220048357A1 (en) 2022-02-17
US11584190B2 (en) 2023-02-21
CN113352840A (en) 2021-09-07
KR20210113506A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10821801B2 (en) Air conditioner for vehicle
US20210053415A1 (en) Integrated thermal management module for vehicle
CN109291763B (en) Heat pump air conditioning system, control method thereof and automobile
US9819063B2 (en) Climate control system for a vehicle
US20180178615A1 (en) Intelligent multi-loop thermal management system for an electric vehicle
CN108973596B (en) Heating, ventilation and air conditioning system for a vehicle
KR101436960B1 (en) Electric vehicle battery temperature management system conjunction with the HVAC system and its operating method
US10532630B2 (en) HVAC system of vehicle
US20120291987A1 (en) System for a motor vehicle for heating and/or cooling a battery and a vehicle interior
US10562367B2 (en) Heating, ventilation, and air conditioning system for vehicle
CN108973582B (en) Heating, ventilation and air conditioning system for a vehicle
US11305611B2 (en) Air-conditioning apparatus for vehicle
US11679643B2 (en) HVAC system of vehicle
CN114144321A (en) Thermal management device for vehicle and thermal management method for vehicle
US11584190B2 (en) Vehicular thermal management system
CN210337493U (en) Thermal management system of electric vehicle
KR20220022536A (en) Thermal management system for electric vehicle
US20240034123A1 (en) Integrated Thermal Management System
CN216683987U (en) Three electricity management systems, temperature control system and vehicle
KR20230086344A (en) Air conditioner system for electric motor mobility
KR20220045288A (en) Thermal management system for electric vehicle
CN115556535A (en) Air conditioning system for electric vehicle
KR20230171263A (en) Apparatus and system for air conditioner of integrated heat exchanger
CN116278626A (en) Hybrid electric vehicle thermal management system
CN117301804A (en) New energy electric automobile whole automobile thermal management system and method

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: KIA MOTORS CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SANG SHIN;OH, MAN JU;YANG, UK IL;AND OTHERS;REEL/FRAME:053520/0037

Effective date: 20200710

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, SANG SHIN;OH, MAN JU;YANG, UK IL;AND OTHERS;REEL/FRAME:053520/0037

Effective date: 20200710

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

STPP Information on status: patent application and granting procedure in general

Free format text: WITHDRAW FROM ISSUE AWAITING ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE