US20230041016A1 - Anti-slc6a1 oligonucleotides and related methods - Google Patents

Anti-slc6a1 oligonucleotides and related methods Download PDF

Info

Publication number
US20230041016A1
US20230041016A1 US17/781,554 US202017781554A US2023041016A1 US 20230041016 A1 US20230041016 A1 US 20230041016A1 US 202017781554 A US202017781554 A US 202017781554A US 2023041016 A1 US2023041016 A1 US 2023041016A1
Authority
US
United States
Prior art keywords
antisense oligonucleotide
slc6a1
antisense
combination
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/781,554
Inventor
Athma A. PAI
Jonathan K. Watts
Kaitlyn VALLA
Eraj Shafiq KHOKHAR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US17/781,554 priority Critical patent/US20230041016A1/en
Publication of US20230041016A1 publication Critical patent/US20230041016A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing

Abstract

The present disclosure provides antisense oligonucleotides that bind to a splice modulatory element target region in an SLC6A1 RNA transcript. The present disclosure provides antisense oligonucleotides that increase the expression of a functional protein encoded by the SLC6A1 RNA transcript in a cell (i.e., GABA Transporter 1, GAT-1). The present disclosure also provides methods of treating a disease or disorder associated with non-productive SLC6A1 RNA transcripts.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a 35 U.S.C. § 371 filing of International Patent Application No. PCT/US2020/063469, filed Dec. 4, 2020, which claims the benefit of U.S. Provisional Patent Application Ser. Nos. 62/943,670, and 63/943,672, both filed Dec. 4, 2019, the entire disclosures of which are incorporated herein by reference.
  • SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 1, 2022, is named 730316_UM9-248US_SL.txt and is 78 kilobytes in size.
  • BACKGROUND
  • Myoclonic-atonic epilepsy (MAE) is an idiopathic form of epilepsy characterized by rapid oscillations between muscle contraction/relaxation (myoclonic) and drop seizures (atonic). Patients suffering from MAE may experience absence seizures, which are characterized by a brief loss of consciousness where the individual will appear to be staring off into space. The affected individual has no memory of the absence seizure and, in children, absence seizures are often misdiagnosed as attention-deficit disorder (ADD). Patients also exhibit varying levels of intellectual disability that differ dramatically from individual to individual.
  • MAE is a primary symptom associated with mutations in the SLC6A1 gene. Human SLC6A1 encodes for the gamma-aminobutyric acid (GABA) transporter protein type 1, GAT-1, which is responsible for the removal of GABA from the synaptic cleft. GABA is the primary inhibitory neurotransmitter and this channel is primarily localized to axons and nerve terminals of GABAergic interneurons. As a member of the neurotransmitter sodium symporters family of proteins, GAT-1 couples the transport of GABA with ion exchange through the GAT-1 channel via the exchange of 1 GABA molecule for 2 sodium ions and 1 chloride ion. The GAT-1 transporter is specifically responsible for the reuptake of GABA into the presynapse following the firing of the interneuron. Without a functional GAT-1 channel, GABA builds up in the synaptic cleft, which can increase the inhibitory activity of the interneuron.
  • It has been hypothesized that the MAE disease mechanism is caused by a loss-of-function leading to haploinsufficiency of GAT-1. Since mutations in SLC6A1 were only added to genetic testing panels in 2017, SLC6A1-related disorders may be critically underdiagnosed. While mutations in SLC6A1 are not considered diagnostic hallmarks of autism spectrum disorder or epilepsy, recent studies have found that the gene may play a significant role in these disorders. Since SLC6A1 is the sixth most significant gene in genome-wide association studies for epilepsy phenotypes and the tenth most associated gene for autism phenotypes, it is also possible that children with SLC6A1 mutations are often misdiagnosed as having generalized epilepsy or autism spectrum disorder
  • In the patients with diagnosed mutations in the SLC6A1 gene, the variability in the mutational positions are striking. SLC6A1 mutations include, but are not limited to, missense mutations, splice-site variants, frameshift mutations, nonsense mutations, and in-frame deletions. Given this diversity in the mutational spectrum, there is a need for a treatment which would function in a mutation-agnostic manner.
  • SUMMARY
  • In one aspect, the disclosure provides an antisense oligonucleotide that binds to a target region in an SLC6A1 RNA transcript, wherein the target region comprises a splice modulatory element.
  • In an embodiment, binding of the antisense oligonucleotide to the target region increases the expression of a functional protein encoded by the SLC6A1 RNA transcript in a cell.
  • In an embodiment, the protein comprises GABA Transporter 1 (GAT-1).
  • In an embodiment, the cell comprises an SLC6A1 expressing cell. In an embodiment, the cell comprises a neuronal cell and/or an astrocyte. In an embodiment, the neuronal cell comprises a GABAergic neuronal cell.
  • In an embodiment, the splice modulatory element comprises one or more of a non-productive splice site, a exonic splicing enhancer, an exonic splicing silencer, an intronic splicing enhancer, or an intronic splicing silencer.
  • In an embodiment, the antisense oligonucleotide comprises a region of complementarity to a target region of an RNA transcript corresponding to a nucleotide sequence of any one of SEQ ID NOs: 1-108.
  • In an embodiment, the antisense oligonucleotide comprises 8 to 80 nucleotides in length. In an embodiment, the antisense oligonucleotide comprises 15 to 25 nucleotides in length. In an embodiment, the antisense oligonucleotide comprises 18 to 20 nucleotides in length.
  • In an embodiment, the antisense oligonucleotide comprises one or more modified nucleotides.
  • In an embodiment, the one or more modified nucleotides comprise a modification of a ribose group, a phosphate group, a nucleobase, or a combination thereof.
  • In an embodiment, the modification of the ribose group comprises 2′-O-methyl, 2′-fluoro, 2′-deoxy, 2′-O-(2-methoxyethyl) (MOE), 2′-O-alkyl, 2′-O-alkoxy, 2′-O-alkylamino, 2′-NH2, a constrained nucleotide, or a combination thereof. In an embodiment, the constrained nucleotide comprises a locked nucleic acid (LNA), an ethyl-constrained nucleotide, a 2′-(S)-constrained ethyl (S-cEt) nucleotide, a constrained MOE, a 2′-O,4′-C-aminomethylene bridged nucleic acid (2′,4′-BNANC), an alpha-L-locked nucleic acid, a tricyclo-DNA, or a combination thereof. In an embodiment, the modification of the ribose group comprises 2′-O-(2-methoxyethyl) (MOE).
  • In an embodiment, the modification of the phosphate group comprises a phosphorothioate, a phosphonoacetate (PACE), a thiophosphonoacetate (thioPACE), an amide, a triazole, a phosphonate, a phosphotriester modification, or a combination thereof. In an embodiment, the modification of the phosphate group comprises phosphorothioate.
  • In an embodiment, the modification of the nucleobase group comprises 2-thiouridine, 4-thiouridine, N6-methyladenosine, pseudouridine, 2,6-diaminopurine, inosine, thymidine, 5-methylcytosine, 5-substituted pyrimidine, isoguanine, isocytosine, halogenated aromatic groups, or a combination thereof. In an embodiment, the modification of the nucleobase group comprises 5-methylcytosine.
  • In an embodiment, the antisense oligonucleotide further comprises a ligand.
  • In an embodiment, the antisense oligonucleotide comprises a sequence modification pattern of
  • XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,
    XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,
    or
    XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,

    wherein: s represents a phosphorothioate internucleoside linkage; and X represents an adenosine, a guanosine, a cytidine, or a thymine comprising a 2′-O-(2-methoxyethyl) modification.
  • In an embodiment, the antisense oligonucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
  • In an embodiment, the antisense oligonucleotide increases the level of a functional SLC6A1 RNA transcript in a cell that contains the antisense oligonucleotide by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that does not contain the antisense oligonucleotide.
  • In one aspect, the disclosure provides an antisense oligonucleotide comprising a region of complementarity to a SLC6A1 RNA transcript target region corresponding to a nucleotide sequence of any of SEQ ID NOs: 1-108.
  • In an embodiment, the target region comprises a non-productive splice site.
  • In an embodiment, binding of the antisense oligonucleotide to the target region increases the expression of a functional protein encoded by the SLC6A1 RNA transcript in a cell.
  • In an embodiment, the protein comprises GABA Transporter 1 (GAT-1).
  • In an embodiment, the cell comprises an SLC6A1 expressing cell. In an embodiment, the cell comprises a neuronal cell and/or an astrocyte. In an embodiment, the neuronal cell comprises a GABAergic neuronal cell.
  • In an embodiment, the antisense oligonucleotide comprises 8 to 80 nucleotides in length. In an embodiment, the antisense oligonucleotide comprises 15 to 25 nucleotides in length. In an embodiment, the antisense oligonucleotide comprises 18 to 20 nucleotides in length.
  • In an embodiment, the antisense oligonucleotide comprises one or more modified nucleotides.
  • In an embodiment, the one or more modified nucleotides comprise a modification of a ribose group, a phosphate group, a nucleobase, or a combination thereof.
  • In an embodiment, the modification of the ribose group comprises 2′-O-methyl, 2′-fluoro, 2′-deoxy, 2′-O-(2-methoxyethyl) (MOE), 2′-O-alkyl, 2′-O-alkoxy, 2′-O-alkylamino, 2′-NH2, a constrained nucleotide, or a combination thereof. In an embodiment, the constrained nucleotide comprises a locked nucleic acid (LNA), an ethyl-constrained nucleotide, a 2′-(S)-constrained ethyl (S-cEt) nucleotide, a constrained MOE, a 2′-O,4′-C-aminomethylene bridged nucleic acid (2′,4′-BNANC), an alpha-L-locked nucleic acid, a tricyclo-DNA, or a combination thereof. In an embodiment, the modification of the ribose group comprises 2′-O-(2-methoxyethyl) (MOE).
  • In an embodiment, the modification of the phosphate group comprises a phosphorothioate, a phosphonoacetate (PACE), a thiophosphonoacetate (thioPACE), an amide, a triazole, a phosphonate, a phosphotriester modification, or a combination thereof. In an embodiment, the modification of the phosphate group comprises phosphorothioate.
  • In an embodiment, the modification of the nucleobase group comprises 2-thiouridine, 4-thiouridine, N6-methyladenosine, pseudouridine, 2,6-diaminopurine, inosine, thymidine, 5-methylcytosine, 5-substituted pyrimidine, isoguanine, isocytosine, halogenated aromatic groups, or a combination thereof. In an embodiment, the modification of the nucleobase group comprises 5-methylcytosine.
  • In an embodiment, the antisense oligonucleotide further comprises a ligand.
  • In an embodiment, the antisense oligonucleotide comprises a sequence modification pattern of
  • XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs, XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs, or
  • XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs, wherein: s represents a phosphorothioate internucleoside linkage; and X represents an adenosine, a guanosine, a cytidine, or a thymine comprising a 2′-O-(2-methoxyethyl) modification.
  • In an embodiment, the antisense oligonucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
  • In an embodiment, the antisense oligonucleotide increases the level of a functional SLC6A1 RNA transcript in a cell that contain the antisense oligonucleotide by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that does not contain the antisense oligonucleotide.
  • In one aspect, the disclosure provides a multimeric antisense oligonucleotide compound comprising two or more antisense oligonucleotides as described above, wherein the two or more antisense oligonucleotides are linked together through a linker.
  • In an embodiment, the linker comprises a cleavable linker. In an embodiment, the cleavable linker degrades when cleaved. In an embodiment, the cleavable linker comprises a nuclease-cleavable linker comprising a phosphodiester linkage. In an embodiment, the nuclease-cleavable linker comprises from about 2 to about 8 nucleotides. In an embodiment, the nuclease-cleavable linker comprises about 6 nucleotides. In an embodiment, the cleavable linker is cleaved under reducing conditions or changing pH conditions. In an embodiment, the cleavable linker is cleaved by an intracellular or endosomal nuclease. In an embodiment, the cleavable linker is cleaved by an intracellular or endosomal protease.
  • In an embodiment, at least one of the antisense oligonucleotides comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
  • In one aspect, the disclosure provides a combination comprising two or more antisense oligonucleotides that bind to two or more target regions in an SLC6A1 RNA transcript, wherein the two or more target regions comprise a splice modulatory element.
  • In an embodiment, two or more antisense oligonucleotides are linked together through a linker.
  • In an embodiment, the linker comprises a cleavable linker. In an embodiment, the cleavable linker degrades when cleaved. In an embodiment, the cleavable linker comprises a nuclease-cleavable linker comprising a phosphodiester linkage. In an embodiment, the nuclease-cleavable linker comprises from about 2 to about 8 nucleotides. In an embodiment, the nuclease-cleavable linker comprises about 6 nucleotides. In an embodiment, the cleavable linker is cleaved under reducing conditions or changing pH conditions. In an embodiment, the cleavable linker is cleaved by an intracellular or endosomal nuclease. In an embodiment, the cleavable linker is cleaved by an intracellular or endosomal protease.
  • In an embodiment, at least one antisense oligonucleotide comprises a region of complementarity to a SLC6A1 RNA transcript target region corresponding to a nucleotide sequence of any of SEQ ID NOs: 1-108.
  • In an embodiment, at least one of the antisense oligonucleotides comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
  • In one aspect, the disclosure provides a method of treating a disease or disorder characterized by haploinsufficiency of a SLC6A1 gene, comprising administering to a subject in need thereof the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides as described above, and treating the disease or disorder.
  • In one aspect, the disclosure provides a method of treating a disease or disorder characterized by reduced expression of a functional GAT-1 protein encoded by a SLC6A1 gene, comprising administering to a subject in need thereof the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides as described above, and treating the disease or disorder.
  • In an embodiment, the disease or disorder comprises myoclonic-atonic epilepsy (MAE), epilepsy, epileptic encephalopathy, seizures, autism spectrum disorders, intellectual disability, or a combination thereof.
  • In an embodiment, the methods comprise administering the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides to a brain of the subject.
  • In an embodiment, the methods comprise administering the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides by intrathecal, intraventricular, intrastriatal injection or infusion, or a combination thereof.
  • In an embodiment, the injection or infusion comprises administration using an Ommaya reservoir, an intrathecal catheter, or a combination thereof.
  • In one aspect, the disclosure provides a method of increasing expression of a functional SLC6A1 RNA transcript in a cell, the method comprising contacting the cell with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides as described above, thereby increasing the expression of a functional transcript of the SLC6A1 RNA transcript in a cell.
  • In an embodiment, expression is increased by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that is not contacted with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides.
  • In one aspect, the disclosure provides a method of increasing expression of a protein encoded by a SLC6A1 RNA transcript in a cell, the method comprising contacting a cell with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides as described above, thereby increasing expression of the protein.
  • In an embodiment, expression is increased by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that is not contacted with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides.
  • In an embodiment, the protein comprises GABA Transporter 1 (GAT-1).
  • In an embodiment, the cell comprises an SLC6A1 expressing cell. In an embodiment, the cell comprises a neuronal cell and/or an astrocyte. In an embodiment, the neuronal cell comprises a GABAergic neuronal cell.
  • In one aspect, the disclosure provides an antisense oligonucleotide that increases expression of a functional protein from the SLC6A1 gene by targeting the 5′- and/or 3′-untranslated regions of the SLC6A1 transcript.
  • In an embodiment, the antisense oligonucleotide inhibits translation initiation from an upstream open reading frame to increase translation efficiency from the primary open reading frame.
  • In an embodiment, the antisense oligonucleotide increases mRNA stability.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other features and advantages of the present invention will be more fully understood from the following detailed description of illustrative embodiments taken in conjunction with the accompanying drawings. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • FIG. 1 depicts qPCR-based expression of SLC6A1 in human SH-SY5Y cells.
  • FIG. 2 depicts the schematic of the SLC6A1 genetic locus on human chromosome 3.
  • Structures for the 37 most comprehensive annotated isoforms are shown (bottom), with common exons (i.e. represented in at least 50% of isoforms) highlighted in black.
  • Computationally predicted cryptic splice sites (5′ splice sites and 3′ splice sites) are indicated by dashes at the top.
  • FIG. 3 depicts a bar graph of SLC6A1 relative mRNA levels in KNS60 neuroblastoma cells transfected with various steric blocking antisense oligonucleotides at 50 nM.
  • DETAILED DESCRIPTION
  • The present disclosure provides antisense compounds, methods, and compositions for the treatment, prevention, or amelioration of diseases, disorders, and conditions associated with SLC6A1 in a subject in need thereof. SLC6A1-related diseases, disorders, and conditions include, without limitation, neurological diseases and disorders, such as autism spectrum disorder, epilepsy and attention deficit hyperactivity disorder (ADHD).
  • It is to be understood that the methods described in this disclosure are not limited to particular methods and experimental conditions disclosed herein as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
  • Unless otherwise defined herein, scientific and technical terms used herein have the meanings that are commonly understood by those of ordinary skill in the art. In the event of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. The use of “or” means “and/or” unless stated otherwise. The use of the term “including,” as well as other forms, such as “includes” and “included,” is not limiting.
  • Generally, nomenclatures used in connection with cell and tissue culture, molecular biology, immunology, microbiology, genetics, protein, and nucleic acid chemistry, and hybridization described herein are those well-known and commonly used in the art. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art.
  • So that the invention may be more readily understood, certain terms are first defined.
  • The term “nucleoside” refers to a molecule having a purine or pyrimidine base covalently linked to a ribose or deoxyribose sugar. Exemplary nucleosides include adenosine, guanosine, cytidine, uridine and thymidine. Additional exemplary nucleosides include inosine, 1-methyl inosine, pseudouridine, 5,6-dihydrouridine, ribothymidine, 2N-methylguanosine and N2,N2-dimethylguanosine (also referred to as “rare” nucleosides). The term “nucleotide” refers to a nucleoside having one or more phosphate groups joined in ester linkages to the sugar moiety. Exemplary nucleotides include nucleoside monophosphates, diphosphates and triphosphates. The terms “polynucleotide” and “nucleic acid molecule” are used interchangeably herein and refer to a polymer of nucleotides joined together by a phosphodiester or phosphorothioate linkage between 5′ and 3′ carbon atoms.
  • The term “RNA” or “RNA molecule” or “ribonucleic acid molecule” refers to a polymer of ribonucleotides (e.g., 2, 3, 4, 5, 10, 15, 20, 25, 30, or more ribonucleotides). An RNA nucleotide refers to a single ribonucleotide. The term “DNA” or “DNA molecule” or “deoxyribonucleic acid molecule” refers to a polymer of deoxyribonucleotides. A DNA nucleotide refers to a single deoxyribonucleotide. As used herein, the term “DNA-like” refers to a conformation of, e.g. a modified nucleoside or nucleotide, which is similar to the conformation of a corresponding unmodified DNA unit. For example, a DNA-like nucleotide may refer to a conformation of a modified deoxyribonucleotide similar to a corresponding unmodified deoxyribonucleotide. Examples of DNA-like nucleotides include, without limitation, e.g., 2′-deoxyribonucleotides, 2′-deoxy-2′-substituted arabinonucleotides (e.g., 2′-deoxy-2′-fluoroarabinonucleotides, also known in the art as 2′F-ANA or FANA), and corresponding phosphorothioate analogs. As used herein, the term “RNA-like” refers to a conformation of, e.g. a modified nucleoside or nucleotide which is similar to the conformation of a corresponding unmodified RNA unit. RNA-like conformations may adopt an A-form helix while DNA-like conformations adopt a B-form helix. Examples RNA-like nucleotides include, without limitation, e.g., 2′-substituted-RNA nucleotides (e.g., 2′-fluoro-RNA nucleotides also known in the art as 2′F-RNA), locked nucleic acid (LNA) nucleotides (also known in the art as bridged nucleic acids or bicyclic nucleotides), 2′-fluoro-4′-thioarabinonucleotide (also known in the art as 4'S-FANA nucleotides), 2′-O-alkyl-RNA, and corresponding phosphorothioate analogs.
  • DNA and RNA can be synthesized naturally (e.g., by DNA replication or transcription of DNA, respectively) or chemically synthesized. RNA can be post-transcriptionally modified. DNA and RNA can be single-stranded (i.e., ssRNA and ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively). “mRNA” or “messenger RNA” is single-stranded RNA that specifies the amino acid sequence of one or more polypeptide chains. This information is translated during protein synthesis when ribosomes bind to the mRNA.
  • As used herein, the term “small interfering RNA” (“siRNA”) (also referred to in the art as “short interfering RNAs”) refers to an RNA (or RNA analog) comprising between about 10-50 nucleotides (or nucleotide analogs) which is capable of directing or mediating RNA interference. In one aspect, a siRNA comprises between about 15-30 nucleotides or nucleotide analogs, or between about 16-25 nucleotides (or nucleotide analogs), or between about 18-23 nucleotides (or nucleotide analogs), or between about 19-22 nucleotides (or nucleotide analogs) (e.g., 19, 20, 21 or 22 nucleotides or nucleotide analogs). The term “short” siRNA refers to a siRNA comprising about 21 nucleotides (or nucleotide analogs), for example, 19, 20, 21 or 22 nucleotides. The term “long” siRNA refers to a siRNA comprising about 24-25 nucleotides, for example, 23, 24, 25 or 26 nucleotides. Short siRNAs may, in some instances, include fewer than 19 nucleotides, e.g., 16, 17 or 18 nucleotides, provided that the shorter siRNA retains the ability to mediate RNAi. Likewise, long siRNAs may, in some instances, include more than 26 nucleotides, provided that the longer siRNA retains the ability to mediate RNAi absent further processing, e.g., enzymatic processing, to a short siRNA.
  • The term “nucleotide analog” or “altered nucleotide” or “modified nucleotide” refers to a non-standard nucleotide, including non-naturally occurring ribonucleotides or deoxyribonucleotides. Exemplary modified nucleotides are modified at any position so as to alter certain chemical properties of the nucleotide yet retain the ability of the modified nucleotide to perform its intended function. Examples of positions of the nucleotide which may be derivatized include the 5 position, e.g., 5-(2-amino)propyl uridine, 5-bromo uridine, 5-propyne uridine, 5-propenyl uridine, etc.; the 6 position, e.g., 6-(2-amino)propyl uridine; the 8-position for adenosine and/or guanosines, e.g., 8-bromo guanosine, 8-chloro guanosine, 8-fluoroguanosine, etc. Modified nucleotides also include deaza nucleotides, e.g., 7-deaza-adenosine; O- and N-modified (e.g., alkylated, e.g., N6-methyl adenosine, or as otherwise known in the art) nucleotides; and other heterocyclically modified nucleotides such as those described in Herdewijn, Antisense Nucleic Acid Drug Dev., 2000 Aug. 10(4):297-310.
  • Modified nucleotides may also comprise modifications to the sugar portion of the nucleotides. For example, the 2′ OH-group may be replaced by a group selected from H, OR, R, F, Cl, Br, I, SH, SR, NH2, NHR, NR2, COOR, or OR, wherein R is substituted or unsubstituted with C1-C6 alkyl, alkenyl, alkynyl, aryl, etc. As another example, the ribose sugar may be replaced with a bicyclic or tricylic moiety, such as in Locked Nucleic Acid, constrained ethyl, tricycloDNA, or other bridged or bicyclic modifications. Other possible modifications include those described in U.S. Pat. Nos. 5,858,988, and 6,291,438.
  • The phosphate group of the nucleotide can also be modified, e.g., by substituting one or more of the oxygens of the phosphate group with sulfur (e.g., phosphorothioates), or by making other substitutions which allow the nucleotide to perform its intended function such as described in, Eckstein, Antisense Nucleic Acid Drug Dev. 2000 Apr. 10(2):117-21, Rusckowski et al. Antisense Nucleic Acid Drug Dev. 2000 Oct. 10(5):333-45, Stein, Antisense Nucleic Acid Drug Dev. 2001 Oct. 11(5): 317-25, Vorobjev et al. Antisense Nucleic Acid Drug Dev. 2001 Apr. 11(2):77-85, and U.S. Pat. No. 5,684,143. Certain of the above-referenced modifications (e.g., phosphate group modifications) can decrease the rate of hydrolysis of, for example, polynucleotides comprising said analogs in vivo or in vitro.
  • As used herein, the terms “unmodified nucleotide” or “non-modified nucleotide” refers to a nucleotide composed of naturally occurring nucleobases, sugar moieties, and internucleoside linkages. In some embodiments, a non-modified nucleotide is an RNA nucleotide (i.e. β-D-ribonucleoside) or a DNA nucleotide (i.e. β-D-deoxyribonucleoside).
  • The term “oligonucleotide” refers to a short polymer of nucleotides and/or modified nucleotides. As discussed above, the oligonucleotides may be linked with linkages which result in a lower rate of hydrolysis as compared to an oligonucleotide linked with phosphodiester linkages. For example, the nucleotides of the oligonucleotide may comprise triazole, amide, carbamate, methylenediol, ethylene diol, oxymethylthio, oxyethylthio, oxycarbonyloxy, phosphorodiamidate, phosphoroamidate, phosphonate, and/or phosphorothioate linkages. Alterations or modifications of the oligonucleotide can further include addition of non-nucleotide material, such as to the end(s) of the oligonucleotide or internally (at one or more nucleotides of the oligonucleotide).
  • The term “antisense” refers generally to any approach reliant upon agents, e.g., single-stranded oligonucleotides, that are sufficiently complementary to a target sequence to associate with the target sequence in a sequence-specific manner (e.g., hybridize to the target sequence). Exemplary uses of antisense in the instant application involve use of an oligoribonucleotide agent that hybridizes to a target pre-mRNA molecule and blocks an activity/effect (e.g., splicing pattern and/or blocking of non-productive splice sites) of the targeted pre-mRNA sequence. Antisense approaches commonly are used to target DNA or RNA for transcriptional inhibition, translational inhibition, degradation, etc. Antisense is a technology that can be initiated by the hand of man, for example, to modulate splicing and/or silence the expression of target genes.
  • As used herein, the term “antisense oligonucleotide” refers to a nucleic acid (e.g., an RNA or analog thereof), having sufficient sequence complementarity to a target RNA (i.e., the RNA for which splice site selection is modulated) to block a region of a target RNA (e.g., pre-mRNA) in an effective manner. In exemplary embodiments of the instant invention, such blocking of non-productive splice sites in SLC6A1 pre-mRNA serves to modulate splicing, either by masking a binding site for a native protein that would otherwise modulate splicing and/or by altering the structure of the targeted RNA. In certain embodiments of the instant invention, the target RNA is a target pre-mRNA (e.g., SLC6A1 pre-mRNA).
  • An antisense oligonucleotide having a “sequence sufficiently complementary to a target RNA sequence to modulate splicing of the target RNA” means that the antisense agent has a sequence sufficient to trigger the masking of a binding site for a native protein that would otherwise modulate splicing and/or alters the three-dimensional structure of the targeted RNA. Likewise, an oligonucleotide reagent having a “sequence sufficiently complementary to a target RNA sequence to modulate splicing of the target RNA” means that the oligonucleotide reagent has a sequence sufficient to trigger the masking of a binding site for a native protein that would otherwise modulate splicing and/or alters the three-dimensional structure of the targeted RNAs used herein.
  • The term “target gene” or “target RNA transcript” is a gene or transcript (e.g., a pre-mRNA) whose expression is to be substantially modulated. This modulation can be achieved by steric blocking of a non-productive or cryptic splice site.
  • The term “non-target gene” is a gene whose expression is not to be substantially modulated. For example, a target gene of the present invention is SLC6A1, and a non-target gene of the present invention is a gene that is not SLC6A1. In one embodiment, the polynucleotide sequences of the target and non-target gene (e.g., mRNA encoded by the target and non-target genes) can differ by one or more nucleotides. In another embodiment, the target and non-target genes can differ by one or more polymorphisms (e.g., Single Nucleotide Polymorphisms or SNPs). In another embodiment, the target and non-target genes can share less than 100% sequence identity. In another embodiment, the non-target gene may be a homologue (e.g., an orthologue or paralogue) of the target gene.
  • The term “antisense activity” means any detectable or measurable activity attributable to the hybridization of an antisense compound to its target nucleic acid. In some embodiments, antisense activity is an increase in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid.
  • The term “target-recognition sequence” refers to the portion of an antisense compound that recognizes a target nucleic acid. The target-recognition sequence has a nucleobase sequence that permits hybridization to a corresponding region or segment of a target nucleic acid.
  • The term “conserved region” refers to a portion, or portions, of a nucleic acid sequence that is conserved, i.e. a portion, or portions of the nucleic acid sequence having a similar or identical sequence across species. A conserved region may be computationally identified, e.g., using any sequence alignment software available in the art.
  • As used herein, the term “sufficiently complementary” means that antisense oligonucleotide has a sequence (e.g., an antisense oligonucleotide having a target-recognition sequence), which is sufficient to bind the desired target transcript (e.g., a SLC6A1 transcript), and to trigger the inhibition of non-productive splicing of the target transcript (e.g., steric inhibition of splicing machinery of the target pre-mRNA). For example, a target-recognition sequence with at least 90% complementarity to a target nucleic acid sequence (e.g., a portion of a SLC6A1 transcript) can be sufficiently complementary to trigger modulation of the SLC6A1 transcript. The term “perfectly complementary” refers to, e.g., a target-recognition sequence with 100% complementarity to a target nucleic acid sequence. Complementary nucleic acid molecules hybridize to each other. The term “hybridization” means the annealing of complementary nucleic acid molecules. In certain embodiments, complementary nucleic acid molecules include an antisense compound and a target nucleic acid.
  • The term “about” or “approximately” means within 20%, within 10%, within 5%, or within 1% or less of a given value or range.
  • As used herein, “administer” or “administration” refers to the act of injecting or otherwise physically delivering a substance as it exists outside the body (e.g., an antisense compound provided herein) into a patient. The antisense oligonucleotides described herein may be administered to the central nervous system of a patient. The central nervous system includes the brain and spinal cord. Administration methods to the central nervous system include, but are not limited to, intrathecal, intraventricular or intrastriatal infusion or delivery and/or any other method of physical delivery described herein or known in the art. Intraventricular infusion can comprise administration using an Ommaya reservoir.
  • When a disease, or a symptom thereof, is being managed or treated, administration of the substance typically occurs after the onset of the disease or symptoms thereof. When a disease, or symptom thereof, is being prevented, administration of the substance typically occurs before the onset of the disease or symptoms thereof and can be continued chronically to defer or reduce the appearance or magnitude of disease-associated symptoms, e.g., damage to the involved tissues and airways.
  • As used herein, the term “composition” is intended to encompass a product containing the specified ingredients (e.g., an antisense compound provided herein) in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • “Effective amount” means the amount of active pharmaceutical agent (e.g., an antisense compound of the present disclosure) sufficient to effectuate a desired physiological outcome in an individual in need of the agent. The effective amount can vary among individuals depending on the health and physical condition of the individual to be treated, the taxonomic group of the individuals to be treated, the formulation of the composition, assessment of the individual's medical condition, and other relevant factors.
  • As used herein, the terms “subject” and “patient” are used interchangeably. For instance, a subject is can be a mammal, such as a non-primate (e.g., cows, pigs, horses, cats, dogs, rats, etc.) or a primate (e.g., monkey and human). In certain embodiments, the term “subject,” as used herein, refers to a vertebrate, such as a mammal. Mammals include, without limitation, humans, non-human primates, wild animals, feral animals, farm animals, sports animals, and pets. In one embodiment, the subject is a mammal, such as a human, having a SLC6A1-related disorder (e.g., myoclonic-atonic epilepsy (MAE)). In another embodiment, the subject is a mammal, such as a human, that is at risk for developing a SLC6A1-related disorder.
  • As used herein, the term “therapy” refers to any protocol, method, and/or agent that can be used in the prevention, management, treatment and/or amelioration of a disease or a symptom related thereto, such as a SLC6A1-related disorder (e.g., myoclonic-atonic epilepsy (MAE)). In some embodiments, the term “therapy” refers to any protocol, method, and/or agent that can be used in the modulation of an immune response to an infection in a subject or a symptom related thereto. In some embodiments, the terms “therapies” and “therapy” refer to a biological therapy, supportive therapy, and/or other therapies useful in the prevention, management, treatment and/or amelioration of a disease or a symptom related thereto, such as a SLC6A1-related disorder known to one of skill in the art, such as medical personnel. In other embodiments, the terms “therapies” and “therapy” refer to a biological therapy, supportive therapy, and/or other therapies useful in the modulation of an immune response to an infection in a subject or a symptom related thereto known to one of skill in the art, such as medical personnel.
  • As used herein, the terms “treat,” “treatment” and “treating” refer to the reduction or amelioration of the progression, severity, and/or duration of a disease or a symptom related thereto, such as a SLC6A1-related disorder, by the administration of one or more therapies (including, but not limited to, the administration of one or more prophylactic or therapeutic agents, such as an antisense oligonucleotide provided herein). The term “treating,” as used herein, can also refer to altering the disease course of the subject being treated. Therapeutic effects of treatment include, without limitation, preventing occurrence or recurrence of disease, alleviation of symptom(s), diminishment of direct or indirect pathological consequences of the disease, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.
  • As used herein, a “splice modulatory element” is a nucleic acid region in a target RNA transcript (e.g., a SLC6A1 transcript), which either enhances or silences the splicing of introns in the pre-mRNA, or in general regulates the constitutive or alternative splicing of the pre-mRNA. Examples of splice modulatory elements include, but are not limited to, non-productive splice sites, exonic splicing enhancers, exonic splicing silencers, intronic splicing enhancers, and intronic splicing silencers.
  • As used herein, a “non-productive splice site” or “cryptic splice site” is splice site in a pre-mRNA that is used by the cellular splicing machinery that leads to the inappropriate inclusion and/or exclusion of introns and/or exons, thereby producing a non-functional transcript. The non-functional transcript can be rapidly degraded in the cell via one or more mechanisms, such as nonsense-mediated decay (NMD). The non-functional transcript may be translated into a non-functional or deleterious protein.
  • As used herein, a “functional SLC6A1 RNA transcript” is a SLC6A1 RNA transcript that is translated into a functional protein encoded by SLC6A1 (i.e., GABA Transporter 1, GAT-1).
  • SLC6A1 Antisense Oligonucleotides
  • The present disclosure provides antisense oligonucleotides that are capable of sterically blocking splice modulatory elements, such as non-productive splice cites, a exonic splicing enhancer, an exonic splicing silencer, an intronic splicing enhancer, or an intronic splicing silencer.
  • In certain embodiments, the antisense oligonucleotides are capable of sterically blocking non-productive splice sites in SLC6A1 transcripts (e.g., SLC6A1 pre-mRNA). Cryptic or non-productive splicing occurs when the spliceosome utilizes erroneous splice sites and generates transcripts that then undergo nonsense-mediated mRNA decay (NMD). This may be common in genes with long introns or many introns. While these isoforms are rarely observed in steady-state gene expression measurements, they are likely to represent a large amount of the total transcriptional output of a gene. Without wishing to be bound by theory, blocking non-productive splice sites may lead to an increase in productive mRNA levels as there are fewer molecular resources being wasted on the generation of non-productive transcripts.
  • Sterically blocking non-productive splice sites in SLC6A1 transcripts may reduce the generation of non-productive splice forms of SCL6A1. Non-productive splice forms of SCL6A1 may be SLC6A1 transcripts that are not translated into a functional protein encoded by SLC6A1 (i.e., GABA Transporter 1, GAT-1) or SLC6A1 transcripts that are translated into non-functional proteins. In certain embodiments, the antisense oligonucleotides of the disclosure reduce the level of SCL6A1 non-productive splice forms by at least about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%. The % reduction may be in comparison to a non-specific control antisense oligonucleotide or in comparison to the levels of SCL6A1 non-productive splice forms prior to administration of an antisense oligonucleotide. In certain embodiments, sterically blocking non-productive splice sites in SLC6A1 transcripts may increase the generation of productive SCL6A1 mRNA isoforms. Productive SCL6A1 mRNA isoforms are mRNA that are translated into a functional protein encoded by SLC6A1 (i.e., GABA Transporter 1, GAT-1). In certain embodiments, the antisense oligonucleotides of the disclosure increase the level of productive SCL6A1 mRNA isoforms by at least about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%. The % increase may be in comparison to a non-specific control antisense oligonucleotide or in comparison to the levels of productive SCL6A1 mRNA isoforms forms prior to administration of an antisense oligonucleotide.
  • In certain embodiments, the antisense oligonucleotides of the disclosure possess complementarity to a target non-productive splice site in an SLC6A1 transcript, thereby sterically blocking the non-productive splice site. In certain embodiments, the antisense oligonucleotides of the disclosure possess complementarity to a target non-productive 5′ splice site (5′ ss). In certain embodiments, the antisense oligonucleotides of the disclosure possess complementarity to a target non-productive 3′ splice site (3′ ss). The antisense oligonucleotides of the disclosure possess a region of complementarity to a target non-productive 5′ ss or 3′ ss sufficient to reduce the level of SCL6A1 non-productive splice forms or increase the generation of productive SCL6A1 mRNA isoforms. In certain embodiments, the antisense oligonucleotides of the disclosure comprise a region of complementarity to a target region of an RNA transcript corresponding to a nucleotide sequence of any one of SEQ ID NOs: 1-108, as recited in Table 1 and Table 2. In other embodiments, the antisense oligonucleotides of the disclosure comprise a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127, as recited in Table 4.
  • In certain embodiments, the antisense oligonucleotides of the disclosure comprise at least one nucleotide that has complementarity to the non-productive splice site. The antisense oligonucleotides of the disclosure need not comprise complementarity to the non-productive splice site to reduce the level of SCL6A1 non-productive splice forms or increase the generation of productive SCL6A1 mRNA isoforms. Rather, the antisense oligonucleotides of the disclosure may comprise complementarity to a region around the non-productive splice site. For example, but in no way limiting, the antisense oligonucleotides may comprise complementarity to a region upstream (5′) of the non-productive splice site or a region downstream (3′) of the non-productive splice site. The antisense oligonucleotides may comprise complementarity to a region 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more nucleotides upstream of the non-productive splice site. The antisense oligonucleotides may comprise complementarity to a region about 1 to about 100 nucleotides upstream of the non-productive splice site. The antisense oligonucleotides may comprise complementarity to a region 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or more nucleotides downstream of the non-productive splice site. The antisense oligonucleotides may comprise complementarity to a region about 1 to about 100 nucleotides downstream of the non-productive splice site.
  • In certain embodiments, the antisense oligonucleotides of the disclosure may comprise complementarity to a exonic splicing enhancer, an exonic splicing silencer, an intronic splicing enhancer, or an intronic splicing silencer. The antisense oligonucleotides of the disclosure may possess a region of complementarity to a target exonic splicing enhancer, an exonic splicing silencer, an intronic splicing enhancer, or an intronic splicing silencer sufficient to reduce the level of SCL6A1 non-productive splice forms or increase the generation of productive SCL6A1 mRNA isoforms.
  • In another aspect of the disclosure, a combination comprising two or more antisense oligonucleotides that bind to two or more target regions in an SLC6A1 RNA transcript, is provided. Each antisense oligonucleotide in the combination may comprise complementarity to a region within or around a different splice modulatory element. For example, but in no way limiting, a first antisense oligonucleotide may comprise complementarity to a target region of SEQ ID NO: 1, as recited in Table 1, and a second antisense oligonucleotide may comprise complementarity to a target region of SEQ ID NO: 53, as recited in Table 2. The combination may be administered to a subject in vivo or cells ex vivo or in vitro as separate antisense oligonucleotides (i.e., two or more antisense oligonucleotides in a mixture), or the combination may be administered by linking the two or more antisense oligonucleotides.
  • In certain embodiments, the antisense oligonucleotides that are capable of sterically blocking non-productive splice sites in SLC6A1 transcripts, have chemically modified subunits arranged in patterns, or motifs, to confer to the antisense compounds properties such as enhanced the inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.
  • A nucleoside is a base-sugar combination. The nucleobase (also known as base) portion of the nucleoside is normally a heterocyclic base moiety. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2′, 3′ or 5′ hydroxyl moiety of the sugar. Oligonucleotides are formed through the covalent linkage of adjacent nucleosides to one another, to form a linear polymeric oligonucleotide. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside linkages of the oligonucleotide.
  • Modifications to antisense compounds encompass substitutions or changes to internucleoside linkages, sugar moieties, or nucleobases. Modified antisense compounds are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target, increased stability in the presence of nucleases, or increased inhibitory activity.
  • Chemically modified nucleosides may also be employed to increase the binding affinity of a shortened or truncated antisense oligonucleotide for its target nucleic acid. Consequently, comparable results can often be obtained with shorter antisense compounds that have such chemically modified nucleosides.
  • The naturally occurring internucleoside linkage of RNA and DNA is a 3′ to 5′ phosphodiester linkage. Antisense compounds having one or more modified, i.e. non-naturally occurring, internucleoside linkages are often selected over antisense compounds having naturally occurring internucleoside linkages because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for target nucleic acids, and increased stability in the presence of nucleases.
  • Oligonucleotides having modified internucleoside linkages include internucleoside linkages that retain a phosphorus atom as well as internucleoside linkages that do not have a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known.
  • In certain embodiments, antisense compounds targeted to a SLC6A1 nucleic acid comprise one or more modified internucleoside linkages. In certain embodiments, the modified internucleoside linkages are phosphorothioate linkages. In certain embodiments, each internucleoside linkage of an antisense compound is a phosphorothioate internucleoside linkage.
  • Antisense compounds of the invention can optionally contain one or more nucleosides wherein the sugar group has been modified. Such sugar modified nucleosides may impart enhanced nuclease stability, increased binding affinity or some other beneficial biological property to the antisense compounds. In certain embodiments, nucleosides comprise a chemically modified ribofuranose ring moieties. Examples of chemically modified ribofuranose rings include without limitation, addition of substituent groups (including 5′ and 2′ substituent groups, bridging of ring atoms to form bicyclic nucleic acids (BNA), replacement of the ribosyl ring oxygen atom with S, N(R), or C(R1)(R2) (R═H, C1-C12 alkyl or a protecting group) and combinations thereof. Examples of chemically modified sugars include 2′-F-5′-methyl substituted nucleoside (see PCT International Application WO 2008/101157 Published on Aug. 21, 2008 for other disclosed 5′,2′-bis substituted nucleosides) or replacement of the ribosyl ring oxygen atom with S with further substitution at the 2′-position (see published U.S. Patent Application US2005-0130923, published on Jun. 16, 2005) or alternatively 5′-substitution of a BNA (see PCT International Application WO 2007/134181 Published on Nov. 22, 2007) wherein LNA is substituted with for example a 5′-methyl or a 5′-vinyl group).
  • Examples of nucleosides having modified sugar moieties include without limitation nucleosides comprising 5′-vinyl, 5′-methyl (R or S), 4′-S, 2′-F (i.e., 2′-fluoro), 2′-OCH3 (i.e., 2′-O-methyl) and 2′-O(CH2)2OCH3 (i.e., 2′-O-methoxyethyl) substituent groups. The substituent at the 2′ position can also be selected from allyl, amino, azido, thio, O-allyl, O-C1-C10 alkyl, OCF3, O(CH2)2SCH3, O(CH2)2—O—N(Rm)(Rn), and O—CH2—C(═O)—N(Rm)(Rn), where each Rm and Rn is, independently, H or substituted or unsubstituted C1-C10 alkyl. 2′-modified nucleotides are useful in the present invention, for example, 2′-O-methyl RNA, 2′-O-methoxyethyl RNA, 2′-fluoro RNA, and others envisioned by one of ordinary skill in the art.
  • Examples of bicyclic nucleic acids (BNAs) include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. A BNA comprising a bridge between the 4′ and 2′ ribosyl ring atoms can be referred to as a locked nucleic acid (LNA), and is often referred to as inaccessible RNA. As used herein, the term “locked nucleotide” or “locked nucleic acid (LNA)” comprises nucleotides in which the 2′ deoxy ribose sugar moiety is modified by introduction of a structure containing a heteroatom bridging from the 2′ to the 4′ carbon atoms. The term “non-locked nucleotide” comprises nucleotides that do not contain a bridging structure in the ribose sugar moiety. Thus, the term comprises DNA and RNA nucleotide monomers (phosphorylated adenosine, guanosine, uridine, cytidine, deoxyadenosine, deoxyguanosine, deoxythymidine, deoxycytidine) and derivatives thereof as well as other nucleotides having a 2′-deoxy-erythro-pentofuranosyl sugar moiety or a ribo-pentofuranosyl moiety. In certain embodiments, antisense compounds provided herein include one or more BNA nucleosides wherein the bridge comprises one of the formulas: 4′-(CH2)—O-2′ (LNA); 4′-(CH2)—S-2′; 4′-(CH2)—O-2′ (LNA); 4′-(CH2)2-O-2′ (ENA); 4′-C(CH3)2-O-2′ (see PCT/US2008/068922); 4′-CH(CH3)—O-2′ and 4′-CH(CH2OCH3)—O-2′ (see U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008); 4′-CH2—N(OCH3)-2′ (see PCT/US2008/064591); 4′-CH2—O—N(CH3)-2′ (see published U.S. Patent Application US2004-0171570, published Sep. 2, 2004); 4′-CH2—N(R)—O-2′ (see U.S. Pat. No. 7,427,672, issued on Sep. 23, 2008); 4′-CH2—C(CH3)-2′ and 4′-CH2—C(═CH2)-2′ (see PCT/US2008/066154); and wherein R is, independently, H, C1-C12 alkyl, or a protecting group. Each of the foregoing BNAs include various stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see PCT international application PCT/DK98/00393, published on Mar. 25, 1999 as WO 99/14226).
  • In some embodiments, antisense compounds provided herein include one or more 2′, 4′-constrained nucleotides. For example, antisense compounds provided by the present disclosure include those having one or more constrained ethyl (cEt) or constrained methoxyethyl (cMOE) nucleotides. In some embodiments, antisense compounds provided herein are antisense oligonucleotides comprising one or more constrained ethyl (cEt) nucleotides. The terms “constrained ethyl” and “ethyl-constrained” are used interchangeably.
  • In certain embodiments, nucleosides are modified by replacement of the ribosyl ring with a sugar surrogate. Such modification includes without limitation, replacement of the ribosyl ring with a surrogate ring system (sometimes referred to as DNA analogs) such as a morpholino ring, a cyclohexenyl ring, a cyclohexyl ring or a tetrahydropyranyl ring such as one having one of the formula:
  • Figure US20230041016A1-20230209-C00001
  • Many other bicyclo and tricyclo sugar surrogate ring systems are also known in the art that can be used to modify nucleosides for incorporation into antisense compounds (see for example review article: Leumann, J. C, Bioorganic & Medicinal Chemistry, 2002, 10, 841-854; Ito, K. R.; Obika, S., Recent Advances in Medicinal Chemistry of Antisense Oligonucleotides. In Comprehensive Medicinal Chemistry, 3rd edition, Elsevier: 2017). Such ring systems can undergo various additional substitutions to enhance activity.
  • Methods for the preparations of modified sugars are well known to those skilled in the art. In nucleotides having modified sugar moieties, the nucleobase moieties (natural, modified or a combination thereof) are maintained for hybridization with an appropriate nucleic acid target.
  • In certain embodiments, antisense compounds targeted to a SLC6A1 nucleic acid comprise one or more kinds of modified nucleotides. In one embodiment, antisense compounds targeted to a SLC6A1 nucleic acid comprise 2′-modified nucleotides. In one embodiment, antisense compounds targeted to a SLC6A1 nucleic acid comprise a 2′-O-methyl RNA, a 2′-O-methoxyethyl RNA, or a 2′-fluoro RNA. In one embodiment, antisense compounds targeted to a SLC6A1 nucleic acid comprise tricyclo-DNA. Tricyclo-DNA belongs to a class of constrained DNA analogs that display improved hybridizing capacities to complementary RNA, see, e.g., Ittig et al., Nucleic Acids Res. 32:346-353 (2004); Ittig et al., Prague, Academy of Sciences of the Czech Republic. 7:21-26 (Coll. Symp. Series, Hocec, M., 2005); Ivanova et al., Oligonucleotides 17:54-65 (2007); Renneberg et al., Nucleic Acids Res. 30:2751-2757 (2002); Renneberg et al., Chembiochem. 5:1114-1118 (2004); and Renneberg et al., JACS. 124:5993-6002 (2002). In one embodiment, antisense compounds targeted to a SLC6A1 nucleic acid comprise a locked nucleotide, an ethyl-constrained nucleotide, or an alpha-L-locked nucleic acid. Various alpha-L-locked nucleic acids are known by those of ordinary skill in the art, and are described in, e.g., Sorensen et al., J. Am. Chem. Soc. (2002) 124(10):2164-2176.
  • In certain embodiments, antisense compounds targeted to a mutant SLC6A1 nucleic acid comprise one or more modified nucleotides having modified sugar moieties. In some embodiments, the modified nucleotide is a locked nucleotide. In certain embodiments, the locked nucleotides are arranged in a gapmer motif, e.g. a 3-9-3 gapmer format wherein 9 non-locked nucleotides are flanked by 3 locked nucleotides on each side.
  • Nucleobase (or base) modifications or substitutions are structurally distinguishable from, yet functionally interchangeable with, naturally occurring or synthetic unmodified nucleobases. Both natural and modified nucleobases are capable of participating in hydrogen bonding. Such nucleobase modifications may impart nuclease stability, binding affinity or some other beneficial biological property to antisense compounds. Modified nucleobases include synthetic and natural nucleobases such as, for example, 5-methylcytosine (5-me-C). Certain nucleobase substitutions, including 5-methylcytosine substitutions, are particularly useful for increasing the binding affinity of an antisense compound for a target nucleic acid. For example, 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278).
  • Additional modified nucleobases include 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (—C≡C—CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine.
  • Heterocyclic base moieties may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. Nucleobases that are particularly useful for increasing the binding affinity of antisense compounds include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2 aminopropyladenine, 5-propynyluracil and 5-propynylcytosine.
  • In certain embodiments, antisense compounds targeted to a SLC6A1 nucleic acid comprise one or more modified nucleotides having modified sugar moieties. In some embodiments, the modified nucleotide is a locked nucleotide. In certain embodiments, the locked nucleotides are arranged in a gapmer motif, e.g. a 3-9-3 gapmer format wherein 9 non-locked nucleotides are flanked by 3 locked nucleotides on each side. In certain embodiments, antisense compounds targeted to a SLC6A1 nucleic acid comprise one or more modified nucleotides. In some embodiments, the modified nucleotide is 5-methylcytosine. In certain embodiments, each cytosine is a 5-methylcytosine.
  • In certain embodiments, the antisense oligonucleotides of the disclosure comprise a 2′-0-(2-methoxyethyl) modification at one or more nucleotides. In certain embodiments, the antisense oligonucleotides of the disclosure comprise a 2′-O-(2-methoxyethyl) modification at 20% of the nucleotides, at 30% of the nucleotides, at 40% of the nucleotides, at 50% of the nucleotides, at 60% of the nucleotides, at 70% of the nucleotides, at 80% of the nucleotides, or at 90% of the nucleotides. In certain embodiments, the antisense oligonucleotides of the disclosure comprise a 2′-O-(2-methoxyethyl) modification at every nucleotide (100% 2′-O-(2-methoxyethyl) modification).
  • In certain embodiments, the antisense oligonucleotides of the disclosure comprise one or more phosphorothioate internucleoside linkages. In certain embodiments, the antisense oligonucleotides of the disclosure comprise one or more phosphorothioate internucleoside linkages and one or more phosphodiester linkages. In certain embodiments, the antisense oligonucleotides of the disclosure comprise phosphorothioate at every internucleoside linkage.
  • In certain embodiments, the antisense oligonucleotides of the disclosure comprise a sequence modification pattern of
  • XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,
    XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,
    or
    XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,

    wherein: s represents a phosphorothioate internucleoside linkage; and
    X is an adenosine, a guanosine, a cytidine, or a thymine comprising a 2′-O-(2-methoxyethyl) modification.
  • In certain embodiments, an antisense oligonucleotide that targets a SLC6A1 transcript is from about 8 to about 80 nucleotides in length. In other embodiments, the antisense oligonucleotide that targets a SLC6A1 transcript is from about 15 to about 25 nucleotides in length. In other embodiments, the antisense oligonucleotide that targets a SLC6A1 transcript is from about 18 to about 20 nucleotides in length. For example, the antisense oligonucleotides are 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleotides in length, or a range defined by any two of the above values.
  • Branched Antisense Oligonucleotide Compounds
  • The present disclosure also provides branched antisense compounds comprising two or more target-recognition sequences that targets a portion of a SLC6A1 RNA transcript. A branched antisense compound of the present disclosure may be, e.g., a branched antisense oligonucleotide compound.
  • As used herein, the term “branched antisense compound” or “branched antisense oligonucleotide” or “multimeric oligonucleotide compound” refers to two or more antisense compounds or antisense oligonucleotides that are connected together. In certain embodiments, the two or more antisense oligonucleotides are linked together through a linker.
  • In one embodiment, a branched oligonucleotide compound comprises two or more target-recognition sequences, wherein the target-recognition sequences are connected to one another by one or more moieties selected from a linker, a spacer, and a branching point. Target-recognition sequences are described herein. In some embodiments, the branched oligonucleotide compound comprises 2, 3, 4, 5, 6, 7, 8, or more target-recognition sequences, wherein each target-recognition sequences comprises a 5′ end and a 3′ end, and each target-recognition sequence is independently connected to a linker, a spacer, or a branching point at the 5′ end or the 3′ end. In some embodiments, each target-recognition sequence is connected to a linker, a spacer, or a branching point at the 5′ end. In some embodiments, each target-recognition sequence is connected to a linker, a spacer, or a branching point at the 3′ end. In another embodiment, each target-recognition sequence is connected to a linker, a spacer, or a branching point. In some embodiments, each of the target-recognition sequences are antisense compounds and/or oligonucleotides that target a portion of a SLC6A1 nucleic acid.
  • In some embodiments, a branched oligonucleotide compound of the present disclosure has the formula

  • L-(N)n
  • wherein N represents a target-recognition sequence of the present disclosure; n represents an integer, e.g., 2, 3, 4, 5, 6, 7, or 8; and L represents a linker selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and any combination thereof.
  • In some embodiments, a branched oligonucleotide compound of the present disclosure has the formula

  • L-(N)n
  • wherein the compound optionally further comprises one or more branching points B, and wherein the compound optionally further comprises one or more spacers S. In such embodiments, each of the one or more branching points B independently represents a polyvalent organic species or derivative thereof, and each of the one or more spacers S is independently selected from an ethylene glycol chain, an alkyl chain, a peptide, RNA, DNA, a phosphate, a phosphonate, a phosphoramidate, an ester, an amide, a triazole, and any combination thereof. For example, a branched oligonucleotide compound of the present disclosure having the formula L-(N)n has a structure, not to be limited in any fashion, e.g.,
  • Figure US20230041016A1-20230209-C00002
  • Target-Recognition Sequences
  • The present disclosure provides an antisense oligonucleotide comprising a target-recognition sequence that targets a portion of a SLC6A1 nucleic acid (e.g., a SLC6A1 transcript). In certain embodiments, an antisense oligonucleotide has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of a portion of a SLC6A1 nucleic acid. In some embodiments, an antisense oligonucleotide is an antisense oligonucleotide. In certain such embodiments, an antisense oligonucleotide has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of a portion of a SLC6A1 nucleic acid.
  • In certain embodiments, a target region is a structurally defined region of a SLC6A1 nucleic acid. For example, a target region may encompass a 3′ untranslated region (UTR), a 5′ untranslated region (UTR), an exon, an intron, an exon/intron junction, a coding region, a translation initiation region, translation termination region, or other defined nucleic acid region, for example, an open reading frame, or the junction between an open reading frame and an untranslated region and any combinations thereof. The structurally defined regions for SLC6A1 can be obtained by accession number from sequence databases such as NCBI and such information is incorporated herein by reference. In certain embodiments, a target region may encompass the sequence from a 5′ target site of one target segment within the target region to a 3′ target site of another target segment within the same target region.
  • Targeting includes determination of at least one target segment to which an antisense oligonucleotide hybridizes, such that a desired effect occurs. In certain embodiments, the desired effect is a reduction in non-productive transcript target nucleic acid levels, i.e., a reduction in SLC6A1 non-productive transcript levels through the inhibition ofnon-productive splice sites. In certain embodiments, the desired effect is an increase in the levels of functional protein encoded by the target nucleic acid or a phenotypic change associated with the target nucleic acid, e.g., an increase in the level of GAT-1 protein, encoded by SLC6A1 mRNA.
  • A target region may contain one or more target segments. Multiple target segments within a target region may be overlapping. Alternatively, they may be non-overlapping. In certain embodiments, target segments within a target region are separated by no more than about 300 nucleotides. In certain embodiments, target segments within a target region are separated by a number of nucleotides that is, is about, is no more than, is no more than about, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 nucleotides on the target nucleic acid, or is a range defined by any two of the preceding values. In certain embodiments, target segments within a target region are separated by no more than, or no more than about, 5 nucleotides on the target nucleic acid. In certain embodiments, target segments are contiguous.
  • Suitable target segments may be found within a 5′ UTR, a coding region, a 3′ UTR, an intron, an exon, and/or an exon/intron junction. Target segments containing a start codon or a stop codon are also suitable target segments. A suitable target segment may specifically exclude a certain structurally defined region such as the start codon or stop codon.
  • The determination of suitable target segments may include a comparison of the sequence of a target nucleic acid (e.g., SLC6A1) to other sequences throughout the genome. For example, the BLAST algorithm may be used to identify regions of similarity amongst different nucleic acids. This comparison can prevent the selection of antisense oligonucleotide sequences that may hybridize in a non-specific manner to sequences other than a selected target nucleic acid (i.e., non-target or off-target sequences). The determination of suitable target segments may include comparison of the sequences of a target nucleic acid (e.g., a mutant SLC6A1 transcript) across several species. For example, various sequence alignment software are known in the art and can be used to identify regions of similar or identical sequence across species.
  • There may be variation in activity (e.g., as defined by percent reduction of non-productive target nucleic acid levels or percent increase of productive, functional mRNA) of the antisense oligonucleotides within an active target region. In certain embodiments, reduction in non-productive SLC6A1 transcript levels is indicative of inhibition of non-productive SLC6A1 mRNA expression.
  • An antisense oligonucleotide and a target nucleic acid (e.g., a SLC6A1 transcript or portion thereof) are complementary to each other when a sufficient number of nucleobases of the antisense oligonucleotide can hydrogen bond with the corresponding nucleobases of the target nucleic acid, such that a desired effect will occur (e.g., antisense inhibition of a non-productive target nucleic acid, such as a SLC6A1 non-productive transcript or portion thereof).
  • Non-complementary nucleobases between an antisense oligonucleotide and a SLC6A1 nucleic acid may be tolerated provided that the antisense oligonucleotide remains able to specifically hybridize to a target nucleic acid. Moreover, an antisense oligonucleotide may hybridize over one or more segments of a SLC6A1 nucleic acid such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).
  • In certain embodiments, the antisense oligonucleotides provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to a SLC6A1 nucleic acid, a target region, target segment, or specified portion thereof. Percent complementarity of an antisense oligonucleotide with a target nucleic acid can be determined using routine methods.
  • For example, an antisense oligonucleotide in which 18 of 20 nucleobases of the antisense oligonucleotide are complementary to a target region (e.g., an equal length portion of a SLC6A1 transcript), and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense oligonucleotide which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense oligonucleotide with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482 489).
  • Conjugated Antisense Oligonucleotides
  • Antisense oligonucleotides may be covalently linked to one or more moieties, ligands, or conjugates which enhance the activity, cellular distribution or cellular uptake of the resulting antisense oligonucleotides. Antisense oligonucleotides may be covalently linked to one or more moieties, ligands, or conjugates which enhance and/or optimize pharmacokinetic parameters. Various pharmacokinetic parameters are known to a person of ordinary skill in the art, for example, absorbance, concentration of a compound in the body, the degree to which a compound permeates the body, the rate of elimination/clearance of a compound, the volume of plasma cleared of a compound per unit time, and others.
  • Typical conjugate groups include hydrophobic moieties such as cholesterol and lipid moieties. Such moieties include, but are not limited to, lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al, Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Mancharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), an unsaturated fatty acid such as docosahexaenoic acid (Nikan et al, Mol Ther Nucleic Acids. 2016, 5, e344), or an octadecylamine or hexylamino-carbonyl-t oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937). Diverse lipid conjugates can preferentially drive oligonucleotide uptake into different tissues (Biscans et al, Nucleic Acids Res. 2019, 47, 1082-1096). For example, a lipid moiety based on 1-O-hexa-decyloxy-1,3-propanediol can be conjugated to an antisense oligonucleotide of the present disclosure. Such a lipid moiety has previously been shown to increase small molecule uptake and improve the oral bioavailability of nucleoside drugs (see, e.g., Aldem et al., Mol. Pharmacol. 2003, 63:678-681; and Hostetler, Antiviral Res. 2009, 82:A84-A98). Additional conjugate groups include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. In some embodiments, conjugation of a ligand to an antisense oligonucleotide allows recognition by cell-surface receptors (see, e.g., Wolfrum et al., Nat. Biotechnol. 2007, 25:1149-1157; Hostetler et al., Antiviral Chem. Chemother. 2001, 12:61-70; and Prakash et al., Nucleic Acids Res. 2014, 42:8796-807). Methods of attaching one or more moieties or conjugates are well known in the art.
  • Antisense oligonucleotides can also be modified to have one or more stabilizing groups that are generally attached to one or both termini of antisense oligonucleotides to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the antisense oligonucleotide having terminal nucleic acid from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5′-terminus (5′-cap), or at the 3′-terminus (3′-cap), or can be present on both termini. Cap structures are well known in the art and include, for example, inverted deoxy abasic caps. Further 3′ and 5′-stabilizing groups that can be used to cap one or both ends of an antisense oligonucleotide to impart nuclease stability include those disclosed in WO 03/004602 published on Jan. 16, 2003.
  • In some embodiments, an antisense oligonucleotide of the present disclosure comprises a conjugate. In one embodiment, an antisense oligonucleotide of the present disclosure comprises a antisense oligonucleotide sequence and a conjugate, wherein the conjugate is linked to the antisense oligonucleotide sequence. In some embodiments, the conjugate is selected from any of the conjugates described herein, for example, a hydrophobic conjugate, a tissue-targeting conjugate, or a conjugate designed to optimize pharmacokinetic parameters. A hydrophobic conjugate useful for conjugating to antisense oligonucleotides of the present disclosure, includes a hexadecyloxypropyl conjugate, a cholesterol conjugate, a polyunsaturated fatty acid conjugate, and others known in the art that may improve cellular uptake of a conjugate antisense oligonucleotide. In some embodiments, the conjugate may be a tissue-targeting conjugate, for example, a carbohydrate conjugate, or a peptide conjugate, or any conjugate known in the art that can target an antisense oligonucleotide of the present disclosure to a specific tissue. In some embodiments, an antisense oligonucleotide of the present disclosure is conjugated with a polyethylene glycol conjugate. In one embodiment, a polyethylene glycol conjugate antisense oligonucleotide optimizes pharmacokinetic properties of the antisense oligonucleotide.
  • In some embodiments, the present disclosure provides biocleavable analogues of antisense oligonucleotides described herein. In such cases, biocleavable analogues comprise a hydrophobic conjugate that leads to stronger association with cell membranes and a linker. In one embodiment, the linker is a cleavable linker that when cleaved, releases the antisense oligonucleotide, e.g., releases the antisense oligonucleotide into endosomes. In some embodiments, an antisense compound comprises a cleavable linker, wherein the cleavable linker degrades when cleaved. In some embodiments, the linker is a nuclease-cleavable linker comprising a phosphodiester linkage. In some embodiments, the nuclease-cleavable linker comprising a phosphodiester linkage is about 2 to about 8 nucleotides. For example, a nuclease-cleavable phosphodiester linker can be 3, 4, 5, 6, 7, 8 nucleotides in length, or longer, e.g., 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 nucleotides in length, or longer. In one embodiment, the nuclease-cleavable linker comprises about 6 nucleotides. In some embodiments, the cleavable linker is cleaved after cellular internalization. In some embodiments, the cleavable linker is cleaved within an endosome. In some embodiments, the cleavable linker is cleaved under reducing conditions. In some embodiments, the cleavable linker is cleaved under changing pH conditions, for example the cleavable linker is cleaved when the pH decreases, or when the pH increases. In some embodiments, the cleavable linker is cleaved by an intracellular nuclease or protease. In some embodiments, the cleavable linker is cleaved by an endosomal nuclease or protease.
  • Pharmaceutical Compositions and Formulations
  • Provided herein are pharmaceutical compositions and formulations which include the antisense compounds described herein. For example, the antisense oligonucleotides described herein can be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds. A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include intrathecal administration, intraventricular administration or intrastriatal administration. In some embodiments, the administration may employ an implanted device such as an Ommaya reservoir or implanted intrathecal catheter. Solutions or suspensions used for administration can include the following components: a sterile diluent such as water for injection, saline solution, lactated Ringers solution, Elliotts B solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates, carbonates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The pharmaceutical compositions can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In certain embodiments, isotonic agents may be included, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, certain methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • The pharmaceutical compositions and formulations provided herein can, in some embodiments, be conveniently presented in unit dosage form and can be prepared according to techniques well known in the pharmaceutical industry. Such techniques can include bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations can be prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, finely divided solid carriers, or both, and then, if necessary, shaping the product (e.g., into a specific particle size for delivery). In one embodiment, the pharmaceutical formulations are prepared for intrathecal, intraventricular or intrastriatal administration in an appropriate solvent, e.g., water or normal saline.
  • An agent of the present disclosure, e.g., an antisense compound targeting a SLC6A1 transcript can also be administered by transfection or infection using methods known in the art, including but not limited to the methods described in McCaffrey et al. (2002), Nature, 418(6893), 38-9 (hydrodynamic transfection); Xia et al. (2002), Nature Biotechnol., 20(10), 1006-10 (viral-mediated delivery); or Putnam (1996), Am. J. Health Syst. Pharm. 53(2), 151-160, erratum at Am. J. Health Syst. Pharm. 53(3), 325 (1996).
  • An agent of the present disclosure, e.g., an antisense compound targeting a SLC6A1 transcript can also be administered by any method suitable for administration of nucleic acid agents, such as a DNA vaccine. These methods include gene guns, bio injectors, and skin patches as well as needle-free methods such as the micro-particle DNA vaccine technology disclosed in U.S. Pat. No. 6,194,389, and the mammalian transdermal needle-free vaccination with powder-form vaccine as disclosed in U.S. Pat. No. 6,168,587. Additionally, intranasal delivery is possible, as described in, inter alia, Hamajima et al. (1998), Clin. Immunol. Immunopathol., 88(2), 205-10. Liposomes (e.g., as described in U.S. Pat. No. 6,472,375) and microencapsulation can also be used. Biodegradable targetable microparticle delivery systems can also be used (e.g., as described in U.S. Pat. No. 6,471,996).
  • In one embodiment, the active agents are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
  • Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit large therapeutic indices are desirable. Although compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
  • The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the EC50 (i.e., the concentration of the test compound which achieves a half-maximal response) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
  • The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • An antisense compound targeted to a SLC6A1 nucleic acid can be utilized in pharmaceutical compositions by combining the antisense compound with a suitable pharmaceutically acceptable diluent or carrier. A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS). PBS is a diluent suitable for use in compositions to be delivered parenterally. Accordingly, in one embodiment, employed in the methods described herein is a pharmaceutical composition comprising an antisense compound targeted to a SLC6A1 nucleic acid and a pharmaceutically acceptable diluent. In certain embodiments, the pharmaceutically acceptable diluent is PBS. In certain embodiments, the antisense compound is an antisense oligonucleotide.
  • In certain embodiments, the pharmaceutically acceptable diluent is designed to mimic the composition of cerebrospinal fluid. As such, it may contain divalent salts such as Mg2+ and Ca2+. Elliotts B solution is a diluent suitable for use in compositions to be delivered into the cerebrospinal fluid. A person of skill in the art will be able to see that other buffer solutions, with variations in the concentrations of different monovalent and divalent ions, may also be suitable as pharmaceutically acceptable diluents.
  • Pharmaceutical compositions comprising antisense compounds encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other oligonucleotide which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of antisense compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts. A prodrug can include the incorporation of additional nucleosides at one or both ends of an antisense compound which are cleaved by endogenous nucleases within the body, to form the active antisense compound.
  • Methods of Treatment
  • The present disclosure provides a method of treating a subject having a SLC6A1-related disease or disorder. Methods of treatment include administering to the subject in need thereof an effective amount of an antisense oligonucleotide described herein. In some embodiments, the antisense oligonucleotide binds a target region in an SLC6A1 RNA transcript, wherein the target region comprises a splice modulatory element (e.g., a non-productive splice site).
  • Methods of treating a subject having a SLC6A1-related disease or disorder are useful in treating any SLC6A1-related disease or disorder known to those of ordinary skill in the art. For example, a SLC6A1-related disease or disorder includes, without limitation, e.g., myoclonic-atonic epilepsy (MAE), epilepsy, epileptic encephalopathy, seizures, autism spectrum disorders, intellectual disability, or a combination thereof. In certain embodiments, the SLC6A1-related disease or disorder is a disease or disorder of the central nervous system (CNS).
  • The contents of the articles, patents, and patent applications, and all other documents and electronically available information mentioned or cited herein, are hereby incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. Applicants reserve the right to physically incorporate into this application any and all materials and information from any such articles, patents, patent applications, or other physical and electronic documents.
  • While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. It will be readily apparent to those skilled in the art that other suitable modifications and adaptations of the methods described herein may be made using suitable equivalents without departing from the scope of the embodiments disclosed herein. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto. Having now described certain embodiments in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting.
  • EXAMPLES
  • The present invention is further illustrated by the following examples which should not be construed as further limiting.
  • Example 1—Materials and Methods Antisense Oligonucleotides
  • All phosphoramidites will be purchased from ChemGenes. 0.1M DDTT (ChemGenes) will be used as the sulfurising reagent and 0.25M BTT (AIC) as the activator. Antisense oligonucleotides will be synthesized on Dr. Oligo 48, ABI394, AKTA Oligopilot10 or AKTA Oligopilot 100 synthesizers, according to the required scale. MOE phosphoramidites will be coupled for 8 minutes. Oligonucleotides will be deprotected in concentrated aqueous ammonia at 55° C. for 18 h and purified using ion-exchange chromatography (eluting with 30% acetonitrile in water containing increasing gradients of NaClO4). Final purification, desalting, concentration and pH adjustment will be effected by diafiltration in an Amicon centrifugal filter. All oligonucleotides will be characterized by LCMS.
  • Cell Line Selection
  • Splice site identification and antisense oligonucleotide testing experiments must be performed in a cell line in which SLC6A1 is transcriptionally active. Furthermore, since SLC6A1 intronic sequences are not well conserved between mouse and human and cryptic splice sites often occur in introns, experiments must be performed in a human cell line. The experimentally tractable human SH-SY5Y cell line (derived from neuroblastoma cells) expresses SLC6A1 (FIG. 1 ). However, it would be more optimal to perform these experiments in human GABAergic interneurons. Given that these are impossible to obtain from a living patient, approaches have been recently developed to differentiate GABAergic inhibitory neurons (iNs) from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs). Thus, initial experiments and optimizations will be performed in parallel in SH-SY5Y cells and in iNs derived from commercial hESCs and an iPSC line derived from a clinical subject.
  • 4sU Labeling of Nascent RNA Intermediates
  • Short time point metabolic labelling of SH-SY5Y cells with 4-thiouridine (4sU) will be carried out as described (Dalken et al. 2008; Pai et al., 2017). 4sU incorporates into newly created RNA in the place of standard uridine nucleotides and can be selectively isolated to capture nascent RNA shortly after its biogenesis. SH-SY5Y cells will be cultured in DMEM supplemented with 10% FBS. Newly transcribed RNA from three independent replicates of SH-SY5Y cells will be labeled for various time intervals, for example, 2, 5, 15 or 30 min, using 500 μM 4-thiouridine (Sigma, T4509). Additionally, for analysis of steady-state RNA levels, two independent biological replicates of SH-SY5Y cells will be generated without 4sU labeling. To normalize samples and assess metabolic labeled RNA capture efficiency, several synthetic RNAs will be spiked into the Trizol preparation at specific quantities per 106 cells. Quantities will be determined as described previously (Henriques et al., 2013).
  • RNA Extraction and Quantitative RealTime-PCR
  • Total RNA will be isolated from SH-SY5Y cells using Trizol (ThermoScientific) and subsequently treated with DNase I (Qiagen). One μg of total RNA will be reverse transcribed into cDNA using random hexamers and MultiScribe reverse transcriptase (ThermoScientific) following the manufacturer's instructions. Quantitative PCR will be performed on a StepOnePlus Real-Time PCR system using SYBR Green Master Mix (Applied Biosystems) and 0.2 μM of forward and reverse primers as described in (Jiang et al., Neuron, 2016, 90, 535-550; Tran et al, 2015, Neuron, 87, 1207-1214). Ct values for each sample and gene will be normalized to GAPDH. The 2(−ΔΔCt) method was used to determine the relative expression of each target gene.
  • Biotinylation of Nascent 4sU-Labeled RNA Intermediates
  • To purify metabolic labeled RNA 300 μg total RNA will be used for the biotinylation reaction. Separation of total RNA into newly transcribed and untagged pre-existing RNA will be performed as previously described (Windhager et al., 2012; Cleary et al., 2005). Specifically, 4sU-labeled RNA will be biotinylated using EZ-Link Biotin-HPDP (Thermo Fisher, Waltham Mass.), dissolved in dimethylformamide (DMF) at a concentration of 1 mg/ml. Biotinylation will be done in labeling buffer (10 mM Tris pH 7.4, 1 mM EDTA) and 0.2 mg/ml Biotin-HPDP for 2 hr at 25° C. Unbound Biotin-HPDP will be removed by extraction with chloroform/isoamylalcohol (24:1) using MaXtract (high density) tubes (Qiagen, Germany). RNA will be precipitated at 20,000 g for 20 min with a 1:10 vol of 5 M NaCl and 2.5× volume of ethanol. The pellet will be washed with ice-cold 75% ethanol and precipitated again at 20,000 g for 5 min. The pellet will be resuspended in 1 ml RPB buffer (300 mM NaCl, 10 mM Tris pH 7.5, 1 mM EDTA).
  • Capturing Biotinylated 4sU RNA
  • Biotinylated 4sU RNA will be captured using Streptavidin MagneSphere Paramagnetic particles (Promega, Madison Wis.). Before incubation with biotinylated 4sU RNA, streptavidin beads will be washed four times with wash buffer (50 mM NaCl, 10 mM Tris pH 7.5, 1 mM EDTA) and blocked with 1% polyvinylpyrrolidone (Millipore Sigma, Burlington Mass.) for 10 min with rotation. Biotinylated 4sU RNA will then be incubated with 600 μl of beads with rotation for 30 min at 25° C. Beads will be magnetically fixed and washed 5 times with 4TU wash buffer (1 M NaCl, 10 mM Tris pH 7.5, 1 mM EDTA, 0.1% Tween 20). Unlabeled RNA present in the supernatant will be discarded. 4sU RNA will be eluted twice with 75 μl of freshly prepared 100 mM dithiothreitol (DTT). 4sU RNA will be recovered from eluates by ethanol precipitation.
  • Library Preparation
  • RNA quality will be assessed using a Bioanalyzer Nano ChIP (Agilent). Ribosomal RNA will be removed prior to library construction by hybridizing to ribo-depletion beads that contain biotinylated capture probes (Ribo-Zero, Epicentre, Madison Wis.). RNA will then be fragmented and libraries will be prepared according to the TruSeq Stranded Total RNA Gold Kit (Illumina, San Diego Calif.) using random hexamer priming. cDNA for the two ‘total’ RNA samples will be prepared using an equal mix of random hexamers and oligo-dT primers (Pai et al., 2017).
  • Illumina Sequencing
  • Libraries will be sequenced on an Illumina HiSeq machine with paired-end 150 nucleotide reads (100 nucleotide reads for the ‘total’ RNA samples), for an average of 100 million read pairs per library. Reads for each sample will be filtered, removing pairs where the mean quality score of one or both mates fell below 20. Mean fragment length and standard deviation will be assessed using CollectInsertSizeMetrics, a component of Picard Tools 1.62. All reads will subsequently be aligned to hg38 with STAR. Strand-specific alignments will be performed for the 4sU RNA-seq (--library-type first strand), while unstranded alignments will be performed for the total RNA-seq (--library-type unstranded).
  • Identification of Non-Productive Splicing
  • Sites of non-productive splicing will be identified by non-annotated junction reads with canonical or non-canonical splice site sequences within annotated introns using nascent RNA reads from short labeling periods. To do so, the raw 4sU-seq reads will be re-mapped with the STAR v2.5 software (Dobin et al., 2013), with the mapping parameter-outSAMattribute NH HI AS nM jM to mark the intron motif category for each junction read in the final mapped file.
  • The jM attribute adds a jM:B:c SAM attribute to split reads arising from exon-exon junctions. All junction reads will be first isolated and separated based on the value assigned to the jM:B:c tag. Junction reads spanning splice sites in the following categories will be considered to be annotated or canonical: (1) any annotated splice site [jM:B:c, [20-26]], (2) intron motifs containing “GT-AG” (or the reverse complement) [jM:B:c, 1 or jM:B:c, 2], (3) intron motifs containing “GC-AG” (or the reverse complement) [jM:B:c, 3 or jM:B:c, 4], and (4) intron motifs containing “AT-AC” (or the reverse complement) [jM:B:c, 5 or jM:B:c, 6]. Junction reads with jM:B:c, 0 will be considered to arise from non-canonical non-annotated splice sites.
  • Statistical Analysis
  • All data were graphed as mean SEM and analyzed using GraphPad Prism Software (Version7). Tests between two groups used the two-tailed student-t test. Tests between multiple groups used one-way analysis of variance (ANOVA) corrected with Bonferroni multiple comparison post-hoc test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns not significant
  • Example 2—Identifying Cryptic Splice Sites by Using Computational Software
  • Identifying transcripts that are being created but not lasting until maturity would enable targeted optimization of mRNA processing pathways to allow for maturation of these transcripts. The first challenge is to identify sites at which non-productive splicing commonly occurs. Those sites can then be blocked by complementary antisense oligonucleotides to redirect the splicing machinery towards sites promoting productive splicing. SLC6A1 is a 46.5 kb gene with 17 introns and extensive alternative splicing, increasing the probability that many cryptic splice sites exist within this genomic space. Two complementary approaches will be used to identify sites of non-productive splicing in SLC6A1-expressing neurons: (1) computational identification of strong cryptic splice sites and (2) targeted sequencing of SLC6A1 mRNA intermediates (see Example 3). Computational software will be used to identify the sites that may underlie non-productively spliced isoforms. The commonly used maxEnt splice site algorithm will be applied, which uses a maximum entropy model to score sites relative to the entropy of known 5′ or 3′ splice site elements (Yeo and Burge 2004). Publicly available MaxEnt resources are available at: http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html; MaxEntScan::score5ss will be used for human 5′ splice sites and MaxEntScan::score3ss will be used for human 3′ splice sites. The SLC6A1 genetic locus on human chromosome 3 is shown in FIG. 2 .
  • A sliding window algorithm will be used to scan every 9 and 23 nucleotide region segments in the human SLC6A1 gene sequence and the maximum entropy for 5′ and 3′ splice site motifs will be calculated, respectively. After removing annotated splice sites, an entropy threshold to identify high-scoring putative cryptic splice sites will be conditioned on.
  • Initial analyses of SLC6A1 RNA with maxEnt have identified 34 cryptic 5′ splice sites, depicted as SEQ ID NOs: 1 to 34 in Table 1, and 74 cryptic 3′ splice sites, depicted as SEQ ID NOs: 35-108 in Table 2. SEQ ID No: 109 depicts the entire SLC6A1 RNA sequence. Genomic scanning scripts will be used to identify high-scoring cryptic polyadenylation sites in SLC6A1, the usage of which might lead to truncated isoforms that are similarly targeted for degradation. Once identified, these sites can be targeted with antisense oligonucleotides to block the formation of non-productive, truncated transcripts.
  • The nucleic acid target sequences of Table 1 and Table 2 correspond to the genomic target sequence. An antisense oligonucleotide is designed to have sufficient complementarity to the corresponding RNA transcript expressed from said genomic target sequence (i.e., the reverse complement of the genomic target sequence, where each T is replaced by a U). For example, but in no way limiting, an antisense oligonucleotide may possess sufficient complementarity to CAGCCUGAUUCUGCCUGUGACUCACUUUGUGACCUCAGGAGAGUCCCUCC (SEQ ID NO: 128) (the RNA transcript sequence corresponding to SEQ ID NO: 1 in Table 1) to block the formation of non-productive, truncated transcripts.
  • Example 3—Targeted High-Throughput Sequencing of SLC6A1 Nascent RNA Intermediates
  • Targeted high-throughput sequencing of SLC6A1 nascent RNA intermediates will be performed to experimentally identify short-lived non-productive isoforms. Nascent RNA intermediates will be captured with methods as described in Example 1. To obtain high-resolution information about nonproductive SLC6A1 splicing, biotinylated probes complementary to regions of the gene to selectively isolate SLC6A1 mRNA will be used from the pool of nascent RNA. Probes will be designed to have optimal nucleotide composition and chemistry, match a unique location in the human genome (<70% match to a second location), and be located within exons that are included within 50% of annotated SLC6A1 isoforms (FIG. 1 ). The probes will tile across these exons within SLC6A1, located at the beginning, middle, and end of the gene to enable the most comprehensive capture of entire distribution of possible isoforms. Nascent SLC6A1 RNA across all intermediate lifetimes will be sequenced using a combination of short-read and long-read high-throughput sequencing. Short-read sequencing with the Illumina platform provides the ability to obtain high-resolution information about cryptic splice site usage with higher coverage. A total of 12 libraries (3 replicates for each of the 5, 15, 30-minute nascent RNA timepoints and 3 replicates of the steady state sample) will be sequenced in 1 NextSeq lane, with an estimated 450 million reads across all libraries. These data will be used to comprehensively identify sites of cryptic splicing leading to non-productive isoforms across a range of mRNA intermediate lifetimes. To do so, non-canonical splicing junctions will be identified by specifically analyzing splitreads that do not map to annotated SLC6A1 exon-exon junctions. Cryptic splice sites that recurrently have split-junction reads in multiple samples and after sub-sampling approaches will be considered to be major sites of cryptic splicing in SLC6A1. Open reading frames (ORFs) will be predicted and premature stop codon usage in all isoforms (both annotated and cryptic) expressed in neuronal systems and identified through this analysis. These predictions will be used to quantify the probability that cryptic splice site usage leads to isoform degradation through nonsense mediated decay (NMD) pathways. Splice sites that lead to NMD will be prioritized for downstream antisense oligonucleotide design and targeting approaches (Aim 2). Further Oxford Nanopore Minion cDNA libraries will be generated with the same 12 samples and sequence them across 2 Minion flowcells to assess the long-range connectivity between different cryptic sites. Since long-read datasets are inherently error prone, annotations of cryptic splice sites derived from the short-read Illumina data will be used to refine mapping of the long-read Minion data. These data will provide isoform level insights that may be useful for combinatorial targeting of multiple cryptic splice sites for maximal effect with a minimal number of antisense oligonucleotides.
  • Example 4—Use of Publicly Available Datasets
  • For a more comprehensive picture of non-productive splicing isoforms in SLC6A1, publicly available sequencing datasets will be analyzed that are designed to capture total cellular mRNA, as opposed to only polyadenylated mature mRNA (Schwarzl et al. 2015; Rybak-Wolf et al. 2015; Pandey et al. 2014). We will also generate a genome-wide nascent RNA sequencing dataset with SH-SY5Y cells, neurons derived from human embryonic stem cells, and neurons derived from induced-pluripotent stem cells. These datasets will all be enriched for mature polyadenylated RNA but will also contain a small amount of information about intermediate RNA species. In all of these datasets, we will identify novel isoforms of SLC6A1 (using the MAGIQ splicing analysis software), and identify splicing junction reads.
  • Example 5- Antisense Oligonucleotides Targeting Non-Productive Splice Sites that Increase the Expression of Productive SLC6A1 mRNA Molecules
  • Computational software was used to identify cryptic splice sites that are likely to underlie non-productively spliced isoforms of SLC6A1. Specifically, the maxEnt splice site algorithm was applied, which uses a maximum entropy model to score sites relative to the entropy of known 5′ or 3′ splice site elements (Yeo and Burge 2004). A sliding window algorithm was used to scan every 9 and 23 nucleotide region segment in the human SLC6A1 gene sequence and calculate the maximum entropy for 5′ and 3′ splice site motifs, respectively. After removing annotated splice sites, an entropy threshold of 8.72 and 7.25 (mean entropy scores for annotated sites) were used to identify high-scoring putative cryptic 5′ and 3′ splice sites, respectively. Initial computational analyses identified 12 cryptic 5′ splice sites and 84 cryptic 3′ splice sites in SLC6A1. The number of predicted sites that would target was narrowed to 15 (5 5′ splice sites and 10 3′ splice sites) based on their position along the SLC6A1 locus (focusing on intron 1) and maximizing the specificity of those sites by selecting antisense oligonucleotides with minimal complementarity to other sites in the transcriptome using NCBI BLAST.
  • Three antisense oligonucleotides were selected for each of the 15 predicted sites. These antisense oligonucleotides were designed as steric blockers, with each nucleotide comprising a 2′-O-methoxyethyl RNA (MOE) modification and a phosphorothioate backbone. Each antisense oligonucleotide was 20 nucleotides in length. 45 antisense oligonucleotides were synthesized using standard methods on a Dr. Oligo 48 synthesizer, and their identity and purity was confirmed by high performance liquid chromatography coupled to mass spectroscopy (LCMS).
  • Each antisense oligonucleotide was transfected into KNS60 neuroblastoma cells (JCRB Cell Bank). These cells were cultured in DMEM (Sigma) supplemented with 5% fetal bovine serum at 37° C. with 5% CO2. One day prior to transfection, cells were seeded at a density of 50,000 and incubated overnight. Cells were transfected with 50 nM antisense oligonucleotide using Lipofectamine RNAiMAX (Thermofisher) transfection reagent.
  • After 24 hours, RNA was collected using TRI Reagent (Sigma) and subjected to reverse transcription using the High-Capacity cDNA Reverse Transcription kit (ThermoFisher) according to the manufacturer's instructions. Resulting cDNA was used for qPCR reaction with IDT PrimeTime Taqman primers for SLC6A1 (Hs.PT.58.40113647) and GAPDH (Hs.PT.39a.22214836). The qPCR was performed in technical duplicate on a Bio-Rad CFX96 Real-Time System Thermal Cycler.
  • Several of the antisense oligonucleotides produced activation of SLC6A1 as seen by up to 2.5-fold increases in mRNA expression (FIG. 3 ). Sequences, masses, target sites, and percent activation details of active antisense oligonucleotides are presented in Table 4.
  • Example 6—In Vivo Testing in Mice
  • For in vivo testing, antisense oligonucleotides will be delivered into wild-type mice at a range of doses, both systemically and by intracerebroventricular (ICV) injection, to rule out any toxic compounds. For intracerebroventricular (ICV) infusion of antisense oligonucleotide or PBS vehicle through a micro-osmotic pump (Alzet pump model 1007D will be attached to Alzet brain infusion kit 3), wild-type C57BL/6 or C9BAC transgenic mice will be anesthetized and maintained on 2.5% isoflurane via a nose cone under a stereotaxic frame. Implantation procedure will be performed as previously described (Devos et al, 2013, J Vis Exp, e50326-e50326), with a 3 mm cannula implantation 0.2 mm posterior and 1.0 mm lateral to the right of Bregma. For ICV bolus injection mice will be anesthetized with isoflurane and placed into a stereotaxic frame. 10 μL of sterile PBS or antisense oligonucleotide was injected into the right lateral ventricle using the following coordinates: 0.2 mm posterior and 1.0 mm lateral to the right from the Bregma and lowered to a depth of 3 mm. Pharmacokinetic properties will be measured (drug levels in tissue at multiple timepoints after dosing) using an assay previously described.
  • Example 7—Clinical Testing
  • One or more neurologists will be identified as a clinical partner for IND submission and drug administration. If safety and efficacy data are supportive, permission will be sought to treat a patient by lumbar intrathecal infusion, using a dose-escalation protocol (i.e. starting at a low dose to ensure there is no adverse reaction, then re-treating with an increasing drug dose approximately every 2-4 weeks)
  • TABLE 1
    Target sequences for 34 cryptic 5′ splice sites
    SEQ
    ID NO. Target Location Nucleic acid target sequence
     1 >SLC6A1::3:10992186- GGAGGGACTCTCCTGAGGTCACAAAGTGAG
    11039247; startsite = TCACAGGCAGAATCAGGCTG
    11029076; maxEnt = 8.4(+)
     2 >SLC6A1::3:10992186- TGACAGGCACCCAGGTAGATACATGGTGAG
    11039247; startsite = TCATGCTCACTGACCGAGGG
    11018312; maxEnt = 10.13(+)
     3 >SLC6A1::3:10992186- GTCACAGAGATCACATGCTCACAAGGTAAT
    11039247; startsite = AAAATATCACAAGGCAAATG
    11026999; maxEnt = 8.49(+)
     4 >SLC6A1::3:10992186- ATGGAGGGTTTGGGGGGTTCCACAGGTACC
    11039247; startsite = CCATTAGAGACAGCAGAGTG
    11008010 ; maxEnt = 8.63(+)
     5 >SLC6A1::3:10992186- GTGGCCAGTCCTTGGAGGACAAACAGTGAG
    11039247; startsite = TCCCAAGCAGAGAGACGCAG
    10994543; maxEnt = 8.34(+)
     6 >SLC6A1::3:10992186- TGTATTACATATGCATTTTTAGCAGGTTGGT
    11039247; startsite = TCAGCATAATGACACAGAA
    10999403; maxEnt = 8.08(+)
     7 >SLC6A1::3:10992186- TCCCCCAAATTCCAAAACAAAAGAGGTCAG
    11039247; startsite = TGAAAGCTACTCGCATTTTG
    10994225; maxEnt = 7.7 (+)
     8 >SLC6A1::3:10992186- TTCCTTCCTCCAGGAGCAAGGGCGGGTGAG
    11039247; startsite = AGGAAGAGGGCTTATAGAGA
    11016980; maxEnt = 7.62(+)
     9 >SLC6A1::3:10992186- CTGCGCCTGGCAGAGAACAAGCCCTGTAAG
    11039247; startsite = TGTTTGCTGGTGTCGTTGCA
    11019859; maxEnt = 7.52(+)
    10 >SLC6A1::3:10992186- CTAAAAATACAAAAAAATTAGCCAGGTATG
    11039247; startsite = GTGGCAGGCACCTGTAGTCC
    11003074; maxEnt = 9.99(+)
    11 >SLC6A1::3:10992186- TATTTAGAGTCACATAAAATTGGAGGTAACC
    11039247; startsite = TGAATGCATAGCAGTGGGG
    11024724; maxEnt = 8.55(+)
    12 >SLC6A1::3:10992186- AGTTCCATTTCTCGAAAGCAACAAGGTAATA
    11039247; startsite = TGGATCAAAAGCCTGTGAT
    11024566; maxEnt = 8.49(+)
    13 >SLC6A1::3:10992186- TTTCTTCCGCCTGCTCCACCAGCAGGTAAAG
    11039247; startsite = GAGGCTGATCACAGGCTGG
    11012797; maxEnt = 9.65 (+)
    14 >SLC6A1::3:10992186- CCTGCTTCTGCAAATTCCCTCTCAGGTACGT
    11039247; startsite = TGAGGCAGCTGAGGGGTTT
    11009361; maxEnt = 10.65(+)
    15 >SLC6A1::3:10992186- GACCGAGACAGCGGAGAGGTTGCGGGTGAG
    11039247; startsite = CTGCGCTGAGCCCAGGAGCC
    10992782; maxEnt = 8.19(+)
    16 >SLC6A1:3:10992186- TGTGCCAAGCTCTGGGCACATAACAGTGAG
    11039247; startsite = TCAGATGGGGTCCCTGCCCT
    11029491; maxEnt = 8.34(+)
    17 >SLC6A1::3:10992186- GTGTGATCATCATTCTTATTACAGGGTAAGA
    11039247; startsite = TGCGCCCTCTTTTCCTGCA
    11006834; maxEnt = 9.21(+)
    18 >SLC6A1::3:10992186- TACGCAGCACAGTGCGAAGCTCACAGTGAG
    11039247; startsite = TCCCATGGGATTCCACTGGG
    11022717; maxEnt = 8.34(+)
    19 >SLC6A1::3:10992186- GGGAGAGGGCAGCAGCCACAGGGAGGTGA
    11039247; startsite = GCAAAGACATTTGGTATCAGT
    10997671; maxEnt = 8.7 (+)
    20 >SLC6A1::3:10992186- ACCTCAGGCTTCTCTTGGCTGAAAGGTAGGC
    11039247; startsite = TCCTTCCCTCCCTCCTTGG
    11005443; maxEnt = 10.08(+)
    21 >SLC6A1::3:10992186- GGACTGGCATAAGGTCACACAGCTAGTAAG
    11039247; startsite = TTTAGAGAGAGATTTCAAAC
    11007557; maxEnt = 8.78(+)
    22 >SLC6A1::3:10992186- CATTTAGAGTGGCCCCGGCACATTAGTAAGT
    11039247; startsite = GTGTCCAGCTCACTTCCTC
    21100816; maxEnt = 7.79(+)
    23 >SLC6A1::3:10992186- GCCATTTCTGGCCAGGTGACCTTGGGTACGT
    11039247; startsite = TCTTGTTCCTGTTGGAAGG
    10995132; maxEnt = 7.7 (+)
    24 >SLC6A1::3:10992186- CCACGCTGCCCCTGGAAATAAAAAGGTAAG
    11039247; startsite = AAGGCTGCAGAGTGTCAGTA
    11016045; maxEnt = 10.5 7(+)
    25 >SLC6A1::3:10992186- AATCCCAGCTACTTGGGAGGCTGAGGTAGG
    11039247; startsite = AGAATTGCTTGAACCCGGGA
    11029877; maxEnt = 8.24(+)
    26 >SLC6A1::3:10992186- ACAGCCCTGGGAACTTCAAGTGAAGGTAAT
    11039247; startsite = TTTATTGTTATTATTGGTAC
    10998050; maxEnt = 8.83(+)
    27 >SLC6A1:3:10992186- AAATCACATGTATGTCTGCTTTATGGTGAGG
    11039247; startsite = TCTTCAGAGCAGCCACCGT
    11014026; maxEnt = 7.61 (+)
    28 >SLC6A1::3:10992186- GCACTTCGTGGAGGTGCAGAGTCAGGTGAG
    11039247; startsite = GAGAGGTGAAGTGACTCATC
    11001471; maxEnt = 10.07(+)
    29 >SLC6A1::3:10992186- GAACGGAGATCAGTGTGGCTGGAAGGTAAA
    11039247; startsite = GTGGAAAGGGGTGCGAGGAG
    11035089; maxEnt = 9.06(+)
    30 >SLC6A1::3:10992186- CCTTTGTTTTTCTATGACACACAAGGTGGGT
    11039247; startsite = GTTTGGCAAGAGAGTAGGG
    10994083; maxEnt = 8.23(+)
    31 >SLC6A1::3:10992186- AGGAAAAGTAACAACTTGCAAAAAGGTTGG
    11039247; startsite = TTCTGCTTCAGAGAAATGTT
    11012956; maxEnt = 8.46(+)
    32 >SLC6A1::3:10992186- GAACTTGTCCAGCTGGGCCCTGACAGTGAGT
    11039247; startsite = TCAGAGGGCCTGCTGGGCA
    10998840; maxEnt = 8.34(+)
    33 >SLC6A1::3:10992186- GCATTTGGCTGTTTGAAAAGCGCTGGTAAGA
    11039247; startsite = GCTGGGATCCTGATGATTG
    11002499; maxEnt = 9.45(+)
    34 >SLC6A1::3:10992186- AGCACCAGGGTGGCTTTGCTGCTGTGTAAGT
    11039247; startsite = CAAAGAGCCTTCTCCGTTC
    11013805; maxEnt = 7.65 (+)
  • TABLE 2
    Target sequences for 74 cryptic 3′ splice sites
    SEQ
    ID NO. Target Location Nucleic acid target sequence
    35 >SLC6A1::3:10992186- TAACCCTACTGTTCTAATTTCCAGGCCAACT
    11039247; startsite = CTGTCCTATTGTGGGTCTC
    10995350; maxEnt = 8.94(+)
    36 >SLC6A1::3:10992186- TGGCTGCCTTCCTTAATCCTGCAGAATCTCG
    11039247; startsite = GGGTCAAGTCAGGGAGGTG
    11024297; maxEnt = 9.97(+)
    37 >SLC6A1:3:10992186- GGGGACACCTTTCTCCCCATTCAGCCACAGG
    11039247; startsite = TGGAGCTTCTTTCTTGCTC
    11016703; maxEnt = 8.34(+)
    38 >SLC6A1::3:10992186- TCAGCCACCTTCTCCATTTTCCAGAAGGGGA
    11039247; startsite = AACTGATGCCCAGAGGGGA
    11029029; maxEnt = 9.21(+)
    39 >SLC6A1::3:10992186- ATACCATAAAATTCCTTTCCACAGCTAAGTG
    11039247; startsite = AGTGAGTCAAGAACAGATG
    11003960; maxEnt = 7.75(+)
    40 >SLC6A1::3:10992186- GTCTTGTTCTTACACCTCTTGCAGCACTTATC
    11039247; startsite = ACAGGGTATTATGATCAG
    11012234; maxEnt = 8.97(+)
    41 >SLC6A1::3:10992186- GGTGCTACTCTCTCCTTCTGCCAGAGAGGAC
    11039247; startsite = CCTGAGCCCAAGGGTGGTG
    10998924; maxEnt = 8.12(+)
    42 >SLC6A1::3:10992186- CATCACCACTTCCCTTCTCCAAAGCATGCAA
    11039247; startsite = GTTCAATTTCTAAAATTCA
    11004488; maxEnt = 7.9(+)
    43 >SLC6A1::3:10992186- ATTAATTTCTTTCTTAAACCACAGAGTTTCA
    11039247; startsite = AAAAGAAATAAAGGCAAAC
    11010695; maxEnt = 8.06(+)
    44 >SLC6A1::3:10992186- AAAGTATCTCTGATCCATTCCTAGGACTAGG
    11039247; startsite = GACGCCGGAGGAGGGCACA
    51102392; maxEnt = 8.93(+)
    45 >SLC6A1::3:10992186- TGACATCACATATCCATCCACCAGGTGCATA
    11039247; startsite = TCTGAGCAGAGTGAGGGCT
    11018094; maxEnt = 7.61(+)
    46 >SLC6A1::3:10992186- GCTGGGCCTCCCGTCCTTCCTTAGAGGGCCA
    11039247; startsite = GGCTTTGGGTGGGTTGGGG
    11029153; maxEnt = 8.31(+)
    47 >SLC6A1::3:10992186- TCACCCCCACCCCCCCCCCACCAGATCCAAA
    11039247; startsite = TGTAGTTCTGCTCCAGAGT
    11030256; maxEnt = 8.3(+)
    48 >SLC6A1:3:10992186- TCTCCTCTCCTCCTCCCCACACAGCTGCTGG
    11039247; startsite = GCGGTCTTGCCAAGTCACC
    11006564; maxEnt = 10.01(+)
    49 >SLC6A1::3:10992186- AATAATTTCTTTTCCTTTGGATAGATAGCCA
    11039247; startsite = GTAGTGGGATTGCTGGATC
    11032621; maxEnt = 7.74(+)
    50 >SLC6A1::3:10992186- CAAGGCTGTTTCCTTATCTGTCAGATGGGTG
    11039247; startsite = AGGTAGCCCTGGCTTACAT
    11010424; maxEnt = 8.08(+)
    51 >SLC6A1::3:10992186- AGGCAGAAATATTTCTCCTTCTAGGCCATGA
    11039247; startsite = CCTTGACAAGGGCAAGGGT
    11012288; maxEnt = 8(+)
    52 >SLC6A1::3:10992186- AGGCCGTGCTGATTGTATCTTCAGGGGAGTA
    11039247; startsite = CCTTGTAGAGATGTGTGTC
    11021265; maxEnt = 8.02(+)
    53 >SLC6A1::3:10992186- CCTGGCCTCTCGGTCTCTGCCTAGGTCCCCA
    11039247; startsite = CCCCACGCAGCCGCCTGTC
    11010986; maxEnt = 9.85(+)
    54 >SLC6A1::3:10992186- AAAACTGGGTGTCCTTGCCCCTAGGGAAGG
    11039247; startsite = ACAAATTTTCTTTAAGTCCC
    11003518; maxEnt = 10.44(+)
    55 >SLC6A1::3:10992186- TGACTTTCTTTGCCTCGTGCTCAGTGCCTGA
    11039247; startsite = CAGGCACCCAGGTAGATAC
    11018284; maxEnt = 7.93(+)
    56 >SLC6A1::3:10992186- TGGAGCGCTCATTCCCTTTCCCAGGAAGCTC
    11039247; startsite = AGCCTTATCCCCATGAAGA
    10993935; maxEnt = 7.97(+)
    57 >SLC6A1::3:10992186- TAGGTGTTATCACTTCTGTTTTAGACAGAGA
    11039247; startsite = GAGTAGATGACTAACCTAC
    41100336; maxEnt = 8.89(+)
    58 >SLC6A1::3:10992186- TATTATTATCTTCCCATTTTATAGATGAGGG
    11039247; startsite = TCAGAGAGGTGAAGTAACT
    11013708; maxEnt = 8.6(+)
    59 >SLC6A1:3:10992186- AAAAATCAGCTTCTCGTTCCACAGGTCTTGA
    11039247; startsite = GTGGGGCCCAAGATTCTGC
    11010272; maxEnt = 9.79(+)
    60 >SLC6A1::3:10992186- GCTGTATTAATGCGTTTCTTCTAGGCCTCCC
    11039247; startsite = GTGTCTTGTTCTTACACCT
    11012201; maxEnt = 8.71(+)
    61 >SLC6A1::3:10992186- GGCTCTGTTCCACCTGGCCCACAGGCAGCCA
    11039247; startsite = GACGTTAAGGTTATCTCCC
    31102798; maxEnt = 8.42(+)
    62 >SLC6A1::3:10992186- CCCCTTGCCTGCCATCTGGTCCAGGGCTGGG
    11039247; startsite = CTGCTCACAGCCAATCATC
    11011094; maxEnt = 7.54(+)
    63 >SLC6A1::3:10992186- ACTCCACCTTTTCTCCCTTTCAAGCCCTACCC
    11039247; startsite = CAGGAGCCTGGGGGCAGA
    11023244; maxEnt = 8.27(+)
    64 >SLC6A1::3:10992186- TCTAGTTTTCTCCTTCCTCAGCAGACCAAAT
    11039247; startsite = CTCACTCTGAGTACAAGAT
    11014323; maxEnt = 8.36(+)
    65 >SLC6A1::3:10992186- CTGTTATCCTGTTTTTTTTCCAAGGTGCCCAG
    11039247; startsite = ATTTCATATTGTTTAAAC
    11027465; maxEnt = 9.35(+)
    66 >SLC6A1::3:10992186- CCCACTTCCTCCCATCCCACTTAGAATGAAA
    11039247; startsite = CCTGAATCCTTGCTGTGAC
    11011378; maxEnt = 8.24(+)
    67 >SLC6A1::3:10992186- GCATCTTTCTGACCCTCACTGTAGACCAGGT
    11039247; startsite = TTGTTGCCAGGGAGAGCTG
    11025669; maxEnt = 9.61(+)
    68 >SLC6A1::3:10992186- GACCTGGGCCCCGTTCTTGCATAGGTGACAG
    11039247; startsite = TGCAGCTGGGAAGCTAAGA
    11006369; maxEnt = 7.84(+)
    69 >SLC6A1::3:10992186- CTGCACCTTTGATTGTCCCATCAGAGCAAAT
    11039247; startsite = GTTTTTAAAGAAGCATGAT
    11031715; maxEnt = 8.13(+)
    70 >SLC6A1:3:10992186- GCTGCCCTCATCCCACGCCCACAGCTGTCCC
    11039247; startsite = GAGGGCAGCGGGCCCCACT
    11015440; maxEnt = 8.64(+)
    71 >SLC6A1::3:10992186- AAGCTAACTGCCCTTCCTCCTCAGGTCAGCT
    11039247; startsite = CCTCGCAGCAGCTGCAAGG
    11007633; maxEnt = 11.03(+)
    72 >SLC6A1::3:10992186- CTGGGTTTTTTTCTTCATCTATAGAATGCCAT
    11039247; startsite = GGTAGACCAGGTGCACCA
    11009538; maxEnt = 9.83(+)
    73 >SLC6A1::3:10992186- CTGCTTCTGCAAATTCCCTCTCAGGTACGTT
    11039247; startsite = GAGGCAGCTGAGGGGTTTA
    11009362; maxEnt = 8.03(+)
    74 >SLC6A1::3:10992186- CACTTTAACCTCTCTGTGCCTCAGTTTACCC
    11039247; startsite = ATCAATAAAATGGGGGCTA
    11008143; maxEnt = 7.54(+)
    75 >SLC6A1::3:10992186- ATCCTTGCACCATCCCTGTTACAGCAACCTC
    11039247; startsite = CACCCATGCTCCCTCTCCT
    11006520; maxEnt = 7.77(+)
    76 >SLC6A1::3:10992186- TCTCTGCCTCTAATCTCCTGCCAGCTCCTCCC
    11039247; startsite = AATGGTCAAACCCAGCTA
    11020973; maxEnt = 7.72(+)
    77 >SLC6A1::3:10992186- GTGCCAGGCTCCTTCCTGCCTCAGGGCCTTT
    11039247; startsite = GCACTTGCTGCTCCCTCTG
    11011532; maxEnt = 8.06(+)
    78 >SLC6A1::3:10992186- ATCAGCCCTGCCCCATCCCTGCAGCTAGTCC
    11039247; startsite = CCAGGTTCCTTAGTCCGGT
    91101185; maxEnt = 10.27(+)
    79 >SLC6A1::3:10992186- CAGGGAGCTTTCCCTGACCTCCAGGACAGC
    11039247; startsite = GCGTGGCAAGCACTGCCCAC
    11009833; maxEnt = 7.67(+)
    80 >SLC6A1::3:10992186- TATTGTCCCACTTTACCGCTGCAGGATCTGG
    11039247; startsite = GGCTCACCTAGCCAGCATC
    11033989; maxEnt = 8.03(+)
    81 >SLC6A1:3:10992186- GAATGTGTGTTTTCTCTGTGCCAGCTATCTA
    11039247; startsite = AATGACCCCATGCTGCAAA
    11002235; maxEnt = 8.56(+)
    82 >SLC6A1::3:10992186- GCTGTGTGCTTTATATCGTTGCAGTTAATTTT
    11039247; startsite = CACAAAACCCTGTGAGAT
    10996585; maxEnt = 7.73(+)
    83 >SLC6A1::3:10992186- TTCCTTTATATTGATTGCCTATAGGTTAAGA
    11039247; startsite = TAACACTGGGCCTGGCGCA
    11002919; maxEnt = 8.57(+)
    84 >SLC6A1::3:10992186- CGAAGCTCCCTATTCATTCCCCAGGGCATGG
    11039247; startsite = AGGGGACGCGGAGTGAATG
    10993277; maxEnt = 9.29(+)
    85 >SLC6A1::3:10992186- TGGGCACCCGGACCTGTTCCACAGGGGCTC
    11039247; startsite = GCCCTCGTGCCCAGCACAGG
    11005217; maxEnt = 7.83(+)
    86 >SLC6A1::3:10992186- GAAGTCCATCTCCTTTGTCCTTAGAAGCCCA
    11039247; startsite = TCCCTGTTGCCTAGCCCAA
    71099533; maxEnt = 9.08(+)
    87 >SLC6A1::3:10992186- TACACGCCTCCCTCATTCTTGCAGACTATTC
    11039247; startsite = TAAAGCAGAGTCTCTCTGC
    11004115; maxEnt = 9.68(+)
    88 >SLC6A1::3:10992186- GGTTCGATGTTCCTCATCCTGCAGCAGACGT
    11039247; startsite = CTCTGCGGGCACCCACCAG
    11005822; maxEnt = 7.69(+)
    89 >SLC6A1::3:10992186- TTTTTTTTTTTTTTTTTTGCTCAGGCCAAATA
    11039247; startsite = AAACAAGCCCAAGGGCCA
    11011646; maxEnt = 9.18(+)
    90 >SLC6A1::3:1O992186- CTGCACCCCTGCTGCCCTCTGTAGGAGCTGC
    11039247; startsite = CTGCCTGCCCCATCGCTGC
    11015607; maxEnt = 9.95 (+)
    91 >SLC6A1::3:10992186- GTCCTCGATTCCCTGGCTTTTCAGGGCTCCC
    11039247; startsite = CACTCACTCCATGGCGGGG
    11010899; maxEnt = 8.83(+)
    92 >SLC6A1:3:10992186- CAAAAGTCACCTTCCTTCCTCCAGGAGCAAG
    11039247; startsite = GGCGGGTGAGAGGAAGAGG
    11016969; maxEnt = 9.36(+)
    93 >SLC6A1::3:10992186- GATCTCTTTTTATCGCCATTCCAGGGGCCTC
    11039247; startsite = AGGTCCTACTGGGGAAACT
    11037771; maxEnt = 8.21(+)
    94 >SLC6A1::3:10992186- TGACTCCTCATCTCTGTCCCCTAGTTTCCCA
    11039247; startsite = GCTGATGAAAATCACCTTT
    10998146; maxEnt = 8.85(+)
    95 >SLC6A1::3:10992186- AACACTGGCCTGCCTTCCACCCAGGACTTTT
    11039247; startsite = TCCCATCACTAACTAAAAA
    11003262; maxEnt = 8.32(+)
    96 >SLC6A1::3:10992186- TCCGGTTCTAATCTCCCCTTCAAGGGCAGCC
    11039247; startsite = ACCATCTCGTTTCTCTGCA
    11028119; maxEnt = 7.52(+)
    97 >SLC6A1::3:10992186- TGACTGTTATCTCGGACTTTGCAGGAGTTCC
    11039247; startsite = TTTCCCTCCGAACGCTGCT
    11037369; maxEnt = 7.54(+)
    98 >SLC6A1::3:10992186- CGAAGTCTCGCTCTTGTTCCCCAGGCTGGAG
    11039247; startsite = TACAATGGCACGATCTCGG
    11032986; maxEnt = 9.32(+)
    99 >SLC6A1::3:10992186- GGTAGATCATTTTTATCCCGCCAGGGAGTGT
    11039247; startsite = GATGCAGGAAGACCACATG
    11037267; maxEnt = 7.93(+)
    100 >SLC6A1::3:10992186- AGTCCTGGCCCCCTGGCTTGTCAGATGTACA
    11039247; startsite = TGACCTTCAGCAAGTCACT
    11018437; maxEnt = 7.6(+)
    101 >SLC6A1::3:10992186- TCTCTACTTCCATCCTTCCTACAGCCTTGTCA
    11039247; startsite = GAATGGGATACTTCCCTG
    11001422; maxEnt = 8.11(+)
    102 >SLC6A1::3:10992186- TGGCCCATCTTCCTCCAACCTCAGATGAAGA
    11039247; startsite = AACTGGGGAACCACAGGGG
    11035701; maxEnt = 8.47(+)
    103 >SLC6A1::3:10992186- TCTTCTGGCTCTGCCCTCCTCTAGCTTGCTCT
    11039247; startsite = TAGGGCCTGTGCATCTGG
    11026090; maxEnt = 8.54(+)
    104 >SLC6A1::3:10992186- CCTAGATTTTAAATTCATTTGCAGCTAGTGC
    11039247; startsite = TGATGTCATGCACTCAGCC
    10997049; maxEnt = 7.66(+)
    105 >SLC6A1::3:10992186- AGTGGAGTTCTCTCTCTTAACCAGGTTGGCG
    11039247; startsite = AAAAGCACTCTTGCAGCGA
    11015791; maxEnt = 7.83(+)
    106 >SLC6A1::3:10992186- GGATGCTGTTCCTGCCCTTTGAAGATCCACT
    11039247; startsite = TGCATTGAAAACCGTAGAT
    11000356; maxEnt = 8.27(+)
    107 >SLC6A1::3:10992186- CTTCCATTTATTCATCTGTCCTAGGACAGTG
    11039247; startsite = AGGCTAGGCAAACTCATCT
    11008549; maxEnt = 8.67(+)
    108 >SLC6A1::3:10992186- CTCACCCTTGCTCTGCTTTTGAAGCTGGGGA
    11039247; startsite = ACTTGGAGGAAGGGGTTCC
    11034251; maxEnt = 8.07(+)
  • TABLE 3
    Full length SLC6A1 nucleic acid sequence
    SLC6A1 full nucleotide sequence
    AGAAACGGAAAGGACAGGCCAACGGAAGCAGTACTGCAAGGCTGGAAGGAG
    AAAAGCCAGGAGGGGAGTGCTTGCTGTGAAAGACAGGGAGACAGAGACCAAG
    ACGGACAGGCAGACAGGCTGGTGACCCAGGATGAGGCCGGAAAGAGCCATCA
    AAGGAAGGAGAAGGAAGGAGAGAGATTGGAGCGGGACGGCGGGGCAGGCGA
    GGGAAGGAGGGGGTGGGGAGAGGGAGGGAGGAAGAGAGGGGAGAAAGAGG
    GAGGAAGAGAGGGGAGAAGGAGGGAGAAGAGAGCGGGAGAATGCGAGAGGA
    AAGAAGGGAGAGGGGAGGCGTAGAAGGGGAGAGGAGGTGAAGGGAAAAGGA
    GAGAGCCTGCTGGCGGCGAAGCTGCAAGAGGCAGCTGCGGAGGGAGCGCGCG
    GCGGGCCTGGGGGAGCGCTGGGCGGGGGCGGGCGGTGCGGGCAGGGCTATAC
    CCGAGCTGGGCGGGCTCCGGGCGCCGCGGGCCCTGCCCTCCCCCTCCATCCCT
    CCGGACTCGCTCCCCCCTCCTCTCCCTTCCCCGCGACCCTCCGCCCGCCCTCGG
    AAGACCGAGACAGCGGAGAGGTTGCGGGTGAGCTGCGCTGAGCCCAGGAGCC
    GAGGAGTCGGGAGCGCAGTAGCGCTGAGCCCGAGCCCGAGCGGCCCCGCGTC
    CCGAGCGCATCGGAGCGGCCGAGCCGCCCGGATGCAGCGCCTGTCCCGGGCA
    GCGCAGCCCCGGCCGCAGGTAGGAAAGGGCGGCCGGCGTCGGGGCGCGGGGC
    GCAGAGCCTGGGATAACGGCGCAGGAACGGCCAGAGCCCCGAGCCGCTGCCG
    CGAGCCGGGCCGGGTGGGGGGCGGACACCTCGAGATTCAAGCCCCCGCGCCG
    CACCTTCCCTGAGCCACATGAAGGAGCAGAGGCGCCGCTCGGACCCCGACGTG
    CGCCCAGGCCATCCGTCCCCTGGGACACTCGGGAGGCAGGAGGGCTGGAACA
    GAGGCGAGAGTTGCATGCCCCTTCCCTCCCGCGGTGCCCCACTGGCCCCGCAA
    GTTGGCACTGGATTCTGCTGGAGCCGTCGAAGCTCCCTATTCATTCCCCAGGGC
    ATGGAGGGGACGCGGAGTGAATGACACGAGCAGCGTTGGGGGGCCGTGCGCC
    ACTTTCCCAATCCTGGGGTCAGCTGAGCCGAGTTAGAGCTATGCCCCTCATTTG
    TTCTCTGCGGGCTACGGCGGGGTCGGGTGCGACTTGAGGATGGGACGTCTCTG
    GGACAGCCCGAGCTCTCAGAAACGTTGGCTTAAAAGCACACCGGGGCTTGGGC
    TGAGTGCACCGGAGCTAAGCCTAGTGCACCAGAGCTCGCGCCGCGCTCTCCCA
    GCCCCGACTTTCTCCAAGAGATGTGGGGTGCGGGCGGTCCCTTAGAGGGCTGG
    AGGACGGTGCCTCCTTGCTGCTTCGGGAACTGCGCTCCCCTTCTTGCTTTTGGT
    CTCTGCGTGTACTCCCCGGCGCGACACCGCTCACCACGGTAGCCTCGGGCAGT
    GCCCATTGGGTTCTGAGCACACGTCCCCACGGGTGGCACCCACAGATGTCCTG
    TTCTAGGCTTGGCTCGGTCTTCAGACAAGAAACTCAGACCGGGCAGTCCCCTA
    TTGAGGCTCTGAGCTAATATCCTCCCAAAATAGACATGAACCACAAGGAGAAT
    TTTTTAAAAGCCAAATGATAACACCACGTTCTTTCCGGATGTGGGGCTGGAGC
    GCTCATTCCCTTTCCCAGGAAGCTCAGCCTTATCCCCATGAAGAGCTGGGGGG
    GCGGGGAGGGCGGGAATAAAATGGCTCCTGAGATTTGTGACACCCCAAAAATC
    AGAGACGGTATCAGACTGAGTGGCATTGGGGGTCTACCTTTGTTTTTCTATGAC
    ACACAAGGTGGGTGTTTGGCAAGAGAGTAGGGATGTTGGGTGCTGGATAGTGC
    CTAGATTCTGTGTCTTTGGGAACTTTGGGGGAAGTGTCCTCCTAAGGGAGCCAA
    AAAGGCTGCTACCCCAGTCCCCCAAATTCCAAAACAAAAGAGGTCAGTGAAA
    GCTACTCGCATTTTGCATGTTATCTCTTTATCTTTGGAGCACATTGGGAAGGAC
    TGACCCAGCTCCAGATCAGGGTCTGATTGGGGCAGGACAGACCCTCTCCAAGG
    CAGAGAAGGGGAAAAAGAACTTGCCCTTAGAAGTGGGAGTCCCTGGGGGAGT
    GGGACAGACCTTTTCCCAGAGCAGCCCTGGCAAAATGGCTGAGCCTCCCTTGA
    GCCTCAGAAATAAATCGTCAGGCAGGCAGCAAACAAAGAAAGAGCTCTGTCT
    CCAGCCAAGCACTGGCTCAGTGGCCAGTCCTTGGAGGACAAACAGTGAGTCCC
    AAGCAGAGAGACGCAGCCCGGCCTGTCTGGCAGAGCATCTGGAAAGTGGGGT
    TCCCCTAGGAACACACAGGAGAGAGGCAGCCACTCTGGAGGTAAAATCAGGG
    ACCCTCTGTCCTGATGTGGGACACTTTATTTCAGGTCTGGAGGCTTGATGAGAA
    GTGGGTCTCCAGGAACTTAGATGGGGCTGGGAAGGATGTCTGGAGACCAAGG
    AGTAGGTAGCTTAGAGGGTAAAGATGAGGCAAAATCAAGTCCATCGAAGCCA
    AAAGATGCACAGTGGCCACGTCTCTCCTGCCTGCCACGGATTTTACATGCCTGG
    TGACCCCGGAGCAGCAGAGGCTATAAATTTTTTTACACGTGGCCCAGCACACA
    GCAGGACCTCAATAAACCTCTTAGAATAAAGCCTGCATGGATGGAAGGTGATG
    CTATCACTGGCATGGACCTACCTGCAATCTGTACCTGTCTCACTGAGCCAGGAA
    GGCTATAAAATGTGGCCCCTTAGTCCATAGCCGGGAATGAACGAGCCCCAGAT
    GAGGGTTTGCTTTGAGCTGGGGCATTGCCATTTCTGGCCAGGTGACCTTGGGTA
    CGTTCTTGTTCCTGTTGGAAGGAAGGAATGGAGTACCCAAAGCTTCCAATGTG
    CCAGGGATTATTCCTACAAGAACCGTGTGGAGCAGGCACTATTCTAATCCCCA
    CTTCAGAGGCGATGAAACTGGATGCAGAGAGGGGAAGTGACTTGTCAAAGGT
    CACATAGCCAGGAGGAGGAAGGGCAGGGATCTTAACCCTACTGTTCTAATTTC
    CAGGCCAACTCTGTCCTATTGTGGGTCTCTGGGCCTCGGTTTTTCCATCTGTAA
    AGTGAAGTGATGGGGTGGTAGTTCCCGTGGGCCTGCCATGGGAGCAGTGGCTG
    GTCCTCTACCTTGGTGGCATATGACATGTGGAGAGCACCATGAAATAAATAAA
    GCACCAATATCAGGCCACTTCTTGCCATCACACAAAGACTCCATTCCTTGGCTT
    GGCTGTGAGCTCAGCAGCTGAGATAGAGTTCCATGCTACTTGGAATTTGGAGA
    TGTCTTTTCCACCCTCTTGCTTGTCTATGGGTCTCAGGCAGAGTGTTAATGACC
    GTTGATTCAGCCTTGCCACCACCTTTAGCCACCTGCATCCTGAAGTCCATCTCC
    TTTGTCCTTAGAAGCCCATCCCTGTTGCCTAGCCCAAAATGTGCCCACCTTCCC
    CTTGACTACCACCCCCGCCCCAGCAGCCCCTCTCCTCAGCCACAGCCCCAATGC
    CAAACCCAGTTAGAGCCACTTCATCCCCTCTCTGCCCAAATGAAAACTAAAAT
    GCAAGCGTCAGCAGGCCTGTCTATGCCTGTGTCGGGACTACCCCTTCAATTCAC
    CCATGCAACGTCGCCTGAGCTTCTCTGTGCCTGGAGAATGGTGGGCAGGGTAT
    AGCCCCGCTGAATGACAGCAACCTCGAATTGACTTCAGTTGCCAAGAGCATTG
    GGCACTTCCCCCACAAGGTGAAAAGATCATCCTGTGTCCACTGCTCTGTGGCTT
    GGCATGCCTCGATGCTGGCTTCTCAGACAGGCCCTGCACGGGTGGCTCTTCTTG
    CCAACTTTACCCCATTCTCTGAAGGGCACTGGGAGATGGAGGGGAAGAGGTTG
    GTGCTTGAAAAAGAAAAGATTGGGAGGCCAGATGTGCACCCCAAAATAGGAC
    TTCCCAGGAAATGGGTCTCAGTGAGCATATTAACATCCAGCATCTTCATCTACT
    CCATGCTCACCTAAGACCTCTGGGGTCAGGGGAAGGGGCTATGGAGTCAGTGG
    GAAGTGGGCCAGTAGCAGACAGGAGAGTTGCCTGGCATAGGCAGTAGGTGTG
    AATGCAAGCTGTGATATTTCAGCAGAGACCTGGAATTCAGTCATAAACAGAAA
    AGAAAGAAAACACTAAATATTGTTCCAATGCAATTGTATCAAAAACAGTAATA
    ACTGTCAGTTACTGCATGTTGGCAATATGCCAGGGACTGTGCTGTGTGCTTTAT
    ATCGTTGCAGTTAATTTTCACAAAACCCTGTGAGATACGTAGCATAATGATCCC
    TGTCAGGGTGAGGAAACTGAGGAGGAGAGGGGCTAAAGCACTTGCTGCAGGA
    TCACTGGGCTGGTAAATAGCCTTAAAGCCCAAACTCAGTCACAGCATGCTTAA
    ATCTCTGCCACTAAAAGCCCCTGACACTGCTTACTTGGCAATGACCATGAGCG
    CCCCCCGCTGCCTCCACCCCAGTTAAGGAGCTGCACAGTTTACAAAGCACTTCT
    TCATCCATTCCATCTGTGGAGCTTTGCCACAGCTCTGGGAGGCTGGGTGGCATG
    ATAGCTTCTGCGTGATAACTGGGGAAGCTGACTTGCAGAGAGATGAATTTGTG
    CCCAAGGTCCCTCAGCTGCTAGGTTGCAGAACTGGGGTTCAAATTGAGATGTC
    CAGCCTGTTACAACATATTTGGGACCTAGATTTTAAATTCATTTGCAGCTAGTG
    CTGATGTCATGCACTCAGCCACCTTTCCCTAACTCTCGGGTATCCCCCAATTTT
    GTCCCCACCATCTTACTGCTCAGGAAGCTATTGAGAGTGCCCTGACAAAGCCA
    TCAGCTGCATTTACCGTGATCTGACATGACACAGAAGTGGCATCCGATTCTATG
    CAAGCTGCCTGCAGCGAATGGTCTTCTATTTTTACATTTCTCACAAATTGGAAA
    TTACAAGGAGGCCAGGTCTTGCAGCGAGATTGGCTGTGGTGCTCTGAAAGCAG
    GGGATGTACAACTAGGTGGAACAGGCCACTTTAGGATGCCAGGGGCACTGTTG
    GCTGTGAAAGGGGCCCCCTGGCTGCTGGGGCTGGATGGGATCCTGGCACACAG
    GCCAGGCTTGGGGATGCAGGAGTTAGTGACTGCCTTGGACGGTGACCTGCAGC
    TCTGCCCACCTGTCAGCTGCCTGGTGTCTGCAAGTTCTGTGTCTCACGCCAGCT
    CCTGAGATAACTGAGCCCTGGCCAGAGGGACATTCAAGGTCAAAGATGCCCTG
    AAACATCGACAGCAGGTTGCTTTCATGGCTGTGTAGTTTGATAAGGAGATTCTG
    TGCAGGGAGAGGGCAGCAGCCACAGGGAGGTGAGCAAAGACATTTGGTATCA
    GTGTTGCGGTTTGCTGCAACTTAGCGCTGATCACGATACTCCCGGTCATCAGAA
    CCGCACTTTATACTTTGCTAAAAATGCTCTTGCAGCTGCTTTTTCTTTTGATCAT
    GTATGAAGTATTCCAGGGGAAGAAAATATGGTCCTTGAGATCCTGGAGAAGAA
    TCCTCTCTCCAATAAAGAGTGATTTTTTTAAAGCTAGTTTTCTTATAAAGCCCA
    AATCAGAATGACCTTGACCCAAATGAGGCTCCTTTGCACACATGTGCGTACAT
    GCACACGTTAACACTTATGTAGAATTTCAGTTTTCAAAGTGTTTTCTCAGTCGA
    AGCTTGTGACAGCCCTGGGAACTTCAAGTGAAGGTAATTTTATTGTTATTATTG
    GTACCATTATTATCCCCATCCAAAAGATGAACCTGAGGCTCAGTGAGCCCTGA
    CTCCTCATCTCTGTCCCCTAGTTTCCCAGCTGATGAAAATCACCTTTGCTAGGC
    TGAAATCCAAGTTCACCAGGTAGCCCCTTGAGAAGGAGCCCAGATGAGGCCAG
    ATCTGGTAGGAGGCAGAGCACAGAGCACTCAAAGATCGAGACTTACAAGAGA
    GCGTGGGAAGGCACGGCTGTGAGGCTGGGGAGAAAAGGGCCGTAGCATCTTG
    TAACCTTACCTGAGCTCTGGCCAGAGATTAACATCTCCTTGGTTATGCGCAGAG
    TTTGGGGTCCAAAGTGTGATCATTTGGCCGGGGGGTCCCAGCAGTAACCAGGC
    CTGGAGGGAGAGGAAGGGATGGTTGCTCTCACACACCTATGTGCACACAAGAA
    TGCTTTTCTCGGTGAATTGGGGGAGAAATGAACACCAGGGACCCCATGAGATT
    TCATAGAAGGATCTAAAGGTCTTGGTAGCCAGGAAGGTTGTGGGGAGTGTTTG
    TATGTGAGCCTCAGCTCAGACCCACTGGAGGAGCAGGCTGTGTGCTTCTGAGC
    CATGCCCAGGCAAGAGGGCAGGGATCACTCACCTCTGCCTTTGGACTGTTGCC
    ATGCTGGAGATTGTGAAATATCATGAGTTCTAGGAGCTTCCCTCTGGGGTGCA
    GGGGGAGGCAAGAGACCTGAGGGTTTGACAGTTCCCTGGCTGGATGGTGGGG
    AGAGAACTTGTCCAGCTGGGCCCTGACAGTGAGTTCAGAGGGCCTGCTGGGCA
    CTGGTCCCTGAGCCAAGGCTGATACTGGATGATAGGTGCTACTCTCTCCTTCTG
    CCAGAGAGGACCCTGAGCCCAAGGGTGGTGGAGTCACTTGCCACAGGGTGCA
    CAGACCAAGTTTGGTCCCAGGTCTTGGTGATGCCAACCTCATGCTGCTTCTGAA
    AAGCACCTGAGACAAGATAACTGTTGGGGAGCCAGGGGCTTTTTCTCTGTATT
    CGCCATTTCTGGCTGTGCCATGCAAGGGCTGAGAAAAAGTGAAAGCAATACAA
    AATAAAAGTGGCCAAAAGCAAAAGCTACCAGCTTCCTGGGCACCGTCTGAGCT
    GCCAGCCTGCAATCCAGGCTTCACTGCCGCCTGAGCTGACCAAGCCCCTTTCCG
    CCCAAGTCAGATGTTTCCAGAGCTTAAGATCCAGGACCCACCTATGATTAAAA
    AAATAATAATAAAAAGTAGGCCTGGGGAGAGAGAAGAAGTCATCTTACTGAA
    GAGTATTTTTGAAAGATGGAATTTAAATGCACGCATGTATTACATATGCATTTT
    TAGCAGGTTGGTTCAGCATAATGACACAGAATGATCTGATATGTACATCTCTCA
    GTCTTGGGCTCTGCCTGTGACCTAGGCACTGAGCCAGTACTTCACAAGCATTGT
    CCCAGGATCCTCAATAAGGAAACTGAGGCTCAGGGAGCTCAAGAAGTTGCCCA
    AGGTCATACCACTGACACAGGGCAGAGCTGGGAATCAGATCCAAAGCTGCAG
    GGCTCCGAGGCTTGGGCTTGCAGACCTGAGAAAGAAGTGGGAGAGCCGCCTTC
    TGCTGGGCCTCAAGCCTGTGGGGGACCGTGGGCAGGTTCTTTCCCCTCTTGGCT
    TTGCATGCTCAGTTCATACAGCCAAGAGGTTTGGACCATTGGATAGGATGATC
    GGCTGCTCCCCGCACCAGGCGCCAGTTCTCCAGGCAAGGGGAGGGAAGTTGCA
    CGCCCCACTTCCTCCTCTCCTCCTCCATTTCCCCCATAATAGCCTCCCCGAGACT
    AATGACTGAGGAAGATAAGAGCCCTTTCTCCAAATGGCAGTGAATGCCACTAA
    TGACAGAGCAGATGCAGCACTGTTAATTATTCCACGGGTATTAAATGAAAACG
    CCAGCCCTGGAGGAGTTAAATAGCACCACTGATCTGGCAACGTCTGTGCTTAA
    AAGTGATGCCATCAAACCGGGCCGGGGCAGAGCAGCCCCCTCCCCAAACTTGG
    AGCTAGACAGGAGTCACAAAGTAAGGGTCCCCTCATTGGTCACAGACCCCTCT
    TCAGCTCAGGGTCCGAAGCAGCTCCTTGGAGACATGGATCGGTGGCTGCTTTG
    GGAGATTTTCTTAAAGGCCCCTGGGGGGCCTAGACTAGTTATCCTTAGGGGCA
    GATGTGGACAAACAATTGGACCGAATAAAACTCTGAGCACCTACTGTGTGCCA
    GGTCCTATTTTGGATTGTAGAAAGAAACTGGATGCTGTTCCTGCCCTTTGAAGA
    TCCACTTGCATTGAAAACCGTAGATTCCTTAAGAGCAGGAATGCTGTGTTGTTT
    GGAGTCTCTGGTCCCATAGTCAAGAACACAGAGTGGGTACCTCTGTATTACTTT
    GATTATCTGCTGGTTCCTTGAATGAGAGCCAGAGGCCACACAGATTGTGGCCA
    GAGTGAGATCGGTGGGCAGAGGGACTGGGCCAGGGTCAGGCTGTCTTCTTCAG
    GTACAAGCAACATGACCTTCCTGGACAGCTTAGCCCCAGGTTCTGAAACAAGC
    CATGACCTGGATGAAGAGCCGGGTTTTCCACTTGCTGAGGCACCACAGGCGAC
    TCCTTTGCCCTCTCTGAGCCTCAGTTTGCACATCTGCAAAATGGGGAGGATAAG
    GGCCATGATGGCTGCAGGCAAAACAACTGTCTCCTAACCAATCCTGGCCCTGA
    ATCTGGAGGATCACAGAGACCTCATGAATGTTTGAAGAGTGACATTCTGGAGG
    AAATTCAGCAGAGAGAGAGAGTGTAGTCACCAAAGGCAGCATCTGGTTCTTCC
    TGTGGGTCTCACTCAAATCTCACTCCAACCCCCAATTCATCTCCAGCAGCTCAG
    GTCACTTGTTCCCAGCTTCCTGGACCTGGAAAGCTGTTTCTCAGGTCTTTGTAG
    GCTAGAGAACATCACAAAACCCACCCATTTCAGACACACCTGTGTTATAGATG
    GGTAAACTGAGGCCTAGAGAGGAAGAGTCCTAGGTCTTGCAGAGGCTAGGAC
    CCAGAGCTTCTAACCCCTAACCCAGTGCTCTTTCCCTTCCACCAAGCCAGCCCA
    GCTCCTCCGTTAAGAAATTATTAAATAGAGTTGGTGGAAGGACTCTGGTTGCC
    GTGACAACGGAGCCTGTGTCCTCGGGAGATAATGGCGTTGCACAAGGCAGAGC
    GATGTGTGTTGAATGCTGATTCAGGACCTGCTAGAGTGAGAGTGAGTACAAGA
    GGAGAGTGGAGGGGACCGTGTCTAGAACTCGAGCTTCCCCAAGAAGGAGGTG
    CGGGACTGGTAGGGGTGGGGCAAATTGCCTTCTCTACTTCCATCCTTCCTACAG
    CCTTGTCAGAATGGGATACTTCCCTGCACTTCGTGGAGGTGCAGAGTCAGGTG
    AGGAGAGGTGAAGTGACTCATCCCAGGTCACACAACCAGGAAAGAGCCAGAG
    CTGGGATTATACCTCCAACCAACACGGGGGCCTAGGCTATAGGGAGGGCCTGG
    AAGGAGGCTCACCTGCAGGGGCAGGGGATGGTTGATGGAGACCTCTCTAAAGT
    CTTAAGTGCTTGTGGAGGTCCTGATGGTCCAGGAATGACAATTCCAGCCCAAG
    AGGAAGAGAAAACAGAATGTCAGCATAGCTAAAAGCATCAGCTTTGGAGCCA
    AAGTCACATCTCTCCCTGCCACTTACTAAACTGTGTAATCCTGGATGAGTCACT
    TTCTCTCTGAGCCTCAGTGTCCTCATCTGCAAAATGGGGATAATGCCGGCACCT
    ACCTCATAGGATTGTGGTGAGACTGCATATCATGAGGAAGATAAAGCATCGAG
    CCCCAATCCTGGCCATAGCTCAATCACCAGCAGCTGTTGTTATGAACCAAAGG
    GGAGAGGCTGGGAAAAGGATCCACTCCCAACCATGTATCAGCTTGTAATTTGT
    GGTGTTGGAAGAGCGAAACTGGCTAACACAGTACAAGCATGATACATAACAG
    GGCTCTTCATTCCAGGCTAGTAAATATCACTAGAACAAATGAACAGCTCCATC
    ACCAAAAATATACATAAATATTTTGCATTTGAAGAGTGTGAATGTTGTACCTCA
    CTGCAAATGTACTGTCCTTAAAAACCTCCATGCACACCTCACTGAGGGAATGT
    GTGTTTTCTCTGTGCCAGCTATCTAAATGACCCCATGCTGCAAACGCTTTTGGA
    AAATAAACACTCTCACCCACCCACCTAGTTTCTCTTCTAGAAGCACAGCTGGTT
    CAGTGTACTTACCTCCCTAATCAGGGATTGGAGAACATGGGGTTAATACCCTGT
    GAAACCCCAAAGTGCATCATTTGCATGCTGGCAAAGATGCAGGCTGGCAGACA
    ACCCCATTCCATTTTGGAAGCGGAAAGAGGGTGCTGGACTCAGGCATTTGGCT
    GTTTGAAAAGCGCTGGTAAGAGCTGGGATCCTGATGATTGAGATGCAAGCAAC
    CATTTTGTTTGTTTCCGCAAACCTGTTTGAGCAAATCCACCCCCAGAGATAGCA
    ACCTGTTTCTGGGTCCCCTGAGAGAGAGGGTCATTTGTTTGCTGCTGTTTCTGG
    GGCTGGATGCCAAGCTATGAGGCAATGAGCTGACGACCTTGGATCCTGACACC
    CCTATTCTATGCAGGCAGGAGAAGGGTCAGGGAGACTGATTCAGTGAACAAAT
    AAAGACGGTTGACATTTAACCAGGATTTTAATGGGTGTGCCAAATTGCAAGAT
    ACATACACATGTCCACTTTGGGAATCATGTTTAATAAACAATTTGCCCTAAGAA
    TTTGATTCAATCAGCATCTCCCAGTGACTCCCACCATTCCTTTATATTGATTGCC
    TATAGGTTAAGATAACACTGGGCCTGGCGCAGTGGCTCACGCTTGTAATCCTA
    GCATTTTGGGAGGCTGAGGCAGGCGGATCATGAGGTCAGGAGATCGAGACCAT
    CCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAATTAGCC
    AGGTATGGTGGCAGGCACCTGTAGTCCCAGCTACTCGGGAGGCTGAGGGAGGA
    GAATGGCATGAACCCGGGAGGCAGAGCTTGCAGTGAGCTGAGATTGCGCCACT
    GCACTCCAGCCTGGGCGACAGAGCAAGACTCCGCCTCAACAACAACAACAAA
    AAAAGATAACACTGGCCTGCCTTCCACCCAGGACTTTTTCCCATCACTAACTAA
    AAATATAAATGAAAGCCCTGATCAGGTGGTTTATTATAATATCTGCCAGGTATC
    AAGCATTTACTATGTCCTAGATGCTGTACTAACTACATATTTCCCCATTTAATC
    CTCATAGCAGCCCTAGAAGTAGGTGTTATCACTTCTGTTTTAGACAGAGAGAGT
    AGATGACTAACCTACAGTCACACAGCATTGAACCAGAGCTGAAACTCAAAACT
    GGGTGTCCTTGCCCCTAGGGAAGGACAAATTTTCTTTAAGTCCCACGAACAAT
    GGGCATACTTATGAAGAGCTGCTGCTTGGGATATCATAGAGTGATCAGAAGTT
    TGTTTGTCAGGAGCCATGATAGGGGCAGGCAGAAGAGGGCATTGCTCATTGTT
    CATGGGACTTAAAGAAAATTTGTTCAATAAAAATCTGATTTTTAGCCAGACAT
    GGTGGCACATGCCTGTAGTCCCAGCTACGTAGGGGGCTGAGGTGGGAGGATTG
    CTTGAGCCTGAGAGACAGAGGTTACAATGAGCCGAGATCATGCCACTGCACTG
    CAGCCTAGGTGACAGAGTGAGACCCTGTCTCAGAAAAAAAAAAAGAATCTGA
    TGTTACCAAATGGGTAGACTGTTCTTGCTACATAGGAGTTTCCACTTTACAAAA
    ACAAGGGGCTCTATACCATAAAATTCCTTTCCACAGCTAAGTGAGTGAGTCAA
    GAACAGATGCACTGGTGAACGTGAGCATTCAAGTCTTTTAAAAATAAAATTAG
    CCTTTATATTGTGGGAAAATATTTTAGACCCTGGAATCTGACCCTTAATTGACT
    CTGAAAATACACGCCTCCCTCATTCTTGCAGACTATTCTAAAGCAGAGTCTCTC
    TGCGGTTTTTTAAATCCAACTGAGCTTTTATTAAGAGACCAATAGGATTTGTTG
    TTTCCCAAATATAAAACTATAACACCAAACATGCTTTTTCAAACTTCACCACCC
    CCAAGAGTTTGACATATCCCCCAGGAAAGGGGCAATATTAACCCTCATCCATC
    TTCCACTGCTTAGAGAAAGAGTTCTACTGAGTGACTAAGATTGTACCGTGTATA
    CAAGGATTGCAAATTCAGGGGCCATTGAGGGCCAGACAGGTCACAGAAATGA
    GTAAAGAGGTCAGCGATAGGATGACAGTAATGGTGGGACTTGTAGTAAACTAG
    AAAACACATCACCACTTCCCTTCTCCAAAGCATGCAAGTTCAATTTCTAAAATT
    CAAATCTGATACCACTCAATCAAGCATAGCTGTGGGACCCATTCGGCTCAAAA
    CCACCACGTTGAGATCCCTGGTGGTTCTTATTGTGACCTTGTGTGATCTTGATC
    CAGACAGTTTCTCTTTGGGGCTCAGTCTGATTGTCTCTAGAAGGGGCTGATAGA
    GCCTGCAGAGCTGCTGAGAGAGAAATGCAGTCCCAGGTGTGGACACTTAATAA
    GGAGCCATGGCGCTGTCTGCAGCCACTGTCACGGATATGCCTTCTGCGACCCT
    AAGCCAGCTCTCTGTTTGGGCTGTGCTCCTGCACGTCACTTATTTAGTTCATCGT
    TTAGTTCAGCCAGCCCTTGCAGTGTTATTTTTTCTTTTCCCCAAATCTGAATGCT
    TAAAGGGCCTTTATCTTAATGCCCGTCGGAGCCTTCCAAGCACATCTTGAACAG
    GAATGAACAGCTATTTTAACCCCACGGGCTTCTTACAAGTGTGTTTTAAAAGGC
    AAAGAGCGATGTAAAAGAATGGCAAAAGGTCATCGTGCCGCTCTTATTTCCTG
    GTCTAAGTCAGTCCTTTCTGGCCGGTTGAGCACAGGGCTTTTACAGAGGCGTCC
    CCTGGAACTGAAGTCCTCCAGAAAGCCCCACACCCCTCAGAGGCAGGAGGAA
    GAAAGGAGCCTGGAACAGGTGGTGAGGGTGCAGAGGGTGGGCACCCGGACCT
    GTTCCACAGGGGCTCGCCCTCGTGCCCAGCACAGGGTTGGGTGCTCAAGCTGG
    CAATGGGAGACAGCTGCCCTGAGTGGAAGGTTGAGACTAATGGGCTGGCCCCC
    AGCAAATACAGTCAGAACCAACTGAAGGAAGTCAGTGGAACAGGCCCTGCAG
    CCTGGGTTCAAAAATCCCGGCTCCTCAGCCGCTTTTGACCTTGGCCTCCGCCAA
    CCTCAGGCTTCTCTTGGCTGAAAGGTAGGCTCCTTCCCTCCCTCCTTGGGTTCA
    GTGAGCGACACAGTGGAGCCTTGCCCAGCTCACAAGCAGTGAATGGCGCATCT
    GTTTTCTCTTCTGTCCTTCCTTCCTTCTGCCCTTATTTTTCCTCTTTCCCCTTTCTG
    ATCCCTTCCTGCGCTCCTCCTTTCTTCCTCCTGTTTTCCTCCTCATCACTCTGCTC
    CTTTACCCCAGCCTCCTCCTTGTCTGTTTCTCTCCTCCTCTCCTTCCATACCCTTT
    TCTCTCCTTTCCCCTCCTTCCCACCCTCCTCTCTCTCCATCCCTCTCCACTCTTTC
    AAATCCACCCAGGGAGATGCCTCTGAGTTCCTGTGTCTGATCCCAGGGTTCGAT
    GTTCCTCATCCTGCAGCAGACGTCTCTGCGGGCACCCACCAGCCCCAGCATGC
    GCTCCAGGGCCAGCCCAGGGGTTGACATCCAGGGCTTTCCTTACAGGAAGCAA
    TCAAGAGAGTTTCCAGCATTAAACCACTCAGGAAGCAAGGCCAGTTTCTGCCC
    GAGAGCATGCCTCACTGGCCCCACAAGAAGAAACAGGCCTAAGGCTCAGTGG
    TGTGCTGGAGCCTGCTCACAGATGGCACATACCCAATCCTATGACCTCATATTA
    GTACCTTGCACAGGCCACAGTGGGAGTGTTTACACCACAGAAATCAGCAGATG
    CTGCAAATTGAGTCTTCTGTTTTGTTTCCTGAGAGCCCATTGTTAAAGCTTACC
    AGCACACCATTGCTCTGTAGACCTGCCACCTTCTCCCAAGCAAACGTTTCTGTG
    CTGAGGCCTTGTAAGAACAATGTCCTCTGCCATAGAGGGCAGAACCCAGAAGA
    GCGCATGCATATCTAGCACTGTTCAAGCTGCCTGCTGTCGGGGAAGCAGAGCG
    GGTGGAAGACCTGGGCCCCGTTCTTGCATAGGTGACAGTGCAGCTGGGAAGCT
    AAGAGAGAAGAATCCGTAATTAGTCACGAGAGAAGCCATGTTGTATAGGGCG
    ACCAGGCCTTCCTCCTCGCCCCCACCATGGTCCTGGTTCAGGCGCTGTCCCTTA
    TCCTTGCACCATCCCTGTTACAGCAACCTCCACCCATGCTCCCTCTCCTCTCCTC
    CTCCCCACACAGCTGCTGGGCGGTCTTGCCAAGTCACCATCACATCAAATCTCC
    CCATCTTCCACGGTTCAGGTGGCAGCCCTGGTGACCACCCCATGCCCACAGTG
    GAGAGGGATAGTTAAGAACATGGGCTTTGGAATCAAACTGCAGTGTCTGGGAG
    CTGGGAAGTTGTTTTACTGTCTGAACTTCGCCTTCCTCATCTGTACAGTGTGCA
    GTACAGAAATGCAGTAAATATATTAAGCACTTCCTCAGCCTTCGGTGTGATCAT
    CATTCTTATTACAGGGTAAGATGCGCCCTCTTTTCCTGCATCAGAGCTCTTTACT
    ACTACTGGCGGCTTCCTGGCCACGTTCCCCTAAATCACCCCAGATTCTAGCCCC
    CAACAAGCCTCCTCACTGTCTCCAAATGTGTTCTGTATTTTGGCTTTGTTCTATC
    TGCCTGGAATGGACCAGGAGTGGTTAGGGTTGCAGTTAAAAGCAAGGAGTCCG
    GTCCTGCTCCTCTAGCTGTGATTATTTGAAAAATATCCCCACTTCTGCTCCCTTT
    TCCACCAACCGCAATGCTACCCCTCCCAGTTGCCTGCCTGAACCCAGACCCCG
    GGGCAGGGTGCCACCTCTCCTTCTCTGCGTGCTGTGGAAGAACTTACCCCGTGG
    ATGTGGATTGTCCATGGCCCATCTCCCAGCTGTCCCGAGAGCTCAGTGGCAGC
    AGGACTCAGACTCCAACTTGCATCTTTGTCCCTCAGCACCCAGCATGAGGCCC
    GGCTCCCCGGAGGTGCACAGTCGATGCGGATCAGATTGAAAATTGCCTTGACA
    AAATGAAGTTCTCAGTTGGGCACTACAGATAATTAGGGGCCAGAACAGACGTT
    AGTAAACCACTGATCGTGTGAGCGAGACAAGCAGGACTGGATCAGAGTGAAG
    TGGAGCTGGAAATTGGAGTCTGACTGTCCTGCTTGCACACAGAAGAAAGCTGA
    GGCACAGAGAGGGGAAGGGACTGGCATAAGGTCACACAGCTAGTAAGTTTAG
    AGAGAGATTTCAAACCTGTGTCTACTGGACTTCAGGGCGTCAAGCTAACTGCC
    CTTCCTCCTCAGGTCAGCTCCTCGCAGCAGCTGCAAGGCACGAGCCATGTCTGC
    AGTTGGAGGAGAGCTGGGGTCTCCAAGAGGGGAGTGCTGCCCCTAGAGGCTG
    GCTGCCTCCTGGGGACTCTGATTAGAGCCTGCAGCCCCACAGCTCAGCCAGAA
    TCCCACGTGACCTCCCGGGGTCTCCCTGGATACCTGTAGGCTTTGTCCAGCGCA
    ACCGTAGAAGCCATTTTGGAGCCAGAACTCAGAGGCTCTCATGCTAGCAGCCT
    CTCTTGGGTTTCTTAAAAAGAACAGCAGGCCTTGTCCTTGTGGAGGTTTGTCCT
    GGAGGGAGGTGGCTGCTGGGGACGGGCCATACTTGTACACCCCAAATGGAGG
    GTTTGGGGGGTTCCACAGGTACCCCATTAGAGACAGCAGAGTGGTTAAGAGTT
    TGGACACAGGAGCCCAGCTGCCTGGGTCAAGGCTTGGCATCCTTAGCTCCTAA
    CTGGGAGACCTTTGGCACGTCACTTTAACCTCTCTGTGCCTCAGTTTACCCATC
    AATAAAATGGGGGCTAAAAGCAATTGAATAGACAGAAAGCATTTAGAGTGGC
    CCCGGCACATTAGTAAGTGTGTCCAGCTCACTTCCTCCCTGTACTGAGCTCTTC
    TTTTTCTTTCACCCCTTGTTAATGAAAAGTTGGGGAATTTTTCTTTTCTGTAGGC
    GGCTGCAGAAGGAGAACCATCCTCCTGGAATCTGTTTCACCATTGGATGGGTC
    TGTCATATTCCAGTAGTCGCAAAGTTGAATTTGTTCTCGCCTGGGTTGTCGGGG
    TGGGGATGCCCTCTGGCCTTCTTCCACATTGTGGTTTCAGAGGTGTCCTAGAAA
    ACCTGACTTCTAGGCTCTCAGAGGCTGAGAGCAGAGGGGAAGGGCTAGAGCTT
    CCATTTATTCATCTGTCCTAGGACAGTGAGGCTAGGCAAACTCATCTCCATGCA
    GTCACATTTCTCTCCCTCTGGCATCCAGCAGCCATGCTTGGGCAGATCAGATCA
    TGAGGCCTGATAGGTCTAATGGTTTCAGGGAATTTCACACAGGCCAGCGCCTG
    GGAGGCACTTTCTGGACAAGCAAATAGCACCAGACTATAACTCAGAGGGCCTG
    GGTCAAGTCCTGTGTGACCTTGGGTAGGCCATTTGACGTCTCTGGGCCTTAGTG
    CCATCATCTGCAAAATGGGACCAATGATCAGTTTAGCGTCAATGTATTTAGCTC
    TTGCTGAACTGGGCACGGTGCTAGAAAATTCAAATCCAGTCATCACAGAGTGG
    GAAGTGCTTACTATTGACCTCCTTTATTGATGAAGAAACAAAAACTTTTTTTTT
    TTTGAGACGAAGTCTCGCTCTGTCATCCAGGCTGGAGTGCAGTGGCGCGATCTC
    AGCTCACTGCAAGCTCTGCCTCCCGGGTTCATGCCATTCTCCTGCCTCAGCCTC
    CCGAGTGGCTGGGACTACAGACACCCACCACCATGCCCAGCTAATTTTTCGTA
    TTTTTTAGTAGAGACGGGTTTTCACCGTGTTAGCCAGGATGGTCTCGATCTCCT
    GACCTAGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTG
    AGCCACCGCGCCCGGCCAAAACAAAAACTTTGAGAAAATAAGTAGCTTACTTG
    AAAATCACAGTGGGATGTTGTGAACAGTAGGCACGCGATAAATACTACTGACA
    AAGACACCTGCTTCTGCAAATTCCCTCTCAGGTACGTTGAGGCAGCTGAGGGG
    TTTATACCAAGGCATGAAACTGCTTTCCTCCATCTCTTGAGTAAGAGTATGCGG
    CTGGCTGGGAGTTGGGAGTCCATAAGGTTCAGGCCACTCTCAGGCTGTGTGAC
    CTTGGGCCAGCCACCAGTCCTTGCTGGGTTTTTTTCTTCATCTATAGAATGCCAT
    GGTAGACCAGGTGCACCAGTTTGGCATGCAGCAAGTCTGGACCAGGAAGGAG
    ACCAGCTGGGTCGTGGCCCTAAGCACCACTGTGCATGGGGCTGAGGTCCAAGA
    AGGGAGGCCTCCCATTTAGACCCCAAGCTGTCCCAACCAGCTCATTTCTCCTGT
    AGCCTGCATCCCACCACAGGCCTGGCTGGCCTCTGAGGTCTTGTTAAAATGCTG
    GGCCTTGGAGACCCTCTCTGGCGGCTCCCTTTCCATTAGAGCACCTTCTCCAGG
    GAGCTTTCCCTGACCTCCAGGACAGCGCGTGGCAAGCACTGCCCACAGCACCG
    GCTGTCCCACACAATTCCAACCTCCCTCTAACCTTCTGTACCTGATCATCCACT
    ATTAATTGGTCTTCACATTTGTATAACATTTTTCAATTACAAAGCACTTTTGCGG
    CCATTCATCTCTTTGAGTGGCAGCCTAAGCTGCTATTTATTGACACTTCCTGTGT
    GCCAGGCCCTTGGCTGGCCTCTTTCCATGCATTATCATGCAATTCTCAGAGCAA
    TTCTGTGAAATCCACATTTACAGATGAGAAAATTGGGACTCAAGCAAGCCAGA
    TATGTAGCCCTATTACACAGAGATTTGAACGAAGTCCCATGAAATAATCTGGG
    TCATTCCTAACAACAGCTTCTGAAGCTTTCCTATGTGCCTAAATCACGGGACCT
    GTTTAAAAATCAGCTTCTCGTTCCACAGGTCTTGAGTGGGGCCCAAGATTCTGC
    ATTTCTGACAGGCTCCCAGGTGATGCTGATGCTGTCTCTTGAAGAACCGCACTT
    TGAGAAGCAAGGCCCTGAATCACTGGGCAATTTGAGACCCCAGGCTGGCAAG
    GCTGTTTCCTTATCTGTCAGATGGGTGAGGTAGCCCTGGCTTACATAGATGGAA
    TGACTCCCGGATGATATAGTGCCTGTGAAATGCCTGGCACACAATAGGCGCTC
    AATAAATGCTAGCTCTTCTCCTTCGATAGGAGCTGGCATGAGTCTGGGTACACA
    ACGGATGCTCAATAAAGCCTTGTCCAATGGATTGAGCCTAGCATTTTTCCCGAA
    GGCAGAGAATAAACTGTATTATGTTTCCCCTTGGAATGAAGCCAAACTCAATA
    TTAATTTCTTTCTTAAACCACAGAGTTTCAAAAAGAAATAAAGGCAAACTAGA
    GTGATTGCAGTCTGAAGCGAGCCTCTGTAATTTCTGTAATTACAGAACGAGAG
    CAAAGCAAAGCAGGCATGAGCACAGTCTCATGGAGGGAGTGGGGTGGGGATA
    GGGGGAGGGGAAGAGCAGGCCCTACTCCCAGACCCACTACTCCCCGTCCTCGA
    TTCCCTGGCTTTTCAGGGCTCCCCACTCACTCCATGGCGGGGCCATGGCCTGGG
    ACAATGGCAGCCCTGAGACTCCAGCCCTGGCCTCTCGGTCTCTGCCTAGGTCCC
    CACCCCACGCAGCCGCCTGTCCCTCTGATGCAGTGGGACAGAGGGAGATTGTC
    CAAGGCGGTTTCCACACACTTCCCTCCCCCTTGCCTGCCATCTGGTCCAGGGCT
    GGGCTGCTCACAGCCAATCATCCAGCAAGGCCCATGGCCCACGGGCCCCACCC
    CCAGAATAGATCCTGGGTGTCGGTGACACTTCCCCCAACTTCTGCCCATCCAGC
    CACCCCCATGCAAGCCACCATCATCTCTCTGGACTGGCAGCCTCTGATCATGTA
    TCCCTGCTTCCCCCTTGCCCCTATGCAGCCTTTTCTGGGCAGCCAGAGGGAGAC
    TCTTAAACTAACCGTAAGTCAGATCTCCCACCACTTCAACCCCCACTTCCTCCC
    ATCCCACTTAGAATGAAACCTGAATCCTTGCTGTGACCTCTGAGACCTGTGTGA
    CCTGGCCCCTGCCCACCACCTCTGCCTGAATCCATTTCCTCTCACACTGGACTC
    CAACCACCTTGGGCACCTTGGTGTCTTTCAAAAGTGCCAGGCTCCTTCCTGCCT
    CAGGGCCTTTGCACTTGCTGCTCCCTCTGTTTGAAATACTGTATCCCAGAGAGT
    CCCATTTCTGGCTCCTAATTCAGACTGAATTTTTTTTTTTTTTTTTTTTTTTTTTTT
    GCTCAGGCCAAATAAAACAAGCCCAAGGGCCAGTTTTGACCCATTTTGCCACT
    TCTGATGTAGAGCTTCCAAACTGTACATGTTTTCTTTCCCTACAAAGCATCTTGT
    CATTCAGAGATTGGCAGAGGAATTCTTTGTGCTTGGTTTGGCCCCATTTTTATC
    AATGGCTTTAACACTTGGTCATAGAGCATCCACTGAGGAAGGATGGGATATCC
    TGGGAATGTTTTACCATCTTCCTGCCTGGAGTGTCTTTCACTAACTCCGTCCTTC
    CCAGAGGCCCCATGAGCGAGTCATCTTCTGGTTTACGAATCTGATCCCATTATC
    AGCCCTGCCCCATCCCTGCAGCTAGTCCCCAGGTTCCTTAGTCCGGTGTCCAAG
    ACCCTTCATATACTGACCTTCCTAGCTTCACACTGTATACTTTAGTACATGTGTT
    TCCCTCCACTTGGAACGCCTTTTCTCTCTTTTTAAACCTGATGAACACCTATTCA
    ACCTTCAAAGCCTTGCTCAAAGGACGCCTCGCCTAGGATACTTTCTCTGGCTGT
    ATTAATGCGTTTCTTCTAGGCCTCCCGTGTCTTGTTCTTACACCTCTTGCAGCAC
    TTATCACAGGGTATTATGATCAGCTATAGGCAGAAATATTTCTCCTTCTAGGCC
    ATGACCTTGACAAGGGCAAGGGTCTTGTCTTATGAAATTCTCACACCCTGAGTG
    TCCACCCCAGCTCCACCCACATAGGAGGCCTCAGTAAGGATTTACAGAAATGA
    ATCTTTCTGCTGGAACCTGTTAGTTCACTGATTCGGATTCTGGTGACCAGGGTG
    TAGTTCAGAATACAAAATGCTTGAAGAGACGGCTCCATTGTCGTTTCAGCACA
    TAGCATGTGCTCAGTAAATACTTGCAGAATGAATGTGTTAGTGAGTGAGTACA
    GAGGACCTGACATGTCATCACTGGTGGTCTCACGTTAATAGTGCCCTTTGAACG
    TGGCTTTGGTGGAATTAAGTTAATCGTGGTATAGTATGCACCTGAAGGAATGT
    GGAGCCGCATGCTGGGTCTGCAGAATGTTGTCACCTGATGAAGAAGAACTGGA
    AGACGCTGGAAGAAGGCTTTGGAAAAATGCCCAGATCATGAGAAGGTGAGAG
    GTGTTTCTTCCGCCTGCTCCACCAGCAGGTAAAGGAGGCTGATCACAGGCTGG
    CACTCAGGGCGAGGTGGAAGAAATGCGTGGTCTTGCCACTACAGACCCGCAGA
    GCTGTCCTCCAACATGATCCAAGAGAGCCACAAAACACAGGGGTGTGTCTTGG
    GAAAGGAAAAGTAACAACTTGCAAAAAGGTTGGTTCTGCTTCAGAGAAATGTT
    CTAGAAAGACAGCCAAGTTACCCTGCCGTGAACTCACACACACCTGTGCTTTC
    TGCATGTTATGTTTCATAGGAGAGGGAAGTGCCGGGAATTAAAATTGCGGATG
    CACTGTTCCCCAGGTGTGTGGGTGAGGCACGCTTCCTGGGACCACTCCATTTAA
    GCATTGGGTCCCAGGCATGTTCACTACTAGCAGGAGGCTCTTTATCAATTTCCT
    CCCGTGGACCAGATGATTGGGATTTTTTTTTCTACCAGACTTTATTACAGAATA
    ACTATTTTTGTATTAACTAAGCAAACAAATGTACCGCTCCCAGCTTCTGACTGG
    CCCAAGGTGCTGAGCTAGACCTCTTTGCTTTGGTACAAAGAGAGCCCAAAGCC
    AAGAGACTTGGCATTTCTGTTAGCTGGTATTCCCCAGGGTGACTAAAAGGATG
    ATTTCCATTGGATTTTTTAAAATGCTGAAGACACTGAAAGACCTGAATAGTAA
    GCCCGTAATAAACGTTATTCGGTATTATTATTGTTGTTGTTGTAGCCTTCTGGG
    AAGTTGCGAATGCCAAATTAAGAACAATGGACCCATACCCAGATGGTGGCGAT
    TGCAGTGATAACAATGGCTGAGATTTCCTAAGCCCTAACTATATGCCAGGCAT
    AGTTGTACATGCTTTACACACATGATCTCATTTAATCATCACCATAACCCTCGG
    AAGGAGTTATTATTATCTTCCCATTTTATAGATGAGGGTCAGAGAGGTGAAGT
    AACTCACCCAGCATTAGTAGGTGTTGGAGGGAGCCGAGGTCTGTCTGACTCAG
    CACCAGGGTGGCTTTGCTGCTGTGTAAGTCAAAGAGCCTTCTCCGTTCTAAATC
    CTCAAAGAAGTATGAGTTATATCAATTCATGGCTTTACTTTGTTTATCTTCATAT
    GTGCCACATCTTCTAAAAGGAAAACTCCAAATATAGTCATGTGGCTCCTCCTAG
    GGAATTATAGGCATTTGGCTGAATCTGAATACATATCCCCGTATTCCAGAAATT
    GGAAATCACATGTATGTCTGCTTTATGGTGAGGTCTTCAGAGCAGCCACCGTCT
    CTGATCGTTCAGGGCTTGGCATGAGGAGGTGCTCAATATAGTCATGGAGAAGA
    ACTCATGGACTGAACTTCCTGGTGAACCAGAGGGATGGTGCAGAGATTTAAGA
    TTGCAACAGGAACCCCCAAGCCAATGTAAGCAAAACATCTATTTCATGACTAT
    GGGAATGTTTTGTAAAATCCAAGCACCAGCCTGAAGAAAGCCTGGAACTGCAA
    ACTAGGAGCTTTGAGACACTCTATCTTTTGATGTCTAGTTTTCTCCTTCCTCAGC
    AGACCAAATCTCACTCTGAGTACAAGATGGGCAGAGGATGGCTGCCCCAGAGT
    CCCCAAGTCACTAGCAAAACTGCCCTTCTTCCTGGGTCCCATGCCAAATTCCAG
    AGAAGGAATTTGATTGGCTAGCCTGGGTCAGGTGGTCAGTCCTGATTCAAGGT
    GATTGGATCATTTTGAACAAATATGGCAGCTGGAGCCCACAAGGGTAGATCAT
    GGGACCGTTAAGGGCATCATTGTTACCAGAGTTAATGGCTGAGGCTGCTCTCTC
    CTGCGTATCCCAAGAGTCCCTGGTAGACCACAGAATCGGCCGCCTCCTACTAT
    CCTGCCATTCTCCAGAAGGGGAGGCAGGCACCCTACTGAGTCCAGAGCTCTCT
    CTAACATTGCCATGCCCAGGCCAGGATCTAGATGGGCATCCAAGACCAGCCTG
    TGTGCCGTGAAGGAGTTCAAAGTGAGCAGGCCATCCCTGAGAACGAGGAGCA
    GGGGTGTTAGGAAAGTTTGGATTATCTGAAGATGGCCTGGTTCTCCGTGAACTC
    TGGGAGGAGATGATGGTGTTTGGTAATGGGGACTGCATGCGAGGGGCTGGAG
    GGCGAGTGCACAGCAGACTGGGCCCCCGCCGGGCAAAGCTGCGGGGAGGAGG
    CCGCGTGGGGAGGGCCAGGGCCACGCCGCACCTTGCTTTGGCGCAGCTCCCAG
    CTCTGAGGGAATGCAGACCGCTTCACATGTTCTGGTTTGTTCTGAGGGTTCCAT
    AAGTTTATTTTTTGTTATATTATTAATTTAAATCAGTTTTGTAGAGCATTATAGA
    AATTAAAAAAGCACAAAGAAGAAAACGAAAGTCACTCAAAAACTAAGCATTG
    TAACCATCTTTGGGTATATCCTTTTTTAAAATAGATGTGGGGGGTGGGGGCAAA
    ATGGGATAATTCGAAATAAACTGTCTAGAAACCTGCCTTTCTCACCCCAAAAC
    AAGGTGCTCTTTCTCGTGTTCTTACGTGGTCTTTTTGTTACATTTCCACAAGTTT
    GGATGGAGGACAGAGAAAAGTCTCAGCAGCCCCTCTGTTGGTTTCTCTTTTCTT
    CTGATAAAATTATGGAATGTCTTCTCCACGCTGCCCTCATCCCACGCCCACAGC
    TGTCCCGAGGGCAGCGGGCCCCACTCCTGCATGTTCCCAGCACCCCAAGGGCC
    AGTGCCATGCTGCATGGTCTCGCTGCGGCCACCCTGGCTGGGGACGCTCTGCG
    GGACACGCGCACAGCCCAGACGCCCTGGCAGGCTTCCTGCACCCCTGCTGCCC
    TCTGTAGGAGCTGCCTGCCTGCCCCATCGCTGCTTCACCATCCCTCCTCTCCTCC
    CCTTCTCTGCTTTGCAGGATCTCACCCAGGGTGGCAGAAGGAGGCCTTCTGGA
    GCTGACCCACCCCCGACGACCATCAGGTAACGTCAACAGCCCCGGTAACAACA
    TCCATGAGTGGAGTTCTCTCTCTTAACCAGGTTGGCGAAAAGCACTCTTGCAGC
    GATTACAGCTGAGTTTTGATGCAACTCTACAAGCCAGAGGGGATTGCCCCCAT
    TTTATACATGGGGAAACTAAGCACACACAACAGCAGTACTTGGTAGTAGTATT
    GAGTAGTAGTACTGAGCAGTAGTACTCAGCTGGTAGAAGGCAGACCGGAGATT
    TGAACTCAGGACTAGTCTCAGCCCAATTTCCTCCACTGTACTGTACCCCACGCT
    GCCCCTGGAAATAAAAAGGTAAGAAGGCTGCAGAGTGTCAGTAGAATATCTTA
    GGGTGATTGAAGGCTGAAAGAGGTCATCTAAACCAGTGGCCCTTAGCTGAGGG
    CCAGGGCTGGGCTACCAGTATAAGAATCTCCTTTGGCAGAGCTTGTTAAAAGT
    ATAGACTCAGGACTTCCTGCAACCCAGTGAGAGATGTACCAGTGTCATCCTCA
    TTTTAAAAGATAGGGGCACACAGAGGTTGAGTGTACTTAAGGTCACACAGCTC
    AAAAGTGGTAAAGTCGGGGCAGGGTGCAGTGGCTGGCTCACGCCTGTAATCCC
    AGCACTTTGGGAGGCGGAGGCGGAGGCGGGTGGATCACGAGGTCAGGAGATC
    GAGACCATGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAAAAATTAGCTG
    GGCGTGGTGGTGGGCACCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAG
    AATGGCATGAACCCGGGAGGCAGAGCTTGCAGTGAGCTGAGATGGCACCACT
    GCACTCCAGCCTGGGCAACAGAGCAAGACTCCATCTCAAAAAAAAAAAAATG
    TGGTAAAGTGGACTGTGATCAGAGGTCGTAACTCCTAGGCTCTGTCGTCTTCAC
    CCAGACACCTCCGTAGTGGGGACACCTTTCTCCCCATTCAGCCACAGGTGGAG
    CTTCTTTCTTGCTCACCCTGGCGATGGCTAGTATGGCCGCAGAGTGTGACAAGG
    CTCCCAATTGCATCCTTGGAGGCAAAGTTAAAGATTTTATGATTAAGTACTTAA
    CATTTCCTGTTGGAAGTTTGGTGGCCTCAGATTTCTCCTCTGAGCAGGACATAC
    AACAGAGGGTTGGACACAGATGGCCAGAGTTGAAGCTAGGCCAGGAAACATC
    GCTGTGTCTTTGGAAACAAAAGTCACCTTCCTTCCTCCAGGAGCAAGGGCGGG
    TGAGAGGAAGAGGGCTTATAGAGAGCCTTTTCAAGCCCCTAGCTTGTTTATGG
    GTTATTTTGTTTTTGTCATTTTAGGGTGAGGCAACTCCAAGGTCCTACTCTCTTT
    CTGTGCCTGTTACCCACCCCGTCCTCCTAGGGTGCCCTTGAGCCGCAAAACTGC
    TGTCCACGTGGACCGGGGGTGACATCGCACGTCCATCTGCCAGGACCCCTGCG
    TCCAAATTCCGAGACATGGCGACCAACGGCAGCAAGGTGGCCGACGGGCAGA
    TCTCCACCGAGGTCAGCGAGGCCCCTGTGGCCAATGACAAGCCCAAAACCTTG
    GTGGTCAAGGTGCAGAAGAAGGCGGCAGACCTCCCCGACCGGGACACGTGGA
    AGGGCCGCTTCGACTTCCTCATGTCCTGTGTGGGCTATGCCATCGGCCTGGGCA
    ACGTCTGGAGGTTCCCCTATCTCTGCGGGAAAAATGGTGGGGGTAGGTGCTGG
    CCCGGGGACCTCCTGGCTGGGTCTGGACCCTGCAAAAAGGATCCTGCTTAGGC
    ATTTTTCTGGGGCAACTGTAGGAGAAAAGCCCCCCTAAAGACTCCAGAGGGAG
    CACCAGGCCCCATTTCTTGTTTCTTGTCCCTTTATCAAAAGATTCCTGAAGGAC
    AATTGTCCTCTGTTAATGATACCAAGAAATTCATCTATTCACCTGCAAAAAATG
    GGATGTATTTCACATATGGCTTTCCTTGGGCCTGTGGTTGGCTGTGGGTCCTGC
    TTTTGAGGCAGGTATAAAGAAATACTGGATGGGGACCCAGACCCACGACACTC
    CCTCTACCAGGGCGGGTCTTGAAAGTCTTGGGGCCACGAGCTCTGTCTTCTTTA
    CCTGCAGGAGCCTTCCTGATCCCCTATTTCCTGACACTCATCTTTGCGGGGGTC
    CCACTCTTCCTGCTGGAGTGCTCCCTGGGCCAGTACACCTCCATCGGGGGGCTA
    GGGGTATGGAAGCTGGCTCCTATGTTCAAGGGTAAGTCTGCAGATCAGGGACC
    TGGGTGGTGGTGCCCCTGCCCACACACACCTCTTGCCCTCTGGAGAGAGCGAG
    CTGTCTACCCAGACCAGGGCTGACATCACATATCCATCCACCAGGTGCATATCT
    GAGCAGAGTGAGGGCTGTTGCAAGGGGCCAGGTGGCAGATGACAGTGCTGGT
    CAGAAGCTAGGGAGGTGGAGGTGGAGAGGCCCAATCCAGAGTCCCCCGCACA
    TCAGCCTGCTCTGTCCTGTTAGCCCATCTATTTCCTCTGCAAGGGCTGGGTGTG
    ACTTTCTTTGCCTCGTGCTCAGTGCCTGACAGGCACCCAGGTAGATACATGGTG
    AGTCATGCTCACTGACCGAGGGCCTGGGCCTCACCTCGTCCGGCAAGCTGAGA
    CCCCAGCCCTGCCTGCCACCAGTCTGCACTGGGCCCCAGACATGAGTCCTGGC
    CCCCTGGCTTGTCAGATGTACATGACCTTCAGCAAGTCACTGCCTCTCTCTTAG
    CCTCAGTGTCCTCAGTAATGCCTGTCTCCGAGATCAATAAGATTGTAGAGGTCA
    TGGAACATGCCACGACAGTTCATGTTAATTCCGTATTAAATGGACGCGTGTCTG
    TGTTCCGCTCCCAGGCGTGGGCCTTGCGGCTGCTGTGCTATCATTCTGGCTGAA
    CATCTACTACATCGTCATCATCTCCTGGGCCATTTACTACCTGTACAACTCCTTC
    ACCACGGTGAGTGGTCCCTTTGACCACCCCATCCAGCAGAAGCCACACCCAGA
    GCCCACCCTTGGCCCACCACGGCCACCACTCTGCTGACAAGGCCATTCCTCCA
    GGAGTGGGGAACTTGGTTTGTCTTTTGTGGGCCTTGGTCTCCCCACAACAGCCA
    TAGCCTCACAAATTTAGCATCTCCTGTGAGACAGGCACTCCTTGCAGGCTCACA
    TCCAATCCTCATGACACCCCTCTAAAGTGCGTATTGTTAGCACATTTTATATGG
    ACACAGACAGCCTGGGTTCAAATCCTGACTCTACTATATACCAGCTGTGCAAC
    TTCAGAAAAGAGACTTAACCTCTCTGAGTCTCAGTGCCCTCATTTATAAAATGG
    AAATAAAATTAGAACCTGCCCCAGTTCCTCAAAAAATTAAACATAGAATTACC
    ATATGATCCAGCAATTCTGCTTCTGAGTAGATACCTGAAGAATTACAAGCAGC
    TCTCAAAGAGATATTTGTACACTCCTGTTCACAGCAGCACTATTCACAGTAGGC
    AAAAGGTGGAAGCAAGCCAAGCGTTCACTGATAAATGAATTGGTAAGCAAAA
    TGTGGTCTATACATACAATGGAATGTAATTCAGCCTTAAAAGGAAGGAAATTC
    TGACGCATGCATCAACATGGATGGACCTTGAGGATATTATGTCAAGTGAAATA
    AGCCGGTCACAAAAATACAAATAGTGTTTGATCTTGCTTATATGAGTTCCCTAG
    AGTAATCAAATTTATAGAGACAGAAAGTAGAATGATGGTTGCCAGGGGTTGTG
    GGTAGGGGGATGAGGAGTTGTTGTTTAGTGGGTGGAGTTGCAGTTTTGCAAAA
    TGAAAAAAGTTCTGGAGCTGGATGCTGACAATGTTAGGCAATACATTTCTCAC
    AATGTACTCCCATTGTTAAGTGACACATGACTGTATTTGCAGAGGTGTGGCAG
    GGTTCAGGGAGCTACATTATGGGTATACTTAATGCTTCTAAATTGTACAGGCAC
    CAATAGTTAAGATGGTAAATGTTGTGTGTATTTTATCAAAATTAAAAAATGAA
    AGAAAACAAAAAGTGAAACCCACCTCATAGGGTTCTTGTGAGGATTAAGGAGC
    AGATATGTGTAAGGAACTTAGAACTGCGCCTGGCAGAGAACAAGCCCTGTAAG
    TGTTTGCTGGTGTCGTTGCAGTGAGAGTTAGATGGGCAAGGTCTCTTGCCCAAG
    GTCACATGGTGGGGAAGTAGCCCCGGCTGCAGCTTGGAAGGCTGTTCTCACAG
    TGAACAGGTTGAGGTTCAAATCTCAGCTCTGGCACTTAGTAGCTGTGCATTCTC
    AAGCAAGTCACTGTCCCTCTCTGATCTGTCAAATGGGGATCATAATGCTACTTG
    CCTCCCAGAGCTGCTGCGAAGGGGAGGTGTGAGGAGGCTTGGGGACCATGAG
    GGTGGGCAGGGTGCACTGGGACCACTCATGCCAGCCCCTGGGAGCCCAGCAG
    GATGCGTCCTCATGACTGTGTCCTTGCAGACACTGCCGTGGAAACAGTGCGAC
    AACCCCTGGAACACAGACCGCTGCTTCTCCAACTACAGCATGGTCAACACTAC
    CAACATGACCAGCGCTGTGGTGGAGTTCTGGGAGTGAGTATGGGGCCATCAGG
    GGATGGCAGGGACGGGGCATGTCAGCCAGAGCCCGGCAGGAGACAGAGGCCC
    CTCGGAGGGGTAACAGAAGAGGTGGATAAAGGGGCTACAGTCATGTGTCACA
    TCATGACATTTTGGTCATCAGTGGACCACATATGCAACGATGGTCCCATAAGAT
    TATAATACCATATTTTTACTTTACCTTTTCTACGTCTAGACATGTCTAGTACCGA
    AATGCATTGTGTTACAGTTGCGTACAATATTCAGTACAGTCATGTGCTGTACAG
    GTTTGTAGTCTAGGAGCAATAGGCCACACCGTATGGCATAGGAGTGTAGCAGG
    CTAGACCATCTAGGTTTGTGCAAGTACACGCTATGATATGCACACAACAACAA
    AATTGCTTAAGAACGCATTTCTCAGAACATATCCCTGTTGTTAAGTGACACATG
    ACTATACTTGCAGAGTTGTGGCAGGGCTAAGGCAGCCACAAGGGATGCTGAAG
    ACCTTTTCTCCCCAAAAAGAGTTGGACCACAGATAGAGCCATGAGACACACAA
    ACTCTGACCTTTGATAGCAAAACCCAGCTACTCACAAAGCCAAGGTCCAGCAG
    GAAGAATACATTCCCCAACATCTCTGCCTCTAATCTCCTGCCAGCTCCTCCCAA
    TGGTCAAACCCAGCTAGAAGCCAGAGGGCAGGGGACCAGATAATGTGGCCAT
    AGTCGTCAGCATCCTGGGGCCTGGCACAGAGTGGTCAAGGGGAAGAGTGGATC
    AGAGAGGCAAACGGAGGGGAATAACCAGCATAGCCAATTAGAATCACCTGGA
    GAGGTTGACCACATCCTGATTCATCCTGAAAACCAGCCTGATCTACTTACGAA
    CCTAGAGTCACTCGGAATAAACATGCACACACACTCTGGCCATAGTGAAGGCC
    GTGCTGATTGTATCTTCAGGGGAGTACCTTGTAGAGATGTGTGTCGGGGGTCAC
    TGATGTGACACAATGAGGTGCTGGGGCCCAAATCTCTCTGGCATGAAGGAAGC
    ATCCATGCTGGACAGCTCAGAAGGATCCGGGAGCAGTCTAGAAGGTCTCAGAG
    CACCTTGGATAAGCTCCCAGGAGGAGCTGTTCTCAGGCACTGTCAGAATCAGA
    GTTGCCTGATCTCTTCATGGCCAATGTCCATGGTTACACTGTTTCTTTACAAATA
    AAAATCAAATTCTGCTCTGGTGGGTTCTGCTTTCTGGCATCTCCCGCATGCTGC
    TCTCAGGCACGTTCGGACTTTTCATTCAACCATTTATTCAGTAAACACTTCTTG
    ATCTCCTACTATGTGCCAACTGATGACAGGCACGGACATGCAGACAGGCAATG
    GCACCACCAGGCGGCCAATGCGGAGAGGAGGGAAGCCCAGGCAGCTGGGCTG
    CGGGGACCTCAGGGAGTCCCCTGGACCACCCCAGGTCGGGAGTGGCATCTAGA
    AGAGAAAACTGCAGGGCAGGCAGGTGCTGGAGAGAAACAGTGTGAAGGCTGG
    GAGGCAGATGAGGTCAGGCCAGGCACCGGCAAACAGCTGCAGTGAGTGCTGA
    GAGGAGAGAGAGATGCAAGGGCCTTGAAAGGCTGGCCAGGGAGTTTGGGCTT
    CATTCTGAGAACAAGCGGGTGCTATTCATCGCAGTAAGCAGAGGAGTGACATG
    ATCAGACTTGCAATTTAGAAGGCTCTCTGGGGCTGGAGAGGGGATAGAGCAAA
    ACTGAAGGCAGGGTCCCACTAGGAGGCCACTGGGCCATCCAGATGAGCAGTA
    GTGGTGGCTGACTAAGGCCCTGGCAGGTCCTGTTCTCTTTGATCTCTTGACCAA
    ACAGCACTTTCTACTGATTAGTATAATGGGCCTCACAGTCCCCAGCTACCTCTT
    GAATCACGGTGATGACGGTGTCAGCACAGTTCTAGGGCGGGGATATCATCTGT
    GGCCATGCCCTGGGCACCCCTGGGTCACTCCGGCTCCCACCAGCTCTGTGTAAC
    TTTCTCCTCCCTCCACTGTTTGACCAGGCGCAACATGCATCAGATGACGGACGG
    GCTGGATAAGCCAGGTCAGATCCGCTGGCCACTGGCCATCACGCTGGCCATCG
    CCTGGATCCTTGTGTATTTCTGTATCTGGAAGGGTGTTGGCTGGACTGGAAAGG
    TAAGGGATATATGTGCACAGTGGGGACAGGAGGGCACTGGATAGAGGAACAG
    GTCTACAAAGGAAGCTCTGCCCACAACTCCCAAGAGTCCCATCCAACCTTGAA
    TTAAGCAGGTCCCTTCAACACTCGGTGTGTCCGTTTCTTTTACTGTGAAATGGG
    AATAATAACATTACCTTACCTTCTGGGGCAGTTGTGAGGATAAAAGGAAATAG
    TGCAAGTCAAGTACGCAGCACAGTGCGAAGCTCACAGTGAGTCCCATGGGATT
    CCACTGGGCCTAACAGAGTCATCTCAAAACAGAGGGCAAATGTTGCTCCTGGA
    CTGTTGAACAAACTTTTCCAGAGCATCTGCTCTGCACCAAACCTTGTTCTAGGT
    GCAGAAACTCCAGAGATGACAGCTTCACATCCTGACCCTTGAGGAACAACAGA
    GATGAATAGGTTAATGGTTAGATTCAGGCTCTGTATTAAGCAGTCCATGAGTTA
    AGATCCCAACCTCACCATTTACTAGCTGTGAGCTCAGGCAAGTCACTTTGCCTC
    CCTGGAACTCAGTTTCCTTCTCTGTAAAACGGGGCTAATAATTATACTTATCTG
    TTGGTTTATTATGATAATCAGATGAGATGGTGCTTTTGTCAAGCGCTCAGCACC
    CAGCAAGGAGAGTTGTTATTACTCTTGTTTTTATTCTCAGCAAGTGCAGAGCAA
    ATGCCAAGCTGGGATGTCTAGCCCAGGGACACCCGGGAGGTGGAAAACTGGC
    CTTACTCCACCTTTTCTCCCTTTCAAGCCCTACCCCAGGAGCCTGGGGGCAGAA
    GATGGCAGTCTCTCACTGGCCCTGACCTGAAGGGAACCCGGAGGACAAGTGTG
    TTGTCTCAGATCTTATGGCAAGTCAAGGGCAGAGAAGGGATTTGTACTGAATA
    AGATGGGAGGCAGGAAGGTCAGAACTACCCAAGAAGTGAATGCAAGGTTCTA
    GAAGCAGTAGTAGAAATGAACCAAGCAGAACCTTAACAAATTCCACACTTGGG
    CAGGGCAGAGCTGATGAAAAGCTACCCTAGTTTCATCTAGTGGGAACTTCTGG
    ACCCACTGGGTTCTCAAATCCAAGGCTGGTGTAAAAGTATCTCTGATCCATTCC
    TAGGACTAGGGACGCCGGAGGAGGGCACAAGTATCTCCCAGTCTAAATTTCAG
    GAGCAGAAAAGTATAGGGCTTATGGGCTTTGGAAGGGTTTGAGTCTCAGTCCC
    TGAGCTTCTAGCTGTGTGCACTTGAGCAAGCCATTTCATCTCTCTGAGCCTCAG
    TCCCCTCATCTGTTCAATGGTCACAATAACAGTACCTTACAGGGTTGTCCCAAA
    GACTGAGGGAGATGAGTAGAATGCTTAGCATATGCCTTACACATAGTAAGCAC
    TCAATACATAGTATCAATTATAATCATTTTGGAGTGGTAATTAGAGTTCGTGCT
    ACATTAGGAGACTGGCCACTTCTTGGGGACAGAGAGTAGGGCCCCCTCACTGC
    ATATATTGAGGATGTCAACCAATCCATCCACAAGCATTTATTGAATACCTACTA
    TGTGCCTGGCTTCATGCTGAACACGGAAGGCACAGGGAAGTACGAGACCAAG
    GTGACATATAATAAGCCTGCGGCATGTCCTGATGTGACTGACCTTTCTGAGCAG
    TAGGTGTGACTGTGCCTGATTCCAGACAAGAGAAAGTGAAGCTAAGAGAAAAT
    ACAACATTGACCCTAAGTTACGCAGCTTGTGGGTGACACAGATGAGTTTGAAT
    TCCCTTTTCCTAGCTCCAAGTACAATGGGTTTTCTCTTGGATTGTGGCTGCCTTC
    CTTAATCCTGCAGAATCTCGGGGTCAAGTCAGGGAGGTGAAGCTAAGCCAGTG
    AACTGTCCATGCTGACCGGGAAACAGGCTCACATTAGACTCTGAGATACAAAG
    GTCATCAAACTTGAACATTGCTCTTCCATACTAGTGAGCAAAGAAATGCAATTT
    TAGACAATGATCATCAGTTTGGCAAAAAATAATTGTTTAAATGATGATACCTA
    GTGCTGGCCTTGTGACAGAAAGGCACTCTCTGTAATGCCAGGTGAAGTTCCATT
    TCTCGAAAGCAACAAGGTAATATGGATCAAAAGCCTGTGATGAATTTATTCCT
    TTTAATTCAGTAGTTCCACCTCTAAAAATTTTTCCCAAGAGTGGTATAATAATT
    TTGTAGCTGAAGATTTATATACAGGGGTGTTTAATTTGGTGTTATTTAGAGTCA
    CATAAAATTGGAGGTAACCTGAATGCATAGCAGTGGGGAAGCTTAAAAGAGA
    ATGGTAGGACCTTCTGAGGGACTGTTTTGTGCAATTAAAACGTCAAATTGTTCA
    TGAGGCAATAAAACAACGTTTAGTGAACAAAATGGGAAACAAACCTGTATGTA
    CTGCGTTTTTTTTAACTCTAAACATGTTACATGGAAAGGCAAGTACCTAATTTG
    AACCTCATTTTGTAAGAAAATGTGATTGCATCTGCAAAGGAGAGTTTCAGAGG
    AGCATTAAAGTAGGAACATCCCTGCATTTATGTGTTCGTCAGACAATTCTTGAG
    TGTCTACTATATACGGTGGACTGTTCTAGACATGGGGATGTGAACAACACAAG
    CCCTGCCCCCCACATAACTTACATTCTAGGTGCTGGTTAAAGGAACTTTCATTT
    TATGTGTGTGTGTGCATATGTAATTTAAAAGTTTTCCTGTCACCACATGCAATA
    CTTGGATAATTTAGAAGTCAAAAAATAGGAGGGGACAGGGGAAGGGAAAAAC
    CAAATGTGAGCTGGTTGGCTCAGACTCCAAGGAGGAGCTTCAGATAAGTGGCC
    AAGGAGAGCAAGGATCTGGGAAGGCTTCCTGGAGGCGGAAGAACTGGAATCA
    AGCCCAGAGCCACAACAGATACGGATGTAGGGGAAATGGGGGAGGAGGAAGC
    AAGGGTGTACAGGAGGAGGGGTCACCAGTCACCCACTTTCCTCCCAGGTGGTC
    TACTTTTCAGCCACATACCCCTACATCATGCTGATCATCCTGTTCTTCCGTGGA
    GTGACGCTGCCCGGGGCCAAGGAGGGCATCCTCTTCTACATCACACCCAACTT
    CCGCAAGCTGTCTGACTCCGAGGTGAGTGCCCCTCCCAGCCCGGATTCTGAGC
    CACCACTTAGCAGCTTTGAGATAAGCTTTTGCATCTTTCTGACCCTCACTGTAG
    ACCAGGTTTGTTGCCAGGGAGAGCTGGTGGGCACATGGAAAAGTTCCTGGATA
    GCTGCGGCTATGGTGATTACTTTTGACAGTCTTTGATAATTCTGCCTATAGGTG
    TGGCTGGATGCGGCAACCCAGATCTTCTTCTCATACGGGCTGGGCCTGGGGTC
    CCTGATCGCTCTCGGGAGCTACAACTCTTTCCACAACAATGTCTACAGGTTTGA
    GAGGACAGCTGCGGGAGCCCCTTCCTTCCTGGCCGAGCCCTTTGAGTCCACAT
    CCCACACTCATGTGTTAGGGCCCTCTTTGGCCACTTTGCACTCTCAGCTTAACC
    TCTCCCTGAGCCAGTCGTTTGTTTAACTCCTTCTGGAGACACAGACATTCCTGT
    TGTCCCCCTTTCCTGACCCTGATCTTCTGGCTCTGCCCTCCTCTAGCTTGCTCTT
    AGGGCCTGTGCATCTGGGACCTACCGTGTAGCCCCATTCCCAGCCCCCTCCTCC
    GGGCCACCCCTCCATAACCACAGCCAGCAGCTACACCTTCTGCCAGCTGCACC
    CTCCTCACCCCACCCCTCCCTCTCTTCAGGGACTCCATCATCGTCTGCTGCATC
    AATTCGTGCACCAGCATGTTCGCAGGATTCGTCATCTTCTCCATCGTGGGCTTC
    ATGGCCCATGTCACCAAGAGGTCCATTGCTGATGTGGCGGCCTCAGGTCAGTG
    CAACACTGTGTGGGGCCGGGCTCCTGGCATGGGGGCACTAACCATGCTGGCCT
    TTGCCATCATCACCATTACCACCACCACTGTGGCTCACTGGCCTTGAGCACTCC
    CTATGTGCCAGGCAATGCACTGAGCATTTTACATGGACTGTACCCATGATTCTT
    CTCAACACTTTGCAATACACGCTATTGTTAGCCCATTTCATAGATGAGAAAACT
    GAGACTCACCTCCTAAGGGTATGGAGCTAGAAAGATGGCAGATCTGGAGTTGG
    AGCCCAGGTCTGGCTGACTCCCAAGCCTGGGCTCTTAGTCTCTTGGCTATACTA
    GCATGTCCAGCACAATCCTGGACAATTTGGGGAGAAGATCCACTCTTGCCTTG
    GGAGTATAAACTTTGGTATTGGGGGAAATTCACCCCCGATATTTCACGTAGGTT
    CTTTTCTATTTTACCTAAGTGTCAGCTGGTCTGAGAAATAAAGGGAAAGAGTAC
    AAAAGAGAGAAATTTTAAAGCTGGATGTCTGGGGGAGACATCACATGATGCCC
    CCGAAGCTGTAAAACCAGCAAGTTTTTATTCATGATTTTCAAAAGGGGAGGGA
    GTGTATGAATAGGGTGTGGGTCACAGAGATCACATGCTCACAAGGTAATAAAA
    TATCACAAGGCAAATGGAGGCAGGGCGAGATCACAGGACCAGGGCAGAATTA
    AAATTGCTAATGAAGTTTCGGGCACACATTGTCATTGAAAACATCTTATCAGG
    AGACAGGGTTTGAGAGCAGACAACCGGTCTGACTAAAATTTATTAGGCAGGAA
    TTTCCTCATCCTAATAAGCCTGGGAGCGCTACGGGAGACCGGGGCTTATTTCAT
    CCCTTATCTACAACTGTAAAAGACAGACGTCCCCAAAGCGGCCATTTCAGAGG
    CCTCCCCTTAGGGACGCATTCTCTTTCTCAGGGAAGTTCCTTGCTGAGAAAAAG
    AATTCAGCGATATTTCTCCTATTTGCTTTTGAAAGAAGAGAAATATGGCTCTGT
    TCCACCTGGCCCACAGGCAGCCAGACGTTAAGGTTATCTCCCTTGTTCCCTGGA
    CATCACTGTTATCCTGTTTTTTTTCCAAGGTGCCCAGATTTCATATTGTTTAAAC
    AATTTGTGCAGTTAATGCAATCATCACAAGGTCCTGTGGCAACATTCATCCTCA
    GCTTACAAAGATGATGGGATTAAGATATTAAAGTAAAGACGGGCATAGGAAA
    TCACAAGAGTATTGATTGGGGAAGTGATAAGTGTCCATGAAATCTTCACAATT
    TATGTTCAGAGATTGCAGTAAAGGCAGGTGTAAGAAATTATAAAAGTATTAAT
    TTGGGGAACTAGTGTCAATGAAATCTTCACAATCTATGTTCTTCTGCCATGGCT
    TCAGCCGGTCCCTCTGTTTGGGGTCCCTGACCTCCCGCAACACTTTGGCTCAAT
    TCAGACATGTTCATCACCATACTACAAAGACCACTAAATCCATGCTTTTGTCTC
    AGCTCCAAAAATGTTCTCGCCAAGTGGGCCATGCCCACTCTGCTCACCACACA
    GTCATCAATGCCACAGAACCCAAGGAAAACCCCAGACAGCCCTTCGCTGCACA
    GCCAGGCAAGCAGCCAACAGGTGGAACCCACTGTATGCAGGGCAGAGGCCCC
    TGAGGCTCATGGAGGCCACACGGCTGGTCCCTTGAAGAAGTGGGCTGGTTCCG
    TGAAAGGAGCATTCTCTGCTCCGGTTCTAATCTCCCCTTCAAGGGCAGCCACCA
    TCTCGTTTCTCTGCAATTCCCCAACCATTCCCCCACCCCCATCCGGAGCCAGAC
    CCAGGGAGGTTACAATCTCTTTCCTTCTCATTCCGAGATTTCCTGATCTCTTAGA
    CACCCCCACCAACTACTCAAACACAATACATGCCAAACAAGGCTCCAAAGCCT
    TCTCCTCCACCATGCTCCCCATCACAGAAGGGTCCCATGGTCCAGTGCCCAGG
    GTGGAGACCTCAGCATTGTCCTGGACTCTTCCCTCACCCTCATCCTGCAAACCA
    GCCAATACCAGCACCTGCCCCTCCATCCCCTACATATCTCTCTATCTGGTTGCC
    TCTCTGCACCTGCACTATCCTCACTACTGGCCAAGCCATGCCATCCCCCATCGA
    GATGATGGCCACAGCTCCTCACTGGTCCTCTTGCCTCTGGGCACAATTACTATG
    GCCCCACATCCCCCACCCTCTTTCTGCACCTGGAAAAAGGGGCTGAAAACACT
    CACTCAAAAGGTTACTCTGAAGATGAAATGAAATAAGGCTTAGAAAATGGGCA
    GTGTGCTGGAAAGGCTGTAGGTGATGAGTACCTTTTATTTTTCTTCTTTTTTGCA
    CTTCTCTGTTCAGGCCCCGGGCTGGCGTTCCTGGCATACCCAGAGGCGGTGACC
    CAGCTGCCTATCTCCCCACTCTGGGCCATCCTCTTCTTCTCCATGCTGTTGATGC
    TGGGCATTGACAGCCAGGTGAGGGCGCCCCCCCCGCACCCCAGGAGCTCTCCA
    TCCCCAGACTCCTCAGTCCCCGAGTAAACAGGGAGAGGAGGCAACTCTTAGGC
    TGCCAAGAAGATGACCAAAAATTCCAGGTCCCTAGAATGTTCCACTGCATGAA
    ATTTCAGGAAACAGCTCAGCCACCTTCTCCATTTTCCAGAAGGGGAAACTGAT
    GCCCAGAGGGGAGGGACTCTCCTGAGGTCACAAAGTGAGTCACAGGCAGAAT
    CAGGCTGGACCCTGGGCTCTCCTGGCTCGGTGCTGCTGGGCCTCCCGTCCTTCC
    TTAGAGGGCCAGGCTTTGGGTGGGTTGGGGCTGGGGCTGCTGCAGGTGGCTGA
    CCTCTGTTCCCACCTGAAGTTCTGCACTGTGGAGGGCTTCATCACAGCCCTGGT
    GGATGAGTACCCCAGGCTCCTCCGCAACCGCAGAGAGCTCTTCATTGCTGCTG
    TCTGCATCATCTCCTACCTGATCGGTCTCTCTAACATCACTCAGGTAAGCTCAG
    TAAGCACCTGGCACTCCCCCAGCACTGCCCAGGGCCATGCCCAGGGCCTCCTC
    TCCCCTCCTCTGTTGTATCCCACCTTTCCTGCCTTCATTGAGCATCATCTCTGTG
    CCAAGCTCTGGGCACATAACAGTGAGTCAGATGGGGTCCCTGCCCTCCAGAGG
    CTCCCAGGCTGGTGGAGACACAAACATTGAGCTAAGACATATAGGACAGAGCT
    AGAGAATGCAGCACCTAACTGGACTCGGAGCACCAGGGACTGCTTCTTGGAGG
    AGGGGATGTAGAAATTGAGCTTTGAAAGGCCCACAGAAGGCCTGGCATGGTG
    GCTCATGTCTATAATCCCAGCACTTTGGGAGGCAGAGGCCGGCGGATCACCTG
    AAGTCAGGAGTTTGAGACCAGCTTGGCCAATGTGGTGAAAACCCGTCTCTACT
    TAAAAAAATAAAATAAAGTAAATAAATAATACAAAAATTAGTCAGGCATTGG
    GGCAGGTGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGTAGGAGAATTGCTT
    GAACCCGGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCGCCATTGCACTCCAG
    CCTGGGCAACAAGAGCGAAAAACTCTGTCTCAAAAAAAAAAAAAAAAAAGAA
    AGAAAGAAAGAAAGACAGAAAAAGAAAAGAAAGGCCCACAGAAATTAGCCA
    GAAAGTCAAATTGGAGTTGAGCCTTTGAAGTTGACACTGCCCAAAGCTTTCTTT
    CATTCCCATTTTTCTTTTGTATTGACATGAATGAGAAATGCTCACATAGCTGGT
    GAATTGTGCAATAAATATAAACGACTCTAGCAACATGAGTTCAGCACTGCGGG
    TCTGATTTTTATAATCCACAAATCACCCCCACCCCCCCCCCACCAGATCCAAAT
    GTAGTTCTGCTCCAGAGTTAGTATTCATTCATCCCTTCATTCATAGTTGTCAAAT
    ACCTACTATGGGCCTGGCATGACCCCAGAAATTTGGCAATTAATGTGGCAGAT
    ACTACCATGTCTGCTGTCTTGGAGCTTACATTTTGGTGGACAAGACTGACAGAC
    AAATTAGATGATTTTGGAGAGTGTCAAGTGCCCTGGAGAAAAGAGGACAGCA
    GCACAGAGAATGGCCAGTAGCACAGGAGGGGCGCTCCCTCAGACAAGGTAGT
    CAAGGGAGGTCTCTCTCTCCAAGAAAGCGACAGTTGAGCTGAGACTTAAATGA
    TGAGAAAGAGCCAGCCAGAGAAAGATCTGGGGAAAGAGAGCAGAGTAGGTGC
    AAAAGCCCTGAGGCATTTGAGGGACGAGGGAAGCCAGAGTGGTGGAGGCAGA
    GGGAGTGAGGCAGTGGGTGGGAGACGAAGAACCAGCCCATGCGGACCTTGCA
    GGCCAAGACATTTGGGTGGGATGGGATGGGATGGGATGGGATGGGATGGGAT
    TGGATGGCATGGGATTGGATTAGATCTCTCTCTGCTTATTTATGTGTTATATTAT
    TGTCTCATTTAAGTCCTGAAAGGTTTTAAGCAGGGGAGAGACCTGACTGATTTA
    CACTGTAAAAAGATGGCCCTGGTGACCAACTCCGCTTTCTGCCCTCCAACCTTA
    CCAGAAATTGGCATTTTCCTCTACCACCTGGACATTTCCTTCCCAATGCCCGGA
    CTGTCAATGTCCACATCCTCTCGTGGTCACAAAGCCCTCAGTGCTTCATCTAAT
    CTACCCTGAAGCCTAATCCCAGCCCCATCAGCCTCCAGAGTCCATGTGGTCTGT
    GAACTGGATGCAGTGGGCGCCGGGGACAATGCACCTGTTCTCACCTCTTTTCAT
    CTTGCAGGGGGGTATTTATGTCTTCAAACTCTTTGACTACTACTCTGCCAGTGG
    CATGAGCCTGCTGTTCCTCGTGTTCTTTGAATGTGTCTCTATTTCCTGGTTTTAC
    GGTGAGTATCAGCCCCTCATCCCTTATTCATTCACTCATTCATCCATTCATTCCT
    TTCTTGAGTCATCATTCAACAAGTGCAATTTGAACCCCAGGTCTTCTCCTTACA
    TTTATTTATTTATTTATTCTTCACATTACAATTCAATGAGGTTAGTCCAGGAGTC
    CCCCATGTTTAGAAGATATAAGAGCAGTTAAATGAATTCATTTAAAATAAGTG
    GAGATTTTATCCAGAAAAGGGAAACCAAAACTACTTTTTAAAGTTTTAAAGTT
    ATATATTTAACACAGTCTAGGCTGTAATTAAAAGTGTGCACTATCTTAAAACAA
    ATAACAAAAGAAACATTGATTTTGTTTATTTTGTGGCCTAAGTTTCTTGAGCCA
    ACTGCATGATAGTAAAAAATGACAACATCCTTTCCTGCACCTTTGATTGTCCCA
    TCAGAGCAAATGTTTTTAAAGAAGCATGATATTTTGTGTCCCCCTTTGCAATAT
    CTGCCACCTCATCCTCCTTGTCATTGTCCCTTCTTTTTTGTTTGTTTTATATGTAT
    AAATTTAAGGGACATGAGTGCAATTTTGTTACCTGGATATCTTGTGTAGTGGTG
    AAGTCTGGGCTTTTAGTGTACCCATCACCACATAATGTACATTCTTTTTTTATTT
    TTATTTTTATTTATTTTATTTTATTCATTTTTTTGATGGAGTCTTGCTCTGTCACC
    AGGCTGGAGTGCAGCGGTGCAAACTCAGCTCACTGCAACCTCTGCCTGCCTGG
    TTCAAGCAATTCCCCTACCTCAGCCTCCCAAGTAGCTGGGATTACAGGCATGTG
    CCACCACGCCCAGCTAATTTTTTGTATTTTAGTAGAGGCAGGGTTTCACCATGT
    TGGCCAAGATGGTCTCGACCTCCTGACCTCATGATCCGCCCACCTCGGCCTCCC
    AAAGTGCTGGGATTACAGGCATAAGCCACCAAGCCCAGCAGTACATTCTACCC
    ACTAAGTAATTTCTCATCATCCACCCCAGCTCCCATTCCCCCACCCTTCTGAGT
    CTCCAGTGTCTATTATTCCACCTGTGCCCAGTGTTTAGCTCCTACCTTTAAGTGA
    GAACATGCAGTATTTGACTTCCTGTTTCTGAGTTGTTTTGCTTAAGATGATGGC
    CTCCAGTTCCATCCACGTTGCTGCAATAGGCATGACTTCATTCTATTTTATGGCT
    GAATAGTATTCCATCGTGTATGTATACCATATTTCCTTTATCCAGCCATCCACG
    GATGGACACTTAGGTTGATTCCCTATCTTTGCTATTGTGAATAAACACGAGTGC
    AAATATCTTTTTGATATAATAATTTCTTTTCCTTTGGATAGATAGCCAGTAGTG
    GGATTGCTGGATCAAATGGTGGTTCTATTTCTGATTCTTTGAGAAATCTCTGTA
    CTGGTTTCCATAGAGGTTGCACTAATTTACACTCCCAATAACACCTTCTCTCTCT
    AACTGTTCCAACACGGTCAGATCCTCACTGGTCAGTGACTCTGCTTATAATTTG
    AGCAGTGCCCGAAGCCGCTCTGGTGAACTTCAAGACACCAGTTTGGGGTTTGG
    GGTTTTTCTTTTTCATGAGATTTGCAGTTCTTTGCAATTGATTGTCAATTTCTTTT
    TCTTTCATTCATTCATTTATTTATTTATTTATTTATTTATTTATTTATTTTTGAGA
    CGAAGTCTCGCTCTTGTTCCCCAGGCTGGAGTACAATGGCACGATCTCGGCTCA
    CTGCAACCTCCACCTCCCAGGTTCAAGCAGTTCTCCTGCCTCAGCCTCCCAAGT
    AGCTGGGATTACAGGCGCCCGCCACCACACCTGGCTAATGTTTATATTTTTAGT
    AGAGACGGAGTTTCACCGTGTTGGCCAGGCTGGTCTCGAACTCCTGACCTCAG
    GTGATCCTCCCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGGGCCAC
    CGTGTCCGGCAGATTGCCAGTTTCTTATAGCATCTGACCATCAGGGAGAAACA
    GCCCCTGCCCAGGAAAGCCTTTGAAGGAATGGCTGGGATAGATGTCGAGTGGG
    AGGGACATTGAGAGTGGCAGGGGTGGAGGGGATCATCATGTCAGTCTCCTTTT
    GTTGGTAGATATCTTCACATTAAAGTGACTTGCTCACCTACACAACCCACTTGC
    TGTGAGAATTGGGCTATTGAAAAATACTTGGTAACGAGGACCCCCAGAGCATA
    ACCCCCATGGTACAGACAAGGAAACTGAGACTCAGAGAGGTTAGGTGACTTGC
    CCATGGTCACACTGTGAGAAAGTGGTAGAACCAGGCTTTGACCCTGAAGCACC
    CACAGCTCATCCATCCCTCCTGCTCCCAATGTCACAGGTGTCAACCGATTCTAT
    GACAATATCCAAGAGATGGTTGGATCCAGGCCCTGCATCTGGTGGAAACTCTG
    CTGGTCTTTCTTCACACCAATCATTGTGGCGGTAAGAACAAGGCCTGACTAGCC
    CTGTTAGGATGAGGCTAGACCAAGCCCTGGGGGGACTCAGGTCCAGGGAGAA
    ACTTCTAGAGGCAGAGGCAGGTGGGAGAGGCCCCCAGAAACCCTGTTCCTTAA
    TAATACTTCTCTCTACCATTTGTTGGGCATCTATTCTGCACCCTGCATGGTACAA
    GACACATTATATCATCCTCCACAAACCTCAGAAAGGAGGCATTATTGTCCCAC
    TTTACCGCTGCAGGATCTGGGGCTCACCTAGCCAGCATCACCCAGCTAGTCAG
    CACTGGGATTCGAACCAAGCCCAGTCTCTTGGCACTTGGAGACTCTCCTTCTCA
    GGGTCCCTCATCCCCACAAGCAGGAGCTGAAGCAGGGGCGGGCCTGGGAGGG
    GCCACCCAAGGTTCTTGAGGTGGGGGCAGAGCCACTGCATATGTTGTGTCCAC
    ATAAGGGGACCCTGCCAATGGCACATTGGGAGCTGATATCTCACCCTTGCTCT
    GCTTTTGAAGCTGGGGAACTTGGAGGAAGGGGTTCCCTTTTCTAATTAGTCTCC
    CTAGAGGAGTTGCCTTTTCCTACTGATCTTCCCTGAGAGGGTGTCTTTTTCTATT
    ATGCACAAAGGCACCTTATGTGCTAGCAGCGGTGCTGAGTGCAGGACTCCCAA
    GACCTTGGGCCTCTGTAAGGGTCAGCCTCGGGGTGAGGGTGGAGGGCAGTCAG
    CCTGCTGGCTTCAGGGTGGTTCATCCTGGGTGACTGACTCCTCCCCCTCCCTCC
    CCTCCCCTCCACCCTCTCCAGGGCGTGTTCATTTTCAGTGCTGTGCAGATGACG
    CCACTCACCATGGGAAACTATGTTTTCCCCAAGTGGGGCCAGGGTGTGGGCTG
    GCTGATGGCTCTGTCTTCCATGGTCCTCATCCCCGGGTACATGGCCTACATGTT
    CCTCACCTTAAAGGGCTCCCTGAAGCAGGTAAGCCCTTCCCCACCCTTCAAATT
    GCCAGTGCCCTTCTCCCACTGTGTCAGGCACAGCCCCACCCCTTGTGAAGCTCA
    CAGTCTAGCTGGGGAAACAGACAAGTCAATAGCCAATGACAGTAGAGTATTAG
    AGACACTGAGATTAGGGAAAGCCAAGGGGGTGGGAGCAAACAGCCTGCCTTA
    GCCCTACTTGGGTTAAGGAGGATTAAAGAAGCTTCCCAGAAGAGGGGATAACA
    AAGGAGAGGCCTGGGGATAAACCAAACTTAAAAGTAGAAGCAGAAAGTATGT
    TTCTAGAAGAGGGAGGGGAGGAGAGGTTGGAAAGCATGTGCAAAGGTCCAGG
    GGTATAAACTGCATTGGGTCAACTGAACGGAGATCAGTGTGGCTGGAAGGTAA
    AGTGGAAAGGGGTGCGAGGAGGGGACATGACAAGAGATGAGGTTGGGATGTA
    AGAAGGTCCAGCCAGATCATGAAGGGCTTTGAAAACCAGGACAAGAACTTTG
    AACTTTATCCTGGCAGCAATGGGGTGTCATGAAGGGCTTGGAACAGACGGAGG
    GTGGGATCACATTTGCCCAGGGCTCACTCTAGATCTCATTTGTAGGGTTGATAT
    AGAGAAAATGTGGTCTTACCCACAAAGAAAGACAAAGCACAAAAGACCTGCT
    GCCTGCAGCAGGGGCCTCACCATCACATAGGGTTCTCTGTCCATGCCCACACTT
    TGTTAAATTGCACTAAATTCTTGAGGGAAGCAAAGAAGTGCTGGAGGTGCCAG
    GCAGGTGCCTCATTGATGAGGTGTGTGCAGGCTGAAAAGATGCCACGGGGAGA
    AGTGGAGAGTCGGAGTGTGAGGGCTGCCCCGGAAGGCCCTGGATGAGTTGCTG
    TCCACTATAGTGCCCTGGGAAATGCACCTGCCAGACCCAGGGGAAGCGCTCTC
    AGGTCTGAGATACAGGGAAGCCTGGCTGCAGGTTATGTGCTGCCGTGGAGTTA
    CTGGCCCATCTTCCTCCAACCTCAGATGAAGAAACTGGGGAACCACAGGGGTT
    GAGTAAGCAGGTTCCCAGCTCAGGAAGCTGTGAGCAGAGCTAGGGCTTGCAGC
    CCTTTCTTCCCAATGCAAGTCCAAAGCTTTCATTTTCCATGATCCACTGGAGAG
    CCTCAAACAGCAGCTGGGTCTTAGCGTGGCAAGAGGTTAGGGGGGTGCCCTTG
    CAGAAAACAGCACAGCTTGTGCAAAGGCCCAGCGGTAGGAAGGGCCAAGACA
    TACCTGAGGCCAGGGTGTGAGCTGACGGGGCAGGATGGCGAAGGCAGTAGGG
    GGTCCATCCATTCAGCACACATGGACGGAACCCTGATGATGTGCCAGACACTA
    CTGTCAGTGCTGGGGACACAGCCATGAACAAGATAAGCAGAAATTGCACCCTC
    CTGGAGCTCCCATTCAGGGAGAGGAAGATAAGCAACTAACAAAATAAAAGCA
    CGTGAGGTGGCGAGGAGCACTATAGAGAAAAATCAAGTAGACAGGGTGTTTA
    GGGAGTGCCGGATGAGGCCTCACTGAGAAGGCGAAACATTTGAGCCAAGACC
    TGGGGAAGTGGAAAGCGAGCTGTCGCTATCTGAGAGGAAGGCTCTGCCAGAC
    AGAGGGCACAGCCTGTGCAAACGCCCTGGAGCGGAAGCGTGCCTGCTGTGTTT
    GCGGGGCGTCGAGGAGTCCTATGCAGATGAGGTGGATGTGCGAGGAAGAGGG
    GAGGACACTGAGGACTGGGAGGTGGCAGGGGCCAGGTCGTGTAGGGCCTTGA
    AGAACTTTGGCTCTGCCTCTTGGTGAAATGGGAGCCTTCATTGGGTCCTGAAGA
    GTACAGGGGCATGATCTGAGTCTGGTTTTCATACAACTCTCCTGCTGCTGTGTT
    GACGACAGAATGAAGGGGTGAGAGGACAGCATGAAAGTGGGAGTGGAAGCTG
    AGGGCTGATTGGGAGTTGTTGCAATAACCCAAGTGAGAGGGGCTGTGGCGTGG
    CCCATGTGGGGCAGTGGCAGGGGTGCAGGAGGTGGGGATGTGGCTGGAGTCT
    GGGTGTAGTTTGGAGGCAGAGCAGACAGGATGCACTTGAATAGAGAGCAGGA
    GAGGGAAGCGGCCAGTTCCTCACCATCCCAGGCTGGGATTTTCCCCAGAGAGC
    CTCACACCTTCCTCCCCGGTACCCACAGCGCATCCAAGTCATGGTCCAGCCCAG
    CGAAGACATCGTTCGCCCAGAGAATGGTCCTGAGCAGCCCCAGGCGGGCAGCT
    CCACCAGCAAGGAGGCCTACATCTAGGGTGGGGGCCACTCACCGACCCGACAC
    TCTCACCCCCCGACCTGGCTGAGTGCGACCACCACTTGATGTCTGAGGATACCT
    TCCATCTCAACCTACCTCGAGTGGCGAGTCCAGACACCATCACCACGCAGAGA
    GGGGAGGTGGGAGGACAGTTAGACCCCTGGGTGGGCCCTGCCGTGGGCAAGG
    ATACCCGGTGGCTTCTGGCACCTGGCGGGCTGGTGACCTTTTTAATCCAGGCCC
    CATCAGCATCCCACGATCGGCCTTGGTAACCGCCGCGGTAGATCATTTTTATCC
    CGCCAGGGAGTGTGATGCAGGAAGACCACATGCGCTCCTGGCTTTTAAACCTG
    TTCCTGACTGTTCTCTTACTGCCGAAACCCTTGACTGTTATCTCGGACTTTGCAG
    GAGTTCCTTTCCCTCCGAACGCTGCTCCATGCACAGGAAAAGGGCATTTTGTAC
    AATGGGGACTTCCCGGGAACGCTTGCTCTTAAGTACCAGAAGCCGGCGGAGCT
    CTGGCTTTCGTGTTTTTGGTTTTCTCCTTCCCAAGGCAGCTGGATTGAAAAAAC
    AAAACAAAACAAAAAAACCCAGGGGCGTCAGTCGATATTCCCAGGGCCGCTT
    CTCCTGCAGTCTGTGGAGCGTCCTTGTCCCCGCCGCCGGAATGAATGAGCATTC
    TGCAGCCCGATGTCCCTGTCCCCTCCTCGCCGGGCCATTCTGATTGGACCTGGC
    CCAGTGCAATCTGTCCAGACAAGCCCTGCTTGCTGGAAAACTGCCACAAGCAC
    AATTGATCTCTTTTTATCGCCATTCCAGGGGCCTCAGGTCCTACTGGGGAAACT
    TCCTATACCGGAGCTCCAGTTTCTCTTAAGCTGCCCAATTTCACAGAGTACAAA
    ATAGTTGTAGGGGAAATCAAGGTGAAGGATCTGTCCGACAGTCAAGACGGATC
    CACAGTAATCTTTCGGTCTCCTTAAACTACCACCCTCGCTGCCACCCACCCCAA
    GCTGCTGCCGCCTCACCTTCCTTGAAATTTCTCAGCGGGAGTCTCCTCACTGCC
    ACTAAAATCCACCCAGCCCACTAACTGAGGAGCTAGTGTTAATCCAGAGAACC
    CCCCGCAATGTGCTTCCGAGATTCAGACTGCTTCATTGGGAAGTATGATTTGTT
    CCTTTCTGGAATTGGGCTCCGTGGTGGCGGCGGCACTTCAAGCAAAGACAGTT
    TCTTGCAAGCTCCAGTAGCTCCGCGTGTCTCATTTGCCAGGAAGATGGGTTCCC
    ACGTAGCAAATCGTACATTGTGCCCTGTAGCTCCTTAGCTAGTTAGCTCACAAG
    CCGTGTTTTATGACTAATCCTTAATAACTATGGTAAATAACTGTGACTGTGGGG
    TTTTTAATCTCTTGTCATTCTCATCCAAAAGTGACCAGCATACCAGTTCTTGCA
    ATAAGATATTACCCTCAGAATATTAAGCACATTATTGTAGAGAAAAAAAAATA
    TGTGTACACATATGAACGCACAACATGCACATTCATCCTCACATGTGGCACGT
    AAGGTCTCATTTGATATTGTGTAGGAAATCTGAAGCCTTTTCCTGAGGTCATCT
    GTAAAATAGTCTCATTGCCAAGGCATCCCCAGTGCCAGCTGGTGAATCCATGA
    TCAAAATGCATACGTATTGTTAAATGATAAGGTTTAGAATGACAGGAACCCAT
    CACTGTGTCTCATGGTCCCACTTCCCCATCTGTGTGTGAATTCCTTTAGACTAA
    GGGCAGGAAGACTTCCAGCTTTCTCTTTGTTCTTCAATGTGAAACTGAGACCAA
    GTCTCTCTAAGACAAATGCAGTGTATTTAATGTTTGTAAGCAATTCTAAGTGAG
    ATGTTTGGCAAGAAATCCCCTAACTGATTTCCATCCAAACCTACCTTATAGAGC
    ACAATATTAAGTGTTGTACAATTACTGTGAGAACTGTGAATATGTGTAACTTTT
    TTTTAGTATTTGCCCGGGGGGAAAAAGATATTGTATTATCATATATGCTTTTTT
    GCAATAAGGATTTATTCTCAGAACACCAAGTAAATCTATCTCTATATAAAAAA
    TATATGTAATATATACATATTCAAAGTATATACAGAGCCTGTTTTAAAAAATAC
    AGTATTATTTAGTAAAATTATCTGTTCTATGGACCAAATGTAAAATATTTATAA
    ATGAAGATGCATTTTAAATGTCTATAAATGGTGTCATAACTAGAGCACGGGCG
    TTATGTAAGTTTCTAAGAATTTAGAGGATAAATAATAAAGGTTCTATGATATAC
    AA (SEQ ID NO: 109)
  • TABLE 4
    Sequences and chemical modifications of selected steric blocker antisense
    oligonucleotide targeting cryptic splice sites within SLC6A1 introns (showing
    compounds that activate the expression of SLC6A1 mRNA in KNS60 neuroblastoma
    cells.)
    Molecular Percent
    Oligo Name Oligo Sequence Weight (Da) Target Site Activation
    SLCss0603 TCTTGCAGACTATTCTAAAG 7933.92 Intron 1: 102.81
    (SEQ ID NO: 110) 11004094-11004117
    SLCss0701 AGGGTGGGCACCCGGACCTG 8054.98 Intron 1: 120.84
    (SEQ ID NO: 111) 11005196-11005219
    SLCss0801 GGAAGACCTGGGCCCCGTTC 8003.97 Intron 1: 209.24
    (SEQ ID NO: 112) 11006348-11006371
    SLCss0802 TGGGCCCCGTTCTTGCATAG 7970.93 Intron 1: 136.17
    (SEQ ID NO: 113) 11006348-11006371
    SLCss0803 TTGCATAGGTGACAGTGCAG 8025.94 Intron 1: 123.55
    (SEQ ID NO: 114) 11006348-11006371
    SLCss0901 TGATCATCATTCTTATTACA 7883.89 Intron 1: 138.59
    (SEQ ID NO: 115) 11006831-11006840
    SLCss100l GCTTCTGCAAATTCCCTCTC 7877.93 Intron 1: 180.25
    (SEQ ID NO: 116) 11009358-11009367
    SLCss1002 AATTCCCTCTCAGGTACGTT 7913.92 Intron 1: 228.55
    (SEQ ID NO: 117) 11009358-11009367
    SLCss1101 GTTTAAAAATCAGCTTCTCG 7933.92 Intron 1: 114.56
    (SEQ ID NO: 118) 11010251-11010274
    SLCss1301 TCTGGCTGTATTAATGCGTT 7957.89 Intron 1: 101.13
    (SEQ ID NO: 119) 11012180-11012203
    SLCss1302 TATTAATGCGTTTCTTCTAG 7916.88 Intron 1: 257.13
    (SEQ ID NO: 120) 11012180-11012203
    SLCss1303 TCTTCTAGGCCTCCCGTGTC 7909.92 Intron 1: 113.69
    (SEQ ID NO: 121) 11012180-11012203
    SLCss1401 CCGTGTCTTGTTCTTACACC 7894.91 Intron 1: 121.89
    (SEQ ID NO: 122) 11012213-11012236
    SLCss1402 TGTTCTTACACCTCTTGCAG 7904.91 Intron 1: 160.77
    (SEQ ID NO: 123) 11012213-11012236
    SLCss1403 TCTTGCAGCACTTATCACAG 7922.93 Intron 1: 174.72
    (SEQ ID NO: 124) 11012213-11012236
    SLCss1501 CTTCCGCCTGCTCCACCAGC 7890.97 Intron 1: 145.5
    (SEQ ID NO: 125) 11012794-11012803
    SLCss1502 GCTCCACCAGCAGGTAAAGG 8006.99 Intron 1: 152.72
    (SEQ ID NO: 126) 11012794-11012803
    SLCss1503 AGGTAAAGGAGGCTGATCAC 8043.97 Intron 1: 169.43
    (SEQ ID NO: 127) 11012794-11012803

Claims (86)

What is claimed is:
1. An antisense oligonucleotide that binds to a target region in an SLC6A1 RNA transcript, wherein the target region comprises a splice modulatory element.
2. The antisense oligonucleotide of claim 1, wherein binding of the antisense oligonucleotide to the target region increases the expression of a functional protein encoded by the SLC6A1 RNA transcript in a cell.
3. The antisense oligonucleotide of claim 2, wherein the protein comprises GABA Transporter 1 (GAT-1).
4. The antisense oligonucleotide of claim 2, wherein the cell comprises an SLC6A1 expressing cell.
5. The antisense oligonucleotide of claim 4, wherein the cell comprises a neuronal cell and/or an astrocyte.
6. The antisense oligonucleotide of claim 5, wherein the neuronal cell comprises a GABAergic neuronal cell.
7. The antisense oligonucleotide of any of claims 1 or 2, wherein the splice modulatory element comprises one or more of a non-productive splice site, a exonic splicing enhancer, an exonic splicing silencer, an intronic splicing enhancer, or an intronic splicing silencer.
8. The antisense oligonucleotide of any of claims 1-7, comprising a region of complementarity to a target region of an RNA transcript corresponding to a nucleotide sequence of any one of SEQ ID NOs: 1-108.
9. The antisense oligonucleotide of any of claims 1-8, wherein the antisense oligonucleotide comprises 8 to 80 nucleotides in length.
10. The antisense oligonucleotide of any of claims 1-9, wherein the antisense oligonucleotide comprises 15 to 25 nucleotides in length.
11. The antisense oligonucleotide of any of claims 1-10, wherein the antisense oligonucleotide comprises 18 to 20 nucleotides in length.
12. The antisense oligonucleotide of any of claims 1-11, wherein the antisense oligonucleotide comprises one or more modified nucleotides.
13. The antisense oligonucleotide of claim 12, wherein the one or more modified nucleotides comprise a modification of a ribose group, a phosphate group, a nucleobase, or a combination thereof.
14. The antisense oligonucleotide of claim 13, wherein the modification of the ribose group comprises 2′-O-methyl, 2′-fluoro, 2′-deoxy, 2′-O-(2-methoxyethyl) (MOE), 2′-O-alkyl, 2′-O-alkoxy, 2′-O-alkylamino, 2′-NH2, a constrained nucleotide, or a combination thereof.
15. The antisense oligonucleotide of claim 14, wherein the constrained nucleotide comprises a locked nucleic acid (LNA), an ethyl-constrained nucleotide, a 2′-(S)-constrained ethyl (S-cEt) nucleotide, a constrained MOE, a 2′-O,4′-C-aminomethylene bridged nucleic acid (2′,4′-BNANC), an alpha-L-locked nucleic acid, a tricyclo-DNA, or a combination thereof.
16. The antisense oligonucleotide of claim 15, wherein the modification of the ribose group comprises 2′-O-(2-methoxyethyl) (MOE).
17. The antisense oligonucleotide of claim 13, wherein the modification of the phosphate group comprises a phosphorothioate, a phosphonoacetate (PACE), a thiophosphonoacetate (thioPACE), an amide, a triazole, a phosphonate, a phosphotriester modification, or a combination thereof.
18. The antisense oligonucleotide of claim 17, wherein the modification of the phosphate group comprises phosphorothioate.
19. The antisense oligonucleotide of claim 13, wherein the modification of the nucleobase group comprises 2-thiouridine, 4-thiouridine, N6-methyladenosine, pseudouridine, 2,6-diaminopurine, inosine, thymidine, 5-methylcytosine, 5-substituted pyrimidine, isoguanine, isocytosine, halogenated aromatic groups, or a combination thereof.
20. The antisense oligonucleotide of claim 19, wherein the modification of the nucleobase group comprises 5-methylcytosine.
21. The antisense oligonucleotide of any of claims 1-20, wherein the antisense oligonucleotide further comprises a ligand.
22. The antisense oligonucleotide of any one of claims 1-21, comprising a sequence modification pattern of
XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs, XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs, or XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,
wherein:
s represents a phosphorothioate internucleoside linkage; and
X represents an adenosine, a guanosine, a cytidine, or a thymine comprising a 2′-O-(2-methoxyethyl) modification.
23. The antisense oligonucleotide of any one of claims 1-22, comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
24. The antisense oligonucleotide of any one of claims 1-22, wherein the antisense oligonucleotide increases the level of a functional SLC6A1 RNA transcript in a cell that contains the antisense oligonucleotide by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that does not contain the antisense oligonucleotide.
25. An antisense oligonucleotide comprising a region of complementarity to a SLC6A1 RNA transcript target region corresponding to a nucleotide sequence of any of SEQ ID NOs: 1-108.
26. The antisense oligonucleotide of claim 25, wherein the target region comprises a non-productive splice site.
27. The antisense oligonucleotide of claim 25, wherein binding of the antisense oligonucleotide to the target region increases the expression of a functional protein encoded by the SLC6A1 RNA transcript in a cell.
28. The antisense oligonucleotide of claim 27, wherein the protein comprises GABA Transporter 1 (GAT-1).
29. The antisense oligonucleotide of claim 27, wherein the cell comprises an SLC6A1 expressing cell.
30. The antisense oligonucleotide of claim 29, wherein the cell comprises a neuronal cell and/or an astrocyte.
31. The antisense oligonucleotide of claim 30, wherein the neuronal cell comprises a GABAergic neuronal cell.
32. The antisense oligonucleotide of any of claims 25-31, wherein the antisense oligonucleotide comprises 8 to 80 nucleotides in length.
33. The antisense oligonucleotide of any of claims 25-32, wherein the antisense oligonucleotide comprises 15 to 25 nucleotides in length.
34. The antisense oligonucleotide of any of claims 25-33, wherein the antisense oligonucleotide comprises 18 to 20 nucleotides in length.
35. The antisense oligonucleotide of any of claims 25-34, wherein the antisense oligonucleotide comprises one or more modified nucleotides.
36. The antisense oligonucleotide of claim 35, wherein the one or more modified nucleotides comprise a modification of a ribose group, a phosphate group, a nucleobase, or a combination thereof.
37. The antisense oligonucleotide of claim 36, wherein the modification of the ribose group comprises 2′-methyl, 2′-fluoro, 2′-deoxy, 2′-O-(2-methoxyethyl) (MOE), 2′-O-alkyl, 2′-O-alkoxy, 2′-O-alkylamino, 2′-NH2, a constrained nucleotide, or a combination thereof.
38. The antisense oligonucleotide of claim 37, wherein the constrained nucleotide comprises a locked nucleic acid (LNA), an ethyl-constrained nucleotide, a 2′-(S)-constrained ethyl (S-cEt) nucleotide, a constrained MOE, a 2′-O,4′-C-aminomethylene bridged nucleic acid (2′,4′-BNANC), an alpha-L-locked nucleic acid, a tricyclo-DNA, or a combination thereof.
39. The antisense oligonucleotide of claim 38, wherein the modification of the ribose group comprises 2′-O-(2-methoxyethyl) (MOE).
40. The antisense oligonucleotide of claim 36, wherein the modification of the phosphate group comprises a phosphorothioate, a phosphonoacetate (PACE), a thiophosphonoacetate (thioPACE), an amide, a triazole, a phosphonate, a phosphotriester modification, or a combination thereof.
41. The antisense oligonucleotide of claim 40, wherein the modification of the phosphate group comprises phosphorothioate.
42. The antisense oligonucleotide of claim 36, wherein the modification of the nucleobase group comprises 2-thiouridine, 4-thiouridine, N6-methyladenosine, pseudouridine, 2,6-diaminopurine, inosine, thymidine, 5-methylcytosine, 5-substituted pyrimidine, isoguanine, isocytosine, halogenated aromatic groups, or a combination thereof.
43. The antisense oligonucleotide of claim 42, wherein the modification of the nucleobase group comprises 5-methylcytosine.
44. The antisense oligonucleotide of any of claims 25-43, wherein the antisense oligonucleotide further comprises a ligand.
45. The antisense oligonucleotide of any of claims 25-44, comprising a sequence modification pattern of
XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs, XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs, or XsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXsXs,
wherein:
s represents a phosphorothioate internucleoside linkage; and
X represents an adenosine, a guanosine, a cytidine, or a thymine comprising a 2′-O-(2-methoxyethyl) modification.
46. The antisense oligonucleotide of any one of claims 25-45, comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
47. The antisense oligonucleotide of any one of claims 25-46, wherein the antisense oligonucleotide increases the level of a functional SLC6A1 RNA transcript in a cell that contain the antisense oligonucleotide by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that does not contain the antisense oligonucleotide.
48. A multimeric antisense oligonucleotide compound comprising two or more antisense oligonucleotides of any of claims 1-47, wherein the two or more antisense oligonucleotides are linked together through a linker.
49. The multimeric antisense oligonucleotide compound of claim 48, wherein the linker comprises a cleavable linker.
50. The multimeric antisense oligonucleotide compound of claim 49, wherein the cleavable linker degrades when cleaved.
51. The multimeric antisense oligonucleotide compound of claims 49 or 50, wherein the cleavable linker comprises a nuclease-cleavable linker comprising a phosphodiester linkage.
52. The multimeric antisense oligonucleotide compound of claim 51, wherein the nuclease-cleavable linker comprises from about 2 to about 8 nucleotides.
53. The multimeric antisense oligonucleotide compound of claims 51 or 52, wherein the nuclease-cleavable linker comprises about 6 nucleotides.
54. The multimeric antisense oligonucleotide compound of any one of claims 48-53, wherein the cleavable linker is cleaved under reducing conditions or changing pH conditions.
55. The multimeric antisense oligonucleotide compound of any one of claims 48-54, wherein the cleavable linker is cleaved by an intracellular or endosomal nuclease.
56. The multimeric antisense oligonucleotide compound of any one of claims of claims 48-55, wherein the cleavable linker is cleaved by an intracellular or endosomal protease.
57. The multimeric antisense oligonucleotide compound of any one of claims of claims 48-55, wherein at least one of the antisense oligonucleotides comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
58. A combination comprising two or more antisense oligonucleotides that bind to two or more target regions in an SLC6A1 RNA transcript, wherein the two or more target regions comprise a splice modulatory element.
59. The combination of claim 58, wherein two or more antisense oligonucleotides are linked together through a linker.
60. The combination of claim 59, wherein the linker comprises a cleavable linker.
61. The combination of claim 60, wherein the cleavable linker degrades when cleaved.
62. The combination of claims 60 or 61, wherein the cleavable linker comprises a nuclease-cleavable linker comprising a phosphodiester linkage.
63. The combination of claim 62, wherein the nuclease-cleavable linker comprises from about 2 to about 8 nucleotides.
64. The combination of claims 62 or 63, wherein the nuclease-cleavable linker comprises about 6 nucleotides.
65. The combination of any one of claims 58-64, wherein the cleavable linker is cleaved under reducing conditions or changing pH conditions.
66. The combination of any one of claims 58-65, wherein the cleavable linker is cleaved by an intracellular or endosomal nuclease.
67. The combination of any one of claims 58-66, wherein the cleavable linker is cleaved by an intracellular or endosomal protease.
68. The combination of any one of claims 58-67, wherein at least one antisense oligonucleotide comprises a region of complementarity to a SLC6A1 RNA transcript target region corresponding to a nucleotide sequence of any of SEQ ID NOs: 1-108.
69. The combination of any one of claims 58-68, wherein at least one of the antisense oligonucleotides comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 110-127.
70. A method of treating a disease or disorder characterized by haploinsufficiency of a SLC6A1 gene, comprising administering to a subject in need thereof the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides of any of claims 1-69, and treating the disease or disorder.
71. A method of treating a disease or disorder characterized by reduced expression of a functional GAT-1 protein encoded by a SLC6A1 gene, comprising administering to a subject in need thereof the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides of any of claims 1-69, and treating the disease or disorder.
72. The method of claims 70 or 71, wherein the disease or disorder comprises myoclonic-atonic epilepsy (MAE), epilepsy, epileptic encephalopathy, seizures, autism spectrum disorders, intellectual disability, or a combination thereof.
73. The method of claims 70 or 71, comprising administering the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides to a brain of the subject.
74. The method of claims 70 or 71, comprising administering the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides by intrathecal, intraventricular, intrastriatal injection or infusion, or a combination thereof.
75. The method of claim 74, wherein the injection or infusion comprises administration using an Ommaya reservoir, an intrathecal catheter, or a combination thereof.
76. A method of increasing expression of a functional SLC6A1 RNA transcript in a cell, the method comprising contacting the cell with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides of any of claims 1-69, thereby increasing the expression of a functional transcript of the SLC6A1 RNA transcript in a cell.
77. The method of claim 76, wherein expression is increased by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that is not contacted with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides.
78. A method of increasing expression of a protein encoded by a SLC6A1 RNA transcript in a cell, the method comprising contacting a cell with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides of any of claims 1-69, thereby increasing expression of the protein.
79. The method of claim 78, wherein expression is increased by about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 100%, or more, relative to a cell that is not contacted with the antisense oligonucleotide, the multimeric antisense oligonucleotide compound, or combination of antisense oligonucleotides.
80. The method of claim 78, wherein the protein comprises GABA Transporter 1 (GAT-1).
81. The method of any of claims 77-80, wherein the cell comprises an SLC6A1 expressing cell.
82. The method of any of claims 77-80, wherein the cell comprises a neuronal cell and/or an astrocyte.
83. The method of claim 82, wherein the neuronal cell comprises a GABAergic neuronal cell.
84. An antisense oligonucleotide that increases expression of a functional protein from the SLC6A1 gene by targeting the 5′- and/or 3′-untranslated regions of the SLC6A1 transcript.
85. The antisense oligonucleotide of claim 85, wherein the antisense oligonucleotide inhibits translation initiation from an upstream open reading frame to increase translation efficiency from the primary open reading frame.
86. The antisense oligonucleotide of claim 85, wherein the antisense oligonucleotide increases mRNA stability.
US17/781,554 2019-12-04 2020-12-04 Anti-slc6a1 oligonucleotides and related methods Pending US20230041016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/781,554 US20230041016A1 (en) 2019-12-04 2020-12-04 Anti-slc6a1 oligonucleotides and related methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962943670P 2019-12-04 2019-12-04
US201962943672P 2019-12-04 2019-12-04
PCT/US2020/063469 WO2021113755A2 (en) 2019-12-04 2020-12-04 Anti-slc6a1 oligonucleotides and related methods
US17/781,554 US20230041016A1 (en) 2019-12-04 2020-12-04 Anti-slc6a1 oligonucleotides and related methods

Publications (1)

Publication Number Publication Date
US20230041016A1 true US20230041016A1 (en) 2023-02-09

Family

ID=76221009

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/781,554 Pending US20230041016A1 (en) 2019-12-04 2020-12-04 Anti-slc6a1 oligonucleotides and related methods
US17/781,569 Pending US20230022489A1 (en) 2019-12-04 2020-12-04 Identifying non-productive splice sites

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/781,569 Pending US20230022489A1 (en) 2019-12-04 2020-12-04 Identifying non-productive splice sites

Country Status (3)

Country Link
US (2) US20230041016A1 (en)
EP (2) EP4069844A4 (en)
WO (2) WO2021113773A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023235509A2 (en) * 2022-06-01 2023-12-07 Stoke Therapeutics, Inc. Antisense oligomers for treatment of non-sense mediated rna decay based conditions and diseases

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017755A (en) * 1996-08-22 2000-01-25 Hsc Research & Development Limited MADR2 tumour suppressor gene
US6812339B1 (en) * 2000-09-08 2004-11-02 Applera Corporation Polymorphisms in known genes associated with human disease, methods of detection and uses thereof
US20040259135A1 (en) * 2003-05-09 2004-12-23 Cleary Michael D. Biosynthetic labeling and separation of RNA
EP1859060A2 (en) * 2005-02-28 2007-11-28 Integragen Human autism susceptibility genes encoding a neurotransmitter transporter and uses thereof
EP2425019B1 (en) * 2009-05-01 2014-03-19 QIAGEN Gaithersburg, Inc. A non-target amplification method for detection of rna splice-forms in a sample
US10364455B2 (en) * 2012-09-27 2019-07-30 Bioo Scientific Corporation Methods and compositions for improving removal of ribosomal RNA from biological samples
US20180371550A1 (en) * 2015-07-08 2018-12-27 Children's Hospital Medical Center Loss of transcriptional fidelity leads to immunotherapy resistance in cancers
CN108473479B (en) * 2015-11-18 2024-05-07 卫材研究发展管理有限公司 Solid state forms of pladienolide pyridine compounds and methods of use
US11096956B2 (en) * 2015-12-14 2021-08-24 Stoke Therapeutics, Inc. Antisense oligomers and uses thereof
US10240205B2 (en) * 2017-02-03 2019-03-26 Population Bio, Inc. Methods for assessing risk of developing a viral disease using a genetic test
CN110352251A (en) * 2017-03-08 2019-10-18 豪夫迈·罗氏有限公司 The enrichment of primer extend target and the improvement including Sync enrichment DNA and RNA to it
CA3056603A1 (en) * 2017-03-14 2018-09-20 Memorial Sloan Kettering Cancer Center Labeling, isolation, & analysis of rna from rare cell populations
US20210163930A1 (en) * 2017-08-21 2021-06-03 Resurgo Genetics Limited Methods of changing transcriptional output
EP4107282A1 (en) * 2020-02-21 2022-12-28 10X Genomics, Inc. Capturing genetic targets using a hybridization approach

Also Published As

Publication number Publication date
WO2021113773A3 (en) 2021-07-15
WO2021113773A2 (en) 2021-06-10
WO2021113755A2 (en) 2021-06-10
EP4069844A2 (en) 2022-10-12
WO2021113755A3 (en) 2021-08-19
US20230022489A1 (en) 2023-01-26
EP4069255A2 (en) 2022-10-12
EP4069255A4 (en) 2024-02-21
EP4069844A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
CN104313027B (en) By inhibiting the natural antisense transcript of adiponectin (ADIPOQ) to treat adiponectin (ADIPOQ) related disease
JP7476199B2 (en) Antisense oligonucleotides targeting SCN2A for the treatment of SCN1A encephalopathy - Patent Application 20070123333
TR201816256T4 (en) Compositions and methods for modulating smn2 terminal coupling in a subject.
US20180036335A1 (en) Compositions for modulating mecp2 expression
US20230295629A1 (en) Anti-c9orf72 oligonucleotides and related methods
CN115397436A (en) RNAi agents for inhibiting PNPLA3 expression, pharmaceutical compositions and methods of use thereof
JP2023100816A (en) Modulators of ezh2 expression
US20220226361A1 (en) Compositions and Methods for Modulating MECP2 Expression
ES2909308T3 (en) Methods for modulating MECP2 expression
US20230041016A1 (en) Anti-slc6a1 oligonucleotides and related methods
EP4335859A1 (en) Method for designing oligonucleotide having reduced central toxicity
EP3740500A1 (en) Compositions and methods for increasing expression of scn2a
KR20230029837A (en) Compounds and methods for modulating PLP1
US20210285002A1 (en) Oligonucleotides targeting frataxin and related methods
US20230095566A1 (en) Anti-adam33 oligonucleotides and related methods
WO2023060092A1 (en) Compositions and methods for treatment of prion diseases
WO2024073592A2 (en) Compositions and methods for treatment of neurological disorders
WO2023239782A2 (en) Agents for modulating expression
TW202340464A (en) ANTISENSE OLIGONUCLEOTIDES TARGETING ATN1 mRNA OR pre-mRNA
WO2024073603A2 (en) Compositions and methods for treatment of neuroinflammatory diseases
WO2024073589A2 (en) Compositions and methods for treatment of neuroinflammatory diseases
WO2024073604A2 (en) Compositions and methods for treatment of neurodegenerative diseases
CN118043462A (en) Methods and compositions for avoiding off-target effects

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION