US20230062975A1 - Hepatitis b capsid assembly modulators - Google Patents

Hepatitis b capsid assembly modulators Download PDF

Info

Publication number
US20230062975A1
US20230062975A1 US17/947,593 US202217947593A US2023062975A1 US 20230062975 A1 US20230062975 A1 US 20230062975A1 US 202217947593 A US202217947593 A US 202217947593A US 2023062975 A1 US2023062975 A1 US 2023062975A1
Authority
US
United States
Prior art keywords
alkyl
heterocycloalkyl
cycloalkyl
heteroaryl
optionally substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/947,593
Inventor
Christopher J. Burns
Glen COBURN
Bin Liu
Jiangchao Yao
Christopher BENETATOS
Steven A. Boyd
Stephen M. Condon
Thomas Haimowitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VenatoRx Pharmaceuticals Inc
Original Assignee
VenatoRx Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VenatoRx Pharmaceuticals Inc filed Critical VenatoRx Pharmaceuticals Inc
Priority to US17/947,593 priority Critical patent/US20230062975A1/en
Assigned to VenatoRx Pharmaceuticals, Inc. reassignment VenatoRx Pharmaceuticals, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENETATOS, CHRISTOPHER, BOYD, STEVEN A., BURNS, CHRISTOPHER J., COBURN, GLEN, CONDON, STEPHEN M., HAIMOWITZ, THOMAS, LIU, BIN, YAO, JIANGCHAO
Publication of US20230062975A1 publication Critical patent/US20230062975A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/337Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • C07D451/04Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof with hetero atoms directly attached in position 3 of the 8-azabicyclo [3.2.1] octane or in position 7 of the 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring system
    • C07D451/06Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds

Definitions

  • the present invention relates to small-molecule compounds that modulate capsid assembly and block hepatitis B virus (HBV) replication with the potential to be used as a monotherapy or in combination with other antivirals for the treatment of chronic HBV infection.
  • HBV hepatitis B virus
  • HBV is a small enveloped DNA virus belonging to the Hepadnaviridae family that is distributed worldwide as ten geographically distinct genotypes. Infection with HBV is typically self-limiting in otherwise healthy adults; however, vertical transmission or exposure during early childhood often results in a chronic lifelong infection. Worldwide there are an estimated >400 million individuals chronically infected with HBV that are at risk for complications due to liver disease, including cirrhosis, fibrosis, hepatocellular carcinoma and death. Each year 500,000 to 1 million people die from end stage liver disease as a consequence of HBV infection
  • the compact HBV genome utilizes four overlapping reading frames to encode the major structural and non-structural proteins: polymerase (F), envelope (S), core (C) and the X protein (X).
  • HBV enters human hepatocytes via receptor mediated endocytosis, following binding of the envelope glycoprotein to its primary receptor, the bile acid transporter sodiumtaurocholate co-transporting polypeptide (NTCP).
  • NTCP sodiumtaurocholate co-transporting polypeptide
  • the capsid is ejected into the cytoplasm and translocated to the nucleus.
  • the partially double-stranded, relaxed, circular HBV genome (RC DNA) is converted to a covalently closed circular DNA form (cccDNA) by host cellular DNA repair mechanisms.
  • the HBV cccDNA serves as the template for RNA polymerase II-dependent transcription of multiple RNA species, including viral mRNAs and the 3.2-kbp pre-genomic RNA (pgRNA).
  • pgRNA pre-genomic RNA
  • pgRNA is packaged into capsids along with the HBV polymerase.
  • the pgRNA is then reverse transcribed into a negative-stranded DNA template that is subsequently converted into the partially double-stranded RC DNA species by the polymerase.
  • Mature, enveloped HBV particles containing the RC DNA genome are secreted from the surface of the infected hepatocyte ready to initiate new cycles of infection.
  • HBV capsid assembly modulators Several chemotype series of HBV capsid assembly modulators have been reported in the literature including: phenylpropenamides (PP) (e.g., AT-130), heteroarylpyrimidines (HAP) (e.g. Bay 41-4109), and sulfamoylbenzamides (SBA) (e.g. NVR 3-778).
  • PP phenylpropenamides
  • HAP heteroarylpyrimidines
  • SBA sulfamoylbenzamides
  • Capsid modulators exert their effects on the assembly process through one of two different mechanisms of action.
  • the HAP series induces the aberrant assembly of large capsid aggregates that subsequently triggers the degradation of the core protein.
  • the PP and SBA series appear to accelerate capsid assembly resulting in the production of authentic empty capsid particles that have failed to incorporate pgRNA.
  • NVR 3-778 demonstrated clinical proof-of-concept in a Phase 1b clinical trial, resulting in a ⁇ 1.7 log 10 reduction in HBV DNA following 600 mg bid dosing for 29 days.
  • compositions comprising a compound disclosed herein, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, and a pharmaceutically acceptable excipient.
  • the infection is a viral infection.
  • the infection is caused by the hepatitis B virus.
  • the infection is hepatitis B.
  • Chronic hepatitis B infection is currently managed with interferon-alpha or nucleoside(tide) analog-based therapies that target the HBV encoded polymerase/reverse transcriptase.
  • the effectiveness of interferon-alpha is limited by inadequate long term responses and severe side effects, while entecavir and tenofovir, are generally well-tolerated, possess a high barrier to resistance and potently suppress viral replication. None of the aforementioned frontline therapies are curative, however, and expensive lifelong therapy is required to maintain a virologic response and prevent the complications associated with liver disease. Novel therapies representing different treatment classes are therefore urgently required to improve functional cure rates (i.e. defined as the loss of HBsAg expression) and shorten treatment durations. Modulators of HBV capsid assembly represent one such class of antivirals with the potential to improve outcomes for chronically infected individuals.
  • oxo refers to ⁇ O.
  • Alkyl refers to an optionally substituted straight-chain, or optionally substituted branched-chain saturated hydrocarbon monoradical having from one to about ten carbon atoms, more preferably one to six carbon atoms. Examples include, but are not limited to methyl, ethyl, n-propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-buty
  • a numerical range such as “C 1 -C 6 alkyl” or “C 1-6 alkyl”, means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms or 6 carbon atoms, although the present definition also covers the occurrence of the term “alkyl” where no numerical range is designated.
  • the alkyl is a C 1-10 alkyl.
  • the alkyl is a C 1-6 alkyl.
  • the alkyl is a C 1-5 alkyl.
  • the alkyl is a C 1-4 alkyl.
  • the alkyl is a C 1-3 alkyl.
  • an alkyl group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • the alkyl is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH 2 , or —NO 2 .
  • the alkyl is optionally substituted with halogen, —CN, —OH, or —OMe.
  • the alkyl is optionally substituted with halogen.
  • Alkenyl refers to an optionally substituted straight-chain, or optionally substituted branched-chain hydrocarbon monoradical having one or more carbon-carbon double-bonds and having from two to about ten carbon atoms, more preferably two to about six carbon atoms.
  • the group may be in either the cis or trans conformation about the double bond(s), and should be understood to include both isomers. Examples include, but are not limited to ethenyl (—CH ⁇ CH 2 ), 1-propenyl (—CH 2 CH ⁇ CH 2 ), isopropenyl [—C(CH 3 ) ⁇ CH 2 ], butenyl, 1,3-butadienyl and the like.
  • an alkenyl group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • the alkenyl is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH 2 , or —NO 2 . In some embodiments, the alkenyl is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkenyl is optionally substituted with halogen.
  • Alkynyl refers to an optionally substituted straight-chain or optionally substituted branched-chain hydrocarbon monoradical having one or more carbon-carbontriple-bonds and having from two to about ten carbon atoms, more preferably from two to about six carbon atoms. Examples include, but are not limited to ethynyl, 2-propynyl, 2-butynyl, 1,3-butadiynyl and the like.
  • an alkynyl group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroayl, and the like.
  • the alkynyl is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH 2 , or —NO 2 .
  • the alkynyl is optionally substituted with halogen, —CN, —OH, or —OMe.
  • the alkynyl is optionally substituted with halogen.
  • Alkylene refers to a straight or branched divalent hydrocarbon chain. Unless stated otherwise specifically in the specification, an alkylene group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the alkylene is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH 2 , or —NO 2 . In some embodiments, the alkylene is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkylene is optionally substituted with halogen.
  • Alkoxy refers to a radical of the formula —OR a where R a is an alkyl radical as defined. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the alkoxy is optionally substituted with halogen, —CN, —OH, —OMe, —NH 2 , or —NO 2 . In some embodiments, the alkoxy is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkoxy is optionally substituted with halogen.
  • Aryl refers to a radical derived from a hydrocarbon ring system comprising hydrogen, 6 to 30 carbon atoms and at least one aromatic ring.
  • the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with a cycloalkyl or heterocycloalkyl ring, the aryl is bonded through an aromatic ring atom) or bridged ring systems.
  • the aryl is a 6- to 10-membered aryl.
  • the aryl is a 6-membered aryl (phenyl).
  • Aryl radicals include, but are not limited to, aryl radicals derived from the hydrocarbon ring systems of anthrylene, naphthylene, phenanthiylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene.
  • an aryl may be optionally substituted as described below, for example, with halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • the aryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF 3 , —OH, —OMe, —NH 2 , or —NO 2 .
  • the aryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF 3 , —OH, or —OMe. In some embodiments, the aryl is optionally substituted with halogen.
  • Cycloalkyl refers to a stable, partially or fully saturated, monocyclic or polycyclic carbocyclic ring, which may include fused (when fused with an aryl or a heteroaryl ring, the cycloalkyl is bonded through a non-aromatic ring atom) or bridged ring systems.
  • Representative cycloalkyls include, but are not limited to, cycloalkyls having from three to fifteen carbon atoms (C 3 -C 15 cycloalkyl), from three to ten carbon atoms (C 3 -C 10 cycloalkyl), from three to eight carbon atoms (C 3 -C 8 cycloalkyl), from three to six carbon atoms (C 3 -C 6 cycloalkyl), fromthree to five carbon atoms (C 3 -C 5 cycloalkyl), or three to four carbon atoms (C 3 -C 4 cycloalkyl).
  • the cycloalkyl is a 3- to 10-membered cycloalkyl.
  • the cycloalkyl is a 3- to 6-membered cycloalkyl. In some embodiments, the cycloalkyl is a 5- to 6-membered cycloalkyl.
  • Monocyclic cycloalkyls include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • Polycyclic cycloalkyls include, for example, adamantyl, norbornyl, decalinyl, bicyclo[3.3.0]octane, bicyclo[4.3.0]nonane, cis-decalin, trans-decalin, bicyclo[2.1.1]hexane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]nonane, and bicyclo[3.3.2]decane, and 7,7-dimethyl-bicyclo[2.2.1]heptanyl.
  • Partially saturated cycloalkyls include, for example cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl.
  • a cycloalkyl is optionally substituted, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • a cycloalkyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF 3 , —OH, —OMe, —NH 2 , or —NO 2 .
  • a cycloalkyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF 3 , —OH, or —OMe.
  • the cycloalkyl is optionally substituted with halogen.
  • Cycloalkenyl refers to a partially unsaturated, monocyclic or polycyclic carbocyclic ring, which may include fused (when fused with an aryl or a heteroaryl ring, the cycloalkenyl is bonded through a non-aromatic ring atom) or bridged ring systems.
  • Representative cycloalkenyl include, but are not limited to, cycloalkenyls having from three to fifteen carbon atoms (C 3 -C 15 cycloalkenyl), from three to ten carbon atoms (C 3 -C 10 cycloalkenyl), from three to eight carbon atoms (C 3 -C 8 cycloalkenyl), from three to six carbon atoms (C 3 -C 6 cycloalkenyl), from three to five carbon atoms (C 3 -C 5 cycloalkenyl), four to six carbon atoms (C 4 -C 6 cycloalkenyl), four to eight carbon atoms (C 4 -C 8 cycloalkenyl), or four to ten carbon atoms (C 4 -C 10 cycloalkenyl).
  • Monocyclic cycloalkenyl include, for example, cyclopentene, cyclohexene, cycloheptene, cyclopentadiene, cyclohexadiene, cycloheptadiene, and cycloheptatriene.
  • a cycloalkenyl may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • the cycloalkenyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF 3 , —OH, —OMe, —NH 2 , or —NO 2 .
  • the cycloalkenyl is optionally substituted with halogen, methyl, ethyl, —CN, —CF 3 , —OH, or —OMe.
  • the cycloalkenyl is optionally substituted with halogen.
  • Halo or “halogen” refers to bromo, chloro, fluoro or iodo. In some embodiments, halogen is fluoro or chloro. In some embodiments, halogen is fluoro.
  • Haloalkyl refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, fluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like.
  • Heterocycloalkyl refers to a stable 3- to 24-membered fully saturated ring radical comprising 2 to 23 carbon atoms and from one to 8 heteroatoms selected from the group consisting of nitrogen, oxygen, phosphorous and sulfur.
  • the heterocycloalkyl comprises one to three heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur.
  • the heterocycloalkyl comprises one to three heteroatoms selected from the group consisting of nitrogen and oxygen.
  • the heterocycloalkyl comprises one to three nitrogens.
  • the heterocycloalkyl comprises one or two nitrogens.
  • the heterocycloalkyl comprises one nitrogen.
  • the heterocycloalkyl comprises one nitrogen and one oxygen.
  • the heterocycloalkyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with an aryl or a heteroaryl ring, the heterocycloalkyl is bonded through a non-aromatic ring atom) or bridged ring systems; and the nitrogen, carbon, or sulfur atoms in the heterocycloalkyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized.
  • heterocycloalkyls include, but are not limited to, heterocycloalkyls having from two to fifteen carbon atoms (C 2 -C 15 heterocycloalkyl), from two to ten carbon atoms (C 2 -C 10 heterocycloalkyl), from two to eight carbon atoms (C 2 -C 8 heterocycloalkyl), from two to seven carbon atoms (C 2 -C 7 heterocycloalkyl), from two to six carbon atoms (C 2 -C 6 heterocycloalkyl), from two to five carbon atoms (C 2 -C 8 heterocycloalkyl), or two to four carbon atoms (C 2 -C 4 heterocycloalkyl).
  • heterocycloalkyl radicals include, but are not limited to, aziridinyl, azetidinyl, oxetanyl, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyrany
  • heterocycloalkyl also includes all ring forms of the carbohydrates, including but not limited to the monosaccharides, the disaccharides and the oligosaccharides. Unless otherwise noted, heterocycloalkyls have from 2 to 10 carbons in the ring. It is understood that when referring to the number of carbon atoms in a heterocycloalkyl, the number of carbon atoms in the heterocycloalkyl is not the same as the total number of atoms (including the heteroatoms) that make up the heterocycloalkyl (i.e. skeletal atoms of the heterocycloalkyl ring). In some embodiments, the heterocycloalkyl is a 3- to 8-membered heterocycloalkyl.
  • the heterocycloalkyl is a 3- to 7-membered heterocycloalkyl. In some embodiments, the heterocycloalkyl is a 3- to 6-membered heterocycloalkyl. In some embodiments, the heterocycloalkyl is a 4- to 6-membered heterocycloalkyl. In some embodiments, the heterocycloalkyl is a 5- to 6-membered heterocycloalkyl.
  • a heterocycloalkyl may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • the heterocycloalkyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF 3 , —OH, —OMe, —NH 2 , or —NO 2 .
  • the heterocycloalkyl is optionally substituted with halogen, methyl, ethyl, —CN, —CF 3 , —OH, or —OMe. In some embodiments, the heterocycloalkyl is optionally substituted with halogen.
  • Heterocycloalkenyl refers to a stable 3- to 24-membered partially unsaturated ring radical comprising 2 to 23 carbon atoms and from one to 8 heteroatoms selected from the group consisting of nitrogen, oxygen, phosphorous and sulfur.
  • the heterocycloalkenyl comprises one to three heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur.
  • the heterocycloalkenyl comprises one to three heteroatoms selected from the group consisting of nitrogen and oxygen.
  • the heterocycloalkenyl comprises one to three nitrogens.
  • the heterocycloalkenyl comprises one or two nitrogens.
  • the heterocycloalkenyl comprises one nitrogen.
  • the heterocycloalkenyl may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with an aryl or a heteroaryl ring, the heterocycloalkyl is bonded through a non-aromatic ring atom) or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocycloalkenyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized.
  • heterocycloalkenyls include, but are not limited to, heterocycloalkenyls having from two to ten carbon atoms (C 2 -C 10 heterocycloalkenyl), from two to eight carbon atoms (C 2 -C 8 heterocycloalkenyl), from two to seven carbon atoms (C 2 -C 7 heterocycloalkenyl), from two to six carbon atoms (C 2 -C 6 heterocycloalkenyl), from two to five carbon atoms (C 2 -C 5 heterocycloalkenyl), or two to four carbon atoms (C 2 -C 4 heterocycloalkenyl).
  • C 2 -C 10 heterocycloalkenyl having from two to ten carbon atoms (C 2 -C 10 heterocycloalkenyl), from two to eight carbon atoms (C 2 -C 8 heterocycloalkenyl), from two to seven carbon atoms (C 2 -C 7 heterocycloalkenyl), from two to six
  • heterocycloalkenyls examples include, but are not limited to, 2,3-dihydro-1H-pyrrole, 1,2,3,6-tetrahydropyridine, 1,2-dihydropyridine, 1,2,3,4-tetrahydropyrazine, and 3,4-dihydro-2H-1,4-oxazine.
  • heterocycloalkenyls have from 2 to 10 carbons in the ring. It is understood that when referring to the number of carbon atoms in a heterocycloalkenyl, the number of carbon atoms in the heterocycloalkenyl is not the same as the total number of atoms (including the heteroatoms) that make up the heterocycloalkenyl (i.e.
  • the heterocycloalkenyl is a 3- to 8-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 3- to 7-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 3- to 6-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 4- to 6-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 5- to 6-membered heterocycloalkenyl.
  • a heterocycloalkenyl may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroayl, and the like.
  • the heterocycloalkenyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF 3 , —OH, —OMe, —NH 2 , or —NO 2 .
  • the heterocycloalkenyl is optionally substituted with halogen, methyl, ethyl, —CN, —CF 3 , —OH, or —OMe. In some embodiments, the heterocycloalkenyl is optionally substituted with halogen.
  • Heteroaryl refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen, phosphorous and sulfur, and at least one aromatic ring.
  • the heteroaryl comprises one to three heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur.
  • the heteroaryl comprises one to three heteroatoms selected from the group consisting of nitrogen and oxygen.
  • the heteroaryl comprises one to three nitrogens.
  • the heteroaryl comprises one or two nitrogens.
  • the heteroaryl comprises one nitrogen.
  • the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with a cycloalkyl or heterocycloalkyl ring, the heteroaryl is bonded through an aromatic ring atom) or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized.
  • the heteroaryl is a 5- to 10-membered heteroaryl.
  • the heteroaryl is a 5- to 6-membered heteroaryl.
  • the heteroaryl is a 6-membered heteroaryl.
  • the heteroaryl is a 5-membered heteroaryl.
  • examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl,
  • a heteroaryl may be optionally substituted as described below, for example, with halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like.
  • the heteroaryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF 3 , —OH, —OMe, —NH 2 , or —NO 2 .
  • the heteroaryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF 3 , —OH, or —OMe. In some embodiments, the heteroaryl is optionally substituted with halogen.
  • an optionally substituted group may be un-substituted (e.g., —CH 2 CH 3 ), fully substituted (e.g., —CF 2 CF 3 ), mono-substituted (e.g., —CH 2 CH 2 F) or substituted at a level anywhere in-between fully substituted and mono-substituted (e.g., —CH 2 CHF 2 , —CH 2 CF 3 , —CF 2 CH 3 , —CFHCHF 2 , etc.).
  • any substituents described should generally be understood as having a maximum molecular weight of about 1,000 daltons, and more typically, up to about 500 daltons.
  • an “effective amount” or “therapeutically effective amount” refers to an amount of a compound administered to a mammalian subject, either as a single dose or as part of a series of doses, which is effective to produce a desired therapeutic effect.
  • Treatment of an individual (e.g. a mammal, such as a human) or a cell is any type of intervention used in an attempt to alter the natural course of the individual or cell.
  • treatment includes administration of a pharmaceutical composition, subsequent to the initiation of a pathologic event or contact with an etiologic agent and includes stabilization of the condition (e.g., condition does not worsen) or alleviation of the condition.
  • treatment also includes prophylactic treatment (e.g., administration of a composition described herein when an individual is suspected to be suffering from a viral infection, e.g., hepatitis B).
  • Described herein are compounds of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof useful in the treatment of viral infections.
  • the viral infection is a chronic hepatitis B infection.
  • R 14 is hydrogen, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or cycloalkyl.
  • R 14 is hydrogen, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or cycloalkyl.
  • R 14 is hydrogen, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R 4 .
  • R 14 is hydrogen, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 4 .
  • R 14 is hydrogen, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 4 .
  • R 14 is hydrogen, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 4 .
  • R 14 is hydrogen, halogen, C 1 -C 6 alkyl optionally substituted with one, two, or three R 4 . In some embodiment of a compound of Formula (I), R 14 is hydrogen or C 1 -C 6 alkyl. In some embodiment of a compound of Formula (I), R 14 is C 1 -C 6 alkyl.
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 14 is optionally substituted with one, two, or three R 4 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 14 is optionally substituted with one or two R 4 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 14 is optionally substituted with one R 4 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 14 is optionally substituted with two R 4 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 14 is optionally substituted with three R 4 .
  • each R 4 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 4 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 4 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 4 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 4 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 .
  • each R 4 is independently halogen.
  • R 15 is hydrogen, —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R 5 .
  • R 15 is hydrogen, —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 5 .
  • R 15 is hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 5 .
  • R 15 is hydrogen, —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl.
  • R 15 is hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloyalkyl, or C 1 -C 6 hydroxyalkyl.
  • R 15 is hydrogen, C 1 -C 6 alkyl, or C 1 -C 6 hydroxyalkyl. In some embodiment of a compound of Formula (I), R 15 is hydrogen or C 1 -C 6 alkyl. In some embodiment of a compound of Formula (I), R 15 is C 1 -C 6 alkyl.
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 15 is optionally substituted with one, two, or three R 5 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 15 is optionally substituted with one or two R 5 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is R 15 in optionally substituted with one R 5 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 15 is optionally substituted with two R 5 .
  • each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R 15 is optionally substituted with three R 5 .
  • each R 5 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 5 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 5 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 5 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 5 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 .
  • each R 5 is independently halogen.
  • R 14 and R 15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R 6 .
  • R 14 and R 15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R 6 ; wherein the heterocycloalkyl is a 5-, 6-, or 7-membered heterocycloalkyl.
  • R 14 and R 15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R 6 ; wherein the heterocycloalkyl is a 5-membered heterocycloalkyl.
  • R 14 and R 15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R 6 ; wherein the heterocycloalkyl is a 6-membered heterocycloalkyl.
  • R 14 and R 15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R 6 ; wherein the heterocycloalkyl is a 7-membered heterocycloalkyl.
  • the heterocycloalkyl formed when R 14 and R 15 are taken together is optionally substituted with one, two, or three R 6 . In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R 14 and R 15 are taken together is optionally substituted with one or two R 6 . In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R 14 and R 15 are taken together is optionally substituted with one R 6 . In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R 14 and R 15 are taken together is optionally substituted with two R 6 . In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R 14 and R 15 are taken together is optionally substituted with three R 6 .
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O))R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 6 is independently halogen, —CN, —OH, —OR a , —NR b R c , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl.
  • each R 6 is independently halogen —S( ⁇ O) 2 R a , —C( ⁇ O)R a , or C 1 -C 6 alkyl.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 . In some embodiment of a compound of Formula (I), each R 6 is independently halogen.
  • each R 6 is independently halogen, —CN, —OH, —OR a , —NR b R c , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl.
  • each R 6 is independently halogen, —CN, —OH, —OR a , —NR b R c , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl.
  • each R 6 is independently halogen, —OH, —S( ⁇ O) 2 R a , —C( ⁇ O)R a , or C 1 -C 6 alkyl. In some embodiment of a compound of Formula (Ia), each R 6 is independently halogen, —S( ⁇ O) 2 R a , —C( ⁇ O)R a , or C 1 -C 6 alkyl.
  • the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Ia):
  • Ring B is a 4-, 5-, 6-, or 7-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 5-, 6-, or 7-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 5-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 6-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 7-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia),
  • m is 0-3. In some embodiment of a compound of Formula (Ia), m is 0-2. In some embodiment of a compound of Formula (Ia), m is 0 or 1. In some embodiment of a compound of Formula (Ia), m is 1 or 2. In some embodiment of a compound of Formula (Ia), m is 1-3. In some embodiment of a compound of Formula (Ia), m is 0. In some embodiment of a compound of Formula (Ia), m is 1. In some embodiment of a compound of Formula (Ia), m is 2. In some embodiment of a compound of Formula (Ia), m is 3. In some embodiment of a compound of Formula (Ia), m is 4.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 6 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 .
  • each R 6 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 6 is independently halogen.
  • each R 6 is independently halogen, —CN, —OH, —OR a , —NR b R c , —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl.
  • each R 6 is independently halogen, —OH, —S( ⁇ O) 2 R a , —C( ⁇ O)R a , or C 1 -C 6 alkyl. In some embodiment of a compound of Formula (Ia), each R 6 is independently halogen, —S( ⁇ O) 2 R a , —C( ⁇ O)R a , or C 1 -C 6 alkyl.
  • each R 6 is independently halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (Ia), each R 6 is independently halogen or C 1 -C 6 alkyl.
  • p is 0-2. In some embodiment of a compound of Formula (Ia), p is 0 or 1. In some embodiment of a compound of Formula (Ia), p is 1 or 2. In some embodiment of a compound of Formula (Ia), p is 1-3. In some embodiment of a compound of Formula (Ia), p is 0. In some embodiment of a compound of Formula (Ia), p is 1. In some embodiment of a compound of Formula (Ia), p is 2. In some embodiment of a compound of Formula (Ia), p is 3.
  • R 6′ is hydrogen, —S( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —C( ⁇ O)R a , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl.
  • R 6′ is hydrogen, —S( ⁇ O) 2 R a , —C( ⁇ O)R a , or C 1 -C 6 alkyl.
  • R 6′ is hydrogen or C 1 -C 6 alkyl.
  • the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Ib):
  • the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Ic):
  • the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Id):
  • R 12 is hydrogen or C 1 -C 6 alkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), R 12 is hydrogen. In some embodiment of a compound of Formula (I), (Ia)-(Id), R 12 is C 1 -C 6 alkyl.
  • R 13 is hydrogen, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R 3 .
  • R 13 is hydrogen, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, or cycloalkyl; wherein each alkyl or cycloalkyl is independently optionally substituted with one, two, or three R 3 .
  • R 13 is hydrogen, halogen, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 3 .
  • R 13 is hydrogen, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or cycloalkyl.
  • R 13 is hydrogen, halogen, or C 1 -C 6 alkyl.
  • R 13 is hydrogen or C 1 -C 6 alkyl.
  • R 13 is C 1 -C 6 alkyl.
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 13 is optionally substituted with one, two, or three R 3 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 13 is optionally substituted with one or two R 3 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 13 is optionally substituted with one R 3 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 13 is optionally substituted with two R 3 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 13 is optionally substituted with three R 3 .
  • each R 3 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 3 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 3 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 3 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 3 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 .
  • each R 3 is independently halogen.
  • Ring A is cycloalkyl or heterocycloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is cycloalkyl, aryl or heteroaryl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is aryl or heteroaryl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is phenyl or 5- or 6-membered heteroaryl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is phenyl or 6-membered heteroaryl.
  • Ring A is phenyl or pyridyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is phenyl.
  • n is 0-3. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 0-2. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 0 or 1. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 1-3. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 1 or 2. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 0. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 1.
  • n is 2. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 3. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 4.
  • each R 11 is independently halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R 1 .
  • each R 1 is independently halogen, —CN, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, or cycloalkyl; wherein each alkyl and cycloalkyl is independently optionally substituted with one, two, or three R 1 .
  • each R 1 is independently halogen, —CN, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 1 .
  • each R 1 is independently halogen, —CN, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 1 .
  • each R 1 is independently halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or cycloalkyl.
  • each R 1 is independently halogen, —CN, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 11 is independently halogen or C 1 -C 6 alkyl.
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 1 is optionally substituted with one, two, or three R 1 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 1 is optionally substituted with one or two R 1 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 1 is optionally substituted with one R 1 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 11 is optionally substituted with two R 1 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 11 is optionally substituted with three R 1 .
  • each R 1 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 1 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 1 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 1 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 1 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 .
  • each R 1 is independently halogen.
  • two R 11 on adjacent atoms are taken together with the atoms to which they are attached to form a cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; each optionally substituted with one, two, or three R 2 .
  • two R 11 on adjacent atoms are taken together with the atoms to which they are attached to form a cycloalkyl optionally substituted with one, two, or three R 2 .
  • two R 11 on adjacent atoms are taken together with the atoms to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R 2 .
  • two R 11 on adjacent atoms are taken together with the atoms to which they are attached to form an aryl optionally substituted with one, two, or three R 2 .
  • two R 11 on adjacent atoms are taken together with the atoms to which they are attached to form a heteroaryl optionally substituted with one, two, or three R 2 .
  • each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R 11 are taken together is optionally substituted with one, two, or three R 2 .
  • each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R 11 are taken together is optionally substituted with one or two R 2 .
  • each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R 11 are taken together is optionally substituted with one R 2 .
  • each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R 11 are taken together is optionally substituted with two R 2 .
  • R 11 is optionally substituted with three R 2 .
  • each R 2 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 2 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 2 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 2 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 2 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 .
  • each R 2 is independently halogen.
  • R 16 is hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R 7 .
  • R 16 is hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 7 .
  • R 16 is hydrogen, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R 7 .
  • R 16 is hydrogen or C 1 -C 6 alkyl.
  • R 16 is hydrogen.
  • R 17 is hydrogen, —CN, —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 15 cycloalkyl, C 2 -C 15 heterocycloalkyl, phenyl, 5- or 6-membered heteroaryl, —C 1 -C 6 alkyl(phenyl), —C 1 -C 6 alkyl(5- or 6-membered heteroaryl), —C 1 -C 6 alkyl(C 3 -C 15 cycloalkyl), or —C 1 -C 6 alkyl(C 2 -C 15 heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl,
  • R 17 is hydrogen, —CN, —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 10 cycloalkyl, C 2 -C 10 heterocycloalkyl, phenyl, 5- or 6-membered heteroaryl, —C 1 -C 6 alkyl(phenyl), —C 1 -C 6 alkyl(5- or 6-membered heteroayl), —C 1 -C 6 alkyl(C 3 -C 10 cycloalkyl), or —C 1 -C 6 alkyl(C 2 -C 10 heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl,
  • R 17 is —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, C 2 -C 6 alkynyl, C 3 -C 10 cycloalkyl, C 2 -C 10 cycloalkenyl, C 3 -C 10 heterocycloalkyl, C 2 -C 10 heterocycloalkenyl, phenyl, 5- or 6-membered heteroaryl, —C 1 -C 6 alkyl(phenyl), —C 1 -C 6 alkyl(5- or 6-membered heteroaryl), —C 1 -C 6 alkyl(C 3 -C 10 cycloalkyl), or —C 1 -C 6 alkyl(C 2 -C 10 heterocycloalkyl); wherein each alkyl, alkyl, alkyl, alkyl, C 1 -C 6 halo
  • R 17 is —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, C 2 -C 6 alkynyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkenyl, C 2 -C 10 heterocycloalkyl, phenyl, 5- or 6-membered heteroaryl, —C 1 -C 6 alkyl(5- or 6-membered heteroaryl), —C 1 -C 6 alkyl(C 3 -C 10 cycloalkyl), or —C 1 -C 6 alkyl(C 2 -C 10 heterocycloalkyl); wherein each alkyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl
  • R 17 is —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, C 2 -C 6 alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroayl, —C 1 -C 6 alkyl(aryl), —C 1 -C 6 alkyl(heteroayl), —C 1 -C 6 alkyl(cycloalkyl), or —C 1 -C 6 alkyl(heterocycloalkyl); wherein each alkyl, alkynyl, cycloalkyl, cycloalkeny, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroayl is independently optional
  • R 17 is —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, C 2 -C 6 alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, heteroaryl, —C 1 -C 6 alkyl(heteroaryl), —C 1 -C 6 alkyl(cycloalkyl), or —C 1 -C 6 alkyl(heterocycloalkyl); wherein each alkyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R 7 .
  • R 17 is —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, C 2 -C 6 alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C 1 -C 6 alkyl(aryl), —C 1 -C 6 alkyl(heteroayl), —C 1 -C 6 alkyl(cycloalkyl), or —C 1 -C 6 alkyl(heterocycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R 7 .
  • R 17 is —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, heterocycloalkyl, —C 1 -C 6 alkyl(aryl), —C 1 -C 6 alkyl(heteroayl), —C 1 -C 6 alkyl(cycloalkyl), or —C 1 -C 6 alkyl(heterocycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R 7 .
  • R 17 is —OR 20 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, cycloalkyl, heterocycloalkyl, —C 1 -C 6 alkyl(heteroaryl), or —C 1 -C 6 alkyl(cycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroaryl is independently optionally substituted with one, two, or three R 7 .
  • R 17 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or cycloalkyl; each optionally substituted with one, two, or three R 7 .
  • R 17 is C 1 -C 6 hydroxyalkyl, cycloalkyl, or heterocycloalkyl; each optionally substituted with one, two, or three R 7 .
  • R 17 is C 1 -C 6 alkyl or cycloalkyl; each optionally substituted with one, two, or three R 7 . In some embodiment of a compound of Formula (I), (Ia)-(Id), R 17 is C 1 -C 6 alkyl optionally substituted with one, two, or three R 7 .
  • R 17 is C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl or cycloalkyl; each optionally substituted with one, two, or three R 7 . In some embodiment of a compound of Formula (I), (Ia)-(Id), R 17 is C 1 -C 6 haloalkyl optionally substituted with one, two, or three R 7 . In some embodiment of a compound of Formula (I), (Ia)-(Id), R 17 is C 1 -C 6 hydroxyalkyl optionally substituted with one, two, or three R 7 . In some embodiment of a compound of Formula (I), (Ia)-(Id), R 17 is cycloalkyl optionally substituted with one, two, or three R 7 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R 16 or R 17 is optionally substituted with one, two, or three R 7 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R 16 or R 17 is optionally substituted with one or two R 7 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R 16 or R 17 is optionally substituted with one R 7 .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroayl in R 16 or R 17 is optionally substituted with two R 7 .
  • each each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R 16 or R 17 is optionally substituted with three R 7 .
  • each R 7 is independently oxo, halogen, —CN, —OH, —OR a , —S( ⁇ O) 2 R a , —NR b R c , —NHS( ⁇ O) 2 R a , —S( ⁇ O) 2 NR b R c , —B(OR b )(OR c ), —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , —NR b C( ⁇ O)R a , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroayl; wherein each alkyl, alkenyl,
  • each R 7 is independently oxo, halogen, —CN, —OH, —OR a , —S( ⁇ O) 2 R a , —NR b R c , —NHS( ⁇ O) 2 R a , —B(OR b )(OR c ), —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , —NR b C( ⁇ O)R a , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, cycloalkyl, heterocycloalkyl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substitute
  • each R 7 is independently halogen, —CN, —OH, —OR a , —NR b R c , —B(OR b )(OR c ), —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroayl; wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R 7a .
  • each R 7 is independently halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R 7a .
  • each R 7 is independently halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, cycloalkyl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroaryl is independently optionally substituted with one, two, or three R 7a .
  • each R 7 is independently halogen, —OH, —OR a , —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, or heteroayl; wherein each alkyl, cycloalkyl and heteroaryl is independently optionally substituted with one, two, or three R 7a .
  • each R 7 is independently halogen, —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , C 1 -C 6 alkyl, or heteroaryl; wherein each alkyl, cycloalkyl and heteroaryl is independently optionally substituted with one, two, or three R 7a .
  • each R 7 is independently halogen, —C( ⁇ O)OR b , —C( ⁇ O)NR b R c , or heteroaryl optionally substituted with one, two, or three R 7a .
  • each R 7 is independently halogen, —C( ⁇ O)OR b , or —C( ⁇ O)NR b R c . In some embodiment of a compound of Formula (I), (Ia)-(Id), each R 7 is independently —C( ⁇ O)OR b or —C( ⁇ O)NR b R c .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 7 is optionally substituted with one, two, or three R 7a .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 7 is optionally substituted with one or two R 7a .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 7 is optionally substituted with one R a .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 7 is optionally substituted with two R a .
  • each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R 7 is optionally substituted with three R a .
  • R 7 when R 7 is —B(OR b )(OR c ); one of the oxygen on the boron can form a cyclic structure with one of the carbonyl group:
  • each R 7a is independently halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 7a is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 .
  • each R 7a is independently halogen, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R 7a is independently halogen.
  • R 16 and R 17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R 8 .
  • R 16 and R 17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R 8 ; wherein the heterocycloalkyl is pyrrolidine, piperidine, morpholine, or piperazine.
  • R 16 and R 17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R 8 ; wherein the heterocycloalkyl is piperidine.
  • the heterocycloalkyl or heterocycloalkenyl formed when R 16 and R 17 are taken together is optionally substituted with one, two, or three R 8 .
  • the heterocycloalkyl or heterocycloalkenyl formed when R 16 and R 17 are taken together is optionally substituted with one or two R 8 .
  • the heterocycloalkyl or heterocycloalkenyl formed when R 16 and R 17 are taken together is optionally substituted with one R 8 .
  • the heterocycloalkyl or heterocycloalkenyl formed when R 16 and R 17 are taken together is optionally substituted with two R 8 .
  • the heterocycloalkyl or heterocycloalkenyl formed when R 16 and R 17 are taken together is optionally substituted with three R 8 .
  • each R 8 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , —C( ⁇ O)R a , —C( ⁇ O)OR b , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl.
  • each R 8 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, or C 1 -C 6 aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 8 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH 2 , C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • each R 8 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl.
  • each R 8 is independently halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or C 1 -C 6 hydroxyalkyl.
  • each R 8 is independently oxo, halogen, —CN, —OH, —OMe, —NH 2 , Me, or CF 3 . In some embodiment of a compound of Formula (I), (Ia)-(Id), each R 8 is independently —OH or C 1 -C 6 alkyl.
  • each R 8 is independently oxo, halogen, —CN, —OH, —OR a , —NR b R c , C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or C 1 -C 6 hydroxyalkyl.
  • each R a is independently C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl.
  • each R a is independently C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, cycloalkyl, or heterocycloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each R a is independently C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or cycloalkyl.
  • each R a is independently C 1 -C 6 alkyl or C 1 -C 6 haloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each R a is independently C 1 -C 6 alkyl.
  • each R b and R c is independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 1 -C 6 aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl.
  • each R b and R c is independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, cycloalkyl, or heterocycloalkyl.
  • each R b and R c is independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, or cycloalkyl.
  • each R b and R c is independently hydrogen, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each R b and R c is independently hydrogen or C 1 -C 6 alkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each R b and R c is hydrogen.
  • R b and R c are taken together with the atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three halogen, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl.
  • Described herein is a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, selected from a compound in Table 1.
  • the compounds described herein exist as geometric isomers. In some embodiments, the compounds described herein possess one or more double bonds. The compounds presented herein include all cis, trans, syn, anti,
  • Z isomers as well as the corresponding mixtures thereof. In some situations, the compounds described herein possess one or more chiral centers and each center exists in the R configuration, or S configuration. The compounds described herein include all diastereomeric, enantiomeric, and epimeric forms as well as the corresponding mixtures thereof.
  • mixtures of enantiomers and/or diastereoisomers, resulting from a single preparative step, combination, or interconversion are useful for the applications described herein.
  • the compounds described herein are prepared as their individual stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds, separating the diastereomers and recovering the optically pure enantiomers.
  • dissociable complexes are preferred.
  • the diastereomers have distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and are separated by taking advantage of these dissimilarities.
  • the diastereomers are separated by chiral chromatography, or preferably, by separation/resolution techniques based upon differences in solubility.
  • the optically pure enantiomer is then recovered, along with the resolving agent, by any practical means that would not result in racemization.
  • the compounds described herein exist in their isotopically-labeled forms.
  • the methods disclosed herein include methods of treating diseases by administering such isotopically-labeled compounds.
  • the methods disclosed herein include methods of treating diseases by administering such isotopically-labeled compounds as pharmaceutical compositions.
  • the compounds disclosed herein include isotopically-labeled compounds, which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes examples include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine and chloride, such as 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
  • Compounds described herein, and the pharmaceutically acceptable salts, solvates, or stereoisomers thereof which contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention.
  • Certain isotopically-labeled compounds for example those into which radioactive isotopes such as 3 H and 14 C are incorporated, are useful in drug and/or substrate tissue distribution assays.
  • Tritiated, i.e., 3 H and carbon-14, i.e., 14 C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavy isotopes such as deuterium, i.e., 2 H, produces certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements.
  • the compounds described herein are labeled by other means, including, but not limited to, the use of chromophores or fluorescent moieties, bioluminescent labels, or chemiluminescent labels.
  • the compounds described herein exist as their pharmaceutically acceptable salts.
  • the methods disclosed herein include methods of treating diseases by administering such pharmaceutically acceptable salts.
  • the methods disclosed herein include methods of treating diseases by administering such pharmaceutically acceptable salts as pharmaceutical compositions.
  • the compounds described herein possess acidic or basic groups and therefore react with any of a number of inorganic or organic bases, and inorganic and organic acids, to form a pharmaceutically acceptable salt.
  • these salts are prepared in situ during the final isolation and purification of the compounds disclosed herein, or a solvate, or stereoisomer thereof, or by separately reacting a purified compound in its free form with a suitable acid or base, and isolating the salt thus formed.
  • Examples of pharmaceutically acceptable salts include those salts prepared by reaction of the compounds described herein with a mineral, organic acid or inorganic base, such salts including, acetate, acrylate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, bisulfite, bromide, butyrate, butyn-1,4-dioate, camphorate, camphorsulfonate, caproate, caprylate, chlorobenzoate, chloride, citrate, cyclopentanepropionate, decanoate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hexyne-1,6-dioate, hydroxybenzo
  • the compounds described herein can be prepared as pharmaceutically acceptable salts formed by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid, including, but not limited to, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid metaphosphoric acid, and the like; and organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, p-toluenesulfonic acid, tartaric acid, trifluoroacetic acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, arylsulfonic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethaned
  • other acids such as oxalic, while not in themselves pharmaceutically acceptable, are employed in the preparation of salts useful as intermediates in obtaining the compounds disclosed herein, solvate, or stereoisomer thereof and their pharmaceutically acceptable acid addition salts.
  • those compounds described herein which comprise a free acid group react with a suitable base, such as the hydroxide, carbonate, bicarbonate, sulfate, of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary, tertiary, or quaternary amine.
  • a suitable base such as the hydroxide, carbonate, bicarbonate, sulfate, of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary, tertiary, or quaternary amine.
  • Representative salts include the alkali or alkaline earth salts, like lithium, sodium, potassium, calcium, and magnesium, and aluminum salts and the like.
  • bases include sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate, N + (C 1-4 alkyl) 4 , and the like.
  • Organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. It should be understood that the compounds described herein also include the quaternization of any basic nitrogen-containing groups they contain. In some embodiments, water or oil-soluble or dispersible products are obtained by such quaternization.
  • the compounds described herein exist as solvates.
  • the invention provides for methods of treating diseases by administering such solvates.
  • the invention further provides for methods of treating diseases by administering such solvates as pharmaceutical compositions.
  • Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and, in some embodiments, are formed during the process of crystallization with pharmaceutically acceptable solvents such as water, ethanol, and the like. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol. Solvates of the compounds described herein can be conveniently prepared or formed during the processes described herein. By way of example only, hydrates of the compounds described herein can be conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents including, but not limited to, dioxane, tetrahydrofuran or methanol.
  • the compounds provided herein can exist in unsolvated as well as solvated forms. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the compounds and methods provided herein.
  • Tautomers are compounds that are interconvertible by migration of a hydrogen atom, accompanied by a switch of a single bond and adjacent double bond. In bonding arrangements where tautomerization is possible, a chemical equilibrium of the tautomers will exist. All tautomeric forms of the compounds disclosed herein are contemplated. The exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH.
  • Step 1 Synthesis of N-(4-fluoro-3-methylphenyl)-1-methyl-1H-pyrrole-3-carboxamide (1c).
  • HATU 3.4 g, 8.8 mmol
  • DMA 1-methyl-1H-pyrrole-3-carboxylic acid
  • 4-fluoro-3-methylaniline (1b, 1 g, 8 mmol)
  • DIPEA 1 g, 8 mmol
  • the reaction mixture was diluted with EtOAc, washed with aqueous HCl (0.5 N, 20 mL) and brine.
  • Step 2 Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1-methyl-1H-pyrrol-2-yl)-2-oxoacetate (1e)
  • Step 4 Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-methyl-1H-pyrrole-3-carboxamide (1)
  • HATU (90 mg, 0.24 mmol) was added to a solution of 1g (60 mg, 0.19) in DMA (0.75 mL) at 0° C. After 20 min, tert-butylamine (20 mg, 0.28) and DIPEA (50 mg, 0.38 mmol) in DMA (0.4 mL) were added. The reaction mixture was stirred at rt for 20 hrs. The reaction mixture was quenched with aqueous TFA (4%, 0.4 mL), then, extracted with EtOAc (10 mL).
  • Step 3 Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetate (2d)
  • Step 4 Synthesis of 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (2e)
  • Step 5 Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Example 9 Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-oxo-2-((1,1,1-trifluoro-2-methylpropan-2-yl)amino)acetyl)-1H-pyrrole-3-carboxamide.
  • the title compound was prepared following the procedure described in Example 1, 4-fluoro-3-chloroaniline instead of 4-fluoro-3-methylaniline in Step 1, and using O-(tert-butyl)hydroxylamine instead of t-butylamine in Step 5.
  • the final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids.
  • DIPEA (0.229 g, 1.77 mmol) was added to a mixture of 2e (0.195 g, 0.59 mmol), L-Threonine methyl ester hydrochloride (0.11 g, 0.65 mmol) and HATU (0.269 g, 0.71 mmol) in DMF (3 mL) at ambient temperature. After 16 h, the reaction mixture was diluted into aqueous HCl (1 N, 20 mL) and extracted with EtOAc (3 ⁇ 15 mL). The combined extracts were washed with aqueous HCl (1 N, 10 mL), aqueous NH 4 Cl (saturated, 10 mL) and brine (10 mL).
  • Example 22 TFA (0.4 mL) was added to a solution of Example 22 (15 mg) in DCM (1 mL) at 0° C. After 2 hrs at 0° C., the reaction mixture was warmed to rt for 1 hr. The solvent was removed and the residue was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 418 (MH) + .
  • Example 27 NaOH (1 N, 0.5 mL) was added to a solution of Example 27 (0.093 g, 0.208 mmol) in MeOH (5 mL) at ambient temperature. After 2 h the reaction mixture was carefully neutralized with aqueous HCl (1 N) to pH ⁇ 2. The resulting mixture was concentrated under vacuum to remove MeOH, then, purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as pale yellow solid: ESI-MS, m/z 434.2 (MH) + .
  • Step 1 Synthesis of ethyl 1,2,4-trimethyl-1H-pyrrole-3-carboxylate (66b)
  • Step 3 Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetate (66d)
  • Step 4 Synthesis of 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (66e)
  • Step 5 Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((1-hydroxy-2-methylpropan-2-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Step 1 Synthesis of ethyl 1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (71b)
  • Step 2 Synthesis of 1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-N-(4-fluoro-3-methylphenyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (71c)
  • Step 3 Synthesis of ethyl 2-(1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-4-((4-fluoro-3-methylphenyl)carbamoyl)-3,5-dimethyl-1H-pyrrol-2-yl)-2,2-difluoroacetate (71d)
  • Step 4 Synthesis of 2-(1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-4-((4-fluoro-3-methylphenyl)carbamoyl)-3,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (71e)
  • Step 5 Synthesis of N-(4-fluoro-3-methylphenyl)-1-(2-hydroxyethyl)-5-(2-(isopropylamino)-2-oxoacetyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (71)
  • HATU 60 mg, 0.16 mmol
  • DMA DMA
  • tert-butylamine 10 mg, 0.14
  • DIPEA 25 mg, 0.19 mmol
  • the reaction mixture was stirred at rt for 20 hrs.
  • the reaction mixture was quenched with aqueous HCl (0.2N, 2 mL), then, extracted with EtOAc (10 mL). The organic layer was washed with water and brine, and concentrated in vacuo.
  • Example 72 5-(2-((1-amino-2-methyl-1-oxopropan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-(2-hydroxyethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • Step 1 Synthesis of ethyl 1-(2-fluoroethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (115b)
  • Step 3 Synthesis of ethyl 2,2-difluoro-2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1-(2-fluoroethyl)-3,5-dimethyl-1H-pyrrol-2-yl)acetate (115d)
  • Step 4 Synthesis of 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1-(2-fluoroethyl)-3,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (115e)
  • Step 5 Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-(2-fluoroethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • HATU (90 mg, 0.24 mmol) was added to a solution of 115e (60 mg) in DMA (0.75 mL) at 0° C., then, a solution of tert-butylamine (20 mg, 0.28) and DIPEA (50 mg, 0.38 mmol) in DMA (0.4 mL) was added dropwise.
  • the reaction mixture was warmed to rt for 20 hrs.
  • the reaction mixture was quenched with aqueous HCl (0.2 N), and extracted with EtOAc.
  • the organic layer was washed with water and brine, concentrated in vacuo, then, purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid.
  • the title compound was prepared following the procedure described in Example 2, Step 5, using (1r,4r)-4-amino-1-methylcyclohexan-1-ol.
  • the final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as a white solid.
  • the title compound was prepared following the procedure described in Example 2, using (1s,4s)-4-amino-4-methylcyclohexan-1-ol in Step 5.
  • the final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as a white solid.
  • Examples 23-26, 28, 30-33, 35, 39-41, 44-46, 51, 52, 54-58, 60-62, 68, 69, 86-114, 119-129, 131-136, 138-169, 171-176, 181-193, 199-200, 204-209, 211, 212, 214-221, 223, 231-240, 242-266, 268-272, and 274-359 were prepared in analogy to the procedures described above for Example 2, utilizing the appropriate aryl amine in Step 2, and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Example compounds 116-118, 130, 177-180, 194-198, 201-203, 210, 222, 224-227, 229, 230, and 241 (structures shown in Table 1), bearing a 1-(2-fluoroethyl) pyrrole moiety were prepared in analogy to the procedures described above for Example 115, utilizing the appropriate aryl amine in Step 2, and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Example compounds bearing a 1-(2-hydroxyethyl) pyrrole moiety may be prepared in analogy to the procedures described above for Example 50, utilizing the requisite amine in Step 5.
  • Example 362 Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(5-fluoropyridin-2-yl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide (structure shown in Table 1)
  • the title compound may be prepared according to the procedure of Example 2, utilizing 5-fluoro-2-aminopyridine in Step 2, and tert-butyl amine in Step 5.
  • Step 2 Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetate (363b)
  • Step 3 Synthesis of ethyl 2-(3-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetate (363c)
  • Step 4 Synthesis of 2-(3-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (363d)
  • Step 5 Synthesis 5-(2-(tert-butylamino)-2-oxoacetyl)-4-chloro-N-(4-fluoro-3-methylphenyl)-1,2-dimethyl-1H-pyrrole-3-carboxamide (363)
  • Examples 374-376 were prepared in analogy to the procedures described above for Example 363, utilizing the appropriate aryl amine in Step 1, and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Step 1 Synthesis of 2-(4-((3,4-difluorophenyl)carbamoyl)-3-methoxy-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (377b)
  • Step 2 Synthesis of N-(4-fluoro-3-methylphenyl)-4-methoxy-1,2-dimethyl-5-(2-oxo-2-((1-(trifluoromethyl)cyclopropyl)amino)acetyl)-1H-pyrrole-3-carboxamide (377)
  • Examples 378-385 were prepared in analogy to the procedures described above for Example 377, utilizing the requisite amine in Step 2. The observed MS data for these Examples are shown in Table 1.
  • Step 3 Synthesis of ethyl 2-(5-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3-dimethyl-1H-pyrrol-2-yl)-2-oxoacetate (386c)
  • Step 4 Synthesis of 2-(5-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (386d)
  • Step 5 Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-2-chloro-N-(4-fluoro-3-methylphenyl)-1,4-dimethyl-1H-pyrrole-3-carboxamide (386)
  • Examples 387-391 were prepared in analogy to the procedures described above for Example 386, utilizing the appropriate aryl amine in Step 2 and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Examples 394-433 were prepared in analogy to the procedures described above for Example 392, utilizing the requisite amine in Step 5, and the appropriate aryl amine in Step 7. The observed MS data for these Examples are shown in Table 1.
  • Examples 436-488 were prepared in analogy to the procedures described above for Example 434, utilizing the requisite amine and the appropriate aryl amine for preparation of the required intermediates. The observed MS data for these Examples are shown in Table 1.
  • Examples 489-534 were prepared in analogy to the procedures described above for Example 489, utilizing the requisite amine for Step 6, and the appropriate aryl amine in Step 8. The observed MS data for these Examples are shown in Table 1.
  • the title compound may be prepared according to the procedure of Example 536, substituting ammonia for tert-butylamine in Step 5, and 3-chloro-4-fluoroaniline in Step 7.
  • Examples 540-581 were prepared in analogy to the procedures described above for Example 539, utilizing the appropriate aryl amine in Step 2, and the requisite amine for Step 6. The observed MS data for these Examples are shown in Table 1.
  • Example 584 was prepared in analogy to the procedures described above for Example 539, utilizing the appropriate aryl amine in Step 2.
  • Examples 591 and 592 (structures shown in Table 1) may be prepared in analogy to the procedures described above for Example 584.
  • Example 587 To a solution of Example 587 (260 mg, 0.52 mmol) in EtOH (5 mL) was added 35% HCl in EtOH (5 mL), and the solution was stirred at 20° C. for 1 h. The solution was evaporated and purified by preparative HPLC to afford the title compound as white solid (190 mg, 91%). MS (ESI): mass calcd. for C 21 H 25 FN 4 O 3 400.19, m/z found 401.0 [M+H] + .
  • Example 588 To a mixture of Example 588 (90 mg, 0.225 mmol) in DCM (5 mL) was added Et 3 N (0.5 mmol) and methanesulfonyl chloride (31 mg, 0.27 mmol), and the mixture was stirred at 25° C. for 2 h and then evaporated in vacuo. The residue was purified by preparative HPLC to afford the title compound (20 mg, 21%) as white solid. MS (ESI): mass calcd. for C 22 H 27 FN 4 O 5 S 478.17, m/z found 479.0 [M+H] + .
  • Example 588 To a mixture of Example 588 (90 mg, 0.225 mmol) in DCM (5 mL) was added Et 3 N (0.5 mmol) and acetyl chloride (18 mg, 0.225 mmol), and the mixture was stirred at 25° C. for 2 h, and then evaporated in vacuo. The residue was purified by preparative HPLC to afford the title compound as white solid (20 mg, 20%). MS (ESI): mass calcd. for C 23 H 27 FN 4 O 4 442.20, m/z found 443.0 [M+H] + .
  • Examples 591 and 592 (structures shown in Table 1) may be prepared in analogy to the procedures described above for Example 590.
  • Examples 593 and 594 may be prepared in analogy to the procedures described above for Example 392, utilizing azepane-2-carboxylic acid in Step 1.
  • Examples 639, 641, 643, 645, 664, 666, 668, 670, 708, and 709 were prepared in analogy to the procedures described above for Example 612, utilizing the requisite acids.
  • Step 1 Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((4-methylpiperidin-4-yl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Example 612a 110 mg, 0.5 mmol
  • Example 1 g (170 mg, 0.5 mmol) and HATU (200 mg, 0.52 mmol) in DMF (1 mL)
  • DIPEA 0.5 N HCl
  • EtOAc 0.5 N HCl
  • the combined extracts was washed with brine, and concentrated under vacuum.
  • the residues was dissolved in DCM (2 mL), then, TFA (1.5 mL) was added at 0° C. The mixture was warmed to rt for 2 hrs.
  • Step 2 Synthesis of 5-(2-((1-acetyl-4-methylpiperidin-4-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Example 612b To a solution of Example 612b (30 mg, 0.07 mmol), HATU (60 mg, 0.15 mmol) and DIPEA (20 ⁇ L). in DMF (1 mL) was added AcOH (30 mg) 0° C. The reaction mixture was stirred at rt for 20 hrs. The reaction mixture was quenched with aqueous TFA (4%, 0.4 mL), and purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 471.2 (MH) + .
  • Example 681 N-(4-fluoro-3-methylphenyl)-5-(2-((4-((1-hydroxy-2-methylpropan-2-yl)carbamoyl)tetrahydro-2H-pyran-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Step 1 Synthesis of 4-(2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetamido)tetrahydro-2H-pyran-4-carboxylic acid
  • Step 2 Synthesis N-(4-fluoro-3-methylphenyl)-5-(2-((4-((1-hydroxy-2-methylpropan-2-yl)carbamoyl)tetrahydro-2H-pyran-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Examples 605, 682, and 683 were prepared in analogy to the procedures described above for Example 681, utilizing the requisite amines.
  • Example 695 and 712 N-(4-fluoro-3-methylphenyl)-5-(2-(((3aS,4R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide and N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-oxo-2-(((1R,2S,3R,4S)-2,3,4-trihydroxycyclopentyl)amino)acetyl)-1H-pyrrole-3-carboxamide
  • Step 1 Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((3aS,4R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Step 2 Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-oxo-2-(((1R,2S,3R,4S)-2,3,4-trihydroxycyclopentyl)amino)acetyl)-1H-pyrrole-3-carboxamide
  • Example 702 and 703 5-(2-(((3S,4R)-3,4-dihydroxy-1-methylcyclohexyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide and 5-(2-(((3R,4S)-3,4-dihydroxy-1-methylcyclohexyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Step 1 Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((1-methylcyclohex-3-en-1-yl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • the title compound was prepared from compound 702b following the procedure described in Example 2 Step 5, using 702a.
  • the final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as white solid.
  • AD-mix-beta (1 g) was added to a solution of 702b (60 mg) in tBuOH/water (1/1, 10 mL) at 0° C. The reaction was stirred at rt for 36 hrs. The reaction was quenched with water and extracted with EtOAc. The organic layer was washed with water and brine, concentrated in vacuo, and purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford 702 and 703 as white solid. ESI-MS, m/z 531.3 (MH) + .
  • Example 707 was prepared in the same procedure as described for Example 614, using 1,2-difluoro-4-isocyanatobenzene instead of isocyanatoethane.
  • Example 722 and 723 N-(4-fluoro-3-methylphenyl)-5-(2-(((1S,3R)-3-hydroxy-1-methylcyclopentyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-M-pyrrole-3-carboxamide and N-(4-fluoro-3-methylphenyl)-5-(2-(((1S,3S)-3-hydroxy-1-methylcyclopentyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • DIPEA DIPEA was added to a solution of 722b (30 mg, 0.07 mmol), HATU (125 mg, 0.33 mmol) and 1 g (90 mg, 0.27 mmol) in DMF (1 mL) at 0° C.
  • the reaction mixture was stirred at rt for 20 hrs.
  • the reaction mixture was quenched with aqueous TFA (4%, 0.4 mL), and purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford 722 and 723 product as white solid.
  • ESI-MS m/z 430.2 (MH) + .
  • Examples 729-759 were prepared in analogy to the procedures of Example 434, utilizing the requisite amine and the appropriate aryl amine for preparation of the required intermediates. The observed MS data for these Examples are shown in Table 1.
  • Example I Oral Composition of a Compounds of of Formula (I), (Ia)-(Id), or a Pharmaceutically Acceptable Salt, Solvate, or Stereoisomer Thereof
  • compositions for oral delivery 400 mg of compound described herein, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof and the following ingredients are mixed intimately and pressed into single scored tablets.
  • CAMs Capsid Assembly Modulators
  • pgRNA viral pre-genomic RNA
  • mRNAs Upon removal of tetracycline, viral pre-genomic RNA (pgRNA) and mRNAs are expressed and infectious viral particles are assembled and secreted into the culture medium providing a reliable, robust system to measure multiple steps of the HBV life cycle. Disruption of capsid formation results in reduced levels of DNA-containing virus particles that are released into the culture supernatant.
  • pgRNA viral pre-genomic RNA
  • mRNAs Upon removal of tetracycline, viral pre-genomic RNA (pgRNA) and mRNAs are expressed and infectious viral particles are assembled and secreted into the culture medium providing a reliable, robust system to measure multiple steps of the HBV life cycle. Disruption of capsid formation results in reduced levels of DNA-containing virus particles that are released into the culture supernatant.
  • HepAD38 cells were maintained in DMEM/F12 medium containing 10% FBS, 400 ⁇ g/mL G418 and 0.3 ⁇ g/mL tetracycline (tet+media) to maintain repression of HBV replication.
  • HepAD38 cells were seeded into 24-well collagen coated culture plates (Corning BioCoat) at a density of 200,000 cells per well in 1 mL of medium without tetracycline (tet-media) and allowed to adhere overnight at 37° C., 5% CO 2 in a humidified incubator. The following day, media was refreshed and a dose range of each compound was prepared by performing 1 log 10 serial dilutions in 100% DMSO at 200 ⁇ the desired assay concentration.
  • cell culture supernatants were diluted 1:10 in sterile, nuclease-free water (Gibco).
  • the diluted supernatants were subsequently added to a PCR master mix containing 1 ⁇ Roche Light Cycler Master Mix, 0.5 pM forward primer, 0.5 pM reverse primer (Fwd: 5′-TTGGTGTCTITCGGAGTGTG (SEQ ID NO 1); Rev: 5′-AGGGGCATTGGTGGTCTAT (SEQ ID NO 2)), 0.2 ⁇ M Roche Universal Probe Library Probe 25.
  • the volume was brought to 20 ⁇ L with nuclease-free water and amplification of the HBV target sequence was performed using a Roche LightCycler 480 QPCR instrument. PCR extended out to 45 cycles with each cycle consisting of a denaturation step at 95° C. for 10 sec., followed by an annealing step at 60° C. for 10 sec. and a brief extension step at 72° C. for 1 sec.
  • Extracellular HBV DNA levels were determined by comparison to a standard curve (10 2 -10 9 copies/mL) using the Roche LightCycler analysis software. These values were subsequently converted to percent inhibition of HBV replication by dividing the HBV DNA levels in the experimental samples with those obtained from the vehicle control ( ⁇ 1-2 ⁇ 105 copies/mL). Potency, expressed as an EC 50 (the effective concentration required to inhibit 5000 of HBV replication), was calculated from the dose-response curve using a 4-parameter non-linear regression analysis (GraphPad Prism). The nucleoside analog inhibitor entecavir was used as a positive control to validate each assay run. The EC 50 value of entecavir in the HepAD38 assay was 0.5 nM, as previously reported in the literature.
  • Table 2 summarizes the antiviral activity of the exemplary compounds.
  • NT not tested.
  • NA not available.
  • cytotoxic activity of each compound was determined using a standard cell viability assay performed on the parental HepG2 cell line.
  • Cell viability was determined by measuring the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (NMT) to the insoluble formazan salt crystal that occurs in live cells. Briefly, HepG2 cells were seeded in 96-well plates at a density of 20,000 cells per well in EMEM+10% FBS (complete growth medium) and allowed to adhere overnight in a 37° C., 5% CO 2 humidified incubator.
  • test agents were prepared by performing 8 half-log 10 serial dilutions in 100% DMSO at 200 ⁇ the final desired concentration in the assay. Compounds were tested over a range of concentrations from 30 ⁇ M to 1.0 nM in the assay.
  • HepG2 cells were incubated in the presence of various concentrations of CAMs for 7 days in a 37° C., 5% CO 2 humidified incubator. At the completion of the 7-day incubation period, MTT reagent was added to each well and the mixture was incubated for an additional 3-4 hours. At the completion of the incubation period, all wells were aspirated to remove the culture medium. The formazan crystals were solubilized from the cell monolayers with 100% DMSO.
  • CC 50 value cytotoxic concentration that results in loss of 50% cell viability
  • Table 3 summarizes the cytotoxicity assay data in the hepatocyte cell line HepG2 for the example compounds.
  • NT not tested.
  • NA not available.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Described herein are hepatitis B capsid assembly modulators and pharmaceutical compositions comprising said compounds. The subject compounds and compositions are useful for the treatment of hepatitis B.

Description

    CROSS-REFERENCE
  • This application is a continuation of U.S. patent application Ser. No. 17/514,578 filed on Oct. 29, 2021, which is a continuation of U.S. patent application Ser. No. 17/209,726 filed on Mar. 23, 2021, now abandoned, which is a continuation of U.S. patent application Ser. No. 16/671,815 filed on Nov. 1, 2019, now U.S. Pat. No. 11,014,881, issued on May 25, 2021, which is a continuation of U.S. patent application Ser. No. 16/438,361 filed on Jun. 11, 2019, now U.S. Pat. No. 10,590,076, issued on Mar. 17, 2020, which claims the benefit of U.S. Provisional Application Ser. No. 62/683,557 filed Jun. 11, 2018 and U.S. Provisional Application Ser. No. 62/832,734 filed Apr. 11, 2019, which are hereby incorporated by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to small-molecule compounds that modulate capsid assembly and block hepatitis B virus (HBV) replication with the potential to be used as a monotherapy or in combination with other antivirals for the treatment of chronic HBV infection.
  • HBV is a small enveloped DNA virus belonging to the Hepadnaviridae family that is distributed worldwide as ten geographically distinct genotypes. Infection with HBV is typically self-limiting in otherwise healthy adults; however, vertical transmission or exposure during early childhood often results in a chronic lifelong infection. Worldwide there are an estimated >400 million individuals chronically infected with HBV that are at risk for complications due to liver disease, including cirrhosis, fibrosis, hepatocellular carcinoma and death. Each year 500,000 to 1 million people die from end stage liver disease as a consequence of HBV infection
  • The compact HBV genome utilizes four overlapping reading frames to encode the major structural and non-structural proteins: polymerase (F), envelope (S), core (C) and the X protein (X). HBV enters human hepatocytes via receptor mediated endocytosis, following binding of the envelope glycoprotein to its primary receptor, the bile acid transporter sodiumtaurocholate co-transporting polypeptide (NTCP). Following fusion with the endosome membrane, the capsid is ejected into the cytoplasm and translocated to the nucleus. The partially double-stranded, relaxed, circular HBV genome (RC DNA) is converted to a covalently closed circular DNA form (cccDNA) by host cellular DNA repair mechanisms. The HBV cccDNA serves as the template for RNA polymerase II-dependent transcription of multiple RNA species, including viral mRNAs and the 3.2-kbp pre-genomic RNA (pgRNA). During the maturation process, pgRNA is packaged into capsids along with the HBV polymerase. The pgRNA is then reverse transcribed into a negative-stranded DNA template that is subsequently converted into the partially double-stranded RC DNA species by the polymerase. Mature, enveloped HBV particles containing the RC DNA genome are secreted from the surface of the infected hepatocyte ready to initiate new cycles of infection.
  • The capsid is composed of 240 copies of the core protein that spontaneously self-assemble through a network of weak inter-subunit interactions. In vitro evidence suggests that a trimer of core dimers initiates the nucleation event that rapidly recruits additional dimers to form the icosahedral core structure (T=4). In addition to its structural role, encapsidation of the pgRNA is an essential step required for HBV DNA synthesis and formation of the mature capsid particle. The core protein also plays an important role in shuttling the RC DNA into the nucleus to initiate and maintain the cccDNA pools and may also play a role in regulating interferon sensitive gene expression. Thus, capsid modulators may have the unique ability to intervene at multiple points in the HBV lifecycle.
  • Several chemotype series of HBV capsid assembly modulators have been reported in the literature including: phenylpropenamides (PP) (e.g., AT-130), heteroarylpyrimidines (HAP) (e.g. Bay 41-4109), and sulfamoylbenzamides (SBA) (e.g. NVR 3-778). Capsid modulators exert their effects on the assembly process through one of two different mechanisms of action. The HAP series induces the aberrant assembly of large capsid aggregates that subsequently triggers the degradation of the core protein. The PP and SBA series, on the other hand, appear to accelerate capsid assembly resulting in the production of authentic empty capsid particles that have failed to incorporate pgRNA. Assembly modulators representing both mechanisms have demonstrated the ability to reduce HBV DNA levels in mouse models of infection. More recently, NVR 3-778 (SBA) demonstrated clinical proof-of-concept in a Phase 1b clinical trial, resulting in a −1.7 log 10 reduction in HBV DNA following 600 mg bid dosing for 29 days.
  • SUMMARY OF THE INVENTION
  • Described herein are compounds of Formula (I), (Ia)-(Id) that modulate the normal capsid assembly of hepatitis B core proteins to inhibit the hepatitis B lifecycle, and thus act as antiviral agents toward HBV.
  • Disclosed herein are compounds of Formula (I), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof:
  • Figure US20230062975A1-20230302-C00001
  • wherein:
    • Ring A is aryl, heteroaryl, cycloalkyl, or heterocycloalkyl;
    • each R11 is independently halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R1;
    • or two R1 on adjacent atoms are taken together with the atoms to which they are attached to form a cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; each optionally substituted with one, two, or three R2;
    • R12 is hydrogen or C1-C6alkyl;
    • R13 is hydrogen, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R3;
    • R14 is hydrogen, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R4;
    • R15 is hydrogen, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R5;
    • or R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6;
    • R16 and R17 are each independently hydrogen, —CN, —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7;
    • or R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl or a heterocycloalkenyl; each optionally substituted with one, two, or three R8;
    • each R20 is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroayl is independently optionally substituted with one, two, or three R7;
    • n is 0-4;
    • each R1, R2, R3, R4, R5, R6, and R8 is independently oxo, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • each R7 is independently oxo, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —B(ORb)(ORc), —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a;
    • each R7a is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH. —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • each Ra is independently C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; and
    • each Rb and Rc are independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroayl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • or Rb and Rc are taken together with the atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl.
  • Also disclosed herein are pharmaceutical compositions comprising a compound disclosed herein, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, and a pharmaceutically acceptable excipient.
  • Also disclosed herein are methods of treating an infection in a subject, comprising administering to the subject a compound disclosed herein, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof or a pharmaceutical composition disclosed herein. In some embodiments of a method of treating an infection; the infection is a viral infection. In some embodiments of a method of treating an infection; the infection is caused by the hepatitis B virus. In some embodiments of a method of treating an infection; the infection is hepatitis B.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Chronic hepatitis B infection (CHB) is currently managed with interferon-alpha or nucleoside(tide) analog-based therapies that target the HBV encoded polymerase/reverse transcriptase. The effectiveness of interferon-alpha is limited by inadequate long term responses and severe side effects, while entecavir and tenofovir, are generally well-tolerated, possess a high barrier to resistance and potently suppress viral replication. None of the aforementioned frontline therapies are curative, however, and expensive lifelong therapy is required to maintain a virologic response and prevent the complications associated with liver disease. Novel therapies representing different treatment classes are therefore urgently required to improve functional cure rates (i.e. defined as the loss of HBsAg expression) and shorten treatment durations. Modulators of HBV capsid assembly represent one such class of antivirals with the potential to improve outcomes for chronically infected individuals.
  • Definitions
  • In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments. However, one skilled in the art will understand that the invention may be practiced without these details. In other instances, well-known structures have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments. Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.” Further, headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed invention.
  • Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Also, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
  • The terms below, as used herein, have the following meanings, unless indicated otherwise:
  • “oxo” refers to ═O.
  • “Alkyl” refers to an optionally substituted straight-chain, or optionally substituted branched-chain saturated hydrocarbon monoradical having from one to about ten carbon atoms, more preferably one to six carbon atoms. Examples include, but are not limited to methyl, ethyl, n-propyl, isopropyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, tert-amyl and hexyl, and longer alkyl groups, such as heptyl, octyl and the like. Whenever it appears herein, a numerical range such as “C1-C6 alkyl” or “C1-6alkyl”, means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms or 6 carbon atoms, although the present definition also covers the occurrence of the term “alkyl” where no numerical range is designated. In some embodiments, the alkyl is a C1-10alkyl. In some embodiments, the alkyl is a C1-6alkyl. In some embodiments, the alkyl is a C1-5alkyl. In some embodiments, the alkyl is a C1-4alkyl. In some embodiments, the alkyl is a C1-3alkyl. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the alkyl is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH2, or —NO2. In some embodiments, the alkyl is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkyl is optionally substituted with halogen.
  • “Alkenyl” refers to an optionally substituted straight-chain, or optionally substituted branched-chain hydrocarbon monoradical having one or more carbon-carbon double-bonds and having from two to about ten carbon atoms, more preferably two to about six carbon atoms. The group may be in either the cis or trans conformation about the double bond(s), and should be understood to include both isomers. Examples include, but are not limited to ethenyl (—CH═CH2), 1-propenyl (—CH2CH═CH2), isopropenyl [—C(CH3)═CH2], butenyl, 1,3-butadienyl and the like. Whenever it appears herein, a numerical range such as “C2-C6 alkenyl” or “C2-6alkenyl”, means that the alkenyl group may consist of 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms or 6 carbon atoms, although the present definition also covers the occurrence of the term “alkenyl” where no numerical range is designated. Unless stated otherwise specifically in the specification, an alkenyl group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the alkenyl is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH2, or —NO2. In some embodiments, the alkenyl is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkenyl is optionally substituted with halogen.
  • “Alkynyl” refers to an optionally substituted straight-chain or optionally substituted branched-chain hydrocarbon monoradical having one or more carbon-carbontriple-bonds and having from two to about ten carbon atoms, more preferably from two to about six carbon atoms. Examples include, but are not limited to ethynyl, 2-propynyl, 2-butynyl, 1,3-butadiynyl and the like. Whenever it appears herein, a numerical range such as “C2-C6 alkynyl” or “C2-6alkynyl”, means that the alkynyl group may consist of 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms or 6 carbon atoms, although the present definition also covers the occurrence of the term “alkynyl” where no numerical range is designated. Unless stated otherwise specifically in the specification, an alkynyl group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroayl, and the like. In some embodiments, the alkynyl is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH2, or —NO2. In some embodiments, the alkynyl is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkynyl is optionally substituted with halogen.
  • “Alkylene” refers to a straight or branched divalent hydrocarbon chain. Unless stated otherwise specifically in the specification, an alkylene group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the alkylene is optionally substituted with oxo, halogen, —CN, —OH, —OMe, —NH2, or —NO2. In some embodiments, the alkylene is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkylene is optionally substituted with halogen.
  • “Alkoxy” refers to a radical of the formula —ORa where Ra is an alkyl radical as defined. Unless stated otherwise specifically in the specification, an alkoxy group may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the alkoxy is optionally substituted with halogen, —CN, —OH, —OMe, —NH2, or —NO2. In some embodiments, the alkoxy is optionally substituted with halogen, —CN, —OH, or —OMe. In some embodiments, the alkoxy is optionally substituted with halogen.
  • “Aryl” refers to a radical derived from a hydrocarbon ring system comprising hydrogen, 6 to 30 carbon atoms and at least one aromatic ring. The aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with a cycloalkyl or heterocycloalkyl ring, the aryl is bonded through an aromatic ring atom) or bridged ring systems. In some embodiments, the aryl is a 6- to 10-membered aryl. In some embodiments, the aryl is a 6-membered aryl (phenyl). Aryl radicals include, but are not limited to, aryl radicals derived from the hydrocarbon ring systems of anthrylene, naphthylene, phenanthiylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, as-indacene, s-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, an aryl may be optionally substituted as described below, for example, with halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the aryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF3, —OH, —OMe, —NH2, or —NO2. In some embodiments, the aryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF3, —OH, or —OMe. In some embodiments, the aryl is optionally substituted with halogen.
  • “Cycloalkyl” refers to a stable, partially or fully saturated, monocyclic or polycyclic carbocyclic ring, which may include fused (when fused with an aryl or a heteroaryl ring, the cycloalkyl is bonded through a non-aromatic ring atom) or bridged ring systems. Representative cycloalkyls include, but are not limited to, cycloalkyls having from three to fifteen carbon atoms (C3-C15 cycloalkyl), from three to ten carbon atoms (C3-C10 cycloalkyl), from three to eight carbon atoms (C3-C8 cycloalkyl), from three to six carbon atoms (C3-C6 cycloalkyl), fromthree to five carbon atoms (C3-C5 cycloalkyl), or three to four carbon atoms (C3-C4 cycloalkyl). In some embodiments, the cycloalkyl is a 3- to 10-membered cycloalkyl. In some embodiments, the cycloalkyl is a 3- to 6-membered cycloalkyl. In some embodiments, the cycloalkyl is a 5- to 6-membered cycloalkyl. Monocyclic cycloalkyls include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic cycloalkyls include, for example, adamantyl, norbornyl, decalinyl, bicyclo[3.3.0]octane, bicyclo[4.3.0]nonane, cis-decalin, trans-decalin, bicyclo[2.1.1]hexane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]nonane, and bicyclo[3.3.2]decane, and 7,7-dimethyl-bicyclo[2.2.1]heptanyl. Partially saturated cycloalkyls include, for example cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl. Unless stated otherwise specifically in the specification, a cycloalkyl is optionally substituted, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, a cycloalkyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF3, —OH, —OMe, —NH2, or —NO2. In some embodiments, a cycloalkyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF3, —OH, or —OMe. In some embodiments, the cycloalkyl is optionally substituted with halogen.
  • “Cycloalkenyl” refers to a partially unsaturated, monocyclic or polycyclic carbocyclic ring, which may include fused (when fused with an aryl or a heteroaryl ring, the cycloalkenyl is bonded through a non-aromatic ring atom) or bridged ring systems. Representative cycloalkenyl include, but are not limited to, cycloalkenyls having from three to fifteen carbon atoms (C3-C15 cycloalkenyl), from three to ten carbon atoms (C3-C10 cycloalkenyl), from three to eight carbon atoms (C3-C8 cycloalkenyl), from three to six carbon atoms (C3-C6 cycloalkenyl), from three to five carbon atoms (C3-C5 cycloalkenyl), four to six carbon atoms (C4-C6 cycloalkenyl), four to eight carbon atoms (C4-C8 cycloalkenyl), or four to ten carbon atoms (C4-C10 cycloalkenyl). Monocyclic cycloalkenyl include, for example, cyclopentene, cyclohexene, cycloheptene, cyclopentadiene, cyclohexadiene, cycloheptadiene, and cycloheptatriene. Unless stated otherwise specifically in the specification, a cycloalkenyl may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the cycloalkenyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF3, —OH, —OMe, —NH2, or —NO2. In some embodiments, the cycloalkenyl is optionally substituted with halogen, methyl, ethyl, —CN, —CF3, —OH, or —OMe. In some embodiments, the cycloalkenyl is optionally substituted with halogen.
  • “Halo” or “halogen” refers to bromo, chloro, fluoro or iodo. In some embodiments, halogen is fluoro or chloro. In some embodiments, halogen is fluoro.
  • “Haloalkyl” refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, fluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, 1,2-dibromoethyl, and the like.
  • “Heterocycloalkyl” refers to a stable 3- to 24-membered fully saturated ring radical comprising 2 to 23 carbon atoms and from one to 8 heteroatoms selected from the group consisting of nitrogen, oxygen, phosphorous and sulfur. In some embodiments, the heterocycloalkyl comprises one to three heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur. In some embodiments, the heterocycloalkyl comprises one to three heteroatoms selected from the group consisting of nitrogen and oxygen. In some embodiments, the heterocycloalkyl comprises one to three nitrogens. In some embodiments, the heterocycloalkyl comprises one or two nitrogens. In some embodiments, the heterocycloalkyl comprises one nitrogen. In some embodiments, the heterocycloalkyl comprises one nitrogen and one oxygen. Unless stated otherwise specifically in the specification, the heterocycloalkyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with an aryl or a heteroaryl ring, the heterocycloalkyl is bonded through a non-aromatic ring atom) or bridged ring systems; and the nitrogen, carbon, or sulfur atoms in the heterocycloalkyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Representative heterocycloalkyls include, but are not limited to, heterocycloalkyls having from two to fifteen carbon atoms (C2-C15 heterocycloalkyl), from two to ten carbon atoms (C2-C10 heterocycloalkyl), from two to eight carbon atoms (C2-C8 heterocycloalkyl), from two to seven carbon atoms (C2-C7 heterocycloalkyl), from two to six carbon atoms (C2-C6 heterocycloalkyl), from two to five carbon atoms (C2-C8 heterocycloalkyl), or two to four carbon atoms (C2-C4 heterocycloalkyl). Examples of such heterocycloalkyl radicals include, but are not limited to, aziridinyl, azetidinyl, oxetanyl, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, 1,1-dioxo-thiomorpholinyl, 1,3-dihydroisobenzofuran-1-yl, 3-oxo-1,3-dihydroisobenzofuran-1-yl, methyl-2-oxo-1,3-dioxol-4-yl, and 2-oxo-1,3-dioxol-4-yl. The term heterocycloalkyl also includes all ring forms of the carbohydrates, including but not limited to the monosaccharides, the disaccharides and the oligosaccharides. Unless otherwise noted, heterocycloalkyls have from 2 to 10 carbons in the ring. It is understood that when referring to the number of carbon atoms in a heterocycloalkyl, the number of carbon atoms in the heterocycloalkyl is not the same as the total number of atoms (including the heteroatoms) that make up the heterocycloalkyl (i.e. skeletal atoms of the heterocycloalkyl ring). In some embodiments, the heterocycloalkyl is a 3- to 8-membered heterocycloalkyl. In some embodiments, the heterocycloalkyl is a 3- to 7-membered heterocycloalkyl. In some embodiments, the heterocycloalkyl is a 3- to 6-membered heterocycloalkyl. In some embodiments, the heterocycloalkyl is a 4- to 6-membered heterocycloalkyl. In some embodiments, the heterocycloalkyl is a 5- to 6-membered heterocycloalkyl. Unless stated otherwise specifically in the specification, a heterocycloalkyl may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the heterocycloalkyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF3, —OH, —OMe, —NH2, or —NO2. In some embodiments, the heterocycloalkyl is optionally substituted with halogen, methyl, ethyl, —CN, —CF3, —OH, or —OMe. In some embodiments, the heterocycloalkyl is optionally substituted with halogen.
  • “Heterocycloalkenyl” refers to a stable 3- to 24-membered partially unsaturated ring radical comprising 2 to 23 carbon atoms and from one to 8 heteroatoms selected from the group consisting of nitrogen, oxygen, phosphorous and sulfur. In some embodiments, the heterocycloalkenyl comprises one to three heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur. In some embodiments, the heterocycloalkenyl comprises one to three heteroatoms selected from the group consisting of nitrogen and oxygen. In some embodiments, the heterocycloalkenyl comprises one to three nitrogens. In some embodiments, the heterocycloalkenyl comprises one or two nitrogens. In some embodiments, the heterocycloalkenyl comprises one nitrogen. Unless stated otherwise specifically in the specification, the heterocycloalkenyl may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with an aryl or a heteroaryl ring, the heterocycloalkyl is bonded through a non-aromatic ring atom) or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocycloalkenyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Representative heterocycloalkenyls include, but are not limited to, heterocycloalkenyls having from two to ten carbon atoms (C2-C10 heterocycloalkenyl), from two to eight carbon atoms (C2-C8 heterocycloalkenyl), from two to seven carbon atoms (C2-C7 heterocycloalkenyl), from two to six carbon atoms (C2-C6 heterocycloalkenyl), from two to five carbon atoms (C2-C5 heterocycloalkenyl), or two to four carbon atoms (C2-C4 heterocycloalkenyl). Examples of such heterocycloalkenyls include, but are not limited to, 2,3-dihydro-1H-pyrrole, 1,2,3,6-tetrahydropyridine, 1,2-dihydropyridine, 1,2,3,4-tetrahydropyrazine, and 3,4-dihydro-2H-1,4-oxazine. Unless otherwise noted, heterocycloalkenyls have from 2 to 10 carbons in the ring. It is understood that when referring to the number of carbon atoms in a heterocycloalkenyl, the number of carbon atoms in the heterocycloalkenyl is not the same as the total number of atoms (including the heteroatoms) that make up the heterocycloalkenyl (i.e. skeletal atoms of the heterocycloalkenyl ring). In some embodiments, the heterocycloalkenyl is a 3- to 8-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 3- to 7-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 3- to 6-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 4- to 6-membered heterocycloalkenyl. In some embodiments, the heterocycloalkenyl is a 5- to 6-membered heterocycloalkenyl. Unless stated otherwise specifically in the specification, a heterocycloalkenyl may be optionally substituted as described below, for example, with oxo, halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroayl, and the like. In some embodiments, the heterocycloalkenyl is optionally substituted with oxo, halogen, methyl, ethyl, —CN, —CF3, —OH, —OMe, —NH2, or —NO2. In some embodiments, the heterocycloalkenyl is optionally substituted with halogen, methyl, ethyl, —CN, —CF3, —OH, or —OMe. In some embodiments, the heterocycloalkenyl is optionally substituted with halogen.
  • “Heteroaryl” refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen, phosphorous and sulfur, and at least one aromatic ring. In some embodiments, the heteroaryl comprises one to three heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur. In some embodiments, the heteroaryl comprises one to three heteroatoms selected from the group consisting of nitrogen and oxygen. In some embodiments, the heteroaryl comprises one to three nitrogens. In some embodiments, the heteroaryl comprises one or two nitrogens. In some embodiments, the heteroaryl comprises one nitrogen. The heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused (when fused with a cycloalkyl or heterocycloalkyl ring, the heteroaryl is bonded through an aromatic ring atom) or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. In some embodiments, the heteroaryl is a 5- to 10-membered heteroaryl. In some embodiments, the heteroaryl is a 5- to 6-membered heteroaryl. In some embodiments, the heteroaryl is a 6-membered heteroaryl. In some embodiments, the heteroaryl is a 5-membered heteroaryl. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzooxazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1H-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e., thienyl). Unless stated otherwise specifically in the specification, a heteroaryl may be optionally substituted as described below, for example, with halogen, amino, nitrile, nitro, hydroxyl, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, and the like. In some embodiments, the heteroaryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF3, —OH, —OMe, —NH2, or —NO2. In some embodiments, the heteroaryl is optionally substituted with halogen, methyl, ethyl, —CN, —CF3, —OH, or —OMe. In some embodiments, the heteroaryl is optionally substituted with halogen.
  • The term “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, “optionally substituted alkyl” means either “alkyl” or “substituted alkyl” as defined above. Further, an optionally substituted group may be un-substituted (e.g., —CH2CH3), fully substituted (e.g., —CF2CF3), mono-substituted (e.g., —CH2CH2F) or substituted at a level anywhere in-between fully substituted and mono-substituted (e.g., —CH2CHF2, —CH2CF3, —CF2CH3, —CFHCHF2, etc.). It will be understood by those skilled in the art with respect to any group containing one or more substituents that such groups are not intended to introduce any substitution or substitution patterns (e.g., substituted alkyl includes optionally substituted cycloalkyl groups, which in turn are defined as including optionally substituted alkyl groups, potentially ad infinitum) that are sterically impractical and/or synthetically non-feasible. Thus, any substituents described should generally be understood as having a maximum molecular weight of about 1,000 daltons, and more typically, up to about 500 daltons.
  • An “effective amount” or “therapeutically effective amount” refers to an amount of a compound administered to a mammalian subject, either as a single dose or as part of a series of doses, which is effective to produce a desired therapeutic effect.
  • “Treatment” of an individual (e.g. a mammal, such as a human) or a cell is any type of intervention used in an attempt to alter the natural course of the individual or cell. In some embodiments, treatment includes administration of a pharmaceutical composition, subsequent to the initiation of a pathologic event or contact with an etiologic agent and includes stabilization of the condition (e.g., condition does not worsen) or alleviation of the condition. In some embodiments, treatment also includes prophylactic treatment (e.g., administration of a composition described herein when an individual is suspected to be suffering from a viral infection, e.g., hepatitis B).
  • Compounds
  • Described herein are compounds of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof useful in the treatment of viral infections. In some embodiments, the viral infection is a chronic hepatitis B infection.
  • Disclosed herein is a compound of Formula (I), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof:
  • Figure US20230062975A1-20230302-C00002
  • wherein:
    • Ring A is aryl, heteroaryl, cycloalkyl, or heterocycloalkyl;
    • each R11 is independently halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R1;
    • or two R11 on adjacent atoms are taken together with the atoms to which they are attached to form a cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; each optionally substituted with one, two, or three R2;
    • R12 is hydrogen or C1-C6alkyl;
    • R13 is hydrogen, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R3;
    • R14 is hydrogen, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R4;
    • R15 is hydrogen, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R5;
    • or R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6;
    • R16 and R17 are each independently hydrogen, —CN, —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroayl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7;
    • or R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl or a heterocycloalkenyl; each optionally substituted with one, two, or three R8;
    • each R20 is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroayl is independently optionally substituted with one, two, or three R7;
    • n is 0-4;
    • each R1, R2, R3, R4, R5, R6, and R8 is independently oxo, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • each R7 is independently oxo, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —B(ORb)(ORc), —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a;
    • each R7a is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH. —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • each Ra is independently C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroarylis independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; and
    • each Rb and Rc are independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • or Rb and Rc are taken together with the atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl.
  • In some embodiment of a compound of Formula (I), R14 is hydrogen, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, or cycloalkyl.
  • Disclosed herein is a compound of Formula (I), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof:
  • Figure US20230062975A1-20230302-C00003
  • wherein:
    • Ring A is aryl, heteroaryl, cycloalkyl, or heterocycloalkyl;
    • each R1 is independently halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R1;
    • or two R1 on adjacent atoms are taken together with the atoms to which they are attached to form a cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; each optionally substituted with one, two, or three R2;
    • R12 is hydrogen or C1-C6alkyl;
    • R13 is hydrogen, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R3;
    • R14 is hydrogen, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R4;
    • R15 is hydrogen, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R5;
    • or R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6;
    • R16 and R17 are each independently hydrogen, —CN, —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7;
    • or R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl or a heterocycloalkenyl; each optionally substituted with one, two, or three R8;
    • each R20 is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroayl is independently optionally substituted with one, two, or three R7;
    • n is 0-4;
    • each R1, R2, R3, R4, R5, R6, and R8 is independently oxo, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • each R7 is independently oxo, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —B(ORb)(ORc), —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a;
    • each R7a is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • each Ra is independently C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroarylis independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; and
    • each Rb and Rc are independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
    • or Rb and Rc are taken together with the atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl.
  • In some embodiment of a compound of Formula (I), R14 is hydrogen, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, or cycloalkyl.
  • In some embodiment of a compound of Formula (I), R14 is hydrogen, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R4. In some embodiment of a compound of Formula (I), R14 is hydrogen, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R4. In some embodiment of a compound of Formula (I), R14 is hydrogen, halogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R4. In some embodiment of a compound of Formula (I), R14 is hydrogen, halogen, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R4. In some embodiment of a compound of Formula (I), R14 is hydrogen, halogen, C1-C6alkyl optionally substituted with one, two, or three R4. In some embodiment of a compound of Formula (I), R14 is hydrogen or C1-C6alkyl. In some embodiment of a compound of Formula (I), R14 is C1-C6alkyl.
  • In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R14 is optionally substituted with one, two, or three R4. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R14 is optionally substituted with one or two R4. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R14 is optionally substituted with one R4. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R14 is optionally substituted with two R4. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R14 is optionally substituted with three R4.
  • In some embodiment of a compound of Formula (I), each R4 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (I), each R4 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R4 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R4 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R4 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), each R4 is independently halogen.
  • In some embodiment of a compound of Formula (I), R15 is hydrogen, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R5. In some embodiment of a compound of Formula (I), R15 is hydrogen, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R5. In some embodiment of a compound of Formula (I), R15 is hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R5. In some embodiment of a compound of Formula (I), R15 is hydrogen, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (I), R15 is hydrogen, C1-C6alkyl, C1-C6haloyalkyl, or C1-C6hydroxyalkyl. In some embodiment of a compound of Formula (I), R15 is hydrogen, C1-C6alkyl, or C1-C6hydroxyalkyl. In some embodiment of a compound of Formula (I), R15 is hydrogen or C1-C6alkyl. In some embodiment of a compound of Formula (I), R15 is C1-C6alkyl.
  • In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R15 is optionally substituted with one, two, or three R5. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R15 is optionally substituted with one or two R5. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is R15 in optionally substituted with one R5. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R15 is optionally substituted with two R5. In some embodiment of a compound of Formula (I), each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl in R15 is optionally substituted with three R5.
  • In some embodiment of a compound of Formula (I), each R5 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (I), each R5 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R5 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R5 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R5 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), each R5 is independently halogen.
  • In some embodiment of a compound of Formula (I), R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6. In some embodiment of a compound of Formula (I), R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6; wherein the heterocycloalkyl is a 5-, 6-, or 7-membered heterocycloalkyl.
  • In some embodiment of a compound of Formula (I), R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6; wherein the heterocycloalkyl is a 5-membered heterocycloalkyl. In some embodiment of a compound of Formula (I), R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6; wherein the heterocycloalkyl is a 6-membered heterocycloalkyl. In some embodiment of a compound of Formula (I), R14 and R15 are taken together to form a heterocycloalkyl optionally substituted with one, two, three, or four R6; wherein the heterocycloalkyl is a 7-membered heterocycloalkyl.
  • In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R14 and R15 are taken together is optionally substituted with one, two, or three R6. In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R14 and R15 are taken together is optionally substituted with one or two R6. In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R14 and R15 are taken together is optionally substituted with one R6. In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R14 and R15 are taken together is optionally substituted with two R6. In some embodiment of a compound of Formula (I), the heterocycloalkyl formed when R14 and R15 are taken together is optionally substituted with three R6.
  • In some embodiment of a compound of Formula (I), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O))Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (I), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (I), each R6 is independently halogen, —CN, —OH, —ORa, —NRbRc, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (I), each R6 is independently halogen —S(═O)2Ra, —C(═O)Ra, or C1-C6alkyl. In some embodiment of a compound of Formula (I), each R6 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), each R6 is independently halogen.
  • In some embodiment of a compound of Formula (I),
  • Figure US20230062975A1-20230302-C00004
  • is
  • Figure US20230062975A1-20230302-C00005
  • In some embodiment of a compound of Formula (I),
  • Figure US20230062975A1-20230302-C00006
  • is
  • Figure US20230062975A1-20230302-C00007
  • In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —CN, —OH, —ORa, —NRbRc, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —CN, —OH, —ORa, —NRbRc, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —OH, —S(═O)2Ra, —C(═O)Ra, or C1-C6alkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —S(═O)2Ra, —C(═O)Ra, or C1-C6alkyl.
  • In some embodiment of a compound of Formula (I), the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Ia):
  • Figure US20230062975A1-20230302-C00008
  • wherein:
    • Ring B is heterocycloalkyl;
    • each R6 is independently oxo, halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); and
    • m is 0-4.
  • In some embodiment of a compound of Formula (Ia), Ring B is a 4-, 5-, 6-, or 7-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 5-, 6-, or 7-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 5-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 6-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia), Ring B is a 7-membered heterocycloalkyl. In some embodiment of a compound of Formula (Ia),
  • Figure US20230062975A1-20230302-C00009
    Figure US20230062975A1-20230302-C00010
  • wherein
    • R6′ is hydrogen, —S(═O)Ra, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); and
    • p is 0-3.
  • In some embodiment of a compound of Formula (Ia),
  • Figure US20230062975A1-20230302-C00011
  • is
  • Figure US20230062975A1-20230302-C00012
  • In some embodiment of a compound of Formula (Ia),
  • Figure US20230062975A1-20230302-C00013
  • is
  • Figure US20230062975A1-20230302-C00014
  • In some embodiment of a compound of Formula (Ia),
  • Figure US20230062975A1-20230302-C00015
  • In some embodiment of a compound of Formula (Ia),
  • Figure US20230062975A1-20230302-C00016
  • is
  • Figure US20230062975A1-20230302-C00017
  • In some embodiment of a compound of Formula (Ia),
  • Figure US20230062975A1-20230302-C00018
  • is
  • Figure US20230062975A1-20230302-C00019
  • In some embodiment of a compound of Formula (Ia),
  • Figure US20230062975A1-20230302-C00020
  • is
  • Figure US20230062975A1-20230302-C00021
  • In some embodiment of a compound of Formula (Ia), m is 0-3. In some embodiment of a compound of Formula (Ia), m is 0-2. In some embodiment of a compound of Formula (Ia), m is 0 or 1. In some embodiment of a compound of Formula (Ia), m is 1 or 2. In some embodiment of a compound of Formula (Ia), m is 1-3. In some embodiment of a compound of Formula (Ia), m is 0. In some embodiment of a compound of Formula (Ia), m is 1. In some embodiment of a compound of Formula (Ia), m is 2. In some embodiment of a compound of Formula (Ia), m is 3. In some embodiment of a compound of Formula (Ia), m is 4.
  • In some embodiment of a compound of Formula (Ia), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (Ia), each R6 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen.
  • In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —CN, —OH, —ORa, —NRbRc, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —OH, —S(═O)2Ra, —C(═O)Ra, or C1-C6alkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —S(═O)2Ra, —C(═O)Ra, or C1-C6alkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (Ia), each R6 is independently halogen or C1-C6alkyl.
  • In some embodiment of a compound of Formula (Ia), p is 0-2. In some embodiment of a compound of Formula (Ia), p is 0 or 1. In some embodiment of a compound of Formula (Ia), p is 1 or 2. In some embodiment of a compound of Formula (Ia), p is 1-3. In some embodiment of a compound of Formula (Ia), p is 0. In some embodiment of a compound of Formula (Ia), p is 1. In some embodiment of a compound of Formula (Ia), p is 2. In some embodiment of a compound of Formula (Ia), p is 3.
  • In some embodiment of a compound of Formula (Ia), R6′ is hydrogen, —S(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl. In some embodiment of a compound of Formula (Ia), R6′ is hydrogen, —S(═O)2Ra, —C(═O)Ra, or C1-C6alkyl. In some embodiment of a compound of Formula (Ia), R6′ is hydrogen or C1-C6alkyl.
  • In some embodiment of a compound of Formula (I) or (Ia), the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Ib):
  • Figure US20230062975A1-20230302-C00022
  • In some embodiment of a compound of Formula (I) or (Ia), the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Ic):
  • Figure US20230062975A1-20230302-C00023
  • In some embodiment of a compound of Formula (I) or (Ia), the compound or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof is of Formula (Id):
  • Figure US20230062975A1-20230302-C00024
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R12 is hydrogen or C1-C6alkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), R12 is hydrogen. In some embodiment of a compound of Formula (I), (Ia)-(Id), R12 is C1-C6alkyl.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R13 is hydrogen, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R3. In some embodiment of a compound of Formula (I), (Ia)-(Id), R13 is hydrogen, halogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, or cycloalkyl; wherein each alkyl or cycloalkyl is independently optionally substituted with one, two, or three R3. In some embodiment of a compound of Formula (I), (Ia)-(Id), R13 is hydrogen, halogen, C1-C6alkyl, or C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R3. In some embodiment of a compound of Formula (I), (Ia)-(Id), R13 is hydrogen, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, or cycloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), R13 is hydrogen, halogen, or C1-C6alkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), R13 is hydrogen or C1-C6alkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), R13 is C1-C6alkyl.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R13 is optionally substituted with one, two, or three R3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R13 is optionally substituted with one or two R3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R13 is optionally substituted with one R3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R13 is optionally substituted with two R3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R13 is optionally substituted with three R3.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R3 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R3 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R3 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R3 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R3 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R3 is independently halogen.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is cycloalkyl or heterocycloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is cycloalkyl, aryl or heteroaryl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is aryl or heteroaryl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is phenyl or 5- or 6-membered heteroaryl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is phenyl or 6-membered heteroaryl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is phenyl or pyridyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), Ring A is phenyl.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 0-3. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 0-2. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 0 or 1. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 1-3. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 1 or 2. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 0. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 1. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 2. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 3. In some embodiment of a compound of Formula (I), (Ia)-(Id), n is 4.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R11 is independently halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently halogen, —CN, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, or cycloalkyl; wherein each alkyl and cycloalkyl is independently optionally substituted with one, two, or three R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently halogen, —CN, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently halogen, —CN, C1-C6alkyl, or C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, or cycloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently halogen, —CN, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R11 is independently halogen or C1-C6alkyl.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R1 is optionally substituted with one, two, or three R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R1 is optionally substituted with one or two R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R1 is optionally substituted with one R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R11 is optionally substituted with two R1. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R11 is optionally substituted with three R1.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R1 is independently halogen.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), two R11 on adjacent atoms are taken together with the atoms to which they are attached to form a cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; each optionally substituted with one, two, or three R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), two R11 on adjacent atoms are taken together with the atoms to which they are attached to form a cycloalkyl optionally substituted with one, two, or three R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), two R11 on adjacent atoms are taken together with the atoms to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), two R11 on adjacent atoms are taken together with the atoms to which they are attached to form an aryl optionally substituted with one, two, or three R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), two R11 on adjacent atoms are taken together with the atoms to which they are attached to form a heteroaryl optionally substituted with one, two, or three R2.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R11 are taken together is optionally substituted with one, two, or three R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R11 are taken together is optionally substituted with one or two R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R11 are taken together is optionally substituted with one R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), each cycloalkyl, heterocycloalkyl, aryl, or heteroaryl formed when two R11 are taken together is optionally substituted with two R2. In some embodiment of a compound of Formula (I), (Ia)-(Id), R11 is optionally substituted with three R2.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R2 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R2 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R2 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R2 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R2 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R2 is independently halogen.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id),
  • Figure US20230062975A1-20230302-C00025
  • is
  • Figure US20230062975A1-20230302-C00026
    Figure US20230062975A1-20230302-C00027
  • In some embodiment of a compound of Formula (I), (Ia)-(Id),
  • Figure US20230062975A1-20230302-C00028
  • is
  • Figure US20230062975A1-20230302-C00029
    Figure US20230062975A1-20230302-C00030
  • In some embodiment of a compound of Formula (I), (Ia)-(Id),
  • Figure US20230062975A1-20230302-C00031
  • In some embodiment of a compound of Formula (I) (Ia)-(Id),
  • Figure US20230062975A1-20230302-C00032
  • is
  • Figure US20230062975A1-20230302-C00033
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 is hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 is hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 is hydrogen, C1-C6alkyl, or C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 is hydrogen or C1-C6alkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 is hydrogen.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is hydrogen, —CN, —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, C3-C15cycloalkyl, C2-C15heterocycloalkyl, phenyl, 5- or 6-membered heteroaryl, —C1-C6alkyl(phenyl), —C1-C6alkyl(5- or 6-membered heteroaryl), —C1-C6alkyl(C3-C15cycloalkyl), or —C1-C6alkyl(C2-C15heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is hydrogen, —CN, —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, C3-C10cycloalkyl, C2-C10heterocycloalkyl, phenyl, 5- or 6-membered heteroaryl, —C1-C6alkyl(phenyl), —C1-C6alkyl(5- or 6-membered heteroayl), —C1-C6alkyl(C3-C10cycloalkyl), or —C1-C6alkyl(C2-C10heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkynyl, C3-C10cycloalkyl, C2-C10cycloalkenyl, C3-C10heterocycloalkyl, C2-C10heterocycloalkenyl, phenyl, 5- or 6-membered heteroaryl, —C1-C6alkyl(phenyl), —C1-C6alkyl(5- or 6-membered heteroaryl), —C1-C6alkyl(C3-C10cycloalkyl), or —C1-C6alkyl(C2-C10heterocycloalkyl); wherein each alkyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkynyl, C3-C10cycloalkyl, C3-C10cycloalkenyl, C2-C10heterocycloalkyl, phenyl, 5- or 6-membered heteroaryl, —C1-C6alkyl(5- or 6-membered heteroaryl), —C1-C6alkyl(C3-C10cycloalkyl), or —C1-C6alkyl(C2-C10heterocycloalkyl); wherein each alkyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroayl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroayl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkynyl, cycloalkyl, cycloalkeny, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroayl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroayl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, heterocycloalkyl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroayl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, heterocycloalkyl, —C1-C6alkyl(heteroaryl), or —C1-C6alkyl(cycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroaryl is independently optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or cycloalkyl; each optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is C1-C6hydroxyalkyl, cycloalkyl, or heterocycloalkyl; each optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is C1-C6alkyl or cycloalkyl; each optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is C1-C6alkyl optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is C1-C6haloalkyl, C1-C6hydroxyalkyl or cycloalkyl; each optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is C1-C6haloalkyl optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is C1-C6hydroxyalkyl optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), R17 is cycloalkyl optionally substituted with one, two, or three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R16 or R17 is optionally substituted with one, two, or three R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R16 or R17 is optionally substituted with one or two R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R16 or R17 is optionally substituted with one R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroayl in R16 or R17 is optionally substituted with two R7. In some embodiment of a compound of Formula (I), (Ia)-(Id), each each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl in R16 or R17 is optionally substituted with three R7.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently oxo, halogen, —CN, —OH, —ORa, —S(═O)2Ra, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —B(ORb)(ORc), —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, —NRbC(═O)Ra, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroayl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroayl is independently optionally substituted with one, two, or three R7a.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently oxo, halogen, —CN, —OH, —ORa, —S(═O)2Ra, —NRbRc, —NHS(═O)2Ra, —B(ORb)(ORc), —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, —NRbC(═O)Ra, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, heterocycloalkyl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently halogen, —CN, —OH, —ORa, —NRbRc, —B(ORb)(ORc), —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroayl; wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroaryl is independently optionally substituted with one, two, or three R7a. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently halogen, —OH, —ORa, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, or heteroayl; wherein each alkyl, cycloalkyl and heteroaryl is independently optionally substituted with one, two, or three R7a. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently halogen, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, or heteroaryl; wherein each alkyl, cycloalkyl and heteroaryl is independently optionally substituted with one, two, or three R7a. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently halogen, —C(═O)ORb, —C(═O)NRbRc, or heteroaryl optionally substituted with one, two, or three R7a. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently halogen, —C(═O)ORb, or —C(═O)NRbRc. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7 is independently —C(═O)ORb or —C(═O)NRbRc.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R7 is optionally substituted with one, two, or three R7a. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R7 is optionally substituted with one or two R7a. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R7 is optionally substituted with one Ra. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R7 is optionally substituted with two Ra. In some embodiment of a compound of Formula (I), (Ia)-(Id), each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl in R7 is optionally substituted with three Ra.
  • In some embodiments, when R7 is —B(ORb)(ORc); one of the oxygen on the boron can form a cyclic structure with one of the carbonyl group:
  • Figure US20230062975A1-20230302-C00034
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7a is independently halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7a is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7a is independently halogen, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R7a is independently halogen.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R8. In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R8; wherein the heterocycloalkyl is pyrrolidine, piperidine, morpholine, or piperazine. In some embodiment of a compound of Formula (I), (Ia)-(Id), R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three R8; wherein the heterocycloalkyl is piperidine.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), the heterocycloalkyl or heterocycloalkenyl formed when R16 and R17 are taken together is optionally substituted with one, two, or three R8. In some embodiment of a compound of Formula (I), (Ia)-(Id), the heterocycloalkyl or heterocycloalkenyl formed when R16 and R17 are taken together is optionally substituted with one or two R8. In some embodiment of a compound of Formula (I), (Ia)-(Id), the heterocycloalkyl or heterocycloalkenyl formed when R16 and R17 are taken together is optionally substituted with one R8. In some embodiment of a compound of Formula (I), (Ia)-(Id), the heterocycloalkyl or heterocycloalkenyl formed when R16 and R17 are taken together is optionally substituted with two R8. In some embodiment of a compound of Formula (I), (Ia)-(Id), the heterocycloalkyl or heterocycloalkenyl formed when R16 and R17 are taken together is optionally substituted with three R8.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, or heterocycloalkyl; wherein each alkyl, cycloalkyl, and heterocycloalkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl; wherein each alkyl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —NH2, C1-C6alkyl, or C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, or C1-C6hydroxyalkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently oxo, halogen, —CN, —OH, —OMe, —NH2, Me, or CF3. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently —OH or C1-C6alkyl. In some embodiment of a compound of Formula (I), (Ia)-(Id), each R8 is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, C1-C6alkyl, C1-C6haloalkyl, or C1-C6hydroxyalkyl.
  • In some embodiment of a compound of Formula (I), (Ia)-(Id),
  • Figure US20230062975A1-20230302-C00035
  • is
  • Figure US20230062975A1-20230302-C00036
    Figure US20230062975A1-20230302-C00037
    Figure US20230062975A1-20230302-C00038
    Figure US20230062975A1-20230302-C00039
    Figure US20230062975A1-20230302-C00040
    Figure US20230062975A1-20230302-C00041
  • In some embodiment of a compound of Formula (I) (Ia)-(Id),
  • Figure US20230062975A1-20230302-C00042
  • is
  • Figure US20230062975A1-20230302-C00043
    Figure US20230062975A1-20230302-C00044
    Figure US20230062975A1-20230302-C00045
    Figure US20230062975A1-20230302-C00046
    Figure US20230062975A1-20230302-C00047
    Figure US20230062975A1-20230302-C00048
    Figure US20230062975A1-20230302-C00049
    Figure US20230062975A1-20230302-C00050
    Figure US20230062975A1-20230302-C00051
  • In some embodiment of a compound of Formula (I), (Ia)-(Id),
  • Figure US20230062975A1-20230302-C00052
  • is
  • Figure US20230062975A1-20230302-C00053
    Figure US20230062975A1-20230302-C00054
    Figure US20230062975A1-20230302-C00055
    Figure US20230062975A1-20230302-C00056
    Figure US20230062975A1-20230302-C00057
    Figure US20230062975A1-20230302-C00058
    Figure US20230062975A1-20230302-C00059
  • In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Ra is independently C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Ra is independently C1-C6alkyl, C1-C6haloalkyl, cycloalkyl, or heterocycloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Ra is independently C1-C6alkyl, C1-C6haloalkyl, or cycloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(d), or α-pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Ra is independently C1-C6alkyl or C1-C6haloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Ra is independently C1-C6alkyl.
  • In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Rb and Rc is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Rb and Rc is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, cycloalkyl, or heterocycloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Rb and Rc is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, or cycloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Rb and Rc is independently hydrogen, C1-C6alkyl, or C1-C6haloalkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Rb and Rc is independently hydrogen or C1-C6alkyl. In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, each Rb and Rc is hydrogen.
  • In some embodiments of a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, Rb and Rc are taken together with the atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three halogen, C1-C6alkyl, or C1-C6haloalkyl.
  • Any combination of the groups described above for the various variables is contemplated herein. Throughout the specification, groups and substituents thereof are chosen by one skilled in the field to provide stable moieties and compounds.
  • Described herein is a compound of Formula (I), (Ia)-(Id), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, selected from a compound in Table 1.
  • TABLE 1
    Exemplary compounds
    ESI-MS
    Ex. Structure Chemical Name (M+H)+ (m/z)
     1
    Figure US20230062975A1-20230302-C00060
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-methyl-1H- pyrrole-3-carboxamide 360.1
     2
    Figure US20230062975A1-20230302-C00061
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 388.2
     3
    Figure US20230062975A1-20230302-C00062
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-chloro-4- fluorophenyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide 394  
     4
    Figure US20230062975A1-20230302-C00063
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 392.2
     5
    Figure US20230062975A1-20230302-C00064
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(2-fluoropyridin- 4-yl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 375.2
     6
    Figure US20230062975A1-20230302-C00065
    5-(2-((1-fluoro-2- methylpropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 428.2
     7
    Figure US20230062975A1-20230302-C00066
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 402.2
     8
    Figure US20230062975A1-20230302-C00067
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 404.2
     9
    Figure US20230062975A1-20230302-C00068
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoro-2- methylpropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 442.2
     10
    Figure US20230062975A1-20230302-C00069
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 428.2
     11
    Figure US20230062975A1-20230302-C00070
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4-hydroxy-2- methylbutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 418.2
     12
    Figure US20230062975A1-20230302-C00071
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 416.2
     13
    Figure US20230062975A1-20230302-C00072
    N-(4-fluoro-3-methylphenyl)- 5-(2-((3-(hydroxymethyl) tetrahydrofuran- 3-yl)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 432.2
     14
    Figure US20230062975A1-20230302-C00073
    5-(2-(((3s,5s,7s)-adamantan-1- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 466.2
     15
    Figure US20230062975A1-20230302-C00074
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,3s,5R,7S)-3- hydroxyadamantan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 482.2
     16
    Figure US20230062975A1-20230302-C00075
    N-(2-fluoropyridin-4-yl)-5-(2- (((1r,3s,5R,7S)-3- hydroxyadamantan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 469.2
     17
    Figure US20230062975A1-20230302-C00076
    5-(2-(((1r,3r)-adamantan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 466.1
     18
    Figure US20230062975A1-20230302-C00077
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((2R,3as,5S,6as)- hexahydro-2,5- methanopentalen-3a(1H)- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 452.2
     19
    Figure US20230062975A1-20230302-C00078
    N-(2-fluoropyridin-4-yl)-5-(2- (((2R,3as,5S,6as)-hexahydro- 2,5-methanopentalen-3a(1H)- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 439.2
     20
    Figure US20230062975A1-20230302-C00079
    5-(2-((2-amino-4,5,6,7- tetrahydrobenzo[d]thiazol-6- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 484.1
     21
    Figure US20230062975A1-20230302-C00080
    5-(2-(tert-butoxyamino)-2- oxoacetyl)-N-(3-chloro-4- fluorophenyl)-1-methyl-1H- pyrrole-3-carboxamide 396  
     22
    Figure US20230062975A1-20230302-C00081
    tert-butyl 2-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-2- methylpropanoate 474.2
     23
    Figure US20230062975A1-20230302-C00082
    tert-butyl (S)-2-(2-(4-((4- fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-3,3- dimethylbutanoate 502.2
     24
    Figure US20230062975A1-20230302-C00083
    methyl (R)-2-(2-(4-((4-fluoro- 3-methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-3,3- dimethylbutanoate 460.2
     25
    Figure US20230062975A1-20230302-C00084
    ethyl (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-L-serinate 448.2
     26
    Figure US20230062975A1-20230302-C00085
    ethyl (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-D-serinate 448.2
     27
    Figure US20230062975A1-20230302-C00086
    methyl (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-L-threoninate 448.2
     28
    Figure US20230062975A1-20230302-C00087
    methyl (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-D-threoninate 448.2
     29
    Figure US20230062975A1-20230302-C00088
    2-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-2- methylpropanoic acid 418.2
     30
    Figure US20230062975A1-20230302-C00089
    (S)-2-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-3,3- dimethylbutanoic acid 446.2
     31
    Figure US20230062975A1-20230302-C00090
    (R)-2-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-3,3- dimethylbutanoic acid 446.2
     32
    Figure US20230062975A1-20230302-C00091
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-L-serine 420.2
     33
    Figure US20230062975A1-20230302-C00092
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-D-serine 420.2
     34
    Figure US20230062975A1-20230302-C00093
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-L-threonine 434.2
     35
    Figure US20230062975A1-20230302-C00094
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-D-threonine 434.2
     36
    Figure US20230062975A1-20230302-C00095
    5-(2-((1-amino-2-methyl-1- oxopropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 439.2
     37
    Figure US20230062975A1-20230302-C00096
    5-(2-((1- carbamoylcyclopropyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 415.2
     38
    Figure US20230062975A1-20230302-C00097
    5-(2-((1- carbamoylcyclopentyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
     39
    Figure US20230062975A1-20230302-C00098
    (S)-5-(2-((1-amino-3,3- dimethyl-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 445.2
     40
    Figure US20230062975A1-20230302-C00099
    (R)-5-(2-((1-amino-3,3- dimethyl-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 445.2
     41
    Figure US20230062975A1-20230302-C00100
    (S)-5-(2-((1-amino-3-hydroxy- 1-oxopropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 419.2
     42
    Figure US20230062975A1-20230302-C00101
    5-(2-(((2S,3R)-1-amino-3- hydroxy-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 433.2
     43
    Figure US20230062975A1-20230302-C00102
    5-(2-(((1r,3r,5r,7r)-2- carbamoyladamantan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 509.2
     44
    Figure US20230062975A1-20230302-C00103
    5-(2-(((2R,3S)-1-amino-3- hydroxy-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 433.2
     45
    Figure US20230062975A1-20230302-C00104
    methyl (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-L- allothreoninate 448.2
     46
    Figure US20230062975A1-20230302-C00105
    methyl (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-D- allothreoninate 448.2
     47
    Figure US20230062975A1-20230302-C00106
    N-(4-fluoro-3-methylphenyl)- 5-(2-(4-hydroxypiperidin-1-yl)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 416.2
     48
    Figure US20230062975A1-20230302-C00107
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1R,3s,5S)-3-hydroxy-8- azabicyclo[3.2.1]octan-8-yl)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 442.2
     49
    Figure US20230062975A1-20230302-C00108
    5-(2-(2-amino-6,7- dihydrothiazolo[5,4-c]pyridin- 5(4H)-yl)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 470.1
     50
    Figure US20230062975A1-20230302-C00109
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-1-(2-hydroxyethyl)- 2,4-dimethyl-1H-pyrrole-3- carboxamide 434.2
     51
    Figure US20230062975A1-20230302-C00110
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-L- allothreonine 434.2
     52
    Figure US20230062975A1-20230302-C00111
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-D- allothreonine 434.2
     53
    Figure US20230062975A1-20230302-C00112
    N-(4-fluoro-3-methylphenyl)- 5-(2-(4-hydroxy-3,3- dimethylpiperidin-1-yl)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 444.2
     54
    Figure US20230062975A1-20230302-C00113
    (R)-5-(2-((1-amino-3-hydroxy- 1-oxopropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 419.2
     55
    Figure US20230062975A1-20230302-C00114
    methyl (S)-2-cyclohexyl-2-(2- (4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)acetate 486.2
     56
    Figure US20230062975A1-20230302-C00115
    methyl (R)-2-cyclohexyl-2-(2- (4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)acetate 486.2
     57
    Figure US20230062975A1-20230302-C00116
    5-(2-(((2S,3S)-1-amino-3- hydroxy-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 433.2
     58
    Figure US20230062975A1-20230302-C00117
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((2S,3S)-3-hydroxy-1- (methylamino)-1-oxobutan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 447.2
     59
    Figure US20230062975A1-20230302-C00118
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,3R,4s,5S,7s)-4- hydroxyadamantan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 482.2
     60
    Figure US20230062975A1-20230302-C00119
    (R)-5-(2-((3,3-dimethyl-1- (methylamino)-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 459.2
     61
    Figure US20230062975A1-20230302-C00120
    5-(2-(((2R,3R)-1-amino-3- hydroxy-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 433.2
     62
    Figure US20230062975A1-20230302-C00121
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((2R,3R)-3-hydroxy-1- (methylamino)-1-oxobutan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 447.2
     63
    Figure US20230062975A1-20230302-C00122
    (R)-5-(2-((3,3-dimethylbutan- 2-yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 416.2
     64
    Figure US20230062975A1-20230302-C00123
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2- (neopentylamino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 402.2
     65
    Figure US20230062975A1-20230302-C00124
    N-(4-fluoro-3-methylphenyl)- 5-(2-((3-hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 402.2
     66
    Figure US20230062975A1-20230302-C00125
    N-(4-fluoro-3-methylphenyl)- 5-(2-((2-hydroxy-2- methylethyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 404.2
     67
    Figure US20230062975A1-20230302-C00126
    (S)-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxy-3,3-dimethylbutan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 432.2
     68
    Figure US20230062975A1-20230302-C00127
    (S)-2-cyclohexyl-2-(2-(4-((4- fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)acetic acid 472.2
     69
    Figure US20230062975A1-20230302-C00128
    (R)-2-cyclohexyl-2-(2-(4-((4- fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)acetic acid 472.2
     70
    Figure US20230062975A1-20230302-C00129
    5-(2-(tert-butoxyamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 404  
     71
    Figure US20230062975A1-20230302-C00130
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- hydroxyethyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide 418.2
     72
    Figure US20230062975A1-20230302-C00131
    5-(2-((1-amino-2-methyl-1- oxopropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- hydroxyethyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide 447.2
     73
    Figure US20230062975A1-20230302-C00132
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,3s,5R,7S)-3- hydroxyadamantan-1- yl)amino)-2-oxoacetyl)-1-(2- hydroxyethyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide 512.2
     74
    Figure US20230062975A1-20230302-C00133
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,2s,3S,5s,7s)-5- hydroxyadamantan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 482.2
     75
    Figure US20230062975A1-20230302-C00134
    (S)-5-(2-((2-amino-4,5,6,7- tetrahydrobenzo[d]thiazol-6- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 484.2
     76
    Figure US20230062975A1-20230302-C00135
    (R)-5-(2-((2-amino-4,5,6,7- tetrahydrobenzo[d]thiazol-6- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 484.2
     77
    Figure US20230062975A1-20230302-C00136
    5-(2-((2-amino-4,5,6,7- tetrahydrobenzo[d]thiazol-6- yl)amino)-2-oxoacetyl)-N-(6- fluoropyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 471.1
     78
    Figure US20230062975A1-20230302-C00137
    (R)-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxy-3,3-dimethylbutan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 432.2
     79
    Figure US20230062975A1-20230302-C00138
    5-(2-((1-(2H-tetrazol-5- yl)ethyl)amino)-2-oxoacetyl)- N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 428  
     80
    Figure US20230062975A1-20230302-C00139
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((3- methyl-1-(2H-tetrazol-5- yl)butyl)amino)-2-oxoacetyl)- 1H-pyrrole-3-carboxamide 470  
     81
    Figure US20230062975A1-20230302-C00140
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- methyl-1-(3-methyl-1,2,4- oxadiazol-5-yl)propyl)amino)- 2-oxoacetyl)-1H-pyrrole-3- carboxamide 470  
     82
    Figure US20230062975A1-20230302-C00141
    5-(2-((cyclopropyl(5- methylthiazol-2- yl)methyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 442.2
     83
    Figure US20230062975A1-20230302-C00142
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2-(5- methylthiazol-2-yl)propan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 483  
     84
    Figure US20230062975A1-20230302-C00143
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-(((3- methyl-1,2,4-oxadiazol-5- yl)(tetrahydro-2H-pyran-4- yl)methyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 471  
     85
    Figure US20230062975A1-20230302-C00144
    5-(2-((cyclopropyl(5- methylthiazol-2- yl)methyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 512  
     86
    Figure US20230062975A1-20230302-C00145
    (R)-N-(4-fluoro-3- methylphenyl)-5-(2-((1-((2- hydroxyethyl)amino)-3,3- dimethyl-1-oxobutan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 490  
     87
    Figure US20230062975A1-20230302-C00146
    (R)-N-(4-fluoro-3- methylphenyl)-5-(2-((1-((2- hydroxy-2- methylpropyl)amino)-3,3- dimethyl-1-oxobutan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 518  
     88
    Figure US20230062975A1-20230302-C00147
    (S)-5-(2-((3,3-dimethylbutan- 2-yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 417  
     89
    Figure US20230062975A1-20230302-C00148
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(2-fluoropyridin- 4-yl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 375.2
     90
    Figure US20230062975A1-20230302-C00149
    N-(2-fluoropyridin-4-yl)-5-(2- (((2R,3as,5S,6as)-hexahydro- 2,5-methanopentalen-3a(1H)- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 439.2
     91
    Figure US20230062975A1-20230302-C00150
    5-(2-(((1r,3r)-adamantan-2- yl)amino)-2-oxoacetyl)-N-(6- fluoropyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 453.2
     92
    Figure US20230062975A1-20230302-C00151
    N-(6-fluoropyridin-3-yl)-5-(2- (((1R,2s,3S,5s,7s)-5- hydroxyadamantan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 469.1
     93
    Figure US20230062975A1-20230302-C00152
    5-(2-((1- carbamoylcyclohexyl)amino)- 2-oxoacetyl)-N-(6- fluoropyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 444.2
     94
    Figure US20230062975A1-20230302-C00153
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.2
     95
    Figure US20230062975A1-20230302-C00154
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.2
     96
    Figure US20230062975A1-20230302-C00155
    5-(2-(tert-butylamino)-2- oxoacetyl)-1-ethyl-N-(4-fluoro- 3-methylphenyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide 402.2
     97
    Figure US20230062975A1-20230302-C00156
    5-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 444.1
     98
    Figure US20230062975A1-20230302-C00157
    1-ethyl-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 418.2
     99
    Figure US20230062975A1-20230302-C00158
    5-(2-((1-amino-2-methyl-1- oxopropan-2-yl)amino)-2- oxoacetyl)-1-ethyl-N-(4-fluoro- 3-methylphenyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide 431.2
    100
    Figure US20230062975A1-20230302-C00159
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-L-valine 432  
    101
    Figure US20230062975A1-20230302-C00160
    (2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetyl)-D-valine 432  
    102
    Figure US20230062975A1-20230302-C00161
    (R)-5-(2-((2-amino-1- cyclohexyl-2-oxoethyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 472  
    103
    Figure US20230062975A1-20230302-C00162
    5-(2-(((2S,3S)-1,3- dihydroxybutan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 420  
    104
    Figure US20230062975A1-20230302-C00163
    5-(2-((3,3-difluoro-1- (methylcarbamoyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 479  
    105
    Figure US20230062975A1-20230302-C00164
    (R)-5-(2-((1-amino-3-methyl- 1-oxobutan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 431  
    106
    Figure US20230062975A1-20230302-C00165
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((3-methyl-1- (methylamino)-1-oxobutan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 446  
    107
    Figure US20230062975A1-20230302-C00166
    (S)-5-(2-((1-amino-3-methyl-1- oxobutan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 431  
    108
    Figure US20230062975A1-20230302-C00167
    (S)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((3-methyl-1- (methylamino)-1-oxobutan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 446  
    109
    Figure US20230062975A1-20230302-C00168
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 484.1
    110
    Figure US20230062975A1-20230302-C00169
    N-(6-fluoropyridin-3-yl)-1,2,4- trimethyl-5-(2-oxo-2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 471.1
    111
    Figure US20230062975A1-20230302-C00170
    5-(2-(((2-aminothiazol-4- yl)methyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 444.1
    112
    Figure US20230062975A1-20230302-C00171
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 389.2
    113
    Figure US20230062975A1-20230302-C00172
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((2R,3as,5S,6as)- hexahydro-2,5- methanopentalen-3a(1H)- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 453.2
    114
    Figure US20230062975A1-20230302-C00173
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1r,3s,5R,7S)-3- hydroxyadamantan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 483.2
    115
    Figure US20230062975A1-20230302-C00174
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 420.2
    116
    Figure US20230062975A1-20230302-C00175
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 436.2
    117
    Figure US20230062975A1-20230302-C00176
    5-(2-((1-amino-2-methyl-1- oxopropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 449.2
    118
    Figure US20230062975A1-20230302-C00177
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2- (((1R,2s,3S,5s,7s)-5- hydroxyadamantan-2- yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 514.1
    119
    Figure US20230062975A1-20230302-C00178
    N-(6-fluoropyridin-3-yl)-1,2,4- trimethyl-5-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 415.1
    120
    Figure US20230062975A1-20230302-C00179
    N-(6-fluoropyridin-3-yl)-5-(2- ((1-hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 391.1
    121
    Figure US20230062975A1-20230302-C00180
    N-(6-fluoropyridin-3-yl)-1,2,4- trimethyl-5-(2-oxo-2-((1,1,1- trifluoro-2-methylpropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 429.1
    122
    Figure US20230062975A1-20230302-C00181
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1R,2s,3S,5s,7s)-5- hydroxyadamantan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 483.1
    123
    Figure US20230062975A1-20230302-C00182
    (S)-5-(2-((1-cyclopropyl-2- (methylamino)-2- oxoethyl)amino)-2-oxoacetyl)- N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 443  
    124
    Figure US20230062975A1-20230302-C00183
    (S)-5-(2-((1-cyclobutyl-2- (methylamino)-2- oxoethyl)amino)-2-oxoacetyl)- N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 458  
    125
    Figure US20230062975A1-20230302-C00184
    (S)-5-(2-((1-cyclopentyl-2- (methylamino)-2- oxoethyl)amino)-2-oxoacetyl)- N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 472  
    126
    Figure US20230062975A1-20230302-C00185
    5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4-fluoro- 3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 452  
    127
    Figure US20230062975A1-20230302-C00186
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,3R)-3- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.1
    128
    Figure US20230062975A1-20230302-C00187
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((3S,4R)-4- hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 418.1
    129
    Figure US20230062975A1-20230302-C00188
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,3r)-3- hydroxycyclobutyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 402.1
    130
    Figure US20230062975A1-20230302-C00189
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2- (((3S,4R)-4- hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 450.1
    131
    Figure US20230062975A1-20230302-C00190
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1S,2S)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 417.1
    132
    Figure US20230062975A1-20230302-C00191
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1R,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 417.1
    133
    Figure US20230062975A1-20230302-C00192
    N-(2-fluoropyridin-4-yl)-5-(2- ((1-hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 391.1
    134
    Figure US20230062975A1-20230302-C00193
    N-(2-fluoropyridin-4-yl)-5-(2- (((1S,2S)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 403.1
    135
    Figure US20230062975A1-20230302-C00194
    N-(5-fluoropyridin-2-yl)-5-(2- (((2R,3as,5S,6as)-hexahydro- 2,5-methanopentalen-3a(1H)- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 439.2
    136
    Figure US20230062975A1-20230302-C00195
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,2R)-2- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.1
    137
    Figure US20230062975A1-20230302-C00196
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.1
    138
    Figure US20230062975A1-20230302-C00197
    (S)-5-(2-((2-amino-4,5,6,7- tetrahydrobenzo[d]thiazol-6- yl)amino)-2-oxoacetyl)-N-(6- fluoro-5-methylpyridin-3-yl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 485.1
    139
    Figure US20230062975A1-20230302-C00198
    (S)-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 404  
    140
    Figure US20230062975A1-20230302-C00199
    (R)-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 404  
    141
    Figure US20230062975A1-20230302-C00200
    (R)-N-(4-fluoro-3- methylphenyl)-5-(2-((4- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 404  
    142
    Figure US20230062975A1-20230302-C00201
    (S)-N-(4-fluoro-3- methylphenyl)-5-(2-((4- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 404  
    143
    Figure US20230062975A1-20230302-C00202
    5-(2-(((2R,3R)-1,3- dihydroxybutan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 420  
    144
    Figure US20230062975A1-20230302-C00203
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((2-methyl-1-(3-methyl- 1,2,4-oxadiazol-5- yl)propyl)amino)-2-oxoacetyl)- 1H-pyrrole-3-carboxamide 471  
    145
    Figure US20230062975A1-20230302-C00204
    (S)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((2-methyl-1-(3-methyl- 1,2,4-oxadiazol-5- yl)propyl)amino)-2-oxoacetyl)- 1H-pyrrole-3-carboxamide 471  
    146
    Figure US20230062975A1-20230302-C00205
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,2S)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.1
    147
    Figure US20230062975A1-20230302-C00206
    5-(2-((1- carbamoylcyclopentyl)amino)- 2-oxoacetyl)-N-(3,4- difluorophenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 447.2
    148
    Figure US20230062975A1-20230302-C00207
    N-(3,4-difluorophenyl)-5-(2- ((1-hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 408.2
    149
    Figure US20230062975A1-20230302-C00208
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((3S,4R)-3- hydroxytetrahydro-2H-pyran- 4-yl)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 432.1
    150
    Figure US20230062975A1-20230302-C00209
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((4-hydroxytetrahydro- 2H-pyran-4-yl)methyl)amino)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 446.1
    151
    Figure US20230062975A1-20230302-C00210
    5-(2-(((1R,2S,3S)-2,3- dihydroxycyclopentyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 432.1
    152
    Figure US20230062975A1-20230302-C00211
    5-(2-(((1R,2R,3S)-2,3- dihydroxycyclopentyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 432.1
    153
    Figure US20230062975A1-20230302-C00212
    5-(2-((1-(5-(difluoromethyl)- 1,2,4-oxadiazol-3- yl)cyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 504  
    154
    Figure US20230062975A1-20230302-C00213
    5-(2-((2-(5- ((dimethylamino)methyl)- 1,2,4-oxadiazol-3-yl)propan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 500  
    155
    Figure US20230062975A1-20230302-C00214
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)cyclopropyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 454  
    156
    Figure US20230062975A1-20230302-C00215
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1-hydroxy-2- methylpropan-2- yl)oxy)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 420  
    157
    Figure US20230062975A1-20230302-C00216
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- ((2,2,2- trifluoroethoxy)amino)acetyl)- 1H-pyrrole-3-carboxamide 430  
    158
    Figure US20230062975A1-20230302-C00217
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1-(5- methyl-1,2,4-oxadiazol-3- yl)cyclopentyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 483  
    159
    Figure US20230062975A1-20230302-C00218
    5-(2-((1-(5-(difluoromethyl)- 1,2,4-oxadiazol-3- yl)cyclobutyl)amino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 505  
    160
    Figure US20230062975A1-20230302-C00219
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)cyclopropyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 455  
    161
    Figure US20230062975A1-20230302-C00220
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 405.2
    162
    Figure US20230062975A1-20230302-C00221
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1R,2R)-2- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 431.3
    163
    Figure US20230062975A1-20230302-C00222
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-oxo-2- ((4-(trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 485.2
    164
    Figure US20230062975A1-20230302-C00223
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((3S,4R)-3- hydroxytetrahydro-2H-pyran- 4-yl)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 433.2
    165
    Figure US20230062975A1-20230302-C00224
    (R)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-5-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 429.1
    166
    Figure US20230062975A1-20230302-C00225
    (R)-N-(6-fluoropyridin-3-yl)- 1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 415.1
    167
    Figure US20230062975A1-20230302-C00226
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-((1-methoxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 419.1
    168
    Figure US20230062975A1-20230302-C00227
    N-(6-fluoropyridin-3-yl)-5-(2- ((1-methoxy-2-methylpropan- 2-yl)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 405.1
    169
    Figure US20230062975A1-20230302-C00228
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1-methoxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 418.2
    170
    Figure US20230062975A1-20230302-C00229
    (R)-N-(2-fluoropyridin-4-yl)- 1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 415.1
    171
    Figure US20230062975A1-20230302-C00230
    5-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 445.1
    172
    Figure US20230062975A1-20230302-C00231
    N-(2-fluoropyridin-4-yl)-1,2,4- trimethyl-5-(2-oxo-2-((1,1,1- trifluoro-2-methylpropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 429.1
    173
    Figure US20230062975A1-20230302-C00232
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoro-2- methylpropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 443.1
    174
    Figure US20230062975A1-20230302-C00233
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 431.1
    175
    Figure US20230062975A1-20230302-C00234
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1r,4r)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 431.1
    176
    Figure US20230062975A1-20230302-C00235
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1R,3R)-3- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 417.1
    177
    Figure US20230062975A1-20230302-C00236
    5-(2-(((2R,3R)-1,3- dihydroxybutan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 452  
    178
    Figure US20230062975A1-20230302-C00237
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 436  
    179
    Figure US20230062975A1-20230302-C00238
    5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4-fluoro- 3-methylphenyl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 484  
    180
    Figure US20230062975A1-20230302-C00239
    (S)-N-(4-fluoro-3- methylphenyl)-1-(2- fluoroethyl)-5-(2-((1- hydroxybutan-2-yl)amino)-2- oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 436  
    181
    Figure US20230062975A1-20230302-C00240
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1-(5- methyl-1,3,4-oxadiazol-2- yl)ethyl)amino)-2-oxoacetyl)- 1H-pyrrole-3-carboxamide 442  
    182
    Figure US20230062975A1-20230302-C00241
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1-(5- methyl-1,3,4-oxadiazol-2- yl)cyclopropyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 454  
    183
    Figure US20230062975A1-20230302-C00242
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 405  
    184
    Figure US20230062975A1-20230302-C00243
    5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(6-fluoro- 5-methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 453  
    185
    Figure US20230062975A1-20230302-C00244
    5-(2-(((2R,3R)-1,3- dihydroxybutan-2-yl)amino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 421  
    186
    Figure US20230062975A1-20230302-C00245
    (S)-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-((1- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 405  
    187
    Figure US20230062975A1-20230302-C00246
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((3R,4S)-3- hydroxytetrahydro-2H-pyran- 4-yl)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 432.2
    188
    Figure US20230062975A1-20230302-C00247
    N-(2-fluoropyridin-4-yl)-5-(2- (((1r,3s,5R,7S)-3- hydroxyadamantan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 469.2
    189
    Figure US20230062975A1-20230302-C00248
    N-(3-chloro-4-fluorophenyl)-5- (2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 424.1
    190
    Figure US20230062975A1-20230302-C00249
    N-(2-chloropyridin-4-yl)-5-(2- ((1-hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 407.1
    191
    Figure US20230062975A1-20230302-C00250
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-oxo-2- ((tetrahydro-2H-thiopyran-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 433.1
    192
    Figure US20230062975A1-20230302-C00251
    5-(2-(3,3-difluoropyrrolidin-1- yl)-2-oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 423.1
    193
    Figure US20230062975A1-20230302-C00252
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-oxo-2- (3-oxo-9- azabicyclo[3.3.1]nonan-9- yl)acetyl)-1H-pyrrole-3- carboxamide 455.1
    194
    Figure US20230062975A1-20230302-C00253
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2- (((1S,3S)-3- hydroxycyclopentyl)amino)-2- oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 448.2
    195
    Figure US20230062975A1-20230302-C00254
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2- (((1R,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 448.2
    196
    Figure US20230062975A1-20230302-C00255
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2- (((3S,4R)-3- hydroxytetrahydro-2H-pyran- 4-yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 464.1
    197
    Figure US20230062975A1-20230302-C00256
    5-(2-(((1R,2R,3R)-2,3- dihydroxycyclopentyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 464.2
    198
    Figure US20230062975A1-20230302-C00257
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2-(((1r,4r)- 4-hydroxycyclohexyl)amino)- 2-oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 462.2
    199
    Figure US20230062975A1-20230302-C00258
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((2R,3R)-3- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 404  
    200
    Figure US20230062975A1-20230302-C00259
    5-(2-((2-(5- ((dimethylamino)methyl)- 1,2,4-oxadiazol-3-yl)propan-2- yl)amino)-2-oxoacetyl)-N-(6- fluoro-5-methylpyridin-3-yl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 501  
    201
    Figure US20230062975A1-20230302-C00260
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-2,4-dimethyl- 5-(2-((1-(5-methyl-1,3,4- oxadiazol-2- yl)cyclopropyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 486  
    202
    Figure US20230062975A1-20230302-C00261
    5-(2-((2-(3- ((dimethylamino)methyl)- 1,2,4-oxadiazol-5-yl)propan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 532  
    203
    Figure US20230062975A1-20230302-C00262
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-2,4-dimethyl- 5-(2-((1-(3-methyl-1,2,4- oxadiazol-5- yl)cyclopropyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 486  
    204
    Figure US20230062975A1-20230302-C00263
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (pyridin-3-ylamino)acetyl)-1H- pyrrole-3-carboxamide 409  
    205
    Figure US20230062975A1-20230302-C00264
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1r,4r)-4-hydroxy-4- (trifluoromethyl)cyclohexyl)am ino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 499.2
    206
    Figure US20230062975A1-20230302-C00265
    5-(2-((3,3-difluoro-1- methylcyclobutyl)amino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 437.1
    207
    Figure US20230062975A1-20230302-C00266
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,4r)-4-hydroxy-4- (trifluoromethyl)cyclohexyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 498.2
    208
    Figure US20230062975A1-20230302-C00267
    (R)-N-(2-chloropyridin-4-yl)- 1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoropropan-2-yl) amino)acetyl)-1H-pyrrole-3- carboxamide 431.1
    209
    Figure US20230062975A1-20230302-C00268
    N-(2-chloropyridin-4-yl)-5-(2- (((1R,2s,3S,5s,7s)-5- hydroxyadamantan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 485.1
    210
    Figure US20230062975A1-20230302-C00269
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2- (((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 462.1
    211
    Figure US20230062975A1-20230302-C00270
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methylthiazol-2-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 429  
    212
    Figure US20230062975A1-20230302-C00271
    N-(4-fluoro-3-methylphenyl)- 5-(2-((6-fluoropyridin-3- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 427  
    213
    Figure US20230062975A1-20230302-C00272
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,4r)-4-hydroxy-4- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 444.2
    214
    Figure US20230062975A1-20230302-C00273
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,4s)-4-hydroxy-4- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 445  
    215
    Figure US20230062975A1-20230302-C00274
    (S)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((1-(3-methyl-1,2,4- oxadiazol-5-yl)ethyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 442  
    216
    Figure US20230062975A1-20230302-C00275
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4-fluoro-3- methylphenyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 440  
    217
    Figure US20230062975A1-20230302-C00276
    (S)-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxypropan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 390  
    218
    Figure US20230062975A1-20230302-C00277
    (S)-N-(4-fluoro-3- methylphenyl)-5-(2-((2- hydroxypropyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 390  
    219
    Figure US20230062975A1-20230302-C00278
    (R)-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxypropan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 390  
    220
    Figure US20230062975A1-20230302-C00279
    (R)-N-(4-fluoro-3- methylphenyl)-5-(2-((2- hydroxypropyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 390  
    221
    Figure US20230062975A1-20230302-C00280
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,4s)-4-hydroxy-4- (trifluoromethyl)cyclohexyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 498.2
    222
    Figure US20230062975A1-20230302-C00281
    N-(6-fluoro-5-methylpyridin-3- yl)-1-(2-fluoroethyl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 437.2
    223
    Figure US20230062975A1-20230302-C00282
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- ((tetrahydro-2H-thiopyran-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 432.1
    224
    Figure US20230062975A1-20230302-C00283
    N-(6-fluoro-5-methylpyridin-3- yl)-1-(2-fluoroethyl)-2,4- dimethyl-5-(2-oxo-2-((1,1,1- trifluoro-2-methylpropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 475.2
    225
    Figure US20230062975A1-20230302-C00284
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 421.2
    226
    Figure US20230062975A1-20230302-C00285
    N-(6-fluoro-5-methylpyridin-3- yl)-1-(2-fluoroethyl)-5-(2-((1- methoxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 451.3
    227
    Figure US20230062975A1-20230302-C00286
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-2,4-dimethyl- 5-(2-oxo-2-((1,1,1-trifluoro-2- methylpropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 474.2
    228
    Figure US20230062975A1-20230302-C00287
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,4s)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 444.2
    229
    Figure US20230062975A1-20230302-C00288
    5-(2-(((2-aminothiazol-4- yl)methyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- fluoroethyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 476.2
    230
    Figure US20230062975A1-20230302-C00289
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-2,4-dimethyl- 5-(2-oxo-2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 516.1
    231
    Figure US20230062975A1-20230302-C00290
    5-(2-((3,4- difluorophenyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 444  
    232
    Figure US20230062975A1-20230302-C00291
    5-(2-(((1r,4r)-4- aminocyclohexyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 430  
    233
    Figure US20230062975A1-20230302-C00292
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (piperidin-4-ylamino)acetyl)- 1H-pyrrole-3-carboxamide 415  
    234
    Figure US20230062975A1-20230302-C00293
    N-(6-fluoro-5-methylpyridin- 3-yl)-1,2,4-trimethyl-5-(2- oxo-2-((1- (trifluoromethyl)cyclopropyl) amino)acetyl)-1H-pyrrole-3- carboxamide 441  
    235
    Figure US20230062975A1-20230302-C00294
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5- (2-oxo-2-((1- (trifluoromethyl)cyclobutyl) amino)acetyl)-1H-pyrrole-3- carboxamide 455  
    236
    Figure US20230062975A1-20230302-C00295
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (trifluoromethyl)cyclobutyl) amino)acetyl)-1H-pyrrole-3- carboxamide 454  
    237
    Figure US20230062975A1-20230302-C00296
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (trifluoromethyl)cyclopropyl) amino)acetyl)-1H-pyrrole-3- carboxamide 440  
    238
    Figure US20230062975A1-20230302-C00297
    5-(2-((3,3-difluoro-1- methylcyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 436  
    239
    Figure US20230062975A1-20230302-C00298
    N-(6-fluoropyridin-3-yl)-5-(2- (((1s,4s)-4-hydroxy-4- (trifluoromethyl)cyclohexyl)am ino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 485.1
    240
    Figure US20230062975A1-20230302-C00299
    N-(6-fluoropyridin-3-yl)-5-(2- (((1s,4s)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 431.2
    241
    Figure US20230062975A1-20230302-C00300
    N-(4-fluoro-3-methylphenyl)- 1-(2-fluoroethyl)-5-(2-((1- methoxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2,4- dimethyl-1H-pyrrole-3- carboxamide 450.2
    242
    Figure US20230062975A1-20230302-C00301
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2- (methylamino)-2-oxoacetyl)- 1H-pyrrole-3-carboxamide 346  
    243
    Figure US20230062975A1-20230302-C00302
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (((3-(trifluoromethyl)-1,2,4- oxadiazol-5- yl)methyl)amino)acetyl)-1H- pyrrole-3-carboxamide 482  
    244
    Figure US20230062975A1-20230302-C00303
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (((5-(trifluoromethyl)-4H- 1,2,4-triazol-3- yl)methyl)amino)acetyl)-1H- pyrrole-3-carboxamide 481  
    245
    Figure US20230062975A1-20230302-C00304
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,3R)-3- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.1
    246
    Figure US20230062975A1-20230302-C00305
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,4r)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.2
    247
    Figure US20230062975A1-20230302-C00306
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- ((tetrahydro-2H-pyran-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 416.2
    248
    Figure US20230062975A1-20230302-C00307
    (4-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-2- methoxyphenyl)boronic acid 482.1
    249
    Figure US20230062975A1-20230302-C00308
    5-(2-((1,1-dioxidotetrahydro- 2H-thiopyran-4-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 464.1
    250
    Figure US20230062975A1-20230302-C00309
    5-(2-((4,4- difluorocyclohexyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 450.2
    251
    Figure US20230062975A1-20230302-C00310
    N-(3-chloro-4-fluorophenyl)-5- (2-(((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 450.1
    252
    Figure US20230062975A1-20230302-C00311
    N-(2-chloropyridin-4-yl)-5-(2- (((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 433.1
    253
    Figure US20230062975A1-20230302-C00312
    N-(2-chloropyridin-4-yl)-1,2,4 trimethyl-5-(2-oxo-2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 487.1
    254
    Figure US20230062975A1-20230302-C00313
    (3-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2- oxoacetamido)phenyl)boronic acid 452  
    255
    Figure US20230062975A1-20230302-C00314
    (4-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)phenyl) boronic acid 452  
    256
    Figure US20230062975A1-20230302-C00315
    N-(4-fluoro-3-methylphenyl)- 5-(1-hydroxy-1H- benzo[c][1,5,2]oxazaborinine- 3-carbonyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 434  
    257
    Figure US20230062975A1-20230302-C00316
    5-(2-((2-aminoethyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 375  
    258
    Figure US20230062975A1-20230302-C00317
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,2S)-2-hydroxy-2,3- dihydro-1H-inden-1-yl)amino)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 465  
    259
    Figure US20230062975A1-20230302-C00318
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,2S)-2-hydroxy-2,3- dihydro-1H-inden-1-yl)amino)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 465  
    260
    Figure US20230062975A1-20230302-C00319
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,2R)-2-hydroxy-2,3- dihydro-1H-inden-1-yl)amino)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 465  
    261
    Figure US20230062975A1-20230302-C00320
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,2R)-2-hydroxy-2,3- dihydro-1H-inden-1-yl)amino)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 465  
    262
    Figure US20230062975A1-20230302-C00321
    5-(2-(cyclohexylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 414  
    263
    Figure US20230062975A1-20230302-C00322
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4- hydroxybicyclo[2.2.2]octan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 457  
    264
    Figure US20230062975A1-20230302-C00323
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((6- (trifluoromethyl)pyridin-3- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 477  
    265
    Figure US20230062975A1-20230302-C00324
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-(((1s,4s)- 4- morpholinocyclohexyl)amino)- 2-oxoacetyl)-1H-pyrrole-3- carboxamide 500  
    266
    Figure US20230062975A1-20230302-C00325
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((6- morpholinopyridin-3- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 495  
    267
    Figure US20230062975A1-20230302-C00326
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,3s)-3-hydroxy-1- methylcyclobutyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.2
    268
    Figure US20230062975A1-20230302-C00327
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,4s)-4- methoxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 444.2
    269
    Figure US20230062975A1-20230302-C00328
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,4r)-4- methoxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 444.2
    270
    Figure US20230062975A1-20230302-C00329
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- morpholinoethyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 445.2
    271
    Figure US20230062975A1-20230302-C00330
    N-(2-fluoropyridin-4-yl)-1,2,4- trimethyl-5-(2-oxo-2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 471.1
    272
    Figure US20230062975A1-20230302-C00331
    N-(2-fluoropyridin-4-yl)-1,2,4- trimethyl-5-(2-oxo-2- ((tetrahydro-2H-thiopyran-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 419.1
    273
    Figure US20230062975A1-20230302-C00332
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,4r)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 444.2
    274
    Figure US20230062975A1-20230302-C00333
    (S)-N-(2-fluoropyridin-4-yl)- 1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 415.1
    275
    Figure US20230062975A1-20230302-C00334
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (prop-2-yn-1-ylamino)acetyl)- 1H-pyrrole-3-carboxamide 370.2
    276
    Figure US20230062975A1-20230302-C00335
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (pyridin-2-ylamino)acetyl)-1H- pyrrole-3-carboxamide 409  
    277
    Figure US20230062975A1-20230302-C00336
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyltetrahydro-2H-pyran-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 430.2
    278
    Figure US20230062975A1-20230302-C00337
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((3- (trifluoromethyl)tetrahydrofuran- 3-yl)amino)acetyl)-1H- pyrrole-3-carboxamide 470.2
    279
    Figure US20230062975A1-20230302-C00338
    (1s,4s)-4-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2- oxoacetamido)cyclohexane-1- carboxylic acid 458.2
    280
    Figure US20230062975A1-20230302-C00339
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4- (hydroxymethyl)tetrahydro- 2H-pyran-4-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 446.1
    281
    Figure US20230062975A1-20230302-C00340
    5-(2-((3,3-dimethyltetrahydro- 2H-pyran-4-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 444.2
    282
    Figure US20230062975A1-20230302-C00341
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,4s)-4-hydroxy-1- (trifluoromethyl)cyclohexyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 498.2
    283
    Figure US20230062975A1-20230302-C00342
    5-(2-(((1s,4s)-4- cyanocyclohexyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 439.2
    284
    Figure US20230062975A1-20230302-C00343
    1-ethyl-N-(4-fluoro-3- methylphenyl)-5-(2-(((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 444.2
    285
    Figure US20230062975A1-20230302-C00344
    1-ethyl-N-(4-fluoro-3- methylphenyl)-2,4-dimethyl-5- (2-oxo-2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 498.2
    286
    Figure US20230062975A1-20230302-C00345
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((2- oxopiperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 429.2
    287
    Figure US20230062975A1-20230302-C00346
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,3R)-3- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.2
    288
    Figure US20230062975A1-20230302-C00347
    N-(4-fluoro-3-methylphenyl)- 5-(2-((3-hydroxy-1- (trifluoromethyl)cyclobutyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 470.2
    289
    Figure US20230062975A1-20230302-C00348
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 428.2
    290
    Figure US20230062975A1-20230302-C00349
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- morpholinopropan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 459.3
    291
    Figure US20230062975A1-20230302-C00350
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- methyl-1-morpholinopropan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 473.3
    292
    Figure US20230062975A1-20230302-C00351
    N-(4-fluoro-3-methylphenyl)- 5-(2-((2-(4-hydroxypiperidin- 1-yl)ethyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 459.3
    293
    Figure US20230062975A1-20230302-C00352
    N-(3,4-difluorophenyl)-5-(2- ((3,4-difluorophenyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 448.2
    294
    Figure US20230062975A1-20230302-C00353
    N-(3,4-difluorophenyl)-1,2,4- trimethyl-5-(2-oxo-2-(pyridin- 2-ylamino)acetyl)-1H-pyrrole- 3-carboxamide 413.2
    295
    Figure US20230062975A1-20230302-C00354
    N-(3,4-difluorophenyl)-5-(2- ((5-fluoropyridin-2-yl)amino)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 431.2
    296
    Figure US20230062975A1-20230302-C00355
    N-(3,4-difluorophenyl)-1,2,4- trimethyl-5-(2-oxo-2-(pyridin- 3-ylamino)acetyl)-1H-pyrrole- 3-carboxamide 413.2
    297
    Figure US20230062975A1-20230302-C00356
    N-(3,4-difluorophenyl)-5-(2- ((6-fluoropyridin-3-yl)amino)- 2-oxoacetyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 431.2
    298
    Figure US20230062975A1-20230302-C00357
    5-(2-((4,4- difluorocyclohexyl)amino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 454.2
    299
    Figure US20230062975A1-20230302-C00358
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- morpholino-2- oxoethyl)amino)-2-oxoacetyl)- 1H-pyrrole-3-carboxamide 459.2
    300
    Figure US20230062975A1-20230302-C00359
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((2- (3-oxopiperazin-1- yl)ethyl)amino)acetyl)-1H- pyrrole-3-carboxamide 458.2
    301
    Figure US20230062975A1-20230302-C00360
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((3- morpholinopropyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 459.3
    302
    Figure US20230062975A1-20230302-C00361
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,3R)-3-hydroxy-2,2- dimethylcyclobutyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.2
    303
    Figure US20230062975A1-20230302-C00362
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4-(isopropylcarbamoyl) tetrahydro-2H-pyran- 4-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 501.3
    304
    Figure US20230062975A1-20230302-C00363
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((3- methylisoxazol-5-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 413.2
    305
    Figure US20230062975A1-20230302-C00364
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((5- methyl-1,3,4-oxadiazol-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 414.2
    306
    Figure US20230062975A1-20230302-C00365
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- methyl-1H-pyrazol-3- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 412.2
    307
    Figure US20230062975A1-20230302-C00366
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1-(2-hydroxyethyl)-1H- pyrazol-3-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 442.2
    308
    Figure US20230062975A1-20230302-C00367
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4- (hydroxymethyl)thiazol-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 445.2
    309
    Figure US20230062975A1-20230302-C00368
    N-(3-chloro-4-fluorophenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (pyridin-2-ylamino)acetyl)-1H- pyrrole-3-carboxamide 429.2
    310
    Figure US20230062975A1-20230302-C00369
    N-(3-chloro-4-fluorophenyl)-5- (2-((5-fluoropyridin-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 447.1
    311
    Figure US20230062975A1-20230302-C00370
    N-(3-chloro-4-fluorophenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (pyridin-3-ylamino)acetyl)-1H- pyrrole-3-carboxamide 429.1
    312
    Figure US20230062975A1-20230302-C00371
    N-(3-chloro-4-fluorophenyl)-5- (2-((6-fluoropyridin-3- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 447.2
    313
    Figure US20230062975A1-20230302-C00372
    N-(3-chloro-4-fluorophenyl)-5- (2-((3,4- difluorophenyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 464.1
    314
    Figure US20230062975A1-20230302-C00373
    N-(3-chloro-4-fluorophenyl)-5- (2-((4,4- difluorocyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 470.2
    315
    Figure US20230062975A1-20230302-C00374
    N-(3,4-difluorophenyl)-1,2,4- trimethyl-5-(2-((4- methylthiazol-2-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 433.1
    316
    Figure US20230062975A1-20230302-C00375
    N-(3-chloro-4-fluorophenyl)- 1,2,4-trimethyl-5-(2-((4- methylthiazol-2-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 449.1
    317
    Figure US20230062975A1-20230302-C00376
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((5- (trifluoromethyl)thiazol-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 483.2
    318
    Figure US20230062975A1-20230302-C00377
    1,2,4-trimethyl-5-(2-oxo-2- (pyridin-2-ylamino)acetyl)-N- (3,4,5-trifluorophenyl)-1H- pyrrole-3-carboxamide 431.1
    319
    Figure US20230062975A1-20230302-C00378
    5-(2-((5-fluoropyridin-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-N-(3,4,5- trifluorophenyl)-1H-pyrrole-3- carboxamide 449.1
    320
    Figure US20230062975A1-20230302-C00379
    1,2,4-trimethyl-5-(2-oxo-2- (pyridin-3-ylamino)acetyl)-N- (3,4,5-trifluorophenyl)-1H- pyrrole-3-carboxamide 431.2
    321
    Figure US20230062975A1-20230302-C00380
    5-(2-((6-fluoropyridin-3- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-N-(3,4,5- trifluorophenyl)-1H-pyrrole-3- carboxamide 449.1
    322
    Figure US20230062975A1-20230302-C00381
    5-(2-((3,4- difluorophenyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-N- (3,4,5-trifluorophenyl)-1H- pyrrole-3-carboxamide 466.1
    323
    Figure US20230062975A1-20230302-C00382
    1,2,4-trimethyl-5-(2-((4- methylthiazol-2-yl)amino)-2- oxoacetyl)-N-(3,4,5- trifluorophenyl)-1H-pyrrole-3- carboxamide 451.1
    324
    Figure US20230062975A1-20230302-C00383
    5-(2-((4,4- difluorocyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-N- (3,4,5-trifluorophenyl)-1H- pyrrole-3-carboxamide 472.2
    325
    Figure US20230062975A1-20230302-C00384
    N-(6-fluoropyridin-3-yl)-1,2,4- trimethyl-5-(2-((4- methyltetrahydro-2H-pyran-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 417.2
    326
    Figure US20230062975A1-20230302-C00385
    N-(2-chloropyridin-4-yl)-1,2,4 trimethyl-5-(2-((4- methyltetrahydro-2H-pyran-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 433.2
    327
    Figure US20230062975A1-20230302-C00386
    5-(2-((2-(2,5-dimethylthiazol- 4-yl)ethyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 471.2
    328
    Figure US20230062975A1-20230302-C00387
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((2- thiomorpholinoethyl)amino) acetyl)-1H-pyrrole-3- carboxamide 461.2
    329
    Figure US20230062975A1-20230302-C00388
    5-(2-((2- (diethylamino)ethyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 431.3
    330
    Figure US20230062975A1-20230302-C00389
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1R,3S)-3- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.2
    331
    Figure US20230062975A1-20230302-C00390
    N-(2-chloropyridin-4-yl)-1,2,4 trimethyl-5-(2-((2-methyl-1- morpholinopropan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 476.2
    332
    Figure US20230062975A1-20230302-C00391
    N-(3-chloro-4-fluorophenyl)- 1,2,4-trimethyl-5-(2-((2- methyl-1-morpholinopropan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 493.2
    333
    Figure US20230062975A1-20230302-C00392
    N-(3-chloro-4-fluorophenyl)-5- (2-(((1r,4r)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 464.2
    334
    Figure US20230062975A1-20230302-C00393
    N-(3-chloro-4-fluorophenyl)-5- (2-(((1s,4s)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 464.2
    335
    Figure US20230062975A1-20230302-C00394
    N-(3,4-difluorophenyl)-5-(2- ((4-hydroxybicyclo[2.2.2] octan-1-yl)amino)-2- oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 460.2
    336
    Figure US20230062975A1-20230302-C00395
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (((1- propoxycyclohexyl)methyl)ami no)acetyl)-1H-pyrrole-3- carboxamide 486.2
    337
    Figure US20230062975A1-20230302-C00396
    5-(2-(((1- aminocyclohexyl)methyl) amino)-2-oxoacetyl)-N- (4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
    338
    Figure US20230062975A1-20230302-C00397
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-((5-fluoropyridin-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 428.2
    339
    Figure US20230062975A1-20230302-C00398
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-oxo-2- (pyridin-3-ylamino)acetyl)-1H- pyrrole-3-carboxamide 410.2
    340
    Figure US20230062975A1-20230302-C00399
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-((6-fluoropyridin-3- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 428.2
    341
    Figure US20230062975A1-20230302-C00400
    5-(2-((3,4- difluorophenyl)amino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 445.2
    342
    Figure US20230062975A1-20230302-C00401
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-((4- methylthiazol-2-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 430.1
    343
    Figure US20230062975A1-20230302-C00402
    5-(2-((4,4- difluorocyclohexyl)amino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 451.2
    344
    Figure US20230062975A1-20230302-C00403
    N-(6-fluoro-5-methylpyridin-3- yl)-5-(2-(((1s,4s)-4- methoxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 445.3
    345
    Figure US20230062975A1-20230302-C00404
    N-(2-chloropyridin-4-yl)-5-(2- (((1s,4s)-4- methoxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 447.2
    346
    Figure US20230062975A1-20230302-C00405
    5-(2-((2-(1H-imidazol-1- yl)ethyl)amino)-2-oxoacetyl)- N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 426.2
    347
    Figure US20230062975A1-20230302-C00406
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((2- (thiophen-2- yl)ethyl)amino)acetyl)-1H- pyrrole-3-carboxamide 442.2
    348
    Figure US20230062975A1-20230302-C00407
    5-(2-((2-(4H-1,2,4-triazol-3- yl)ethyl)amino)-2-oxoacetyl)- N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 427.2
    349
    Figure US20230062975A1-20230302-C00408
    N4-(4-fluoro-3-methylphenyl)- 1,3,5-trimethyl-N2-(2-methyl- 1-morpholinopropan-2-yl)-1H- pyrrole-2,4-dicarboxamide 445.1
    350
    Figure US20230062975A1-20230302-C00409
    N-(6-fluoropyridin-3-yl)-1,2,4- trimethyl-5-(2-((2-methyl-1- morpholinopropan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 460.3
    351
    Figure US20230062975A1-20230302-C00410
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-((2- methyl-1-morpholinopropan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 474.3
    352
    Figure US20230062975A1-20230302-C00411
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- methyl-2- morpholinopropyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 473.3
    353
    Figure US20230062975A1-20230302-C00412
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- methylazepan-4-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 443.2
    354
    Figure US20230062975A1-20230302-C00413
    5-(2-((1-acetylpiperidin-4- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 457.3
    355
    Figure US20230062975A1-20230302-C00414
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- methyl-4,5,6,7- tetrahydrobenzo[d]thiazol-7- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 483.2
    356
    Figure US20230062975A1-20230302-C00415
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2-(5- methyl-1,3,4-thiadiazol-2- yl)ethyl)amino)-2-oxoacetyl)- 1H-pyrrole-3-carboxamide 458.2
    357
    Figure US20230062975A1-20230302-C00416
    N-(3-chloro-4-fluorophenyl)-5- (2-((4- hydroxybicyclo[2.2.2]octan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 476.2
    358
    Figure US20230062975A1-20230302-C00417
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1- (methoxymethyl)cyclohexyl) methyl)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 472.2
    359
    Figure US20230062975A1-20230302-C00418
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1- (hydroxymethyl)cyelopentyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 430.2
    360
    Figure US20230062975A1-20230302-C00419
    5-(2-((1- carbamoylcyclopropyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1-(2- hydroxyethyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide
    361
    Figure US20230062975A1-20230302-C00420
    (R)-5-(2-((1-amino-3,3- dimethyl-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1-(2- hydroxyethyl)-2,4-dimethyl- 1H-pyrrole-3-carboxamide
    362
    Figure US20230062975A1-20230302-C00421
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(5-fluoropyridin- 2-yl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide
    363
    Figure US20230062975A1-20230302-C00422
    5-(2-(tert-butylamino)-2- oxoacetyl)-4-chloro-N-(4- fluoro-3-methylphenyl)-1,2- dimethyl-1H-pyrrole-3- carboxamide 408.2
    364
    Figure US20230062975A1-20230302-C00423
    4-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-1,2-dimethyl-1H- pyrrole-3-carboxamide 422.2
    365
    Figure US20230062975A1-20230302-C00424
    4-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-1,2- dimethyl-1H-pyrrole-3- carboxamide 422.1
    366
    Figure US20230062975A1-20230302-C00425
    4-chloro-5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4-fluoro- 3-methylphenyl)-1,2-dimethyl- 1H-pyrrole-3-carboxamide 502.1
    367
    Figure US20230062975A1-20230302-C00426
    4-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-(((1R,2S)- 2-hydroxycyclopentyl)amino)- 2-oxoacetyl)-1,2-dimethyl-1H- pyrrole-3-carboxamide 466.2
    368
    Figure US20230062975A1-20230302-C00427
    (S)-4-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,2-dimethyl-1H- pyrrole-3-carboxamide 454.2
    369
    Figure US20230062975A1-20230302-C00428
    5-(2-(tert-butylamino)-2- oxoacetyl)-4-chloro-1,2- dimethyl-N-(3,4,5- trifluorophenyl)-1H-pyrrole-3- carboxamide 428.1
    370
    Figure US20230062975A1-20230302-C00429
    5-(2-(tert-butylamino)-2- oxoacetyl)-4-chloro-N-(3- chloro-4-fluorophenyl)-1,2- dimethyl-1H-pyrrole-3- carboxamide 426.1
    371
    Figure US20230062975A1-20230302-C00430
    5-(2-(tert-butylamino)-2- oxoacetyl)-4-chloro-N-(6- fluoro-5-methylpyridin-3-yl)- 1,2-dimethyl-1H-pyrrole-3- carboxamide 439.2
    372
    Figure US20230062975A1-20230302-C00431
    4-chloro-5-(2-((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-1,2-dimethyl-N- (3,4,5-trifluorophenyl)-1H- pyrrole-3-carboxamide 444.1
    373
    Figure US20230062975A1-20230302-C00432
    4-chloro-5-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-1,2-dimethyl-N- (3,4,5-trifluorophenyl)-1H- pyrrole-3-carboxamide 444.1
    374
    Figure US20230062975A1-20230302-C00433
    4-chloro-5-(2-(((1R,2S)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2-dimethyl-N- (3,4,5-trifluorophenyl)-1H- pyrrole-3-carboxamide 456.1
    375
    Figure US20230062975A1-20230302-C00434
    4-chloro-5-(2-((3,3-difluoro-1- methylcyclobutyl)amino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-1,2-dimethyl- 1H-pyrrole-3-carboxamide 458.1
    376
    Figure US20230062975A1-20230302-C00435
    4-chloro-N-(3,4- difluorophenyl)-1,2-dimethyl- 5-(2-oxo-2-((1- (trifluoromethyl)cyclopropyl) amino)acetyl)-1H-pyrrole-3- carboxamide 460.2
    377
    Figure US20230062975A1-20230302-C00436
    N-(3,4-difluorophenyl)-4- methoxy-1,2-dimethyl-5-(2- oxo-2-((1- (trifluoromethyl)cyclopropyl) amino)acetyl)-1H-pyrrole-3- carboxamide 464.3
    378
    Figure US20230062975A1-20230302-C00437
    N-(3,4-difluorophenyl)-4- methoxy-1,2-dimethyl-5-(2- oxo-2-((1- (trifluoromethyl)cyclobutyl) amino)acetyl)-1H-pyrrole-3- carboxamide 474.2
    379
    Figure US20230062975A1-20230302-C00438
    5-(2-((3,3-difluoro-1- methylcyclobutyl)amino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-4-methoxy- 1,2-dimethyl-1H-pyrrole-3- carboxamide 456.2
    380
    Figure US20230062975A1-20230302-C00439
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-4-methoxy- 1,2-dimethyl-1H-pyrrole-3- carboxamide 408.2
    381
    Figure US20230062975A1-20230302-C00440
    N-(3,4-difluorophenyl)-5-(2- ((1-hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-4- methoxy-1,2-dimethyl-1H- pyrrole-3-carboxamide 424.2
    382
    Figure US20230062975A1-20230302-C00441
    N-(3,4-difluorophenyl)-5-(2- ((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-4-methoxy-1,2- dimethyl-1H-pyrrole-3- carboxamide 424.2
    383
    Figure US20230062975A1-20230302-C00442
    N-(3,4-difluorophenyl)-5-(2- (((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-4-methoxy-1,2- dimethyl-1H-pyrrole-3- carboxamide 449.2
    384
    Figure US20230062975A1-20230302-C00443
    N-(3,4-difluorophenyl)-5-(2- (((1R,2S)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-4-methoxy-1,2- dimethyl-1H-pyrrole-3- carboxamide 436.2
    385
    Figure US20230062975A1-20230302-C00444
    (S)-N-(3,4-difluorophenyl)-5- (2-((1-hydroxybutan-2- yl)amino)-2-oxoacetyl)-4- methoxy-1,2-dimethyl-1H- pyrrole-3-carboxamide 424.2
    386
    Figure US20230062975A1-20230302-C00445
    5-(2-(tert-butylamino)-2- oxoacetyl)-2-chloro-N-(4- fluoro-3-methylphenyl)-1,4- dimethyl-1H-pyrrole-3- carboxamide 481.2
    387
    Figure US20230062975A1-20230302-C00446
    2-chloro-5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4-fluoro- 3-methylphenyl)-1,4-dimethyl- 1H-pyrrole-3-carboxamide 494.1
    388
    Figure US20230062975A1-20230302-C00447
    2-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-1,4-dimethyl-1H- pyrrole-3-carboxamide 447.2
    389
    Figure US20230062975A1-20230302-C00448
    (S)-2-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxybutan-2-yl)amino)-2- oxoacetyl)-1,4-dimethyl-1H- pyrrole-3-carboxamide 447.2
    390
    Figure US20230062975A1-20230302-C00449
    2-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-(((1R,2S)- 2-hydroxycyclopentyl)amino)- 2-oxoacetyl)-1,4-dimethyl-1H- pyrrole-3-carboxamide 460.2
    391
    Figure US20230062975A1-20230302-C00450
    2-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-1,4- dimethyl-1H-pyrrole-3- carboxamide 447.2
    392
    Figure US20230062975A1-20230302-C00451
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-cyano-4- fluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 411.1
    393
    Figure US20230062975A1-20230302-C00452
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 401.1
    394
    Figure US20230062975A1-20230302-C00453
    N-(4-fluoro-3-methylphenyl)- 3-(2-((2-methyl-1-(3-methyl- 1,2,4-oxadiazol-5- yl)propyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 482.2
    395
    Figure US20230062975A1-20230302-C00454
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-chloro-5- fluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 418.9
    396
    Figure US20230062975A1-20230302-C00455
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3,4,5- trifluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 421.9
    397
    Figure US20230062975A1-20230302-C00456
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3,4-difluoro-5- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 418  
    398
    Figure US20230062975A1-20230302-C00457
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 403.9
    399
    Figure US20230062975A1-20230302-C00458
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-chloro-4- fluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 419.9
    400
    Figure US20230062975A1-20230302-C00459
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3- (difluoromethyl)-4- fluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 435.9
    401
    Figure US20230062975A1-20230302-C00460
    3-(2-(((2S,3R)-1-amino-3- hydroxy-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 444.9
    402
    Figure US20230062975A1-20230302-C00461
    N-(4-fluoro-3-methylphenyl)- 3-(2-oxo-2-((1- (trifluoromethyl)cyclopropyl) amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 451.9
    403
    Figure US20230062975A1-20230302-C00462
    N-(4-fluoro-3-methylphenyl)- 3-(2-oxo-2-((1- (trifluoromethyl)cyclobutyl) amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 465.9
    404
    Figure US20230062975A1-20230302-C00463
    3-(2-((3,3-difluoro-1- methylcyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 447.9
    405
    Figure US20230062975A1-20230302-C00464
    N-(4-fluoro-3-methylphenyl)- 3-(2-((3-methyloxetan-3- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 413.9
    406
    Figure US20230062975A1-20230302-C00465
    3-(2-((1-amino-2-methyl-1- oxopropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 429.0
    407
    Figure US20230062975A1-20230302-C00466
    (S)-N-(4-fluoro-3- methylphenyl)-3-(2-oxo-2- ((1,1,1-trifluoropropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 439.9
    408
    Figure US20230062975A1-20230302-C00467
    (R)-N-(4-fluoro-3- methylphenyl)-3-(2-oxo-2- ((1,1,1-trifluoropropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 440.1
    409
    Figure US20230062975A1-20230302-C00468
    N-(4-fluoro-3-methylphenyl)- 3-(2-oxo-2-((1,1,1-trifluoro-2- methylpropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 454.1
    410
    Figure US20230062975A1-20230302-C00469
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 427.9
    411
    Figure US20230062975A1-20230302-C00470
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 416.0
    412
    Figure US20230062975A1-20230302-C00471
    N-(4-fluoro-3-methylphenyl)- 3-(2-(isopropylamino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 386.1
    413
    Figure US20230062975A1-20230302-C00472
    N-(4-fluoro-3-methylphenyl)- 3-(2-((2-(5-methylthiazol-2- yl)propan-2-yl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 483.2
    414
    Figure US20230062975A1-20230302-C00473
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1-(3-methyl-1,2,4- oxadiazol-5-yl)ethyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 453.2
    415
    Figure US20230062975A1-20230302-C00474
    (R)-3-(2-((2,3- dihydroxypropyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 418.1
    416
    Figure US20230062975A1-20230302-C00475
    (S)-3-(2-((2,3- dihydroxypropyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 418.1
    417
    Figure US20230062975A1-20230302-C00476
    3-(2-(((2S,3S)-1,3- dihydroxybutan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 432.1
    418
    Figure US20230062975A1-20230302-C00477
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1-(3-methyl-1,2,4- oxadiazol-5- yl)cyclopropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 466.1
    419
    Figure US20230062975A1-20230302-C00478
    N-(4-fluoro-3-methylphenyl)- 3-(2-((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 416.1
    420
    Figure US20230062975A1-20230302-C00479
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 414.1
    421
    Figure US20230062975A1-20230302-C00480
    3-(2-(2-amino-6,7- dihydrothiazolo[5,4-c]pyridin- 5(4H)-yl)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 482.1
    422
    Figure US20230062975A1-20230302-C00481
    (R)-2-(2-(1-((4-fluoro-3- methylphenyl)carbamoyl)- 5,6,7,8-tetrahydroindolizin-3- yl)-2-oxoacetamido)-3,3- dimethylbutanoic acid 458.1
    423
    Figure US20230062975A1-20230302-C00482
    N-(3-chloro-5-fluorophenyl)-3- (2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 436.0
    424
    Figure US20230062975A1-20230302-C00483
    3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-N-(3,4,5- trifluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 438.1
    425
    Figure US20230062975A1-20230302-C00484
    N-(3,4-difluoro-5- methylphenyl)-3-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 434.2
    426
    Figure US20230062975A1-20230302-C00485
    N-(3,4-difluorophenyl)-3-(2- ((1-hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 420.1
    427
    Figure US20230062975A1-20230302-C00486
    N-(3-chloro-4-fluorophenyl)-3- (2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 435.8
    428
    Figure US20230062975A1-20230302-C00487
    (R)-3-(2-((3,3-difluorobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 436.1
    429
    Figure US20230062975A1-20230302-C00488
    N-(3-(difluoromethyl)-4- fluorophenyl)-3-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 452.0
    430
    Figure US20230062975A1-20230302-C00489
    (S)-N-(4-fluoro-3- methylphenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 454.1
    431
    Figure US20230062975A1-20230302-C00490
    (R)-N-(4-fluoro-3- methylphenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 454.1
    432
    Figure US20230062975A1-20230302-C00491
    3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)- 5,6,7,8-tetrahydroindolizine- 1-carboxamide 464.0
    433
    Figure US20230062975A1-20230302-C00492
    3-(2-(((2R,3R)-1,3- dihydroxybutan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 432.1
    434
    Figure US20230062975A1-20230302-C00493
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 414.1
    435
    Figure US20230062975A1-20230302-C00494
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-cyano-4- fluorophenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 425.1
    436
    Figure US20230062975A1-20230302-C00495
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 430.1
    437
    Figure US20230062975A1-20230302-C00496
    3-(2-((2-(3- ((dimethylamino)methyl)- 1,2,4-oxadiazol-5-yl)propan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-2- methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 525.2
    438
    Figure US20230062975A1-20230302-C00497
    N-(4-fluoro-3-methylphenyl)- 3-(2-(((1r,3r)-3- hydroxycyclobutyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 428.1
    439
    Figure US20230062975A1-20230302-C00498
    N-(4-fluoro-3-methylphenyl)- 3-(2-(((3S,4R)-4- hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-2- methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 444.1
    440
    Figure US20230062975A1-20230302-C00499
    N-(4-fluoro-3-methylphenyl)- 3-(2-(((1S,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 442.1
    441
    Figure US20230062975A1-20230302-C00500
    3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4-fluoro- 3-methylphenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 478.1
    442
    Figure US20230062975A1-20230302-C00501
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 442.1
    443
    Figure US20230062975A1-20230302-C00502
    N-(4-fluoro-3-methylphenyl)- 3-(2-((3-hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 444.1
    444
    Figure US20230062975A1-20230302-C00503
    N-(4-fluoro-3-methylphenyl)- 3-(2-((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 430.1
    445
    Figure US20230062975A1-20230302-C00504
    N-(4-fluoro-3-methylphenyl)- 3-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 428.1
    446
    Figure US20230062975A1-20230302-C00505
    (S)-N-(3-chloro-4- fluorophenyl)-2-methyl-3-(2- ((1-(3-methyl-1,2,4-oxadiazol- 5-yl)ethyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 488.0
    447
    Figure US20230062975A1-20230302-C00506
    (R)-N-(3-chloro-4- fluorophenyl)-2-methyl-3-(2- ((1-(3-methyl-1,2,4-oxadiazol- 5-yl)ethyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 488.0
    448
    Figure US20230062975A1-20230302-C00507
    3-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-N-(3-chloro-4- fluorophenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 490.0
    449
    Figure US20230062975A1-20230302-C00508
    N-(3-chloro-4-fluorophenyl)-3- (2-(((1r,3r)-3- hydroxycyclobutyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 448.1
    450
    Figure US20230062975A1-20230302-C00509
    N-(3-chloro-4-fluorophenyl)-3- (2-(((3S,4R)-4- hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-2- methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 464.1
    451
    Figure US20230062975A1-20230302-C00510
    N-(3-chloro-4-fluorophenyl)-3- (2-(((1S,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 462.1
    452
    Figure US20230062975A1-20230302-C00511
    N-(3-chloro-4-fluorophenyl)- 3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 462.1
    453
    Figure US20230062975A1-20230302-C00512
    N-(3-chloro-4-fluorophenyl)- 3-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 448.0
    454
    Figure US20230062975A1-20230302-C00513
    (R)-N-(3,4-difluorophenyl)-2- methyl-3-(2-((1-(3-methyl- 1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 472.1
    455
    Figure US20230062975A1-20230302-C00514
    3-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 474.1
    456
    Figure US20230062975A1-20230302-C00515
    N-(3,4-difluorophenyl)-3-(2- (((1r,3r)-3- hydroxycyclobutyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 432.1
    457
    Figure US20230062975A1-20230302-C00516
    N-(3,4-difluorophenyl)-3-(2- (((3S,4R)-4- hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-2- methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 448.1
    458
    Figure US20230062975A1-20230302-C00517
    N-(3,4-difluorophenyl)-3-(2- (((1S,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 446.1
    459
    Figure US20230062975A1-20230302-C00518
    3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(3,4- difluorophenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 482.1
    460
    Figure US20230062975A1-20230302-C00519
    N-(3,4-difluorophenyl)-3-(2- ((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 446.1
    461
    Figure US20230062975A1-20230302-C00520
    N-(3,4-difluorophenyl)-3-(2- ((3-hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 448.1
    462
    Figure US20230062975A1-20230302-C00521
    N-(3,4-difluorophenyl)-3-(2- ((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 434.2
    463
    Figure US20230062975A1-20230302-C00522
    N-(3,4-difluorophenyl)-3-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 432.1
    464
    Figure US20230062975A1-20230302-C00523
    (S)-N-(3,4-difluorophenyl)-2- methyl-3-(2-((1-(3-methyl- 1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 472.1
    465
    Figure US20230062975A1-20230302-C00524
    N-(3-chloro-4-fluorophenyl)-3- (2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 498.1
    466
    Figure US20230062975A1-20230302-C00525
    N-(3-chloro-4-fluorophenyl)-3- (2-((3-hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 464.1
    467
    Figure US20230062975A1-20230302-C00526
    N-(3-chloro-4-fluorophenyl)-3- (2-((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 450.1
    468
    Figure US20230062975A1-20230302-C00527
    N-(6-fluoro-5-methylpyridin-3- yl)-2-methyl-3-(2-oxo-2- ((1,1,1-trifluoro-2- methylpropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 469.2
    469
    Figure US20230062975A1-20230302-C00528
    (R)-N-(6-fluoro-5- methylpyridin-3-yl)-2-methyl- 3-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 455.2
    470
    Figure US20230062975A1-20230302-C00529
    (S)-N-(6-fluoro-5- methylpyridin-3-yl)-2-methyl- 3-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 455.2
    471
    Figure US20230062975A1-20230302-C00530
    (S)-N-(6-fluoro-5- methylpyridin-3-yl)-2-methyl- 3-(2-((1-(3-methyl-1,2,4- oxadiazol-5-yl)ethyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 469.2
    472
    Figure US20230062975A1-20230302-C00531
    (R)-N-(6-fluoro-5- methylpyridin-3-yl)-2-methyl- 3-(2-((1-(3-methyl-1,2,4- oxadiazol-5-yl)ethyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 469.2
    473
    Figure US20230062975A1-20230302-C00532
    3-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 471.1
    474
    Figure US20230062975A1-20230302-C00533
    3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(6-fluoro- 5-methylpyridin-3-yl)-2- methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 478.8
    475
    Figure US20230062975A1-20230302-C00534
    (S)-3-(2-(sec-butylamino)-2- oxoacetyl)-N-(6-fluoro-5- methylpyridin-3-yl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 415.3
    476
    Figure US20230062975A1-20230302-C00535
    N-(6-fluoro-5-methylpyridin-3- yl)-3-(2-((3-hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 445.2
    477
    Figure US20230062975A1-20230302-C00536
    N-(6-fluoro-5-methylpyridin-3- yl)-3-(2-((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 431.1
    478
    Figure US20230062975A1-20230302-C00537
    N-(6-fluoro-5-methylpyridin-3- yl)-3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 430.9
    479
    Figure US20230062975A1-20230302-C00538
    N-(3-chloro-4-fluorophenyl)-3- (2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide
    480
    Figure US20230062975A1-20230302-C00539
    (S)-N-(4-fluoro-3- methylphenyl)-2-methyl-3-(2- oxo-2-((1,1,1-trifluoropropan- 2-yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide
    481
    Figure US20230062975A1-20230302-C00540
    3-(2-((1-amino-2-methyl-1- oxopropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide
    482
    Figure US20230062975A1-20230302-C00541
    3-(2-((3,3-difluoro-1- methylcyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide
    483
    Figure US20230062975A1-20230302-C00542
    3-(2-(((2S,3R)-1-amino-3- hydroxy-1-oxobutan-2- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-2- methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide
    484
    Figure US20230062975A1-20230302-C00543
    (R)-2-(2-(1-((4-fluoro-3- methylphenyl)carbamoyl)-2- methyl-5,6,7,8- tetrahydroindolizin-3-yl)-2- oxoacetamido)-3,3- dimethylbutanoic acid
    485
    Figure US20230062975A1-20230302-C00544
    (R)-3-(2-((2,2-dimethyl-1-(1H- tetrazol-5-yl)propyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide
    486
    Figure US20230062975A1-20230302-C00545
    3-(2-((1-carbamoyl-3,3- difluorocyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide
    487
    Figure US20230062975A1-20230302-C00546
    3-(2-((3,3-difluoro-1-(1H- 1,2,3-triazol-4- yl)cyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide
    488
    Figure US20230062975A1-20230302-C00547
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3- (difluoromethyl)-4- fluorophenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide
    489
    Figure US20230062975A1-20230302-C00548
    3-(2-(tert-butylamino)-2- oxoacetyl)-2-chloro-N-(4- fluoro-3-methylphenyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 433.7
    490
    Figure US20230062975A1-20230302-C00549
    2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 450.1
    491
    Figure US20230062975A1-20230302-C00550
    2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 448.0
    492
    Figure US20230062975A1-20230302-C00551
    2-chloro-N-(3,4- difluorophenyl)-3-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 454.1
    493
    Figure US20230062975A1-20230302-C00552
    (S)-2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((2- methyl-1-(3-methyl-1,2,4- oxadiazol-5-yl)propyl)amino)- 2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 516.1
    494
    Figure US20230062975A1-20230302-C00553
    (S)-2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 448.1
    495
    Figure US20230062975A1-20230302-C00554
    (R)-2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 448.1
    496
    Figure US20230062975A1-20230302-C00555
    2-chloro-3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4-fluoro- 3-methylphenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 498.1
    497
    Figure US20230062975A1-20230302-C00556
    2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 450.0
    498
    Figure US20230062975A1-20230302-C00557
    2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 464.0
    499
    Figure US20230062975A1-20230302-C00558
    2-chloro-N-(3,4- difluorophenyl)-3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 466.1
    500
    Figure US20230062975A1-20230302-C00559
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 482.0
    501
    Figure US20230062975A1-20230302-C00560
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 468.0
    502
    Figure US20230062975A1-20230302-C00561
    2-chloro-N-(3,4- difluorophenyl)-3-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 452.0
    503
    Figure US20230062975A1-20230302-C00562
    3-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-2-chloro-N-(4- fluoro-3-methylphenyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 490.0
    504
    Figure US20230062975A1-20230302-C00563
    2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 462.0
    505
    Figure US20230062975A1-20230302-C00564
    2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-(((3S,4R)- 4-hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 464.0
    506
    Figure US20230062975A1-20230302-C00565
    2-chloro-N-(4-fluoro-3- methylphenyl)-3-(2-(((1S,2R)- 2-hydroxycyclopentyl)amino)- 2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 462.0
    507
    Figure US20230062975A1-20230302-C00566
    2-chloro-3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(6-fluoro- 5-methylpyridin-3-yl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 498.1
    508
    Figure US20230062975A1-20230302-C00567
    2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 451.1
    509
    Figure US20230062975A1-20230302-C00568
    (S)-2-chloro-N-(2- fluoropyridin-4-yl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 475.1
    510
    Figure US20230062975A1-20230302-C00569
    (R)-2-chloro-N-(2- fluoropyridin-4-yl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 475.0
    511
    Figure US20230062975A1-20230302-C00570
    2-chloro-3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(2- fluoropyridin-4-yl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 485.0
    512
    Figure US20230062975A1-20230302-C00571
    2-chloro-N-(2-fluoropyridin-4- yl)-3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 437.1
    513
    Figure US20230062975A1-20230302-C00572
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-(((3S,4R)- 4-hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 484.0
    514
    Figure US20230062975A1-20230302-C00573
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-(((1S,2R)- 2-hydroxycyclopentyl)amino)- 2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 482.0
    515
    Figure US20230062975A1-20230302-C00574
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-((3,3- difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 518.0
    516
    Figure US20230062975A1-20230302-C00575
    (S)-2-chloro-N-(3,4- difluorophenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 492.1
    517
    Figure US20230062975A1-20230302-C00576
    (R)-2-chloro-N-(3,4- difluorophenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 492.1
    518
    Figure US20230062975A1-20230302-C00577
    2-chloro-N-(3,4- difluorophenyl)-3-(2- (((3S,4R)-4- hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 468.0
    519
    Figure US20230062975A1-20230302-C00578
    2-chloro-N-(3,4- difluorophenyl)-3-(2- (((1S,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 466.1
    520
    Figure US20230062975A1-20230302-C00579
    2-chloro-3-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(3,4- difluorophenyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 502.0
    521
    Figure US20230062975A1-20230302-C00580
    (S)-2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-((1- (3-methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 489.1
    522
    Figure US20230062975A1-20230302-C00581
    (R)-2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-((1- (3-methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 489.1
    523
    Figure US20230062975A1-20230302-C00582
    (S)-2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 508.0
    524
    Figure US20230062975A1-20230302-C00583
    (R)-2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 508.0
    525
    Figure US20230062975A1-20230302-C00584
    2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 465.1
    526
    Figure US20230062975A1-20230302-C00585
    2-chloro-N-(2-fluoropyridin-4- yl)-3-(2-((3-hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 451.1
    527
    Figure US20230062975A1-20230302-C00586
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 484.1
    528
    Figure US20230062975A1-20230302-C00587
    2-chloro-N-(3,4- difluorophenyl)-3-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 468.1
    529
    Figure US20230062975A1-20230302-C00588
    2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 451.1
    530
    Figure US20230062975A1-20230302-C00589
    2-chloro-N-(2-fluoropyridin-4- yl)-3-(2-((2-hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 437.1
    531
    Figure US20230062975A1-20230302-C00590
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-(((1r,3r)-3- hydroxycyclobutyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 468.1
    532
    Figure US20230062975A1-20230302-C00591
    2-chloro-N-(3-chloro-4- fluorophenyl)-3-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 470.0
    533
    Figure US20230062975A1-20230302-C00592
    2-chloro-N-(3,4- difluorophenyl)-3-(2-(((1r,3r)- 3-hydroxycyclobutyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 452.1
    534
    Figure US20230062975A1-20230302-C00593
    2-chloro-N-(3,4- difluorophenyl)-3-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 454.1
    535
    Figure US20230062975A1-20230302-C00594
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-chloro-4- fluorophenyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 406.1
    536
    Figure US20230062975A1-20230302-C00595
    5-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 386.2
    537
    Figure US20230062975A1-20230302-C00596
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 401.9
    538
    Figure US20230062975A1-20230302-C00597
    5-(2-amino-2-oxoacetyl)-N-(3- chloro-4-fluorophenyl)-6- methyl-2,3-dihydro-1H- pyrrolizine-7-carboxamide
    539
    Figure US20230062975A1-20230302-C00598
    5-(2-(tert-butylamino)-2- oxoacetyl)-6-chloro-N-(4- fluoro-3-methylphenyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 420.2
    540
    Figure US20230062975A1-20230302-C00599
    6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 436.0
    541
    Figure US20230062975A1-20230302-C00600
    6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 448.1
    542
    Figure US20230062975A1-20230302-C00601
    6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 434.1
    543
    Figure US20230062975A1-20230302-C00602
    (S)-6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((2- methyl-1-(3-methyl-1,2,4- oxadiazol-5-yl)propyl)amino)- 2-oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 502.0
    544
    Figure US20230062975A1-20230302-C00603
    (R)-6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((2- methyl-1-(3-methyl-1,2,4- oxadiazol-5-yl)propyl)amino)- 2-oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 502.0
    545
    Figure US20230062975A1-20230302-C00604
    (S)-6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 474.0
    546
    Figure US20230062975A1-20230302-C00605
    (R)-6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 474.0
    547
    Figure US20230062975A1-20230302-C00606
    6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-(((1S,2R)- 2-hydroxycyclopentyl)amino)- 2-oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 448.1
    548
    Figure US20230062975A1-20230302-C00607
    6-chloro-5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(4-fluoro- 3-methylphenyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 484.0
    549
    Figure US20230062975A1-20230302-C00608
    6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 450.0
    550
    Figure US20230062975A1-20230302-C00609
    6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 436.1
    551
    Figure US20230062975A1-20230302-C00610
    6-chloro-N-(3,4- difluorophenyl)-5-(2-(((1r,3r)- 3-hydroxycyclobutyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 437.9
    552
    Figure US20230062975A1-20230302-C00611
    5-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-6-chloro-N-(4- fluoro-3-methylphenyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 476.0
    553
    Figure US20230062975A1-20230302-C00612
    (S)-6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 494.0
    554
    Figure US20230062975A1-20230302-C00613
    (R)-6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 494.0
    555
    Figure US20230062975A1-20230302-C00614
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-(((1r,3r)-3- hydroxycyclobutyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 454.1
    556
    Figure US20230062975A1-20230302-C00615
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 470.0
    557
    Figure US20230062975A1-20230302-C00616
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 456.0
    558
    Figure US20230062975A1-20230302-C00617
    6-chloro-N-(3,4- difluorophenyl)-5-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 452.0
    559
    Figure US20230062975A1-20230302-C00618
    6-chloro-N-(3,4- difluorophenyl)-5-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 454.0
    560
    Figure US20230062975A1-20230302-C00619
    6-chloro-N-(3,4- difluorophenyl)-5-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 440.1
    561
    Figure US20230062975A1-20230302-C00620
    6-chloro-N-(3,4- difluorophenyl)-5-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 438.1
    562
    Figure US20230062975A1-20230302-C00621
    5-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-6-chloro-N-(3- chloro-4-fluorophenyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 495.9
    563
    Figure US20230062975A1-20230302-C00622
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-(((3S,4R)- 4-hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 470.0
    564
    Figure US20230062975A1-20230302-C00623
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-(((1S,2R)- 2-hydroxycyclopentyl)amino)- 2-oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 468.0
    565
    Figure US20230062975A1-20230302-C00624
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 468.0
    566
    Figure US20230062975A1-20230302-C00625
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-((1- (hydroxymethyl)cyclopropyl) amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 454.0
    567
    Figure US20230062975A1-20230302-C00626
    (R)-6-chloro-N-(3,4- difluorophenyl)-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 478.1
    568
    Figure US20230062975A1-20230302-C00627
    (S)-6-chloro-N-(3,4- difluorophenyl)-5-(2-((1-(3- methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 478.0
    569
    Figure US20230062975A1-20230302-C00628
    5-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-6-chloro-N-(3,4- difluorophenyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 480.1
    570
    Figure US20230062975A1-20230302-C00629
    6-chloro-N-(3,4- difluorophenyl)-5-(2- (((3S,4R)-4- hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 454.1
    571
    Figure US20230062975A1-20230302-C00630
    6-chloro-N-(3,4- difluorophenyl)-5-(2- (((1S,2R)-2- hydroxycyclopentyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 452.0
    572
    Figure US20230062975A1-20230302-C00631
    6-chloro-N-(4-fluoro-3- methylphenyl)-5-(2-(((3S,4R)- 4-hydroxytetrahydrofuran-3- yl)amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 450.0
    573
    Figure US20230062975A1-20230302-C00632
    6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-oxo- 2-((1,1,1-trifluoro-2- methylpropan-2- yl)amino)acetyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 475.0
    574
    Figure US20230062975A1-20230302-C00633
    (S)-6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-oxo- 2-((1,1,1-trifluoropropan-2- yl)amino)acetyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 461.1
    575
    Figure US20230062975A1-20230302-C00634
    6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 437.1
    576
    Figure US20230062975A1-20230302-C00635
    (R)-6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-oxo- 2-((1,1,1-trifluoropropan-2- yl)amino)acetyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 461.0
    577
    Figure US20230062975A1-20230302-C00636
    6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-((3- hydroxy-2,2- dimethylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 451.1
    578
    Figure US20230062975A1-20230302-C00637
    6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-((2- hydroxy-2- methylpropyl)amino)-2- oxoacetyl)-2,3-dihydro-1H- pyrrolizine-7-carboxamide 437.1
    579
    Figure US20230062975A1-20230302-C00638
    6-chloro-5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(6-fluoro- 5-methylpyridin-3-yl)-2,3- dihydro-1H-pyrrolizine-7- carboxamide 485.1
    580
    Figure US20230062975A1-20230302-C00639
    6-chloro-N-(3-chloro-4- fluorophenyl)-5-(2-((3,3- difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 504.0
    581
    Figure US20230062975A1-20230302-C00640
    6-chloro-5-(2-((3,3-difluoro-1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-N-(3,4- difluorophenyl)-2,3-dihydro- 1H-pyrrolizine-7-carboxamide 488.0
    582
    Figure US20230062975A1-20230302-C00641
    6-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-cyano-4- fluorophenyl)-3,4-dihydro-1H- pyrrolo[2,1-c][1,4]oxazine-8- carboxamide 412.8
    583
    Figure US20230062975A1-20230302-C00642
    6-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-3,4-dihydro- 1H-pyrrolo[2,1-c][1,4]oxazine- 401.9
    584
    Figure US20230062975A1-20230302-C00643
    8-carboxamide 7-chloro-N-(3,4- difluorophenyl)-6-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-3,4-dihydro- 1H-pyrrolo[2,1-c][1,4]oxazine- 8-carboxamide 468.0
    585
    Figure US20230062975A1-20230302-C00644
    6-(2-((2-methyl-1- (methylamino)-1-oxopropan-2- yl)amino)-2-oxoacetyl)-N- (3,4,5-trifluorophenyl)-3,4- dihydro-1H-pyrrolo[2,1- c][1,4]oxazine-8-carboxamide
    586
    Figure US20230062975A1-20230302-C00645
    N-(4-fluoro-3-methylphenyl)- 6-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-7-methyl-3,4- dihydro-1H-pyrrolo[2,1- c][1,4]oxazine-8-carboxamide
    587
    Figure US20230062975A1-20230302-C00646
    tert-butyl6-(2-(tert- butylamino)-2-oxoacetyl)-8- ((4-fluoro-3- methylphenyl)carbamoyl)-3,4- dihydropyrrolo[1,2-a]pyrazine- 2(1H)-carboxylate 501.0
    588
    Figure US20230062975A1-20230302-C00647
    6-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,3,4- tetrahydropyrrolo[1,2- a]pyrazine-8-carboxamide 401.0
    589
    Figure US20230062975A1-20230302-C00648
    6-(2-(tert-butylamino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-2- (methylsulfonyl)-1,2,3,4- tetrahydropyrrolo[1,2- a]pyrazine-8-carboxamide 479.0
    590
    Figure US20230062975A1-20230302-C00649
    2-acetyl-6-(2-(tert- butylamino)-2-oxoacetyl)-N- (4-fluoro-3-methylphenyl)- 1,2,3,4-tetrahydropyrrolo[1,2- a]pyrazine-8-carboxamide 443.0
    591
    Figure US20230062975A1-20230302-C00650
    2-acetyl-N-(3,4-difluoro-5- methylphenyl)-6-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-7- methyl-1,2,3,4- tetrahydropyrrolo[1,2- a]pyrazine-8-carboxamide
    592
    Figure US20230062975A1-20230302-C00651
    6-(2-((1-(1H-1,2,3-triazol-4- yl)cyclopropyl)amino)-2- oxoacetyl)-N-(3,4-difluoro-5- methylphenyl)-2,7-dimethyl- 1,2,3,4-tetrahydropyrrolo[1,2- a]pyrazine-8-carboxamide
    593
    Figure US20230062975A1-20230302-C00652
    3-(2-(tert-butylamino)-2- oxoacetyl)-N-(3-chloro-4- fluorophenyl)-6,7,8,9- tetrahydro-5H-pyrrolo[1,2- a]azepine-1-carboxamide
    594
    Figure US20230062975A1-20230302-C00653
    N-(3-chloro-4-fluorophenyl)-3- (2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-6,7,8,9- tetrahydro-5H-pyrrolo[1,2- a]azepine-1-carboxamide
    595
    Figure US20230062975A1-20230302-C00654
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- (morpholinomethyl)cyclopentyl) amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 499.3
    596
    Figure US20230062975A1-20230302-C00655
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- (morpholinomethyl) cyclohexyl) amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 513.3
    597
    Figure US20230062975A1-20230302-C00656
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1-(4-hydroxypiperidin- 1-yl)-2-methyl-1-oxopropan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 501.3
    598
    Figure US20230062975A1-20230302-C00657
    N-(4-fluoro-3-methylphenyl)- 5-(2-((6- hydroxyspiro[3.3]heptan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 442.2
    599
    Figure US20230062975A1-20230302-C00658
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1- (hydroxymethyl)cyclohexyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 444.1
    600
    Figure US20230062975A1-20230302-C00659
    N-(3-chlorophenyl)-5-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 406.2
    601
    Figure US20230062975A1-20230302-C00660
    N-(3-chlorophenyl)-1,2,4- trimethyl-5-(2-((2-methyl-1- morpholinopropan-2- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 475.2
    602
    Figure US20230062975A1-20230302-C00661
    N-(3-chlorophenyl)-5-(2- (((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 432.2
    603
    Figure US20230062975A1-20230302-C00662
    (R)-N-(3-chlorophenyl)-1,2,4- trimethyl-5-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 430.1
    604
    Figure US20230062975A1-20230302-C00663
    N-(3-chlorophenyl)-1,2,4- trimethyl-5-(2-oxo-2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 486.1
    605
    Figure US20230062975A1-20230302-C00664
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((4-((1,1,1- trifluoropropan-2- yl)carbamoyl)tetrahydro-2H- pyran-4-yl)amino)acetyl)-1H- pyrrole-3-carboxamide 555.1
    606
    Figure US20230062975A1-20230302-C00665
    N-(6-fluoro-5-methylpyridin-3- yl)-1,2,4-trimethyl-5-(2-((2- methyl-4,5,6,7- tetrahydrobenzo[d]thiazol-7- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 484.2
    607
    Figure US20230062975A1-20230302-C00666
    N-(2-fluoropyridin-4-yl)-1,2,4- trimethyl-5-(2-((2-methyl- 4,5,6,7- tetrahydrobenzo[d]thiazol-7- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 470.2
    608
    Figure US20230062975A1-20230302-C00667
    N-(4-fluoro-3-methylphenyl)- 5-(2-((5-hydroxytetrahydro- 2H-pyran-3-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 432.2
    609
    Figure US20230062975A1-20230302-C00668
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- methyl-2-oxopiperidin-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 443.2
    610
    Figure US20230062975A1-20230302-C00669
    5-(2-((2,6-dioxopiperidin-4- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 443.2
    611
    Figure US20230062975A1-20230302-C00670
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((5-oxopyrrolidin- 3-yl)amino)acetyl)-1H-pyrrole- 3-carboxamide 415.2
    612
    Figure US20230062975A1-20230302-C00671
    5-(2-((1-acetyl-4- methylpiperidin-4-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 471.2
    613
    Figure US20230062975A1-20230302-C00672
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1- (methylsulfonyl)piperidin-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 507.2
    614
    Figure US20230062975A1-20230302-C00673
    N-ethyl-4-(2-(4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-4- methylpiperidine-1- carboxamide 500.3
    615
    Figure US20230062975A1-20230302-C00674
    N-(3-chlorophenyl)-5-(2- (((1r,4r)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 446.2
    616
    Figure US20230062975A1-20230302-C00675
    N-(3,4-difluorophenyl)-5-(2-((1- (hydroxymethyl)cyclohexyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 448.2
    617
    Figure US20230062975A1-20230302-C00676
    N-(4-fluoro-3-methylphenyl)- 5-(2-((3-hydroxy-2,3- dimethylbutan-2-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 432.2
    618
    Figure US20230062975A1-20230302-C00677
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,3S)-3- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.2
    619
    Figure US20230062975A1-20230302-C00678
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,3r)-3-hydroxy-1- methylcyclobutyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.2
    620
    Figure US20230062975A1-20230302-C00679
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,3S)-3-hydroxy-7- oxaspiro[3.5]nonan-1- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 472.2
    621
    Figure US20230062975A1-20230302-C00680
    (R)-5-(2-((4,4-dimethyl-5- oxopyrrolidin-3-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
    622
    Figure US20230062975A1-20230302-C00681
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1,1-dioxidotetrahydro- 2H-thiopyran-4-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 478.2
    623
    Figure US20230062975A1-20230302-C00682
    5-(2-((2,2-dimethyl-1,1- dioxidotetrahydro-2H- thiopyran-4-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 492.2
    624
    Figure US20230062975A1-20230302-C00683
    5-(2-((8,8-dioxido-8- thiabicyclo[3.2.1]octan-3- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 490.2
    625
    Figure US20230062975A1-20230302-C00684
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- methyl-4,5,6,7- tetrahydrobenzo[d]thiazol-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 483.2
    626
    Figure US20230062975A1-20230302-C00685
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((2- oxo-1,2,3,4-tetrahydroquinolin- 4-yl)amino)acetyl)-1H-pyrrole- 3-carboxamide 477.2
    627
    Figure US20230062975A1-20230302-C00686
    (R)-N-(2-chloro-6- methylpyridin-4-yl)-1,2,4- trimethyl-5-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 445.1
    628
    Figure US20230062975A1-20230302-C00687
    N-(2-chloro-6-methylpyridin- 4-yl)-5-(2-(((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 447.2
    629
    Figure US20230062975A1-20230302-C00688
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (((1s,4s)-4-(prop-2-yn-1- yloxy)cyclohexyl)amino) acetyl)-1H-pyrrole-3- carboxamide 468.3
    630
    Figure US20230062975A1-20230302-C00689
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (3-(pyridin-4-yl)-1,2,4- oxadiazol-5- yl)cyclohexyl)amino)acetyl)- 1H-pyrrole-3-carboxamide 559.2
    631
    Figure US20230062975A1-20230302-C00690
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (3-(pyrazin-2-yl)-1,2,4- oxadiazol-5- yl)cyclohexyl)amino)acetyl)- 1H-pyrrole-3-carboxamide 560.1
    632
    Figure US20230062975A1-20230302-C00691
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1-(5- methyl-1,2,4-oxadiazol-3- yl)cyclohexyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 496.2
    633
    Figure US20230062975A1-20230302-C00692
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (thiophen-2- yl)cyclohexyl)amino)acetyl)- 1H-pyrrole-3-carboxamide 496.2
    634
    Figure US20230062975A1-20230302-C00693
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (5-(thiophen-2-yl)-1,2,4- oxadiazol-3- yl)cyclohexyl)amino)acetyl)- 1H-pyrrole-3-carboxamide 564.2
    635
    Figure US20230062975A1-20230302-C00694
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1-(4- methylthiazol-2- yl)cyclopentyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 497.2
    636
    Figure US20230062975A1-20230302-C00695
    5-(2-((1-(1H-tetrazol-5- yl)cyclopentyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 468.2
    637
    Figure US20230062975A1-20230302-C00696
    5-(2-((1-(5-cyclopropyl-1,2,4- oxadiazol-3- yl)cyclopentyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 508.1
    638
    Figure US20230062975A1-20230302-C00697
    N-(2-chloro-6-methylpyridin- 4-yl)-1,2,4-trimethyl-5-(2-oxo- 2-((4- (trifluoromethyl)tetrahydro- 2H-pyran-4-yl)amino)acetyl)- 1H-pyrrole-3-carboxamide 501.2
    639
    Figure US20230062975A1-20230302-C00698
    (R)-5-(2-((1-acetylpiperidin-3- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 457.2
    640
    Figure US20230062975A1-20230302-C00699
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((1- (methylsulfonyl)piperidin-3- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 493.2
    641
    Figure US20230062975A1-20230302-C00700
    (S)-5-(2-((1-acetylpiperidin-3- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 457.2
    642
    Figure US20230062975A1-20230302-C00701
    (S)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((1- (methylsulfonyl)piperidin-3- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 493.2
    643
    Figure US20230062975A1-20230302-C00702
    5-(2-(((1R,5S,6s)-3-acetyl-3- azabicyclo[3.1.0]hexan-6- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 455.2
    644
    Figure US20230062975A1-20230302-C00703
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2- (((1R,5S,6s)-3- (methylsulfonyl)-3- azabicyclo[3.1.0]hexan-6- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 491.2
    645
    Figure US20230062975A1-20230302-C00704
    5-(2-((1-acetyl-3- methylazetidin-3-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
    646
    Figure US20230062975A1-20230302-C00705
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((2- (thiophen-3- yl)ethyl)amino)acetyl)-1H- pyrrole-3-carboxamide 442.2
    647
    Figure US20230062975A1-20230302-C00706
    N-(4-fluoro-3-methylphenyl)- 5-(2-((2-hydroxy-2-(thiophen- 2-yl)propyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 472.2
    648
    Figure US20230062975A1-20230302-C00707
    N-(4-fluoro-3-methylphenyl)- 5-(2-((2-hydroxy-2-(thiophen- 3-yl)ethyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 458.2
    649
    Figure US20230062975A1-20230302-C00708
    5-(2-((2-(2,4-dioxothiazolidin- 3-yl)ethyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 475.1
    650
    Figure US20230062975A1-20230302-C00709
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2-(5- methyl-3-oxo-2,3-dihydro-1H- pyrazol-4-yl)ethyl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 456.2
    651
    Figure US20230062975A1-20230302-C00710
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((2- methyl-1-(4-methylpiperazin- 1-yl)propan-2-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 486.3
    652
    Figure US20230062975A1-20230302-C00711
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- (oxetan-3-yl)piperidin-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 471.3
    653
    Figure US20230062975A1-20230302-C00712
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (tetrahydro-2H-pyran-4- yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 499.3
    654
    Figure US20230062975A1-20230302-C00713
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (tetrahydro-2H-thiopyran-4- yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 515.3
    655
    Figure US20230062975A1-20230302-C00714
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (thiophen-2-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 497.3
    656
    Figure US20230062975A1-20230302-C00715
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (thiazol-2-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 498.2
    657
    Figure US20230062975A1-20230302-C00716
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (pyridin-2-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 492.3
    658
    Figure US20230062975A1-20230302-C00717
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (pyrimidin-2-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 493.3
    659
    Figure US20230062975A1-20230302-C00718
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (pyrazin-2-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 493.3
    660
    Figure US20230062975A1-20230302-C00719
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (pyridazin-3-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 493.3
    661
    Figure US20230062975A1-20230302-C00720
    5-(2-((1-((4-(4- chlorophenyl)piperazin-1- yl)methyl)cyclopropyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 580.3
    662
    Figure US20230062975A1-20230302-C00721
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (pyridin-4-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 492.3
    663
    Figure US20230062975A1-20230302-C00722
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2-((1- (pyridin-3-yl)piperidin-4- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 492.3
    664
    Figure US20230062975A1-20230302-C00723
    (R)-5-(2-((1-acetylpyrrolidin-3- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 443.2
    665
    Figure US20230062975A1-20230302-C00724
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((1- (methylsulfonyl)pyrrolidin-3- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 479.2
    666
    Figure US20230062975A1-20230302-C00725
    (S)-5-(2-((1-acetylpyrrolidin-3- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 443.2
    667
    Figure US20230062975A1-20230302-C00726
    (S)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-((1- (methylsulfonyl)pyrrolidin-3- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 479.2
    668
    Figure US20230062975A1-20230302-C00727
    5-(2-(((1s,3s)-3- acetamidocyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
    669
    Figure US20230062975A1-20230302-C00728
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-(((1s,3s)-3- (methylsulfonamido)cyclobutyl )amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 479.2
    670
    Figure US20230062975A1-20230302-C00729
    5-(2-(((1r,3r)-3- acetamidocyclobutyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
    671
    Figure US20230062975A1-20230302-C00730
    (S)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((2-oxopyrrolidin- 3-yl)amino)acetyl)-1H-pyrrole- 3-carboxamide 415.2
    672
    Figure US20230062975A1-20230302-C00731
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((2-oxopyrrolidin- 3-yl)amino)acetyl)-1H-pyrrole- 3-carboxamide 415.2
    673
    Figure US20230062975A1-20230302-C00732
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((2-oxopiperidin-3- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 429.2
    674
    Figure US20230062975A1-20230302-C00733
    5-(2-((6-fluoro-2-oxo-1,2- dihydropyridin-4-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
    675
    Figure US20230062975A1-20230302-C00734
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,4r)-4- (hydroxymethyl)cyclohexyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 444.2
    676
    Figure US20230062975A1-20230302-C00735
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1s,4s)-4- (hydroxymethyl)cyclohexyl) amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 444.2
    677
    Figure US20230062975A1-20230302-C00736
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1r,4r)-4-(2- hydroxypropan-2- yl)cyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 472.2
    678
    Figure US20230062975A1-20230302-C00737
    N-(4-fluoro-3-methylphenyl)- 5-(2-((1-hydroxy-1,3- dihydrobenzo[c][1,2]oxaborol- 5-yl)amino)-2-oxoacetyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 464.2
    679
    Figure US20230062975A1-20230302-C00738
    5-(2-((4,4-dimethyl-2- oxopyrrolidin-3-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 443.2
    680
    Figure US20230062975A1-20230302-C00739
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((7- methyl-6-oxo-5- azaspiro[2.4]heptan-7- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 455.2
    681
    Figure US20230062975A1-20230302-C00740
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4-((1-hydroxy-2- methylpropan-2- yl)carbamoyl)tetrahydro-2H- pyran-4-yl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 531.3
    682
    Figure US20230062975A1-20230302-C00741
    (S)-5-(2-((4-(sec- butylcarbamoyl)tetrahydro-2H- pyran-4-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 515.3
    683
    Figure US20230062975A1-20230302-C00742
    N-(4-fluoro-3-methylphenyl)- 5-(2-((4-(((1s,3s)-3-hydroxy-1- methylcyclobutyl)carbamoyl) tetrahydro-2H-pyran-4- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 543.3
    684
    Figure US20230062975A1-20230302-C00743
    (R)-N-(3-chloro-5- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((5-oxopyrrolidin- 3-yl)amino)acetyl)-1H-pyrrole- 3-carboxamide 431.2
    685
    Figure US20230062975A1-20230302-C00744
    N-(3-chloro-5-methylphenyl)- 5-(2-(((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 446.2
    686
    Figure US20230062975A1-20230302-C00745
    (R)-N-(3-chloro-5- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 444.1
    687
    Figure US20230062975A1-20230302-C00746
    N-(3-chloro-5-methylphenyl)- 5-(2-(((1r,4r)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 460.2
    688
    Figure US20230062975A1-20230302-C00747
    N-(3-chloro-5-methylphenyl)- 5-(2-(((1R,3R)-3- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 446.2
    689
    Figure US20230062975A1-20230302-C00748
    N-(3-chlorophenyl)-5-(2- (((1R,3R)-3- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 432.2
    690
    Figure US20230062975A1-20230302-C00749
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 448.2
    691
    Figure US20230062975A1-20230302-C00750
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(pyrimidin-2- yl)piperidin-4-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 507.3
    692
    Figure US20230062975A1-20230302-C00751
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(1-methyl-1H- pyrazole-5-carbonyl)piperidin- 4-yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 537.2
    693
    Figure US20230062975A1-20230302-C00752
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(1-methyl-1H- pyrazole-4-carbonyl)piperidin- 4-yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 537.2
    694
    Figure US20230062975A1-20230302-C00753
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((1- methylcyclohex-3-en-1- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 426.2
    695
    Figure US20230062975A1-20230302-C00754
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((3aS,4R,6S,6aR)-6- hydroxy-2,2- dimethyltetrahydro-4H- cyclopenta[d][1,3]dioxol-4- yl)amino)-2-oxoacetyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 488.2
    696
    Figure US20230062975A1-20230302-C00755
    1-ethyl-N-(4-fluoro-3- methylphenyl)-5-(2-(((1r,4r)- 4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-2,4-dimethyl-1H- pyrrole-3-carboxamide 458.3
    697
    Figure US20230062975A1-20230302-C00756
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1r,4r)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 448.2
    698
    Figure US20230062975A1-20230302-C00757
    5-(2-((1-(1H-tetrazol-5- yl)cyclopentyl)amino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 472.1
    699
    Figure US20230062975A1-20230302-C00758
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(thiazol-2- yl)piperidin-4-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 512.3
    700
    Figure US20230062975A1-20230302-C00759
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1r,4r)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 462.2
    701
    Figure US20230062975A1-20230302-C00760
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1s,4s)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 462.2
    702
    Figure US20230062975A1-20230302-C00761
    5-(2-(((3S,4R)-3,4-dihydroxy- 1-methylcyclohexyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 460.2
    703
    Figure US20230062975A1-20230302-C00762
    5-(2-(((3R,4S)-3,4-dihydroxy- 1-methylcyclohexyl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 460.2
    704
    Figure US20230062975A1-20230302-C00763
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1R,3R)-3- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 448.2
    705
    Figure US20230062975A1-20230302-C00764
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1s,3s)-3-hydroxy-1- methylcyclobutyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 434.2
    706
    Figure US20230062975A1-20230302-C00765
    N-(3,4-difluorophenyl)-5-(2- (((1r,4r)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 448.2
    707
    Figure US20230062975A1-20230302-C00766
    N-(3,4-difluorophenyl)-4-(2- (4-((4-fluoro-3- methylphenyl)carbamoyl)- 1,3,5-trimethyl-1H-pyrrol-2- yl)-2-oxoacetamido)-4- methylpiperidine-1- carboxamide 584.2
    708
    Figure US20230062975A1-20230302-C00767
    5-(2-((1-(3-(difluoromethyl)-1- methyl-1H-pyrazole-4- carbonyl)-4-methylpiperidin-4- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 587.3
    709
    Figure US20230062975A1-20230302-C00768
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(1H-pyrazole-4- carbonyl)piperidin-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 523.2
    710
    Figure US20230062975A1-20230302-C00769
    (R)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 5-(2-oxo-2-((4-oxo-5- azaspiro[2.4]heptan-7- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 441.2
    711
    Figure US20230062975A1-20230302-C00770
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-(((3R,4R)- 4-morpholinotetrahydrofuran- 3-yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 487.2
    712
    Figure US20230062975A1-20230302-C00771
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-oxo-2- (((1R,2S,3R,4S)-2,3,4- trihydroxycyclopentyl)amino) acetyl)-1H-pyrrole-3- carboxamide 448.2
    713
    Figure US20230062975A1-20230302-C00772
    5-(2-(((4R,5S)-4,5- dihydroxycycloheptyl)amino)- 2-oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 460.2
    714
    Figure US20230062975A1-20230302-C00773
    5-(2-((1,4-dioxepan-6- yl)amino)-2-oxoacetyl)-N-(4- fluoro-3-methylphenyl)-1,2,4- trimethyl-1H-pyrrole-3- carboxamide 432.1
    715
    Figure US20230062975A1-20230302-C00774
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(pyrazin-2- yl)piperidin-4-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 507.3
    716
    Figure US20230062975A1-20230302-C00775
    5-(2-((1-cyclopropyl-1-(5- methyl-1,2,4-oxadiazol-3- yl)ethyl)amino)-2-oxoacetyl)- N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-1H-pyrrole-3- carboxamide 482.2
    717
    Figure US20230062975A1-20230302-C00776
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(pyrimidin-4- yl)piperidin-4-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 507.3
    718
    Figure US20230062975A1-20230302-C00777
    5-(2-((1-(difluoromethoxy)-2- methylpropan-2-yl)amino)-2- oxoacetyl)-N-(4-fluoro-3- methylphenyl)-1,2,4-trimethyl- 1H-pyrrole-3-carboxamide 454.2
    719
    Figure US20230062975A1-20230302-C00778
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(pyrazolo[1,5- a]pyrimidine-3- carbonyl)piperidin-4- yl)amino)-2-oxoacetyl)-1H- pyrrole-3-carboxamide 574.3
    720
    Figure US20230062975A1-20230302-C00779
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1r,3r)-3-hydroxy-1- methylcyclobutyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 434.2
    721
    Figure US20230062975A1-20230302-C00780
    N-(3-(difluoromethyl)phenyl)- 5-(2-(((1R,3R)-3- hydroxycyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 434.2
    722
    Figure US20230062975A1-20230302-C00781
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,3R)-3-hydroxy-1- methylcyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.2
    723
    Figure US20230062975A1-20230302-C00782
    N-(4-fluoro-3-methylphenyl)- 5-(2-(((1S,3S)-3-hydroxy-1- methylcyclopentyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 430.2
    724
    Figure US20230062975A1-20230302-C00783
    N-(4-fluorophenyl)-5-(2- (((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 416.2
    725
    Figure US20230062975A1-20230302-C00784
    (R)-N-(4-fluorophenyl)-1,2,4- trimethyl-5-(2-oxo-2-((1,1,1- trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 414.2
    726
    Figure US20230062975A1-20230302-C00785
    N-(5-chloropyridin-3-yl)-5-(2- (((1s,4s)-4- hydroxycyclohexyl)amino)-2- oxoacetyl)-1,2,4-trimethyl-1H- pyrrole-3-carboxamide 433.2
    727
    Figure US20230062975A1-20230302-C00786
    (R)-N-(5-chloropyridin-3-yl)- 1,2,4-trimethyl-5-(2-oxo-2- ((1,1,1-trifluoropropan-2- yl)amino)acetyl)-1H-pyrrole-3- carboxamide 431.1
    728
    Figure US20230062975A1-20230302-C00787
    N-(4-fluoro-3-methylphenyl)- 1,2,4-trimethyl-5-(2-((4- methyl-1-(pyridazin-3- yl)piperidin-4-yl)amino)-2- oxoacetyl)-1H-pyrrole-3- carboxamide 507.3
    729
    Figure US20230062975A1-20230302-C00788
    (S)-3-(2-(sec-butylamino)-2- oxoacetyl)-2-chloro-N-(6- fluoro-5-methylpyridin-3-yl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 435.1
    730
    Figure US20230062975A1-20230302-C00789
    2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-oxo- 2-((1,1,1-trifluoro-2- methylpropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 489.0
    731
    Figure US20230062975A1-20230302-C00790
    (S)-2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-oxo- 2-((1,1,1-trifluoropropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 475.1
    732
    Figure US20230062975A1-20230302-C00791
    (R)-2-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-3-(2-oxo- 2-((1,1,1-trifluoropropan-2- yl)amino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 475.1
    733
    Figure US20230062975A1-20230302-C00792
    (S)-5-(2-(sec-butylamino)-2- oxoacetyl)-6-chloro-N-(6- fluoro-5-methylpyridin-3-yl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 421.0
    734
    Figure US20230062975A1-20230302-C00793
    5-(2-(((2-aminothiazol-5- yl)methyl)amino)-2- oxoacetyl)-6-chloro-N-(6- fluoro-5-methylpyridin-3-yl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 477.0
    735
    Figure US20230062975A1-20230302-C00794
    (R)-6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-((1- (3-methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 475.1
    736
    Figure US20230062975A1-20230302-C00795
    (S)-6-chloro-N-(6-fluoro-5- methylpyridin-3-yl)-5-(2-((1- (3-methyl-1,2,4-oxadiazol-5- yl)ethyl)amino)-2-oxoacetyl)- 2,3-dihydro-1H-pyrrolizine-7- carboxamide 475.1
    737
    Figure US20230062975A1-20230302-C00796
    N-(4-fluoro-3-methylphenyl)- 3-(2-(((1s,4s)-4-hydroxy-1- methylcyclohexyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 470.2
    738
    Figure US20230062975A1-20230302-C00797
    (4-(2-(1-((3,4 difluorophenyl)carbamoyl)-2- methyl-5,6,7,8- tetrahydroindolizin-3-yl)-2- oxoacetamido)phenyl)boronic acid 482.1
    739
    Figure US20230062975A1-20230302-C00798
    N-(4-fluoro-3-methylphenyl)- 2-methyl-3-(2-oxo-2-(pyridin- 3-ylamino)acetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 435.1
    740
    Figure US20230062975A1-20230302-C00799
    N-(4-fluoro-3-methylphenyl)- 3-(2-(((1r,4r)-4-hydroxy-4- methylcyclohexyl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 470.2
    741
    Figure US20230062975A1-20230302-C00800
    3-(2-((2-aminoethyl)amino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 405.1
    742
    Figure US20230062975A1-20230302-C00801
    N-(3,4-difluorophenyl)-2- methyl-3-(2-((4- methylpiperidin-4-yl)amino)-2- oxoacetyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 459.2
    743
    Figure US20230062975A1-20230302-C00802
    3-(2-((1-(2H-tetrazol-5- yl)cyclopentyl)amino)-2- oxoacetyl)-N-(3,4- difluorophenyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 498.2
    744
    Figure US20230062975A1-20230302-C00803
    N-(3,3-difluorocyclopentyl)- 3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 438.3
    745
    Figure US20230062975A1-20230302-C00804
    3-(2-((1-(hydroxymethyl) cyclobutyl)amino)-2- oxoacetyl)-2-methyl-N- (1-methylcyclopentyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 416.3
    746
    Figure US20230062975A1-20230302-C00805
    N-cyclopentyl-3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2-methyl- 5,6,7,8-tetrahydroindolizine-1- carboxamide 402.3
    748
    Figure US20230062975A1-20230302-C00806
    3-(2-((1-(hydroxymethyl) cyclobutyl) amino)-2-oxoacetyl)-2-methyl- N-(1-methyl-1H-pyrazol-3-yl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 414.2
    749
    Figure US20230062975A1-20230302-C00807
    3-(2-((1-(hydroxymethyl) cyclobutyl) amino)-2-oxoacetyl)-2-methyl-N- (5-(trifluoromethyl)thiazol-2- yl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 485.1
    750
    Figure US20230062975A1-20230302-C00808
    3-(2-((1-(hydroxymethyl) cyclobutyl)amino)-2- oxoacetyl)-2-methyl-N- (5-methylthiazol-2-yl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 431.2
    751
    Figure US20230062975A1-20230302-C00809
    3-(2-((1- (hydroxymethyl)cyclobutyl) amino)-2-oxoacetyl)-2- methyl-N- (thiazol-2-yl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 417.2
    752
    Figure US20230062975A1-20230302-C00810
    N-(3,3-difluorocyclopentyl)-3- (2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 426.2
    753
    Figure US20230062975A1-20230302-C00811
    3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-N-(1- methylcyclopentyl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 404.3
    754
    Figure US20230062975A1-20230302-C00812
    N-cyclopentyl-3-(2-((1- hydroxy-2-methylpropan-2- yl)amino)-2-oxoacetyl)-2- methyl-5,6,7,8- tetrahydroindolizine-1- carboxamide 390.2
    756
    Figure US20230062975A1-20230302-C00813
    3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-N-(1- methyl-1H-pyrazol-3-yl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 402.2
    757
    Figure US20230062975A1-20230302-C00814
    3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-N-(5- (trifluoromethyl)thiazol-2-yl)- 5,6,7,8-tetrahydroindolizine-1- carboxamide 473.2
    758
    Figure US20230062975A1-20230302-C00815
    3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-N-(5- methylthiazol-2-yl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 419.2
    759
    Figure US20230062975A1-20230302-C00816
    3-(2-((1-hydroxy-2- methylpropan-2-yl)amino)-2- oxoacetyl)-2-methyl-N- (thiazol-2-yl)-5,6,7,8- tetrahydroindolizine-1- carboxamide 405.1
  • Further Forms of Compounds Disclosed Herein Isomers Stereoisomers
  • In some embodiments, the compounds described herein exist as geometric isomers. In some embodiments, the compounds described herein possess one or more double bonds. The compounds presented herein include all cis, trans, syn, anti, entgegen (E), and zusammen (Z) isomers as well as the corresponding mixtures thereof. In some situations, the compounds described herein possess one or more chiral centers and each center exists in the R configuration, or S configuration. The compounds described herein include all diastereomeric, enantiomeric, and epimeric forms as well as the corresponding mixtures thereof. In additional embodiments of the compounds and methods provided herein, mixtures of enantiomers and/or diastereoisomers, resulting from a single preparative step, combination, or interconversion are useful for the applications described herein. In some embodiments, the compounds described herein are prepared as their individual stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds, separating the diastereomers and recovering the optically pure enantiomers. In some embodiments, dissociable complexes are preferred. In some embodiments, the diastereomers have distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and are separated by taking advantage of these dissimilarities. In some embodiments, the diastereomers are separated by chiral chromatography, or preferably, by separation/resolution techniques based upon differences in solubility. In some embodiments, the optically pure enantiomer is then recovered, along with the resolving agent, by any practical means that would not result in racemization.
  • Labeled Compounds
  • In some embodiments, the compounds described herein exist in their isotopically-labeled forms. In some embodiments, the methods disclosed herein include methods of treating diseases by administering such isotopically-labeled compounds. In some embodiments, the methods disclosed herein include methods of treating diseases by administering such isotopically-labeled compounds as pharmaceutical compositions. Thus, in some embodiments, the compounds disclosed herein include isotopically-labeled compounds, which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds disclosed herein include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine and chloride, such as 2H, 3H, 13C, 14C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, respectively. Compounds described herein, and the pharmaceutically acceptable salts, solvates, or stereoisomers thereof which contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention. Certain isotopically-labeled compounds, for example those into which radioactive isotopes such as 3H and 14C are incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, i.e., 3H and carbon-14, i.e., 14C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavy isotopes such as deuterium, i.e., 2H, produces certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements.
  • In some embodiments, the compounds described herein are labeled by other means, including, but not limited to, the use of chromophores or fluorescent moieties, bioluminescent labels, or chemiluminescent labels.
  • Pharmaceutically Acceptable Salts
  • In some embodiments, the compounds described herein exist as their pharmaceutically acceptable salts. In some embodiments, the methods disclosed herein include methods of treating diseases by administering such pharmaceutically acceptable salts. In some embodiments, the methods disclosed herein include methods of treating diseases by administering such pharmaceutically acceptable salts as pharmaceutical compositions.
  • In some embodiments, the compounds described herein possess acidic or basic groups and therefore react with any of a number of inorganic or organic bases, and inorganic and organic acids, to form a pharmaceutically acceptable salt. In some embodiments, these salts are prepared in situ during the final isolation and purification of the compounds disclosed herein, or a solvate, or stereoisomer thereof, or by separately reacting a purified compound in its free form with a suitable acid or base, and isolating the salt thus formed.
  • Examples of pharmaceutically acceptable salts include those salts prepared by reaction of the compounds described herein with a mineral, organic acid or inorganic base, such salts including, acetate, acrylate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, bisulfite, bromide, butyrate, butyn-1,4-dioate, camphorate, camphorsulfonate, caproate, caprylate, chlorobenzoate, chloride, citrate, cyclopentanepropionate, decanoate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hexyne-1,6-dioate, hydroxybenzoate, γ-hydroxybutyrate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, iodide, isobutyrate, lactate, maleate, malonate, methanesulfonate, mandelate metaphosphate, methanesulfonate, methoxybenzoate, methylbenzoate, monohydrogenphosphate, 1-napthalenesulfonate, 2-napthalenesulfonate, nicotinate, nitrate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, pyrosulfate, pyrophosphate, propiolate, phthalate, phenylacetate, phenylbutyrate, propanesulfonate, salicylate, succinate, sulfate, sulfite, succinate, suberate, sebacate, sulfonate, tartrate, thiocyanate, tosylateundeconate and xylenesulfonate.
  • Further, the compounds described herein can be prepared as pharmaceutically acceptable salts formed by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid, including, but not limited to, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid metaphosphoric acid, and the like; and organic acids such as acetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, p-toluenesulfonic acid, tartaric acid, trifluoroacetic acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, arylsulfonic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 4-methylbicyclo-[2.2.2]oct-2-ene-1-carboxylic acid, glucoheptonic acid, 4,4′-methylenebis-(3-hydroxy-2-ene-1-carboxylic acid), 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid and muconic acid. In some embodiments, other acids, such as oxalic, while not in themselves pharmaceutically acceptable, are employed in the preparation of salts useful as intermediates in obtaining the compounds disclosed herein, solvate, or stereoisomer thereof and their pharmaceutically acceptable acid addition salts.
  • In some embodiments, those compounds described herein which comprise a free acid group react with a suitable base, such as the hydroxide, carbonate, bicarbonate, sulfate, of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary, tertiary, or quaternary amine. Representative salts include the alkali or alkaline earth salts, like lithium, sodium, potassium, calcium, and magnesium, and aluminum salts and the like. Illustrative examples of bases include sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate, N+(C1-4 alkyl)4, and the like.
  • Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. It should be understood that the compounds described herein also include the quaternization of any basic nitrogen-containing groups they contain. In some embodiments, water or oil-soluble or dispersible products are obtained by such quaternization.
  • Solvates
  • In some embodiments, the compounds described herein exist as solvates. The invention provides for methods of treating diseases by administering such solvates. The invention further provides for methods of treating diseases by administering such solvates as pharmaceutical compositions.
  • Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and, in some embodiments, are formed during the process of crystallization with pharmaceutically acceptable solvents such as water, ethanol, and the like. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol. Solvates of the compounds described herein can be conveniently prepared or formed during the processes described herein. By way of example only, hydrates of the compounds described herein can be conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents including, but not limited to, dioxane, tetrahydrofuran or methanol. In addition, the compounds provided herein can exist in unsolvated as well as solvated forms. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of the compounds and methods provided herein.
  • Tautomers
  • In some situations, compounds exist as tautomers. The compounds described herein include all possible tautomers within the formulas described herein. Tautomers are compounds that are interconvertible by migration of a hydrogen atom, accompanied by a switch of a single bond and adjacent double bond. In bonding arrangements where tautomerization is possible, a chemical equilibrium of the tautomers will exist. All tautomeric forms of the compounds disclosed herein are contemplated. The exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH.
  • Preparation of Compounds Example 1: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-methyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00817
  • Step 1: Synthesis of N-(4-fluoro-3-methylphenyl)-1-methyl-1H-pyrrole-3-carboxamide (1c).
  • HATU (3.4 g, 8.8 mmol) was added to a solution of 1-methyl-1H-pyrrole-3-carboxylic acid (la, 1 g, 8 mmol) in DMA (15 mL) at rt. After 30 min, 4-fluoro-3-methylaniline (1b, 1 g, 8 mmol) and DIPEA (1 g, 8 mmol) in DMA (5 mL) were added dropwise. The resulting mixture was stirred at rt for 20 hrs. The reaction mixture was diluted with EtOAc, washed with aqueous HCl (0.5 N, 20 mL) and brine. The organic layer was dried over Na2SO4, filtered, concentrated in vacuo, and purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) to afford the product as white solid (0.9 g). ESI-MS, m/z 233 (MH)+.
  • Step 2: Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1-methyl-1H-pyrrol-2-yl)-2-oxoacetate (1e)
  • Ethyl 2-chloro-2-oxoacetate (1d, 0.6 g, 4.4 mmol) was added to a solution of 1c (0.5 g, 2.2 mmol) in DCM (10 mL) at 0° C. under argon. After 20 min, AlCl3 (0.6 g, 4.4 mmol) was added in portions, and the mixture was warmed to rt for 4 hrs. The reaction mixture was poured over ice-water, and extracted with DCM (2×30 mL). The combined extracts were washed with water, saturated NaHCO3, brine and concentrated under vacuum to give crude product 1e. ESI-MS, m/z 333 (MH)+.
  • Step 3: Synthesis of 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1-methyl-1H-pyrrol-2-yl)-2-oxoacetic acid (1g)
  • NaOH (2N, 3 mL) was added to a solution of the crude product 1e in EtOH (6 mL) at 0° C. The mixture was warmed to rt for 2 hrs, then, cooled with ice-water and carefully neutralized with aqueous HCl (0.5 N) to pH ˜ 2. The resulting mixture was concentrated under vacuum to remove MeOH, then, lyophilized to afford crude product 1g as white solid: ESI-MS, m/z 305 (MH)+.
  • Step 4: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-methyl-1H-pyrrole-3-carboxamide (1)
  • HATU (90 mg, 0.24 mmol) was added to a solution of 1g (60 mg, 0.19) in DMA (0.75 mL) at 0° C. After 20 min, tert-butylamine (20 mg, 0.28) and DIPEA (50 mg, 0.38 mmol) in DMA (0.4 mL) were added. The reaction mixture was stirred at rt for 20 hrs. The reaction mixture was quenched with aqueous TFA (4%, 0.4 mL), then, extracted with EtOAc (10 mL). The organic layer was washed with water and brine, concentrated in vacuo, then, purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 360 (MH)+.
  • Example 2: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00818
  • Step 1: Synthesis of ethyl 1,2,4-trimethyl-1H-pyrrole-3-carboxylate (2b)
  • Mel (0.75 g, 5.3 mmol) was added to a mixture of 2a (0.5 g, 3.2 mmol) and K2CO3 (1 g, 7.2 mmol) in DMA (15 mL) at 0° C. The reaction mixture was warmed to rt for 40 hrs. The reaction mixture was diluted with the addition of water, and extracted with EtOAc (2×10 mL). The combined extracts were washed with water and brine, concentrated in vacuo, then, purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) to afford 2b as white solid (0.3 g). ESI-MS, m/z 182 (MH)+.
  • Step 2: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide (2c)
  • LiHMDS (1 N in THF, 4 mL) was added to a solution of 2b (0.3 g, 1.7 mmol) and 1b (0.3 g, 2.4 mmol) in THF (10 mL) at 0° C. under argon. After 1 h, the reaction was quenched with saturated aqueous NH4C and extracted with EtOAc. The organic layer was washed with brine and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) to afford 3b as white solid (0.35 g). ESI-MS, m/z 261 (MH)+.
  • Step 3: Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetate (2d)
  • The title compound was prepared following the procedures described in Example 1, Steps 2, using 2c. The final product was purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) to afford 2d as white solid (0.32 g). ESI-MS, m/z 361 (MH)+.
  • Step 4: Synthesis of 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (2e)
  • The title compound was prepared following the procedures described in Example 1, Steps 3, using 2d instead of 1d. The crude product was dried using lyophilization as white solid, which was used without further purification. ESI-MS, m/z 333 (MH)+.
  • Step 5: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • The title compounds were prepared following the procedure described in Example 1, Step 4, using 2e. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 388 (MH)+.
  • Example 3: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-chloro-4-fluorophenyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00819
  • The title compound was prepared from compound 2a following the procedure described in Example 2, Step 2 through Step 5, using 4-fluoro-3-chloroaniline instead of 4-fluoro-3-methylaniline. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 394 (MH)+.
  • Example 4: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(3,4-difluorophenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00820
  • The title compound was prepared following the procedure described in Example 2, Step 2 through Step 5, using 3,4-difluoroaniline instead of 4-fluoro-3-methylaniline. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as a white solids. ESI-MS, m/z 392 (MH)+.
  • Example 5: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(6-fluoropyridin-3-yl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00821
  • The title compounds were prepared following the procedure described in Example 2, Step 2 through Step 5, using 6-fluoropyridin-3-amine instead of 4-fluoro-3-methylaniline. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 375 (MH)+.
  • Example 6: Synthesis of 5-(2-((1-fluoro-2-methylpropan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00822
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1-fluoro-2-methylpropan-2-amine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 406 (MH)+.
  • Example 7: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((1-(hydroxymethyl)cyclopropyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00823
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using (1-aminocyclopropyl)methanol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 402 (MH)+.
  • Example 8: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((1-hydroxy-2-methylpropan-2-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00824
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 2-amino-2-methylpropan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. 1H NMR (400 MHz, CD3OD) δ 8.2 (s, 1H), 7.42-7.49 (m, 2H), 6.99 (dd, 1H, J=8.7, 9.3 Hz), 3.81 (s, 3H), 3.64 (s, 2H), 2.36-2.38 (m, 6H), 2.26 (s, 3H), 1.38 (s, 6H). ESI-MS, m/z 404 (MH)+. Example 9: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-oxo-2-((1,1,1-trifluoro-2-methylpropan-2-yl)amino)acetyl)-1H-pyrrole-3-carboxamide.
  • Figure US20230062975A1-20230302-C00825
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1,1,1-trifluoro-2-methylpropan-2-amine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 442 (MH)+.
  • Example 10: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-oxo-2-((1,1,1-trifluoropropan-2-yl)amino)acetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00826
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1,1,1-trifluoropropan-2-amine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 428 (MH)+.
  • Example 11: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((4-hydroxy-2-methylbutan-2-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00827
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 3-amino-3-methylbutan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 418 (MH)+.
  • Example 12: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((1-(hydroxymethyl)cyclobutyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-M-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00828
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using (1-aminocyclobutyl)methanol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 416 (MH)+.
  • Example 13: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((3-(hydroxymethyl)tetrahydrofuran-3-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00829
  • The title compound was prepared following the procedure described in Example 2, Step 5, using (3-aminotetrahydrofuran-3-yl)methanol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 432 (MH)+.
  • Example 14: Synthesis of 5-(2-(((3s,5s,7s)-adamantan-1-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00830
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1-adamantylamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 466 (MH)+.
  • Example 15: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((1r,3s,5R,7S)-3-hydroxyadamantan-1-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00831
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 3-aminoadamantan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 482 (MH)+.
  • Example 16: Synthesis of N-(6-fluoropyridin-3-yl)-5-(2-(((1r,3s,5R,7S)-3-hydroxyadamantan-1-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00832
  • The title compounds were prepared following the procedure described in Example 5, using 3-aminoadamantan-1-ol instead of tert-butylamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 469 (MH)+.
  • Example 17: Synthesis of 5-(2-(((1r,3r)-adamantan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00833
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 2-adamantylamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 466 (MH)+.
  • Example 18: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((2R,3as,5S,6as)-hexahydro-2,5-methanopentalen-3a(1H)-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00834
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 3-noradamantanamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 452 (MH)+.
  • Example 19: Synthesis of N-(6-fluoropyridin-3-yl)-5-(2-(((2R,3as,5S,6as)-hexahydro-2,5-methanopentalen-3a(1H)-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00835
  • The title compounds were prepared following the procedure described in Example 5, using 3-noradamantanamine instead of tert-butylamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 439 (MH)+.
  • Example 20: Synthesis of 5-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-M-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00836
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 484 (MH)+.
  • Example 21: Synthesis of 5-(2-(tert-butoxyamino)-2-oxoacetyl)-N-(3-chloro-4-fluorophenyl)-1-methyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00837
  • The title compound was prepared following the procedure described in Example 1, 4-fluoro-3-chloroaniline instead of 4-fluoro-3-methylaniline in Step 1, and using O-(tert-butyl)hydroxylamine instead of t-butylamine in Step 5. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 396 (MH)+.
  • Example 22: Synthesis of tert-butyl 2-(2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetamido)-2-methylpropanoate
  • Figure US20230062975A1-20230302-C00838
  • The title compound was prepared following the procedure described in Example 2, Step 5, using tert-butyl 2-amino-2-methylpropanoate. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 474 (MH)+.
  • Example 27: Synthesis of methyl (2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetyl)-L-threoninate
  • Figure US20230062975A1-20230302-C00839
  • DIPEA (0.229 g, 1.77 mmol) was added to a mixture of 2e (0.195 g, 0.59 mmol), L-Threonine methyl ester hydrochloride (0.11 g, 0.65 mmol) and HATU (0.269 g, 0.71 mmol) in DMF (3 mL) at ambient temperature. After 16 h, the reaction mixture was diluted into aqueous HCl (1 N, 20 mL) and extracted with EtOAc (3×15 mL). The combined extracts were washed with aqueous HCl (1 N, 10 mL), aqueous NH4Cl (saturated, 10 mL) and brine (10 mL). The organic layer was dried over Na2SO4 (s), filtered, concentrated in vacuo, then, purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) to afford the title product as white solid (0.223 g). ESI-MS, m/z 448.2 (MH)+.
  • Example 29: Synthesis of 2-(2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetamido)-2-methylpropanoic acid
  • Figure US20230062975A1-20230302-C00840
  • TFA (0.4 mL) was added to a solution of Example 22 (15 mg) in DCM (1 mL) at 0° C. After 2 hrs at 0° C., the reaction mixture was warmed to rt for 1 hr. The solvent was removed and the residue was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 418 (MH)+.
  • Example 34: Synthesis of (2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetyl)-L-threonine
  • Figure US20230062975A1-20230302-C00841
  • NaOH (1 N, 0.5 mL) was added to a solution of Example 27 (0.093 g, 0.208 mmol) in MeOH (5 mL) at ambient temperature. After 2 h the reaction mixture was carefully neutralized with aqueous HCl (1 N) to pH ˜ 2. The resulting mixture was concentrated under vacuum to remove MeOH, then, purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as pale yellow solid: ESI-MS, m/z 434.2 (MH)+.
  • Example 36: Synthesis of 5-(2-((1-amino-2-methyl-1-oxopropan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00842
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 2-amino-2-methylpropanamide. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 417 (MH)+.
  • Example 37: Synthesis of 5-(2-((1-carbamoylcyclopropyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00843
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1-aminocyclopropane-1-carboxamide. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 415 (MH)+.
  • Example 38: Synthesis of 5-(2-((1-carbamoylcyclopentyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00844
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1-aminocyclopentane-1-carboxamide. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 443 (MH)+.
  • Example 42: 5-(2-(((2S,3R)-1-amino-3-hydroxy-1-oxobutan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00845
  • DIPEA (0.25 g, 1.93 mmol) and DMAP (0.02 g, 0.16 mmol) were added to a mixture of 34 (0.7 g, 0.16 mmol), NH4Cl (0.043 g, 0.81 mmol) and HATU (0.184 g, 0.48 mmol) in DMF (3 mL) at ambient temperature. After 16 h, the reaction mixture was diluted into aqueous HCl (1 N, 20 mL) and extracted with EtOAc (3×15 mL). The combined extracts were washed with aqueous HCl (1 N, 10 mL), aqueous NH4Cl (saturated, 10 mL) and brine (10 mL). The organic layer was dried over Na2SO4 (s), filtered, concentrated in vacuo. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 433.2 (MH)+.
  • Example 43: Synthesis of 5-(2-(((1r,3r,5r,7r)-2-carbamoyladamantan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00846
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 2-aminoadamantane-2-carboxamide. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 509 (MH)+.
  • Example 47: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(4-hydroxypiperidin-1-yl)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00847
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using piperidin-4-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 416 (MH)+.
  • Example 48: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((1R,3s,5S)-3-hydroxy-8-azabicyclo[3.2.1]octan-8-yl)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00848
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using (1R,3s,5S)-8-azabicyclo[3.2.1]octan-3-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 442 (MH)+.
  • Example 49: Synthesis of 5-(2-(2-amino-6,7-dihydrothiazolo[5,4-c]pyridin-5(4H)-yl)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-M-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00849
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-amine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 434 (MH)+.
  • Example 50: N-(4-fluoro-3-methylphenyl)-5-(2-((1-hydroxy-2-methylpropan-2-yl)amino)-2-oxoacetyl)-1-(2-hydroxyethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00850
  • The title compounds were prepared following the procedure described in Example 71, Step 5, using 2-amino-2-methylpropan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 434 (MH)+.
  • Example 53: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(4-hydroxy-3,3-dimethylpiperidin-1-yl)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00851
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 3,3-dimethylpiperidin-4-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 444.2 (MH)+.
  • Example 59: N-(4-fluoro-3-methylphenyl)-5-(2-(((1s,3R,4s,5S,7s)-4-hydroxyadamantan-1-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00852
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 5-aminoadamantan-2-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 482 (MH)+.
  • Example 63: Synthesis of (R)-5-(2-((3,3-dimethylbutan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00853
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using (R)-(−)-3,3-dimethyl-2-butylamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 416.2 (MH)+.
  • Example 64: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-(neopentylamino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00854
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 2,2-dimethylpropan-1-amine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 402.2 (MH)+.
  • Example 65: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((3-hydroxy-2,2-dimethylpropyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1M-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00855
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 3-amino-2,2-dimethylpropan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 418.2 (MH)+.
  • Example 66: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((2-hydroxy-2-methylpropyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00856
  • Step 1: Synthesis of ethyl 1,2,4-trimethyl-1H-pyrrole-3-carboxylate (66b)
  • Mel (31.8 g, 224.3 mmol) was added to a mixture of 66a (25 g, 149.5 mmol) and KOH (16.8 g, 299 mmol) in DMSO (250 mL) at 0° C. The reaction mixture was warmed to rt for 16 hrs. The reaction mixture was extracted with 4×Et2O. The combined extracts were washed with water and brine, dried over Na2SO4, filtered and concentrated in vacuo to afford the title compound 66b as brown solid (24.6 g, 91%) which was used without further purification. ESI-MS, m/z 182 (MH)+.
  • Step 2: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide (66c)
  • LiHMDS (272 mL, 1 N in THF) was added dropwise over 45 min to a solution of 66b (24.6 g, 135.73 mmol) and 3-methyl-4-fluoroaniline (18.83 g, 149.3 mmol) in THF (270 mL) at 0° C. The reaction mixture was allowed to warm slowly to ambient temperature. After 16 h the reaction mixture was quenched with NH4Cl (sat) and water. The layers were separated and the aqueous was extracted 3×EtOAc. The combined organics were washed with NH4Cl (sat) and brine, dried over Na2SO4, filtered and concentrated. The crude residue was suspended in 1:1 EtOAc/hexanes and stirred for 1 h at 40° C., then cooled to ambient temperature and filtered. The filter cake was washed with hexanes and dried to afford the title compound 66c as tan solid (31.85 g, 90%). 1H NMR (300 MHz, DMSO-d6) δ 9.25 (s, 1H), 7.58 (d, J=7.2 Hz, 1H), 7.45 (m, 1H), 7.02 (t, J=9.6 Hz, 1H), 6.44 (s, 1H), 3.43 (s, 3H), 2.26 (s, 3H), 2.19 (s, 3H), 2.06 (s, 3H). ESI-MS, m/z 261 (MH)+.
  • Step 3: Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetate (66d)
  • To a solution of 66c (31.85 g, 121.89 mmol) in DCM (500 mL) at 0° C. was added ethyl chlorooxoacetate (24.96 g, 182.84 mmol) dropwise over 30 mins and the reaction mixture was allowed to warm slowly to ambient temperature. After 16 h the reaction mixture was washed with H2O and NaHCO3 (sat) and then concentrated in vacuo to afford the title compound 66d (44 g, quant) as a brown solid which was used without any further purification. ESI-MS, m/z 361 (MH)+.
  • Step 4: Synthesis of 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (66e)
  • To a solution of 66d (43.9 g, 121.89 mmol) in THF (200 mL) and MeOH (200 mL) was added 1N NaOH (300 mL). After 15 min the reaction mixture was partially concentrated to remove organics, diluted with EtOAc and partially concentrated again. The heterogeneous mixture was diluted with water and washed 4× EtOAc. The heterogeneous aqueous was acidified with conc. HCl to pH=1 and extracted with 4× EtOAc. The heterogeneous organic layer was washed with brine, filtered and the filter cake was washed with hexanes. The crude solids were suspended in EtOAc (200 mL) and hexanes (200 mL) and stirred for 1 h at 45° C., then cooled to ambient temperature, filtered and washed with hexanes. The solids were further dried in vacuo to provide the title compound 66e (34.21 g, 84%) as an off-white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.96 (s, 1H), 7.60 (d, J=6.9 Hz, 1H), 7.46 (m, 1H), 7.07 (t, J=9.6 Hz, 1H), 3.78 (s, 3H), 2.32 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H). ESI-MS, m/z 333 (MH)+.
  • Step 5: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((1-hydroxy-2-methylpropan-2-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • To a solution of 66e (20 g, 60.18 mmol), 1-amino-2-methylpropan-2-ol (5.9 g, 66.20 mmol)) and HATU (27.46 g, 72.22 mmol) in DMF (200 mL) at ambient temperature was added DIPEA (23.3 g, 180.54 mmol). After 2 h the reaction mixture was diluted with 1N HCl and extracted 4× EtOAc. The combined organics were washed sequentially with 1 N HCl, NaHCO3 (sat), and brine, then dried over Na2SO4, filtered and concentrated. The crude solids were suspended in MeCN (100 mL) and water (100 mL) and stirred at 40° C. After 1 h the mixture was cooled to ambient temperature and filtered. The filter cake was washed with 1:1 MeCN/water and dried in vacuo. The resultant tan solids were slurried in MeCN (60 mL) and stirred at 45° C. After 1 h the mixture was cooled to ambient temperature, filtered and washed with cold MeCN. The resultant solids were dried in vacuo to provide the title compound (17.5 g, 72%) as an off white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.90 (s, 1H), 8.51 (t, J=5.1 Hz, 1H), 7.60 (d, J=6.9 Hz, 1H), 7.45 (t, J=3 Hz, 1H), 7.06 (t, J=9.3 Hz, 1H), 4.50 (s, 1H), 3.74 (s, 3H), 3.14 (d, J=5.7 Hz, 2H), 2.31 (s, 3H), 2.19 (m, 6H), 1.10 (m, 1H). ESI-MS, m/z 404.2 (MH)+.
  • Example 67: Synthesis of (S)-N-(4-fluoro-3-methylphenyl)-5-(2-((1-hydroxy-3,3-dimethylbutan-2-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00857
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using L-tert-leucinol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 432.2 (MH)+.
  • Example 70: Synthesis of 5-(2-(tert-butoxyamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00858
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using O-(tert-butyl)hydroxylamine. The final product was purified by flash chromatography on silica gel eluted with ethyl acetate and hexane to afford the title products as pale yellow solids. ESI-MS, m/z 404 (MH)+.
  • Example 71: 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-(2-hydroxyethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00859
  • Step 1: Synthesis of ethyl 1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (71b)
  • NaH (65% mineral oil, 1 g) was added to a solution of 71a (2 g, 12 mmol) in DMF (100 mL) at 0° C. under argon. After 30 min., (2-bromoelhoxy)(tert-butyl)dimethylsilane (3 g, 12.5 mmol in DMF 10 mL) was added dropwise. The mixture was stirred at 0° C. for 4 hrs. The reaction was carefully quenched with saturated NH4Cl at 0° C., then, extracted with EtOAc (3×50 mL). The combined extractions were washed with water/brine, concentrated in vacuo, and purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) to afford the product as brown oil (3 g). ESI-MS, m/z 326 (MH)+.
  • Step 2: Synthesis of 1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-N-(4-fluoro-3-methylphenyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (71c)
  • The title compounds were prepared following the procedure described in Example 2, Step 2. The final product was purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) as brown solid. ESI-MS, m/z 405 (MH)+.
  • Step 3: Synthesis of ethyl 2-(1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-4-((4-fluoro-3-methylphenyl)carbamoyl)-3,5-dimethyl-1H-pyrrol-2-yl)-2,2-difluoroacetate (71d)
  • A mixture of 71c (0.4 g, 0.99 mmol), K2CO3 (0.5 g, 3.6 mmol), Xantphos (0.15 g, 0.26 mmol) and tetrakis(triphenylphosphine)palladium(0) (40 mg) in 1,4-dioxane (5 mL) was flushed with argon, then, ethyl 2-bromo-2,2-difluoroacetate (0.5 g) was added under argon. The mixture was stirred at 100° C. for 20 hrs. After cooling to rt, the reaction mixture was diluted with EtOAc and washed with water/brine, concentrated in vacuo, and purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜40%) to afford the product as brown oil (0.25 g). ESI-MS, m/z 527 (MH)+.
  • Step 4: Synthesis of 2-(1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-4-((4-fluoro-3-methylphenyl)carbamoyl)-3,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (71e)
  • NaOH (2N, 2 mL) was added to a solution of 71d (0.25 g) in MeOH (4 mL) at rt. The mixture was stirred at rt for 2 hrs, then, carefully neutralized with HCl (0.5 N aqueous) to pH ˜ 2 at 0° C. The mixture was concentrated and lyophilized to afford crude product as white solid. ESI-MS, m/z 477 (MH)+.
  • Step 5: Synthesis of N-(4-fluoro-3-methylphenyl)-1-(2-hydroxyethyl)-5-(2-(isopropylamino)-2-oxoacetyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (71)
  • HATU (60 mg, 0.16 mmol) was added to a solution of crude 71e (40 mg, 0.08 mmol) in DMA (0.75 mL) at 0° C. After 20 min, tert-butylamine (10 mg, 0.14) and DIPEA (25 mg, 0.19 mmol) in DMA (0.4 mL) were added. The reaction mixture was stirred at rt for 20 hrs. The reaction mixture was quenched with aqueous HCl (0.2N, 2 mL), then, extracted with EtOAc (10 mL). The organic layer was washed with water and brine, and concentrated in vacuo. The residue was dissolved in DCM (1 mL) at 0° C., then, added TFA (0.6 mL). After 4 hrs, the mixture was concentrated, and purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 418 (MH)+.
  • Example 72: 5-(2-((1-amino-2-methyl-1-oxopropan-2-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-(2-hydroxyethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00860
  • The title compounds were prepared following the procedure described in Example 71, Step 5, using 2-amino-2-methylpropanamide. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 447 (MH)+.
  • Example 73: N-(4-fluoro-3-methylphenyl)-5-(2-(((1r,3s,5R,7S)-3-hydroxyadamantan-1-yl)amino)-2-oxoacetyl)-1-(2-hydroxyethyl)-2,4-dimethyl-M-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00861
  • The title compounds were prepared following the procedure described in Example 71, Step 5, using 3-aminoadamantan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 512 (MH)+.
  • Example 74: N-(4-fluoro-3-methylphenyl)-5-(2-(((1R,2s,3S,5s,7s)-5-hydroxyadamantan-2-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00862
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using trans-4-aminoadamantan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 482 (MH)+.
  • Example 75: (S)-5-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00863
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using (S)-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 484 (MH)+.
  • Example 76: (R)-5-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00864
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using (R)-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 484 (MH)+.
  • Example 77: 5-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)amino)-2-oxoacetyl)-N-(6-fluoropyridin-3-yl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00865
  • The title compounds were prepared following the procedure described in Example 5, Step 5, using 4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 471 (MH)+.
  • Example 78: Synthesis of (R)-N-(4-fluoro-3-methylphenyl)-5-(2-((1-hydroxy-3,3-dimethylbutan-2-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00866
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using D-tert-leucinol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 432.2 (MH)+.
  • Example 79: Synthesis of 5-(2-((1-(2H-tetrazol-5-yl)ethyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00867
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1-(2H-tetrazol-5-yl) ethan-1-amine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 428 (MH)+.
  • Example 80: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((3-methyl-1-(2H-tetrazol-5-yl)butyl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00868
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 3-methyl-1-(2H-tetrazol-5-yl)butan-1-amine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 470 (MH)+.
  • Example 81: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((2-methyl-1-(3-methyl-1,2,4-oxadiazol-5-yl)propyl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00869
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 2-methyl-1-(3-methyl-1,2,4-oxadiazol-5-yl)propan-1-amine. The final product was purified by flash chromatography on silica gel eluted with ethyl acetate and hexane to afford the title products as white solids. ESI-MS, m/z 470 (MH)+.
  • Example 82: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00870
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 1-(3-methyl-1,2,4-oxadiazol-5-yl)ethan-1-amine. The final product was purified by flash chromatography on silica gel eluted with ethyl acetate and hexane to afford the title products as white solids. ESI-MS, m/z 470 (MH)+.
  • Example 83: Synthesis of 5-(2-((cyclopropyl(5-methylthiazol-2-yl)methyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00871
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using cyclopropyl(5-methylthiazol-2-yl)methanamine. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 483 (MH)+.
  • Example 84: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((2-(5-methylthiazol-2-yl)propan-2-yl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00872
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using 2-(5-methylthiazol-2-yl)propan-2-amine. The final product was purified by flash chromatography on silica gel eluted with ethyl acetate and hexane to afford the title products as pale yellow solids. ESI-MS, m/z 471 (MH)+.
  • Example 85: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-(((3-methyl-1,2,4-oxadiazol-5-yl)(tetrahydro-2H-pyran-4-yl)methyl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00873
  • The title compounds were prepared following the procedure described in Example 2, Step 5, using (3-methyl-1,2,4-oxadiazol-5-yl)(tetrahydro-2H-pyran-4-yl)methanamine The final product was purified by flash chromatography on silica gel eluted with ethyl acetate and hexane to afford the title products as white solids. ESI-MS, m/z 512 (MH)+.
  • Example 115: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-(2-fluoroethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00874
  • Step 1: Synthesis of ethyl 1-(2-fluoroethyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (115b)
  • The title compounds were prepared following the procedure described in Example 71, Step 1 using 1-fluoro-2-iodoethane instead of (2-bromoethoxy)(tert-butyl)dimethylsilane. The final product was purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) as white solid (3 g): ESI-MS, m/z 214.1 (MH)+.
  • Step 2: Synthesis of N-(4-fluoro-3-methylphenyl)-1-(2-fluoroethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide (115c)
  • The title compounds were prepared following the procedure described in Example 71, Step 2. The final product was purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) as yellow solid (3 g): 1HNMR (300 MHz, CDCl3) δ 7.46 (dd, 1H, J=2.4 & 6.6 Hz), 7.24-7.28 (m, 1H), 6.95 (dd, 1H, J=8.7 & 9.3 Hz), 6.42 (s, 1H), 4.68 (dd, 1H, J=4.2 & 5.1 Hz), 4.53 (dd, 1H, J=4.5 & 5.4 Hz), 4.13 (dd, 1H, J=4.8 & 5.4 Hz), 4.04 (dd, 1H, J=4.8 & 5.7 Hz), 2.49 (s, 3H), 2.29 (s, 3H), 2.27 (s, 3H); ESI-MS, m/z 293.1 (MH)+.
  • Step 3: Synthesis of ethyl 2,2-difluoro-2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1-(2-fluoroethyl)-3,5-dimethyl-1H-pyrrol-2-yl)acetate (115d)
  • Ethyl 2-bromo-2,2-difluoroacetate (0.6 mL) was added to a mixture of 115c (0.6 g, 2.1 mmol) and Cu (0.6 g, 9.4 mmol) in DMSO (10 mL) at rt. The mixture was flushed with argon, then, heated at 60° C. for 24 hrs. After cooled to rt, the reaction mixture was diluted with EtOAc, washed with aqueous NH4Cl and brine. The organic layer was dried over Na2SO4, filtered, concentrated in vacuo, and purified by flash chromatography on silica gel (EtOAc/Hexanes 0˜100%) to afford the product as white solid (0.6 g, 70%). ESI-MS, m/z 415.1 (MH)+.
  • Step 4: Synthesis of 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1-(2-fluoroethyl)-3,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (115e)
  • NaOH (2 N, 3 mL) was added to a solution of 115d (0.2 g, 0.48 mmol) in MeOH (3 mL) at 0° C. The mixture was warmed to rt for 20 hrs. The reaction mixture was diluted with EtOAc, cooled with ice-water and carefully neutralized with aqueous HCl (0.5 N) to pH ˜ 2. The organic layer was washed with brine, concentrated and dried to afford crude product 115e as white solid: ESI-MS, m/z 365.1 (MH)+.
  • Step 5: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1-(2-fluoroethyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
  • HATU (90 mg, 0.24 mmol) was added to a solution of 115e (60 mg) in DMA (0.75 mL) at 0° C., then, a solution of tert-butylamine (20 mg, 0.28) and DIPEA (50 mg, 0.38 mmol) in DMA (0.4 mL) was added dropwise. The reaction mixture was warmed to rt for 20 hrs. The reaction mixture was quenched with aqueous HCl (0.2 N), and extracted with EtOAc. The organic layer was washed with water and brine, concentrated in vacuo, then, purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 420.2 (MH)+.
  • Example 137: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((1s,4s)-4-hydroxycyclohexyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00875
  • To a mixture of intermediate 66e from Example 66 (3.2 g, 9.63 mmol), cis-4-hydroxycyclohexylamine hydrochloride (1.61 g, 10.59 mmol) and HATU (4.39 g, 11.56 mmol) in DMF (40 mL) at ambient temperature was added DIPEA (6.22 g, 48.15 mmol). After 2 h the reaction mixture was diluted into 1N HCl and extracted 3× EtOAc. The combined organics were washed sequentially with 1 N HCl, NaHCO3 (sat), and brine, dried over Na2SO4, filtered and concentrated. The crude solids were concentrated from MeCN then suspended in MeCN and warmed to 40° C. After 1 h the mixture was cooled to ambient temperature, filtered and washed with MeCN and the resultant solids were dried in vacuo. The solids were again suspended in MeCN and warmed to 40° C. After 1 h the mixture was cooled to ambient temperature, filtered and washed with MeCN and the resultant solids were dried in vacuo to provide the title compound (2.52 g, 610%) as an off-white solid. 1H NMR (400 MHz, DMSO-d6) δ 9.91 (s, 1H), 8.60 (d, J=7.5 Hz, 1H), 7.59 (d, J=6.9 Hz, 1H). 7.46 (m, 1H), 7.06 (t, J=9.3 Hz, 1H), 4.38 (m, 1H), 3.75 (s, 3H), 3.68 (m, 2H), 2.31 (s, 3H), 2.20 (m, 6H), 1.70-1.40 (m, 8H). ESI-MS, m/z 430.2 (MH)+.
  • Example 170: Synthesis of (R)-N-(2-fluoropyridin-4-yl)-1,2,4-trimethyl-5-(2-oxo-2-((1,1,1-trifluoropropan-2-yl)amino)acetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00876
  • The title compound was prepared following the procedure described in Example 2, substituting 2-fluoro-4-aminopyridine for 4-fluoro-3-methylaniline in Step 2, and substituting (R)-1,1,1-trifluoropropan-2-amine for tert-butylamine in Step 5. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids: 1H NMR (400 MHz, CD3OD) δ 8.06 (d, 1H, J=9.3 Hz), 7.52 (s, 1H), 7.42 (d, 1H, J=6.1 Hz), 4.7-4.8 (m, 1H), 3.84 (s, 3H), 2.4 (s, 3H), 2.31 (s, 3H), 1.4 (d, 3H, J=6.9 Hz). ESI-MS, m/z 415.1 (MH)+.
  • Example 213: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((1r,4r)-4-hydroxy-4-methylcyclohexyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00877
  • The title compound was prepared following the procedure described in Example 2, Step 5, using (1r,4r)-4-amino-1-methylcyclohexan-1-ol. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as a white solid. 1H NMR (300 MHz, CD3OD) δ 8.69 (d, J=7.5 Hz, 1H), 7.59-7.42 (m, 2H), 7.00 (t, J=9.0 Hz, 1H), 3.86-3.81 (m, 4H), 2.38 (s, 3H), 2.32 (s, 3H), 2.26 (s, 3H), 1.97-1.91 (m, 2H), 1.72-1.49 (m, 6H), 1.24 (s, 3H). ESI-MS, m/z 444.2 (MH)+.
  • Example 228: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((1s,4s)-4-hydroxy-1-methylcyclohexyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00878
  • The title compound was prepared following the procedure described in Example 2, using (1s,4s)-4-amino-4-methylcyclohexan-1-ol in Step 5. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as a white solid. 1H NMR (400 MHz, CD3OD) δ 7.4-7.5 (m, 2H), 6.99 (dd, 1H, J=7.8, 9.3 Hz), 3.81 (s, 3H), 3.80 (br m, 1H), 2.38 (s, 3H), 2.36 (s, 3H), 2.26 (s, 3H), 1.8-2.0 (m, 6H), 1.5-1.6 (m, 2H), 1.46 (s, 3H). ESI-MS, m/z 444.2 (MH)+.
  • Example 267: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((1s,3s)-3-hydroxy-1-methylcyclobutyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00879
  • The title compound was prepared following the procedure described in Example 2, using (1s,3s)-3-amino-3-methylcyclobutan-1-ol in Step 5. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as a white solid. 1H NMR (400 MHz, CD3OD) δ 7.43-7.49 (m, 2H), 7.0 (dd, 1H, J=8.7, 9.3 Hz), 4.1-4.2 (m, 1H), 3.82 (s, 3H), 2.5-2.6 (m, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.2-2.3 (m, 5H), 1.47 (s, 3H). ESI-MS, m/z 416 (MH)+.
  • Example 273: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((1r,4r)-4-hydroxy-1-methylcyclohexyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00880
  • The title compound was prepared following the procedure described in Example 2, using (1r,4r)-4-amino-4-methylcyclohexan-1-ol in Step 5. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as a white solid. 1H NMR (400 MHz, CD3OD) δ 7.4-7.5 (m, 2H), 6.99 (dd, 1H, J=7.8, 9.3 Hz), 3.82 (s, 3H), 3.5-3.7 (m, 1H), 2.38 (s, 3H), 2.37 (s, 3H), 2.2-2.3 (m, 2H), 1.5-1.8 (m, 6H), 1.42 (s, 3H). ESI-MS, m/z 445 (MH)+.
  • Synthesis of Example compounds 23-26, 28, 30-33, 35, 39-41,44-46, 51, 52, 54-58,60-62, 68, 69, 86-114, 116-136, 138-169, 171-212, 214-227,229-266, 268-272, 274-359 (structures shown in Table 1)
  • Examples 23-26, 28, 30-33, 35, 39-41, 44-46, 51, 52, 54-58, 60-62, 68, 69, 86-114, 119-129, 131-136, 138-169, 171-176, 181-193, 199-200, 204-209, 211, 212, 214-221, 223, 231-240, 242-266, 268-272, and 274-359 (structures shown in Table 1) were prepared in analogy to the procedures described above for Example 2, utilizing the appropriate aryl amine in Step 2, and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Example compounds 116-118, 130, 177-180, 194-198, 201-203, 210, 222, 224-227, 229, 230, and 241 (structures shown in Table 1), bearing a 1-(2-fluoroethyl) pyrrole moiety were prepared in analogy to the procedures described above for Example 115, utilizing the appropriate aryl amine in Step 2, and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Synthesis of Example Compounds 360 and 361 (Structures Shown in Table 1)
  • These Example compounds bearing a 1-(2-hydroxyethyl) pyrrole moiety may be prepared in analogy to the procedures described above for Example 50, utilizing the requisite amine in Step 5.
  • Example 362: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(5-fluoropyridin-2-yl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide (structure shown in Table 1)
  • The title compound may be prepared according to the procedure of Example 2, utilizing 5-fluoro-2-aminopyridine in Step 2, and tert-butyl amine in Step 5.
  • Example 363: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-4-chloro-N-(4-fluoro-3-methylphenyl)-1,2-dimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00881
  • Step 1: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2-dimethyl-1H-pyrrole-3-carboxamide (363a)
  • To a solution of 1,2-dimethyl-1H-pyrrole-3-carboxylic acid (1.0 g, 7.19 mmol), 3-methyl-4-fluoroaniline (989 mg, 7.91 mmol) and HATU (3.28 g, 8.63 mmol) in DMF (20 mL) was added DIPEA (3.76 mL, 21.57 mmol). After 96 h, the reaction mixture was warmed to 50° C. After an additional 16 h, the reaction mixture was cooled to ambient temperature, diluted with EtOAc and washed successively with 1N HCl, NaHCO3 (sat), and brine. The organic layer was dried over Na2SO4, filtered and concentrated in vacuo. The crude residue was purified via flash chromatography on silica gel (EtOAc/hexanes 5-60%) to afford the title compound (690 mg, 39%) as an off-white solid ESI-MS, m/z 247.2 (MH)+
  • Step 2: Synthesis of ethyl 2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetate (363b)
  • To a solution of 363a (690 mg, 2.8 mmol) in DCM (30 mL) at 0° C. was added ethyl 2-chloro-2-oxoacetate (847 μL, 7.56 mmol). After 15 min, AlCl3 (933 mg, 7.0 mmol) was added in several portions and then the reaction mixture was allowed to warm slowly to ambient temperature. After 16 h, the reaction mixture was quenched slowly with ice, diluted with water and separated. The aqueous layer was further extracted with DCM, then the combined organics were washed with water, NaHCO3 (sat) and brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude residue was purified via flash chromatography on silica gel (EtOAc/hexanes 5-80%) to afford the title compound (600 mg, 62%) as an off-white solid ESI-MS, m/z 347.1 (MH)+
  • Step 3: Synthesis of ethyl 2-(3-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetate (363c)
  • To a solution of 363b (600 mg, 1.73 mmol) in DMF (10 mL) was added N-chlorosuccinimide (694 mg, 5.2 mmol). After 16 h, the reaction mixture was diluted with EtOAc and washed successively with 2×1 N HCl, NaHCO3 (sat) and brine, dried over Na2SO4, filtered and concentrated. The crude residue was purified via flash chromatography on silica gel (EtOAc/hexanes 5-70%) to afford the title compound (400 mg, 61%) as an pale yellow solid ESI-MS, m/z 415.1 (MNa)+
  • Step 4: Synthesis of 2-(3-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (363d)
  • To a solution of 363c (400 mg, 1.05 mmol) in MeOH (10 mL) was added 1 N NaOH (2.1 mL). After 2 h, the reaction mixture was diluted with 1 N HCl to pH ˜1 then concentrated three times from MeOH. Salts were triturated with DCM and the mixture was filtered and concentrated to afford the title compound (370 mg, quant) and an off-white solid ESI-MS, m/z 353.1 (MH)+
  • Step 5: Synthesis 5-(2-(tert-butylamino)-2-oxoacetyl)-4-chloro-N-(4-fluoro-3-methylphenyl)-1,2-dimethyl-1H-pyrrole-3-carboxamide (363)
  • To a solution of 363d (50 mg, 0.14 mmol), tert-butyl amine (12 mg, 0.16 mmol), and HATU (64 mg, 0.17 mmol) in DMF (1 mL) was added DIPEA (73 μL, 0.42 mmol). After 1 h the reaction mixture was diluted into 1 N HCl and extracted 3× with EtOAc. The combined organics were washed with 1 N HCl, NaHCO3 (sat) and brine, dried over Na2SO4, filtered and concentrated. The crude residue was purified via reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 406.2 (MH)+.
  • Synthesis of Example compounds 364-376 (structures shown in Table 1)
  • Examples 374-376 were prepared in analogy to the procedures described above for Example 363, utilizing the appropriate aryl amine in Step 1, and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Example 377: Synthesis of N-(3,4-difluorophenyl)-4-methoxy-1,2-dimethyl-5-(2-oxo-2-((1-(trifluoromethyl)cyclopropyl)amino)acetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00882
  • Compound 377a was prepared in analogy to the procedures described above for Example 363, utilizing 3,4-difluoroaniline in Step 1.
  • Step 1: Synthesis of 2-(4-((3,4-difluorophenyl)carbamoyl)-3-methoxy-1,5-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (377b)
  • To a solution of 377a (2.31 g, 6.0 mmol) in MeOH (20 mL) and THF (20 mL) was added 1 N NaOH (7 mL). After 2 h the reaction mixture was concentrated to remove organics, diluted with water and washed with EtOAc. The aqueous layer was acidified to pH ˜1 using conc. HCl and extracted 3× with EtOAc. The combined organics were washed with brine, dried over Na2SO4, filtered and concentrated to afford the title compound (1.28 g, 60%) as a foamy tan solid which was taken forward without further purification ESI-MS, m/z 353.1 (MH)+
  • Step 2: Synthesis of N-(4-fluoro-3-methylphenyl)-4-methoxy-1,2-dimethyl-5-(2-oxo-2-((1-(trifluoromethyl)cyclopropyl)amino)acetyl)-1H-pyrrole-3-carboxamide (377)
  • To a solution of 377b (50 mg, 0.14 mmol), 1-(trifluoromethyl)cyclopropan-1-amine hydrochloride (24 mg, 0.15 mmol) and HATU (65 mg, 0.17 mmol) in DMF (1 mL) was added DIPEA (122 μL, 0.7 mmol). After 2 h the reaction mixture was purified directly via reverse phase HPLC eluted with ACN and water and dried using lyophilization to afford the title product as a white solid. ESI-MS, m/z 460.2 (MH)+.
  • Synthesis of Example compounds 378-385 (structures shown in Table 1)
  • Examples 378-385 were prepared in analogy to the procedures described above for Example 377, utilizing the requisite amine in Step 2. The observed MS data for these Examples are shown in Table 1.
  • Example 386: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-2-chloro-N-(4-fluoro-3-methylphenyl)-1,4-dimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00883
  • Step 1: Synthesis of 2-chloro-1,4-dimethyl-1H-pyrrole-3-carboxylic acid (386a)
  • To a solution of 1,4-dimethyl-1H-pyrrole-3-carboxylic acid (1.0 g, 7.19 mmol) in THF (50 mL) at −78° C. was added LDA (7.9 mL, 15.8 mmol, 2 M THF/benzene) dropwise over 20 min. After 2 h, a solution of NCS (1.15 g, 8.63 mmol) in THF (20 mL) was added dropwise over 20 min and the cooling bath was removed. After 16 h, the reaction mixture was diluted with 1N HCl and extracted 3× EtOAc. The combined organics were washed with 2× water, NaHCO3 (sat) and brine, dried over Na2SO4, filtered and concentrated. The crude residue was purified via reverse phase HPLC eluting with ACN and water and dried using lyophilization to afford the title product (770 mg, 62%) as an off-white solid. ESI-MS, m/z 174.1 (MH)+.
  • Step 2: Synthesis of 2-chloro-N-(4-fluoro-3-methylphenyl)-1,4-dimethyl-1H-pyrrole-3-carboxamide (386b)
  • To a solution of 386b (770 mg, 4.44 mmol), 3-methyl-4-fluoroaniline (666 mg, 5.32 mmol) and HATU (2.19 g, 5.77 mmol) in DMF (12 mL) was added DIPEA (2.32 mL, 13.3 mmol). After 1 h, the reaction mixture was heated to 50° C. After 5 h reaction mixture was cooled to ambient temperature, diluted with EtOAc and washed successively with 1 N HCl, NaHCO3 (sat) and brine, dried over Na2SO4, filtered and concentrated. The crude residue was precipitated from EtOAc, filtered, and the solids were washed with hexanes and dried in vacuo to afford the title product (750 mg, 60%) as an off-white solid. ESI-MS, m/z 281.1 (MH)+.
  • Step 3: Synthesis of ethyl 2-(5-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3-dimethyl-1H-pyrrol-2-yl)-2-oxoacetate (386c)
  • To a solution of 386b (750 mg, 2.67 mmol) in DCM (20 mL) at 0° C. were added ethyl 2-chloro-2-oxoacetate (807 μL, 7.21 mmol) and AlCl3 (890 mg, 6.68 mmol). After 16 h additional quantities of ethyl 2-chloro-2-oxoacetate (807 μL, 7.21 mmol) and AlCl3 (890 mg, 6.68 mmol) were added. After 4 h, the reaction mixture was quenched with ice and water, and separated. The aqueous layer was extracted twice with DCM. The combined organics were washed with water, NaHCO3 (sat) and brine, dried over Na2SO4, filtered and concentrated. The crude residue was purified via flash chromatography on silica gel (5-80% EtOAc/hexanes) to afford the title product (570 mg, 56%) as a yellow foam. ESI-MS, m/z 381.2 (MH)+.
  • Step 4: Synthesis of 2-(5-chloro-4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3-dimethyl-1H-pyrrol-2-yl)-2-oxoacetic acid (386d)
  • To a suspension of 386c (570 mg, 1.5 mmol) in MeOH (10 mL) was added 1N NaOH (3 mL) and a solution was formed. After 2 h the reaction mixture was diluted with 1 N HCl and concentrated 3× from MeOH. The resultant solids were suspended in DCM, filtered, and washed with DCM. The solids were then dissolved in MeOH, filtered and concentrated to afford the title product (525 mg, 99%) as a tan solid. ESI-MS, m/z 353.1 (MH)+.
  • Step 5: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-2-chloro-N-(4-fluoro-3-methylphenyl)-1,4-dimethyl-1H-pyrrole-3-carboxamide (386)
  • To a solution of 386d (50 mg, 0.14 mmol), tert-butylamine (12 mg, 0.16 mmol) and HATU (65 mg, 0.17 mmol) in DMF (1 mL) was added DIPEA (73 μL, 0.42 mmol). After 2 h, the reaction mixture was purified directly via reverse phase HPLC eluting with ACN and water and dried using lyophilization to afford the title product (33 mg, 58%) as an off-white solid. ESI-MS, m/z 430.2 (MNa)+.
  • Synthesis of Example compounds 387-391 (structures shown in Table 1)
  • Examples 387-391 were prepared in analogy to the procedures described above for Example 386, utilizing the appropriate aryl amine in Step 2 and requisite amine in Step 5. The observed MS data for these Examples are shown in Table 1.
  • Example 392: Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-cyano-4-fluorophenyl)-5,6,7,8-tetrahydroindolizine-1-carboxamide
  • Figure US20230062975A1-20230302-C00884
    Figure US20230062975A1-20230302-C00885
  • Step 1. Synthesis of 1-formylpiperidine-2-carboxylic acid (392a)
  • To a solution of piperidine-2-carboxylic acid (4.9 g, 38 mmol) in formic acid (30 mL) was added acetic anhydride (50 mL) at 0° C. The resulting mixture was stirred 0 to 5° C. for 4 h. LCMS showed the reaction was complete. The mixture was concentrated in vacuo to obtain crude product 80a (7.1 g) as colorless oil. MS (ESI): mass calcd. for C7H11NO3 157.07, m/z found 158.1 [M+H]+.
  • Step 2. Synthesis of methyl 5,6,7,8-tetrahydroindolizine-1-carboxylate (392b)
  • To a solution of intermediate 392a (7.1 g, 45 mmol) in acetic anhydride (70 mL) was added methyl propiolate (5.04 g, 60 mmol). The resulting mixture was stirred at 120° C. for 2 h under N2. MS showed the desired product, and the reaction was concentrated in vacuo. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-10%) to obtain the title compound (1.4 g, 17%) as white solid. MS (ESI): mass calcd. for C10H13NO2 179.09, m/z found 179.8 [M+H]+.
  • Step 3. Synthesis of methyl 3-(2-ethoxy-2-oxoacetyl)-5,6,7,8-tetrahydroindolizine-1-carboxylate (392c)
  • To a solution of compound 392b (538 mg, 3 mmol) and ethyl 2-chloro-2-oxoacetate (620 mg, 4.5 mmol) in DCM (15 mL), AlCl3 (790 mg, 6 mmol) was added slowly at 0° C. The resulting mixture was warmed to RT and stirred for 5 h. Water (20 mL) was added slowly, and the mixture was extracted with DCM (3×20 mL), the combined organic extract was dried over Na2SO4, and concentrated. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-20%) to obtain the title compound (930 mg crude) as a colorless oil. MS (ESI): mass calcd. for C14H17NO5 279.11, m/z found 280.1 [M+H]+.
  • Step 4. Synthesis of 2-(1-(methoxycarbonyl)-5,6,7,8-tetrahydroindolizin-3-yl)-2-oxoacetic acid (392d)
  • To a solution of 392c (930 mg, 3.3 mmol) in MeOH (30 mL) was added 1 N LiOH aq. (60 mL). The resulting mixture was stirred for 5 h at RT. The mixture was poured into ice water (30 mL) and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the titeld compound (530 mg, 63%) as white solid. MS (ESI): mass calcd. for C12H13NO5 251.08, m/z found 252.1 [M+H]+.
  • Step 5. Synthesis of methyl 3-(2-(tert-butylamino)-2-oxoacetyl)-5,6,7,8-tetrahydroindolizine-1-carboxylate (392e)
  • To a solution of 392d (500 mg, 2 mmol), HATU (1.1 g, 4 mmol), DIPEA (520 mg, 4 mmol) in DCM (30 mL), 2-methylpropan-2-amine (500 mg, 2 mmol) was added. The resulting mixture was stirred for 2 h at rt. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-15%) to obtain the title compound (480 mg, 79%) as white solid. MS (ESI): mass calcd. for C16H22N2O4 306.1, m/z found 307.1 [M+H]+.
  • Step 6. Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-5,6,7,8-tetrahydroindolizine-1-carboxylic acid (392f)
  • To a solution of 392e (480 mg, 1.6 mmol) in MeOH (20 mL), LiOH aq. (30 mL) was added. The resulting mixture was stirred for 2 h at 80° C. The mixture was concentrated and water (30 mL) was added and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the title compound (340 mg, 74%) as white solid. MS (ESI): mass calcd. for C15H20N2O4 292.14, m/z found 293.1 [M+H]+.
  • Step 7. Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-cyano-4-fluorophenyl)-5,6,7,8-Tetrahydroindolizine-1-carboxamide
  • To a solution of 392f (120 mg, 0.4 mmol), HATU (310 mg, 0.8 mmol), and Et3N (520 mg, 4 mmol) in DCM (20 mL), 5-amino-2-fluorobenzonitrile (82 mg, 1.5 mmol) was added. The resulting mixture was stirred for 13 h at RT. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-10%) to obtain the title compound (14 mg, 9%) as white solid. MS (ESI): mass calcd. for C22H23FN4O3 410.18, m/z found 411.1 [M+H]+. 1H NMR (400 MHz, CDCl3) δ 8.80 (s, 1H), 8.74 (d, J=4.3 Hz, 1H), 8.46 (d, J=8.3 Hz, 1H), 7.46 (dd, J=8.3, 4.5 Hz, 1H), 7.13 (s, 1H), 4.43 (t, J=5.8 Hz, 2H), 3.21 (t, J=6.2 Hz, 2H), 2.06-1.91 (m, 4H), 1.47 (s, 9H).
  • Example 393: Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-5,6,7,8-tetrahydroindolizine-1-carboxamide
  • Figure US20230062975A1-20230302-C00886
  • The title compound was prepared according to the procedure of Example 392, substituting 4-fluoro-3-methylaniline for 5-amino-2-fluorobenzonitrile in Step 7. MS (ESI): mass calcd. for C22H26FN3O3 399.20, m/z found 401.1 [M+H]+. 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 7.61 (s, 1H), 7.51 (d, J=6.8 Hz, 1H), 7.31 (s, 1H), 6.98 (t, J=9.0 Hz, 1H), 4.39 (t, J=6.0 Hz, 2H), 3.30 (t J=6.4 Hz, 2H), 2.30 (s, 3H), 2.06-1.95 (m, 2H), 1.95-1.80 (m, 2H), 1.47 (s, 9H).
  • Synthesis of Example Compounds 394-433 (Structures Shown in Table 1)
  • Examples 394-433 were prepared in analogy to the procedures described above for Example 392, utilizing the requisite amine in Step 5, and the appropriate aryl amine in Step 7. The observed MS data for these Examples are shown in Table 1.
  • Example 434: Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-2-methyl-5,6,7,8-tetrahydroindolizine-1-carboxamide
  • Figure US20230062975A1-20230302-C00887
    Figure US20230062975A1-20230302-C00888
  • The title compound was prepared according to the procedure of Example 392, substituting methyl but-2-ynoate for methyl propionate in Step 2, and 4-fluoro-3-methylaniline for 5-amino-2-fluorobenzonitrile in Step 7. 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J=6.2 Hz, 1H), 7.19 (s, 1H), 6.99 (t, J=9.1 Hz, 1H), 6.41 (s, 1H), 4.23 (t, J=5.8 Hz, 2H), 3.09 (t, J=6.2 Hz, 2H), 2.47 (s, 3H), 2.30 (s, 3H), 1.95 (d, J=5.4 Hz, 2H), 1.85 (d, J=5.5 Hz, 2H), 1.48 (s, 9H). MS (ESI): mass calcd. for C23H28FN3O3 413.21, m/z found 414.1 [M+H]+.
  • Example 435: Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-cyano-4-fluorophenyl)-2-methyl-5,6,7,8-tetrahydroindolizine-1-carboxamide
  • Figure US20230062975A1-20230302-C00889
  • The title compound was prepared according to the procedure of Example 392, substituting methyl but-2-ynoate for methyl propionate in Step 2. MS (ESI): mass calcd. for C23H25FN4O3 424.19, m/z found 425.1 [M+H]+. 1H NMR (400 MHz, CDCl3) δ 8.75 (d, J=4.2 Hz, 1H), 8.46 (d, J=8.4 Hz, 1H), 7.46 (dd, J=8.2, 4.3 Hz, 1H), 6.43 (s, 1H), 4.23 (d, J=5.8 Hz, 2H), 3.30 (t, J=6.1 Hz, 2H), 2.98 (s, 1H), 2.91 (s, 1H), 2.58 (s, 3H), 1.94 (dd, J=15.7, 6.7 Hz, 2H), 1.48 (s, 9H).
  • Example 444: Synthesis of N-(4-fluoro-3-methylphenyl)-3-(2-((2-hydroxy-2-methylpropyl)amino)-2-oxoacetyl)-2-methyl-5,6,7,8-tetrahydroindolizine-1-carboxamide
  • Figure US20230062975A1-20230302-C00890
  • The title compound was prepared according to the procedure for Example 434, utilizing 2-amino-2-methylpropan-1-ol in Step 5, and 4-fluoro-3-methylaniline in Step 7, to provide a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.78 (s, 1H), 8.53-8.49 (m, 1H), 7.62-7.58 (m, 1H), 7.49-7.45 (m, 1H), 7.08 (t, J=8 Hz, 2H), 4.51 (s, 1H), 4.24-4.20 (m, 2H), 3.16 (d, J=8 Hz, 2H), 2.92-2.88 (m, 2H), 2.22 (s, 6H), 1.90-1.86 (m, 2H), 1.76-1.72 (m, 2H), 1.12 (s, 6H). ESI-MS, m/z 430.1 (MH)+.
  • Synthesis of Example Compounds 436-443 and 445-488 (Structures Shown in Table 1)
  • Examples 436-488 were prepared in analogy to the procedures described above for Example 434, utilizing the requisite amine and the appropriate aryl amine for preparation of the required intermediates. The observed MS data for these Examples are shown in Table 1.
  • Example 489: Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-cyano-4-fluorophenyl)-5,6,7,8-tetrahydroindolizine-1-carboxamide
  • Figure US20230062975A1-20230302-C00891
    Figure US20230062975A1-20230302-C00892
  • Step 1. Synthesis of 1-formylpiperidine-2-carboxylic acid (489a)
  • To a solution of piperidine-2-carboxylic acid (4.9 g, 38 mmol) in formic acid (30 mL) was added acetic anhydride (50 mL) at 0° C. The resulting mixture was stirred 0 to 5° C. for 4 h. LCMS showed the reaction was complete. The mixture was concentrated in vacuo to obtain crude product 489a (7.1 g) as colorless oil. MS (ESI): mass calcd. for C7H11NO3 157.07, m/z found 158.1 [M+H]+.
  • Step 2. Synthesis of ethyl 5,6,7,8-tetrahydroindolizine-1-carboxylate (489b)
  • To a solution of intermediate 489a (7.1 g, 45 mmol) in acetic anhydride (70 mL) was added ethyl propiolate (5.88 g, 60 mmol). The resulting mixture was stirred at 120° C. for 2 h under N2. MS showed the desired product, and the reaction was concentrated in vacuo. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-10%) to obtain the title compound (1.5 g, 17%) as white solid. MS (ESI): mass calcd. for C11H15NO2 193.11, m/z found 194.1[M+H]+.
  • Step 3. Synthesis of ethyl 3-(2-ethoxy-2-oxoacetyl)-5,6,7,8-tetrahydroindolizine-1-carboxylate (489c)
  • To a solution of compound 489b (579 mg, 3 mmol) and ethyl 2-chloro-2-oxoacetate (620 mg, 4.5 mmol) in DCM (15 mL), AlCl3 (790 mg, 6 mmol) was added slowly at 0° C. The resulting mixture was warmed to RT and stirred for 5 h. Water (20 mL) was added slowly, and the mixture was extracted with DCM (3×20 mL), the combined organic extract was dried over Na2SO4, and concentrated. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-20%) to obtain the title compound (967 mg crude) as a colorless oil. MS (ESI): mass calcd. for C14H17NO5 293.13, m/z found 294.1 [M+H]+. 1H NMR (400 MHz, CDCl3) δ 7.68 (s, 1H), 4.50-4.36 (m, 4H), 4.29 (q, J=7.1 Hz, 2H), 3.18 (t, J=6.3 Hz, 2H), 2.02-1.97 (m, 2H), 1.94-1.80 (m, 2H), 1.43 (t, J=7.1 Hz, 3H), 1.36 (t, J=7.1 Hz, 3H).
  • Step 4. Synthesis of ethyl 2-chloro-3-(2-ethoxy-2-oxoacetyl)-5,6,7,8-tetrahydroindolizine-1-carboxylate (489d)
  • To a solution of compound 489c (967 mg, 3.3 mmol) in CH3COOH (25 mL), CF3SO3H (2.3 mg, 0.015 mmol) and NCS (661 mg, 4.95 mmol) was added at 0° C. The resulting mixture was warmed to RT and stirred overnight. Water (100 mL) was added slowly, and the mixture was extracted with CH3COOEt (3×50 mL), the combined organic extract was dried over Na2SO4, and concentrated. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-10%) to obtain the title compound (252 mg) as a light yellow solide. MS (ESI): mass calcd. for C15H15ClNO5 327.09, m/z found 327.9 [M+H]+
  • Step 5. Synthesis of 2-(2-chloro-1-(ethoxycarbonyl)-5,6,7,8-tetrahydroindolizin-3-yl)-2-oxoacetic acid (489e)
  • To a solution of 489d (252 mg, 0.77 mmol) in MeOH (10 mL) was added 1 N LiOH aq. (20 mL). The resulting mixture was stirred for 5 h at RT. The mixture was poured into ice water (30 mL) and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the titeld compound (219 mg, 95%) as white solid. MS (ESI): mass calcd. for C13H14ClNO5 299.06, m/z found 300.1 [M+H]+.
  • Step 6. Synthesis of ethyl 3-(2-(tert-butylamino)-2-oxoacetyl)-2-chloro-5,6,7,8-tetrahydroindolizine-1-carboxylate (489f)
  • To a solution of 489e (219 mg, 0.73 mmol), BOP-Cl (280 mg, 1.1 mmol), DIPEA (194 mg, 1.5 mmol) in DCM (15 mL), 2-methylpropan-2-amine (64 mg, 0.88 mmol) was added. The resulting mixture was stirred for 2 h at rt. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-15%) to obtain the title compound (223 mg, 86%) as white solid. MS (ESI): mass calcd. for C17H23ClN2O4 354.1, m/z found 355.0 [M+H]+.
  • Step 7. Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-2-chloro-5,6,7,8-tetrahydroindolizine-1-carboxylic acid (489g)
  • To a solution of 489f (223 mg, 0.63 mmol) in MeOH (20 mL), 1 N LiOH aq. (30 mL) was added. The resulting mixture was stirred for 2 h at 80° C. The mixture was concentrated and water (30 mL) was added and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the title compound (174 mg, 85%) as white solid. MS (ESI): mass calcd. for C15H19C1N2O4 326.1, m/z found 327.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 12.57 (s, 1H), 8.25 (s, 1H), 4.19 (t, J=5.4 Hz, 2H), 3.03 (t, J=6.0 Hz, 2H), 1.89 (brs, 2H), 1.76 (br s, 2H), 1.33 (s, 9H).
  • Step 8. Synthesis of 3-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-cyano-4-fluorophenyl)-5,6,7,8-Tetrahydroindolizine-1-carboxamide
  • To a solution of 489 g (110 mg, 0.3 mmol), BOP-Cl (129 mg, 0.5 mmol), and Et3N (91 mg, 0.9 mmol) in DCM (20 mL), 4-fluoro-3-methylaniline (42 mg, 1.5 mmol) was added. The resulting mixture was stirred for 13 h at RT. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-10%) to obtain the title compound (35 mg, 73%) as white solid. MS (ESI): mass calcd. for C22H25ClFN3O3 433.1, m/z found 433.7 [M+H]+. 1HNMR (400 MHz, DMSO-d6) δ 9.94 (s, 1H), 8.30 (s, 1H), 7.60 (dd, J=7.0, 2.2 Hz, 1H), 7.54-7.46 (m, 1H), 7.10 (t, J=9.2 Hz, 1H), 4.23 (t, J=6.0 Hz, 2H), 2.93 (t, J=6.2 Hz, 2H), 2.22 (d, J=1.6 Hz, 3H), 1.97-1.87 (m, 2H), 1.81-1.71 (m, 2H), 1.34 (s, 9H).
  • Example 492: Synthesis of 2-chloro-N-(3,4-difluorophenyl)-3-(2-((1-hydroxy-2-methylpropan-2-yl)amino)-2-oxoacetyl)-5,6,7,8-tetrahydroindolizine-1-carboxamide
  • Figure US20230062975A1-20230302-C00893
  • The title compound was prepared according to the procedure for Example 489, utilizing 2-amino-2-methylpropan-1-ol in Step 6, and 3,4-difluoroaniline in Step 8, to provide a white solid. 1H NMR (300 MHz, DMSO-d6) δ 10.19 (s, 1H), 8.14 (s, 1H), 7.84-7.80 (m, 1H), 7.75-7.40 (m, 2H), 4.87-4.84 (m, 1H), 4.25-4.21 (m, 2H), 3.45 (s, 2H), 2.93-2.90 (m, 2H), 1.94-1.90 (m, 2H), 1.79-1.74 (m, 2H), 1.29 (s, 6H). ESI-MS, m/z 454.1 (MH)+.
  • Synthesis of Example Compounds 489-491 and 493-534 (Structures Shown in Table 1)
  • Examples 489-534 were prepared in analogy to the procedures described above for Example 489, utilizing the requisite amine for Step 6, and the appropriate aryl amine in Step 8. The observed MS data for these Examples are shown in Table 1.
  • Example 535: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-chloro-4-fluorophenyl)-2,3-dihydro-1H-pyrrolizine-7-carboxamide
  • Figure US20230062975A1-20230302-C00894
  • The title compound was prepared according to the procedure of Example 392, substituting proline for piperidine-2-carboxylic acid in Step 1, and substituting 4-fluoro-3-chloroaniline for 5-amino-2-fluorobenzonitrile in Step 7. MS (ESI): mass calcd. for C20H21ClFN3O3 405.13, m/z found 406.1 [M+H]+. 1H NMR (400 MHz, CDCl3) δ 8.29 (s, 1H), 7.92 (d, J=6.6 Hz, 1H), 7.62 (s, 1H), 7.35 (d, J=8.6 Hz, 2H), 7.14 (d, J=8.7 Hz, 1H), 4.39 (t, J=7.3 Hz, 2H), 3.24 (t, J=7.6 Hz, 2H), 2.69-2.57 (m, 2H), 1.47 (s, 9H).
  • Example 536: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-2,3-dihydro-1H-pyrrolizine-7-carboxamide
  • Figure US20230062975A1-20230302-C00895
    Figure US20230062975A1-20230302-C00896
  • Step 1. Synthesis of Formylproline (536a)
  • To a solution of proline (10.3 g, 89 mmol) in formic acid (60 mL) was added acetic anhydride (100 mL) at 0° C. The resulting mixture was stirred 0 to 5° C. for 4 h. LCMS showed the reaction was complete. The mixture was concentrated in vacuo to obtain crude product 536a (12 g) as colorless oil. MS (ESI): mass calcd. for C6H9NO3 143.03, m/z found 144.1 [M+H]+.
  • Step 2. Synthesis of methyl 2,3-dihydro-1H-pyrrolizine-7-carboxylate (536b)
  • To a solution of intermediate 536a (12 g, 84 mmol) in acetic anhydride (120 mL) was added methyl propiolate (10.58 g, 126 mmol). The resulting mixture was stirred at 120° C. for 2 h under N2. MS showed the desired product, and the reaction was concentrated in vacuo. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-10%) to obtain the title compound (2.5 g, 18%) as white solid. MS (ESI): mass calcd. for C9H11NO2 165.08, m/z found 165.8 [M+H]+.
  • Step 3. Synthesis of methyl 5-(2-ethoxy-2-oxoacetyl)-2,3-dihydro-1H-pyrrolizine-7-carboxylate (536c)
  • To a solution of compound 536b (2.5 g, 15 mmol) and ethyl 2-chloro-2-oxoacetate (3 g, 7.5 mmol) in DCM (50 mL), AlCl3 (790 mg, 6 mmol) was added slowly at 0° C. The resulting mixture was warmed to RT and stirred for 5 h. Water (80 mL) was added slowly, and the mixture was extracted with DCM (3×50 mL), the combined organic extract was dried over Na2SO4, and concentrated. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-20%) to obtain the title compound (1.6 g, crude) as a colorless oil. MS (ESI): mass calcd. for C13H15NO5 265.10, m/z found 266.1 [M+H]+.
  • Step 4. Synthesis of 2-(7-(methoxycarbonyl)-2,3-dihydro-1H-pyrrolizin-5-yl)-2-oxoacetic acid (536d)
  • To a solution of 536c (1 g, 3.7 mmol) in MeOH (30 mL) was added 1 N LiOH aq. (50 mL). The resulting mixture was stirred for 5 h at RT. The mixture was poured into ice water (200 mL) and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the title compound (640 mg, 71%) as white solid. MS (ESI): mass calcd. for C11H11NO5 237.06, m/z found 238.1 [M+H]+.
  • Step 5. Synthesis of methyl 5-(2-(tert-butylamino)-2-oxoacetyl)-2,3-dihydro-1H-pyrrolizine-7-carboxylate (536e)
  • To a solution of 536d (640 mg, 2.7 mmol), HATU (1.1 g, 4 mmol), Et3N (1.09 g, 4 mmol) in DCM (30 mL), 2-methylpropan-2-amine (197 mg, 2.7 mmol) was added. The resulting mixture was stirred for 2 h at rt. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-30%) to obtain the title compound (567 mg, 72%) as white solid. MS (ESI): mass calcd. for C15H20N2O4 292.14, m/z found 293.1 [M+H]+.
  • Step 6. Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-2,3-dihydro-1H-pyrrolizine-7-carboxylic acid (536f)
  • To a solution of 536e (567 mg, 1.9 mmol) in MeOH (20 mL), LiOH aq. (30 mL) was added. The resulting mixture was stirred for 2 h at 75° C. The mixture was concentrated and water (30 mL) was added and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the title compound (454 mg, 84%) as white solid. MS (ESI): mass calcd. for C14H18N2O4 278.13, m/z found 279.2 [M+H]+.
  • Step 7. Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-2,3-dihydro-1H-pyrrolizine-7-carboxamide
  • To a solution of 536f (120 mg, 0.4 mmol), HATU (310 mg, 0.8 mmol), and Et3N (520 mg, 4 mmol) in DCM (20 mL), 4-fluoro-3-methylaniline (187 mg, 1.5 mmol) was added. The resulting mixture was stirred for 13 h at RT. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-50%) to obtain the title compound (27 mg, 16%) as white solid. MS (ESI): mass calcd. for C21H24FN3O3 385.18 m/z found 386.2 [M+H]+. 1H NMR (400 MHz, DMSO) δ 9.90 (s, 1H), 8.13 (s, 1H), 8.05 (s, 1H), 7.68 (dd, J=7.1, 2.4 Hz, 1H), 7.57 (dd, J=7.7, 4.0 Hz, 1H), 7.07 (t, J=9.2 Hz, 1H), 4.26 (t J=7.2 Hz, 2H), 3.07 (t, J=7.5 Hz, 2H), 2.23 (s, 3H), 1.38 (s, 9H).
  • Example 537: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-((1-hydroxy-2-methylpropan-2-yl)amino)-2-oxoacetyl)-2,3-dihydro-1H-pyrrolizine-7-carboxamide
  • Figure US20230062975A1-20230302-C00897
  • The title compounds was prepared according to the procedure of Example 536, substituting 2-amino-2-methylpropan-1-ol for tert-butylamine in Step 5. MS (ESI): mass calcd. for C21H24FN3O4401.18 m/z found 401.9 [M+H]+.
  • Example 538: Synthesis of 5-(2-amino-2-oxoacetyl)-N-(3-chloro-4-fluorophenyl)-6-methyl-2,3-dihydro-1H-pyrrolizine-7-carboxamide
  • Figure US20230062975A1-20230302-C00898
  • The title compound may be prepared according to the procedure of Example 536, substituting ammonia for tert-butylamine in Step 5, and 3-chloro-4-fluoroaniline in Step 7.
  • Example 539: Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-6-chloro-N-(4-fluoro-3-methylphenyl)-2,3-dihydro-1H-pyrrolizine-7-carboxamide
  • Figure US20230062975A1-20230302-C00899
    Figure US20230062975A1-20230302-C00900
  • Step 1. Synthesis of 2,3-dihydro-1H-pyrrolizine-7-carboxylic acid (539a)
  • To a solution of ethyl 2,3-dihydro-1H-pyrrolizine-7-carboxylate (12 g, 67 mmol) in MeOH (150 mL) was added 3 N LiOH aq. (50 mL). The resulting mixture was stirred for 5 h at 80° C. The mixture was poured into ice water (400 mL) and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the title compound (10.1 g, 100%) as white solid. MS (ESI): mass calcd. for C8H9NO2 151.06, m/z found 152.1 [M+H]+.
  • Step 2. Synthesis of N-(4-fluoro-3-methylphenyl)-2,3-dihydro-1H-pyrrolizine-7-carboxamide (539b)
  • To a solution of 539a (10.3 g, 68 mmol), BOP-Cl (26 g, 102 mmol), Et3N (27.5 g, 272 mmol) in DCM (300 mL), 4-fluoro-3-methylaniline (8.5 g, 68 mmol) was added. The resulting mixture was stirred for 20 h at rt. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-50%) to obtain the title compound (6.5 g, 37%) as white solid. MS (ESI): mass calcd. for C15H15FN2O 258.12, m/z found 259.1 [M+H]+.
  • Step 3 Synthesis of ethyl 2-(7-((4-fluoro-3-methylphenyl)carbamoyl)-2,3-dihydro-1H-pyrrolizin-5-yl)-2-oxoacetate (539c)
  • To a solution of compound 539b (6 g, 23 mmol) and ethyl 2-chloro-2-oxoacetate (4.7 g, 35 mmol) in DCM (150 mL) was added slowly at 0° C. The resulting mixture was warmed to RT and stirred for 5 h. Water (80 mL) was added slowly, and the mixture was extracted with DCM (3×50 mL), the combined organic extract was dried over Na2SO4, and concentrated. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-20%) to obtain the title compound (2.3 g and 4 g crude) as yellow solid. MS (ESI): mass calcd. for C19H19FN2O4 358.13, m/z found 359.1 [M+H]+.
  • Step 4 Synthesis of ethyl 2-(6-chloro-7-((4-fluoro-3-methylphenyl)carbamoyl)-2,3-dihydro-M-pyrrolizin-5-yl)-2-oxoacetate (539d)
  • To a solution of compound 539c (2.3 g, 6 mmol) in DMF (50 mL), NCS (1.03 g, 67.8 mmol) was added at 25° C. The resulting mixture was stirred for 25 h. Water (80 mL) was added, and the mixture was extracted with EA (3×50 mL), the combined organic extract was dried over Na2SO4, and concentrated. The residue was purified by column chromatography (EtOAc/petroleum ether: 0-30%) to obtain the title compound (0.4 g and 1.1 g crude) as brown solid. MS (ESI): mass calcd. for C19H18ClFN2O4 392.09 m/z found 393.1 [M+H]+.
  • Step 5. Synthesis of 2-(6-chloro-7-((4-fluoro-3-methylphenyl)carbamoyl)-2,3-dihydro-M-pyrrolizin-5-yl)-2-oxoacetic acid (539e)
  • To a solution of 539d (400 mg, 1.02 mmol) in MeOH (20 mL), NaOH aq. (30 mL) was added. The resulting mixture was stirred for 2 h at 25° C. The mixture was concentrated and water (30 mL) was added and acidified using 1 N aqueous HCl to pH=3. The resulting solid was isolated by filtration to obtain the title compound (320 mg, 86%) as white solid. MS (ESI): mass calcd. for C17H14ClFN2O4 364.06, m/z found 365.1 [M+H]+.
  • Step 7. Synthesis of 5-(2-(tert-butylamino)-2-oxoacetyl)-6-chloro-N-(4-fluoro-3-methylphenyl)-2,3-dihydro-1H-pyrrolizine-7-carboxamide
  • To a solution of 539e (50 mg, 0.14 mmol), BOP-Cl (70 mg, 0.27 mmol), and Et3N (40 mg, 0.4 mmol) in DCM (10 mL), 2-methylpropan-2-amine (51 mg, 0.7 mmol) was added. The resulting mixture was stirred for 13 h at RT. The mixture was concentrated and purified by column chromatography (EtOAc/petroleum ether: 0-50%) to obtain the title compound (12 mg, 20%) as white solid. MS (ESI): mass calcd. for C21H23ClFN3O3 419.14 m/z found 420.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 9.67 (s, 1H), 8.39 (s, 1H), 7.60 (dd, J=7.1, 2.5 Hz, 1H), 7.53-7.45 (m, 1H), 7.10 (t, J=9.2 Hz, 1H), 4.28 (t, J=7.3 Hz, 2H), 3.08 (t, J=7.5 Hz, 2H), 2.49-2.39 (m, 2H), 2.23 (d, J=1.6 Hz, 3H), 1.35 (s, 9H).
  • Synthesis of Example Compounds 540-581 (Structures Shown in Table 1)
  • Examples 540-581 were prepared in analogy to the procedures described above for Example 539, utilizing the appropriate aryl amine in Step 2, and the requisite amine for Step 6. The observed MS data for these Examples are shown in Table 1.
  • Example 582: Synthesis of 6-(2-(tert-butylamino)-2-oxoacetyl)-N-(3-cyano-4-fluorophenyl)-3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazine-8-carboxamide
  • Figure US20230062975A1-20230302-C00901
  • The title compound was prepared according to the procedure of Example 392, substituting morpholine-3-carboxylic acid for piperidine-2-carboxylic acid in Step 1. MS (ESI): mass calcd. for C21H21FN4O4 412.15, m/z found 412.8 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 8.85 (d, J=4.5 Hz, 1H), 8.75 (d, J=8.4 Hz, 1H), 8.29 (s, 1H), 7.98 (s, 1H), 7.67 (dd, J=8.3, 4.4 Hz, 1H), 5.12 (s, 2H), 4.41 (s, 2H), 4.08 (t, J=4.9 Hz, 2H), 1.38 (s, 9H).
  • Example 583: Synthesis of 6-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-3,4-dihydro-1H-pyrrolo[2,1-c][1,4]oxazine-8-carboxamide
  • Figure US20230062975A1-20230302-C00902
  • The title compound was prepared according to the procedure of Example 392, substituting morpholine-3-carboxylic acid for piperidine-2-carboxylic acid in Step 1, and substituting 4-fluoro-3-methylaniline for 5-amino-2-fluorobenzonitrile in Step 7. MS (ESI): mass calcd. for C21H24FN3O4 401.18, m/z found 401.9 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 10.03 (s, 1H), 8.13 (s, 1H), 8.10 (s, 1H), 7.65 (d, J=7.0 Hz, 1H), 7.59-7.50 (m, 1H), 7.08 (t, J=9.2 Hz, 1H), 5.09 (s, 2H), 4.32 (t, J=4.7 Hz, 2H), 4.00 (t, J=4.9 Hz, 2H), 2.23 (s, 3H), 1.39 (s, 9H).
  • Synthesis of Example Compound 584 (Structures Shown in Table 1)
  • Example 584 was prepared in analogy to the procedures described above for Example 539, utilizing the appropriate aryl amine in Step 2.
  • Synthesis of Example Compounds 585 and 586 (Structures Shown in Table 1)
  • Examples 591 and 592 (structures shown in Table 1) may be prepared in analogy to the procedures described above for Example 584.
  • Example 587: Synthesis of tert-butyl 6-(2-(tert-butylamino)-2-oxoacetyl)-8-((4-fluoro-3-methylphenyl)carbamoyl)-3,4-dihydropyrrolo[1,2-a]pyrazine-2(1H)-carboxylate
  • Figure US20230062975A1-20230302-C00903
    Figure US20230062975A1-20230302-C00904
  • Step 1. Synthesis of 4-((benzyloxy)carbonyl)-1-(tert-butoxycarbonyl)piperazine-2-carboxylic acid (587a)
  • A mixture of 1-(tert-butoxycarbonyl)piperazine-2-carboxylic acid (23 g, 100 mmol) in THF (200 mL) was added NaOH (1 mol/L in H2O, 200 mL, 200 mmol), followed by added Cbz-C1 (19 g, 110 mmol) dropwise. The mixture was stirred at 25° C. for 4 hours. HCl (1N in H2O) was added to pH=5, the organic phase was washed with H2O, brine, dried and evaporated to afford product as yellow oil (25 g, 69%). MS (ESI): mass calcd. for C18H24N2O6 364.16, m/z found 365.1 [M+H]+.
  • Step 2. Synthesis of 4-((benzyloxy)carbonyl)piperazine-2-carboxylic acid (587b)
  • A mixture of 4-((benzyloxy)carbonyl)-1-(tert-butoxycarbonyl)piperazine-2-carboxylic acid 587a (25 g, 69 mmol) in EtOH (50 mL) was added HCl.EtOH (35%, 50 mL). The mixture was stirred at 25° C. for 4 hours. The mixture was evaporated to afford product as white solid (18 g, 100%). MS (ESI): mass calcd. for C13H16N2O4 264.11, m/z found 265.1 [M+H]+.
  • Step 3. Synthesis of 4-((benzyloxy)carbonyl)-1-formylpiperazine-2-carboxylic acid (587c)
  • The title compound was prepared from compound 587b following the procedure described in Example 392, Step 1, using 4-((benzyloxy)carbonyl)piperazine-2-carboxylic acid. Title product (20 g, crude) as white solid was obtained. MS (ESI): mass calcd. for C14H16N2O5 292.11, m/z found 293.1 [M+H]+.
  • Step 4. Synthesis of 2-benzyl 8-methyl 3,4-dihydropyrrolo[1,2-a]pyrazine-2,8(1H)-dicarboxylate (587d)
  • The title compound was prepared from 587c following the procedure described in Example 392, Step 2, using 4-((benzyloxy)carbonyl)-1-formylpiperazine-2-carboxylic acid, to provide 587d (16 g, 74%) as white solid. MS (ESI): mass calcd. for C14H16N2O5 292.11, m/z found 293.1 [M+H]+.
  • Step 5. Synthesis of 2-benzyl 8-methyl 6-(2-ethoxy-2-oxoacetyl)-3,4-dihydropyrrolo[1,2-a]pyrazine-2,8(1H)-dicarboxylate (587e)
  • To a solution of 587d (3.14 g, 10 mmol), ethyl 2-chloro-2-oxoacetate (2.04 g, 15 mmol) in DCM (15 mL) was stirred for 15 h. 20 mL water was added slowly, and the mixture was extracted with DCM (3×20 mL), dried over Na2SO4, concentrated. The residue was purified by FCC (EA/PE: 0-20%) to obtain the title compound (2 g, 48%) as colorless oil. MS (ESI): mass calcd. for C21H22N2O7 414.14, m/z found 415.1 [M+H]+.
  • Step 6. Synthesis of 2-(tert-butyl) 8-methyl 6-(2-ethoxy-2-oxoacetyl)-3,4-dihydropyrrolo[1,2-a]pyrazine-2,8(1H)-dicarboxylate (587f)
  • A mixture of 587e (2 g, 4.8 mmol) in EtOH (20 mL) was added Boc2O (1.09 g, 5 mmol) and Pd/C (50 mg), the mixture was stirred under H2 with a balloon for 20 min, then the mixture was filtered and evaporated to afford product as white solid (1.2 g, 67%). MS (ESI): mass calcd. for C18H24N2O7 380.16, m/z found 381.1 [M+H]+.
  • Step 7. Synthesis of 2-(2-(tert-butoxycarbonyl)-8-(methoxycarbonyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazin-6-yl)-2-oxoacetic acid (587g)
  • The title compounds were prepared following the procedure described in Example 392, Step 4, using 2-(tert-butyl) 8-methyl 6-(2-ethoxy-2-oxoacetyl)-3,4-dihydropyrrolo[1,2-a]pyrazine-2,8(1H)-dicarboxylate (587f). Title product (800 mg, 85%) as white solid was obtained. MS (ESI): mass calcd. for C16H20N2O7352.13, m/z found 353.1 [M+H]+.
  • Step 8. Synthesis of 2-(tert-butyl) 8-methyl 6-(2-(tert-butylamino)-2-oxoacetyl)-3,4-dihydropyrrolo[1,2-a]pyrazine-2,8(1H)-dicarboxylate (587h)
  • The title compounds were prepared from compound 587g following the procedure described in Example 392, Step 5. The title product (480 mg, 75%) was obtained as yellow solid. MS (ESI): mass calcd. for C20H29N3O6 407.21, m/z found 408.0 [M+H]+.
  • Step 9. Synthesis of 2-(tert-butoxycarbonyl)-6-(2-(tert-butylamino)-2-oxoacetyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxylic acid (587i)
  • The title compounds were prepared from compound 344h, following the procedure described in Example 392, Step 6. The title product (400 mg, 77%) was obtained as yellow solid. MS (ESI): mass calcd. for C19H27N3O6 393.19, m/z found 394.0 [M+H]+.
  • Step 10. Synthesis of tert-butyl6-(2-(tert-butylamino)-2-oxoacetyl)-8-((4-fluoro-3-methylphenyl)carbamoyl)-3,4-dihydropyrrolo[1,2-a]pyrazine-2(1H)-carboxylate
  • The title compounds were prepared from compound 587i following the procedure described in Example 392, Step 6. The title product (280 mg, 65%) was obtained as yellow solid. MS (ESI): mass calcd. for C26H33FN4O5 500.24, m/z found 501.0 [M+H]+.
  • Example 588: Synthesis of 6-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxamide
  • Figure US20230062975A1-20230302-C00905
  • To a solution of Example 587 (260 mg, 0.52 mmol) in EtOH (5 mL) was added 35% HCl in EtOH (5 mL), and the solution was stirred at 20° C. for 1 h. The solution was evaporated and purified by preparative HPLC to afford the title compound as white solid (190 mg, 91%). MS (ESI): mass calcd. for C21H25FN4O3 400.19, m/z found 401.0 [M+H]+. 1HNMR (400 MHz, DMSO-d6) δ 10.02 (s, 1H), 8.14 (s, 2H), 8.07 (s, 1H), 7.64 (d, J=7.0 Hz, 1H), 7.55 (br s, 1H), 7.09 (t J=9.2 Hz, 1H), 4.43 (s, 2H), 4.34 (s, 2H), 3.28 (s, 2H), 2.23 (s, 3H), 1.39 (s, 9H).
  • Example 589: Synthesis of 6-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-2-(methylsulfonyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxamide
  • Figure US20230062975A1-20230302-C00906
  • To a mixture of Example 588 (90 mg, 0.225 mmol) in DCM (5 mL) was added Et3N (0.5 mmol) and methanesulfonyl chloride (31 mg, 0.27 mmol), and the mixture was stirred at 25° C. for 2 h and then evaporated in vacuo. The residue was purified by preparative HPLC to afford the title compound (20 mg, 21%) as white solid. MS (ESI): mass calcd. for C22H27FN4O5S 478.17, m/z found 479.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 10.08 (s, 1H), 8.16 (s, 1H), 8.12 (s, 1H), 7.69 (d, J=5.6 Hz, 1H), 7.55 (brs, 1H), 7.09 (t, J=9.2 Hz, 1H), 4.83 (s, 2H), 4.46 (s, 2H), 3.65 (s, 2H), 3.07 (s, 3H), 2.24 (s, 3H), 1.39 (s, 9H).
  • Example 590: Synthesis of 2-acetyl-6-(2-(tert-butylamino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-8-carboxamide
  • Figure US20230062975A1-20230302-C00907
  • To a mixture of Example 588 (90 mg, 0.225 mmol) in DCM (5 mL) was added Et3N (0.5 mmol) and acetyl chloride (18 mg, 0.225 mmol), and the mixture was stirred at 25° C. for 2 h, and then evaporated in vacuo. The residue was purified by preparative HPLC to afford the title compound as white solid (20 mg, 20%). MS (ESI): mass calcd. for C23H27FN4O4 442.20, m/z found 443.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 10.06-10.03 (m, 1H), 8.13-8.09 (m, 2H), 7.69 (d, J=6.6 Hz, 1H), 7.56 (s, 1H), 7.09 (t, J=9.4 Hz, 1H), 5.09-5.01 (m, 2H), 4.43-4.33 (m, 2H), 3.88 (br s, 2H), 2.24 (s, 3H), 2.13 (d, J=8.4 Hz, 3H), 1.39 (s, 9H).
  • Synthesis of Example Compounds 591 and 592 (Structures Shown in Table 1)
  • Examples 591 and 592 (structures shown in Table 1) may be prepared in analogy to the procedures described above for Example 590.
  • Synthesis of Example Compounds 593 and 594 (Structures Shown in Table 1)
  • Examples 593 and 594 (structures shown in Table 1) may be prepared in analogy to the procedures described above for Example 392, utilizing azepane-2-carboxylic acid in Step 1.
  • Synthesis of Example Compounds 595-612 (Structures Shown in Table 1)
  • Examples 595-611, and 613-XXX were prepared in analogy to the procedures described above for Example
  • Examples 639, 641, 643, 645, 664, 666, 668, 670, 708, and 709 were prepared in analogy to the procedures described above for Example 612, utilizing the requisite acids.
  • Example 612: 5-(2-((1-acetyl-4-methylpiperidin-4-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00908
  • Step 1: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((4-methylpiperidin-4-yl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • To a mixture of Example 612a (110 mg, 0.5 mmol), Example 1 g (170 mg, 0.5 mmol) and HATU (200 mg, 0.52 mmol) in DMF (1 mL) was added DIPEA at 0° C. The reaction mixture was warmed to rt overnight. The reaction mixture was quenched with 0.5 N HCl and extracted with EtOAc. The combined extracts was washed with brine, and concentrated under vacuum. The residues was dissolved in DCM (2 mL), then, TFA (1.5 mL) was added at 0° C. The mixture was warmed to rt for 2 hrs. The solvent was evaporated and purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as TFA-salt pink solids. ESI-MS, m/z 551.3 (M+23)+.
  • Step 2: Synthesis of 5-(2-((1-acetyl-4-methylpiperidin-4-yl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • To a solution of Example 612b (30 mg, 0.07 mmol), HATU (60 mg, 0.15 mmol) and DIPEA (20 μL). in DMF (1 mL) was added AcOH (30 mg) 0° C. The reaction mixture was stirred at rt for 20 hrs. The reaction mixture was quenched with aqueous TFA (4%, 0.4 mL), and purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 471.2 (MH)+.
  • Example 613: N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((4-methyl-1-(methylsulfonyl)piperidin-4-yl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00909
  • DIPEA was added to a solution of 612b (30 mg, 0.07 mmol) and methanesulfonyl chloride (20 mg, 0.17 mmol) in DCM (1 mL) at 0° C. After 2 hrs at rt, the solvent was removed and the residue was purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 507.2 (MH)+. Examples 640, 642, 644, 665, 667 and 669 were prepared in analogy to the procedures described above for Example 612, utilizing the requisite amines.
  • Example 614: N-ethyl-4-(2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetamido)-4-methylpiperidine-1-carboxamide
  • Figure US20230062975A1-20230302-C00910
  • DIPEA was added to a solution of Example 612b (30 mg, 0.07 mmol) and isocyanatoethane (10 mg, 0.14 mmol) in DMA (1 mL) at 0° C. After 24 hrs at rt, the reaction mixture was purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 500.3 (MH)+.
  • Example 681: N-(4-fluoro-3-methylphenyl)-5-(2-((4-((1-hydroxy-2-methylpropan-2-yl)carbamoyl)tetrahydro-2H-pyran-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00911
  • Step 1: Synthesis of 4-(2-(4-((4-fluoro-3-methylphenyl)carbamoyl)-1,3,5-trimethyl-1H-pyrrol-2-yl)-2-oxoacetamido)tetrahydro-2H-pyran-4-carboxylic acid
  • To a mixture of 681a (100 mg, 0.5 mmol), 1 g (170 mg, 0.5 mmol) and HATU (200 mg, 0.52 mmol) in DMF (1 mL) was added DIPEA at 0° C. The reaction mixture was warmed to rt overnight. The reaction mixture was diluted with water, and extracted with EtOAc (2×10 mL). The combined extracts was washed with water and brine, and concentrated under vacuum. The residues was dissolved in DCM (2 mL), then, TFA (1.2 mL) was added at 0° C. The mixture was warmed to rt for 4 hrs, then, the solvent was evaporated and the residue was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title products as white solids. ESI-MS, m/z 460.2 (MH)+.
  • Step 2: Synthesis N-(4-fluoro-3-methylphenyl)-5-(2-((4-((1-hydroxy-2-methylpropan-2-yl)carbamoyl)tetrahydro-2H-pyran-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • DIEPA (20 mg) was added to a solution of 681b (50 mg, 0.11 mmol), 2-amino-2-methylpropan-1-ol (12 mg) and HATU (60 mg, 0.16 mmol) in DMF at 0° C. The mixture was warmed to rt for 12 hrs. The reaction was quenched with aqueous HCl (0.2 N), and extracted with EtOAc. The organic layer was washed with water and brine, concentrated in vacuo, then, purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 531.3 (MH)+.
  • Examples 605, 682, and 683 were prepared in analogy to the procedures described above for Example 681, utilizing the requisite amines.
  • Example 695 and 712: N-(4-fluoro-3-methylphenyl)-5-(2-(((3aS,4R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide and N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-oxo-2-(((1R,2S,3R,4S)-2,3,4-trihydroxycyclopentyl)amino)acetyl)-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00912
  • Step 1: Synthesis of N-(4-fluoro-3-methylphenyl)-5-(2-(((3aS,4R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydro-4H-cyclopenta[d][1,3]dioxol-4-yl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • The title compound was prepared from compound 695 following the procedure described in Example 2 Step 5, using 695a. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 488.2 (MH)+.
  • Step 2: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-oxo-2-(((1R,2S,3R,4S)-2,3,4-trihydroxycyclopentyl)amino)acetyl)-1H-pyrrole-3-carboxamide
  • HCl (2N aqueous, 0.2 mL) was added to a solution of 695 (20 mg, 0.04 mmol) in MeOH/CH3CN (1/1, 1 mL) at rt. After 20 hrs at rt, the reaction mixture was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 448.2 (MH)+.
  • Example 702 and 703: 5-(2-(((3S,4R)-3,4-dihydroxy-1-methylcyclohexyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide and 5-(2-(((3R,4S)-3,4-dihydroxy-1-methylcyclohexyl)amino)-2-oxoacetyl)-N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00913
  • Step 1: Synthesis of N-(4-fluoro-3-methylphenyl)-1,2,4-trimethyl-5-(2-((1-methylcyclohex-3-en-1-yl)amino)-2-oxoacetyl)-1H-pyrrole-3-carboxamide
  • The title compound was prepared from compound 702b following the procedure described in Example 2 Step 5, using 702a. The final product was purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 426.2 (MH)+.
  • Step 2
  • AD-mix-beta (1 g) was added to a solution of 702b (60 mg) in tBuOH/water (1/1, 10 mL) at 0° C. The reaction was stirred at rt for 36 hrs. The reaction was quenched with water and extracted with EtOAc. The organic layer was washed with water and brine, concentrated in vacuo, and purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford 702 and 703 as white solid. ESI-MS, m/z 531.3 (MH)+.
  • Example 707 was prepared in the same procedure as described for Example 614, using 1,2-difluoro-4-isocyanatobenzene instead of isocyanatoethane.
  • Example 722 and 723: N-(4-fluoro-3-methylphenyl)-5-(2-(((1S,3R)-3-hydroxy-1-methylcyclopentyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-M-pyrrole-3-carboxamide and N-(4-fluoro-3-methylphenyl)-5-(2-(((1S,3S)-3-hydroxy-1-methylcyclopentyl)amino)-2-oxoacetyl)-1,2,4-trimethyl-1H-pyrrole-3-carboxamide
  • Figure US20230062975A1-20230302-C00914
  • Step 1: Synthesis of (3S)-3-amino-3-methylcyclopentan-1-ol
  • NaBH4 (0.1 g) was added to a solution of 722a (0.25 g, 1.2 mmol) in 6 mL of THF/MeOH (20/1) at 0° C. The reaction mixture was warmed to rt for 2 hrs, then, concentrated. TFA (2 mL) was added to the residue in DCM (2 mL) at 0° C. The reaction mixture was stirred at rt for 12 hrs, then, concentrated and purified by reverse phase chromatography eluted with ACN and water and dried using lyophilization to afford the title product as white solid. ESI-MS, m/z 116.2 (MH)+.
  • Step 2: Synthesis of 722 and 723
  • DIPEA was added to a solution of 722b (30 mg, 0.07 mmol), HATU (125 mg, 0.33 mmol) and 1 g (90 mg, 0.27 mmol) in DMF (1 mL) at 0° C. The reaction mixture was stirred at rt for 20 hrs. The reaction mixture was quenched with aqueous TFA (4%, 0.4 mL), and purified by reverse phase chromatography eluted with ACN and water, and dried using lyophilization to afford 722 and 723 product as white solid. ESI-MS, m/z 430.2 (MH)+.
  • Examples 729-759 were prepared in analogy to the procedures of Example 434, utilizing the requisite amine and the appropriate aryl amine for preparation of the required intermediates. The observed MS data for these Examples are shown in Table 1.
  • Example I: Oral Composition of a Compounds of of Formula (I), (Ia)-(Id), or a Pharmaceutically Acceptable Salt, Solvate, or Stereoisomer Thereof
  • To prepare a pharmaceutical composition for oral delivery, 400 mg of compound described herein, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof and the following ingredients are mixed intimately and pressed into single scored tablets.
  • Tablet Formulation
  • Ingredient Quantity per tablet (mg)
    compound 400
    cornstarch 50
    croscarmellose sodium 25
    lactose 120
    magnesium stearate 5
  • The following ingredients are mixed intimately and loaded into a hard-shell gelatin capsule.
  • Capsule Formulation
  • Ingredient Quantity per capsule (mg)
    compound 200
    lactose spray dried 148
    magnesium stearate 2
  • Example II: In Vitro Antiviral Assays
  • The anti-HBV activity of the Capsid Assembly Modulators (CAMs) was evaluated in a cell based assay utilizing the human hepatoma cell line HepAD38 (Ladner, S K., et al., 1998). HepAD38 cells were derived from the parental line, HepG2, that were stably transfected with a construct containing an HBV genome (genotype D, serotype ayw) under the control of a tetracycline repressible CMV promoter. Upon removal of tetracycline, viral pre-genomic RNA (pgRNA) and mRNAs are expressed and infectious viral particles are assembled and secreted into the culture medium providing a reliable, robust system to measure multiple steps of the HBV life cycle. Disruption of capsid formation results in reduced levels of DNA-containing virus particles that are released into the culture supernatant. To quantify the effect of CAMs on HBV replication, we developed a sensitive QPCR-based assay that measures extracellular HBV DNA levels upon treatment of HepAD38 cells with various concentrations of test compounds.
  • HepAD38 cells were maintained in DMEM/F12 medium containing 10% FBS, 400 μg/mL G418 and 0.3 μg/mL tetracycline (tet+media) to maintain repression of HBV replication. To evaluate each compound, HepAD38 cells were seeded into 24-well collagen coated culture plates (Corning BioCoat) at a density of 200,000 cells per well in 1 mL of medium without tetracycline (tet-media) and allowed to adhere overnight at 37° C., 5% CO2 in a humidified incubator. The following day, media was refreshed and a dose range of each compound was prepared by performing 1 log10 serial dilutions in 100% DMSO at 200× the desired assay concentration. Dilutions were then added to the cells resulting in a final dose range of 1 μM to 10 pM and the plates were returned to the incubator. Following 7 days of incubation, culture supernatants were harvested and HBV DNA levels were evaluated by QPCR and compared to the vehicle treated control wells (i.e. DMSO alone).
  • To quantify HBV DNA levels, cell culture supernatants were diluted 1:10 in sterile, nuclease-free water (Gibco). The diluted supernatants were subsequently added to a PCR master mix containing 1× Roche Light Cycler Master Mix, 0.5 pM forward primer, 0.5 pM reverse primer (Fwd: 5′-TTGGTGTCTITCGGAGTGTG (SEQ ID NO 1); Rev: 5′-AGGGGCATTGGTGGTCTAT (SEQ ID NO 2)), 0.2 μM Roche Universal Probe Library Probe 25. The volume was brought to 20 μL with nuclease-free water and amplification of the HBV target sequence was performed using a Roche LightCycler 480 QPCR instrument. PCR extended out to 45 cycles with each cycle consisting of a denaturation step at 95° C. for 10 sec., followed by an annealing step at 60° C. for 10 sec. and a brief extension step at 72° C. for 1 sec.
  • Extracellular HBV DNA levels, expressed in copies/mL, were determined by comparison to a standard curve (102-109 copies/mL) using the Roche LightCycler analysis software. These values were subsequently converted to percent inhibition of HBV replication by dividing the HBV DNA levels in the experimental samples with those obtained from the vehicle control (˜1-2×105 copies/mL). Potency, expressed as an EC50 (the effective concentration required to inhibit 5000 of HBV replication), was calculated from the dose-response curve using a 4-parameter non-linear regression analysis (GraphPad Prism). The nucleoside analog inhibitor entecavir was used as a positive control to validate each assay run. The EC50 value of entecavir in the HepAD38 assay was 0.5 nM, as previously reported in the literature.
  • Table 2 summarizes the antiviral activity of the exemplary compounds. A: EC50>1 μM; B: EC50 values between 0.5 μM and 1 μM, inclusive; C: EC50 values between 0.05 μM and 0.499 μM, inclusive; D: EC50 values <0.05 μM. NT=not tested. NA=not available.
  • TABLE 2
    Summary of anti-HBV replication in HepAD38 cells.
    Anti- Anti- Anti- Anti- Anti-
    HBV HBV HBV HBV HBV
    Ex. EC50 Ex. EC50 Ex. EC50 Ex. EC50 Ex. EC50
    1 D 2 D 3 D 4 D 5 C
    6 D 7 D 8 D 9 D 10 D
    11 D 12 D 13 D 14 D 15 D
    16 C 17 D 18 D 19 D 20 D
    21 C 22 D 23 C 24 D 25 C
    26 D 27 A 28 D 29 B 30 A
    31 C 32 A 33 A 34 A 35 A
    36 D 37 D 38 D 39 B 40 B
    41 D 42 D 43 D 44 D 45 B
    46 D 47 C 48 C 49 C 50 A
    51 C 52 A 53 C 54 C 55 B
    56 D 57 C 58 B 59 D 60 D
    61 C 62 D 63 D 64 D 65 D
    66 D 67 D 68 A 69 B 70 D
    71 A 72 A 73 A 74 D 75 D
    76 D 77 C 78 D 79 C 80 C
    81 D 82 D 83 D 84 D 85 D
    86 D 87 D 88 D 89 D 90 D
    91 D 92 C 93 C 94 D 95 D
    96 D 97 D 98 D 99 C 100 A
    101 A 102 D 103 D 104 D 105 D
    106 D 107 D 108 D 109 D 110 D
    111 D 112 C 113 D 114 D 115 D
    116 D 117 C 118 D 119 D 120 B
    121 D 122 D 123 C 124 D 125 D
    126 D 127 D 128 D 129 D 130 C
    131 C 132 C 133 C 134 C 135 C
    136 D 137 D 138 D 139 D 140 D
    141 D 142 D 143 D 144 D 145 D
    146 D 147 D 148 D 149 D 150 D
    151 D 152 D 153 D 154 D 155 D
    156 D 157 C 158 D 159 D 160 C
    161 D 162 C 163 A 164 B 165 D
    166 D 167 D 168 C 169 D 170 D
    171 D 172 D 173 D 174 C 175 C
    176 C 177 C 178 C 179 D 180 D
    181 D 182 D 183 B 184 D 185 B
    186 C 187 A 188 C 189 D 190 D
    191 D 192 B 193 A 194 C 195 D
    196 C 197 C 198 C 199 D 200 C
    201 C 202 C 203 D 204 D 205 D
    206 D 207 D 208 D 209 D 210 D
    211 D 212 D 213 D 214 D 215 D
    216 D 217 D 218 D 219 D 220 D
    221 D 222 A 223 D 224 C 225 B
    226 B 227 D 228 D 229 D 230 D
    231 D 232 D 233 C 234 D 235 NT
    236 D 237 NT 238 D 239 B 240 C
    241 D 242 C 243 D 244 C 245 D
    246 D 247 D 248 C 249 D 250 D
    251 D 252 C 253 D 254 D 255 D
    256 C 257 C 258 D 259 D 260 D
    261 D 262 D 263 D 264 D 265 C
    266 C 267 D 268 D 269 D 270 D
    271 D 272 D 273 D 274 D 275 D
    276 D 277 D 278 D 279 C 280 D
    281 D 282 D 283 D 284 D 285 D
    286 D 287 D 288 D 289 D 290 D
    291 D 292 C 293 D 294 B 295 D
    296 D 297 D 298 D 299 C 300 C
    301 D 302 D 303 D 304 D 305 A
    306 D 307 D 308 B 309 C 310 D
    311 D 312 D 313 D 314 D 315 D
    316 D 317 A 318 C 319 D 320 D
    321 D 322 D 323 D 324 D 325 C
    326 D 327 D 328 C 329 B 330 D
    331 D 332 D 333 D 334 D 335 D
    336 D 337 B 338 B 339 B 340 B
    341 C 342 B 343 C 344 C 345 D
    346 D 347 D 348 D 349 A 350 B
    351 C 352 C 353 C 354 D 355 D
    356 D 357 D 358 D 359 D 360 NA
    361 NA 362 NA 363 D 364 D 365 D
    366 D 367 D 368 C 369 D 370 D
    371 C 372 D 373 D 374 D 375 D
    376 D 377 D 378 D 379 C 380 D
    381 C 382 A 383 B 384 A 385 A
    386 A 387 A 388 A 389 A 390 C
    391 A 392 A 393 C 394 C 395 A
    396 c 397 C 398 C 399 C 400 C
    401 A 402 C 403 C 404 C 405 C
    406 B 407 C 408 C 409 c 410 c
    411 C 412 C 413 C 414 c 415 A
    416 A 417 C 418 C 419 A 420 C
    421 A 422 A 423 A 424 C 425 C
    426 C 427 C 428 C 429 C 430 C
    431 C 432 C 433 B 434 D 435 A
    436 C 437 C 438 C 439 C 440 C
    441 D 442 D 443 D 444 D 445 D
    446 C 447 D 448 D 449 C 450 C
    451 C 452 D 453 C 454 C 455 D
    456 B 457 C 458 B 459 C 460 D
    461 D 462 C 463 C 464 C 465 D
    466 C 467 B 468 C 469 B 470 B
    471 B 472 A 473 B 474 B 475 B
    476 A 477 A 478 A 479 NA 480 NA
    481 NA 482 NA 483 NA 484 NA 485 NA
    486 NA 487 NA 488 NA 489 D 490 D
    491 D 492 D 493 D 494 D 495 D
    496 D 497 C 498 C 499 D 500 D
    501 C 502 C 503 D 504 D 505 B
    506 B 507 C 508 B 509 B 510 A
    511 C 512 B 513 C 514 C 515 D
    516 C 517 C 518 C 519 C 520 D
    521 A 522 A 523 C 524 C 525 A
    526 A 527 B 528 B 529 A 530 A
    531 C 532 B 533 B 534 C 535 D
    536 D 537 C 538 NA 539 D 540 D
    541 D 542 D 543 D 544 D 545 D
    546 D 547 C 548 D 549 B 550 D
    551 C 552 D 553 D 554 D 555 C
    556 C 557 D 558 D 559 C 560 D
    561 D 562 D 563 D 564 D 565 D
    566 D 567 D 568 D 569 D 570 D
    571 C 572 D 573 C 574 B 575 B
    576 C 577 A 578 B 579 B 580 D
    581 D 582 A 583 D 584 D 587 C
    588 C 589 B 590 B 595 D 596 D
    597 D 598 D 599 D 600 D 601 D
    602 D 603 D 604 D 605 D 606 D
    607 D 608 D 609 D 610 D 611 D
    612 D 613 D 614 D 615 D 616 D
    617 D 618 D 619 D 620 D 621 D
    622 D 623 D 624 D 625 D 626 D
    627 D 628 D 629 D 630 D 631 D
    632 D 633 D 634 D 635 D 636 D
    637 D 638 D 639 D 640 D 641 D
    642 D 643 C 644 D 645 D 646 D
    647 D 648 D 649 D 650 C 651 D
    652 D 653 C 654 D 655 C 656 D
    657 D 658 D 659 D 660 D 661 D
    662 D 663 D 664 D 665 D 666 D
    667 D 668 D 669 D 670 D 671 D
    672 D 673 D 674 C 675 D 676 D
    677 D 678 D 679 D 680 D 681 D
    682 D 683 D 684 D 685 D 686 D
    687 D 688 D 689 D 690 D 691 D
    692 D 693 D 694 D 695 D 696 D
    697 D 698 C 699 D 700 D 701 D
    702 D 703 D 704 D 705 D 706 D
    707 D 708 D 709 D 710 D 711 D
    712 D 713 D 714 D 715 D 716 D
    717 D 718 D 719 D 720 D 721 D
    722 D 723 D 724 D 725 D 726 D
    727 D 728 D 729 C 730 C 731 D
    732 C 733 D 734 D 735 C 736 D
    737 D 738 C 739 C 740 D 741 C
    742 C 743 C 744 C 745 C 746 C
    748 C 749 C 750 C 751 C 752 C
    753 C 754 C 756 C 757 C 758 C
    759 C
  • Example III: In Vitro Cytotoxicity Assays
  • To evaluate antiviral selectivity, the cytotoxic activity of each compound was determined using a standard cell viability assay performed on the parental HepG2 cell line. Cell viability was determined by measuring the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (NMT) to the insoluble formazan salt crystal that occurs in live cells. Briefly, HepG2 cells were seeded in 96-well plates at a density of 20,000 cells per well in EMEM+10% FBS (complete growth medium) and allowed to adhere overnight in a 37° C., 5% CO2 humidified incubator. The next day, test agents were prepared by performing 8 half-log10 serial dilutions in 100% DMSO at 200× the final desired concentration in the assay. Compounds were tested over a range of concentrations from 30 μM to 1.0 nM in the assay. HepG2 cells were incubated in the presence of various concentrations of CAMs for 7 days in a 37° C., 5% CO2 humidified incubator. At the completion of the 7-day incubation period, MTT reagent was added to each well and the mixture was incubated for an additional 3-4 hours. At the completion of the incubation period, all wells were aspirated to remove the culture medium. The formazan crystals were solubilized from the cell monolayers with 100% DMSO. Plates were briefly mixed on an orbital shaker and absorbance was measured at 492 nm using a Perkin-Elmer EnVision multi-label plate reader. All absorbance values were converted to a percentage of the signal obtained from the vehicle treated controls. Absorbance values at 492 nm are directly proportional to the number of viable cells present in the sample. A CC50 value (cytotoxic concentration that results in loss of 50% cell viability) was calculated from the dose-response curve by 4-parameter, non-linear regression analysis using the GraphPad Prism software. The positive control compound, staurosporine, reduced the viability of HepG2 cells in a dose-dependent manner (CC50=100 nM).
  • Table 3 summarizes the cytotoxicity assay data in the hepatocyte cell line HepG2 for the example compounds. A: CC50>30 μM; B: CC50 values between 5 μM and 30 μM, inclusive; C: CC50 values between 0.5 μM and 4.99 μM, inclusive; D: CC50 values <0.5 μM. NT=not tested. NA=not available.
  • TABLE 3
    Summary of cytotoxicity results in HepG2 cells for example compounds.
    HepG2 HepG2 HepG2 HepG2 HepG2
    Ex. CC50 Ex. CC50 Ex. CC50 Ex. CC50 Ex. CC50
    1 A 2 A 3 B 4 A 5 A
    6 A 7 A 8 A 9 A 10 B
    11 A 12 A 13 A 14 B 15 A
    16 B 17 C 18 A 19 B 20 C
    21 A 22 A 23 A 24 A 25 A
    26 A 27 A 28 A 29 A 30 A
    31 A 32 A 33 A 34 A 35 A
    36 A 37 A 38 A 39 A 40 C
    41 C 42 A 43 C 44 A 45 A
    46 A 47 C 48 A 49 A 50 A
    51 A 52 A 53 A 54 A 55 C
    56 C 57 A 58 A 59 A 60 A
    61 A 62 A 63 A 64 B 65 A
    66 A 67 A 68 A 69 A 70 A
    71 A 72 A 73 A 74 A 75 B
    76 B 77 A 78 A 79 A 80 A
    81 A 82 A 83 B 84 A 85 A
    86 B 87 A 88 B 89 A 90 B
    91 A 92 A 93 A 94 A 95 A
    96 A 97 A 98 A 99 A 100 B
    101 B 102 C 103 A 104 A 105 B
    106 C 107 A 108 C 109 A 110 A
    111 A 112 A 113 A 114 A 115 A
    116 A 117 A 118 A 119 A 120 A
    121 A 122 A 123 A 124 B 125 C
    126 A 127 A 128 A 129 A 130 A
    131 A 132 A 133 A 134 A 135 B
    136 A 137 A 138 C 139 A 140 A
    141 A 142 A 143 A 144 A 145 A
    146 A 147 A 148 A 149 A 150 A
    151 A 152 A 153 B 154 A 155 A
    156 A 157 A 158 A 159 A 160 A
    161 A 162 A 163 A 164 A 165 A
    166 A 167 A 168 A 169 A 170 A
    171 A 172 A 173 A 174 A 175 A
    176 A 177 B 178 B 179 B 180 B
    181 A 182 A 183 A 184 A 185 A
    186 A 187 A 188 A 189 A 190 A
    191 A 192 A 193 A 194 A 195 A
    196 A 197 A 198 A 199 A 200 A
    201 A 202 A 203 A 204 A 205 A
    206 A 207 A 208 A 209 A 210 A
    211 A 212 B 213 A 214 A 215 A
    216 B 217 A 218 B 219 A 220 B
    221 B 222 A 223 B 224 A 225 A
    226 A 227 A 228 A 229 A 230 A
    231 B 232 A 233 A 234 A 235 NT
    236 B 237 NT 238 A 239 A 240 A
    241 A 242 A 243 B 244 B 245 A
    246 B 247 B 248 B 249 B 250 B
    251 A 252 A 253 A 254 B 255 B
    256 B 257 B 258 B 259 A 260 B
    261 C 262 B 263 A 264 B 265 A
    266 A 267 A 268 B 269 B 270 A
    271 A 272 A 273 A 274 A 275 A
    276 A 277 A 278 A 279 A 280 A
    281 B 282 A 283 B 284 A 285 A
    286 A 287 A 288 A 289 B 290 A
    291 A 292 A 293 B 294 A 295 B
    296 A 297 B 298 A 299 A 300 A
    301 A 302 A 303 A 304 B 305 A
    306 A 307 A 308 A 309 A 310 E
    311 A 312 B 313 B 314 B 315 A
    316 A 317 B 318 A 319 B 320 A
    321 B 322 B 323 B 324 B 325 A
    326 A 327 A 328 A 329 A 330 A
    331 A 332 A 333 A 334 A 335 A
    336 B 337 B 338 A 339 A 340 A
    341 A 342 A 343 A 344 A 345 A
    346 A 347 A 348 A 349 A 350 A
    351 A 352 A 353 A 354 A 355 A
    356 A 357 A 358 A 359 A 360 NA
    361 NA 362 NA 363 A 364 B 365 A
    366 A 367 B 368 A 369 A 370 A
    371 A 372 C 373 C 374 C 375 A
    376 B 377 A 378 A 379 A 380 A
    381 A 382 A 383 A 384 A 385 A
    386 B 387 B 388 B 389 B 390 A
    391 A 392 B 393 A 394 A 395 C
    396 B 397 B 398 A 399 A 400 A
    401 A 402 A 403 A 404 A 405 A
    406 A 407 A 408 A 409 A 410 A
    411 A 412 B 413 A 414 A 415 A
    416 A 417 A 418 A 419 A 420 A
    421 A 422 A 423 B 424 A 425 A
    426 A 427 A 428 A 429 A 430 A
    431 A 432 A 433 A 434 A 435 B
    436 A 437 A 438 A 439 A 440 B
    441 B 442 B 443 B 444 B 445 B
    446 B 447 B 448 B 449 A 450 A
    451 B 452 B 453 A 454 A 455 B
    456 A 457 A 458 B 459 B 460 B
    461 B 462 A 463 B 464 A 465 B
    466 A 467 A 468 A 469 B 470 B
    471 A 472 A 473 A 474 A 475 A
    476 B 477 A 478 A 489 A 490 A
    491 A 492 B 493 B 494 B 495 B
    496 B 497 C 498 A 499 A 500 B
    501 B 502 A 503 A 504 B 505 A
    506 B 507 A 508 A 509 A 510 A
    511 A 512 A 513 A 514 B 515 B
    516 A 517 B 518 B 519 B 520 A
    521 A 522 A 523 B 524 B 525 A
    526 A 527 C 528 C 529 A 530 A
    531 A 532 C 533 A 534 B 535 C
    536 A 537 A 538 NA 539 B 540 A
    541 A 542 A 543 A 544 A 545 B
    546 A 547 B 548 B 549 A 550 A
    551 A 552 B 553 B 554 B 555 B
    556 B 557 B 558 A 559 A 560 A
    561 A 562 B 563 B 564 B 565 B
    566 B 567 A 568 B 569 A 570 A
    571 A 572 A 573 A 574 B 575 A
    576 B 577 A 578 A 579 A 580 B
    581 B 582 A 583 A 584 B 585 NA
    586 NA 587 A 588 B 589 A 590 A
    595 A 596 A 597 A 598 A 599 A
    600 A 601 A 602 A 603 B 604 B
    605 A 606 A 607 A 608 A 609 A
    610 A 611 A 612 A 613 A 614 A
    615 A 616 A 617 A 618 A 619 A
    620 A 621 A 622 A 623 A 624 A
    625 A 626 A 627 A 628 A 629 A
    630 A 631 A 632 A 633 A 634 A
    635 A 636 A 637 A 638 A 639 A
    640 B 641 A 642 B 643 A 644 B
    645 A 646 B 647 A 648 A 649 A
    650 A 651 A 652 A 653 A 654 A
    655 A 656 B 657 B 658 B 659 A
    660 A 661 B 662 A 663 A 664 A
    665 B 666 A 667 C 668 A 669 A
    670 A 671 A 672 A 673 A 674 B
    675 A 676 A 677 A 678 B 679 A
    680 A 681 A 682 A 683 A 684 A
    685 A 686 C 687 B 688 A 689 A
    690 A 691 A 692 A 693 A 694 A
    695 A 696 A 697 A 698 A 699 B
    700 A 701 A 702 A 703 A 704 A
    705 A 706 A 707 C 708 A 709 A
    710 A 711 A 712 A 713 A 714 A
    715 B 716 A 717 B 718 B 719 A
    720 A 721 A 722 A 723 A 724 A
    725 A 726 A 727 A 728 A 729 A
    730 A 731 B 732 A 733 B 734 A
    735 B 736 B 737 A 738 A 739 A
    740 A 741 A 742 A 743 A 744 A
    745 A 746 A 748 A 749 A 750 A
    751 A 752 A 753 A 754 A 756 A
    757 A 758 A 759 A

Claims (21)

What is claimed is:
1. A compound of Formula (Ia), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof:
Figure US20230062975A1-20230302-C00915
wherein:
Ring A is aryl;
each R11 is independently halogen;
n is 2 or 3;
R12 is hydrogen;
Figure US20230062975A1-20230302-C00916
is
Figure US20230062975A1-20230302-C00917
R13 is hydrogen, halogen, or C1-C6alkyl;
R16 is hydrogen or C1-C6alkyl;
R17 is cycloalkyl optionally substituted with one, two, or three R7;
each R7 is independently C1-C6alkyl optionally substituted with one, two, or three R7a;
each R7a is independently halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, or —C(═O)NRbRc;
each Ra is independently C1-C6alkyl or C1-C6haloalkyl; and
each Rb and Rc are independently hydrogen, C1-C6alkyl, or C1-C6haloalkyl.
2. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
Ring A is phenyl; n is 2 or 3; and each R11 is independently fluorine.
3. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
Figure US20230062975A1-20230302-C00918
is
Figure US20230062975A1-20230302-C00919
4. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
Figure US20230062975A1-20230302-C00920
is
Figure US20230062975A1-20230302-C00921
5. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
R13 is halogen.
6. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
R16 is hydrogen.
7. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
R17 is cyclohexyl optionally substituted with one, two, or three R7.
8. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
each R7 is independently C1-C6alkyl optionally substituted with one R7a.
9. The compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein:
each R7a is independently —C(═O)ORb.
10. A pharmaceutical composition comprising a compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, and a pharmaceutically acceptable excipient.
11. A method of treating hepatitis B in a subject, comprising administering to the subject a compound of claim 1, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof.
12. A combination of:
(i) an antiviral suitable for the treatment of chronic hepatitis B infection; and
(ii) a compound of Formula (I), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof:
Figure US20230062975A1-20230302-C00922
wherein:
Figure US20230062975A1-20230302-C00923
is
Figure US20230062975A1-20230302-C00924
R12 is hydrogen or C1-C6alkyl;
R13 is hydrogen or C1-C6alkyl;
R14 is hydrogen or C1-C6alkyl;
R15 is hydrogen, C1-C6alkyl, or C1-C6hydroxyalkyl;
R16 is hydrogen or C1-C6alkyl;
R17 is hydrogen, —CN, —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7;
or R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl or a heterocycloalkenyl; each optionally substituted with one, two, or three R8;
each R20 is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7;
each R8 is independently oxo,
halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl,
heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo,
halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
each R7 is independently oxo,
halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl,
heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a;
each R7a is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl;
each Ra is independently C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroarylis independently optionally substituted with one, two, or three oxo,
halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; and
each Rb and Rc are independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
or Rb and Rc are taken together with the atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three oxo,
halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl.
13. The combination of claim 12, wherein:
R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, heterocycloalkyl, —C1-C6alkyl(heteroaryl), or —C1-C6alkyl(cycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroaryl is independently optionally substituted with one, two, or three R7.
14. The combination of claim 12, wherein:
R17 is C1-C6alkyl or cycloalkyl; each optionally substituted with one, two, or three R7.
15. The combination of claim 12, wherein:
R17 is C1-C6alkyl optionally substituted with one, two, or three R7.
16. The combination of claim 12, wherein:
each R7 is independently halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroayl is independently optionally substituted with one, two, or three R7a.
17. A method of treating a hepatitis B infection in a subject; the method comprising administering a compound of Formula (I), or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, in combination with an antiviral suitable for the treatment of chronic hepatitis B infection:
Figure US20230062975A1-20230302-C00925
wherein:
Figure US20230062975A1-20230302-C00926
is
Figure US20230062975A1-20230302-C00927
R12 is hydrogen or C1-C6alkyl;
R13 is hydrogen or C1-C6alkyl;
R14 is hydrogen or C1-C6alkyl;
R15 is hydrogen, C1-C6alkyl, or C1-C6hydroxyalkyl
R16 is hydrogen or C1-C6alkyl;
R17 is hydrogen, —CN, —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7;
or R16 and R17 are taken together with the nitrogen atom to which they are attached to form a heterocycloalkyl or a heterocycloalkenyl; each optionally substituted with one, two, or three R8;
each R20 is independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7;
each R8 is independently oxo,
halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl,
heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo,
halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
each R7 is independently oxo,
halogen, —CN, —OH, —ORa, —SH, —SRa, —S(═O)Ra, —S(═O)2Ra, —NO2, —NRbRc, —NHS(═O)2Ra, —S(═O)2NRbRc, —C(═O)Ra, —OC(═O)Ra, —C(═O)ORb, —OC(═O)ORb, —C(═O)NRbRc, —OC(═O)NRbRc, —NRbC(═O)NRbRc, —NRbC(═O)Ra, —NRbC(═O)ORb, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl,
heteroaryl, —C1-C6alkyl(aryl), —C1-C6alkyl(heteroaryl), —C1-C6alkyl(cycloalkyl), or —C1-C6alkyl(heterocycloalkyl); wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three R7a;
each R7a is independently oxo, halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)Ra, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl;
each Ra is independently C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroarylis independently optionally substituted with one, two, or three oxo,
halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl; and
each Rb and Rc are independently hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C1-C6aminoalkyl, C2-C6alkenyl, C2-C6alkynyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl; wherein each alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl is independently optionally substituted with one, two, or three oxo, halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl;
or Rb and Rc are taken together with the atom to which they are attached to form a heterocycloalkyl optionally substituted with one, two, or three oxo,
halogen, —CN, —OH, —OMe, —S(═O)Me, —S(═O)2Me, —NH2, —S(═O)2NH2, —C(═O)Me, —C(═O)OH, —C(═O)OMe, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, or C1-C6aminoalkyl.
18. The method of claim 17, wherein:
R17 is —OR20, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, heterocycloalkyl, —C1-C6alkyl(heteroaryl), or —C1-C6alkyl(cycloalkyl); wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroaryl is independently optionally substituted with one, two, or three R7.
19. The method of claim 17, wherein:
R17 is C1-C6alkyl or cycloalkyl; each optionally substituted with one, two, or three R7.
20. The method of claim 17, wherein:
R17 is C1-C6alkyl optionally substituted with one, two, or three R7.
21. The method of claim 17, wherein:
each R7 is independently halogen, —CN, —OH, —ORa, —NRbRc, —C(═O)ORb, —C(═O)NRbRc, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, cycloalkyl, or heteroaryl; wherein each alkyl, cycloalkyl, heterocycloalkyl, and heteroayl is independently optionally substituted with one, two, or three R7a.
US17/947,593 2018-06-11 2022-09-19 Hepatitis b capsid assembly modulators Abandoned US20230062975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/947,593 US20230062975A1 (en) 2018-06-11 2022-09-19 Hepatitis b capsid assembly modulators

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862683557P 2018-06-11 2018-06-11
US201962832734P 2019-04-11 2019-04-11
US16/438,361 US10590076B2 (en) 2018-06-11 2019-06-11 Hepatitis B capsid assembly modulators
US16/671,815 US11014881B2 (en) 2018-06-11 2019-11-01 Hepatitis B capsid assembly modulators
US202117209726A 2021-03-23 2021-03-23
US17/514,578 US11566001B2 (en) 2018-06-11 2021-10-29 Hepatitis B capsid assembly modulators
US17/947,593 US20230062975A1 (en) 2018-06-11 2022-09-19 Hepatitis b capsid assembly modulators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/514,578 Continuation US11566001B2 (en) 2018-06-11 2021-10-29 Hepatitis B capsid assembly modulators

Publications (1)

Publication Number Publication Date
US20230062975A1 true US20230062975A1 (en) 2023-03-02

Family

ID=68765513

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/438,361 Active US10590076B2 (en) 2018-06-11 2019-06-11 Hepatitis B capsid assembly modulators
US16/671,815 Active US11014881B2 (en) 2018-06-11 2019-11-01 Hepatitis B capsid assembly modulators
US17/514,578 Active US11566001B2 (en) 2018-06-11 2021-10-29 Hepatitis B capsid assembly modulators
US17/947,593 Abandoned US20230062975A1 (en) 2018-06-11 2022-09-19 Hepatitis b capsid assembly modulators

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US16/438,361 Active US10590076B2 (en) 2018-06-11 2019-06-11 Hepatitis B capsid assembly modulators
US16/671,815 Active US11014881B2 (en) 2018-06-11 2019-11-01 Hepatitis B capsid assembly modulators
US17/514,578 Active US11566001B2 (en) 2018-06-11 2021-10-29 Hepatitis B capsid assembly modulators

Country Status (15)

Country Link
US (4) US10590076B2 (en)
EP (1) EP3807246A4 (en)
JP (1) JP2021527638A (en)
KR (1) KR20210019489A (en)
CN (1) CN112585118A (en)
AU (1) AU2019284617A1 (en)
BR (1) BR112020025073A2 (en)
CA (1) CA3102972A1 (en)
DE (1) DE202019005471U1 (en)
GB (1) GB2583614B (en)
IL (1) IL279242A (en)
PH (1) PH12020552127A1 (en)
SG (1) SG11202012346YA (en)
TW (1) TW202016073A (en)
WO (1) WO2019241292A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110442A1 (en) 2013-01-10 2014-07-17 VenatoRx Pharmaceuticals, Inc. Beta-lactamase inhibitors
RU2686740C2 (en) 2014-06-11 2019-04-30 Венаторкс Фармасьютикалс, Инк. Beta-lactamase inhibitors
US11247965B2 (en) 2017-12-11 2022-02-15 VenatoRx Pharmaceuticals, Inc. Hepatitis B capsid assembly modulators
KR20200136994A (en) * 2018-03-30 2020-12-08 치아타이 티안큉 파마수티컬 그룹 주식회사 N-heterocyclic 5-membered ring-containing capsid protein assembly inhibitors, pharmaceutical compositions thereof, and uses thereof
US11891398B2 (en) * 2018-05-25 2024-02-06 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. 2,3-dihydro-1H-pyrrolizine-7-formamide derivative and application thereof
EP3807246A4 (en) 2018-06-11 2022-03-02 Venatorx Pharmaceuticals, Inc. Hepatitis b capsid assembly modulators
AU2019355218B2 (en) * 2018-10-05 2023-11-30 Emory University Monomer and multimeric anti-HBV agents
EA202092159A1 (en) * 2019-01-25 2020-12-15 Чиа Тай Тянцин Фармасьютикал Груп Ко., Лтд. CONTAINING N-HETEROCYCLIC FIVE-MERCHED RING CAPSID PROTEIN ASSEMBLY INHIBITOR, ITS PHARMACEUTICAL COMPOSITION AND THEIR APPLICATION
CN113365999B (en) * 2019-01-31 2023-04-14 正大天晴药业集团股份有限公司 Capsid protein assembly inhibitors containing pyrroloheterocycles
WO2021058002A1 (en) * 2019-09-29 2021-04-01 正大天晴药业集团股份有限公司 Crystalline form of capsid protein assembly inhibitor containing n hetero five-membered ring, and application thereof
EP4245372A3 (en) * 2019-11-13 2023-11-22 Xi'An Xintong Pharmaceutical Research Co., Ltd. Hbv inhibitor and use thereof
WO2021119081A1 (en) * 2019-12-10 2021-06-17 VenatoRx Pharmaceuticals, Inc. Hepatitis b capsid assembly modulators
WO2021178362A1 (en) * 2020-03-03 2021-09-10 VenatoRx Pharmaceuticals, Inc. Hepatitis b capsid assembly modulators
WO2021197486A1 (en) * 2020-04-03 2021-10-07 东莞市东阳光新药研发有限公司 Novel spiro compound and application thereof in drug
CN118159266A (en) 2021-10-08 2024-06-07 正大天晴药业集团股份有限公司 Pharmaceutical combination comprising a capsid protein inhibitor and a reverse transcriptase inhibitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597716B2 (en) * 2018-03-30 2023-03-07 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. N-heterocyclic five-membered ring-containing capsid protein assembly inhibitor, pharmaceutical composition thereof, and use thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1059007A (en) 1912-05-21 1913-04-15 Benjamin F Sharp Electrical burglar-alarm.
JP2005060379A (en) * 2003-07-31 2005-03-10 Dainippon Pharmaceut Co Ltd Medicament comprising heterocyclic compound
KR20070090206A (en) 2004-12-24 2007-09-05 다이닛본 스미토모 세이야꾸 가부시끼가이샤 Bicyclic pyrrole derivatives
US20090012075A1 (en) 2006-01-12 2009-01-08 Miller Thomas A Fluorinated Arylamide Derivatives
EP2726459B1 (en) * 2011-07-01 2019-09-11 Baruch S. Blumberg Institute Sulfamoylbenzamide derivatives as antiviral agents against hbv infection
KR101939710B1 (en) 2011-12-21 2019-01-17 노비라 테라퓨틱스, 인코포레이티드 Hepatitis b antiviral agents
WO2015011281A1 (en) 2013-07-25 2015-01-29 Janssen R&D Ireland Glyoxamide substituted pyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis b
DK3060547T3 (en) * 2013-10-23 2018-01-15 Janssen Sciences Ireland Uc CARBOXAMIDE DERIVATIVES AND USE THEREOF AS MEDICINES FOR TREATMENT OF HEPATITS B
US11078193B2 (en) * 2014-02-06 2021-08-03 Janssen Sciences Ireland Uc Sulphamoylpyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B
US10875876B2 (en) 2015-07-02 2020-12-29 Janssen Sciences Ireland Uc Cyclized sulfamoylarylamide derivatives and the use thereof as medicaments for the treatment of hepatitis B
AU2017231817B2 (en) * 2016-03-09 2021-02-25 Emory University Elimination of hepatitis B virus with antiviral agents
JOP20190024A1 (en) * 2016-08-26 2019-02-19 Gilead Sciences Inc Substituted pyrrolizine compounds and uses thereof
CN108250121A (en) 2016-12-28 2018-07-06 上海长森药业有限公司 Sulfonamide-arylamides and its medicinal usage for treating hepatitis B
US11247965B2 (en) 2017-12-11 2022-02-15 VenatoRx Pharmaceuticals, Inc. Hepatitis B capsid assembly modulators
KR102526964B1 (en) * 2018-02-26 2023-04-28 길리애드 사이언시즈, 인코포레이티드 Substituted pyrrolizine compounds as HBV replication inhibitors
US11891398B2 (en) 2018-05-25 2024-02-06 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. 2,3-dihydro-1H-pyrrolizine-7-formamide derivative and application thereof
EP3807246A4 (en) 2018-06-11 2022-03-02 Venatorx Pharmaceuticals, Inc. Hepatitis b capsid assembly modulators
CN113365999B (en) 2019-01-31 2023-04-14 正大天晴药业集团股份有限公司 Capsid protein assembly inhibitors containing pyrroloheterocycles
US20220332684A1 (en) 2019-09-29 2022-10-20 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Crystal form of five-membered n heterocyclic compound, and application thereof
WO2021058002A1 (en) 2019-09-29 2021-04-01 正大天晴药业集团股份有限公司 Crystalline form of capsid protein assembly inhibitor containing n hetero five-membered ring, and application thereof
AU2020385518A1 (en) 2019-11-22 2022-06-09 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Crystal form of nucleoprotein inhibitor and use thereof
WO2021119081A1 (en) 2019-12-10 2021-06-17 VenatoRx Pharmaceuticals, Inc. Hepatitis b capsid assembly modulators
WO2021178362A1 (en) 2020-03-03 2021-09-10 VenatoRx Pharmaceuticals, Inc. Hepatitis b capsid assembly modulators
WO2022095950A1 (en) 2020-11-05 2022-05-12 正大天晴药业集团股份有限公司 Pharmaceutical combination containing capsid protein inhibitor and nucleoside analog

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597716B2 (en) * 2018-03-30 2023-03-07 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. N-heterocyclic five-membered ring-containing capsid protein assembly inhibitor, pharmaceutical composition thereof, and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lovett et al., World Journal of Hepatology, January 8, 2017, 9(1), pages 48-56. (Year: 2017) *

Also Published As

Publication number Publication date
AU2019284617A1 (en) 2021-01-28
EP3807246A1 (en) 2021-04-21
GB2583614B (en) 2023-05-24
TW202016073A (en) 2020-05-01
JP2021527638A (en) 2021-10-14
WO2019241292A1 (en) 2019-12-19
SG11202012346YA (en) 2021-01-28
BR112020025073A2 (en) 2021-07-20
DE202019005471U1 (en) 2020-09-17
US20200123105A1 (en) 2020-04-23
PH12020552127A1 (en) 2021-07-19
US20190375708A1 (en) 2019-12-12
IL279242A (en) 2021-01-31
KR20210019489A (en) 2021-02-22
US10590076B2 (en) 2020-03-17
US11566001B2 (en) 2023-01-31
GB202010185D0 (en) 2020-08-19
US11014881B2 (en) 2021-05-25
CA3102972A1 (en) 2019-12-19
CN112585118A (en) 2021-03-30
US20220298110A1 (en) 2022-09-22
GB2583614A (en) 2020-11-04
EP3807246A4 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
US11566001B2 (en) Hepatitis B capsid assembly modulators
US11820757B2 (en) Antagonists of the muscarinic acetylcholine receptor M4
US11247965B2 (en) Hepatitis B capsid assembly modulators
JP5829644B2 (en) Aminopyrimidines as Syk inhibitors
JP6186434B2 (en) Nitrogen heterocyclic derivatives and their applications in medicine
US9290507B2 (en) B-RAF kinase inhibitors
US8859768B2 (en) Heteroaryls and uses thereof
AU2017258187A1 (en) Isoquinolin-3-yl carboxamides and preparation and use thereof
US11952381B2 (en) Cardiac sarcomere inhibitors
RU2559895C2 (en) Nitrogen-containing heteroaryl derivatives
JP6305510B2 (en) Acyclic cyanoethylpyrazolopyridone as a Janus kinase inhibitor
MX2015001941A (en) 4-HETEROARYL SUBSTITUTED BENZOIC ACID COMPOUNDS AS RORgammaT INHIBITORS AND USES THEREOF.
US20160016907A1 (en) Pyridine derivatives as muscarinic m1 receptor positive allosteric modulators
CN112513021B (en) ROR gamma antagonist and application thereof in medicines
WO2016051193A1 (en) Compounds useful as csf1 modulators
US20230107941A1 (en) Hepatitis b capsid assembly modulators
US20230127898A1 (en) Hepatitis b capsid assembly modulators
US20240190824A1 (en) Inhibitors of trek (twik related k+ channels) channel function
WO2024131265A1 (en) COMPOUND FOR TREATING PI3Kγ-MEDIATED DISEASES AND USE THEREOF
CN118338902A (en) Pyrrolo [2,3-b ] pyridine PGDH inhibitors and methods of making and using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: VENATORX PHARMACEUTICALS, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNS, CHRISTOPHER J.;COBURN, GLEN;LIU, BIN;AND OTHERS;REEL/FRAME:061183/0641

Effective date: 20190730

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION