US20230090473A1 - Methods for treating il-6 mediated inflammation without immunosuppression - Google Patents

Methods for treating il-6 mediated inflammation without immunosuppression Download PDF

Info

Publication number
US20230090473A1
US20230090473A1 US17/991,880 US202217991880A US2023090473A1 US 20230090473 A1 US20230090473 A1 US 20230090473A1 US 202217991880 A US202217991880 A US 202217991880A US 2023090473 A1 US2023090473 A1 US 2023090473A1
Authority
US
United States
Prior art keywords
equivalent dose
monthly equivalent
certain embodiments
patient
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/991,880
Inventor
Madhav N. Devalaraja
Michael H. Davidson
Rahul Kakkar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Novo Nordisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk AS filed Critical Novo Nordisk AS
Priority to US17/991,880 priority Critical patent/US20230090473A1/en
Publication of US20230090473A1 publication Critical patent/US20230090473A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • Chronic inflammation is a characteristic of many diseases, including both the classical rheumatic disorders such as rheumatoid arthritis, juvenile idiopathic arthritis, psoriatic arthritis, and inflammatory bowel disease, as well as other systemic diseases that are increasingly understood to be associated with chronic inflammation, such as cardiovascular disease, renal disease, neuroinflammatory diseases, anemias, cancer and aging.
  • the pro-inflammatory cytokine, IL-6 often plays a critical role in chronic inflammation through activation of the JAK-STAT signaling pathway, and IL-6 inhibitors have been developed to treat certain inflammatory disorders in which IL-6 has been shown to contribute significantly to disease etiology.
  • the anti-IL-6 receptor antibody, tocilizumab (ACTEMRA) has been approved for treatment of rheumatoid arthritis, giant cell arteritis, polyarticular juvenile idiopathic arthritis, systemic juvenile idiopathic arthritis, and iatrogenic cytokine release syndrome.
  • the anti-IL-6 receptor antibody, sarilumab (KEVZARA) has been approved to treat adult patients with moderately to severely active rheumatoid arthritis.
  • IL-6 antagonists can be administered at a dose, on a schedule, and for a period sufficient to reduce inflammation without causing immune suppression.
  • methods for treating IL-6-mediated inflammation in a patient comprise: administering an IL-6 antagonist to a patient with IL-6-mediated inflammation at a dose that is sufficient to reduce inflammation without causing immune suppression.
  • the patient has an elevated pre-treatment C-reactive protein (CRP) level.
  • CRP C-reactive protein
  • the pre-treatment CRP level of the patient is at least 2 mg/L. In some embodiments, the pre-treatment CRP level of the patient is at least 4 mg/L. In some embodiments, the pre-treatment CRP level of the patient is at least 6 mg/L. In some embodiments, the pre-treatment CRP level of the patient is at least 10 mg/L.
  • CRP C-reactive protein
  • the patient has an elevated pre-treatment serum IL-6 level.
  • the pre-treatment serum IL-6 level of the patient is at least 4 pg/mL. In some embodiments, the pre-treatment serum IL-6 level of the patient is at least 4 pg/mL. In some embodiments, the pre-treatment serum IL-6 level of the patient is at least 5 pg/mL. In some embodiments, the pre-treatment serum IL-6 level of the patient is at least 10 pg/mL.
  • the inflammation is measured by the level of C-reactive protein (CRP).
  • CRP C-reactive protein
  • the post-treatment CRP level is no more than 2 mg/L. In some embodiments, the post-treatment CRP level is no more than 1 mg/L. In some embodiments, the CRP level is decreased by at least 50% as compared to pre-treatment levels. In some embodiments, the CRP level is decreased by at least 70% as compared to pre-treatment levels. In some embodiments, the CRP level is decreased by at least 80% as compared to pre-treatment levels. In some embodiments, the CRP level is decreased by at least 90% as compared to pre-treatment levels.
  • the immune suppression is measured by absolute neutrophil count (ANC).
  • the post-treatment ANC is at least 500 cells/ ⁇ L. In some embodiments, the post-treatment ANC is at least 1000 cells/ ⁇ L. In some embodiments, the post-treatment ANC is at least 1500 cells/ ⁇ L. In some embodiments, the post-treatment ANC is at least 2000 cells/ ⁇ L. In some embodiments, the ANC is decreased by no more than 2000 cells/ ⁇ L as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 1500 cells/ ⁇ L as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 1000 cells/ ⁇ L as compared to pre-treatment levels.
  • the ANC is decreased by no more than 500 cells/ ⁇ L as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 50% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 40% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 30% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 20% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 10% as compared to pre-treatment levels. In some embodiments, the ANC is not decreased as compared to pre-treatment levels.
  • the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 30% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 20% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 10% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 25% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • the IL-6 antagonist is administered at a monthly equivalent dose that is about 20% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 15% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 10% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 5% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • the IL-6 antagonist is an anti-IL-6 antibody.
  • the anti-IL-6 antibody is COR-001.
  • COR-001 is administered intravenously at a monthly equivalent dose of 2-40 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 2 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 4 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 6 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 10 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 20 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 40 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of 3-70 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 3 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 7 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 17 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 35 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 70 mg.
  • the anti-IL-6 antibody is siltuximab.
  • siltuximab is administered intravenously at a monthly equivalent dose of 50-500 mg.
  • siltuximab is administered intravenously at a monthly equivalent dose of about 50 mg.
  • siltuximab is administered intravenously at a monthly equivalent dose of about 100 mg.
  • siltuximab is administered intravenously at a monthly equivalent dose of about 150 mg.
  • siltuximab is administered intravenously at a monthly equivalent dose of about 200 mg.
  • siltuximab is administered intravenously at a monthly equivalent dose of about 300 mg.
  • siltuximab is administered intravenously at a monthly equivalent dose of about 500 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 240 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 320 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 480 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 800 mg.
  • the anti-IL-6 antibody is gerilimzumab.
  • gerilimzumab is administered intravenously at a monthly equivalent dose of 0.075-1.8 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.075 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.12 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.3 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.6 mg.
  • gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.9 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 1.8 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of 0.125-3 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.125 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.2 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.5 mg.
  • gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1.5 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 3 mg.
  • the anti-IL-6 antibody is sirukumab.
  • sirukumab is administered intravenously at a monthly equivalent dose of 1.5-60 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 1.5 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 3 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 6 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 12 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 36 mg.
  • sirukumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of 2.5-100 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 2.5 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • the anti-IL-6 antibody is clazakizumab.
  • clazakizumab is administered intravenously at a monthly equivalent dose of 3-60 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 3 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 6 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 12 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 24 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 36 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of 5-100 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • the anti-IL-6 antibody is olokizumab.
  • olokizumab is administered intravenously at a monthly equivalent dose of 1.8-60 mg.
  • olokizumab is administered intravenously at a monthly equivalent dose of about 1.8 mg.
  • olokizumab is administered intravenously at a monthly equivalent dose of about 3.6 mg.
  • olokizumab is administered intravenously at a monthly equivalent dose of about 9 mg.
  • olokizumab is administered intravenously at a monthly equivalent dose of about 18 mg.
  • olokizumab is administered intravenously at a monthly equivalent dose of about 45 mg. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of 3-100 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 3 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 6 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 15 mg.
  • olokizumab is administered subcutaneously at a monthly equivalent dose of about 30 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 72 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • the anti-IL-6 antibody is VX30 (VOP-R003; Vaccinex). In some embodiments, VX30 (VOP-R003; Vaccinex) is administered intravenously. In some embodiments, VX30 (VOP-R003; Vaccinex) is administered subcutaneously.
  • the anti-IL-6 antibody is EB-007 (EBI-029; Eleven Bio). In some embodiments, EB-007 (EBI-029; Eleven Bio) is administered intravenously. In some embodiments, EB-007 (EBI-029; Eleven Bio) is administered subcutaneously.
  • the anti-IL-6 antibody is FM101 (Femta Pharmaceuticals, Lonza). In some embodiments, FM101 (Femta Pharmaceuticals, Lonza) is administered intravenously. In some embodiments, FM101 (Femta Pharmaceuticals, Lonza) is administered subcutaneously.
  • the IL-6 antagonist is an anti-IL-6R antibody.
  • the anti-IL-6R antibody is tocilizumab.
  • tocilizumab is administered intravenously at a monthly equivalent dose of 50-500 mg.
  • tocilizumab is administered intravenously at a monthly equivalent dose of about 50 mg.
  • tocilizumab is administered intravenously at a monthly equivalent dose of about 100 mg.
  • tocilizumab is administered intravenously at a monthly equivalent dose of about 150 mg.
  • tocilizumab is administered intravenously at a monthly equivalent dose of about 250 mg.
  • tocilizumab is administered intravenously at a monthly equivalent dose of about 350 mg.
  • tocilizumab is administered intravenously at a monthly equivalent dose of about 500 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 240 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 400 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 560 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 800 mg.
  • the anti-IL-6R antibody is sarilumab.
  • sarilumab is administered intravenously at a monthly equivalent dose of 12-120 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of about 12 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of about 24 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of about 48 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of about 60 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of about 72 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of about 120 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of 20-200 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 120 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • the anti-IL-6R antibody is vobarilizumab.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of 4-120 mg.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of about 4 mg.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of about 6 mg.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of about 30 mg.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of about 60 mg.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of about 84 mg. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 120 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of 7-200 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 7 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg.
  • vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 140 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • the IL-6 antagonist is a JAK inhibitor. In some embodiments, the IL-6 antagonist is a STAT3 inhibitor.
  • the patient has a hepcidin-mediated disorder.
  • the patient has kidney disease. In some embodiments, the patient has chronic kidney disease. In some embodiments, the patient has KDOQI stage 1-5 chronic kidney disease. In some embodiments, the patient has KDOQI stage 3-5 chronic kidney disease. In some embodiments, the patient is not on dialysis. In some embodiments, the patient has KDOQI stage 5 chronic kidney disease. In some embodiments, the patient is on dialysis. In some embodiments, the patient has cardiorenal syndrome (CRS). In some embodiments, the patient has CRS Type 4.
  • CRS cardiorenal syndrome
  • the patient has cardiovascular disease. In some embodiments, the patient has diuretic resistant heart failure. In some embodiments, the patient has congestive heart failure (CHF). In some embodiments, the patient has congestive heart failure (CHF) with reduced ejection fraction. In some embodiments, the patient has congestive heart failure (CHF) with mid-range ejection fraction. In some embodiments, the patient has congestive heart failure (CHF) with preserved ejection fraction. In some embodiments, the patient has acute coronary syndrome. In some embodiments, the patient has atherosclerosis.
  • the patient has anemia. In some embodiments, the patient has anemia of chronic disease. In some embodiments, the patient has iron-refractory iron-deficiency anemia (IRIDA).
  • IRIDA iron-refractory iron-deficiency anemia
  • the patient has diabetes. In some embodiments, the patient has type II diabetes. In some embodiments, the patient has insulin-resistant diabetes.
  • the patient has liver disease. In some embodiments, the patient has non-alcoholic steatohepatitis (NASH).
  • NASH non-alcoholic steatohepatitis
  • the patient has osteoporosis.
  • the patient has depression.
  • the patient has asthma.
  • the patient has neuroinflammatory disorder. In some embodiments, the patient has Alzheimer's disease. In some embodiments, the patient has Parkinson's disease. In some embodiments, the patient has multiple sclerosis. In some embodiments, the patient has amyotrophic lateral sclerosis (ALS).
  • ALS amyotrophic lateral sclerosis
  • the patient has age-related macular degeneration (AMD).
  • AMD age-related macular degeneration
  • the patient has cancer.
  • the cancer is selected from the group consisting of: solid tumors, small cell lung cancer, non-small cell lung cancer, hematological cancer, multiple myeloma, leukemia, chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), lymphomas, Hodgkin's lymphoma and hepatic adenoma.
  • patient has skin disease.
  • the method prevents aging in the patient.
  • methods for treating inflammation in a patient with cardiovascular disease comprise: administering an IL-6 antagonist to a patient with cardiovascular disease and CRP level greater than 2 mg/L at a dose that is sufficient to reduce CRP levels to 2 mg/L or less without causing neutropenia.
  • the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 30% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 20% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 10% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • methods for treating inflammation in a patient with chronic kidney disease comprise: administering an IL-6 antagonist to a patient with CKD and a CRP level greater than 2 mg/L at a dose that is sufficient to reduce CRP levels to 2 mg/L or less without causing neutropenia.
  • the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 30% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 20% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 10% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • FIG. 1 presents the dose escalation schematic for the phase 1/phase 2 randomized, double-blind, placebo-controlled trial of COR-001 in hemodialysis patients described in Example 1.
  • FIG. 2 shows the timeline and the efficacy analysis of the treatment phase and the safety follow-up phase.
  • FIGS. 3 A and 3 B show the results of C-reactive protein (CRP) responder analysis after treatment with COR-001 (anti-IL-6) or canakinumab (anti-IL1(3).
  • FIG. 3 A shows the C-reactive protein responder rate after intravenous treatment with COR-001 in patients with stage 5 chronic kidney disease who were on dialysis in the clinical trial described in Example 1.
  • the baseline hsCRP was 12.4 mg/L.
  • Responder was defined as Week 12 average hsCRP ⁇ 2 mg/L.
  • FIG. 3 B shows the C-reactive protein responder rate after treatment with canakinumab in the CANTOS trial, as described in the research literature.
  • the baseline hsCRP was 5.5 mg/L.
  • Responder was defined as 3-month hsCRP ⁇ 2 mg/L.
  • FIG. 4 shows the results of hemoglobin responder analysis after treatment with COR-001 at doses of 2 mg, 6 mg, and 20 mg.
  • Hemoglobin responder was defined as increase by 1 g/dL or more after Day 29. Investigators were not permitted to change ESA dosing until after Day 29.
  • FIG. 5 shows the effect of COR-001 on the diastolic cardiac parameter, NT-proBNP.
  • FIGS. 6 A and 6 B show the adverse responder rate for neutrophils and platelets.
  • FIG. 6 A shows the neutrophils adverse responder rate.
  • An Adverse Responder was defined as Week 12 average neutrophils ⁇ 2 ⁇ 10 6 /mL.
  • FIG. 6 B shows the platelets adverse responder rate.
  • Adverse responder was defined as Week 12 average platelets ⁇ 100 ⁇ 10 6 /mL.
  • IL-6 interleukin 6
  • IL-6 polypeptide refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_000591 and having IL-6 biological activity.
  • IL-6 is a pleotropic cytokine with multiple biologic functions.
  • Exemplary IL-6 biological activities include immunostimulatory and pro-inflammatory activities.
  • An exemplary IL-6 amino acid sequence is provided below:
  • SEQ ID NO: 1 MCVGARRLGR GPCAALLLLG LGLSTVTGLH CVGDTYPSND RCCHECRPGN GMVSRCSRSQ 61 NTVCRPCGPG FYNDVVSSKP CKPCTWCNLR SGSERKQLCT ATQDTVCRCR AGTQPLDSYK 121 PGVDCAPCPP GHFSPGDNQA CKPWTNCTLA GKHTLQPASN SSDAICEDRD PPATQPQETQ 181 GPPARPITVQ PTEAWPRTSQ GPSTRPVEVP GGRAVAAILG LGLVLGLLGP LAILLALYLL 241 RRDQRLPPDA HKPPGGGSFR TPIQEEQADA HSTLAKI
  • interleukin 6 (IL-6) nucleic acid refers to a polynucleotide encoding an interleukin 6 (IL-6) polypeptide.
  • An exemplary interleukin 6 (IL-6) nucleic acid sequence is provided at NCBI Accession No. NM_000600. The exemplary sequence at NCBI Accession No. NM_000600 is provided below:
  • interleukin 6 receptor (IL-6R) complex refers to a protein complex comprising an IL-6 receptor subunit alpha (IL-6Ra) and interleukin 6 signal transducer glycoprotein 130 (gp130), also termed interleukin 6 receptor subunit 0 (IL-6R13).
  • IL-6Ra interleukin 6 receptor subunit a (IL-6Ra) polypeptide
  • IL-6Ra refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_000556 or NP_852004 and having IL-6 receptor biological activity.
  • Exemplary IL-6R ⁇ biological activities include binding to IL-6, binding to glycoprotein 130 (gp130), and regulation of cell growth and differentiation.
  • An exemplary IL-6R sequence is provided below:
  • glycoprotein 130 (gp130)” or “interleukin 6 receptor subunit 13 (IL-64) polypeptide” refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_002175, NP_786943, or NP_001177910 and having IL-6 receptor biological activity.
  • Exemplary IL-6R ⁇ biological activities include binding to IL-6R ⁇ , IL-6 receptor signaling activity, and regulation of cell growth, differentiation, hepcidin expression etc.
  • An exemplary IL-6R ⁇ sequence is provided below:
  • IL-6 antagonist refers an agent that is capable of decreasing the biological activity of IL-6.
  • IL-6 antagonists include agents that decrease the level of IL-6 polypeptide in serum, including agents that decrease the expression of an IL-6 polypeptide or nucleic acid; agents that decrease the ability of IL-6 to bind to the IL-6R; agents that decrease the expression of the IL-6R; and agents that decrease signal transduction by the IL-6R receptor when bound by IL-6.
  • the IL-6 antagonist decreases IL-6 biological activity by at least about 10%, 20%, 30%, 50%, 70%, 80%, 90%, 95%, or even 100%.
  • IL-6 antagonists include IL-6 binding polypeptides, such as anti-IL-6 antibodies and antigen binding fragments or derivatives thereof; IL-6R binding polypeptides, such as anti-IL-6R antibodies and antigen binding fragments or derivatives thereof; and synthetic chemical molecules, such as JAK1 and JAK3 inhibitors.
  • IL-6 antibody or “anti-IL-6 antibody” refers to an antibody that specifically binds IL-6.
  • Anti-IL-6 antibodies include monoclonal and polyclonal antibodies that are specific for IL-6, and antigen-binding fragments or derivatives thereof. IL-6 antibodies are described in greater detail below.
  • IL-6 mediated inflammation or “IL-6 mediated inflammatory disorder” refers to inflammation or inflammation related disorder in which IL-6 is known or suspected to contribute to the etiology or symptoms of the inflammation.
  • CRP C-reactive protein
  • CRP refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_000558 and having complement activating activity. CRP levels increase in response to inflammation, and can be measured with an hsCRP (high-sensitivity C-reactive protein) test.
  • An exemplary CRP sequence is provided below:
  • hepcidin refers to a polypeptide having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_066998 (“hepcidin preprotein”), or biologically active fragment thereof.
  • exemplary hepcidin biological activities include binding and reducing the levels of the iron export channel ferroportin, inhibiting iron transport, inhibiting intestinal iron absorption, and inhibiting iron release from macrophages and the liver.
  • An exemplary hepcidin preprotein amino acid sequence is provided below:
  • hepcidin exists in various forms, including as a preprohormone (amino acids 25-84), prohormone (amino acids 25-84), and mature forms termed hepcidin-25 (amino acids 60-84), hepcidin-22 (amino acids 63-84), and hepcidin-20 (amino acids 65-84).
  • a “hepcidin-mediated disorder” is any disorder in which hepcidin expression contributes to the etiology of the disorder or any of its symptoms.
  • immune suppression or “immunosuppression” refers to a reduction of the activation or efficacy of the immune system. Immune suppression can be measured by the number of white blood cells, such as neutrophils.
  • neutrophil of “neutrocyte” refers to a type of white blood cell that is an essential part of the innate immune system.
  • the absolute neutrophil count (ANC) can be used in diagnosis and prognosis.
  • Low neutrophil counts are termed neutropenia.
  • agent refers to any compound or composition suitable to be administered in therapy, and explicitly includes chemical compounds; proteins, including antibodies or antigen-binding fragments thereof; peptides; and nucleic acid molecules.
  • subject refers to a human or non-human mammal, including, but not limited to, bovine, equine, canine, ovine, feline, and rodent, including murine and rattus, subjects.
  • a “patient” is a human subject in need of treatment.
  • the terms “treat,” “treating,” “treatment,” and the like refer to reducing or ameliorating a disorder, and/or signs or symptoms associated therewith, or slowing or halting the progression thereof. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.
  • pre-treatment means prior to the first administration of an IL-6 antagonist according the methods described herein. Pre-treatment does not exclude, and often includes, the prior administration of treatments other than an IL-6 antagonist.
  • post-treatment means after the administration of an IL-6 antagonist according the methods described herein. Post-treatment includes after any administration of an IL-6 antagonist at any dosage described herein. Post-treatment also includes after the treatment phase of an IL-6 antagonist.
  • biological sample refers to any tissue, cell, fluid, or other material derived from an organism (e.g., human subject).
  • the biological sample is serum or blood.
  • antibody constant region residue numbering is according to the EU index as in Kabat.
  • methods of treating IL-6-mediated inflammation in a patient comprise administering an IL-6 antagonist to a patient with IL-6-mediated inflammation at a dose that is sufficient to reduce inflammation without causing immune suppression.
  • the patient has an IL-6-mediated inflammation.
  • the patient has elevated pre-treatment levels of C-reactive protein (CRP).
  • CRP C-reactive protein
  • the patient has a pre-treatment CRP level at least 2 mg/L. In some embodiments, the patient has a pre-treatment CRP level at least 2 mg/L, 2.5 mg/L, 3 mg/L, 3.5 mg/L, 4 mg/L, 4.5 mg/L, or 5 mg/L. In some embodiments, the patient has pre-treatment CRP levels at least 7.5 mg/L, 10 mg/L, 12.5 mg/L, or 15 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 2 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 2.5 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 5 mg/L.
  • the patient has a pre-treatment CRP level at least 7.5 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 10 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 12.5 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 15 mg/L.
  • the patient has elevated pre-treatment serum levels of IL-6.
  • the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml. In various embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml, at least 3 pg/ml, at least 4 pg/ml, at least 5 pg/ml, at least 6 pg/ml, at least 7 pg/ml, at least 8 pg/ml, at least 9 pg/ml, at least 10 pg/ml, at least 11 pg/ml, at least 12 pg/ml, at least 13 pg/ml, at least 14 pg/ml, or at least 15 pg/ml.
  • the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 2.5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 7.5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 12.5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 15 pg/ml.
  • the patient has elevated pre-treatment serum levels of CRP and elevated pre-treatment IL-6 levels.
  • the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 2 mg/L.
  • the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 2.5 mg/L.
  • the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 5 mg/L.
  • the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 10 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 2 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 2.5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 5 mg/L.
  • the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 10 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 2 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 2.5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 5 mg/L.
  • the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 10 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 2 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 2.5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 10 mg/L.
  • the IL-6 antagonist is administered at a dose sufficient to reduce the patient's free serum IL-6 levels below pre-treatment levels.
  • the free serum IL-6 level is decreased by at least 10% as compared to pre-treatment levels. In various embodiments, the free serum IL-6 level is decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 20% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 30% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 40% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 50% as compared to pre-treatment levels.
  • the free serum IL-6 level is decreased by at least 60% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 70% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 80% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 90% as compared to pre-treatment levels.
  • the IL-6 antagonist is administered at a dose sufficient to reduce the patient's CRP levels below pre-treatment levels. In some embodiments, the IL-6 mediated inflammation is measured by the CRP levels.
  • the post-treatment CRP level is no more than 5 mg/L. In certain embodiments, the post-treatment CRP level is no more than 2.5 mg/L. In certain embodiments, the post-treatment CRP level is no more than 2 mg/L. In certain embodiments, the post-treatment CRP level is no more than 1 mg/L.
  • the CRP level is decreased by at least 10% as compared to pre-treatment levels. In various embodiments, the CRP level is decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 20% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 30% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 40% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 50% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 60% as compared to pre-treatment levels.
  • the CRP level is decreased by at least 70% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 80% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 90% as compared to pre-treatment levels.
  • the IL-6 antagonist is administered at a dose sufficient to reduce inflammation without causing immune suppression.
  • the immune suppression of the patient is measured by Absolute Neutrophil Count (ANC).
  • ANC Absolute Neutrophil Count
  • the post-treatment ANC is at least 300 cells/ ⁇ L. In various embodiments, the post-treatment ANC is at least 500 cells/ ⁇ L, 600 cells/ ⁇ L, 700 cells/ ⁇ L, 800 cells/ ⁇ L, 900 cells/ ⁇ L, 1000 cells/ ⁇ L, 1100 cells/ ⁇ L, 1200 cells/ ⁇ L, 1300 cells/ ⁇ L, 1400 cells/ ⁇ L, 1500 cells/ ⁇ L, 1600 cells/ ⁇ L, 1700 cells/ ⁇ L, 1800 cells/ ⁇ L, 1900 cells/ ⁇ L, or 2000 cells/ ⁇ L. In certain embodiments, the post-treatment ANC is at least 500 cells/ ⁇ L. In certain embodiments, the post-treatment ANC is at least 750 cells/ ⁇ L.
  • the post-treatment ANC is at least 1000 cells/ ⁇ L. In certain embodiments, the post-treatment ANC is at least 1250 cells/ ⁇ L. In certain embodiments, the post-treatment ANC is at least 1500 cells/ ⁇ L. In certain embodiments, the post-treatment ANC is at least 1750 cells/ ⁇ L. In certain embodiments, the post-treatment ANC is at least 2000 cells/ ⁇ L.
  • the ANC is decreased by no more than 2500 cells/ ⁇ L as compared to pre-treatment levels.
  • the ANC is decreased by no more than 2000 cells/ ⁇ L, 1900 cells/ ⁇ L, 1800 cells/ ⁇ L, 1700 cells/ ⁇ L, 1600 cells/ ⁇ L, 1500 cells/ ⁇ L, 1400 cells/ ⁇ L, 1300 cells/ ⁇ L, 1200 cells/ ⁇ L, 1100 cells/ ⁇ L, 1000 cells/ ⁇ L, 900 cells/ ⁇ L, 800 cells/ ⁇ L, 700 cells/ ⁇ L, 600 cells/ ⁇ L, or 500 cells/ ⁇ L, as compared to pre-treatment levels.
  • the ANC is decreased by no more than 2000 cells/ ⁇ L as compared to pre-treatment levels.
  • the ANC is decreased by no more than 1750 cells/ ⁇ L as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 1500 cells/ ⁇ L as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 1250 cells/ ⁇ L as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 1000 cells/ ⁇ L as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 750 cells/ ⁇ L as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 500 cells/ ⁇ L as compared to pre-treatment levels.
  • the ANC is decreased by no more than 70% as compared to pre-treatment levels. In various embodiments, the ANC is decreased by no more than 60%, 50%, 40%, 30%, 20%, 10%, or 5% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 60% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 50% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 40% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 30% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 20% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 10% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 5% as compared to pre-treatment levels.
  • the ANC is not decreased as compared to pre-treatment levels.
  • the IL-6 antagonist is administered at a dose sufficient to reduce the patient's lipoprotein(a) levels below pre-treatment levels.
  • the lipoprotein(a) level is decreased by at least 10% as compared to pre-treatment levels. In various embodiments, the lipoprotein(a) level is decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 20% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 30% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 40% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 50% as compared to pre-treatment levels.
  • the lipoprotein(a) level is decreased by at least 60% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 70% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 80% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 90% as compared to pre-treatment levels.
  • the IL-6 antagonist is administered at a dose sufficient to reduce the patient's lipoprotein(a) levels without significantly increasing the patent's low-density lipoprotein (LDL) levels.
  • LDL low-density lipoprotein
  • the LDL level is increased by no more than 15% as compared to pre-treatment levels. In various embodiments, the LDL level is increased by no more than 12%, 10%, 8%, 6%, 5%, 4%, 3%, 2% or 1% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 12% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 10% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 8% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 6% as compared to pre-treatment levels.
  • the LDL level is increased by no more than 5% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 4% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 3% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 2% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 1% as compared to pre-treatment levels.
  • the LDL level is not increased as compared to pre-treatment levels.
  • the patient has an IL-6 mediated inflammatory disorder.
  • the IL-6 mediated inflammatory disorder is not a hepcidin-mediated disorder.
  • Hepcidin-mediated disorders are described in US 2017/0029499, the disclosure of which is incorporated herein by reference in its entirety.
  • the IL-6 mediated inflammatory disorder is a hepcidin-mediated disorder.
  • Hepcidin-mediated disorders are described in US 2017/0029499, the disclosure of which is incorporated herein by reference in its entirety.
  • the patient has a hepcidin-mediated disorder and at least one copy of the major allele at the TMPRSS6 rs855791 SNP (amino acid 736A).
  • the patient has a hepcidin-mediated disorder and is homozygous for the minor allele at the TMPRSS6 rs855791 SNP (amino acid 736V).
  • the patient has a hepcidin-mediated disorder and unknown genotype at the TMPRSS6 rs855791 SNP.
  • the IL-6 mediated inflammatory disorder is a non-autoimmune IL-6 mediated inflammatory disorder.
  • the patient has an IL-6 mediated disorder other than rheumatoid arthritis, giant cell arteritis, polyarticular juvenile idiopathic arthritis, or systemic juvenile idiopathic arthritis.
  • the patient has kidney disease.
  • the kidney disease is chronic kidney disease (CKD).
  • the patient has KDOQI stage 1-5 chronic kidney disease. In some embodiments, the patient has KDOQI stage 3-5 chronic kidney disease. In some embodiments, the patient has KDOQI stage 1 chronic kidney disease, KDOQI stage 2 chronic kidney disease, KDOQI stage 3 chronic kidney disease, KDOQI stage 4 chronic kidney disease, or KDOQI stage 5 chronic kidney disease. In certain embodiments, the patient has KDOQI stage 5 chronic kidney disease.
  • the patient is on dialysis. In some embodiments, the patient is not on dialysis. In certain embodiment, the patient has KDOQI stage 3-5 chronic kidney disease, wherein the patient is not on dialysis. In certain embodiment, the patient has KDOQI stage 5 chronic kidney disease, wherein the patient is on dialysis.
  • the patient has cardiorenal syndrome (CRS). In certain embodiments, the patient has CRS Type 4.
  • CRS cardiorenal syndrome
  • the patient has been treated with dialysis.
  • the patient has cardiovascular disease.
  • the patient has had a previous myocardial infarction.
  • the patient has had a previous myocardial infarction and has a CRP level of 2 mg/L or more.
  • the patient has suffered a myocardial infarction within the 60 days prior to first administration of an IL-6 antagonist. In particular embodiments, the patient has suffered a myocardial infarction within the 30 days, 14 days, 7 days, 48 hours, or 24 hours prior to first administration of an IL-6 antagonist.
  • the patient has atherosclerosis but has not had a myocardial infarction.
  • the patient has atherosclerosis, has not had a myocardial infarction, and has a CRP level of 2 mg/L or more.
  • the cardiovascular disease is congestive heart failure (CHF).
  • CHF congestive heart failure
  • the patient has congestive heart failure (CHF) with reduced ejection fraction.
  • the patient has congestive heart failure (CHF) with mid-range ejection fraction.
  • the patient has congestive heart failure (CHF) with preserved ejection fraction.
  • the IL-6 mediated inflammatory disorder is heart failure that is not diuretic resistant.
  • Diuretic resistant heart failure is described in WO 2018/144773, the disclosure of which is incorporated herein by reference in its entirety.
  • the cardiovascular disease is diuretic resistant heart failure.
  • Diuretic resistant heart failure is described in WO 2018/144773, the disclosure of which is incorporated herein by reference in its entirety.
  • the cardiovascular disease is acute coronary syndrome.
  • the IL-6 antagonist is administered at a dose sufficient to reduce nonfatal myocardial infarction, nonfatal stroke, and/or cardiovascular death. In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce the risk of heart failure. In some embodiments, the IL-6 antagonist is administered at a dose sufficient to increase cardiac function. In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce fibrosis after acute myocardial infarction.
  • the patient has anemia.
  • the patient has anemia of chronic disease. In some embodiments, the patient has iron-refractory iron-deficiency anemia (IRIDA).
  • IRIDA iron-refractory iron-deficiency anemia
  • the patient has been treated with an erythropoiesis-stimulating agent (ESA).
  • ESA erythropoiesis-stimulating agent
  • the patient has been treated with iron supplementation.
  • the patient has been treated with transfusion of blood or packed red blood cells.
  • the IL-6 antagonist is administered at a dose sufficient to reverse functional iron deficiency.
  • the patient has diabetes. In certain embodiments, the patient has type II diabetes. In certain embodiments, the patient has insulin-resistant diabetes.
  • the patient has liver disease. In certain embodiments, the patient has non-alcoholic steatohepatitis (NASH).
  • NASH non-alcoholic steatohepatitis
  • the patient has osteoporosis.
  • the patient has depression.
  • the patient has asthma.
  • the patient has neuroinflammatory disorder. In certain embodiments, the patient has Alzheimer's disease. In certain embodiments, the patient has Parkinson's disease. In certain embodiments, the patient has multiple sclerosis. In certain embodiments, the patient has amyotrophic lateral sclerosis (ALS).
  • ALS amyotrophic lateral sclerosis
  • the patient has age-related macular degeneration (AMD).
  • AMD age-related macular degeneration
  • the patient has cancer.
  • the cancer is selected from the group consisting of: solid tumors, small cell lung cancer, non-small cell lung cancer, hematological cancer, multiple myeloma, leukemia, chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), lymphomas, and Hodgkin's lymphoma.
  • the patient has skin disease, such as atopic dermatitis or psoriasis.
  • the method prevents aging in the patient.
  • the IL-6 antagonist used in the methods described herein is capable of decreasing the biological activity of IL-6.
  • the IL-6 antagonist is an anti-IL-6 antibody or antigen-binding fragment or derivative thereof.
  • the anti-IL-6 antibody neutralizes the biological activity of IL-6. In some embodiments, the neutralizing antibody prevents binding of IL-6 to the IL-6 receptor.
  • the IL-6 antagonist is an anti-IL-6 monoclonal antibody. In some embodiments, the IL-6 antagonist is a polyclonal composition comprising a plurality of species of anti-IL-6 antibodies, each of the plurality having unique CDRs.
  • the anti-IL-6 antibody is a Fab, Fab′, F(ab′)2, Fv, scFv, (scFv) 2 , single chain antibody molecule, dual variable domain antibody, single variable domain antibody, linear antibody, or V domain antibody.
  • the anti-IL-6 antibody comprises a scaffold.
  • the scaffold is Fc, optionally human Fc.
  • the anti-IL-6 antibody comprises a heavy chain constant region of a class selected from IgG, IgA, IgD, IgE, and IgM.
  • the anti-IL-6 antibody comprises a heavy chain constant region of the class IgG and a subclass selected from IgG1, IgG2, IgG3, and IgG4.
  • the IL-6 antagonist is immunoconjugate or fusion protein comprising an IL-6 antigen-binding fragment.
  • the antibody is bispecific or multispecific, with at least one of the antigen-binding portions having specificity for IL-6.
  • the antibody is fully human. In some embodiments, the antibody is humanized. In some embodiments, the antibody is chimeric and has non-human V regions and human C region domains. In some embodiments, the antibody is murine.
  • the anti-IL-6 antibody has a K D for binding human IL-6 of less than 100 nM. In some embodiments, the anti-IL-6 antibody has a K D for binding human IL-6 of less than 75 nM, 50 nM, 25 nM, 20 nM, 15 nM, or 10 nM. In particular embodiments, the anti-IL-6 antibody has a K D for binding human IL-6 of less than 5 nM, 4 nM, 3 nM, or 2 nM. In selected embodiments, the anti-IL-6 antibody has a K D for binding human IL-6 of less than 1 nM, 750 pM, or 500 pM. In specific embodiments, the anti-IL-6 antibody has a K D for binding human IL-6 of no more than 500 pM, 400 pM, 300 pM, 200 pM, or 100 pM.
  • the anti-IL-6 antibody has an elimination half-life following intravenous administration of at least 7 days. In certain embodiments, the anti-IL-6 antibody has an elimination half-life of at least 14 days, at least 21 days, or at least 30 days.
  • the anti-IL-6 antibody has a human IgG constant region with at least one amino acid substitution that extends serum half-life as compared to the unsubstituted human IgG constant domain.
  • the IgG constant domain comprises substitutions at residues 252, 254, and 256, wherein the amino acid substitution at amino acid residue 252 is a substitution with tyrosine, the amino acid substitution at amino acid residue 254 is a substitution with threonine, and the amino acid substitution at amino acid residue 256 is a substitution with glutamic acid (“YTE”).
  • YTE glutamic acid
  • the IgG constant domain comprises substitutions selected from T250Q/M428L (Hinton et al., J. Immunology 176:346-356 (2006)); N434A (Yeung et al., J. Immunology 182:7663-7671 (2009)); or T307A/E380A/N434A (Petkova et al., International Immunology, 18: 1759-1769 (2006)).
  • the elimination half-life of the anti-IL-6 antibody is increased by utilizing the FcRN-binding properties of human serum albumin.
  • the antibody is conjugated to albumin (Smith et al., Bioconjug. Chem., 12: 750-756 (2001)).
  • the anti-IL-6 antibody is fused to bacterial albumin-binding domains (Stork et al., Prot. Eng. Design Science 20: 569-76 (2007)).
  • the anti-IL-6 antibody is fused to an albumin-binding peptide (Nguygen et al., Prot Eng Design Sel 19: 291-297 (2006)).
  • the anti-IL-6 antibody is bispecific, with one specificity being to IL-6, and one specificity being to human serum albumin (Ablynx, WO 2006/122825 (bispecific Nanobody)).
  • the elimination half-life of the anti-IL-6 antibody is increased by PEGylation (Melmed et al., Nature Reviews Drug Discovery 7: 641-642 (2008)); by HPMA copolymer conjugation (Lu et al., Nature Biotechnology 17: 1101-1104 (1999)); by dextran conjugation (Nuclear Medicine Communications, 16: 362-369 (1995)); by conjugation with homo-amino-acid polymers (HAPs; HAPylation) (Schlapschy et al., Prot Eng Design Sel 20: 273-284 (2007)); or by polysialylation (Constantinou et al., Bioconjug. Chem. 20: 924-931 (2009)).
  • the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of COR-001.
  • the COR-001 antibody also known as MEDI5117
  • the antibody or antigen-binding portion thereof comprises the COR-001 heavy chain V region and light chain V region.
  • the antibody is the full-length COR-001 antibody.
  • the COR-001 antibody has the following CDR and heavy and light chain sequences:
  • the anti-IL-6 antibody is a derivative of COR-001.
  • the COR-001 derivative includes one or more amino acid substitutions in the COR-001 heavy and/or light chain V regions.
  • the COR-001 derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the COR-001 anti-IL-6 antibody, while retaining specificity for human IL-6.
  • the COR-001 derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of COR-001.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the COR-001 derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of COR-001.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of siltuximab.
  • the antibody or antigen-binding portion thereof comprises the siltuximab heavy chain V region and light chain V region.
  • the antibody is the full-length siltuximab antibody.
  • the anti-IL-6 antibody is a derivative of siltuximab.
  • the siltuximab derivative includes one or more amino acid substitutions in the siltuximab heavy and/or light chain V regions.
  • the siltuximab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the siltuximab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • the siltuximab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of siltuximab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the siltuximab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of siltuximab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of gerilimzumab.
  • the antibody or antigen-binding portion thereof comprises the gerilimzumab heavy chain V region and light chain V region.
  • the antibody is the full-length gerilimzumab antibody.
  • the anti-IL-6 antibody is a derivative of gerilimzumab.
  • the gerilimzumab derivative includes one or more amino acid substitutions in the gerilimzumab heavy and/or light chain V regions.
  • the gerilimzumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the gerilimzumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • the gerilimzumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of gerilimzumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the gerilimzumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of gerilimzumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of sirukumab.
  • the antibody or antigen-binding portion thereof comprises the sirukumab heavy chain V region and light chain V region.
  • the antibody is the full-length sirukumab antibody.
  • the anti-IL-6 antibody is a derivative of sirukumab.
  • the sirukumab derivative includes one or more amino acid substitutions in the sirukumab heavy and/or light chain V regions.
  • the sirukumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the sirukumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • the sirukumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of sirukumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the sirukumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of sirukumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of clazakizumab.
  • the antibody or antigen-binding portion thereof comprises the clazakizumab heavy chain V region and light chain V region.
  • the antibody is the full-length clazakizumab antibody.
  • the anti-IL-6 antibody is a derivative of clazakizumab.
  • the clazakizumab derivative includes one or more amino acid substitutions in the clazakizumab heavy and/or light chain V regions.
  • the clazakizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the clazakizumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • the clazakizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of clazakizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the clazakizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of clazakizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of olokizumab.
  • the antibody or antigen-binding portion thereof comprises the olokizumab heavy chain V region and light chain V region.
  • the antibody is the full-length olokizumab antibody.
  • the anti-IL-6 antibody is a derivative of olokizumab.
  • the olokizumab derivative includes one or more amino acid substitutions in the olokizumab heavy and/or light chain V regions.
  • the olokizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the olokizumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • the olokizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of olokizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the olokizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of olokizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of an antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101.
  • the antibody or antigen-binding portion thereof comprises the heavy chain V region and light chain V region of an antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101.
  • the antibody is a full-length antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101.
  • the anti-IL-6 antibody is a derivative of an antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101.
  • the IL-6 antagonist is an anti-IL-6 receptor (anti-IL-6R) antibody or antigen-binding fragment or derivative thereof.
  • the anti-IL-6R reduces the biological activity of IL-6 receptor.
  • the IL-6 antagonist is an anti-IL-6R monoclonal antibody. In some embodiments, the IL-6 antagonist is a polyclonal composition comprising a plurality of species of anti-IL-6R antibodies, each of the plurality having unique CDRs.
  • the anti-IL-6R antibody is a Fab, Fab′, F(ab′) 2 , Fv, scFv, (scFv) 2 , single chain antibody molecule, dual variable domain antibody, single variable domain antibody, linear antibody, or V domain antibody.
  • the anti-IL-6R antibody comprises a scaffold.
  • the scaffold is Fc, optionally human Fc.
  • the anti-IL-6R antibody comprises a heavy chain constant region of a class selected from IgG, IgA, IgD, IgE, and IgM.
  • the anti-IL-6R antibody comprises a heavy chain constant region of the class IgG and a subclass selected from IgG1, IgG2, IgG3, and IgG4.
  • the IL-6 antagonist is immunoconjugate or fusion protein comprising an IL-6R antigen-binding fragment.
  • the antibody is bispecific or multispecific, with at least one of the antigen-binding portions having specificity for IL-6 receptor.
  • the antibody is fully human. In some embodiments, the antibody is humanized. In some embodiments, the antibody is chimeric and has non-human V regions and human C region domains. In some embodiments, the antibody is murine.
  • the anti-IL-6R antibody has a K D for binding human IL-6 receptor of less than 100 nM. In some embodiments, the anti-IL-6R antibody has a K D for binding human IL-6 receptor of less than 75 nM, 50 nM, 25 nM, 20 nM, 15 nM, or 10 nM. In particular embodiments, the anti-IL-6R antibody has a K D for binding human IL-6 receptor of less than 5 nM, 4 nM, 3 nM, or 2 nM. In selected embodiments, the anti-IL-6R antibody has a K D for binding human IL-6 receptor of less than 1 nM, 750 pM, or 500 pM. In specific embodiments, the anti-IL-6R antibody has a K D for binding human IL-6 receptor of no more than 500 pM, 400 pM, 300 pM, 200 pM, or 100 pM.
  • the anti-IL-6R antibody has an elimination half-life following intravenous administration of at least 7 days. In certain embodiments, the anti-IL-6R antibody has an elimination half-life of at least 14 days, at least 21 days, or at least 30 days.
  • the anti-IL-6R antibody has a human IgG constant region with at least one amino acid substitution that extends serum half-life as compared to the unsubstituted human IgG constant domain.
  • the IgG constant domain comprises substitutions at residues 252, 254, and 256, wherein the amino acid substitution at amino acid residue 252 is a substitution with tyrosine, the amino acid substitution at amino acid residue 254 is a substitution with threonine, and the amino acid substitution at amino acid residue 256 is a substitution with glutamic acid (“YTE”).
  • YTE glutamic acid
  • the IgG constant domain comprises substitutions selected from T250Q/M428L (Hinton et al., J. Immunology 176:346-356 (2006)); N434A (Yeung et al., J. Immunology 182:7663-7671 (2009)); or T307A/E380A/N434A (Petkova et al., International Immunology, 18: 1759-1769 (2006)).
  • the elimination half-life of the anti-IL-6R antibody is increased by utilizing the FcRN-binding properties of human serum albumin.
  • the antibody is conjugated to albumin (Smith et al., Bioconjug. Chem., 12: 750-756 (2001)).
  • the anti-IL-6R antibody is fused to bacterial albumin-binding domains (Stork et al., Prot. Eng. Design Science 20: 569-76 (2007)).
  • the anti-IL-6R antibody is fused to an albumin-binding peptide (Nguygen et al., Prot Eng Design Sel 19: 291-297 (2006)).
  • the anti-IL-6R antibody is bispecific, with one specificity being to IL-6 receptor, and one specificity being to human serum albumin (Ablynx, WO 2006/122825 (bispecific Nanobody)).
  • the elimination half-life of the anti-IL-6R antibody is increased by PEGylation (Melmed et al., Nature Reviews Drug Discovery 7: 641-642 (2008)); by HPMA copolymer conjugation (Lu et al., Nature Biotechnology 17: 1101-1104 (1999)); by dextran conjugation (Nuclear Medicine Communications, 16: 362-369 (1995)); by conjugation with homo-amino-acid polymers (HAPs; HAPylation) (Schlapschy et al., Prot Eng Design Sel 20: 273-284 (2007)); or by polysialylation (Constantinou et al., Bioconjug. Chem. 20: 924-931 (2009)).
  • the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of tocilizumab.
  • the antibody or antigen-binding portion thereof comprises the tocilizumab heavy chain V region and light chain V region.
  • the antibody is the full-length tocilizumab antibody.
  • the anti-IL-6R antibody is a derivative of tocilizumab.
  • the tocilizumab derivative includes one or more amino acid substitutions in the tocilizumab heavy and/or light chain V regions.
  • the tocilizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the tocilizumab anti-IL-6R antibody, while retaining specificity for human IL-6 receptor.
  • the tocilizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of tocilizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the tocilizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of tocilizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6 receptor).
  • the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of sarilumab.
  • the antibody or antigen-binding portion thereof comprises the sarilumab heavy chain V region and light chain V region.
  • the antibody is the full-length sarilumab antibody.
  • the anti-IL-6R antibody is a derivative of sarilumab.
  • the sarilumab derivative includes one or more amino acid substitutions in the sarilumab heavy and/or light chain V regions.
  • the sarilumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the sarilumab anti-IL-6R antibody, while retaining specificity for human IL-6 receptor.
  • the sarilumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of sarilumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the sarilumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of sarilumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6 receptor).
  • the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of vobarilizumab.
  • the antibody or antigen-binding portion thereof comprises the vobarilizumab heavy chain V region and light chain V region.
  • the antibody is the full-length vobarilizumab antibody.
  • the anti-IL-6R antibody is a derivative of vobarilizumab.
  • the vobarilizumab derivative includes one or more amino acid substitutions in the vobarilizumab heavy and/or light chain V regions.
  • the vobarilizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original V H and/or V L of the vobarilizumab anti-IL-6R antibody, while retaining specificity for human IL-6 receptor.
  • the vobarilizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the V H and V L domain of vobarilizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the vobarilizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of vobarilizumab.
  • the percent sequence identity is determined using BLAST algorithms using default parameters.
  • the V H and/or V L CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6 receptor).
  • the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of an antibody selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), and an antibody described in US 2012/0225060.
  • the antibody or antigen-binding portion thereof comprises the heavy chain V region and light chain V region of an antibody selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), and an antibody described in US 2012/0225060.
  • the antibody is a full-length selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), and an antibody described in US 2012/0225060.
  • the anti-IL-6R antibody is a derivative of an antibody selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), or an antibody described in US 2012/0225060.
  • the IL-6 antagonist is an antibody specific for the complex of IL-6 and IL-6R.
  • the antibody has the six CDRs of an antibody selected from those described in US 2011/0002936, which is incorporated herein by reference in its entirety.
  • the IL-6 antagonist is an inhibitor of the JAK signaling pathway.
  • the JAK inhibitor is a JAK1-specific inhibitor.
  • the JAK inhibitor is a JAK3-specific inhibitor.
  • the JAK inhibitor is a pan-JAK inhibitor.
  • the JAK inhibitor is selected from the group consisting of tofacitinib (Xeljanz), decernotinib, ruxolitinib, upadacitinib, baricitinib, filgotinib, lestaurtinib, pacritinib, peficitinib, INCB-039110, ABT-494, INCB-047986 and AC-410.
  • the IL-6 antagonist is a STAT3 inhibitor.
  • the inhibitor is AZD9150 (AstraZeneca, Isis Pharmaceuticals), a STAT3 antisense molecule.
  • the IL-6 antagonist is an antagonist peptide.
  • the IL-6 antagonist is C326 (an IL-6 inhibitor by Avidia, also known as AMG220), or FE301, a recombinant protein inhibitor of IL-6 (Ferring International Center S.A., Conaris Research Institute AG).
  • the anti-IL-6 antagonist comprises soluble gp130, FE301 (Conaris/Ferring).
  • IL-6 antagonists used in the methods described herein can be formulated in any appropriate pharmaceutical composition for administration by any suitable route of administration.
  • suitable routes of administration include, but are not limited to, the intravitreal, intraarterial, intradermal, intramuscular, intraperitoneal, intravenous, nasal, parenteral, pulmonary, and subcutaneous routes.
  • the pharmaceutical composition may comprise one or more pharmaceutical excipients. Any suitable pharmaceutical excipient may be used, and one of ordinary skill in the art is capable of selecting suitable pharmaceutical excipients. Accordingly, the pharmaceutical excipients provided below are intended to be illustrative, and not limiting. Additional pharmaceutical excipients include, for example, those described in the Handbook of Pharmaceutical Excipients, Rowe et al. (Eds.) 6th Ed. (2009), incorporated by reference in its entirety.
  • the IL-6 antagonist is administered at a dose sufficient to reduce inflammation without causing immune suppression.
  • antibody, antigen-binding fragments, and peptide IL-6 antagonists are administered parenterally.
  • the IL-6 antagonist is administered intravenously. In certain intravenous embodiments, the IL-6 antagonist is administered as a bolus. In certain intravenous embodiments, the IL-6 antagonist is administered as an infusion. In certain intravenous embodiments, the IL-6 antagonist is administered as a bolus followed by infusion.
  • the IL-6 antagonist is administered subcutaneously.
  • the antibody, antigen-binding fragment, or peptide IL-6 antagonist is administered in a dose that is independent of patient weight or surface area (flat dose).
  • the intravenous flat dose is 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, or 1 mg. In some embodiments, the intravenous flat dose is 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, or 10 mg. In some embodiments, the intravenous flat dose is 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, or 20 mg. In some embodiments, the intravenous flat dose is 25 mg, 30 mg, 40 mg, or 50 mg. In some embodiments, the intravenous flat dose is 60 mg, 70 mg, 80 mg, 90 mg, or 100 mg.
  • the intravenous flat dose is 200 mg, 300 mg, 400 mg, or 500 mg. In some embodiments, the intravenous flat dose is 0.1-1 mg, 1-10 mg, 10-15 mg, 15-20 mg, 20-30 mg, 30-40 mg, or 40-50 mg. In some embodiments, the intravenous flat dose is 1-50 mg, 50-100 mg, or 100 mg-500 mg.
  • the subcutaneous flat dose is 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, or 1 mg. In some embodiments, the subcutaneous flat dose is 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, or 10 mg. In some embodiments, the subcutaneous flat dose is 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, or 20 mg. In some embodiments, the subcutaneous flat dose is 25 mg, 30 mg, 40 mg, or 50 mg.
  • the subcutaneous flat dose is 60 mg, 70 mg, 80 mg, 90 mg, or 100 mg. In some embodiments, the subcutaneous flat dose is 200 mg, 300 mg, 400 mg, or 500 mg. In some embodiments, the subcutaneous flat dose is 0.1-1 mg, 1-10 mg, 10-15 mg, 15-20 mg, 20-30 mg, 30-40 mg, or 40-50 mg. In some embodiments, the subcutaneous flat dose is 1-50 mg, 50-100 mg, or 100 mg-500 mg.
  • the antibody, antigen-binding fragment, or peptide IL-6 antagonist is administered as a patient weight-based dose.
  • the antagonist is administered at an intravenous dose of 0.01 mg/kg, 0.02 mg/kg, 0.03 mg/kg, 0.04 mg/kg, 0.05 mg/kg, 0.06 mg/kg, 0.07 mg/kg, 0.08 mg/kg, 0.09 mg/kg or 0.1 mg/kg. In some embodiments, the antagonist is administered at an intravenous dose of 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 0.6 mg/kg, 0.7 mg/kg, 0.8 mg/kg, 0.9 mg/kg or 1.0 mg/kg. In some embodiments, the antagonist is administered at an intravenous dose of 1.5 mg/kg, 2 mg/kg, 2.5 mg/kg, 3 mg/kg, 3.5 mg/kg, 4 mg/kg, 4.5 mg/kg, or 5 mg/kg.
  • the antagonist is administered at a subcutaneous dose of 0.01 mg/kg, 0.02 mg/kg, 0.03 mg/kg, 0.04 mg/kg, 0.05 mg/kg, 0.06 mg/kg, 0.07 mg/kg, 0.08 mg/kg, 0.09 mg/kg or 0.1 mg/kg. In some embodiments, the antagonist is administered at a subcutaneous dose of 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 0.6 mg/kg, 0.7 mg/kg, 0.8 mg/kg, 0.9 mg/kg or 1.0 mg/kg. In some embodiments, the antagonist is administered at a subcutaneous dose of 1.5 mg/kg, 2 mg/kg, 2.5 mg/kg, 3 mg/kg, 3.5 mg/kg, 4 mg/kg, 4.5 mg/kg, or 5 mg/kg.
  • the IL-6 antagonist is administered once every 7 days, once every 14 days, once every 21 days, once every 28 days, or once a month. In various subcutaneous embodiments, the IL-6 antagonist is administered once every 14 days, once every 28 days, once a month, once every two months (every other month), or once every three months.
  • small molecule JAK inhibitors and STAT inhibitors are administered orally.
  • the inhibitor is administered once or twice a day at an oral dose of 0.1-1 mg, 1-10 mg, 10-20 mg, 20-30 mg, 30-40 mg, or 40-50 mg. In some embodiments, the inhibitor is administered once or twice a day at a dose of 50-60 mg, 60-70 mg, 70-80 mg, 80-90 mg, or 90-100 mg. In some embodiments, the inhibitor is administered at a dose of 0.1, 0.5, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mg PO once or twice a day. In some embodiments, the inhibitor is administered at a dose of 75 mg or 100 mg PO once or twice a day.
  • the IL-6 antagonist is administered at a monthly equivalent dose that is less than the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • “Monthly equivalent dose” is the calculated total dose administered per month, regardless of dose amount and dosage schedule.
  • the IL-6 antagonist is administered at a monthly equivalent dose no more than 50% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In various embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 45% of a monthly equivalent dose for treating rheumatoid arthritis.
  • the IL-6 antagonist is administered at a monthly equivalent dose no more than 40% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 30% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 25% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 20% of a monthly equivalent dose for treating rheumatoid arthritis.
  • the IL-6 antagonist is administered at a monthly equivalent dose no more than 15% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 10% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 5% of a monthly equivalent dose for treating rheumatoid arthritis.
  • the IL-6 antagonist is administered at a monthly equivalent dose about 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • the IL-6 antagonist is administered at a monthly equivalent dose about 50% of a monthly equivalent dose for treating rheumatoid arthritis.
  • the IL-6 antagonist is administered at a monthly equivalent dose about 40% of a monthly equivalent dose for treating rheumatoid arthritis.
  • the IL-6 antagonist is administered at a monthly equivalent dose about 30% of a monthly equivalent dose for treating rheumatoid arthritis.
  • the IL-6 antagonist is administered at a monthly equivalent dose about 25% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 20% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 15% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 10% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 5% of a monthly equivalent dose for treating rheumatoid arthritis.
  • the IL-6 antagonist is the COR-001 antibody.
  • COR-001 is administered intravenously at a monthly equivalent dose of 0.5-50 mg, such as 0.5-1 mg, 0.5-2 mg, 0.5-5 mg, 0.5-10 mg, 0.5-20 mg, 0.5-30 mg, 0.5-40 mg, 1-2 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 2-5 mg, 2-10 mg, 2-20 mg, 2-30 mg, 2-40 mg, 2-50 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 20-30 mg, 20-40 mg, 20-50 mg, 30-40 mg, 30-50 mg, or 40-50 mg.
  • COR-001 is administered intravenously at a monthly equivalent dose of 2-40 mg.
  • COR-001 is administered intravenously at a monthly equivalent dose of about 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 20 mg, 30 mg, 40 mg, or 50 mg.
  • COR-001 is administered intravenously at a monthly equivalent dose of about 1 mg.
  • COR-001 is administered intravenously at a monthly equivalent dose of about 2 mg.
  • COR-001 is administered intravenously at a monthly equivalent dose of about 3 mg.
  • COR-001 is administered intravenously at a monthly equivalent dose of about 4 mg.
  • COR-001 is administered intravenously at a monthly equivalent dose of about 5 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 6 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 10 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 12 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 15 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 20 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 40 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-2 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 1-70 mg, 1-100 mg, 2-5 mg, 2-10 mg, 2-20 mg, 2-30 mg, 2-40 mg, 2-50 mg, 2-70 mg, 2-100 mg, 3-5 mg, 3-10 mg, 3-20 mg, 3-30 mg, 3-40 mg, 3-50 mg, 3-70 mg, 3-100 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 5-70 mg, 5-100 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-70 mg, 10-100 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-70 mg, 20-100 mg, 30-40 mg, 30-50 mg, 30-70 mg, 30-100 mg, or 40-100 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of 3-70 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of about 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 70 mg, or 100 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of about 1 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of about 2 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of about 3 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of about 4 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of about 5 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 6 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 12 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 15 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 17 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 20 mg.
  • COR-001 is administered subcutaneously at a monthly equivalent dose of about 35 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 40 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 70 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • the IL-6 antagonist is siltuximab.
  • siltuximab is administered intravenously at a monthly equivalent dose of 10-500 mg, such as 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-100 mg, 10-150 mg, 10-200 mg, 10-300 mg, 10-400 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-100 mg, 20-150 mg, 20-200 mg, 20-300 mg, 20-400 mg, 20-500 mg, 30-40 mg, 30-50 mg, 30-100 mg, 30-150 mg, 30-200 mg, 30-300 mg, 30-400 mg, 30-500 mg, 40-50 mg, 40-100 mg, 40-150 mg, 40-200 mg, 40-250 mg, 40-300 mg, 40-400 mg, 40-500 mg, 50-100 mg, 50-150 mg, 50-200 mg, 50-300 mg, 50-400 mg, 50-500 mg, 100-150 mg, 100-200 mg, 100-300 mg, 100-400 mg, 100-500 mg, 150-
  • 10-500 mg such as
  • siltuximab is administered intravenously at a monthly equivalent dose of 50-500 mg. In various embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 100 mg, 150 mg, 200 mg, 300 mg, 400 mg, or 500 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 50 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 100 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 150 mg.
  • siltuximab is administered intravenously at a monthly equivalent dose of about 200 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 300 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 500 mg.
  • siltuximab is administered subcutaneously at a monthly equivalent dose of 50-1000 mg, such as 50-80 mg, 50-100 mg, 50-160 mg, 50-200 mg, 50-240 mg, 50-320 mg, 50-480 mg, 50-800 mg, 80-100 mg, 80-160 mg, 80-200 mg, 80-240 mg, 80-320 mg, 80-480 mg, 80-800 mg, 80-1000 mg, 100-160 mg, 100-200 mg, 100-240 mg, 100-320 mg, 100-480 mg, 100-800 mg, 100-1000 mg, 160-200 mg, 160-240 mg, 160-320 mg, 160-480 mg, 160-800 mg, 160-1000 mg, 200-240 mg, 200-320 mg, 200-480 mg, 200-800 mg, 200-1000 mg, 240-320 mg, 240-480 mg, 200-800 mg, 200-1000 mg, 240-320 mg, 240-480 mg, 240-800 mg, 240-1000 mg, 320-480 mg, 320-800 mg,
  • siltuximab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In various embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 50 mg, 80 mg. 100 mg, 160 mg, 240 mg. 320 mg, 480 mg. 800 mg, or 1000 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 50 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • siltuximab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 240 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 320 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 480 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 800 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 1000 mg.
  • the IL-6 antagonist is gerilimzumab.
  • gerilimzumab is administered intravenously at a monthly equivalent dose of 0.05-2 mg, such as 0.05-0.075 mg, 0.05-0.1 mg, 0.05-0.12 mg, 0.05-0.3 mg, 0.05-0.6 mg, 0.05-0.9 mg, 0.05-1.8 mg, 0.075-0.1 mg, 0.075-0.12 mg, 0.075-0.3 mg, 0.075-0.6 mg, 0.075-0.9 mg, 0.075-1.8 mg, 0.075-2 mg, 0.1-0.12 mg, 0.1-0.3 mg, 0.1-0.6 mg, 0.1-0.9 mg, 0.1-1.8 mg, 0.1-2 mg, 0.12-0.3 mg, 0.12-0.6 mg, 0.12-0.9 mg, 0.12-1.8 mg, 0.12-2 mg, 0.3-0.6 mg, 0.3-0.9 mg, 0.3-1.8 mg, 0.3-2 mg, 0.6-0.9 mg, 0.6-1.8 mg, 0.6-2 mg, 0.9-1.8 mg, 0.9-2 mg, or
  • gerilimzumab is administered intravenously at a monthly equivalent dose of 0.075-1.8 mg. In various embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.05 mg, 0.075 mg, 0.1 mg, 0.12 mg, 0.3 mg, 0.6 mg, 0.9 mg, 1.8 mg, or 2 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.05 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.075 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.1 mg.
  • gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.12 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.3 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.6 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.9 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 1.8 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 2 mg.
  • gerilimzumab is administered subcutaneously at a monthly equivalent dose of 0.1-5 mg, such as 0.1-0.125 mg, 0.1-0.15 mg, 0.1-0.2 mg, 0.1-0.5 mg, 0.1-1 mg, 0.1-1.5 mg, 0.1-2 mg, 0.1-3 mg, 0.1-4 mg, 0.125-0.15 mg, 0.125-0.2 mg, 0.125-0.5 mg, 0.125-1 mg, 0.125-1.5 mg, 0.125-2 mg, 0.125-3 mg, 0.125-4 mg, 0.125-5 mg, 0.15-0.2 mg, 0.15-0.5 mg, 0.15-1 mg, 0.15-1.5 mg, 0.15-2 mg, 0.15-3 mg, 0.15-4 mg, 0.15-5 mg, 0.2-0.5 mg, 0.2-1 mg, 0.2-1.5 mg, 0.2-2 mg, 0.2-3 mg, 0.2-4 mg, 0.2-5 mg, 0.5-1 mg, 0.5-1.5 mg, 0.5-2 mg, 0.5-3 mg, 0.5-4 mg, 0.5-5 mg, 1-1.5 mg, 1-2 mg, 1-3 mg, 1-4 mg, 1-5 mg,
  • gerilimzumab is administered subcutaneously at a monthly equivalent dose of 0.125-3 mg. In various embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.1 mg, 0.125 mg, 0.15 mg, 0.2 mg, 0.5 mg, 1 mg, 1.5 mg, 2 mg, 3 mg, 4 mg, or 5 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.125 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.2 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.5 mg.
  • gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1.5 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 3 mg.
  • the IL-6 antagonist is sirukumab.
  • sirukumab is administered intravenously at a monthly equivalent dose of 1-80 mg, such as 1-1.5 mg, 1-3 mg, 1-6 mg, 1-12 mg, 1-36 mg, 1-60 mg, 1.5-3 mg, 1.5-6 mg, 1.5-12 mg, 1.5-36 mg, 1.5-60 mg, 1.5-80 mg, 3-6 mg, 3-12 mg, 3-36 mg, 3-60 mg, 3-80 mg, 6-12 mg, 6-36 mg, 6-60 mg, 6-80 mg, 12-36 mg, 12-60 mg, 12-80 mg, 36-60 mg, 36-80 mg, or 60-80 mg.
  • sirukumab is administered intravenously at a monthly equivalent dose of 1.5-60 mg.
  • sirukumab is administered intravenously at a monthly equivalent dose of about 1 mg, 1.5 mg, 3 mg, 6 mg, 12 mg, 36 mg, 60 mg, or 80 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 1 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 1.5 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 3 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 6 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 12 mg.
  • sirukumab is administered intravenously at a monthly equivalent dose of about 36 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 80 mg.
  • sirukumab is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-2.5 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 1-60 mg, 2.5-5 mg, 2.5-10 mg, 2.5-20 mg, 2.5-30 mg, 2.5-40 mg, 2.5-50 mg, 2.5-60 mg, 2.5-100 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 5-60 mg, 5-100 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-60 mg, 10-100 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-60 mg, 20-100 mg, 30-40 mg, 30-50 mg, 30-60 mg, 30-100 mg, 40-50 mg, 40-60 mg, 40-100 mg, 50-60 mg, 50-100 mg, or 60-100 mg.
  • 1-100 mg such as 1-2.5 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 1-60 mg, 2.5-5 mg, 2.5-10 mg, 2.5
  • sirukumab is administered subcutaneously at a monthly equivalent dose of 2.5-100 mg. In various embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 1 mg, 2.5 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, or 100 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 2.5 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • the IL-6 antagonist is clazakizumab.
  • clazakizumab is administered intravenously at a monthly equivalent dose of 1-80 mg, such as 1-3 mg, 1-6 mg, 1-12 mg, 1-24 mg, 1-36 mg, 1-60 mg, 3-6 mg, 3-12 mg, 3-24 mg, 3-36 mg, 3-60 mg, 3-80 mg, 6-12 mg, 6-24 mg, 6-36 mg, 6-60 mg, 6-80 mg, 12-24 mg, 12-36 mg, 12-60 mg, 12-80 mg, 24-36 mg, 24-60 mg, 24-80 mg, 36-60 mg, 36-80 mg, or 60-80 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of 3-60 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 1 mg, 3 mg, 6 mg, 12 mg, 24 mg, 36 mg, 60 mg or 80 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 1 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 3 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 6 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 12 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 24 mg.
  • clazakizumab is administered intravenously at a monthly equivalent dose of about 36 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 80 mg.
  • clazakizumab is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-2 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 1-60 mg, 2-5 mg, 2-10 mg, 2-20 mg, 2-30 mg, 2-40 mg, 2-50 mg, 2-60 mg, 2-100 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 5-60 mg, 5-100 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-60 mg, 10-100 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-60 mg, 20-100 mg, 30-40 mg, 30-50 mg, 30-60 mg, 30-100 mg, 40-50 mg, 40-60 mg, 40-100 mg, 50-60 mg, 50-100 mg, or 60-100 mg.
  • clazakizumab is administered subcutaneously at a monthly equivalent dose of 5-100 mg. In various embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 1 mg, 2 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, or 100 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 20 mg.
  • clazakizumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • the IL-6 antagonist is olokizumab.
  • olokizumab is administered intravenously at a monthly equivalent dose of 1-80 mg, such as 1-1.8 mg, 1-3.6 mg, 1-9 mg, 1-18 mg, 1-45 mg, 1-60 mg, 1.8-3.6 mg, 1.8-9 mg, 1.8-18 mg, 1.8-45 mg, 1.8-60 mg, 1.8-80 mg, 3.6-9 mg, 3.6-18 mg, 3.6-45 mg, 3.6-60 mg, 3.6-80 mg, 9-18 mg, 9-45 mg, 9-60 mg, 9-80 mg, 18-45 mg, 18-60 mg, 18-80 mg, 45-60 mg, 45-80 mg, or 60-80 mg.
  • olokizumab is administered intravenously at a monthly equivalent dose of 1.8-60 mg. In various embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 1 mg, 1.8 mg, 3.6 mg, 9 mg, 18 mg. 45 mg, 60 mg, or 80 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 1 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 1.8 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 3.6 mg.
  • olokizumab is administered intravenously at a monthly equivalent dose of about 9 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 18 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 45 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 80 mg.
  • olokizumab is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-3 mg, 1-6 mg, 1-10 mg, 1-15 mg, 1-20 mg, 1-30 mg, 1-50 mg, 1-72 mg, 3-6 mg, 3-10 mg, 3-15 mg, 3-20 mg, 3-30 mg, 3-50 mg, 3-72 mg, 3-100 mg, 6-10 mg, 6-15 mg, 6-20 mg, 6-30 mg, 6-50 mg, 6-72 mg, 6-100 mg, 10-15 mg, 10-20 mg, 10-30 mg, 10-50 mg, 10-72 mg, 10-100 mg, 15-20 mg, 15-30 mg, 15-50 mg, 15-72 mg, 15-100 mg, 20-30 mg, 20-50 mg, 20-72 mg, 20-100 mg, 30-50 mg, 30-72 mg, 30-100 mg, 50-72 mg, 50-100 mg, or 72-100 mg.
  • 1-100 mg such as 1-3 mg, 1-6 mg, 1-10 mg, 1-15 mg, 1-20 mg, 1-30 mg, 1-50 mg, 1-72 mg, 3-6 mg, 3-10 mg
  • olokizumab is administered subcutaneously at a monthly equivalent dose of 3-100 mg. In various embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 1 mg, 3 mg, 6 mg, 10 mg, 15 mg, 20 mg, 30 mg, 50 mg, 72 mg, or 100 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 3 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 6 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 15 mg.
  • olokizumab is administered subcutaneously at a monthly equivalent dose of about 30 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 72 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • the IL-6 antagonist is tocilizumab.
  • tocilizumab is administered intravenously at a monthly equivalent dose of 10-500 mg, such as 10-20 mg, 10-50 mg, 10-100 mg, 10-150 mg, 10-200 mg, 10-250 mg, 10-300 mg, 10-350 mg, 10-400 mg, 20-50 mg, 20-100 mg, 20-150 mg, 20-200 mg, 20-250 mg, 20-300 mg, 20-350 mg, 20-400 mg, 20-500 mg, 50-100 mg, 50-150 mg, 50-200 mg, 50-250 mg, 50-300 mg, 50-350 mg, 50-400 mg, 50-500 mg, 100-150 mg, 100-200 mg, 100-250 mg, 100-300 mg, 100-350 mg, 100-400 mg, 100-500 mg, 150-200 mg, 150-250 mg, 150-300 mg, 150-350 mg, 150-400 mg, 150-500 mg, 200-250 mg, 200-300 mg, 200-350 mg, 200-400 mg, 200-500 mg,
  • tocilizumab is administered intravenously at a monthly equivalent dose of 50-500 mg. In various embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, or 500 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 50 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 100 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 150 mg.
  • tocilizumab is administered intravenously at a monthly equivalent dose of about 250 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 350 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 500 mg.
  • tocilizumab is administered subcutaneously at a monthly equivalent dose of 50-1000 mg, such 50-80 mg, 50-160 mg, 50-240 mg, 50-400 mg, 50-560 mg, 50-800 mg, 80-160 mg, 80-240 mg, 80-400 mg, 80-560 mg, 80-800 mg, 80-1000 mg, 160-240 mg, 160-400 mg, 160-560, 160-800 mg, 160-1000 mg, 240-400 mg, 240-560 mg, 240-800 mg, 240-1000 mg, 400-560 mg, 400-800 mg, 400-1000 mg, 560-800 mg, 560-1000 mg, or 800-100 mg.
  • 50-1000 mg such 50-80 mg, 50-160 mg, 50-240 mg, 50-400 mg, 50-560 mg, 50-800 mg, 80-160 mg, 80-240 mg, 80-400 mg, 80-560 mg, 80-800 mg, 80-1000 mg, 160-240 mg, 160-400 mg, 160-560, 160-800 mg, 160-1000 mg, 240
  • tocilizumab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In various embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg, 80 mg, 160 mg, 240 mg, 400 mg, 560 mg, 800 mg, or 1000 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 240 mg.
  • tocilizumab is administered subcutaneously at a monthly equivalent dose of about 400 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 560 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 800 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 1000 mg.
  • the IL-6 antagonist is sarilumab.
  • sarilumab is administered intravenously at a monthly equivalent dose of 10-150 mg, such as 10-12 mg, 10-24 mg, 10-48 mg, 10-60 mg, 10-72 mg, 10-120 mg, 12-24 mg, 12-48 mg, 12-60 mg, 12-72 mg, 12-120 mg, 12-150 mg, 24-48 mg, 24-60 mg, 24-72 mg, 24-120 mg, 24-150 mg, 48-60 mg, 48-72 mg, 48-120 mg, 48-150 mg, 60-72 mg, 60-120 mg, 60-150 mg, 72-120 mg, 72-150 mg, or 120-150 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of 12-120 mg. In various embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 10 mg, 12 mg, 24 mg, 48 mg, 60 mg, 72 mg, 120 mg, or 150 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 10 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 12 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 24 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 48 mg.
  • sarilumab is administered intravenously at a monthly equivalent dose of 60 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 72 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 120 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 150 mg.
  • sarilumab is administered subcutaneously at a monthly equivalent dose of 10-200 mg, such as 10-20 mg, 10-40 mg, 10-60 mg, 10-80 mg, 10-100 mg, 10-120 mg, 20-40 mg, 20-60 mg, 20-80 mg, 20-100 mg, 20-120 mg, 20-200 mg, 40-60 mg, 40-80 mg, 40-100 mg, 40-120 mg, 40-200 mg, 60-80 mg, 60-100 mg, 60-120 mg, mg, 60-200 mg, 80-100 mg, 80-120 mg, 80-200 mg, 100-120 mg, 100-200 mg, or 120-200 mg.
  • sarilumab is administered subcutaneously at a monthly equivalent dose of 20-200 mg.
  • sarilumab is administered subcutaneously at a monthly equivalent dose of about 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 80 mg, 100 mg, 120 mg, 150 mg, or 200 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 120 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • the IL-6 antagonist is vobarilizumab.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of 2-150 mg, such as 2-4 mg, 2-6 mg, 2-30 mg, 2-60 mg, 2-84 mg, 2-120 mg, 4-6 mg, 4-30 mg, 4-60 mg, 4-84 mg, 4-120 mg, 4-150 mg, 6-30 mg, 6-60 mg, 6-84 mg, 6-120 mg, 6-150 mg, 30-60 mg, 30-84 mg, 30-120 mg, 30-150 mg, 60-84 mg, 60-120 mg, 60-150 mg, 84-120 mg, 84-150 mg, or 120-150 mg.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of 4-120 mg. In various embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 2 mg, 4 mg, 6 mg, 30 mg, 60 mg, 84 mg, 120 mg, or 150 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 2 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 4 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 6 mg.
  • vobarilizumab is administered intravenously at a monthly equivalent dose of about 30 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 84 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 120 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 150 mg.
  • vobarilizumab is administered subcutaneously at a monthly equivalent dose of 5-200 mg, such as 5-7 mg, 5-10 mg, 5-20 mg, 5-50 mg, 5-70 mg, 5-100 mg, 5-140 mg, 7-10 mg, 7-20 mg, 7-50 mg, 7-70 mg, 7-100 mg, 7-140 mg, 7-200 mg, 10-20 mg, 10-50 mg, 10-70 mg, 10-100 mg, 10-140 mg, 10-200 mg, 20-50 mg, 20-70 mg, 20-100 mg, 20-140 mg, 20-200 mg, 50-70 mg, 50-100 mg, 50-140 mg, 50-200 mg, 70-100 mg, 70-140 mg, 70-200 mg, 100-140 mg, 100-200 mg, or 140-200 mg.
  • 5-200 mg such as 5-7 mg, 5-10 mg, 5-20 mg, 5-50 mg, 5-70 mg, 5-100 mg, 5-140 mg, 7-10 mg, 7-20 mg, 7-50 mg, 7-70 mg, 7-100 mg, 7-140 mg, 7-200 mg, 10-20
  • vobarilizumab is administered subcutaneously at a monthly equivalent dose of 7-200 mg. In various embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 5 mg, 7 mg, 10 mg, 20 mg, 40 mg, 50 mg, 70 mg, 100 mg, 140 mg, or 200 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 7 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg.
  • vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 140 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • COR-001 is a human IgG1, kappa antibody directed against interleukin-6 (IL-6). COR-001 contains a “YTE” mutation in its Fc region. The sequence and other features of COR-001 are described in Chapter 2.7.1.1 above.
  • the study was a randomized, double-blind, placebo-controlled trial designed to evaluate the safety, pharmacokinetics, and pharmacodynamic effects of multiple doses of COR-001 (MEDI5117) or placebo administered to sequential cohorts of hemodialysis patients.
  • stage 5 chronic kidney disease (CKD-5) on hemodialysis, positive for TMPRSS6 736A genotype (major allele), IL-6 level greater than 4 pg/mL, and erythropoietic resistive index greater than 8.
  • Ten hemodialysis patients were randomized to COR-001 or placebo within each dosing cohort.
  • the first 2 (sentinel) patients in that cohort were randomized first and the remaining patients were randomized at least 48 hours later, in a 7:1 ratio of COR-001 to placebo.
  • the final ratio of patients treated with COR-001 vs. placebo were 8:2 in each cohort of 10 patients.
  • the maximum tolerated dose (MTD) assessment was based on safety data from Weeks 1 to 3. If more than 2 of 8 active patients in a cohort experienced a dose-limiting toxicity (DLT), the MTD was considered to have been exceeded.
  • DLT dose-limiting toxicity
  • COR-001 The Dose Escalation Schematic is shown in FIG. 1 .
  • COR-001 was administered as an intravenous infusion, started any time before the last 1 hour of the dialysis treatment.
  • the COR-001 dose regimens are shown in Table 1 below.
  • the total study duration for an individual patient was approximately 9 months, excluding the screening period of up to 4 weeks.
  • the study included a treatment period of 12 weeks (Week 1 through Week 12), a safety follow-up period of 12 weeks (Week 13 through Week 24), and an extended follow-up period of 10 weeks (Week 25 through Week 35).
  • Interim study-collected data were summarized by treatment group for the appropriate analysis population, using descriptive statistics.
  • Descriptive statistics for continuous variables included number of patients (n), mean, standard deviation (SD), median, quartiles (Q1 and Q3), minimum (min) and maximum (max) values.
  • Analysis of categorical variables included frequency and percentages.
  • hsCRP high-sensitivity C-reactive protein
  • ANC absolute neutrophil count
  • TSAT transferrin saturation
  • albumin erythropoietic resistive index
  • handgrip handgrip
  • NT-proBNP NT-proBNP
  • cardiac Mill cardiac Mill
  • CRP C-reactive protein
  • hsCRP high-sensitivity C-reactive protein
  • the percentages of patients with post-treatment average hsCRP ⁇ 2 mg/L at Week 12 were 44%, 62%, and 85% in the 2 mg dose regimen, 6 mg dose regimen, and 20 mg dose regimen groups, respectively, as compared to 14% in the placebo group.
  • the hsCRP responder analysis shows that COR-001 (anti-IL-6) has a superior effect on hsCRP than has been reported for canakinumab (anti-IL113) in the CANTOS trial.
  • COR-001 improved a primary indicator of anemia, hemoglobin levels.
  • the hemoglobin responder analysis indicated a dose-dependent hemoglobin responder rate of COR-001 treatment ( FIG. 4 ).
  • COR-001 decreased the level of the N-terminal prohormone of brain natriuretic peptide (NT-proBNP). The result indicates that treatment of COR-001 can reduce heart failure.
  • Immune suppression can be measured by neutrophil counts. The effect of COR-001 on neutrophil counts was determined.
  • the percentages of patients with platelet count below 100 ⁇ 10 9 /L were less than 30% with COR-001 for all tested doses ( FIG. 6 B ).
  • the in vivo IC50 concentration of COR-001 for platelet count (0% reduction of baseline platelet count) is 13800 ng/mL.
  • COR-001 treatment at doses of 2 mg, 6 mg, and 20 mg can reduce inflammation without inducing immune suppression in patients with stage 5 chronic kidney disease (CKD-5) on dialysis, whereas the absolute neutrophil count was not decreased significantly in patients treated with COR-001.
  • CKD-5 stage 5 chronic kidney disease
  • COR-001 reduced CRP in a dose-dependent matter.
  • COR-001 increased hemoglobin level in these patients.
  • COR-001 decreased the biomarkers of heart failure NT-proBNP.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Rheumatology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The disclosure provides methods of treating inflammation without inducing immune suppression. The method comprises administering a therapeutically effective amount of an IL-6 antagonist at a dose sufficient to reduce inflammation without causing immune suppression.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. application Ser. No. 17/708,660, filed Mar. 30, 2022, which is a continuation of U.S. application Ser. No. 16/396,378, filed Apr. 26, 2019 (now U.S. Pat. No. 11,384,143, issued Jul. 12, 2022), which is a continuation of U.S. application Ser. No. 16/240,670, filed Jan. 4, 2019 (now abandoned), which claims priority to U.S. Provisional Application No. 62/614,134, filed Jan. 5, 2018, each of which is hereby incorporated in its entirety by reference.
  • INCORPORATION-BY-REFERENCE OF THE SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted in XML format via the USPTO patent electronic filing system and is hereby incorporated by reference in its entirety. Said XML file, created on Nov. 21, 2022, is named 200110US05.xml and is 20 kilobytes in size.
  • BACKGROUND
  • Chronic inflammation is a characteristic of many diseases, including both the classical rheumatic disorders such as rheumatoid arthritis, juvenile idiopathic arthritis, psoriatic arthritis, and inflammatory bowel disease, as well as other systemic diseases that are increasingly understood to be associated with chronic inflammation, such as cardiovascular disease, renal disease, neuroinflammatory diseases, anemias, cancer and aging.
  • The pro-inflammatory cytokine, IL-6, often plays a critical role in chronic inflammation through activation of the JAK-STAT signaling pathway, and IL-6 inhibitors have been developed to treat certain inflammatory disorders in which IL-6 has been shown to contribute significantly to disease etiology. The anti-IL-6 receptor antibody, tocilizumab (ACTEMRA), has been approved for treatment of rheumatoid arthritis, giant cell arteritis, polyarticular juvenile idiopathic arthritis, systemic juvenile idiopathic arthritis, and iatrogenic cytokine release syndrome. The anti-IL-6 receptor antibody, sarilumab (KEVZARA), has been approved to treat adult patients with moderately to severely active rheumatoid arthritis.
  • Although inhibition of IL-6 can be effective, treatment of chronic inflammation with IL-6 inhibitors using current dose regimens often leads to immune suppression. Immunosuppression can result in increased susceptibility to pathogens such as bacteria, fungi, and viruses. The FDA-approved product label for ACTEMRA warns of the risk of serious infections leading to hospitalization or death, including tuberculosis, bacterial, invasive fungal, viral, and other opportunistic infection; the KEVZARA label warns of serious infections leading to hospitalization or death including bacterial, viral, invasive fungal, and other opportunistic infections.
  • There is, therefore, a need for new methods for treating IL-6 mediated inflammation that do not lead to immune suppression.
  • SUMMARY
  • We have demonstrated that IL-6 antagonists can be administered at a dose, on a schedule, and for a period sufficient to reduce inflammation without causing immune suppression.
  • Accordingly, in a first aspect, methods for treating IL-6-mediated inflammation in a patient are provided. The methods comprise: administering an IL-6 antagonist to a patient with IL-6-mediated inflammation at a dose that is sufficient to reduce inflammation without causing immune suppression.
  • In some embodiments, the patient has an elevated pre-treatment C-reactive protein (CRP) level. In some embodiments, the pre-treatment CRP level of the patient is at least 2 mg/L. In some embodiments, the pre-treatment CRP level of the patient is at least 4 mg/L. In some embodiments, the pre-treatment CRP level of the patient is at least 6 mg/L. In some embodiments, the pre-treatment CRP level of the patient is at least 10 mg/L.
  • In some embodiments, the patient has an elevated pre-treatment serum IL-6 level. In some embodiments, the pre-treatment serum IL-6 level of the patient is at least 4 pg/mL. In some embodiments, the pre-treatment serum IL-6 level of the patient is at least 4 pg/mL. In some embodiments, the pre-treatment serum IL-6 level of the patient is at least 5 pg/mL. In some embodiments, the pre-treatment serum IL-6 level of the patient is at least 10 pg/mL.
  • In some embodiments, the inflammation is measured by the level of C-reactive protein (CRP). In some embodiments, the post-treatment CRP level is no more than 2 mg/L. In some embodiments, the post-treatment CRP level is no more than 1 mg/L. In some embodiments, the CRP level is decreased by at least 50% as compared to pre-treatment levels. In some embodiments, the CRP level is decreased by at least 70% as compared to pre-treatment levels. In some embodiments, the CRP level is decreased by at least 80% as compared to pre-treatment levels. In some embodiments, the CRP level is decreased by at least 90% as compared to pre-treatment levels.
  • In some embodiments, the immune suppression is measured by absolute neutrophil count (ANC). In some embodiments, the post-treatment ANC is at least 500 cells/μL. In some embodiments, the post-treatment ANC is at least 1000 cells/μL. In some embodiments, the post-treatment ANC is at least 1500 cells/μL. In some embodiments, the post-treatment ANC is at least 2000 cells/μL. In some embodiments, the ANC is decreased by no more than 2000 cells/μL as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 1500 cells/μL as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 1000 cells/μL as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 500 cells/μL as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 50% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 40% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 30% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 20% as compared to pre-treatment levels. In some embodiments, the ANC is decreased by no more than 10% as compared to pre-treatment levels. In some embodiments, the ANC is not decreased as compared to pre-treatment levels.
  • In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 30% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 20% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 10% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 25% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 20% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 15% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 10% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is about 5% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • In some embodiments, the IL-6 antagonist is an anti-IL-6 antibody.
  • In some embodiments, the anti-IL-6 antibody is COR-001. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of 2-40 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 2 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 4 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 6 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 10 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 20 mg. In some embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 40 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of 3-70 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 3 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 7 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 17 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 35 mg. In some embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 70 mg.
  • In some embodiments, the anti-IL-6 antibody is siltuximab. In some embodiments, siltuximab is administered intravenously at a monthly equivalent dose of 50-500 mg. In some embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 50 mg. In some embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 100 mg. In some embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 150 mg. In some embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 200 mg. In some embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 300 mg. In some embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 500 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 240 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 320 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 480 mg. In some embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 800 mg.
  • In some embodiments, the anti-IL-6 antibody is gerilimzumab. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of 0.075-1.8 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.075 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.12 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.3 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.6 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.9 mg. In some embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 1.8 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of 0.125-3 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.125 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.2 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.5 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1.5 mg. In some embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 3 mg.
  • In some embodiments, the anti-IL-6 antibody is sirukumab. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of 1.5-60 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 1.5 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 3 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 6 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 12 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 36 mg. In some embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of 2.5-100 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 2.5 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In some embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • In some embodiments, the anti-IL-6 antibody is clazakizumab. In some embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of 3-60 mg. In some embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 3 mg. In some embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 6 mg. In some embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 12 mg. In some embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 24 mg. In some embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 36 mg. In some embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of 5-100 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In some embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • In some embodiments, the anti-IL-6 antibody is olokizumab. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of 1.8-60 mg. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 1.8 mg. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 3.6 mg. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 9 mg. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 18 mg. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 45 mg. In some embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of 3-100 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 3 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 6 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 15 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 30 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 72 mg. In some embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • In some embodiments, the anti-IL-6 antibody is VX30 (VOP-R003; Vaccinex). In some embodiments, VX30 (VOP-R003; Vaccinex) is administered intravenously. In some embodiments, VX30 (VOP-R003; Vaccinex) is administered subcutaneously.
  • In some embodiments, the anti-IL-6 antibody is EB-007 (EBI-029; Eleven Bio). In some embodiments, EB-007 (EBI-029; Eleven Bio) is administered intravenously. In some embodiments, EB-007 (EBI-029; Eleven Bio) is administered subcutaneously.
  • In some embodiments, the anti-IL-6 antibody is FM101 (Femta Pharmaceuticals, Lonza). In some embodiments, FM101 (Femta Pharmaceuticals, Lonza) is administered intravenously. In some embodiments, FM101 (Femta Pharmaceuticals, Lonza) is administered subcutaneously.
  • In some embodiments, the IL-6 antagonist is an anti-IL-6R antibody.
  • In some embodiments, the anti-IL-6R antibody is tocilizumab. In some embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of 50-500 mg. In some embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 50 mg. In some embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 100 mg. In some embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 150 mg. In some embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 250 mg. In some embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 350 mg. In some embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 500 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 240 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 400 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 560 mg. In some embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 800 mg.
  • In some embodiments, the anti-IL-6R antibody is sarilumab. In some embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 12-120 mg. In some embodiments, sarilumab is administered intravenously at a monthly equivalent dose of about 12 mg. In some embodiments, sarilumab is administered intravenously at a monthly equivalent dose of about 24 mg. In some embodiments, sarilumab is administered intravenously at a monthly equivalent dose of about 48 mg. In some embodiments, sarilumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, sarilumab is administered intravenously at a monthly equivalent dose of about 72 mg. In some embodiments, sarilumab is administered intravenously at a monthly equivalent dose of about 120 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of 20-200 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 120 mg. In some embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • In some embodiments, the anti-IL-6R antibody is vobarilizumab. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of 4-120 mg. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 4 mg. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 6 mg. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 30 mg. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 84 mg. In some embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 120 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of 7-200 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 7 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 140 mg. In some embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • In some embodiments, the IL-6 antagonist is a JAK inhibitor. In some embodiments, the IL-6 antagonist is a STAT3 inhibitor.
  • In some embodiments, the patient has a hepcidin-mediated disorder.
  • In some embodiments, the patient has kidney disease. In some embodiments, the patient has chronic kidney disease. In some embodiments, the patient has KDOQI stage 1-5 chronic kidney disease. In some embodiments, the patient has KDOQI stage 3-5 chronic kidney disease. In some embodiments, the patient is not on dialysis. In some embodiments, the patient has KDOQI stage 5 chronic kidney disease. In some embodiments, the patient is on dialysis. In some embodiments, the patient has cardiorenal syndrome (CRS). In some embodiments, the patient has CRS Type 4.
  • In some embodiments, the patient has cardiovascular disease. In some embodiments, the patient has diuretic resistant heart failure. In some embodiments, the patient has congestive heart failure (CHF). In some embodiments, the patient has congestive heart failure (CHF) with reduced ejection fraction. In some embodiments, the patient has congestive heart failure (CHF) with mid-range ejection fraction. In some embodiments, the patient has congestive heart failure (CHF) with preserved ejection fraction. In some embodiments, the patient has acute coronary syndrome. In some embodiments, the patient has atherosclerosis.
  • In some embodiments, the patient has anemia. In some embodiments, the patient has anemia of chronic disease. In some embodiments, the patient has iron-refractory iron-deficiency anemia (IRIDA).
  • In some embodiments, the patient has diabetes. In some embodiments, the patient has type II diabetes. In some embodiments, the patient has insulin-resistant diabetes.
  • In some embodiments, the patient has liver disease. In some embodiments, the patient has non-alcoholic steatohepatitis (NASH).
  • In some embodiments, the patient has osteoporosis.
  • In some embodiments, the patient has depression.
  • In some embodiments, the patient has asthma.
  • In some embodiments, the patient has neuroinflammatory disorder. In some embodiments, the patient has Alzheimer's disease. In some embodiments, the patient has Parkinson's disease. In some embodiments, the patient has multiple sclerosis. In some embodiments, the patient has amyotrophic lateral sclerosis (ALS).
  • In some embodiments, the patient has age-related macular degeneration (AMD).
  • In some embodiments, the patient has cancer. In some embodiments, the cancer is selected from the group consisting of: solid tumors, small cell lung cancer, non-small cell lung cancer, hematological cancer, multiple myeloma, leukemia, chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), lymphomas, Hodgkin's lymphoma and hepatic adenoma.
  • In some embodiments, patient has skin disease.
  • In some embodiments, the method prevents aging in the patient.
  • In another aspect, methods for treating inflammation in a patient with cardiovascular disease are provided herein. The methods comprise: administering an IL-6 antagonist to a patient with cardiovascular disease and CRP level greater than 2 mg/L at a dose that is sufficient to reduce CRP levels to 2 mg/L or less without causing neutropenia.
  • In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 30% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 20% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 10% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • In another aspect, methods for treating inflammation in a patient with chronic kidney disease (CKD) are provided herein. The methods comprise: administering an IL-6 antagonist to a patient with CKD and a CRP level greater than 2 mg/L at a dose that is sufficient to reduce CRP levels to 2 mg/L or less without causing neutropenia.
  • In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 30% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 20% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is no more than 10% of the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:
  • FIG. 1 presents the dose escalation schematic for the phase 1/phase 2 randomized, double-blind, placebo-controlled trial of COR-001 in hemodialysis patients described in Example 1.
  • FIG. 2 shows the timeline and the efficacy analysis of the treatment phase and the safety follow-up phase.
  • FIGS. 3A and 3B show the results of C-reactive protein (CRP) responder analysis after treatment with COR-001 (anti-IL-6) or canakinumab (anti-IL1(3). FIG. 3A shows the C-reactive protein responder rate after intravenous treatment with COR-001 in patients with stage 5 chronic kidney disease who were on dialysis in the clinical trial described in Example 1. The baseline hsCRP was 12.4 mg/L. Responder was defined as Week 12 average hsCRP<2 mg/L. FIG. 3B shows the C-reactive protein responder rate after treatment with canakinumab in the CANTOS trial, as described in the research literature. The baseline hsCRP was 5.5 mg/L. Responder was defined as 3-month hsCRP<2 mg/L.
  • FIG. 4 shows the results of hemoglobin responder analysis after treatment with COR-001 at doses of 2 mg, 6 mg, and 20 mg. Hemoglobin responder was defined as increase by 1 g/dL or more after Day 29. Investigators were not permitted to change ESA dosing until after Day 29.
  • FIG. 5 shows the effect of COR-001 on the diastolic cardiac parameter, NT-proBNP.
  • FIGS. 6A and 6B show the adverse responder rate for neutrophils and platelets. FIG. 6A shows the neutrophils adverse responder rate. An Adverse Responder was defined as Week 12 average neutrophils <2×106/mL. FIG. 6B shows the platelets adverse responder rate. Adverse responder was defined as Week 12 average platelets <100×106/mL.
  • DETAILED DESCRIPTION 1. Definitions
  • Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which the invention pertains.
  • As used herein, “interleukin 6 (IL-6)” or “IL-6 polypeptide” refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_000591 and having IL-6 biological activity. IL-6 is a pleotropic cytokine with multiple biologic functions. Exemplary IL-6 biological activities include immunostimulatory and pro-inflammatory activities. An exemplary IL-6 amino acid sequence is provided below:
  • (SEQ ID NO: 1)
    1 MCVGARRLGR GPCAALLLLG LGLSTVTGLH CVGDTYPSND
    RCCHECRPGN GMVSRCSRSQ
    61 NTVCRPCGPG FYNDVVSSKP CKPCTWCNLR SGSERKQLCT
    ATQDTVCRCR AGTQPLDSYK
    121 PGVDCAPCPP GHFSPGDNQA CKPWTNCTLA GKHTLQPASN
    SSDAICEDRD PPATQPQETQ
    181 GPPARPITVQ PTEAWPRTSQ GPSTRPVEVP GGRAVAAILG
    LGLVLGLLGP LAILLALYLL
    241 RRDQRLPPDA HKPPGGGSFR TPIQEEQADA HSTLAKI
  • As used herein, “interleukin 6 (IL-6) nucleic acid” refers to a polynucleotide encoding an interleukin 6 (IL-6) polypeptide. An exemplary interleukin 6 (IL-6) nucleic acid sequence is provided at NCBI Accession No. NM_000600. The exemplary sequence at NCBI Accession No. NM_000600 is provided below:
  • (SEQ ID NO: 2)
    1 AATATTAGAG TCTCAACCCC CAATAAATAT AGGACTGGAG
    ATGTCTGAGG CTCATTCTGC
    61 CCTCGAGCCC ACCGGGAACG AAAGAGAAGC TCTATCTCCC
    CTCCAGGAGC CCAGCTATGA
    121 ACTCCTTCTC CACAAGCGCC TTCGGTCCAG TTGCCTTCTC
    CCTGGGGCTG CTCCTGGTGT
    181 TGCCTGCTGC CTTCCCTGCC CCAGTACCCC CAGGAGAAGA
    TTCCAAAGAT GTAGCCGCCC
    241 CACACAGACA GCCACTCACC TCTTCAGAAC GAATTGACAA
    ACAAATTCGG TACATCCTCG
    301 ACGGCATCTC AGCCCTGAGA AAGGAGACAT GTAACAAGAG
    TAACATGTGT GAAAGCAGCA
    361 AAGAGGCACT GGCAGAAAAC AACCTGAACC TTCCAAAGAT
    GGCTGAAAAA GATGGATGCT
    421 TCCAATCTGG ATTCAATGAG GAGACTTGCC TGGTGAAAAT
    CATCACTGGT CTTTTGGAGT
    481 TTGAGGTATA CCTAGAGTAC CTCCAGAACA GATTTGAGAG
    TAGTGAGGAA CAAGCCAGAG
    541 CTGTGCAGAT GAGTACAAAA GTCCTGATCC AGTTCCTGCA
    GAAAAAGGCA AAGAATCTAG
    601 ATGCAATAAC CACCCCTGAC CCAACCACAA ATGCCAGCCT
    GCTGACGAAG CTGCAGGCAC
    661 AGAACCAGTG GCTGCAGGAC ATGACAACTC ATCTCATTCT
    GCGCAGCTTT AAGGAGTTCC
    721 TGCAGTCCAG CCTGAGGGCT CTTCGGCAAA TGTAGCATGG
    GCACCTCAGA TTGTTGTTGT
    781 TAATGGGCAT TCCTTCTTCT GGTCAGAAAC CTGTCCACTG
    GGCACAGAAC TTATGTTGTT
    841 CTCTATGGAG AACTAAAAGT ATGAGCGTTA GGACACTATT
    TTAATTATTT TTAATTTATT
    901 AATATTTAAA TATGTGAAGC TGAGTTAATT TATGTAAGTC
    ATATTTATAT TTTTAAGAAG
    961 TACCACTTGA AACATTTTAT GTATTAGTTT TGAAATAATA
    ATGGAAAGTG GCTATGCAGT
    1021 TTGAATATCC TTTGTTTCAG AGCCAGATCA TTTCTTGGAA
    AGTGTAGGCT TACCTCAAAT
    1081 AAATGGCTAA CTTATACATA TTTTTAAAGA AATATTTATA
    TTGTATTTAT ATAATGTATA
    1141 AATGGTTTTT ATACCAATAA ATGGCATTTT AAAAAATTCA
    GCAAAAAAAA AAAAAAAAAA
    1201 A
  • As used herein, “interleukin 6 receptor (IL-6R) complex” refers to a protein complex comprising an IL-6 receptor subunit alpha (IL-6Ra) and interleukin 6 signal transducer glycoprotein 130 (gp130), also termed interleukin 6 receptor subunit 0 (IL-6R13).
  • As used herein, “interleukin 6 receptor subunit a (IL-6Ra) polypeptide” refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_000556 or NP_852004 and having IL-6 receptor biological activity. Exemplary IL-6Rα biological activities include binding to IL-6, binding to glycoprotein 130 (gp130), and regulation of cell growth and differentiation. An exemplary IL-6R sequence is provided below:
  • (SEQ ID NO: 3)
    1 MLAVGCALLA ALLAAPGAAL APRRCPAQEV ARGVLTSLPG
    DSVTLTCPGV EPEDNATVHW
    61 VLRKPAAGSH PSRWAGMGRR LLLRSVQLHD SGNYSCYRAG
    RPAGTVHLLV DVPPEEPQLS
    121 CFRKSPLSNV VCEWGPRSTP SLTTKAVLLV RKFQNSPAED
    FQEPCQYSQE SQKFSCQLAV
    181 PEGDSSFYIV SMCVASSVGS KFSKTQTFQG CGILQPDPPA
    NITVTAVARN PRWLSVTWQD
    241 PHSWNSSFYR LRFELRYRAE RSKTFTTWMV KDLQHHCVIH
    DAWSGLRHVV QLRAQEEFGQ
    301 GEWSEWSPEA MGTPWTESRS PPAENEVSTP MQALTTNKDD
    DNILFRDSAN ATSLPVQDSS
    361 SVPLPTFLVA GGSLAFGTLL CIAIVLRFKK TWKLRALKEG
    KTSMHPPYSL GQLVPERPRP
    421 TPVLVPLISP PVSPSSLGSD NTSSHNRPDA RDPRSPYDIS
    NTDYFFPR
  • As used herein, “glycoprotein 130 (gp130)” or “interleukin 6 receptor subunit 13 (IL-64) polypeptide” refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_002175, NP_786943, or NP_001177910 and having IL-6 receptor biological activity. Exemplary IL-6Rβ biological activities include binding to IL-6Rα, IL-6 receptor signaling activity, and regulation of cell growth, differentiation, hepcidin expression etc. An exemplary IL-6Rβ sequence is provided below:
  • (SEQ ID NO: 4)
    1 MLTLQTWLVQ ALFIFLTTES TGELLDPCGY ISPESPVVQL
    HSNFTAVCVL KEKCMDYFHV
    61 NANYIVWKTN HFTIPKEQYT IINRTASSVT FTDIASLNIQ
    LTCNILTFGQ LEQNVYGITI
    121 ISGLPPEKPK NLSCIVNEGK KMRCEWDGGR ETHLETNFTL
    KSEWATHKFA DCKAKRDTPT
    181 SCTVDYSTVY FVNIEVWVEA ENALGKVTSD HINFDPVYKV
    KPNPPHNLSV INSEELSSIL
    241 KLTWTNPSIK SVIILKYNIQ YRTKDASTWS QIPPEDTAST
    RSSFTVQDLK PFTEYVFRIR
    301 CMKEDGKGYW SDWSEEASGI TYEDRPSKAP SFWYKIDPSH
    TQGYRTVQLV WKTLPPFEAN
    361 GKILDYEVTL TRWKSHLQNY TVNATKLTVN LTNDRYLATL
    TVRNLVGKSD AAVLTIPACD
    421 FQATHPVMDL KAFPKDNMLW VEWTTPRESV KKYILEWCVL
    SDKAPCITDW QQEDGTVHRT
    481 YLRGNLAESK CYLITVTPVY ADGPGSPESI KAYLKQAPPS
    KGPTVRTKKV GKNEAVLEWD
    541 QLPVDVQNGF IRNYTIFYRT IIGNETAVNV DSSHTEYTLS
    SLTSDTLYMV RMAAYTDEGG
    601 KDGPEFTFTT PKFAQGEIEA IVVPVCLAFL LTTLLGVLFC
    FNKRDLIKKH IWPNVPDPSK
    661 SHIAQWSPHT PPRHNFNSKD QMYSDGNFTD VSVVEIEAND
    KKPFPEDLKS LDLFKKEKIN
    721 TEGHSSGIGG SSCMSSSRPS ISSSDENESS QNTSSTVQYS
    TWHSGYRHQ VPSVQVFSRS
    781 ESTQPLLDSE ERPEDLQLVD HVDGGDGILP RQQYFKQNCS
    QHESSPDISH FERSKQVSSV
    841 NEEDFVRLKQ QISDHISQSC GSGQMKMFQE VSAADAFGPG
    TEGQVERFET VGMEAATDEG
    901 MPKSYLPQTV RQGGYMPQ
  • Unless otherwise specified, “IL-6 antagonist” refers an agent that is capable of decreasing the biological activity of IL-6. IL-6 antagonists include agents that decrease the level of IL-6 polypeptide in serum, including agents that decrease the expression of an IL-6 polypeptide or nucleic acid; agents that decrease the ability of IL-6 to bind to the IL-6R; agents that decrease the expression of the IL-6R; and agents that decrease signal transduction by the IL-6R receptor when bound by IL-6. In preferred embodiments, the IL-6 antagonist decreases IL-6 biological activity by at least about 10%, 20%, 30%, 50%, 70%, 80%, 90%, 95%, or even 100%. As further described below, IL-6 antagonists include IL-6 binding polypeptides, such as anti-IL-6 antibodies and antigen binding fragments or derivatives thereof; IL-6R binding polypeptides, such as anti-IL-6R antibodies and antigen binding fragments or derivatives thereof; and synthetic chemical molecules, such as JAK1 and JAK3 inhibitors.
  • The term “IL-6 antibody” or “anti-IL-6 antibody” refers to an antibody that specifically binds IL-6. Anti-IL-6 antibodies include monoclonal and polyclonal antibodies that are specific for IL-6, and antigen-binding fragments or derivatives thereof. IL-6 antibodies are described in greater detail below.
  • As used herein, the term “IL-6 mediated inflammation” or “IL-6 mediated inflammatory disorder” refers to inflammation or inflammation related disorder in which IL-6 is known or suspected to contribute to the etiology or symptoms of the inflammation.
  • The term “C-reactive protein” or “CRP” refers to a polypeptide or fragment thereof having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_000558 and having complement activating activity. CRP levels increase in response to inflammation, and can be measured with an hsCRP (high-sensitivity C-reactive protein) test. An exemplary CRP sequence is provided below:
  • (SEQ ID NO: 5)
    1 MEKLLCFLVL TSLSHAFGQT DMSRKAFVFP KESDTSYVSL
    KAPLTKPLKA FTVCLHFYTE
    61 LSSTRGYSIF SYATKRQDNE ILIFWSKDIG YSFTVGGSEI
    LFEVPEVTVA PVHICTSWES
    121 ASGIVEFWVD GKPRVRKSLK KGYTVGAEAS IILGQEQDSF
    GGNFEGSQSL VGDIGNVNMW
    181 DFVLSPDEIN TIYLGGPFSP NVLNWRALKY EVQGEVFTKP
    QLWP
  • As used herein, “hepcidin” refers to a polypeptide having at least about 85% or greater amino acid identity to the amino acid sequence provided at NCBI Accession No. NP_066998 (“hepcidin preprotein”), or biologically active fragment thereof. Exemplary hepcidin biological activities include binding and reducing the levels of the iron export channel ferroportin, inhibiting iron transport, inhibiting intestinal iron absorption, and inhibiting iron release from macrophages and the liver. An exemplary hepcidin preprotein amino acid sequence is provided below:
  • (SEQ ID NO: 6)
    1 MALSSQIWAA CLLLLLLLAS LTSGSVFPQQ TGQLAELQPQ
    DRAGARASWM PMFQRRRRRD
    61 THFPICIFCC GCCHRSKCGM CCKT

    With reference to the sequence above, hepcidin exists in various forms, including as a preprohormone (amino acids 25-84), prohormone (amino acids 25-84), and mature forms termed hepcidin-25 (amino acids 60-84), hepcidin-22 (amino acids 63-84), and hepcidin-20 (amino acids 65-84).
  • A “hepcidin-mediated disorder” is any disorder in which hepcidin expression contributes to the etiology of the disorder or any of its symptoms.
  • The term “immune suppression” or “immunosuppression” refers to a reduction of the activation or efficacy of the immune system. Immune suppression can be measured by the number of white blood cells, such as neutrophils.
  • As used herein, “neutrophil” of “neutrocyte” refers to a type of white blood cell that is an essential part of the innate immune system. The absolute neutrophil count (ANC) can be used in diagnosis and prognosis. Low neutrophil counts are termed neutropenia.
  • The term “agent” refers to any compound or composition suitable to be administered in therapy, and explicitly includes chemical compounds; proteins, including antibodies or antigen-binding fragments thereof; peptides; and nucleic acid molecules.
  • The term “subject” refers to a human or non-human mammal, including, but not limited to, bovine, equine, canine, ovine, feline, and rodent, including murine and rattus, subjects. A “patient” is a human subject in need of treatment.
  • As used herein, the terms “treat,” “treating,” “treatment,” and the like refer to reducing or ameliorating a disorder, and/or signs or symptoms associated therewith, or slowing or halting the progression thereof. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.
  • As used herein, “pre-treatment” means prior to the first administration of an IL-6 antagonist according the methods described herein. Pre-treatment does not exclude, and often includes, the prior administration of treatments other than an IL-6 antagonist.
  • As used herein, “post-treatment” means after the administration of an IL-6 antagonist according the methods described herein. Post-treatment includes after any administration of an IL-6 antagonist at any dosage described herein. Post-treatment also includes after the treatment phase of an IL-6 antagonist.
  • In this disclosure, “comprises,” “comprising,” “containing,” “having,” “includes,” “including,” and linguistic variants thereof have the meaning ascribed to them in U.S. patent law, permitting the presence of additional components beyond those explicitly recited.
  • The term “biological sample” refers to any tissue, cell, fluid, or other material derived from an organism (e.g., human subject). In certain embodiments, the biological sample is serum or blood.
  • Unless otherwise specified, antibody constant region residue numbering is according to the EU index as in Kabat.
  • 2. Methods of Treating IL-6 Mediated Inflammation
  • In a first aspect, methods of treating IL-6-mediated inflammation in a patient are presented. The methods comprise administering an IL-6 antagonist to a patient with IL-6-mediated inflammation at a dose that is sufficient to reduce inflammation without causing immune suppression.
  • 2.1. Pre-Treatment Serum CRP and IL-6 Levels
  • In the methods described herein, the patient has an IL-6-mediated inflammation.
  • In typical embodiments, the patient has elevated pre-treatment levels of C-reactive protein (CRP).
  • In some embodiments, the patient has a pre-treatment CRP level at least 2 mg/L. In some embodiments, the patient has a pre-treatment CRP level at least 2 mg/L, 2.5 mg/L, 3 mg/L, 3.5 mg/L, 4 mg/L, 4.5 mg/L, or 5 mg/L. In some embodiments, the patient has pre-treatment CRP levels at least 7.5 mg/L, 10 mg/L, 12.5 mg/L, or 15 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 2 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 2.5 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 5 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 7.5 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 10 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 12.5 mg/L. In various embodiments, the patient has a pre-treatment CRP level at least 15 mg/L.
  • In some embodiments of the methods described herein, the patient has elevated pre-treatment serum levels of IL-6.
  • In some embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml. In various embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml, at least 3 pg/ml, at least 4 pg/ml, at least 5 pg/ml, at least 6 pg/ml, at least 7 pg/ml, at least 8 pg/ml, at least 9 pg/ml, at least 10 pg/ml, at least 11 pg/ml, at least 12 pg/ml, at least 13 pg/ml, at least 14 pg/ml, or at least 15 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 2.5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 7.5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 12.5 pg/ml. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 15 pg/ml.
  • In some embodiments, the patient has elevated pre-treatment serum levels of CRP and elevated pre-treatment IL-6 levels. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 2 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 2.5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 2 pg/ml and a pre-treatment CRP level at least 10 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 2 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 2.5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 4 pg/ml and a pre-treatment CRP level at least 10 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 2 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 2.5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 5 pg/ml and a pre-treatment CRP level at least 10 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 2 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 2.5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 5 mg/L. In certain embodiments, the patient has a pre-treatment serum IL-6 level of at least 10 pg/ml and a pre-treatment CRP level at least 10 mg/L.
  • 2.2. Reduction of IL-6 and C-Reactive Protein (CRP)
  • In typical embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce the patient's free serum IL-6 levels below pre-treatment levels.
  • In some embodiments, the free serum IL-6 level is decreased by at least 10% as compared to pre-treatment levels. In various embodiments, the free serum IL-6 level is decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 20% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 30% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 40% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 50% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 60% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 70% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 80% as compared to pre-treatment levels. In certain embodiments, the free serum IL-6 level is decreased by at least 90% as compared to pre-treatment levels.
  • In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce the patient's CRP levels below pre-treatment levels. In some embodiments, the IL-6 mediated inflammation is measured by the CRP levels.
  • In certain embodiments, the post-treatment CRP level is no more than 5 mg/L. In certain embodiments, the post-treatment CRP level is no more than 2.5 mg/L. In certain embodiments, the post-treatment CRP level is no more than 2 mg/L. In certain embodiments, the post-treatment CRP level is no more than 1 mg/L.
  • In some embodiments, the CRP level is decreased by at least 10% as compared to pre-treatment levels. In various embodiments, the CRP level is decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 20% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 30% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 40% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 50% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 60% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 70% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 80% as compared to pre-treatment levels. In certain embodiments, the CRP level is decreased by at least 90% as compared to pre-treatment levels.
  • 2.3. Neutrophil Level
  • 2.3.1. Absolute Neutrophil Count (ANC)
  • In the methods described herein, the IL-6 antagonist is administered at a dose sufficient to reduce inflammation without causing immune suppression.
  • In some embodiments, the immune suppression of the patient is measured by Absolute Neutrophil Count (ANC).
  • In some embodiments, the post-treatment ANC is at least 300 cells/μL. In various embodiments, the post-treatment ANC is at least 500 cells/μL, 600 cells/μL, 700 cells/μL, 800 cells/μL, 900 cells/μL, 1000 cells/μL, 1100 cells/μL, 1200 cells/μL, 1300 cells/μL, 1400 cells/μL, 1500 cells/μL, 1600 cells/μL, 1700 cells/μL, 1800 cells/μL, 1900 cells/μL, or 2000 cells/μL. In certain embodiments, the post-treatment ANC is at least 500 cells/μL. In certain embodiments, the post-treatment ANC is at least 750 cells/μL. In certain embodiments, the post-treatment ANC is at least 1000 cells/μL. In certain embodiments, the post-treatment ANC is at least 1250 cells/μL. In certain embodiments, the post-treatment ANC is at least 1500 cells/μL. In certain embodiments, the post-treatment ANC is at least 1750 cells/μL. In certain embodiments, the post-treatment ANC is at least 2000 cells/μL.
  • In some embodiments, the ANC is decreased by no more than 2500 cells/μL as compared to pre-treatment levels. In various embodiments, the ANC is decreased by no more than 2000 cells/μL, 1900 cells/μL, 1800 cells/μL, 1700 cells/μL, 1600 cells/μL, 1500 cells/μL, 1400 cells/μL, 1300 cells/μL, 1200 cells/μL, 1100 cells/μL, 1000 cells/μL, 900 cells/μL, 800 cells/μL, 700 cells/μL, 600 cells/μL, or 500 cells/μL, as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 2000 cells/μL as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 1750 cells/μL as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 1500 cells/μL as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 1250 cells/μL as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 1000 cells/μL as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 750 cells/μL as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 500 cells/μL as compared to pre-treatment levels.
  • In some embodiments, the ANC is decreased by no more than 70% as compared to pre-treatment levels. In various embodiments, the ANC is decreased by no more than 60%, 50%, 40%, 30%, 20%, 10%, or 5% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 60% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 50% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 40% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 30% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 20% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 10% as compared to pre-treatment levels. In certain embodiments, the ANC is decreased by no more than 5% as compared to pre-treatment levels.
  • In some embodiments, the ANC is not decreased as compared to pre-treatment levels.
  • 2.4. Lipoprotein(a) Level
  • In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce the patient's lipoprotein(a) levels below pre-treatment levels.
  • In some embodiments, the lipoprotein(a) level is decreased by at least 10% as compared to pre-treatment levels. In various embodiments, the lipoprotein(a) level is decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 20% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 30% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 40% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 50% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 60% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 70% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 80% as compared to pre-treatment levels. In certain embodiments, the lipoprotein(a) level is decreased by at least 90% as compared to pre-treatment levels.
  • 2.5. LDL Level
  • In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce the patient's lipoprotein(a) levels without significantly increasing the patent's low-density lipoprotein (LDL) levels.
  • In some embodiments, the LDL level is increased by no more than 15% as compared to pre-treatment levels. In various embodiments, the LDL level is increased by no more than 12%, 10%, 8%, 6%, 5%, 4%, 3%, 2% or 1% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 12% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 10% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 8% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 6% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 5% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 4% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 3% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 2% as compared to pre-treatment levels. In certain embodiments, the LDL level is increased by no more than 1% as compared to pre-treatment levels.
  • In certain embodiments, the LDL level is not increased as compared to pre-treatment levels.
  • 2.6. IL-6 Mediated Inflammatory Disorders
  • In the methods described herein, the patient has an IL-6 mediated inflammatory disorder.
  • 2.6.1. Non-Hepcidin-Mediated Inflammatory Disorders
  • In various embodiments, the IL-6 mediated inflammatory disorder is not a hepcidin-mediated disorder. Hepcidin-mediated disorders are described in US 2017/0029499, the disclosure of which is incorporated herein by reference in its entirety.
  • 2.6.2. Hepcidin-Mediated Inflammatory Disorders
  • In various embodiments, the IL-6 mediated inflammatory disorder is a hepcidin-mediated disorder. Hepcidin-mediated disorders are described in US 2017/0029499, the disclosure of which is incorporated herein by reference in its entirety. In particular embodiments, the patient has a hepcidin-mediated disorder and at least one copy of the major allele at the TMPRSS6 rs855791 SNP (amino acid 736A). In other embodiments, the patient has a hepcidin-mediated disorder and is homozygous for the minor allele at the TMPRSS6 rs855791 SNP (amino acid 736V). In certain embodiments, the patient has a hepcidin-mediated disorder and unknown genotype at the TMPRSS6 rs855791 SNP.
  • 2.6.3. Non-Autoimmune Inflammatory Disorder
  • In various embodiments, the IL-6 mediated inflammatory disorder is a non-autoimmune IL-6 mediated inflammatory disorder. In particular embodiments, the patient has an IL-6 mediated disorder other than rheumatoid arthritis, giant cell arteritis, polyarticular juvenile idiopathic arthritis, or systemic juvenile idiopathic arthritis.
  • 2.6.4. Kidney Disease
  • In various embodiments, the patient has kidney disease. In some embodiments, the kidney disease is chronic kidney disease (CKD).
  • In some embodiments, the patient has KDOQI stage 1-5 chronic kidney disease. In some embodiments, the patient has KDOQI stage 3-5 chronic kidney disease. In some embodiments, the patient has KDOQI stage 1 chronic kidney disease, KDOQI stage 2 chronic kidney disease, KDOQI stage 3 chronic kidney disease, KDOQI stage 4 chronic kidney disease, or KDOQI stage 5 chronic kidney disease. In certain embodiments, the patient has KDOQI stage 5 chronic kidney disease.
  • In some embodiments, the patient is on dialysis. In some embodiments, the patient is not on dialysis. In certain embodiment, the patient has KDOQI stage 3-5 chronic kidney disease, wherein the patient is not on dialysis. In certain embodiment, the patient has KDOQI stage 5 chronic kidney disease, wherein the patient is on dialysis.
  • In some embodiments, the patient has cardiorenal syndrome (CRS). In certain embodiments, the patient has CRS Type 4.
  • In some embodiments, the patient has been treated with dialysis.
  • 2.6.5. Cardiovascular Disease
  • In various embodiments, the patient has cardiovascular disease.
  • In some embodiments, the patient has had a previous myocardial infarction. In particular embodiments, the patient has had a previous myocardial infarction and has a CRP level of 2 mg/L or more.
  • In certain embodiments, the patient has suffered a myocardial infarction within the 60 days prior to first administration of an IL-6 antagonist. In particular embodiments, the patient has suffered a myocardial infarction within the 30 days, 14 days, 7 days, 48 hours, or 24 hours prior to first administration of an IL-6 antagonist.
  • In some embodiments, the patient has atherosclerosis but has not had a myocardial infarction. In particular embodiments, the patient has atherosclerosis, has not had a myocardial infarction, and has a CRP level of 2 mg/L or more.
  • In some embodiments, the cardiovascular disease is congestive heart failure (CHF). In certain embodiments, the patient has congestive heart failure (CHF) with reduced ejection fraction. In certain embodiments, the patient has congestive heart failure (CHF) with mid-range ejection fraction. In certain embodiments, the patient has congestive heart failure (CHF) with preserved ejection fraction.
  • In various embodiments, the IL-6 mediated inflammatory disorder is heart failure that is not diuretic resistant. Diuretic resistant heart failure is described in WO 2018/144773, the disclosure of which is incorporated herein by reference in its entirety.
  • In some embodiments, the cardiovascular disease is diuretic resistant heart failure. Diuretic resistant heart failure is described in WO 2018/144773, the disclosure of which is incorporated herein by reference in its entirety.
  • In some embodiments, the cardiovascular disease is acute coronary syndrome.
  • In certain embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce nonfatal myocardial infarction, nonfatal stroke, and/or cardiovascular death. In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce the risk of heart failure. In some embodiments, the IL-6 antagonist is administered at a dose sufficient to increase cardiac function. In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reduce fibrosis after acute myocardial infarction.
  • 2.6.6. Anemia
  • In various embodiments, the patient has anemia.
  • In some embodiments, the patient has anemia of chronic disease. In some embodiments, the patient has iron-refractory iron-deficiency anemia (IRIDA).
  • In some of these embodiments, the patient has been treated with an erythropoiesis-stimulating agent (ESA). In some embodiments, the patient has been treated with iron supplementation. In some embodiments, the patient has been treated with transfusion of blood or packed red blood cells.
  • In some embodiments, the IL-6 antagonist is administered at a dose sufficient to reverse functional iron deficiency.
  • 2.6.7. Diabetes
  • In some embodiments, the patient has diabetes. In certain embodiments, the patient has type II diabetes. In certain embodiments, the patient has insulin-resistant diabetes.
  • 2.6.8. Liver Disease
  • In some embodiments, the patient has liver disease. In certain embodiments, the patient has non-alcoholic steatohepatitis (NASH).
  • 2.6.9. Osteoporosis
  • In some embodiments, the patient has osteoporosis.
  • 2.6.10. Depression
  • In some embodiments, the patient has depression.
  • 2.6.11. Asthma
  • In some embodiments, the patient has asthma.
  • 2.6.12. Neuroinflammatory Disorder
  • In some embodiments, the patient has neuroinflammatory disorder. In certain embodiments, the patient has Alzheimer's disease. In certain embodiments, the patient has Parkinson's disease. In certain embodiments, the patient has multiple sclerosis. In certain embodiments, the patient has amyotrophic lateral sclerosis (ALS).
  • 2.6.13. Age-Related Macular Degeneration
  • In some embodiments, the patient has age-related macular degeneration (AMD).
  • 2.6.14. Cancer
  • In various embodiments, the patient has cancer.
  • In some embodiments, the cancer is selected from the group consisting of: solid tumors, small cell lung cancer, non-small cell lung cancer, hematological cancer, multiple myeloma, leukemia, chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), lymphomas, and Hodgkin's lymphoma.
  • 2.6.15. Skin Disease
  • In various embodiments, the patient has skin disease, such as atopic dermatitis or psoriasis.
  • 2.6.16. Aging
  • In some embodiments, the method prevents aging in the patient.
  • 2.7. IL-6 Antagonists
  • The IL-6 antagonist used in the methods described herein is capable of decreasing the biological activity of IL-6.
  • 2.7.1. Anti-IL-6 Antibodies
  • In various embodiments, the IL-6 antagonist is an anti-IL-6 antibody or antigen-binding fragment or derivative thereof.
  • In typical embodiments, the anti-IL-6 antibody neutralizes the biological activity of IL-6. In some embodiments, the neutralizing antibody prevents binding of IL-6 to the IL-6 receptor.
  • In some embodiments, the IL-6 antagonist is an anti-IL-6 monoclonal antibody. In some embodiments, the IL-6 antagonist is a polyclonal composition comprising a plurality of species of anti-IL-6 antibodies, each of the plurality having unique CDRs.
  • In some embodiments, the anti-IL-6 antibody is a Fab, Fab′, F(ab′)2, Fv, scFv, (scFv)2, single chain antibody molecule, dual variable domain antibody, single variable domain antibody, linear antibody, or V domain antibody.
  • In some embodiments, the anti-IL-6 antibody comprises a scaffold. In certain embodiments, the scaffold is Fc, optionally human Fc. In some embodiments, the anti-IL-6 antibody comprises a heavy chain constant region of a class selected from IgG, IgA, IgD, IgE, and IgM. In certain embodiments, the anti-IL-6 antibody comprises a heavy chain constant region of the class IgG and a subclass selected from IgG1, IgG2, IgG3, and IgG4.
  • In some embodiments, the IL-6 antagonist is immunoconjugate or fusion protein comprising an IL-6 antigen-binding fragment.
  • In some embodiments, the antibody is bispecific or multispecific, with at least one of the antigen-binding portions having specificity for IL-6.
  • In some embodiments, the antibody is fully human. In some embodiments, the antibody is humanized. In some embodiments, the antibody is chimeric and has non-human V regions and human C region domains. In some embodiments, the antibody is murine.
  • In typical embodiments, the anti-IL-6 antibody has a KD for binding human IL-6 of less than 100 nM. In some embodiments, the anti-IL-6 antibody has a KD for binding human IL-6 of less than 75 nM, 50 nM, 25 nM, 20 nM, 15 nM, or 10 nM. In particular embodiments, the anti-IL-6 antibody has a KD for binding human IL-6 of less than 5 nM, 4 nM, 3 nM, or 2 nM. In selected embodiments, the anti-IL-6 antibody has a KD for binding human IL-6 of less than 1 nM, 750 pM, or 500 pM. In specific embodiments, the anti-IL-6 antibody has a KD for binding human IL-6 of no more than 500 pM, 400 pM, 300 pM, 200 pM, or 100 pM.
  • In typical embodiments, the anti-IL-6 antibody has an elimination half-life following intravenous administration of at least 7 days. In certain embodiments, the anti-IL-6 antibody has an elimination half-life of at least 14 days, at least 21 days, or at least 30 days.
  • In some embodiments, the anti-IL-6 antibody has a human IgG constant region with at least one amino acid substitution that extends serum half-life as compared to the unsubstituted human IgG constant domain.
  • In certain embodiments, the IgG constant domain comprises substitutions at residues 252, 254, and 256, wherein the amino acid substitution at amino acid residue 252 is a substitution with tyrosine, the amino acid substitution at amino acid residue 254 is a substitution with threonine, and the amino acid substitution at amino acid residue 256 is a substitution with glutamic acid (“YTE”). See U.S. Pat. No. 7,083,784, incorporated herein by reference in its entirety. In certain extended half-life embodiments, the IgG constant domain comprises substitutions selected from T250Q/M428L (Hinton et al., J. Immunology 176:346-356 (2006)); N434A (Yeung et al., J. Immunology 182:7663-7671 (2009)); or T307A/E380A/N434A (Petkova et al., International Immunology, 18: 1759-1769 (2006)).
  • In some embodiments, the elimination half-life of the anti-IL-6 antibody is increased by utilizing the FcRN-binding properties of human serum albumin. In certain embodiments, the antibody is conjugated to albumin (Smith et al., Bioconjug. Chem., 12: 750-756 (2001)). In some embodiments, the anti-IL-6 antibody is fused to bacterial albumin-binding domains (Stork et al., Prot. Eng. Design Science 20: 569-76 (2007)). In some embodiments, the anti-IL-6 antibody is fused to an albumin-binding peptide (Nguygen et al., Prot Eng Design Sel 19: 291-297 (2006)). In some embodiments, the anti-IL-6 antibody is bispecific, with one specificity being to IL-6, and one specificity being to human serum albumin (Ablynx, WO 2006/122825 (bispecific Nanobody)).
  • In some embodiments, the elimination half-life of the anti-IL-6 antibody is increased by PEGylation (Melmed et al., Nature Reviews Drug Discovery 7: 641-642 (2008)); by HPMA copolymer conjugation (Lu et al., Nature Biotechnology 17: 1101-1104 (1999)); by dextran conjugation (Nuclear Medicine Communications, 16: 362-369 (1995)); by conjugation with homo-amino-acid polymers (HAPs; HAPylation) (Schlapschy et al., Prot Eng Design Sel 20: 273-284 (2007)); or by polysialylation (Constantinou et al., Bioconjug. Chem. 20: 924-931 (2009)).
  • 2.7.1.1. COR-001 and Derivatives
  • In certain preferred embodiments, the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of COR-001. The COR-001 antibody (also known as MEDI5117) is described in WO 2010/088444 and US 2012/0034212, the disclosures of which are incorporated herein by reference in their entireties. In particular embodiments, the antibody or antigen-binding portion thereof comprises the COR-001 heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length COR-001 antibody. The COR-001 antibody has the following CDR and heavy and light chain sequences:
  • COR-001 VH CDR1
    (SEQ ID NO: 7)
    SNYMI
    COR-001 VH CDR2
    (SEQ ID NO: 8)
    DLYYYAGDTYYADSVKG
    COR-001 VH CDR3
    (SEQ ID NO: 9)
    WADDHPPWIDL
    COR-001 VL CDR1
    (SEQ ID NO: 10)
    RASQGISSWLA
    COR-001 VL CDR2
    (SEQ ID NO: 11)
    KASTLES
    COR-001 VL CDR3
    (SEQ ID NO: 12)
    QQSWLGGS
    COR-001 Heavy chain
    (SEQ ID NO: 13)
    EVQLVESGGGLVQPGGSLRLSCAASGFTISSNYMIWVRQAPGKGLEWVSD
    LYYYAGDTYYADSVKGRFTMSRDISKNTVYLQMNSLRAEDTAVYYCARWA
    DDHPPWIDLWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK
    DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT
    YICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP
    KDTLYITREPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN
    STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ
    VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV
    LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
    COR-001 Light chain
    (SEQ ID NO: 14)
    DIQMTQSPSTLSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKVLIYK
    ASTLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQSWLGGSFGQG
    TKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD
    NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGL
    SSPVTKSFNRGEC
  • In various embodiments, the anti-IL-6 antibody is a derivative of COR-001.
  • In some embodiments, the COR-001 derivative includes one or more amino acid substitutions in the COR-001 heavy and/or light chain V regions.
  • In certain embodiments, the COR-001 derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the COR-001 anti-IL-6 antibody, while retaining specificity for human IL-6.
  • In certain embodiments, the COR-001 derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of COR-001. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the COR-001 derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of COR-001. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • 2.7.1.2. Siltuximab and Derivatives
  • In certain embodiments, the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of siltuximab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the siltuximab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length siltuximab antibody.
  • In various embodiments, the anti-IL-6 antibody is a derivative of siltuximab.
  • In some embodiments, the siltuximab derivative includes one or more amino acid substitutions in the siltuximab heavy and/or light chain V regions.
  • In certain embodiments, the siltuximab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the siltuximab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • In certain embodiments, the siltuximab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of siltuximab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the siltuximab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of siltuximab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • 2.7.1.3. Gerilimzumab and Derivatives
  • In certain embodiments, the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of gerilimzumab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the gerilimzumab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length gerilimzumab antibody.
  • In various embodiments, the anti-IL-6 antibody is a derivative of gerilimzumab.
  • In some embodiments, the gerilimzumab derivative includes one or more amino acid substitutions in the gerilimzumab heavy and/or light chain V regions.
  • In certain embodiments, the gerilimzumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the gerilimzumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • In certain embodiments, the gerilimzumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of gerilimzumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the gerilimzumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of gerilimzumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • 2.7.1.4. Sirukumab and Derivatives
  • In certain embodiments, the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of sirukumab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the sirukumab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length sirukumab antibody.
  • In various embodiments, the anti-IL-6 antibody is a derivative of sirukumab.
  • In some embodiments, the sirukumab derivative includes one or more amino acid substitutions in the sirukumab heavy and/or light chain V regions.
  • In certain embodiments, the sirukumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the sirukumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • In certain embodiments, the sirukumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of sirukumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the sirukumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of sirukumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • 2.7.1.5. Clazakizumab and Derivatives
  • In certain embodiments, the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of clazakizumab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the clazakizumab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length clazakizumab antibody.
  • In various embodiments, the anti-IL-6 antibody is a derivative of clazakizumab.
  • In some embodiments, the clazakizumab derivative includes one or more amino acid substitutions in the clazakizumab heavy and/or light chain V regions.
  • In certain embodiments, the clazakizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the clazakizumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • In certain embodiments, the clazakizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of clazakizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the clazakizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of clazakizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • 2.7.1.6. Olokizumab and Derivatives
  • In certain embodiments, the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of olokizumab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the olokizumab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length olokizumab antibody.
  • In various embodiments, the anti-IL-6 antibody is a derivative of olokizumab.
  • In some embodiments, the olokizumab derivative includes one or more amino acid substitutions in the olokizumab heavy and/or light chain V regions.
  • In certain embodiments, the olokizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the olokizumab anti-IL-6 antibody, while retaining specificity for human IL-6.
  • In certain embodiments, the olokizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of olokizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the olokizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of olokizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6).
  • 2.7.1.7. Other Anti-IL-6 Antibodies and Derivatives
  • In certain embodiments, the anti-IL-6 antibody or antigen-binding portion thereof comprises all six CDRs of an antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101. In particular embodiments, the antibody or antigen-binding portion thereof comprises the heavy chain V region and light chain V region of an antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101. In specific embodiments, the antibody is a full-length antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101.
  • In various embodiments, the anti-IL-6 antibody is a derivative of an antibody selected from the group consisting of: VX30 (VOP-R003; Vaccinex), EB-007 (EBI-029; Eleven Bio), and FM101.
  • 2.7.2. Anti-IL-6 Receptor Antibodies
  • In various embodiments, the IL-6 antagonist is an anti-IL-6 receptor (anti-IL-6R) antibody or antigen-binding fragment or derivative thereof.
  • In typical embodiments, the anti-IL-6R reduces the biological activity of IL-6 receptor.
  • In some embodiments, the IL-6 antagonist is an anti-IL-6R monoclonal antibody. In some embodiments, the IL-6 antagonist is a polyclonal composition comprising a plurality of species of anti-IL-6R antibodies, each of the plurality having unique CDRs.
  • In some embodiments, the anti-IL-6R antibody is a Fab, Fab′, F(ab′)2, Fv, scFv, (scFv)2, single chain antibody molecule, dual variable domain antibody, single variable domain antibody, linear antibody, or V domain antibody.
  • In some embodiments, the anti-IL-6R antibody comprises a scaffold. In certain embodiments, the scaffold is Fc, optionally human Fc. In some embodiments, the anti-IL-6R antibody comprises a heavy chain constant region of a class selected from IgG, IgA, IgD, IgE, and IgM. In certain embodiments, the anti-IL-6R antibody comprises a heavy chain constant region of the class IgG and a subclass selected from IgG1, IgG2, IgG3, and IgG4.
  • In some embodiments, the IL-6 antagonist is immunoconjugate or fusion protein comprising an IL-6R antigen-binding fragment.
  • In some embodiments, the antibody is bispecific or multispecific, with at least one of the antigen-binding portions having specificity for IL-6 receptor.
  • In some embodiments, the antibody is fully human. In some embodiments, the antibody is humanized. In some embodiments, the antibody is chimeric and has non-human V regions and human C region domains. In some embodiments, the antibody is murine.
  • In typical embodiments, the anti-IL-6R antibody has a KD for binding human IL-6 receptor of less than 100 nM. In some embodiments, the anti-IL-6R antibody has a KD for binding human IL-6 receptor of less than 75 nM, 50 nM, 25 nM, 20 nM, 15 nM, or 10 nM. In particular embodiments, the anti-IL-6R antibody has a KD for binding human IL-6 receptor of less than 5 nM, 4 nM, 3 nM, or 2 nM. In selected embodiments, the anti-IL-6R antibody has a KD for binding human IL-6 receptor of less than 1 nM, 750 pM, or 500 pM. In specific embodiments, the anti-IL-6R antibody has a KD for binding human IL-6 receptor of no more than 500 pM, 400 pM, 300 pM, 200 pM, or 100 pM.
  • In typical embodiments, the anti-IL-6R antibody has an elimination half-life following intravenous administration of at least 7 days. In certain embodiments, the anti-IL-6R antibody has an elimination half-life of at least 14 days, at least 21 days, or at least 30 days.
  • In some embodiments, the anti-IL-6R antibody has a human IgG constant region with at least one amino acid substitution that extends serum half-life as compared to the unsubstituted human IgG constant domain.
  • In certain embodiments, the IgG constant domain comprises substitutions at residues 252, 254, and 256, wherein the amino acid substitution at amino acid residue 252 is a substitution with tyrosine, the amino acid substitution at amino acid residue 254 is a substitution with threonine, and the amino acid substitution at amino acid residue 256 is a substitution with glutamic acid (“YTE”). See U.S. Pat. No. 7,083,784, incorporated herein by reference in its entirety. In certain extended half-life embodiments, the IgG constant domain comprises substitutions selected from T250Q/M428L (Hinton et al., J. Immunology 176:346-356 (2006)); N434A (Yeung et al., J. Immunology 182:7663-7671 (2009)); or T307A/E380A/N434A (Petkova et al., International Immunology, 18: 1759-1769 (2006)).
  • In some embodiments, the elimination half-life of the anti-IL-6R antibody is increased by utilizing the FcRN-binding properties of human serum albumin. In certain embodiments, the antibody is conjugated to albumin (Smith et al., Bioconjug. Chem., 12: 750-756 (2001)). In some embodiments, the anti-IL-6R antibody is fused to bacterial albumin-binding domains (Stork et al., Prot. Eng. Design Science 20: 569-76 (2007)). In some embodiments, the anti-IL-6R antibody is fused to an albumin-binding peptide (Nguygen et al., Prot Eng Design Sel 19: 291-297 (2006)). In some embodiments, the anti-IL-6R antibody is bispecific, with one specificity being to IL-6 receptor, and one specificity being to human serum albumin (Ablynx, WO 2006/122825 (bispecific Nanobody)).
  • In some embodiments, the elimination half-life of the anti-IL-6R antibody is increased by PEGylation (Melmed et al., Nature Reviews Drug Discovery 7: 641-642 (2008)); by HPMA copolymer conjugation (Lu et al., Nature Biotechnology 17: 1101-1104 (1999)); by dextran conjugation (Nuclear Medicine Communications, 16: 362-369 (1995)); by conjugation with homo-amino-acid polymers (HAPs; HAPylation) (Schlapschy et al., Prot Eng Design Sel 20: 273-284 (2007)); or by polysialylation (Constantinou et al., Bioconjug. Chem. 20: 924-931 (2009)).
  • 2.7.2.1. Tocilizumab and Derivatives
  • In certain embodiments, the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of tocilizumab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the tocilizumab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length tocilizumab antibody.
  • In various embodiments, the anti-IL-6R antibody is a derivative of tocilizumab.
  • In some embodiments, the tocilizumab derivative includes one or more amino acid substitutions in the tocilizumab heavy and/or light chain V regions.
  • In certain embodiments, the tocilizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the tocilizumab anti-IL-6R antibody, while retaining specificity for human IL-6 receptor.
  • In certain embodiments, the tocilizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of tocilizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the tocilizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of tocilizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6 receptor).
  • 2.7.2.2. Sarilumab and Derivatives
  • In certain embodiments, the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of sarilumab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the sarilumab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length sarilumab antibody.
  • In various embodiments, the anti-IL-6R antibody is a derivative of sarilumab.
  • In some embodiments, the sarilumab derivative includes one or more amino acid substitutions in the sarilumab heavy and/or light chain V regions.
  • In certain embodiments, the sarilumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the sarilumab anti-IL-6R antibody, while retaining specificity for human IL-6 receptor.
  • In certain embodiments, the sarilumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of sarilumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the sarilumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of sarilumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6 receptor).
  • 2.7.2.3. Vobarilizumab and Derivatives
  • In certain embodiments, the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of vobarilizumab. In particular embodiments, the antibody or antigen-binding portion thereof comprises the vobarilizumab heavy chain V region and light chain V region. In specific embodiments, the antibody is the full-length vobarilizumab antibody.
  • In various embodiments, the anti-IL-6R antibody is a derivative of vobarilizumab.
  • In some embodiments, the vobarilizumab derivative includes one or more amino acid substitutions in the vobarilizumab heavy and/or light chain V regions.
  • In certain embodiments, the vobarilizumab derivative comprises fewer than 25 amino acid substitutions, fewer than 20 amino acid substitutions, fewer than 15 amino acid substitutions, fewer than 10 amino acid substitutions, fewer than 5 amino acid substitutions, fewer than 4 amino acid substitutions, fewer than 3 amino acid substitutions, fewer than 2 amino acid substitutions, or 1 amino acid substitution relative to the original VH and/or VL of the vobarilizumab anti-IL-6R antibody, while retaining specificity for human IL-6 receptor.
  • In certain embodiments, the vobarilizumab derivative comprises an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the VH and VL domain of vobarilizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the vobarilizumab derivative comprises an amino acid sequence in which the CDRs comprise an amino acid sequence that is at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to the amino acid sequence of the respective CDRs of vobarilizumab. The percent sequence identity is determined using BLAST algorithms using default parameters.
  • In certain embodiments, the VH and/or VL CDR derivatives comprise conservative amino acid substitutions at one or more predicted nonessential amino acid residues (i.e., amino acid residues which are not critical for the antibody to specifically bind to human IL-6 receptor).
  • 2.7.2.4. Other Anti-IL-6R Antibodies and Derivatives
  • In certain embodiments, the anti-IL-6R antibody or antigen-binding portion thereof comprises all six CDRs of an antibody selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), and an antibody described in US 2012/0225060. In particular embodiments, the antibody or antigen-binding portion thereof comprises the heavy chain V region and light chain V region of an antibody selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), and an antibody described in US 2012/0225060. In specific embodiments, the antibody is a full-length selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), and an antibody described in US 2012/0225060.
  • In various embodiments, the anti-IL-6R antibody is a derivative of an antibody selected from the group consisting of: SA237 (Roche), NI-1201 (NovImmune), or an antibody described in US 2012/0225060.
  • 2.7.3. Anti-IL-6:IL-6R Complex Antibodies
  • In various embodiments, the IL-6 antagonist is an antibody specific for the complex of IL-6 and IL-6R. In certain embodiments, the antibody has the six CDRs of an antibody selected from those described in US 2011/0002936, which is incorporated herein by reference in its entirety.
  • 2.7.4. JAK and STAT Inhibitors
  • In various embodiments, the IL-6 antagonist is an inhibitor of the JAK signaling pathway. In some embodiments, the JAK inhibitor is a JAK1-specific inhibitor. In some embodiments, the JAK inhibitor is a JAK3-specific inhibitor. In some embodiments, the JAK inhibitor is a pan-JAK inhibitor.
  • In certain embodiments, the JAK inhibitor is selected from the group consisting of tofacitinib (Xeljanz), decernotinib, ruxolitinib, upadacitinib, baricitinib, filgotinib, lestaurtinib, pacritinib, peficitinib, INCB-039110, ABT-494, INCB-047986 and AC-410.
  • In various embodiments, the IL-6 antagonist is a STAT3 inhibitor. In a specific embodiment, the inhibitor is AZD9150 (AstraZeneca, Isis Pharmaceuticals), a STAT3 antisense molecule.
  • 2.7.5. Additional IL-6 Antagonists
  • In various embodiments, the IL-6 antagonist is an antagonist peptide.
  • In certain embodiments, the IL-6 antagonist is C326 (an IL-6 inhibitor by Avidia, also known as AMG220), or FE301, a recombinant protein inhibitor of IL-6 (Ferring International Center S.A., Conaris Research Institute AG). In some embodiments, the anti-IL-6 antagonist comprises soluble gp130, FE301 (Conaris/Ferring).
  • 2.8. Pharmaceutical Composition
  • The IL-6 antagonists used in the methods described herein can be formulated in any appropriate pharmaceutical composition for administration by any suitable route of administration. Suitable routes of administration include, but are not limited to, the intravitreal, intraarterial, intradermal, intramuscular, intraperitoneal, intravenous, nasal, parenteral, pulmonary, and subcutaneous routes.
  • The pharmaceutical composition may comprise one or more pharmaceutical excipients. Any suitable pharmaceutical excipient may be used, and one of ordinary skill in the art is capable of selecting suitable pharmaceutical excipients. Accordingly, the pharmaceutical excipients provided below are intended to be illustrative, and not limiting. Additional pharmaceutical excipients include, for example, those described in the Handbook of Pharmaceutical Excipients, Rowe et al. (Eds.) 6th Ed. (2009), incorporated by reference in its entirety.
  • 2.9. Dosage Regimens
  • The IL-6 antagonist is administered at a dose sufficient to reduce inflammation without causing immune suppression.
  • 2.9.1. Antibodies, Antigen-Binding Fragments, Peptides
  • In typical embodiments, antibody, antigen-binding fragments, and peptide IL-6 antagonists are administered parenterally.
  • In some parenteral embodiments, the IL-6 antagonist is administered intravenously. In certain intravenous embodiments, the IL-6 antagonist is administered as a bolus. In certain intravenous embodiments, the IL-6 antagonist is administered as an infusion. In certain intravenous embodiments, the IL-6 antagonist is administered as a bolus followed by infusion.
  • In some parenteral embodiments, the IL-6 antagonist is administered subcutaneously.
  • In various embodiments, the antibody, antigen-binding fragment, or peptide IL-6 antagonist is administered in a dose that is independent of patient weight or surface area (flat dose).
  • In some embodiments, the intravenous flat dose is 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, or 1 mg. In some embodiments, the intravenous flat dose is 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, or 10 mg. In some embodiments, the intravenous flat dose is 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, or 20 mg. In some embodiments, the intravenous flat dose is 25 mg, 30 mg, 40 mg, or 50 mg. In some embodiments, the intravenous flat dose is 60 mg, 70 mg, 80 mg, 90 mg, or 100 mg. In some embodiments, the intravenous flat dose is 200 mg, 300 mg, 400 mg, or 500 mg. In some embodiments, the intravenous flat dose is 0.1-1 mg, 1-10 mg, 10-15 mg, 15-20 mg, 20-30 mg, 30-40 mg, or 40-50 mg. In some embodiments, the intravenous flat dose is 1-50 mg, 50-100 mg, or 100 mg-500 mg.
  • In some embodiments, the subcutaneous flat dose is 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, or 1 mg. In some embodiments, the subcutaneous flat dose is 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, or 10 mg. In some embodiments, the subcutaneous flat dose is 11 mg, 12 mg, 13 mg, 14 mg, 15 mg, 16 mg, 17 mg, 18 mg, 19 mg, or 20 mg. In some embodiments, the subcutaneous flat dose is 25 mg, 30 mg, 40 mg, or 50 mg.
  • In some embodiments, the subcutaneous flat dose is 60 mg, 70 mg, 80 mg, 90 mg, or 100 mg. In some embodiments, the subcutaneous flat dose is 200 mg, 300 mg, 400 mg, or 500 mg. In some embodiments, the subcutaneous flat dose is 0.1-1 mg, 1-10 mg, 10-15 mg, 15-20 mg, 20-30 mg, 30-40 mg, or 40-50 mg. In some embodiments, the subcutaneous flat dose is 1-50 mg, 50-100 mg, or 100 mg-500 mg.
  • In various embodiments, the antibody, antigen-binding fragment, or peptide IL-6 antagonist is administered as a patient weight-based dose.
  • In some embodiments, the antagonist is administered at an intravenous dose of 0.01 mg/kg, 0.02 mg/kg, 0.03 mg/kg, 0.04 mg/kg, 0.05 mg/kg, 0.06 mg/kg, 0.07 mg/kg, 0.08 mg/kg, 0.09 mg/kg or 0.1 mg/kg. In some embodiments, the antagonist is administered at an intravenous dose of 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 0.6 mg/kg, 0.7 mg/kg, 0.8 mg/kg, 0.9 mg/kg or 1.0 mg/kg. In some embodiments, the antagonist is administered at an intravenous dose of 1.5 mg/kg, 2 mg/kg, 2.5 mg/kg, 3 mg/kg, 3.5 mg/kg, 4 mg/kg, 4.5 mg/kg, or 5 mg/kg.
  • In some embodiments, the antagonist is administered at a subcutaneous dose of 0.01 mg/kg, 0.02 mg/kg, 0.03 mg/kg, 0.04 mg/kg, 0.05 mg/kg, 0.06 mg/kg, 0.07 mg/kg, 0.08 mg/kg, 0.09 mg/kg or 0.1 mg/kg. In some embodiments, the antagonist is administered at a subcutaneous dose of 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 0.6 mg/kg, 0.7 mg/kg, 0.8 mg/kg, 0.9 mg/kg or 1.0 mg/kg. In some embodiments, the antagonist is administered at a subcutaneous dose of 1.5 mg/kg, 2 mg/kg, 2.5 mg/kg, 3 mg/kg, 3.5 mg/kg, 4 mg/kg, 4.5 mg/kg, or 5 mg/kg.
  • In various intravenous embodiments, the IL-6 antagonist is administered once every 7 days, once every 14 days, once every 21 days, once every 28 days, or once a month. In various subcutaneous embodiments, the IL-6 antagonist is administered once every 14 days, once every 28 days, once a month, once every two months (every other month), or once every three months.
  • 2.9.2. Small Molecule Inhibitors
  • In typical embodiments, small molecule JAK inhibitors and STAT inhibitors are administered orally.
  • In various embodiments, the inhibitor is administered once or twice a day at an oral dose of 0.1-1 mg, 1-10 mg, 10-20 mg, 20-30 mg, 30-40 mg, or 40-50 mg. In some embodiments, the inhibitor is administered once or twice a day at a dose of 50-60 mg, 60-70 mg, 70-80 mg, 80-90 mg, or 90-100 mg. In some embodiments, the inhibitor is administered at a dose of 0.1, 0.5, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mg PO once or twice a day. In some embodiments, the inhibitor is administered at a dose of 75 mg or 100 mg PO once or twice a day.
  • 2.9.3. Monthly Equivalent Dose
  • In typical embodiments, the IL-6 antagonist is administered at a monthly equivalent dose that is less than the monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. “Monthly equivalent dose” is the calculated total dose administered per month, regardless of dose amount and dosage schedule.
  • In some embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 50% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In various embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 45% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 40% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 30% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 25% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 20% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 15% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 10% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose no more than 5% of a monthly equivalent dose for treating rheumatoid arthritis.
  • In various embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% of a monthly equivalent dose for treating rheumatoid arthritis with the same IL-6 antagonist. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 50% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 40% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 30% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 25% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 20% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 15% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 10% of a monthly equivalent dose for treating rheumatoid arthritis. In certain embodiments, the IL-6 antagonist is administered at a monthly equivalent dose about 5% of a monthly equivalent dose for treating rheumatoid arthritis.
  • In some embodiments, the IL-6 antagonist is the COR-001 antibody. In various embodiments, COR-001 is administered intravenously at a monthly equivalent dose of 0.5-50 mg, such as 0.5-1 mg, 0.5-2 mg, 0.5-5 mg, 0.5-10 mg, 0.5-20 mg, 0.5-30 mg, 0.5-40 mg, 1-2 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 2-5 mg, 2-10 mg, 2-20 mg, 2-30 mg, 2-40 mg, 2-50 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 20-30 mg, 20-40 mg, 20-50 mg, 30-40 mg, 30-50 mg, or 40-50 mg. In certain preferred embodiments, COR-001 is administered intravenously at a monthly equivalent dose of 2-40 mg.
  • In various embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 20 mg, 30 mg, 40 mg, or 50 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 1 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 2 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 3 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 4 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 5 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 6 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 10 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 12 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 15 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 20 mg. In certain embodiments, COR-001 is administered intravenously at a monthly equivalent dose of about 40 mg.
  • In various embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-2 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 1-70 mg, 1-100 mg, 2-5 mg, 2-10 mg, 2-20 mg, 2-30 mg, 2-40 mg, 2-50 mg, 2-70 mg, 2-100 mg, 3-5 mg, 3-10 mg, 3-20 mg, 3-30 mg, 3-40 mg, 3-50 mg, 3-70 mg, 3-100 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 5-70 mg, 5-100 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-70 mg, 10-100 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-70 mg, 20-100 mg, 30-40 mg, 30-50 mg, 30-70 mg, 30-100 mg, or 40-100 mg. In certain preferred embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of 3-70 mg.
  • In various embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 70 mg, or 100 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 1 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 2 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 3 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 4 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 5 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 6 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 12 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 15 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 17 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 20 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 35 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 40 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 70 mg. In certain embodiments, COR-001 is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • In some embodiments, the IL-6 antagonist is siltuximab. In various embodiments, siltuximab is administered intravenously at a monthly equivalent dose of 10-500 mg, such as 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-100 mg, 10-150 mg, 10-200 mg, 10-300 mg, 10-400 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-100 mg, 20-150 mg, 20-200 mg, 20-300 mg, 20-400 mg, 20-500 mg, 30-40 mg, 30-50 mg, 30-100 mg, 30-150 mg, 30-200 mg, 30-300 mg, 30-400 mg, 30-500 mg, 40-50 mg, 40-100 mg, 40-150 mg, 40-200 mg, 40-250 mg, 40-300 mg, 40-400 mg, 40-500 mg, 50-100 mg, 50-150 mg, 50-200 mg, 50-300 mg, 50-400 mg, 50-500 mg, 100-150 mg, 100-200 mg, 100-300 mg, 100-400 mg, 100-500 mg, 150-200 mg, 150-300 mg, 150-400 mg, 150-500 mg, 200-300 mg, 200-400 mg, 200-500 mg, 300-400 mg, 300-500 mg, or 400-500 mg. In certain preferred embodiments, siltuximab is administered intravenously at a monthly equivalent dose of 50-500 mg. In various embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 100 mg, 150 mg, 200 mg, 300 mg, 400 mg, or 500 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 50 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 100 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 150 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 200 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 300 mg. In certain embodiments, siltuximab is administered intravenously at a monthly equivalent dose of about 500 mg.
  • In various embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of 50-1000 mg, such as 50-80 mg, 50-100 mg, 50-160 mg, 50-200 mg, 50-240 mg, 50-320 mg, 50-480 mg, 50-800 mg, 80-100 mg, 80-160 mg, 80-200 mg, 80-240 mg, 80-320 mg, 80-480 mg, 80-800 mg, 80-1000 mg, 100-160 mg, 100-200 mg, 100-240 mg, 100-320 mg, 100-480 mg, 100-800 mg, 100-1000 mg, 160-200 mg, 160-240 mg, 160-320 mg, 160-480 mg, 160-800 mg, 160-1000 mg, 200-240 mg, 200-320 mg, 200-480 mg, 200-800 mg, 200-1000 mg, 240-320 mg, 240-480 mg, 240-800 mg, 240-1000 mg, 320-480 mg, 320-800 mg, 320-1000 mg, 480-800 mg, 480-1000 mg, or 800-1000 mg. In certain preferred embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In various embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 50 mg, 80 mg. 100 mg, 160 mg, 240 mg. 320 mg, 480 mg. 800 mg, or 1000 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 50 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 240 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 320 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 480 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 800 mg. In certain embodiments, siltuximab is administered subcutaneously at a monthly equivalent dose of about 1000 mg.
  • In some embodiments, the IL-6 antagonist is gerilimzumab. In various embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of 0.05-2 mg, such as 0.05-0.075 mg, 0.05-0.1 mg, 0.05-0.12 mg, 0.05-0.3 mg, 0.05-0.6 mg, 0.05-0.9 mg, 0.05-1.8 mg, 0.075-0.1 mg, 0.075-0.12 mg, 0.075-0.3 mg, 0.075-0.6 mg, 0.075-0.9 mg, 0.075-1.8 mg, 0.075-2 mg, 0.1-0.12 mg, 0.1-0.3 mg, 0.1-0.6 mg, 0.1-0.9 mg, 0.1-1.8 mg, 0.1-2 mg, 0.12-0.3 mg, 0.12-0.6 mg, 0.12-0.9 mg, 0.12-1.8 mg, 0.12-2 mg, 0.3-0.6 mg, 0.3-0.9 mg, 0.3-1.8 mg, 0.3-2 mg, 0.6-0.9 mg, 0.6-1.8 mg, 0.6-2 mg, 0.9-1.8 mg, 0.9-2 mg, or 1.8-2 mg. In certain preferred embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of 0.075-1.8 mg. In various embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.05 mg, 0.075 mg, 0.1 mg, 0.12 mg, 0.3 mg, 0.6 mg, 0.9 mg, 1.8 mg, or 2 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.05 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.075 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.1 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.12 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.3 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.6 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 0.9 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 1.8 mg. In certain embodiments, gerilimzumab is administered intravenously at a monthly equivalent dose of about 2 mg.
  • In various embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of 0.1-5 mg, such as 0.1-0.125 mg, 0.1-0.15 mg, 0.1-0.2 mg, 0.1-0.5 mg, 0.1-1 mg, 0.1-1.5 mg, 0.1-2 mg, 0.1-3 mg, 0.1-4 mg, 0.125-0.15 mg, 0.125-0.2 mg, 0.125-0.5 mg, 0.125-1 mg, 0.125-1.5 mg, 0.125-2 mg, 0.125-3 mg, 0.125-4 mg, 0.125-5 mg, 0.15-0.2 mg, 0.15-0.5 mg, 0.15-1 mg, 0.15-1.5 mg, 0.15-2 mg, 0.15-3 mg, 0.15-4 mg, 0.15-5 mg, 0.2-0.5 mg, 0.2-1 mg, 0.2-1.5 mg, 0.2-2 mg, 0.2-3 mg, 0.2-4 mg, 0.2-5 mg, 0.5-1 mg, 0.5-1.5 mg, 0.5-2 mg, 0.5-3 mg, 0.5-4 mg, 0.5-5 mg, 1-1.5 mg, 1-2 mg, 1-3 mg, 1-4 mg, 1-5 mg, 1.5-2 mg, 1.5-3 mg, 1.5-4 mg, 1.5-5 mg, 2-3 mg, 2-4 mg, 2-5 mg, 3-4 mg, 3-5 mg, or 4-5 mg. In certain preferred embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of 0.125-3 mg. In various embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.1 mg, 0.125 mg, 0.15 mg, 0.2 mg, 0.5 mg, 1 mg, 1.5 mg, 2 mg, 3 mg, 4 mg, or 5 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.125 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.2 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 0.5 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 1.5 mg. In certain embodiments, gerilimzumab is administered subcutaneously at a monthly equivalent dose of about 3 mg.
  • In some embodiments, the IL-6 antagonist is sirukumab. In various embodiments, sirukumab is administered intravenously at a monthly equivalent dose of 1-80 mg, such as 1-1.5 mg, 1-3 mg, 1-6 mg, 1-12 mg, 1-36 mg, 1-60 mg, 1.5-3 mg, 1.5-6 mg, 1.5-12 mg, 1.5-36 mg, 1.5-60 mg, 1.5-80 mg, 3-6 mg, 3-12 mg, 3-36 mg, 3-60 mg, 3-80 mg, 6-12 mg, 6-36 mg, 6-60 mg, 6-80 mg, 12-36 mg, 12-60 mg, 12-80 mg, 36-60 mg, 36-80 mg, or 60-80 mg. In certain preferred embodiments, sirukumab is administered intravenously at a monthly equivalent dose of 1.5-60 mg. In various embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 1 mg, 1.5 mg, 3 mg, 6 mg, 12 mg, 36 mg, 60 mg, or 80 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 1 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 1.5 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 3 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 6 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 12 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 36 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, sirukumab is administered intravenously at a monthly equivalent dose of about 80 mg.
  • In various embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-2.5 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 1-60 mg, 2.5-5 mg, 2.5-10 mg, 2.5-20 mg, 2.5-30 mg, 2.5-40 mg, 2.5-50 mg, 2.5-60 mg, 2.5-100 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 5-60 mg, 5-100 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-60 mg, 10-100 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-60 mg, 20-100 mg, 30-40 mg, 30-50 mg, 30-60 mg, 30-100 mg, 40-50 mg, 40-60 mg, 40-100 mg, 50-60 mg, 50-100 mg, or 60-100 mg. In certain preferred embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of 2.5-100 mg. In various embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 1 mg, 2.5 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, or 100 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 2.5 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In certain embodiments, sirukumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • In some embodiments, the IL-6 antagonist is clazakizumab. In various embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of 1-80 mg, such as 1-3 mg, 1-6 mg, 1-12 mg, 1-24 mg, 1-36 mg, 1-60 mg, 3-6 mg, 3-12 mg, 3-24 mg, 3-36 mg, 3-60 mg, 3-80 mg, 6-12 mg, 6-24 mg, 6-36 mg, 6-60 mg, 6-80 mg, 12-24 mg, 12-36 mg, 12-60 mg, 12-80 mg, 24-36 mg, 24-60 mg, 24-80 mg, 36-60 mg, 36-80 mg, or 60-80 mg. In certain preferred embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of 3-60 mg. In various embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 1 mg, 3 mg, 6 mg, 12 mg, 24 mg, 36 mg, 60 mg or 80 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 1 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 3 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 6 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 12 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 24 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 36 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, clazakizumab is administered intravenously at a monthly equivalent dose of about 80 mg.
  • In various embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-2 mg, 1-5 mg, 1-10 mg, 1-20 mg, 1-30 mg, 1-40 mg, 1-50 mg, 1-60 mg, 2-5 mg, 2-10 mg, 2-20 mg, 2-30 mg, 2-40 mg, 2-50 mg, 2-60 mg, 2-100 mg, 5-10 mg, 5-20 mg, 5-30 mg, 5-40 mg, 5-50 mg, 5-60 mg, 5-100 mg, 10-20 mg, 10-30 mg, 10-40 mg, 10-50 mg, 10-60 mg, 10-100 mg, 20-30 mg, 20-40 mg, 20-50 mg, 20-60 mg, 20-100 mg, 30-40 mg, 30-50 mg, 30-60 mg, 30-100 mg, 40-50 mg, 40-60 mg, 40-100 mg, 50-60 mg, 50-100 mg, or 60-100 mg. In certain preferred embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of 5-100 mg. In various embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 1 mg, 2 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, or 100 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 5 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 60 mg. In certain embodiments, clazakizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • In some embodiments, the IL-6 antagonist is olokizumab. In various embodiments, olokizumab is administered intravenously at a monthly equivalent dose of 1-80 mg, such as 1-1.8 mg, 1-3.6 mg, 1-9 mg, 1-18 mg, 1-45 mg, 1-60 mg, 1.8-3.6 mg, 1.8-9 mg, 1.8-18 mg, 1.8-45 mg, 1.8-60 mg, 1.8-80 mg, 3.6-9 mg, 3.6-18 mg, 3.6-45 mg, 3.6-60 mg, 3.6-80 mg, 9-18 mg, 9-45 mg, 9-60 mg, 9-80 mg, 18-45 mg, 18-60 mg, 18-80 mg, 45-60 mg, 45-80 mg, or 60-80 mg. In certain preferred embodiments, olokizumab is administered intravenously at a monthly equivalent dose of 1.8-60 mg. In various embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 1 mg, 1.8 mg, 3.6 mg, 9 mg, 18 mg. 45 mg, 60 mg, or 80 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 1 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 1.8 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 3.6 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 9 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 18 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 45 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, olokizumab is administered intravenously at a monthly equivalent dose of about 80 mg.
  • In various embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of 1-100 mg, such as 1-3 mg, 1-6 mg, 1-10 mg, 1-15 mg, 1-20 mg, 1-30 mg, 1-50 mg, 1-72 mg, 3-6 mg, 3-10 mg, 3-15 mg, 3-20 mg, 3-30 mg, 3-50 mg, 3-72 mg, 3-100 mg, 6-10 mg, 6-15 mg, 6-20 mg, 6-30 mg, 6-50 mg, 6-72 mg, 6-100 mg, 10-15 mg, 10-20 mg, 10-30 mg, 10-50 mg, 10-72 mg, 10-100 mg, 15-20 mg, 15-30 mg, 15-50 mg, 15-72 mg, 15-100 mg, 20-30 mg, 20-50 mg, 20-72 mg, 20-100 mg, 30-50 mg, 30-72 mg, 30-100 mg, 50-72 mg, 50-100 mg, or 72-100 mg. In certain preferred embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of 3-100 mg. In various embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 1 mg, 3 mg, 6 mg, 10 mg, 15 mg, 20 mg, 30 mg, 50 mg, 72 mg, or 100 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 3 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 6 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 15 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 30 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 72 mg. In certain embodiments, olokizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg.
  • In some embodiments, the IL-6 antagonist is tocilizumab. In various embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of 10-500 mg, such as 10-20 mg, 10-50 mg, 10-100 mg, 10-150 mg, 10-200 mg, 10-250 mg, 10-300 mg, 10-350 mg, 10-400 mg, 20-50 mg, 20-100 mg, 20-150 mg, 20-200 mg, 20-250 mg, 20-300 mg, 20-350 mg, 20-400 mg, 20-500 mg, 50-100 mg, 50-150 mg, 50-200 mg, 50-250 mg, 50-300 mg, 50-350 mg, 50-400 mg, 50-500 mg, 100-150 mg, 100-200 mg, 100-250 mg, 100-300 mg, 100-350 mg, 100-400 mg, 100-500 mg, 150-200 mg, 150-250 mg, 150-300 mg, 150-350 mg, 150-400 mg, 150-500 mg, 200-250 mg, 200-300 mg, 200-350 mg, 200-400 mg, 200-500 mg, 250-300 mg, 250-350 mg, 250-400 mg, 250-500 mg, 300-350 mg, 300-400 mg, 300-500 mg, 350-400 mg, 350-500 mg, or 400-500 mg. In certain preferred embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of 50-500 mg. In various embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, or 500 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 50 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 100 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 150 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 250 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 350 mg. In certain embodiments, tocilizumab is administered intravenously at a monthly equivalent dose of about 500 mg.
  • In various embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of 50-1000 mg, such 50-80 mg, 50-160 mg, 50-240 mg, 50-400 mg, 50-560 mg, 50-800 mg, 80-160 mg, 80-240 mg, 80-400 mg, 80-560 mg, 80-800 mg, 80-1000 mg, 160-240 mg, 160-400 mg, 160-560, 160-800 mg, 160-1000 mg, 240-400 mg, 240-560 mg, 240-800 mg, 240-1000 mg, 400-560 mg, 400-800 mg, 400-1000 mg, 560-800 mg, 560-1000 mg, or 800-100 mg. In certain preferred embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of 80-800 mg. In various embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg, 80 mg, 160 mg, 240 mg, 400 mg, 560 mg, 800 mg, or 1000 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 160 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 240 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 400 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 560 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 800 mg. In certain embodiments, tocilizumab is administered subcutaneously at a monthly equivalent dose of about 1000 mg.
  • In some embodiments, the IL-6 antagonist is sarilumab. In various embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 10-150 mg, such as 10-12 mg, 10-24 mg, 10-48 mg, 10-60 mg, 10-72 mg, 10-120 mg, 12-24 mg, 12-48 mg, 12-60 mg, 12-72 mg, 12-120 mg, 12-150 mg, 24-48 mg, 24-60 mg, 24-72 mg, 24-120 mg, 24-150 mg, 48-60 mg, 48-72 mg, 48-120 mg, 48-150 mg, 60-72 mg, 60-120 mg, 60-150 mg, 72-120 mg, 72-150 mg, or 120-150 mg. In certain preferred embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 12-120 mg. In various embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 10 mg, 12 mg, 24 mg, 48 mg, 60 mg, 72 mg, 120 mg, or 150 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 10 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 12 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 24 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 48 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 60 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 72 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 120 mg. In certain embodiments, sarilumab is administered intravenously at a monthly equivalent dose of 150 mg.
  • In various embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of 10-200 mg, such as 10-20 mg, 10-40 mg, 10-60 mg, 10-80 mg, 10-100 mg, 10-120 mg, 20-40 mg, 20-60 mg, 20-80 mg, 20-100 mg, 20-120 mg, 20-200 mg, 40-60 mg, 40-80 mg, 40-100 mg, 40-120 mg, 40-200 mg, 60-80 mg, 60-100 mg, 60-120 mg, mg, 60-200 mg, 80-100 mg, 80-120 mg, 80-200 mg, 100-120 mg, 100-200 mg, or 120-200 mg. In certain preferred embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of 20-200 mg. In various embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 80 mg, 100 mg, 120 mg, 150 mg, or 200 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 20 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 40 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 80 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 120 mg. In certain embodiments, sarilumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • In some embodiments, the IL-6 antagonist is vobarilizumab. In various embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of 2-150 mg, such as 2-4 mg, 2-6 mg, 2-30 mg, 2-60 mg, 2-84 mg, 2-120 mg, 4-6 mg, 4-30 mg, 4-60 mg, 4-84 mg, 4-120 mg, 4-150 mg, 6-30 mg, 6-60 mg, 6-84 mg, 6-120 mg, 6-150 mg, 30-60 mg, 30-84 mg, 30-120 mg, 30-150 mg, 60-84 mg, 60-120 mg, 60-150 mg, 84-120 mg, 84-150 mg, or 120-150 mg. In certain preferred embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of 4-120 mg. In various embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 2 mg, 4 mg, 6 mg, 30 mg, 60 mg, 84 mg, 120 mg, or 150 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 2 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 4 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 6 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 30 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 60 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 84 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 120 mg. In certain embodiments, vobarilizumab is administered intravenously at a monthly equivalent dose of about 150 mg.
  • In various embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of 5-200 mg, such as 5-7 mg, 5-10 mg, 5-20 mg, 5-50 mg, 5-70 mg, 5-100 mg, 5-140 mg, 7-10 mg, 7-20 mg, 7-50 mg, 7-70 mg, 7-100 mg, 7-140 mg, 7-200 mg, 10-20 mg, 10-50 mg, 10-70 mg, 10-100 mg, 10-140 mg, 10-200 mg, 20-50 mg, 20-70 mg, 20-100 mg, 20-140 mg, 20-200 mg, 50-70 mg, 50-100 mg, 50-140 mg, 50-200 mg, 70-100 mg, 70-140 mg, 70-200 mg, 100-140 mg, 100-200 mg, or 140-200 mg. In certain preferred embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of 7-200 mg. In various embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 5 mg, 7 mg, 10 mg, 20 mg, 40 mg, 50 mg, 70 mg, 100 mg, 140 mg, or 200 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 7 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 10 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 50 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 100 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 140 mg. In certain embodiments, vobarilizumab is administered subcutaneously at a monthly equivalent dose of about 200 mg.
  • 3. Examples
  • The following examples are provided by way of exemplification and illustration, not limitation.
  • 3.1. Example 1: Phase 1/2 Clinical Study
  • A Phase 1/2 clinical study was conducted to assess the safety, pharmacokinetics, and pharmacodynamics of multiple IV doses of COR-001.
  • 3.1.1. Drug Product (COR-001)
  • COR-001 is a human IgG1, kappa antibody directed against interleukin-6 (IL-6). COR-001 contains a “YTE” mutation in its Fc region. The sequence and other features of COR-001 are described in Chapter 2.7.1.1 above.
  • 3.1.2. Study Design
  • The study was a randomized, double-blind, placebo-controlled trial designed to evaluate the safety, pharmacokinetics, and pharmacodynamic effects of multiple doses of COR-001 (MEDI5117) or placebo administered to sequential cohorts of hemodialysis patients.
  • Key inclusion criteria include stage 5 chronic kidney disease (CKD-5) on hemodialysis, positive for TMPRSS6 736A genotype (major allele), IL-6 level greater than 4 pg/mL, and erythropoietic resistive index greater than 8.
  • Ten hemodialysis patients were randomized to COR-001 or placebo within each dosing cohort. When a higher dose than studied in a prior cohort was initiated, the first 2 (sentinel) patients in that cohort (randomized 1:1 to COR-001 or placebo) were randomized first and the remaining patients were randomized at least 48 hours later, in a 7:1 ratio of COR-001 to placebo. The final ratio of patients treated with COR-001 vs. placebo were 8:2 in each cohort of 10 patients. The maximum tolerated dose (MTD) assessment was based on safety data from Weeks 1 to 3. If more than 2 of 8 active patients in a cohort experienced a dose-limiting toxicity (DLT), the MTD was considered to have been exceeded.
  • The Dose Escalation Schematic is shown in FIG. 1 . COR-001 was administered as an intravenous infusion, started any time before the last 1 hour of the dialysis treatment. The COR-001 dose regimens are shown in Table 1 below.
  • TABLE 1
    Dose Number of Total Cumulative
    Cohort Dose Regimen Doses Dose
    1  2 mg every 14 days 6  12 mg
    2  6 mg every 14 days 6  36 mg
    3  6 mg every 14 days 6  36 mg
    4  2 mg every 14 days 6  12 mg
    5 20 mg every 14 days 6 120 mg
    6 20 mg every 14 days 6 120 mg
  • The total study duration for an individual patient was approximately 9 months, excluding the screening period of up to 4 weeks. As shown in FIG. 2 , the study included a treatment period of 12 weeks (Week 1 through Week 12), a safety follow-up period of 12 weeks (Week 13 through Week 24), and an extended follow-up period of 10 weeks (Week 25 through Week 35).
  • Interim study-collected data were summarized by treatment group for the appropriate analysis population, using descriptive statistics. Descriptive statistics for continuous variables included number of patients (n), mean, standard deviation (SD), median, quartiles (Q1 and Q3), minimum (min) and maximum (max) values. Analysis of categorical variables included frequency and percentages.
  • The changes in high-sensitivity C-reactive protein (hsCRP), absolute neutrophil count (ANC), lipoprotein(a) level, LDL level, hemoglobin, transferrin saturation (TSAT), albumin, erythropoietic resistive index (EM), handgrip, NT-proBNP, and cardiac Mill were recorded during the study.
  • 3.1.3. Analysis of Clinical Data
  • Analyses were performed to determine the effect of COR-001 on C-reactive protein (CRP), the effect of COR-001 on hemoglobin level, the effect of COR-001 on various cardiac parameters, and the effect of COR-001 on levels of neutrophils and platelets.
  • C-reactive protein (CRP) is a marker of inflammation. CRP levels increase in response to inflammation, and can be measured with an hsCRP (high-sensitivity C-reactive protein) test. The hsCRP level was measured over the course of the treatment period and the safety follow-up period in patients of the placebo-treated, 2 mg dose regimen, 6 mg dose regimen, and 20 mg dose regimen groups, respectively.
  • The percentages of patients with post-treatment average hsCRP<2 mg/L at Week 12 were 44%, 62%, and 85% in the 2 mg dose regimen, 6 mg dose regimen, and 20 mg dose regimen groups, respectively, as compared to 14% in the placebo group. The hsCRP responder analysis shows that COR-001 (anti-IL-6) has a superior effect on hsCRP than has been reported for canakinumab (anti-IL113) in the CANTOS trial. The hsCRP responder rates of COR-001 in stage 5 chronic kidney disease patients on dialysis at IV doses of 20 mg and 6 mg (FIG. 3A) were higher than the hsCRP responder rates of canakinumab at equivalent doses in the CANTOS trial (FIG. 3B). The in vivo IC50 concentration of COR-001 for CRP (50% reduction of baseline CRP) is 206 ng/mL.
  • COR-001 improved a primary indicator of anemia, hemoglobin levels. The hemoglobin responder analysis indicated a dose-dependent hemoglobin responder rate of COR-001 treatment (FIG. 4 ).
  • The effect of COR-001 on various biomarkers of heart failure was determined. As shown in FIG. 5 , COR-001 decreased the level of the N-terminal prohormone of brain natriuretic peptide (NT-proBNP). The result indicates that treatment of COR-001 can reduce heart failure.
  • Anti-inflammatory therapies in general, and IL-6 inhibitory therapies in particular, create a risk of inducing immune suppression, thereby promoting the emergence of infections, sometimes serious in nature. Immune suppression can be measured by neutrophil counts. The effect of COR-001 on neutrophil counts was determined.
  • Surprisingly, despite significant reduction in inflammation, as measured by hsCRP levels (FIG. 3A), the absolute neutrophil count of patients treated with COR-001 did not decline to below normal levels. No opportunistic infections were observed during the treatment. As shown in FIG. 6A, the percentages of patients with absolute neutrophil count below 2.0×109/L were not increased with COR-001 at all tested doses as compared to the placebo group. All patients treated with COR-001 at all tested doses had an absolute neutrophil count above 1.5×109/L. The in vivo IC50 concentration of COR-001 for neutrophil count (50% reduction of baseline neutrophil count) is 5540 ng/mL.
  • The percentages of patients with platelet count below 100×109/L were less than 30% with COR-001 for all tested doses (FIG. 6B). The in vivo IC50 concentration of COR-001 for platelet count (50% reduction of baseline platelet count) is 13800 ng/mL.
  • In summary, the clinical data indicate that COR-001 treatment at doses of 2 mg, 6 mg, and 20 mg can reduce inflammation without inducing immune suppression in patients with stage 5 chronic kidney disease (CKD-5) on dialysis, whereas the absolute neutrophil count was not decreased significantly in patients treated with COR-001.
  • Administration of COR-001 reduced CRP in a dose-dependent matter. In addition, COR-001 increased hemoglobin level in these patients. COR-001 decreased the biomarkers of heart failure NT-proBNP.
  • 4. Incorporation by Reference
  • All publications, patents, patent applications and other documents cited in this application are hereby incorporated by reference in their entireties for all purposes to the same extent as if each individual publication, patent, patent application or other document were individually indicated to be incorporated by reference for all purposes.
  • 5. Equivalents
  • While various specific embodiments have been illustrated and described, the above specification is not restrictive. It will be appreciated that various changes can be made without departing from the spirit and scope of the invention(s). Many variations will become apparent to those skilled in the art upon review of this specification.

Claims (12)

What is claimed is:
1. A method of treating a patient who has KDOQI stage 3-5 chronic kidney disease (CKD) with inflammation to reduce the risk of cardiovascular morbidity and mortality, comprising:
administering a dose of 5-30 mg COR-001 subcutaneously once monthly to a patient with KDOQI stage 3-5 CKD and a CRP level greater than 2 mg/L,
wherein the dose is sufficient to reduce the CRP level to 2 mg/L or less and does not cause a decrease in absolute neutrophil count (ANC) below 1,500 cells/μL.
2. The method of claim 1, wherein the method comprises administering 5-10 mg COR-001 subcutaneously once monthly to the patient.
3. The method of claim 1, wherein the method comprises administering 10-20 mg COR-001 subcutaneously once monthly to the patient.
4. The method of claim 1, wherein the method comprises administering 20-30 mg COR-001 subcutaneously once monthly to the patient.
5. The method of claim 1, wherein the method comprises administering 15 mg COR-001 subcutaneously once monthly to the patient.
6. The method of claim 1, wherein the method comprises administering 30 mg COR-001 subcutaneously once monthly to the patient.
7. The method of claim 1, wherein post-treatment low-density lipoprotein (LDL) level is increased by no more than 10% as compared to pre-treatment levels.
8. The method of claim 1, wherein the administration reduces the risk of heart failure and/or cardiovascular death.
9. The method of claim 1, wherein the administration increases cardiac function.
10. The method of claim 1, wherein the administration reduces fibrosis after acute myocardial infarction.
11. The method according to claim 1, wherein the cardiovascular morbidity and mortality is selected from a group consisting of (i) nonfatal myocardial infarction, (ii) nonfatal stroke, and (iii) cardiovascular death.
12. The method according to claim 1, wherein the cardiovascular morbidity and mortality is heart failure.
US17/991,880 2018-01-05 2022-11-22 Methods for treating il-6 mediated inflammation without immunosuppression Pending US20230090473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/991,880 US20230090473A1 (en) 2018-01-05 2022-11-22 Methods for treating il-6 mediated inflammation without immunosuppression

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862614134P 2018-01-05 2018-01-05
US16/240,670 US20190241650A1 (en) 2018-01-05 2019-01-04 Methods for treating il-6 mediated inflammation without immunosuppression
US16/396,378 US11384143B2 (en) 2018-01-05 2019-04-26 Methods for treating IL-6 mediated inflammation without immunosuppression
US17/708,660 US20220227856A1 (en) 2018-01-05 2022-03-30 Methods for treating il-6 mediated inflammation without immunosuppression
US17/991,880 US20230090473A1 (en) 2018-01-05 2022-11-22 Methods for treating il-6 mediated inflammation without immunosuppression

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/708,660 Continuation US20220227856A1 (en) 2018-01-05 2022-03-30 Methods for treating il-6 mediated inflammation without immunosuppression

Publications (1)

Publication Number Publication Date
US20230090473A1 true US20230090473A1 (en) 2023-03-23

Family

ID=67143789

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/240,670 Abandoned US20190241650A1 (en) 2018-01-05 2019-01-04 Methods for treating il-6 mediated inflammation without immunosuppression
US16/396,378 Active US11384143B2 (en) 2018-01-05 2019-04-26 Methods for treating IL-6 mediated inflammation without immunosuppression
US17/708,660 Pending US20220227856A1 (en) 2018-01-05 2022-03-30 Methods for treating il-6 mediated inflammation without immunosuppression
US17/991,880 Pending US20230090473A1 (en) 2018-01-05 2022-11-22 Methods for treating il-6 mediated inflammation without immunosuppression

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US16/240,670 Abandoned US20190241650A1 (en) 2018-01-05 2019-01-04 Methods for treating il-6 mediated inflammation without immunosuppression
US16/396,378 Active US11384143B2 (en) 2018-01-05 2019-04-26 Methods for treating IL-6 mediated inflammation without immunosuppression
US17/708,660 Pending US20220227856A1 (en) 2018-01-05 2022-03-30 Methods for treating il-6 mediated inflammation without immunosuppression

Country Status (20)

Country Link
US (4) US20190241650A1 (en)
EP (1) EP3735421A4 (en)
JP (2) JP7395479B2 (en)
KR (2) KR20230047223A (en)
CN (1) CN111787950A (en)
AU (1) AU2019205936B2 (en)
BR (1) BR112020013519A2 (en)
CA (1) CA3087699A1 (en)
CL (2) CL2020001790A1 (en)
CO (1) CO2020009510A2 (en)
EA (1) EA202091640A1 (en)
IL (1) IL275696A (en)
MA (1) MA51584A (en)
MX (1) MX2020006882A (en)
PE (1) PE20211196A1 (en)
PH (1) PH12020551040A1 (en)
RU (1) RU2020125805A (en)
SG (1) SG11202006157VA (en)
WO (1) WO2019136312A1 (en)
ZA (1) ZA202004074B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3576790A4 (en) 2017-02-01 2020-12-23 Yale University Treatment of diuretic resistance
CA3087699A1 (en) 2018-01-05 2019-07-11 Corvidia Therapeutics, Inc. Methods for treating il-6 mediated inflammation without immunosuppression
KR20210122810A (en) * 2019-01-31 2021-10-12 사노피 바이오테크놀로지 Anti-IL-6 receptor antibody for the treatment of juvenile idiopathic arthritis
JP2022531331A (en) 2019-05-01 2022-07-06 ノヴォ ノルディスク アー/エス Anti-IL-6 antibody preparation
WO2021119482A1 (en) 2019-12-13 2021-06-17 Progenity, Inc. Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
AR122933A1 (en) * 2020-07-10 2022-10-19 Novo Nordisk As METHODS TO TREAT CARDIOVASCULAR DISEASE
WO2022167916A1 (en) * 2021-02-03 2022-08-11 Novartis Ag Use of il-1b binding antibodies for treating neuroinflammatory disorders
JP7132665B1 (en) * 2022-02-25 2022-09-07 株式会社 バイオミメティクスシンパシーズ Composition for shrinking or disappearing tumors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034212A1 (en) * 2009-01-29 2012-02-09 Michael Bowen Human Anti-IL-6 Antibodies With Extended In Vivo Half-Life And Their Use In Treatment Of Oncology, Autoimmune Diseases And Inflammatory Diseases
US20170029499A1 (en) * 2015-07-31 2017-02-02 Astrazeneca Pharmaceuticals Lp Methods for treating hepcidin-mediated disorders

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399429A1 (en) 1989-05-22 1990-11-28 Toray Industries, Inc. Anti-human interleukin-6 monoclonal antibody
JP2881311B2 (en) 1989-07-28 1999-04-12 味の素株式会社 Anti-human BCDF monoclonal antibody and method for quantifying human BCDF using the same
TW458985B (en) 1993-05-31 2001-10-11 Chugai Pharmaceutical Co Ltd Reconstructed human antibody against human interleukin-6
US5888510A (en) 1993-07-21 1999-03-30 Chugai Seiyaku Kabushiki Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
DE69534075T2 (en) 1994-06-07 2005-07-21 Chugai Seiyaku K.K. PREVENTIVE AND CLEANING AGENTS FOR DISEASES CAUSED BY FIBRIN OR THROMBUS TRAINING
US8017121B2 (en) 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
JPH1066582A (en) 1996-08-27 1998-03-10 Tosoh Corp Gene fragment or the like of antibody capable of recognizing helix d domain of il-6
PL201461B1 (en) 1998-03-17 2009-04-30 Chugai Pharmaceutical Co Ltd Preventives or remedies for inflammatory intestinal diseases containing as the active ingredient il-6 antagonists
US6395273B1 (en) 1998-06-10 2002-05-28 Promega Corporation Prevention and treatment of inflammatory bowel disease
AU781734B2 (en) * 1999-04-29 2005-06-09 Hans Medical AB Use of heparin-binding antagonists in the inhibition of bradykinin release
US7163681B2 (en) 2000-08-07 2007-01-16 Centocor, Inc. Anti-integrin antibodies, compositions, methods and uses
AU2000279624A1 (en) 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blooe vegf level-lowering agent containing il-6 antagonist as the active ingredient
EP1355919B1 (en) 2000-12-12 2010-11-24 MedImmune, LLC Molecules with extended half-lives, compositions and uses thereof
US7658921B2 (en) 2000-12-12 2010-02-09 Medimmune, Llc Molecules with extended half-lives, compositions and uses thereof
YU102503A (en) 2001-06-28 2006-08-17 Pliva D.D. Fused pyrimidine dhfr inhibitors as antibacterials
KR20100120246A (en) 2001-11-14 2010-11-12 센토코 오르토 바이오테크 인코포레이티드 Anti-il-6 antibodies, compositions, methods and uses
WO2003055979A2 (en) 2001-11-16 2003-07-10 Human Genome Sciences, Inc. ANTIBODIES THAT IMMUNOSPECIFICALLY BIND TO BLyS
FR2833011B1 (en) 2001-12-04 2004-10-29 Univ Claude Bernard Lyon NOVEL PROTEIN WITH IL-6 INHIBITING ACTIVITY
EP1517921B1 (en) 2002-06-28 2006-06-07 Domantis Limited Dual specific ligands with increased serum half-life
US20060078533A1 (en) 2004-10-12 2006-04-13 Omoigui Osemwota S Method of prevention and treatment of aging and age-related disorders including atherosclerosis, peripheral vascular disease, coronary artery disease, osteoporosis, arthritis, type 2 diabetes, dementia, alzheimer's disease and cancer
US20060275294A1 (en) 2002-08-22 2006-12-07 Omoigui Osemwota S Method of prevention and treatment of aging, age-related disorders and/or age-related manifestations including atherosclerosis, peripheral vascular disease, coronary artery disease, osteoporosis, arthritis, type 2 diabetes, dementia, alzheimers disease and cancer
KR100442281B1 (en) 2002-08-26 2004-08-02 엘지전자 주식회사 Method for controlling of Home Network System
US7482436B2 (en) 2002-08-30 2009-01-27 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Human antihuman interleukin-6 antibody and fragment of antibody
AU2003290682A1 (en) 2002-11-15 2004-06-15 Centocor, Inc. Anti-angiogenic uses of il-6 antagonists
LT2335725T (en) 2003-04-04 2017-01-25 Genentech, Inc. High concentration antibody and protein formulations
EP1673396A1 (en) 2003-09-22 2006-06-28 BioVation GmbH & Co.KG. Use of antibodies for reducing the biological effectiveness of il-6
BRPI0506679A (en) 2004-02-11 2007-05-15 Warner Lambert Co Methods of Treating Osteoarthritis with IL-6 Antagonists
WO2006072954A2 (en) 2005-01-05 2006-07-13 Compugen Ltd. Novel il-6 polynucleotides encoding variant il-6 polypeptides and methods using same
PE20061324A1 (en) 2005-04-29 2007-01-15 Centocor Inc ANTI-IL-6 ANTIBODIES, COMPOSITIONS, METHODS AND USES
KR101414438B1 (en) 2005-05-20 2014-07-10 아블린쓰 엔.브이. Single domain vhh antibodies against von willebrand factor
US8163881B2 (en) 2005-05-31 2012-04-24 The Board Of Regents Of The University Of Texas System Immunoglobulin molecules with improved characteristics
AR057582A1 (en) 2005-11-15 2007-12-05 Nat Hospital Organization AGENTS TO DELETE INDUCTION OF CYTOTOXIC T LYMPHOCYTES
TW200803894A (en) 2005-11-25 2008-01-16 Univ Keio Prostate cancer therapeutic agents
PE20070998A1 (en) 2005-12-09 2007-10-09 Ucb Pharma Sa ANTIBODY MOLECULES HAVING SPECIFICITY FOR IL-6-HUMAN
EP1977763A4 (en) 2005-12-28 2010-06-02 Chugai Pharmaceutical Co Ltd Antibody-containing stabilizing preparation
CN101346395A (en) 2005-12-30 2009-01-14 默克专利有限公司 Anti-IL-6 antibodies preventing the binding of IL-6 complexed with il-6Ralpha to GP130
WO2007104529A2 (en) 2006-03-13 2007-09-20 Ablynx N.V. Amino acid sequences directed against il-6 and polypeptides comprising the same for the treatment of diseases and disorders associated with il-6-mediated signalling
US7504106B2 (en) 2006-03-14 2009-03-17 Boris Skurkovich Method and composition for treatment of renal failure with antibodies and their equivalents as partial or complete replacement for dialysis
WO2008019061A2 (en) 2006-08-03 2008-02-14 Vaccinex, Inc. Anti-il-6 monoclonal antibodies and uses thereof
EP2081960B1 (en) 2006-10-27 2018-06-27 Ablynx N.V. Intranasal delivery of polypeptides and proteins
CA2670583A1 (en) 2006-11-30 2008-06-05 Medimmune, Llc Antibodies specific for the complex of interleukin-6 and the interleukin-6 receptor
TW200831528A (en) 2006-11-30 2008-08-01 Astrazeneca Ab Compounds
JP4966647B2 (en) 2006-12-27 2012-07-04 矢崎総業株式会社 Seal structure of electrical junction box
CN101600457B (en) 2007-01-09 2014-01-08 惠氏公司 Anti-il-13 antibody formulations and uses thereof
WO2008137915A2 (en) 2007-05-07 2008-11-13 Medimmune, Llc Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
US7906117B2 (en) 2007-05-21 2011-03-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
AU2008254578B2 (en) 2007-05-21 2013-06-06 Alderbio Holdings Llc Novel rabbit antibody humanization methods and humanized rabbit antibodies
US20090238825A1 (en) 2007-05-21 2009-09-24 Kovacevich Brian R Novel rabbit antibody humanization methods and humanized rabbit antibodies
US8404235B2 (en) 2007-05-21 2013-03-26 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
WO2008144763A2 (en) 2007-05-21 2008-11-27 Alder Biopharmaceuticals, Inc. Antibodies to il-6 and use thereof
US8062864B2 (en) 2007-05-21 2011-11-22 Alderbio Holdings Llc Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies
WO2008156807A2 (en) 2007-06-19 2008-12-24 The Johns Hopkins University Antithrombotic agents and methods of use thereof
WO2009003019A1 (en) 2007-06-26 2008-12-31 Medimmune, Llc Methods of treating rsv infections and related conditions
US9884899B2 (en) 2007-07-06 2018-02-06 Promedior, Inc. Methods for treating fibrosis using CRP antagonists
AU2008289178A1 (en) 2007-08-16 2009-02-26 Carnegie Mellon University Inflammation-regulating compositions and methods
US20100203009A1 (en) 2007-10-02 2010-08-12 The Uab Research Foundation Pathway for Th-17 Cell Development and Methods Utilizing Same
PE20091174A1 (en) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT
DK2297202T3 (en) 2008-05-13 2016-03-21 Novimmune Sa ANTI-IL-6 / IL-6R ANTIBODIES AND PROCEDURES FOR USE THEREOF
US8277804B2 (en) 2008-05-21 2012-10-02 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US8188235B2 (en) 2008-06-18 2012-05-29 Pfizer Inc. Antibodies to IL-6 and their uses
TWI440469B (en) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US8323649B2 (en) 2008-11-25 2012-12-04 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US8337847B2 (en) 2008-11-25 2012-12-25 Alderbio Holdings Llc Methods of treating anemia using anti-IL-6 antibodies
US9452227B2 (en) 2008-11-25 2016-09-27 Alderbio Holdings Llc Methods of treating or diagnosing conditions associated with elevated IL-6 using anti-IL-6 antibodies or fragments
EP2361095B1 (en) 2008-11-25 2017-12-20 AlderBio Holdings LLC Antagonists of il-6 to raise albumin and/or lower crp
EP2504030A4 (en) * 2009-11-24 2013-06-26 Alderbio Holdings Llc Antagonists of il-6 to raise albumin and/or lower crp
JO3417B1 (en) 2010-01-08 2019-10-20 Regeneron Pharma Stabilized formulations containing anti-interleukin-6 receptor (il-6r) antibodies
EP2596023A4 (en) 2010-07-20 2014-03-05 Beth Israel Hospital Compositions and methods featuring il-6 and il-21 antagonists
EA034617B1 (en) 2010-10-06 2020-02-27 Ридженерон Фармасьютикалз, Инк. Dosage form of a liquid pharmaceutical formulation comprising anti-interleukin-4 receptor (il-4r) antibodies
RU2013126477A (en) * 2010-11-08 2014-12-20 Дженентек, Инк. INTEGRATED SCAN ANTIBODIES AGAINST IL-6 RECEPTOR
WO2012098238A1 (en) 2011-01-21 2012-07-26 Novimmune S.A. Combination therapies and methods using anti-cd3 modulating agents and anti-il-6 antagonists
WO2012118813A2 (en) 2011-03-03 2012-09-07 Apexigen, Inc. Anti-il-6 receptor antibodies and methods of use
WO2013175276A1 (en) 2012-05-23 2013-11-28 Argen-X B.V Il-6 binding molecules
JP2016503397A (en) 2012-10-22 2016-02-04 ステルス ペプチドズ インターナショナル インコーポレイテッド Methods for reducing heart failure-related risks and associated factors
EP2911693A4 (en) 2012-10-25 2016-04-27 Medimmune Llc Stable, low viscosity antibody formulation
CN104903349B (en) 2012-11-08 2018-10-19 十一生物治疗股份有限公司 IL-6 antagonists and its application
AU2013342275B2 (en) 2012-11-08 2017-11-09 Clearside Biomedical, Inc. Methods and devices for the treatment of ocular diseases in human subjects
DK2968503T3 (en) 2013-03-15 2018-12-03 Intrinsic Lifesciences Llc ANTI-HEPCIDIN ANTIBODIES AND APPLICATIONS THEREOF
CA2922251C (en) * 2013-08-30 2023-10-17 Takeda Gmbh Antibodies neutralizing gm-csf for use in the treatment of rheumatoid arthritis or as analgesics
US20160130340A1 (en) 2013-10-07 2016-05-12 Alderbio Holdings Llc Dosing regimens using anti-il-6 antibodies for the treatment of rheumatoid and psoriatic arthritis
US9017678B1 (en) 2014-07-15 2015-04-28 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US8945560B1 (en) 2014-07-15 2015-02-03 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US9139648B1 (en) 2014-07-15 2015-09-22 Kymab Limited Precision medicine by targeting human NAV1.9 variants for treatment of pain
UY36449A (en) 2014-12-19 2016-07-29 Novartis Ag COMPOSITIONS AND METHODS FOR ANTIBODIES DIRECTED TO BMP6
EP3576790A4 (en) 2017-02-01 2020-12-23 Yale University Treatment of diuretic resistance
CA3087699A1 (en) 2018-01-05 2019-07-11 Corvidia Therapeutics, Inc. Methods for treating il-6 mediated inflammation without immunosuppression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034212A1 (en) * 2009-01-29 2012-02-09 Michael Bowen Human Anti-IL-6 Antibodies With Extended In Vivo Half-Life And Their Use In Treatment Of Oncology, Autoimmune Diseases And Inflammatory Diseases
US20170029499A1 (en) * 2015-07-31 2017-02-02 Astrazeneca Pharmaceuticals Lp Methods for treating hepcidin-mediated disorders

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
University of Colorado. A Study of Patients with Chronic Kidney Disease to Assess the Safety of a Single Dose of COR-001 (COR-001-SC1). Available from https://clinicaltrials.gov/ct2/show/NCT03126318). NLM identifier: NCT03126318. First posted April 24, 2017. (Year: 2017) *
University of Colorado. A Study of Patients with Chronic Kidney Disease to Assess the Safety of a Single Dose of COR-001 (COR-001-SCl). Available from https://clinic3ltriais.Rov/ct2/show/NCT03126318). NLM identifier: NCT03126318. First posted April 24, 2017 (Year: 2017) *

Also Published As

Publication number Publication date
EA202091640A1 (en) 2020-10-26
CL2023001681A1 (en) 2023-12-15
IL275696A (en) 2020-08-31
MX2020006882A (en) 2020-09-07
CL2020001790A1 (en) 2021-03-19
US20190248886A1 (en) 2019-08-15
CA3087699A1 (en) 2019-07-11
US20190241650A1 (en) 2019-08-08
US20220227856A1 (en) 2022-07-21
ZA202004074B (en) 2022-03-30
KR20200116089A (en) 2020-10-08
BR112020013519A2 (en) 2020-12-01
RU2020125805A (en) 2022-02-07
PH12020551040A1 (en) 2021-08-23
WO2019136312A1 (en) 2019-07-11
MA51584A (en) 2020-11-11
EP3735421A4 (en) 2021-09-22
JP7395479B2 (en) 2023-12-11
US11384143B2 (en) 2022-07-12
PE20211196A1 (en) 2021-07-01
CN111787950A (en) 2020-10-16
SG11202006157VA (en) 2020-07-29
JP2023168447A (en) 2023-11-24
KR20230047223A (en) 2023-04-06
AU2019205936A1 (en) 2020-07-23
EP3735421A1 (en) 2020-11-11
JP2021509668A (en) 2021-04-01
AU2019205936B2 (en) 2022-09-15
CO2020009510A2 (en) 2020-10-30

Similar Documents

Publication Publication Date Title
US20230090473A1 (en) Methods for treating il-6 mediated inflammation without immunosuppression
JP2020516647A5 (en)
US20120244163A1 (en) Bispecific binding agents targeting igf-1r and erbb3 signalling and uses thereof
AU2010248935B2 (en) Methods and compositions for treating lupus
EP3685855B1 (en) Human anti-vegfr-2/kdr antibodies
JP2016527324A (en) How to reduce the exacerbation rate of asthma using benularitumab
JPWO2018191479A5 (en)
US20110059080A1 (en) Use of an anti-il6 antibody to decrease hepcidin in cancer patients
US20230287105A1 (en) Methods for treating cardiovascular disease
EP2999715A2 (en) Novel antibody useful in neurological or neurodegenerative disorders
EA045389B1 (en) METHOD FOR TREATING CARDIOVASCULAR DISEASE
JP2018024615A (en) Pharmaceutical composition for treating inflammatory disease related to htlv-1
JP2010540660A5 (en)
US20210155687A1 (en) Dosage regimen
KR102644938B1 (en) Anti-vegfr-2 antibody
Haddley Vobarilizumab. Anti-interleukin-6 receptor subunit alpha (CD126; IL-6R), Treatment of rheumatoid arthritis, Treatment of systemic lupus erythematosus
EP3204423A2 (en) Human anti-vegfr-2/kdr antibodies
WO2023240031A1 (en) Compositions and methods for treating postural tachycardia syndrome
TW202305006A (en) Bispecific antibody specifically binding to cd47 and pd-l1

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED